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Abstract. Consider the following problem: given two nodes s and ¢ in a
fully connected graph where each edge of the graph has a hidden length,
discover the shortest path between s and t. The issue is that edge lengths
are hidden. Hence, any algorithm that aims to solve the problem needs to
uncover the length of some edges to discover the shortest path. The goal
then is to discover the shortest path by means of uncovering the least
possible amount of edge lengths. This problem is known as the Shortest
Path Discovery (SPD) problem. The SPD problem is introduced by [13]
in AAAT 2004. In this document, we study the SPD problem. We show
that the previously proposed measure to evaluate the quality of an algo-
rithm does not differentiate correctly algorithms according to their per-
formance. Hence, it does not provide insightful information. Therefore,
we introduce the query ratio, the ratio between the number of uncovered
edge lengths and the least number of edge lengths required to solve the
problem, as a new measure to evaluate algorithms that solve the SPD
problem. When an input of size n is considered, we prove a lower bound
of 1 4+4/n — 8/n? on the query ratio of any algorithm that solves the
SPD problem. As well, we present an algorithm that solves the problem
and we prove that its query ratio is equal to 2 — 1/(n — 1).

1 Introduction

In a given graph, searching for the shortest path from an origin node to a desti-
nation node is a widely studied problem, see for instance the following surveys
[14,3,6,9]. Finding a shortest path is a problem that comes into sight in the
area of Artificial Intelligence as subproblem of different problems, for example
in symbolic planning, parsing, vision, or speech recognition.

The work [13] presented in AAAT 2004 introduces the Shortest Path Discov-
ery (SPD) problem. In the SPD problem the length of the edges are unknown,
but they can be queried. The SPD Problem aims to find the shortest path be-
tween two nodes querying the minimum number of edges. The SPD problem
arises in a context in which obtaining the length of the edges dominates the
total cost of computing a shortest path. As explained in [13], such a context ap-
pears in character or speech recognition, systems based on segmentation lattices,
hierarchical planning, or exploration of unsafe environments.



Our particular motivation emerges from a routing problem in communication
networks. Consider a set of nodes located at various spots in the Internet, and
imagine that a source node wants to deliver a message to a destination node
with a latency as low as possible. It may happen that the direct Internet path
between the source and destination nodes has an unacceptably high latency. In
that case, provided that other nodes can act as relays for the message, it may be
worth searching for an alternate path passing through one or more intermediate
nodes. One can be even more ambitious and search for the minimum latency path
in the complete graph formed by all nodes. However, monitoring the quality of
the Internet paths between all pairs of nodes by sending probe packets can be
excessively costly, and it makes sense to minimize the monitoring effort required
to discover the shortest path. This scenario perfectly falls whithin the scope of
the SPD problem.

In this paper, we study the SPD problem. Due to our particular motivation,
we restrict ourselves to the case of fully connected graphs. On the other hand,
we extend the definition of the SPD problem by relaxing the constraint that a
shortest path has to be discovered, and allowing a feasible path to be at most
a times longer than the sortest one for some o > 1. Of course, we fall back on
the original problem when a = 1. Even if the restriction added to the problem
appears to simplify it, all together with the relaxation they form an appealing
version of the SPD problem.

Our contributions are as follows. We first prove that, for any complete graph
of size n, any algorithm will need to query at least n — 1 edges to find a feasible
solution. On the other hand, we also show that for any algorithm there exists
a bad instance such that the number of edges queried by the algorithm will
be of the same order of magnitude than the total number of edges. The latter
results suggest that the number of queries is not an appropriate measure to
discriminate between algorithms for the SPD problem. We thus propose a new
measure, the query ratio, to evaluate the performance of algorithms that solve
SPD problem. The query ratio of an algorithm is defined as the worst-case ratio
(over all instances) of the number of queries made by an algorithm on an instance
to the minimum number of queries required to find a feasible path for that
instance. For instances of size n, we prove that any algorithm has a query ratio
of at least 1+ % — % and propose an approximation algorithm whose query ratio
is upper bounded by 2 — ﬁ

The paper is organized as follows. We first introduce some definitions and
present related works. We then prove our lower bounds on the number of queries,
before establishing lower and upper bounds on the query ratio. Finally, some
conclusions are drawn and future research directions are proposed at the end of
the paper.

2 Definitions

Let G = (V, E) be a fully connected undirected graph with n nodes where each
edge has an unknown positive length. Let us denote by £(e) > 0 the unknown



length of the edge e € E. We define a path in G as a finite ordered set of nodes
in which all nodes are distinct. A path that connects nodes u and v is a path
whose first node is u and last node is v. An edge belongs to a path if and only
if the edge is formed by two consecutive nodes in the path. We denote by P, .,
a path that connects nodes u and v, and by P(, . the set of all such paths.
The length of a path is measured as the sum of the lengths of the edges in the
path, i.e., the length of a path P, . is £(P,,.)) := ZeeP<u_u> £(e). We extend
the previous notation to any set of edges F C E by letting ¢(F) := > ecrlle).

A shortest path between nodes v and v is a path P(*u,v) in Py, so that
E(P(’;’v)) < AU(Pyywy) for all P, ) € Pryw). We denote by d(,.,) the length of a
shortest path in G between nodes u and v.

On the other hand, we follow the standard definitions used in graph theory.
A cut is a partition of the set V of nodes into two disjoint subsets. The cut-set of
a cut is the set of edges whose end points are in different subsets of the partition.

In order to discover the shortest path between two nodes, an algorithm has
to uncover the unknown length of the edges. We use the abstraction of an oracle
for that purpose. Let O be an oracle that can be accessed by an algorithm to
uncover the length of an edge or a set of edges, i. e., the oracle is accessed by
an algorithm by requesting the length of an edge or a set of edges. Hence, the
oracle reveals to the algorithm the length of all the requested edges. For short,
we say that an algorithm uncovers an edge when we refer to all this process.

We remark that in the original definition of the SPD problem, it seeks the
shortest path between two nodes in a graph uncovering the minimum possible
amount of edges. Nonetheless, sometimes the main ambition can be lowered
down and, instead to seek the shortest path, it might be enough to find a path
with a guarantee with respect to the shortest path. This is the case that we
study.

Consider a path P, ;) between two nodes s and ¢t € V. We say that P ) is
an a-approximation if the following condition holds:

E(P(s,t)> <o

Osit)

When 4, 4) is totally unknown (no lower bound is known except for the fact that
d(s,) is positive), there is no guarantee on the length of path P ;) with respect
to that of a shortest path, and we say that P ) is an oco-approzimation.

We say that a set of edges C C E is an a-certificate of G if and only if

- the length of the edges in C is known, whereas edges in E \ C have unknown
lengths,

- C contains a path from s to t, the so called proposed path, and

- there are enough uncovered edges in C to guarantee that the proposed path
is an a-approximation.

We remark that every edge in the proposed path belongs to the a-certificate.
Hence, its length is fully known. In all instances there exists at least one a-
certificate for any a. Indeed, the set E that contains all the edges of the graph



is an a-certificate for any «. In [13], the authors prove that a set of edges is a
1-certificate (i. e., a certificate enough to guarantee that the proposed path is a
shortest path) if the proposed path is a shortest path in the graph considering
the known lengths of the edges in the certificate and lengths equal to zero for all
other edges. Note that such a result can be extended as follows. A set of edges
C is an a-certificate if and only if it contains a proposed path from s to ¢ and
the proposed path is an a-approximation in the graph where the length of the
edges in C is known and the length of the edges in E'\ C is zero.

Instance and Feasible Solution An instance I of the SPD problem is defined by
a complete undirected graph G = (V, E) with n nodes and unknown positive
edge lengths, two special nodes s and t € V, a targeted approximation factor
a > 1, and an oracle O that can be accessed by an algorithm to uncover a set
of edges. We define the size of an instance I as the number of nodes of the fully
connected graph G, and it is denoted by |I|. As well, we define a feasible solution
for the SPD problem as an a-certificate whose lengths are fully uncovered.

Two Objective Functions Let us denote by U(A(I)) the set of edges whose
length has been uncovered by an algorithm A when solving the SPD problem
on the instance I. In other words, the set U(A(T)) is the a-certificate given by
algorithm A as a solution for the instance I. We define the number of queries of
an algorithm that solves the SPD problem as follows.

Definition 1. The number of queries for instances of size n of an algorithm
that solves the SPD problem is By, if and only if [U(A(I))| < B,V I such that
7| =n.

On the other hand, we point out the fact that there might be many -
certificates in an instance and an algorithm has to search for one. We are in-
terested in the size of a smallest a-certificate of an instance. Let us denote by
|Ce: (I)] the size of a smallest a-certificate of instance I. Henceforth, we define

the query ratio of an algorithm as follows.

Definition 2. The query ratio of an algorithm A that proposes an a-approximation
as a solution to solve the SPD problem is defined by the following ratio:

)]
ANTEIN

Our Contributions Our main contributions are as follows:

— We present a new meaningful measure, the query ratio, to evaluate the per-
formance of algorithms that solve SPD problem.

— We argue why the number of queries (as measure for the SPD problem) does
not provide meaningful information about the algorithms that solve the SPD
problem.

— We prove that any algorithm has a query ratio of at least 1+ % — %, which

means that no algorithm solves the SPD problem optimally.



— We present an algorithm that solves the SPD problem for any a > 1. Fur-
thermore, we prove that such an algorithm has a query ratio of 2 — ﬁ when
« is equal to 1.

3 Related Work

The interest of researchers in discovering the shortest path in graphs with un-
known information have increased in the last years. The survey [12] presents a
compilation of results in the context of Shortest-Path Queries in Static Networks.
The main difference of these problems with the SPD problem is that Shortest-
Path Queries in Static Networks includes a preprocessing algorithm that may
compute some information of the network to then be able to answer shortest-
path or distance queries. The goal is to construct an efficient data structure via
the preprocessing algorithm so that queries are answered rapidly. While, in the
SPD problem, operations to obtain information about the network dominates
the total cost of computation. In the context of bioinformatics, the survey [2]
presents a collection of results and methods in the area of combinatorial search,
focusing on graph reconstruction using queries of different type. The goal is to
reconstruct a hidden graph from a class of graphs making as few queries as pos-
sible. Again, the goal of such problem differs from the goal of the SPD problem,
since the SPD problem aims to find a shortest path.

The authors of [10] study shortest path problems when the graph is un-
known in advance, but specified dynamically. These problems seek dynamic de-
cision rules so that the total traversed distance has the best possible ratio to
the shortest path. The authors describe optimal decision rules for two cases:
layered graphs of width two, and two-optimal scenes with unit square obstacle.
The objective function in this case clearly differs form the objective function of
the SPD problem.

Another related work is [1] where the authors present the use of agents to
discover the edges of the graph or a shortest path from a source to a sink node.
They give bounds on the number of agents required to discover directed and
undirected graphs. The objective function of this problem is the number of agents
used to discover the solution, which differs from the objective function of the
SPD problem.

In this document, we present an algorithm that searches from the source
and the sink node at the same time. This type of algorithms are known in the
literature as bidirectional search algorithms and their study has a long history
[11]. These algorithms are shown to be faster than standard search algorithms
such as Dijkstra’s algorithm or A* [8] in most of the instances. However, make
the two search fronts meet in the middle is a difficult task. Several algorithms
have been presented in the literature to solve this issue. For example, in [5]
the authors suggest the BHFFA, which is a front-to-front algorithm that it is
computationally expensive. The authors of [7,4] present improved versions of
the BHFFA that are computationally less expensive.



4 Lower Bounds on the Number of Queries 3,

In this section, we present lower bounds for the number of queries required by
any algorithm providing a finite o approximation.

Lemma 1. For any finite a > 1, all a-certificate contain a cut-set in G such
that the corresponding cut places s in one set of the partition and t in the other.

Proof. First, we remark that an a-certificate contains a proposed path by defi-
nition. Therefore, the length £(P(, ) of the proposed path P, is fully deter-
mined. Second, we remark that, in order to provide any finite approximation
guarantee, the a-certificate needs to provide a strictly positive lower bound for
the length of a shortest path between s and t. Otherwise, the only known lower
bound for the length of a shortest path between s and ¢ is 0.

Now, consider an instance I of SPD problem and an a-certificate C. Let us
assume that the a-certificate does not contain a cut-set that separates s and t¢.
Hence, there exists a path P(*S’t between s and t so that P(*S,t NC = (). Since only
edges in C have a known length, the length of P(’; 1 18 totafly unknown for the
a-certificate C, implying that the only lower bound on d, ; known by C is 0. Thus,
the a-certificate C cannot guarantee any finite approximation for its proposed
solution. Therefore, there is a contradiction because C is not an a-certificate. O

Lemma 2. A set of edges that contains a path between s and t and a cut-set in
G, such that the corresponding cut places s in one part and t in the other, is an
a-certificate for some finite a > 1.

Proof. Consider a set of edges C as in the statement of the Lemma. Let us denote
by P(Cs,t) the path in C between s and ¢. It holds that P, ;) NC # () for any path

Ps 4y € P(s,y- Since 0 < min{l(Prs 1) NC) : P54y € Prsy} < 0(s,t), it holds that

(P )
U(PE ) < (0 O(s,t) < 00,

- min{f(P(s’t) n C) : P(s,t) S P(s,t)}
implying that C is an a—certificate for

o= K(P(i)t))/min{f(P(s’t) Ne): Py € P(s,t)}-
O

Lemma 1 enables us to present lower bounds for the number of queries 3,
required so that an algorithm can guarantee a finite a-approximation.

Corollary 1. For any algorithm that solves the SPD problem for a finite ap-
proximation o > 1, it holds that B, > n — 1.

This is a direct consequence of Lemma 1 and the fact that the smallest cut-set
in the complete graph has size n — 1.

Nevertheless, the previous lower bound for 3, is optimistic since there exist
cases in which any algorithm needs to uncover strictly more than n — 1 edges in
order to provide a finite approximation.



Lemma 3. For any real @ > 1 and integer 1 < p < n/2, there exists an input
so that any algorithm requires at least p - (n — p) uncovered edges in order to
provide an a-approximation.

Proof. We prove this Lemma via the construction of an input that certifies the
conditions stated in the lemma. Let us split the set of nodes in one set of size
p and one set of size n — p. Each edge with its two end points in the same set
has length € > 0. The direct edge (s,t) has length 1. Each edge with its end
points in different sets (except for the direct edge) has length o > 1. In such a
graph, the only a-approximation is indeed the direct path s,¢. But, in order to
guarantee such condition, any algorithm needs to uncover at least the cut-set of
size p - (n — p) that contains all the edges of length a. O

Corollary 2. For any algorithm A that solves the SPD problem for a finite
approximation factor o > 1, there exists an input so that A requires at least
n?/4 uncovered edges in order to provide an a-approximation.

According to Corollary 2, we consider meaningless the number of queries £,
of an algorithm. Indeed, for any algorithm and whatever the value of o > 1, it is
always possible to find a bad instance such that the number of edges uncovered
by the algorithm will be of the same order of magnitude than the total number
of edges. Therefore we change our aim. In the rest of the document, we focus
on the study of the query ratio of algorithms that proposes a-approximations
to solve the SPD problem. We believe that the query ratio is a fair measure to
evaluate the performance of algorithms for the SPD problem since it expresses
how far is the number of queries asked by an algorithm with respect to the best
possible any algorithm can perform in that instance.

5 Lower and Upper Bounds on the Query Ratio

In this section, we concentrate on the study of the query ratio. We present a lower
bound and an upper bound on the query ratio. The first bound is obtained via
the design of an adversary constructed for any algorithm. For the second bound,
we present an algorithm and analyze its query ratio.

5.1 An Adversary for Any Algorithm

Lemma 4. For any a > 1 and for any algorithm A that proposes an a-approximation,
there exists a particular instance I of size n such that

UAD)| . 48
Con@ ~ Tn T



Algorithm 1 Adversary that construct a bad instance for any algorithm, where
e1,€ez...,e; are the edges queried by the algorithm, i. e., e; is the edge queried
at the i-th step.

1: INITIALIZE sets Gs = {s} and G = {t};

functions g(u) = 0, Yu € V/{s,t}, g(s) = s, and g(t) = t.

2: fori=1,...,l do

3. if e; = (s,t) then

4: REPLAY ((e;) = 1.

5:  end if

6:  if e; = (s,u) such that g(u) = 0 then

7 REPLAY /(e;) = € and update g(u) := s and G, := Gs U {u}.
8: endif

9:  if e; = (s,u) such that g(u) = ¢ then

10: REPLAY /(e;) = a.

11:  end if

12:  if e¢; = (u,t) such that g(u) = 0 then

13: REPLAY /(e;) = € and update g(u) :=t and G; := G U {u}.

14:  end if

15:  if e; = (u,t) such that g(u) = s then

16: REPLAY /(e;) = a.

17:  end if

18:  if e; = (u,v) such that g(u) = g(v) =0 then

19: REPLAY /(e;) = e.

20:  end if

21:  if e; = (u,v) such that g(u) =0 and g(v) € {s,t} then

22: REPLAY {(e;) = e.

23: UPDATE g(u) := g(v).

24: UPDATE g(u') := g(v)Vu' such that there exists a path from u to v’ composed
by uncovered edges each with length equal to €.

25: UPDATE Gy(y) := Gyw) U {u} U{u : v — u}, where v’ — v means that u
and v’ are connected by a path of uncovered edges each with length equal to
€.

26:  end if

27:  if e; = (u,v) such that g(u) € {s,t} and g(v) € {s,t}/g(u) then

28: REPLAY /(e;) = a.

29:  end if

30:  if e; = (u,v) such that g(u) € {s,t} and g(v) = g(u) then

31: REPLAY {(e;) = e.

32:  end if

33: end for

Proof. In order to prove the Theorem, we construct a bad instance I for each
algorithm. The construction is made adversarially. We give a malicious adversary
that acts as the oracle and, each time that an algorithm uncovers an edge, the
adversary gives the length of that edge to the algorithm so that the performance
of the algorithm is as bad as possible. The adversary is precisely described in
Algorithm 1.



The adversary constructs an instance similar to the instance of Lemma 3,
but ad hoc to each algorithm. In the instance constructed by the adversary,
the shortest path between s and ¢ is always the direct edge (s,t). Furthermore,
such a path is the only a-approximation. On the other hand, the instance has
a partition of the set of vertices with s in one set of the partition and ¢ in the
other set. The partition and the size of each sets of the partition depend on
the algorithm. Edges that connect two nodes of the same set of the partition
have length €. While, edges that connect two nodes each in a different set of the
partition have length a.

Each algorithm can be seen as a sequence of edges to be uncovered. An
algorithm poses a query to the oracle that is an edge to be uncovered. The
oracle answers each query providing the length of that edge. In this particular
construction, the adversary plays the role of the oracle. Edges to be uncovered by
an algorithm can be grouped in four groups: i) {(s,t)}, @) {(s,u) : v € V/{t}},
iii) {(u,t) : v € V/{s}} and, w) {(u,v) : uAv € V/{s,t}}.

The way in which the adversary determines the partition is described in the
following lines. Nodes s and ¢ are initially placed one in each set of the partition,
let us denote these sets by Gy and Gy, respectively (see the initialization of
function g(s) and g(¢) in line 1 of Algorithm 1). If the algorithm queries the
edge (s,t) to be uncovered, the adversary answers to the algorithm £(s,t) = 1
(see lines 3 and 4 in Algorithm 1). If the algorithm queries an edge of the second
group to be uncovered and the node u has not been placed in any set of the
partition, the adversary answers £(s,u) = e and places u in the set G (see lines
6 and 7 in Algorithm 1). Otherwise, when u has been placed in a set of the
partition (it can be only the set G;), the adversary answers £(s,u) = « (see lines
9 and 10 in Algorithm 1). The adversary acts equivalently when the algorithm
queries an edge of the third group. L. e, if u has not been placed in any set of the
partition, the adversary answers £(u,t) = € and places u in the set G; (see lines
12 and 13 in Algorithm 1). Otherwise, when u has been placed in a set of the
partition (it can be only the set G), the adversary answers £(u,t) = « (see lines
15 and 16 in Algorithm 1). Finally, if the algorithm queries an edge of the fourth
group, there exist four different cases: u and v have not been placed in any set
of the partition, then the adversary answers ¢(u,v) = € and none is placed in
any set of the partition (see lines 18 and 19 in Algorithm 1). When one of them
has been placed in a set of the partition, says u, and the other one has not, the
adversary answers £(u,v) = € and node v is placed in the same set than u. In
this case, node v might have neighbors not yet assigned to a set of the partition
as well. In that case, all the nodes in the same connected component than v are
placed in the same set as nodes v and v (see lines 21 to 25 in Algorithm 1).
Finally, if the two nodes have been placed in a set of the partition, the adversary
answers £(u,v) = € if the two nodes belong to the same set of the partition, or
l(u,v) = « if they belong to different sets (see lines 27 to 31 in Algorithm 1).

We observe that the shortest path from s to t in any instance constructed by
the adversary, regardless the algorithm, is the edge (s, t). Moreover, it is the only
a-approximation. On the other hand, for any algorithm, we obtain two sets G



and Gy, according to the notation defined in Algorithm 1, that form a partition
of V,ie., GsNGy =0 and G, UGy = V. The sets G, and Gy form a partition
since every node is added either to the set G or to the set G;. Moreover, since
any algorithm needs to present an a-certificate and such certificate must contain
a partition of V', therefore, every node is added to one set.

The smallest a-certificate consists in all the edges that connect the nodes of
both sets of the partition G, and G;. Hence, it holds that |C2,,(I)| = |Gs|- |Gl
Moreover, we see that the number of uncovered edges by the algorithm is the sum
of |C2. (I)] and the number of uncovered edges in each set of the partition. The
graph formed by the uncovered edges in each set of the partition is connected,
since by construction there exists a path from s (resp, t) to any node in G4 (resp,
G¢). Therefore, the number of uncovered edges in each set of the partition is at

least |G4| — 1 and |G| — 1, respectively. Thus, it holds that:

[UAMD)| o [Chin (D] + |G = 14 ]Ge| — 1

IChin (D] — i (D]
ST bl e B
|Gs| : |Gt|
Since, it also holds that |Gs| + |G¢| = n, the fraction % yields its
minimum value when |G| = |G| = 5. Hence, we obtain
\U(A(D))| 4 8
PV S 102 2 2
Con@l = 0w

A direct consequence of Lemma 4 is the following Theorem.

Theorem 1. For any o > 1 and for any algorithm A that proposes an «-
approximation, it holds the following inequality for the query ratio,

UAD) . 4 8
> - _ =
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According to this result, we observe that the query ratio of any algorithm is
strictly higher that 1, which means that no algorithm solves the SPD problem
optimally.

5.2 An Algorithm that Searches From the Source and the Sink

In this subsection, we present an algorithm that proposes an a-approximation
as a solution of the SPD problem. We remark that in the proposed algorithm «
is a parameter, and it can be set arbitrarily. Therefore, the proposed algorithm
is a parametrized algorithm that guarantees the approximation factor that we
arbitrarily decide to obtain. We compute the query ratio of such an algorithm



Algorithm 2 Algorithm for SPD problem

1: INITIALIZE sets m, = {0}, m: = {0};
functions fing(e) = 0, and Lsup(e) = 0 Ve € E;
functions s(v) = oo Vv € V/{s}, and s(s) = 0;
functions t(v) = oo Vv € V/{t}, and t(t) = 0;
paths PAT Hine = (), and PAT Hyyp, = 0;
paths PATH, ) =0, and PATH, , = 0 Vu € V/{s,t};
variable approx = oco.
2: while approx > o do
3 COMPUTE s” := argmin, ¢y m,um,} 5(v)-
4: COMPUTE t" := argmin,c v/ (., um,} t(V)-
5: UPDATE mg := ms Us".
6.
7
8

UPDATE me = My U t*.
QUERY {(s*,t")}.
: QUERY {(s*,u) : Vu € V/{ms Um:}}.
9:  QUERY {(u,t"): Vv € V/{msUm}}.

10: UPDATE /it (e) := £(e) for all queried e.

11:  UPDATE /lsup(e) := £(e) for all queried e.

12: COMPUTE the shortest st-path according to fing(-).

13:  UPDATE PAT Hiy,s to the shortest st-path according to fing(+).

14: COMPUTE the shortest st-path according to £sup(-).

15: UPDATE PAT Hqup to the shortest st-path according to fsup(+)-

16:  COMPUTE the shortest su-path according to fsup(-) Vu € V/{msUm:}.

17:  UPDATE PATH(,) to the the shortest su-path according to lsup(-) Vu €
V/{ms Umy}.

18:  COMPUTE the shortest ut-path according to fsup(-) Vu € V/{msUm;}.

19:  UPDATE PATH ;. to the shortest ut-path according to sup(-) Vu € V/{m,U
mt}.

20:  UPDATE s(u) := {(PATH ) for all uw € V/{ms Um}}.

21:  UPDATE t¢(u) := ¢(PATH ) for all u € V/{ms Um;}}.

22:  UPDATE approx ;= SPATMaup)

23: end while " AT in)

24: RETURN Py ) := PAT Hayyp.

proving that it never queries more than two times the size of the smallest certifi-
cate of an instance, when it proposes an optimal solution. A precise description
of the algorithm is presented in Algorithm 2.

The algorithm defines lower and upper bounds on the length of each edge
that are initially set to zero and infinity, respectively (see line 1 in Algorithm
2). The algorithm works in rounds. At each round, the algorithm advances one
step further in a double search that starts from nodes s and ¢. At each round,
Algorithm 2 picks the closest nodes to s and ¢ according to the current uncovered
edges. The closest node to s (resp. t) is denoted by s* (resp. t*) (see lines 3 and
4 in Algorithm 2). Then, the algorithm queries all the edges of the form (s*,u)
and (u,t*) that have not been queried yet, and that approaches in one edge s*
to t and t* to s, respectively (see lines 7 to 9 in Algorithm 2). The algorithm



then computes the shortest path between s and ¢ using the real length for the
uncovered edges and the lower bound set at the beginning for the edges not yet
uncovered (PAT Hiyg). The algorithm also computes the shortest path between
s and t using the real length for the uncovered edges and the upper bound set at
the beginning for the edges not yet uncovered (PAT Hyyp,). Finally, the algorithm
computes whether PAT Hg,;, is an a-approximation in line 22. If that is the case,
Algorithm 2 stops and returns PAT Hy,,,, otherwise, it iterates one more round.

The correctness of the algorithm follows directly from the following two facts.
First, the algorithm proposes a fully uncovered path. Second, the proposed path

is an a-approximation since in the last round it holds that % < a and

((PAT Hin) is a lower bound on 4 4.

In order to proceed with the analysis of the query ratio of Algorithm 2, we
first compute the number of queries performed by the algorithm up to a generic
round i.

Lemma 5. For any i, the number of queried edges by Algorithm 2 up to the i-th
round is equal to i(2n — 2i — 1).

Proof. At each round, the algorithm queries 2|V/{ms;Um;}|+1 edges according
to lines 7 to 9 of Algorithm 2. At each round, the sizes of ms and m; increases
in one element. Note that s* and t* are different at each round. Otherwise, if at
some round s* = t*, in the previous round the algorithm would have stopped
since the union of the shortest path from s to s* and the shortest path from ¢*
to t would have been the shortest path from s to t. Hence, approx would have
been equal to 1. Therefore, at the j-th round, the size of V/{ms U m;} is equal
to (n — 2j).
Thus, the number of edges queried by the algorithm up to round 7 is the sum
of the queries at all the previous rounds, i.e., Z;Zl(Q(n—Qj)—ﬁ—l) =i(2n—2i—1).
O

On the other hand, if Algorithm 2 stops after ¢ rounds, we are able to give a
lower bound on the size of the smallest certificate of the instance. We give such
a lower bound in the following lemma.

Lemma 6. If Algorithm 2 stops after i rounds in an instance I, the size of the

minimum 1-certificate of the instance is at least i(n—1), i.e., |CL; (I)] > i(n—1).

Proof. In this proof we use the following notation. We denote by m ; (respec-
tively, my ;) the set m, (respectively m;) at the end of the j-th round of the
algorithm. We also denote by s} (respectively t;k) the node that was added to
ms (respectively to m;) at the j-th round of the algorithm. According to these
definitions, we have that in round 7,

Msj =msj—1 U{s"}, myj=my ;1 U{t"}

where mg o = my o = {0}. We use ms = ms; and m; = my; to denote the sets
mg and my after Algorithm 2 has finished. Moreover, for any two nodes u, v and



a set of nodes U C V', we denote by P(*; ) |u the shortest path between u and v
in the graph induced by the set of nodes U.
First we show that the following two inequalities hold for all 1 < j <.

E(P(Z7S;71)|ms,j—l) < E(P(*s,s;f) ms,j) (1)
K(P(tf,t;_l)lmt,j—l) < E(P(’%,t;) me;)- (2)
Since the arguments are equivalent for both equations, we only argue that Equa-

tion (1) holds.
We point out the fact that the path P(*S

visit such node. In the first case, Equation (1) holds because the path Py st
55

1) me s either visits s7_; or it does not

mMs,j

can be decomposed in the path P(*sysj,l) |m.;_, (the shortest path from s to sj_;

in ms ;_1) union some other edges. Hence, the length Z(P(*q sty lme ) can also be
5,57) 15,

J

decomposed in the sum of ¢( P

(s,s;,1)|marl) plus a positive value.

*
5,8%)

due to the order in which Algorithm 2 chooses nodes s7_; and s7, it holds:

E(P(*s7s;71)|ms,j71) < E(P(Z,s;)

In the second case, when the path P, m,,; does not visit the node sj_;,

mago1—{s7_, JU{s})-

Otherwise, the algorithm would have picked s} before s7_;. Since the path

Pssn) lm. ; does not visit the node s7_;, it also holds that
395 ’

*
G-

P(*s,s;f)‘ms,j = P(*Sys;)

ms,j—1—{sj_1}U{s}}-
Therefore, it holds:

K(P(*s,s;71)|ms,j—1) < E(P(Z,s;)

mos—1—{s3_ U{s7})

mas):

In conclusion, Equation (1) holds for all 1 < j <.
Second, we show that the following equation holds.

U(Ps.1))
P sy lme) + (P 1z

i

> 1. (3)

mt)

The shortest path proposed by the algorithm might be fully uncovered either at
the very last round of the algorithm or it was uncovered in an earlier round. When
the proposed path was uncovered in the last round of the algorithm, Equation (3)
holds because in this case the proposed path must visit s} and t¢;. Therefore the
length of the proposed path P ) is of the form K(P(Z,s;) lm.) +£(P(*t,tf) m,) T4,
where A is a positive value given by the length of the last uncovered edges added
to the shortest path proposed by the algorithm. Hence, it holds:
f(P(&t)) E(P(*e,sj)

B ) U 4o ) + A
) A E o) APyl ) + WPy gy lond)

P

(s,87)




In the case when the proposed path was uncovered in a round earlier than

the last round of the algorithm, Equation (3) holds because in the round ¢ — 1,
L(P(s,t))
’S;)lms)'i‘e(P(*t’t:) ‘mt)

than 1 since the algorithm does not stop. Therefore it holds:

((P(s 1))
UPE, ooy lm.) + (P,

(&t7)

the algorithm computes w and the result has to be larger
(s

> 1.

mt)

Now, using Equations (1) to (3), we are able to show that, for all 1 < j <4,
it holds the following;:

Z(P(s,t))
K(P(Zys;ﬂms,j) + E(P(t,t]*.)

> 1.

mi;)

Therefore, for any 1 < j < ¢ and any path that intersects P(*&S;)|ms,j and

P*

(t,¢7) :5%)
to show that the proposed path is the shortest path. Now, for any pair of
nodes s}, t7, consider the paths of the form P(*&SJ*_) lma; VP(ST, E) v/ fm. jume ;3 1
P(*t’t;) mq ;o Where P(s7,t5)[v/(m, ;um, ) denotes a path between s
V/{ms; Um;}. There exists at least n — 2j + 1 disjoint paths of the form
previously described, one per each node in V/{mg ; Um, ;} plus the path that
connects directly s7 and ¢;. Hence, at least n —2j + 1 edges needs to be present
in any 1-certificate for each pair of nodes s7,t7.

Therefore, if we sum up all these edges, we obtain that any 1-certificate needs

to contain at least the following amount of edges.

ms.;» any 1-certificate needs at least one edge not in P(*S ma. UP(*t’t;) | e

and t;f in

dn—2j+1=in—i(i+1)+i=i(n—1i).

j=1
O

Now, we state the main result of this Subsection in the following theorem.
Theorem 2. Let A* denote Algorithm 2. Therefore, for the query ratio of A*,

it holds:
|U(A*(1))] 1
L _ .
max el ST noi

min

Proof. From Lemmas 5 and 6, it holds:

UA(D)] _i(2n—2i—1) 1 1
[ ) R ey



6 Conclusions and Future Work

In this document we introduced the query ratio, a new measure to analyze
algorithms that solve the SPD problem. In our opinion, the query ratio of an
algorithm provides an important insight into the real quality of an algorithm
solving the SPD problem. That is because it compares the number of queries
performed by the algorithm with the least amount of queries required to solve
the problem. Therefore, we consider that the query ratio is the correct measure
to take into account in the design of algorithms to solve the SPD problem.

In this document we presented lower and upper bounds on the query ratio.
Under our consideration, the most appealing problem that this document leaves
open is the gap between these lower and upper bounds. The question is whether
there exists an algorithm, or on the contrary an adversary that produces a bad
instance for any algorithm, so that the gap is closed. We also consider interesting
the comprehension of the trade-off between the approximation factor « for the
proposed path and the query ratio of an algorithm. The question is whether
when we relax the approximation factor a we obtain better results for the query
ratio. Another open problem is to extend the results presented in this document
to general graphs (not only when the graph in consideration is fully connected).
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