
HAL Id: hal-01076229
https://hal.science/hal-01076229

Submitted on 21 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Acceleration of Affine Hybrid Transformations
Bernard Boigelot, Frédéric Herbreteau, Isabelle Mainz

To cite this version:
Bernard Boigelot, Frédéric Herbreteau, Isabelle Mainz. Acceleration of Affine Hybrid Transformations.
Automated Technology for Verification and Analysis - 12th International Symposium, ATVA, Nov
2014, Sydney, Australia. �hal-01076229�

https://hal.science/hal-01076229
https://hal.archives-ouvertes.fr

Acceleration of Affine Hybrid Transformations⋆

Bernard Boigelot1, Frédéric Herbreteau2, and Isabelle Mainz1

1 Institut Montefiore, B28, Univ. Liège, Belgium
{boigelot,mainz}@montefiore.ulg.ac.be

2 Univ. Bordeaux & CNRS, LaBRI, UMR 5800, Talence, France
fh@labri.fr

Abstract. This work addresses the computation of the set of reachable
configurations of linear hybrid automata. The approach relies on sym-
bolic state-space exploration, using acceleration in order to speed up the
computation and to make it terminate for a broad class of systems. Our
contribution is an original method for accelerating the control cycles of
linear hybrid automata, i.e., to compute their unbounded repeated effect.
The idea consists in analyzing the data transformations that label these
cycles, by reasoning about the geometrical features of the corresponding
system of linear constraints. This approach is complete over Multiple
Counters Systems (MCS), and is able to accelerate hybrid transforma-
tions that are out of scope of existing techniques.

1 Introduction

Hybrid automata [14] are a powerful formalism for modeling systems that com-
bine discrete and continuous features, in particular those depending on phys-
ical processes that involve undiscretized time. Linear hybrid automata are a
restricted form of hybrid automata that are amenable to automated analysis of
some of their properties, while not sacrificing too much expressive power, which
remains sufficient for modeling precisely enough a large range of systems.

This work addresses the general problem of analyzing reachability proper-
ties of linear hybrid automata, by computing an exact representation of their
set of reachable configurations. Since this set is generally infinite, both because
variables of hybrid automata are unbounded and take their value over a dense
domain, this computation has to be performed symbolically, representing the
manipulated sets with the help of dedicated data structures. Moreover, since
linear hybrid automata are Turing complete, the computation of their reacha-
bility set cannot be guaranteed to terminate in all cases. A possible workaround
would be to introduce approximations, such as widening operators [12], in order
to force termination. We make a different choice and aim at an exact compu-
tation algorithm without guarantee of termination, trying to make it powerful
enough for handling a relevant subclass of systems.

⋆ This work is supported in part by the grant 2.4545.11 of the Belgian Fund for
Scientific Research (F.R.S.-FNRS).

Computing the reachability set of a system can be achieved by forward sym-
bolic state-space exploration: At each step, one propagates reachability informa-
tion from the current set of reachable configurations in order to make it bigger.
The procedure terminates upon reaching a fixed point. For hybrid automata,
an exploration step corresponds to letting time elapse in the current control
location, or to following a transition from one location to another.

This approach is not sufficient for analyzing all interesting case studies. One
reason is that some linear hybrid automata have configurations that are only
reached after an unbounded number of exploration steps; a typical example is
the leaking gas burner studied in [15]. This problem is tackled by acceleration
techniques, aimed at computing in finite time sets of configurations that are
reached after following arbitrarily long control paths. For instance, accelerating
a cyclic path, which corresponds to a loop in a program, amounts to computing
in one step all the configurations that can be reached by iterating this cycle
arbitrarily many times [2].

In order to be able to perform cycle acceleration with linear hybrid automata,
one first needs a symbolic representation system that is expressive enough for
the sets of values produced by unbounded loop iterations, as well as a formalism
for describing the data transformations labeling control paths. The main prob-
lems are then to decide whether the effect of unbounded iterations of such a
path can be computed over symbolically represented sets, and to carry out this
computation.

Solutions to these problems have been proposed in earlier work: Sets of reach-
able data values can be expressed in the first-order logic 〈R,Z,+,≤〉, which gen-
eralizes Presburger arithmetic to mixed integer and real variables, and for which
usable data structures have been developed [7]. The transformations undergone
by variables along control paths of linear hybrid automata3 correspond to Linear
Hybrid Relations (LHR), the acceleration of which is studied in [5, 6].

The cycle acceleration method proposed in [5] is able to handle a broad class
of LHR, in particular all Multiple Counters Systems (MCS) [11]. This subclass
of LHR is relevant in practice since it has been established that accelerating
arbitrary control paths of timed automata [1], reduces to the same problem over
MCS. It is actually proved in [5] that acceleration of MCS makes it possible to
compute symbolically the reachability set of timed automata with a guarantee
of termination.

The results of [5] nevertheless suffer from two weaknesses. First, when this
acceleration method is applied to purely integer transformations, which can be
seen as a particular case of LHR, it is not able to handle all instances covered by
an acceleration procedure that has been specifically developed for such transfor-
mations [2, 3]. Second, the method is sensitive to the coordinate system used for
expressing data values. For instance, even though all MCS can be accelerated,
the same property does not hold for LHR obtained after applying linear variable
change operations to MCS.

3 The results of [5, 6] actually consider the slightly smaller class of strongly linear

hybrid automata but their extension to linear hybrid automata is immediate.

2

The goal of this work is to broaden substantially the scope of cycle accelera-
tion of linear hybrid relations, by developing a new approach that does not have
these weaknesses. For purely integer transformations, an obvious solution would
be to detect whether the considered LHR belongs to this class, and then branch
to a specific acceleration algorithm. This approach would not improve the state
of the art, and we propose instead a solution that is not only able to handle
all integer transformations that can be accelerated by the specialized algorithm
of [3], but also combinations of such discrete transformations with simple con-
tinuous ones. After studying the properties of this solution, we then generalize
it into a method that becomes powerful enough for handling all transformations
extracted from MCS, as well as their transformations by arbitrary linear variable
change operations.

2 Preliminaries

2.1 Algebra Basics

A linear constraint over variables x ∈ Rn, with n ≥ 0, is a constraint of the
form a.x#b, with a ∈ Qn, b ∈ Q and # ∈ {<,≤,=,≥, >}. This constraint is
strict if # ∈ {<,>}, and non-strict otherwise. It is an inequality constraint if
∈ {<,≤,≥, >}, and an equality constraint otherwise. A constraint a.x#b is
said to be saturated by a value v ∈ Rn if this value satisfies a.v = b.

The set of points x ∈ Rn that satisfy a given finite conjunction of equality
constraints forms an affine space. An affine space S ⊆ Rn can be expressed in
the form S = ARm + b, where 0 ≤ m ≤ n, A ∈ Qn×m is a matrix with rank m,
and b ∈ Qn. The value m then corresponds to the dimension of S. The affine
space of smallest dimension that contains a given set is unique, and known as
the affine hull of this set.

The set of solutions of a finite conjunction of linear constraints forms a convex
polyhedron, the dimension of which is defined as the dimension of its affine hull.
Within Rn, a convex polyhedron of dimension n can be represented by a finite
canonical conjunction of constraints, i.e., a set of constraints that is uniquely
determined by the polyhedron. For each constraint in this set, there exists at
least one point that saturates this constraint, and that satisfies all the other
ones without saturating them. Convex polyhedra of dimension m < n can be
expressed as AΠ + b, where A ∈ Qn×m, b ∈ Qn, and Π ⊆ Rm is a polyhedron
of dimension m that is represented canonically. In order to simplify notations,
we sometimes denote a set {v} as v, and write S1 + S2 to mean {v1 + v2 | v1 ∈
S1 ∧ v2 ∈ S2}.

2.2 Linear Hybrid Relations

A Linear Hybrid Automaton (LHA) is composed of a finite control graph ex-
tended with a given number n of variables x1, x2, . . . , xn that take their values
in R. These variables can be grouped into a vector x whose domain is Rn. We

3

refer the reader to [5, 6, 14] for further details and formal definitions. An example
is given in Figure 2.

A configuration of a LHA is a pair (ℓ,v) where ℓ is a control location and
v assigns a value to each variable. The current configuration can change in
two ways. The first one (time step) is to let time elapse, in which case the
control location remains constant, and the variable values evolve according to
the invariant and evolution law of this location. Those are expressed as linear
constraints over respectively the variable values, and their first time derivative.
The second mechanism (transition step) is to follow a transition, which moves
the control location and applies a discrete transformation to the variable values.
This transformation is defined by linear constraints involving the initial and final
values of the variables, taken across the transition.

The semantics of LHA is defined as follows. A configuration c2 is reachable
from a configuration c1 if there exists a finite sequence of time and transition
steps that leads from c1 to c2. A reachable configuration is one that is reachable
from a designated initial set.

It has been shown in [6] that every finite control path of a LHA induces a
transformation over its variables that can be characterized as follows.

Definition 1. A Linear Hybrid Relation (LHR) is a relation

θ =

{

(x,x′) ∈ Rn × Rn
∣

∣

∣
P

[

x

x′

]

� q

}

,

where P ∈ Zm×2n, q ∈ Zm, �∈ {<,≤}m, and m ≥ 0.

We write θ = (P, q,�) to denote a relation of this form. Given a path in a
LHA moving from a location ℓ to a location ℓ′, one can compute P and q such
that two values v,v′ ∈ Rn satisfy the LHR (P, q,�) iff (ℓ′,v′) is reachable from
(ℓ,v) by following the time and transition steps corresponding to this path.

In this work, for the sake of simplicity, we assume that all inequality con-
straints that appear in LHR are non-strict, i.e., that � stands for ≤m, and that
LHR are characterized by their pair (P, q). All results in this paper can straight-
forwardly be extended to the more general setting of mixed strict and non-strict
constraints.

Let θ be a LHR. Following [5], we call a constraint of this LHR static if it
involves only either x or x′. For a set S ⊆ Rn, its image θ(S) by θ is given
by {x′ ∈ Rn | ∃x ∈ S : (x,x′) ∈ θ}. This can alternatively be expressed as
θ(S) = (θ ∩ (S ×Rn))|[n+1,2n], where U |I denotes the projection of the elements
of U onto the vector components belonging to I. Given two LHR θ1 and θ2, their
composition θ2 ◦ θ1 is the LHR θ such that θ(S) = θ2(θ1(S)) for all sets S. Note
that we have θ2 ◦ θ1 = ((θ1 × Rn) ∩ (Rn × θ2))|[1,n]∪[2n+1,3n]. Finally, for every

k, the result of composing k − 1 times a LHR θ with itself is denoted θk, with
θ0 corresponding to the identity relation.

4

2.3 Representation of Convex Polyhedra

In the following sections, we study the effect and repeated effect of LHR on sets.
The image θ(v) of a point v ∈ Rn by a LHR θ is the set of points v′ such that
(v,v′) satisfies the linear constraints of θ, that is, a convex polyhedron. We now
study some topological properties of such polyhedra.

Following the discussion in Section 2.1, we consider w.l.o.g. a convex poly-
hedron Π ⊆ Rn of dimension n, defined by its canonical set of inequality con-
straints. As explained in [4, 13], such a polyhedron induces a finite equivalence
relation ∼Π on the points of Rn: One has v ∼Π v′ iff these two points saturate
identical subsets of constraints of Π. The equivalence classes of ∼Π correspond
to the geometrical components of Π. For each geometrical component C, its
affine hull aff(C) matches the constraints of Π saturated by C, and its dimen-
sion is defined as the one of this affine hull. The geometrical components of Π
are linked together by an incidence partial order ≺Π : One has C1 ≺Π C2 iff
aff(C1) ⊂ aff(C2), i.e., iff the constraints saturated in C1 are a superset of those
saturated in C2.

Those properties lead to a data structure for representing symbolically con-
vex polyhedra: A Convex Polyhedron Decision Diagram (CPDD) representing a
polyhedron Π is a directed acyclic graph in which:

– The nodes correspond to the geometrical components of Π, and are labeled
by the constraints of Π that they saturate, written as equalities (in other
words, by the affine hull of their geometrical component).

– If Π admits a unique minimal component with respect to the incidence order
≺Π , then the node q0 associated to this component is marked as initial.
Otherwise, the initial node q0 is an additional special node in which all
constraints are considered to be saturated (yielding an empty affine hull).

– The edges follow the incidence relation, removing those that are redundant
by transitivity. An edge from q1 to q2 is labeled by the constraints that are
saturated in q1 and not in q2, written as strict inequalities.

An example of CPDD is given in Figure 1. This data structure actually pro-
vides a simple procedure for locating the geometrical component of Π to which
a given point v ∈ Rn belongs: Starting from the initial node, one follows edges
labeled by inequality constraints that are satisfied by v. The procedure ends
upon reaching a node labeled by equality constraints satisfied by v, which then
represents the component to which v belongs. If several paths can be followed
from a given node, one of them can be chosen arbitrarily without the need for
backtracking.

This procedure illustrates an essential property of convex polyhedra: The
points contained in a geometrical component are exactly those that saturate the
constraints associated to this component, and that do not saturate the other
constraints. This property will be exploited in order to establish a key result in
Section 4.

It is worth mentioning that CPDD nodes do not correspond to all possible
combinations of saturated linear constraints, but only to those that are associ-
ated to geometrical components. For instance, the CPDD depicted in Figure 1

5

x2

(1, 2)

(2, 1) x1

Π :

x1 ≥ 1
x1 + x2 ≥ 3
x1 − x2 ≤ 1

x1 − x2 < 1

x1 − x2 < 1

x1 − x2 < 1 x1 > 1

x1 − x2 = 1

x1 > 1x1 + x2 > 3 x1 + x2 > 3

x1 > 1 x1 + x2 > 3

F

x1 + x2 = 3
x1 − x2 = 1

x1 = 1
x1 + x2 = 3

x1 = 1 x1 + x2 = 3

T

Fig. 1. Example of Convex Polyhedron Decision Diagram.

does not have a node corresponding to the set of constraints {x1 ≥ 1, x1 − x2 ≤
1}, since these constraints cannot be saturated while simultaneously satisfying
x1 + x2 ≥ 3.

Algorithms are available for building and manipulating polyhedra repre-
sented by CPDD, in particular for computing their canonical form (which is
unique up to isomorphism), as well as their intersection and projection. This
data structure has been generalized to non-convex polyhedra in [4, 13].

2.4 Cycle Acceleration

The cycle acceleration problem consists in checking, within a symbolic repre-
sentation system, whether the image of any representable set by unbounded
iterations of a given data transformation is representable as well. In such a case,
this transformation is said to be iterable [2]. One also needs an algorithm for
computing symbolically the image of represented sets by iterable transforma-
tions. This decision does not have to be precise: a sufficient criterion can be used
provided that it handles practically relevant transformations.

In the next section, we recall two iterability criteria, one developed for linear
transformations over integer variables and one for linear hybrid relations, and
show that they can be combined into a criterion that has a broader scope.

3 Affine Hybrid Transformations

3.1 Discrete and Hybrid Periodic Transformations

Over the domain Zn, it has been established that transformations of the form
x 7→ Ax + b, with A ∈ Zn×n and b ∈ Zn, are iterable within Presburger

6

arithmetic, i.e., the first-order theory 〈Z,+, <〉, iff there exists p ∈ N>0 such
that A2p = Ap . This criterion can be decided using only integer arithmetic, and
a suitable value of p can be computed whenever one exists [2, 3].

Transformations θ that satisfy this criterion have an ultimately periodic be-
havior: For every v ∈ Zn, the sequence θp(v), θ2p(v), θ3p(v), . . . is such that
θ(k+1)p(v) = θkp(v) + δ for all k > 0, where δ ∈ Zn is a constant increment
vector. It is also known that adding a linear guard Px ≤ q, with P ∈ Zm×n,
q ∈ Zm and m ≥ 0, to an iterable transformation produces one that is iterable
as well.

Hybrid transformations can also show a periodic behavior. It has been proved
in [6] that LHR θ over Rn in which all constraints have the form p.(x′−x) ≤ q,
with p ∈ Zn and q ∈ Z have this property: For every v ∈ Rn, the sequence θ(v),
θ2(v), θ3(v), . . . is such that θk+1(v) = θk(v) +∆ for all k > 0, where ∆ ⊆ Rn

is an increment that now takes the form of a constant convex polyhedron.
A natural idea is therefore to study hybrid transformations that have a pe-

riodic behavior, but with a period that may be greater than one. The following
definition generalizes linear integer transformations to the hybrid case.

Definition 2. An Affine Hybrid Transformation (AHT) is a LHR θ ⊆ Rn×Rn

such that for every x ∈ Rn,

θ(x) = Ax+Π,

where A ∈ Qn×n, and Π ⊆ Rn is a convex polyhedron.

The iterability criterion obtained for linear integer transformations straight-
forwardly extends to AHT.

Theorem 3. Let θ be an AHT x 7→ Ax+Π, with A ∈ Qn×n. If A is such that
A2p = Ap for some p ∈ N>0, then θ is iterable within 〈R,Z,+,≤〉. Moreover,
adding static constraints to an iterable AHT that satisfies this property produces
a LHR that is iterable as well.

Proof sketch. For every v ∈ Rn and k > 1, one has θkp(v) = Akpv+
∑kp−1

i=0 AiΠ.

If A2p = Ap, this simplifies into θkp(v) = Apv+
∑2p−1

i=0 AiΠ+(k−2)
∑2p−1

i=p AiΠ.
Using the mechanisms introduced in [6], this leads to a formula of 〈R,Z,+,≤〉
defining θk(v) for all k ≥ 0 in terms of v and k. ⊓⊔

In order to be able to exploit the acceleration of AHT during symbolic state-
space exploration of linear hybrid automata, two problems need to be solved:

– Given a LHR expressed as a conjunction of linear constraints, deciding
whether it is equivalent to an AHT and, in the positive case, computing
the corresponding matrix A.

– Deciding whether a matrix A ∈ Qn×n is such that A2p = Ap for some
p ∈ N>0, and computing such a value p.

The former problem is addressed in Section 3.2. The latter can be solved by
adapting a result from [2, 3]:

7

Theorem 4. A matrix A ∈ Qn×n is such that A2p = Ap for some p ∈ N>0 if
and only if Ap is diagonalizable and has eigenvalues that belong to {0, 1}. There
exists an algorithm for deciding this criterion and computing a suitable value of
p, using only integer arithmetic.

Proof sketch. This result is established in [2, 3] for matrices with integer compo-
nents, the idea being to check whether they admit a characteristic polynomial
that can be decomposed into a product of cyclotomic polynomials. The method
proposed in [2, 3] for performing this operation also applies to rational matrices.

⊓⊔

3.2 Detecting Affine Hybrid Transformations

We now address the problems of deciding whether a LHR is affine, that is,
whether θ = (P, q) is equivalent to some AHT x 7→ Ax+Π, and of computing
the corresponding matrix A and convex polyhedron Π.

When θ is affine, the image of a set S ⊆ Rn is obtained by first applying to
each point in S a transformation x 7→ Ax, where A ∈ Qn×n is identical for each
point, and then adding a constant convex polyhedron Π to the result.

Let us assume that this polyhedron has at least one vertex, i.e., a geometrical
component of dimension 0. We can actually make this assumption without loss
of generality, since it follows from [5] that if an affine transformation θ does not
satisfy this property, then its acceleration can be reduced to that of a LHR of
smaller dimension.

The image by θ of an arbitrary point x ∈ Rn is the polyhedron Ax+Π, which
corresponds to Π translated by the vector Ax. Consider a particular vertex vi

of this polyhedron, in other words, a point that is the only one to saturate some
given subset of its constraints. The vertex vi is the translation of a vertex bi of
Π by the vector Ax, that is, vi = Ax+ bi. The same reasoning applied to other
vertices will yield the same matrix A.

Recall that the constraints defining θ are expressed over the variables x and
x′, the value of which is respectively considered before and after applying the
transformation. A transformation of the form x 7→ Ax + bi thus corresponds
to the saturated form x′ = Ax + bi of some constraints of θ. Since this set of
saturated constraints is satisfiable, an important observation is that it must cor-
respond to a geometrical component of the convex polyhedron Θ ⊆ R2n defined
by the constraints of θ. In other words, there must exist in this polyhedron a
geometrical component Ci that has an affine hull equal to x′ = Ax+ bi.

Since we have considered the vertices of Π, which are its geometrical compo-
nents of smallest dimension, the components Ci with this property must corre-
spond to the minimal non-empty components of Θ. We thus have the following
result.

Theorem 5. There exists a procedure for deciding whether a LHR θ ⊆ Rn×Rn

is an Affine Hybrid Transformation.

8

Proof sketch. A simple strategy for deciding whether θ is affine consists in in-
specting the minimal non-empty geometrical components in a symbolic repre-
sentation of Θ. The following procedure can be used:

1. Build a CPDD representing Θ.
2. Select one of its minimal non-empty components.
3. Extract a matrix A from the affine hull of this component.
4. Compute Π = θ(0).
5. Check whether θ is equivalent to x 7→ Ax + Π, by comparing Θ with the

polyhedra induced by the corresponding sets of constraints.

If the polyhedron Π satisfies our initial hypothesis of having at least one
vertex, then performing Step 3 simply amounts to checking that the consid-
ered affine hull is defined by constraints of the form x′ = Ax + bi, and then
syntactically extracting A from these constraints. Otherwise, if Π does not have
vertices, this operation can still be performed but after first applying to the affine
hull constraints the rank and subspace reductions of [5]. Those correspond intu-
itively to applying a linear coordinate transformation that results in constraints
expressed in terms of the smallest possible number of independent variables.
More precisely, the rank reductions amount to performing the following opera-
tions. First, the set of constraints is rewritten in the form P2x

′ = P1x+q, where
P1, P2 ∈ Zm×n, q ∈ Zm and m ≥ 0. If the rank r of P1 is less than n, then a
linear variable change operation is applied in order to express the transformation
in terms of only r distinct variables. The same procedure is also carried out if
the rank of P2 is less than n. In addition, subspace reductions are applied when
the set of constraints P2x

′ = P1x + q implies static constraints on either x or
x′. The reduction consists in performing a linear variable change operation onto
the largest number of distinct variables that are not statically constrained. ⊓⊔

This procedure is illustrated in Section 5.1. In practice, since it follows from
Theorem 3 that static constraints do not hamper iterability, a good strategy
is to remove them before checking whether a LHR is affine. Finally, note that
the acceleration method for AHT discussed in this section is able to successfully
process all linear integer transformations that are handled by [2, 3].

4 Generalized Affine Transformations

4.1 Principles

Affine hybrid transformations θ have the property that we can compute from
their set of constraints a value p ∈ N>0 such that θp has an ultimately periodic
behavior. In other words, iterating θ reduces to iterating θp, which is feasible
within additive arithmetic. We call such a value p a period of θ.

In Section 3, we have shown that such a period p can be obtained by in-
specting matrices extracted from the minimal geometrical components of the
polyhedron Θ ⊆ R2n induced by the constraints of θ. If θ is affine, then these
matrices happen to be identical for all components, which represents the fact

9

that they are similarly affected by θp, in the sense that they share the same
periodic behavior.

This sufficient condition for iterability is not at all necessary: If the geomet-
rical components of Θ correspond to matrices A1, A2, . . . that are not identical,
but yield values p1, p2, . . . such that A

2pi

i = A
pi

i for all i, then all those com-
ponents share an ultimately periodic behavior of period p = lcm(p1, p2, . . .). A
possible acceleration procedure thus consists in computing such a value p by
inspecting the geometrical components of Θ, computing p as the least common
multiple of their detected periodicities pi, and then checking whether θp reduces
to a periodic transformation that is iterable within 〈R,Z,+,≤〉. This inspection
does not necessarily have to be carried out for all geometrical components: The
iterability of θp can be checked whenever a candidate value for p has been ob-
tained. If the analysis of a geometrical component fails to produce a periodicity
pi, the procedure can nevertheless continue with the other components.

This approach shares similarities with the solution proposed in [5] for accel-
erating Multiple Counters Systems (MCS) [11], which are a subclass of LHR in
which all constraints are of the form zi#zj + c, with zi, zj ∈ {x1, . . . , xn, x

′
1, . . . ,

x′
n}, # ∈ {<,≤,=,≥, >}, and c ∈ Z. This solution proceeds by building di-

rected weighted graphs that represent the set of constraints of a MCS θ, and
then measuring the weights p1, p2, . . . of the simple cycles in these graphs. The
value p = lcm(p1, p2, . . .) provides a (non necessarily optimal) candidate for the
periodicity of θ. It is shown in [5] that this technique is able to accelerate every
MCS.

In Section 4.2, we establish a connection between the acceleration technique
presented in this paper and the one proposed for MCS in [5], by showing that the
periodicities that are captured by the graph analysis method can also be detected
by the inspection of geometrical components. As a consequence, our technique
is complete over MCS. Compared with the method of [5], it has the important
advantage of being closed under linear variable change operations, since those do
not affect the properties of geometrical components of polyhedra. Furthermore,
our approach is not limited to handling MCS, unlike the acceleration method
developed in [11].

After a candidate periodicity value p has been obtained by inspecting the
geometrical components of Θ, it remains to check whether the transformation
θp has a periodic behavior that can be captured within 〈R,Z,+,≤〉. This problem
is addressed in Section 4.3.

4.2 Multiple Counters Systems

Let us briefly describe the method introduced in [5] for computing the periodicity
of a MCS θ. As discussed in Section 2.2, for the sake of clarity, we consider that
all inequality constraints are non-strict.

The first step is to build a finite directed graph Gθ, in which the nodes
correspond to the variables x1, x2, . . . , xn, and the edges (xi, (c, d), xj) are la-
beled with a cost c ∈ Z and a depth d ∈ {−1, 0, 1}. This graph represents the
constraints of θ:

10

– A constraint xj ≤ xi+c or x′
j ≤ x′

i+c is represented by an edge (xi, (c, 0), xj).
– A constraint x′

j ≤ xi + c is represented by an edge (xi, (c, 1), xj).
– A constraint x′

j ≥ xi + c is represented by an edge (xj , (−c,−1), xi).

The paths of Gθ correspond to combinations of constraints of θ. The cost
and depth of such a path σ are defined as the sum of the individual cost and
depth of the edges that compose it. For every k > 0, a path σ of depth k in
Gθ represents a constraint x′

j ≤ xi + c of the transformation θk, where xi and
xj are respectively the origin and destination nodes of σ, c is the cost of σ, and
the intermediate depths reached at each node visited by σ remain in the interval
[0, k]. In the same way, the paths of Gθ of depth −k or 0 also correspond to
constraints of θk.

The main result of [5] is to show that, in order to obtain all constraints of
θk, it is sufficient to consider the paths of Gθ of suitable depth that contain
only unbounded occurrences of a single simple cycle. A periodicity p of θ, i.e.,
a value such that θp reduces to a periodic transformation, is then obtained by
computing the least common multiple of the depths of the simple cycles of Gθ.
This periodicity may not be the smallest one for θ, but this is not problematic.

We are now going to establish that such a periodicity p can also be computed
by the procedure outlined in Section 4.1. This property is a consequence of the
following result.

Theorem 6. Let k > 0, and σ be a simple cycle of Gθ of depth ±k and cost c,
representing a constraint x′

i ≤ xi + c or x′
i ≥ xi − c of θk. If this constraint can

be saturated 4 by values of x and x′ that satisfy (x,x′) ∈ θk, then there exists a
geometrical component of Θ producing a matrix A ∈ Qn×n such that A2k = Ak.

Proof sketch. Let S be the set of constraints of θ that are represented by the
edges of Gθ composing σ. Since the constraint represented by σ can be saturated,
there exist values v,v′ ∈ Rn that can respectively be assigned to x and x′ in
order to saturate all constraints in S.

The values v and v′ may also saturate other constraints of θ. Let S′ denote
the set of constraints of θ that are necessarily saturated when S is saturated,
i.e., that are saturated by every v and v′ that saturate S. The set S′ contains
only constraints that are either saturated for all v,v′ ∈ Rn, or correspond to
one or several simple cycles of Gθ. In the latter case, it can be established that
each of these cycles shares the same depth ±k as σ.

One can thus find values v and v′ that saturate all constraints in S ∪S′, and
do not saturate the other constraints of θ. From the discussion in Section 2.3,
it follows that the point (v,v′) ∈ R2n belongs to a geometrical component of Θ
with an affine hull that exactly corresponds to the solutions of S ∪ S′.

The matrix A produced by this component using the procedure described in
Section 3.2 has the following property. Let X ⊆ {x1, . . . , xn} denote the set of
all variables visited by the simple cycles of Gθ that correspond to the constraints

4 This saturation requirement intuitively expresses the property that the constraint is
essential, i.e., that it is not implied by other constraints of θk.

11

in S ∪S′. Recall that these simple cycles are all of depth ±k. It follows that the
transformation x 7→ Akx preserves the values of the variables in X and assigns
the value 0 to the other variables. One thus has A2k = Ak. ⊓⊔

In [5], a candidate value for the periodicity p of θ is obtained by computing
the least common multiple of the depths pi of all simple cycles in Gθ. Theorem 6
shows that each such value pi will also be computed by the procedure discussed in
Section 4.1, provided that the underlying cycle represents a constraint that is not
redundant. The reciprocal property does not hold: Some geometrical components
of Θ may correspond to a set of saturated constraints of θ that does not form a
cycle. The inspection of such components may produce matrices A that do not
yield a periodicity pi, or yield a spurious one. This is not problematic, since a
transformation θ such that θp has a periodic behavior is also periodic when it is
raised to a power equal to an integer multiple of p.

4.3 Checking Periodicity

We now investigate the possibility of validating a candidate periodicity p ∈ N>0

for a LHR θ, i.e., checking whether θp has a periodic behavior that can be
accelerated. Note that, for every j ∈ [0, p − 1] and k ≥ 0, one has θj+kp =
(θp)k ◦ θj , hence accelerating θ reduces to accelerating θp.

Let θ′ be the LHR defined by the periodic constraints of θp, i.e., those of
the form p.(x′ − x)#q, with p ∈ Zn, q ∈ Z, and # ∈ {≤,=,≥}. Following [6],
one can obtain a formula of 〈R,Z,+,≤〉 representing the relation x′ ∈ (θ′)k(x)
for all k ≥ 0 in terms of the variables x, x′, and k. The problem is thus to
check whether the acceleration of θ (or, equivalently, θp) can be reduced to the
acceleration of θ′.

We first consider the case of a MCS θ for which we have obtained a period p

by applying either the method introduced in Section 4.1, or the one given in [5].
For any k ≥ 0, we know that the constraints of θkp are represented by paths of
depth 0, k or −k in the graph Gθp . It has been shown in [5] that it is sufficient
to consider the paths of this graph that are either acyclic, or contain repetitions
of only a single cycle of length 1. Such cycles correspond to periodic constraints,
which are captured in θ′.

The transformation θp therefore satisfies two properties. The first one states
that there exists m > 0 such that m ≤ n, and every composition of m constraints
of θp that results in a constraint of θmp necessarily includes at least one periodic
constraint from θ′. Formally, this condition can be expressed as

θmp =
⋂

i+j=m−1

[

θip ◦ θ′ ◦ θjp
]

. (1)

The second property states that, in compositions of constraints of θp, periodic
constraints do not need to be repeated at more than one place. Formally, we have

∀i < m :
[

θ′ ◦ θip ◦ θ′
]

⊇
[

(θ′)2 ◦ θip
]

∩
[

θip ◦ (θ′)2
]

. (2)

12

In the case of MCS, Conditions 1 and 2 are always satisfied. For more gen-
eral LHR θ, they can be used as a sufficient criterion for validating a candidate
value p for the periodicity of θ. This is illustrated in Section 5.1 below. In prac-
tical applications, these conditions can be decided by operations over CPDD
representations of the transformations, as discussed in Section 2.3.

The last step is to show that a LHR θ that satisfies Conditions 1 and 2 can
be accelerated. These conditions imply that for all k ≥ m, we have

θkp =
⋂

i+j=m−1

[

θip ◦ (θ′)k−i−j ◦ θjp
]

.

Since θ′ can be accelerated, this expression can be turned into a formula of
〈R,Z,+,≤〉 representing the relation x′ ∈ (θ′)k(x) in terms of x, x′, and k.

5 Examples

5.1 Periodic LHR

Let us illustrate the approach proposed in this paper on the LHR θ ⊆ R2 × R2

defined by the set of constraints

θ :

x′
2 + x1 ≤ −1

x′
2 − x′

1 + x2 ≤ −1
2x′

2 − x′
1 + x1 + x2 ≥ −4.

First step: extracting a candidate periodic matrix A from θ. The convex
polyhedron Θ ⊆ R4 induced by these constraints admits three minimal non-
empty geometrical components, with the corresponding affine hulls

α1 :

{

x′
2 + x1 = −1

x′
2 − x′

1 + x2 = −1,

α2 :

{

x′
2 + x1 = −1

2x′
2 − x′

1 + x1 + x2 = −4,

and

α3 :

{

x′
2 − x′

1 + x2 = −1
2x′

2 − x′
1 + x1 + x2 = −4.

The affine hull α1 can equivalently be represented by the following con-
straints, from which we deduce the matrix A below:

{

x′
1 = −x1 + x2

x′
2 = −x1 − 1

A =

[

−1 1
−1 0

]

Note that the affine hulls α2 and α3 produce the same matrix A, which hints
at the property that θ is affine.

Using the algorithm mentioned in Theorem 4, one obtains that this matrix is
such that A6 = A3 (actually, it satisfies the stronger property A3 = I2, where I2
denotes the identity matrix of size 2), which gives a candidate periodicity p = 3.

13

Second step: checking whether θ is affine. Following the procedure given
in Section 3.2, we can compute a polyhedron Π such that θ is equivalent to
x 7→ Ax+Π. This yields:

Π :

x′
2 ≤ −1

x′
2 − x′

1 ≤ −1
2x′

2 − x′
1 ≥ −4.

From Theorem 3, we deduce that θ is iterable within 〈R,Z,+,≤〉.

Alternative second step: checking the candidate period. Alternatively,
we may avoid computing Π and directly use the technique of Section 4.3 for
checking that the candidate periodicity p = 3 is valid. We obtain that θ3 is of
the form:

−4 ≤ x′
1 − x1 ≤ 4

−4 ≤ x′
2 − x2 ≤ 4

−4 ≤ x′
1 − x′

2 − x1 + x2 ≤ 4
x′
1 + x′

2 − x1 − x2 ≤ 6
x′
1 − 2x′

2 − x1 + 2x2 ≤ 6
2x′

1 − x′
2 − 2x1 + x2 ≥ −6,

which is periodic since all its constraints are expressed over x′
1−x1 and x′

2−x2.
For all k > 1, one thus has:

θ3k :

−4k ≤ x′
1 − x1 ≤ 4k

−4k ≤ x′
2 − x2 ≤ 4k

−4k ≤ x′
1 − x′

2 − x1 + x2 ≤ 4k
x′
1 + x′

2 − x1 − x2 ≤ 6k
x′
1 − 2x′

2 − x1 + 2x2 ≤ 6k
2x′

1 − x′
2 − 2x1 + x2 ≥ −6k.

The reflexive and transitive closure of θ3k can be obtained by quantification over
k. As a result, θ is iterable within 〈R,Z,+,≤〉.

5.2 Linear Hybrid Automaton

As a second example, consider the linear hybrid automaton H in Figure 2. The
effect of the cycle in H, starting from the leftmost location and preceding each
transition by the passage of time, is described by the LHR θH below. The variable
x has been eliminated using the reductions of [5] since, after the first iteration,
the cycle starts and ends with x = 0.

θH =

y + t− y′ + t′ ≤ 1
−2y + z − t+ 2y′ − z′ − t′ ≤ −1
y − y′ ≤ −10

The convex polyhedron ΘH ⊆ R6 induced by θH has one minimal non-empty
geometrical component, obtained by saturating all the constraints of θH . Its

14

ẋ = 1
ẏ = 1
ż = 1
ṫ = −1

0 ≤ ẋ ≤ 1
ẏ = 0
ż + ẋ = 1
ẋ ≤ ṫ ≤ ż

(x ≥ 10) → x := 0

(x ≤ 1) → x := 0; t := 1 − t

Fig. 2. Linear Hybrid Automaton H.

affine hull is described by the following constraints, from which we derive the
matrix AH .

y′ = y + 10
z′ = z + 10
t′ = −t+ 11

AH =

1 0 0
0 1 0
0 0 −1

Using the algorithm mentioned in Theorem 4, we get a candidate period p = 2
since A2

H = I3 (the identity matrix of dimension 3). Following the approach of
Section 4.3 confirms that θ2H is periodic. Hence, (θ2H)∗ can be computed using
the techniques of [6]. One then obtains θ∗H = (θ2H)∗ ◦ (θH ∪ Id). Note that the
computation of θ∗H was out of scope of the techniques of [5, 6], which cannot
handle periodicities greater than one.

6 Conclusions

This paper introduces an original method for accelerating the data transforma-
tions that label control cycles of linear hybrid automata. Given such a transfor-
mation θ, the idea consists in constructing a convex polyhedron from its linear
constraints, and then inspecting the geometrical components of this polyhedron
in order to compute a value p such that θp is periodic.

This method is able to accelerate all transformations that can be handled by
the specialized algorithms developed in [3, 5, 6, 11], in particular Multiple Coun-
ters Systems, to which the reachability analysis of timed automata can be re-
duced. Compared with those solutions, our method has the advantage of being
closed under linear changes of coordinates, which naturally do not affect the
geometrical features of polyhedra. Our acceleration algorithm can also poten-
tially be applied to the octagonal transformations studied in [8–10], and an open
question is to establish whether it provides full coverage of such transformations.

We did not analyze the practical cost of our acceleration procedure, which
actually depends on the implementation details of the symbolic data structure
used for manipulating polyhedra, and on the heuristics employed for selecting
the geometrical components to be inspected. In all our case studies, considering
the minimal non-empty components for which a non-trivial matrix A can be
extracted turned out to be sufficient, but we do not know whether this property
holds in all cases.

15

Acknowledgment

The authors wish to thank Nicolas Legrand for his contribution to the study of
the CPDD data structure.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science
126(2), 183–235 (1994)

2. Boigelot, B.: Symbolic Methods for Exploring Infinite State Spaces. Ph.D. thesis,
Université de Liège (1998)

3. Boigelot, B.: On iterating linear transformations over recognizable sets of integers.
Theoretical Computer Science 309(1–3), 413–468 (2003)

4. Boigelot, B., Brusten, J., Degbomont, J.F.: Automata-based symbolic representa-
tions of polyhedra. In: Proc. LATA’12. Lecture Notes in Computer Science, vol.
7183, pp. 3–20. Springer (2012)

5. Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: Proc. CAV’06.
Lecture Notes in Computer Science, vol. 4144, pp. 438–451. Springer (2006)

6. Boigelot, B., Herbreteau, F., Jodogne, S.: Hybrid acceleration using real vector
automata. In: Proc. CAV’03. Lecture Notes in Computer Science, vol. 2725, pp.
193–205. Springer (2003)

7. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear
arithmetic over the integers and reals. ACM Transactions on Computational Logic
6(3), 614–633 (2005)

8. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: Proc. TACAS’09. Lecture
Notes in Computer Science, vol. 5505, pp. 337–351. Springer (2009)

9. Bozga, M., Iosif, R., Konecný, F.: Fast acceleration of ultimately periodic relations.
In: Proc. CAV’10. Lecture Notes in Computer Science, vol. 6174, pp. 227–242.
Springer (2010)

10. Bozga, M., Iosif, R., Konecný, F.: Safety problems are NP-complete for flat integer
programs with octagonal loops. In: Proc. VMCAI’14. Lecture Notes in Computer
Science, vol. 8318, pp. 242–261. Springer (2014)

11. Comon, H., Jurski, Y.: Multiple counters automata, safety analysis and Presburger
arithmetic. In: Proc. CAV’98. Lecture Notes in Computer Science, vol. 1427, pp.
268–279. Springer (1998)

12. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: Proc.
POPL’77. pp. 238–252. ACM Press (1977)

13. Degbomont, J.F.: Implicit Real-Vector Automata. Ph.D. thesis, Université de Liège
(2013)

14. Henzinger, T.A.: The theory of hybrid automata. In: Proc. LICS’96. pp. 278–292.
IEEE Computer Society Press (1996)

15. Zhou, C., Hoare, C. A. R., Ravn, A. P.: A calculus of durations. Information
Processing Letters 40(5), 269–276 (1991)

16

