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Abstract

Spectral methods propose new and elegant solutions in probabilistic grammatical inference.
We propose two ways to improve them. We show how a linear representation, or equivalently
a weighted automata, output by the spectral learning algorithm can be taken as an initial
point for the Baum Welch algorithm, in order to increase the likelihood of the observation
data. Secondly, we show how the inference problem can naturally be expressed in the
framework of Structured Low-Rank Approximation. Both ideas are tested on a benchmark
extracted from the PAutomaC challenge.

Keywords: Probabilistic grammatical inference, Rational series, Machine Learning, Spec-
tral learning, Structured low-rank approximation, Maximum-Likelihood, Baum-Welch Al-
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1. Introduction

One of the main tasks of probabilistic grammatical inference consists in learning proba-
bilistic models of stochastic languages, i.e. probability distributions, from finite samples of
strings or trees. This field has recently made huge advances with the emergence of spectral
methods, which offer new and elegant solutions to this problem. The proposed algorithms
are indeed consistent and efficient. Many approaches have been proposed to learn HMM
or Probabilistic Finite Automata (PFA) (Bailly et al., 2009; Hsu et al., 2009; Bailly et al.,
2010; Balle and Mohri, 2012; Balle et al., 2012, 2014), transducers (Balle et al., 2011) or
graphical models (Parikh et al., 2011; Luque et al., 2012; Anandkumar et al., 2012; Cohen
et al., 2013).

In this paper, we mainly focus on the following problem : given a finite sample of strings
S independently and identically drawn (i.i.d.) according to an unknown distribution p, infer
an approximation of p in the class of rational series. Rational series over a finite alphabet Σ
are mappings from Σ∗ to R that can equivalently be defined by means of weighted automata,
or linear representations. More precisely, a series r : Σ∗ 7→ R is rational if there exists an
integer k and a tuple A =< I, (Mx)x∈Σ, T >, where I, T ∈ Rk andMx ∈ Rk×k for any x ∈ Σ,
such that r(x1 . . . xn) = I⊤Mx1 . . .MxnT . A is called a k-dimensional linear representation
of r. The rank of r is the minimal dimension of a linear representation for r.

c© 2014 M. Gybels, F. Denis & A. Habrard.
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The spectral learning approach relies on the two following observations :
— the Hankel matrix of a rational series r, i.e. the bi-infinite matrix indexed by Σ∗×Σ∗

and defined by H[u, v] = r(uv), has a finite rank, equals to the rank of r ;
— a linear representation of r can easily be obtained from the right singular vectors of

H.
The spectral learning scheme for probabilistic grammatical inference consists then in

building the empirical Hankel matrix HS from S, performing a singular value decomposition
(SVD) of HS and building a linear representation by using the k-first right singular vectors
of HS , where the rank k is given or estimated by cross-validation or other methods. This
main scheme admits several variants.

The spectral approach is consistent, elegant and simple to implement. However it should
and can be improved. Indeed, considering the k-first right singular vectors of HS boils down
to perform a rank-k truncated SVD of HS , i.e. to consider the rank-k matrix HS,k which is
the closest to HS according to the Frobenius norm. But HS,k is not a Hankel matrix - we
may have uv = u′v′ and HS,k[u, v] 6= HS,k[u

′, v′] - and building a linear representation from
the right singular vectors of HS,k takes away from the solution. Another way to express
the same thing is to say that the Frobenius norm is maybe not the distance that we should
minimize. For example, there is no reason that the output solution maximizes the likelihood
of the observations.

Hence, a first simple idea would be to modify the parameters of the solution output by
the spectral learning algorithm so as to increase the likelihood of the learning set. Besides the
fact that maximizing the likelihood of data is a hard-problem, we face a specific difficulty :
the automaton output by the spectral algorithm is not probabilistic – it may contain negative
coefficients, it is not normalized and the sum of the values computed on all strings may
differ from 1. Therefore, standard ways to increase the likelihood of observation data, such
as the Baum-Welch algorithm, cannot be directly applied. In this paper, we show how to
transform the output representation into a representation whose negative coefficients can be
made arbitrarily close to 0. Thus normalizing such a representation leads to an automaton
which is probabilistic and that can be taken as an input by the Baum-Welch algorithm. The
underlying idea is that, if the solution output by the spectral learning algorithm is good
enough, taking it as an initial point for the Baum Welch algorithm should further improve
the solution. This protocol is experimented on a benchmark made of 10 problems extracted
from the PAutomaC Challenge (Verwer et al., 2012). The experiments confirm the expected
results.

A second idea is to set out precisely from the criteria to be optimized and to design
an algorithm able to achieve this optimization task : we look for a rank-k Hankel matrix
being the closest to the empirical matrix HS . This optimization task can be expressed and
solved within the Structured Low Rank Approximation framework (SLRA), a bunch of
methods aiming at solving constrained low-rank approximation problem (Markovsky, 2008,
2012; Markovsky and Usevich, 2014). However the problem is non convex and the available
algorithms and software can only deal with small dimensions matrices. Experiments on
the same benchmark demonstrate the potentiality of this approach. However, the current
algorithm cannot process high dimensional matrices and the global improvements are quite
limited.
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The paper is organized as follows. Section 2 introduces the preliminaries on the spectral
learning approach and describes the PAutomaC Challenge data. Section 3 describes how
the representation output by a spectral learning algorithm can be used as an initialization
point for the Baum-Welch algorithm. Section 4 describes the SLRA approach. A conclusion
ends the paper.

2. Preliminaries

2.1. Rational series and residuals

Let Σ be a finite alphabet and Σ∗ be the set of all strings defined on Σ. Let us denote
by ≺ the quasi-lexicographical ordering on Σ∗ : strings are ordered first by length and then
by lexicographical order. Let ǫ denote the empty string and |w| denote the length of w. For
any n ∈ N, let Σn = {w ∈ Σ∗ : |w| = n} and Σ≤n = {w ∈ Σ∗ : |w| ≤ n}. For any w ∈ Σ∗,
let pref(w) = {u ∈ Σ∗ : ∃v ∈ Σ∗, uv = w} and suff(w) = {u ∈ Σ∗ : ∃v ∈ Σ∗, vu = w}.
A set of strings P is a prefix set if and only if ∀w ∈ P, pref(w) ⊆ P . For any S ⊆ Σ∗,
let front(S) = {ux ∈ Σ∗ : u ∈ S, x ∈ Σ, ux /∈ S}. A series r defined over Σ is a mapping
r : Σ∗ 7→ R. A series r is convergent if the sequence r(Σ≤n) =

∑

w∈Σ≤n r(w) is convergent :
the limit is denoted by r(Σ∗). A series r is absolutely convergent if the series |r| defined
by |r|(w) = |r(w)| is convergent. The set of all absolutely convergent series is denoted by
l1(Σ

∗). A stochastic language p is a probability distribution defined on Σ∗, ie a series that
only takes non negative values and that converges to 1.

A series r over Σ is rational if there exists an integer k ≥ 1, I, T ∈ Rk and matrices
Mx ∈ Rk×k for every x ∈ Σ, such that for all u = x1x2 . . . xm ∈ Σ∗,

r(u) = ITMuT = ITMx1Mx2 . . .MxmT.

The triplet 〈I, (Mx)x∈Σ, T 〉 is called a k-dimensional linear representation of r. The rank of
a rational series r is the minimal dimension of a linear representation of r. Linear represen-
tation are equivalent to weighted automata where each coordinate corresponds to a state,
I provides the initial weights, T , the terminal weights and each matrix Mx, the x-labeled
transition weights. If r ∈ l1(Σ

∗) is rational and admits the minimal linear representation
〈I, (Mx)x∈Σ, T 〉, then r(Σ∗) = IT (Id −MΣ)

−1T where Id is the rank d identity matrix and
MΣ =

∑

x∈ΣMx. A probabilistic automaton (PA) can be defined by a linear representation
whose coefficients are all non negative and such that T⊤I = 1, Id − MΣ is invertible and
(Id −MΣ)

−1T = 1 where 1 = (1, . . . , 1) ∈ Rk.
A k-dimensional linear representation 〈I, (Mx)x∈Σ, T 〉 is prefix if I = (1, 0, . . . , 0)⊤ ∈ Rk

and if there exists a prefix set P = {u1, u2, . . . , uk} such that ∀i ∈ [k], ∀x ∈ Σ, ∃j ∈
[k] s.t. uix = uj ⇒ ∀k 6= j,Mx[i, k] = 0.

For any series r ∈ l1(Σ
∗) and any u ∈ Σ∗, let u̇r be the series defined by u̇r(v) = r(uv) :

it is called the residual of r wrt u. If 〈I, (Mx)x∈Σ, T 〉 is a linear representation of r, then
〈MT

u I, (Mx)x∈Σ, T 〉 is a linear representation of u̇r. Let res(r) be the set of all residuals of
r and Vr be the subspace of l1(Σ

∗) spanned by res(r). The set of all series s ∈ Vr for which
s(Σ∗) = 1 forms a hyperplane Hr of Vr. The projection of any residual u̇r s.t. r(uΣ∗) 6= 0

on Hr is denoted by u−1r and defined by ∀v ∈ Σ∗, u−1r(v) = r(uv)
r(uΣ∗) .

3



Gybels Denis Habrard

q01 q1

a : 1/6
b : 1/3
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a : 1/4
b : 1/4
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[

1
0

]

T =

[

0
1/4

]

Ma =

[

1/2 1/6
0 1/4

]

Mb =

[

0 1/3
1/4 1/4

]

Figure 1: A probabilistic automaton and the equivalent linear representation.

2.2. Hankel matrix and spectral algorithm

The Hankel matrix Hr of a series r is a bi-infinite matrix whose rows and columns are
indexed by Σ∗ and defined by ∀u, v ∈ Σ∗, Hr[u, v] = r(uv).

ǫ a b aa . . .

Hr =

ǫ
a
b
...











r(ǫ) r(a) r(b) r(aa) . . .
r(a) r(aa) r(ab) r(aaa) . . .
r(b) r(ba) r(bb) r(baa) . . .
...

...
...

...
. . .











A series r is rational iff the rank of its Hankel matrix Hr is finite, and in this case both
ranks coincide. Let r be a rank-k rational series and let Hr = LDR⊤ be a singular values
decomposition ofHr with L,R ∈ R∞×k the right and left singular vectors ofHr, respectively
and D ∈ Rk×k be the diagonal matrix containing its singular values. The spectral approach
in probabilistic grammatical inference is based on the following result :

— let I = R[1, :] be the first row of the matrix R
— let Mx = RTTxR where Tx is the constant matrix defined by Tx[u, v] = δv=ux,
— let T = RTH[1, :]T

then 〈I, (Mx)x∈Σ, T 〉 is a linear representation of r.

The most basic learning algorithm derived from this result consists in plugging-in the
empirical Hankel matrix HS instead of the unknown matrix Hr.

Let S be a training set of strings i.i.d. from an unknown distribution p. Let HS be
the empirical Hankel matrix built from S defined by HS [u, v] = pS(uv) where pS is the
empirical distribution associated with S. Let U = ∪w∈Spref(w) and V = ∪w∈Ssuff(w) : HS

is indexed by U and V . Let HS ≈ LkDkR
⊤
k , a rank-k truncated SVD of HS : Lk (resp. Rk)

is composed of the k-first left (resp. right) singular vectors and Dk is the diagonal matrix
composed of the k first singular values of HS . The matrices I, (Mx)x∈Σ and T are then
computed as above, using Rk instead of R and using HS [1, :] instead of Hr[1, :]. Note that
the choice of k is an important parameter of the spectral algorithm (Kulesza et al., 2014)
but it will not be discussed in this paper. Several variants of this basic algorithm have been
studied (Balle et al., 2012, 2014; Denis et al., 2014).
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2.3. PAutomaC

The Probabilistic Automata learning Competition (PAutomaC 1), proposed in sidelines
of the ICGI 2012 conference, is about the problem of learning probabilistic distributions
from strings drawn from finite state automata.

The competition offers to solve a set of 48 problems provided in the forme of target
models. These models can be of the four following types : Markov Chains, Determinist
Probabilistic Finite Automata, Hidden Markov Models and Probabilistic Finite Automata.
The participants have acces to training sets of strings i.i.d. from the target models and to
test sets. The evaluation process involves making good approximations of the probabilities of
the strings from the test set. The quality of the approximation is evaluated by the perplexity
criterion defined as follows :

2−(
∑

w∈TestSet p(w)∗log(p̂(w)))

where p is the target series and p̂ is the candidate series that is evaluated. Because models
learned using spectral methods can return negative values, a trigram trained on S will be
used for strings for which p̂ outputs a negative value. In this paper, we focus on the 10
problems for which the rank of the target is the smallest, in order to use classical SVD
decomposition software and the software from (Markovsky, 2012) to compute low-rank
approximation on small matrices as explained in Section 4. More details about PAutomaC
can be found in (Verwer et al., 2012).

3. Using spectral learning as Baum-Welch algorithm initialization

A classical and consistent way to solve our inference problem consists in finding a low-
rank linear representation that maximizes the likelihood of the learning set. However, it
is well known that this problem is NP-hard and approximation algorithms should be used
in practical cases. The Baum-Welch algorithm (BW), a straightforward adaptation of the
expectation-maximization (EM) algorithm for the framework of PAs, iteratively modifies
the parameters of an initial model in order to increase the likelihood of the observation data.
The Baum-Welch algorithm converges to a local optimum. A common strategy consists in
running BW on a large number of randomly generated initial models and keeping the model
which maximizes the likelihood of the learning set. However, the underlying space is strongly
non-convex and this strategy is not efficient in high dimension.

On the other hand, spectral learning algorithms are designed to provide low-rank linear
representations which are proved to be close to the target. But, as the underlying optimi-
zation criterion is of an algebraic nature, spectral learning algorithms are not tailored to
maximize the likelihood of the observation data. A sound strategy should be to take the
model r output by a spectral learning algorithm as an initialization model for the Baum-
Welch algorithm. However, the representation of r has some characteristics that make the
Baum-Welch algorithm impossible to be applied on : (i) it may include negative coefficients ;
(ii) it may be not normalized, i.e. its components may be far from satisfying the syntactical
properties of a PA :

∑

i I[i] = 1 and T [i] +
∑

j,xMx[i, j] = 1 for any index j.

1. http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac/
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We show below that given a minimal linear representation of a rational stochastic lan-
guage p, we can build an equivalent prefix linear representation which is normalized. Mo-
reover, we show that we can build equivalent normalized prefix linear representation where
the magnitude of the negative coefficients is arbitrarily small. These techniques will allow
us to compute normalized prefix linear representation arbitrarily close from r and on which,
the Baum-Welch algorithm could be applied.

3.1. Normalized prefix linear representation and negative coefficients

reduction

LetA =< I, (Mx)x∈Σ, T > be a rank-k minimum linear representation that computes the
stochastic language p and let P = {u1, . . . , uk} ⊂ Σ∗ be a prefix set where i ≤ j ⇒ ui ≺ uj
and such that {u̇p : u ∈ P} is a basis of Vp. Then, let A

′ =< I ′, (M ′
x)x∈Σ, T

′ > be the linear
representation defined by

1. I ′ = (1, 0, . . . , 0)⊤ ∈ Rk,

2. ∀i ∈ [k], T ′[i] = p(ui)
p(uiΣ∗) ,

3. ∀i, j ∈ [k], ∀x ∈ Σ,

(a) uix = uj ⇒ M ′
x[i, j] =

p(uixΣ
∗)

p(uiΣ∗) ,

(b) uix ∈ front(P ) ⇒ M ′
x[i, j] = αj

i,x
p(ujΣ

∗)
p(uiΣ∗) , where

˙uixp =
∑k

j=1 α
j
i,xu̇jp

Then, A′ is a normalized prefix linear representation equivalent to A. See an example in
Figure 2. Note that the conditions on P implies that u1 = ǫ, that p(uiΣ

∗) 6= 0 for any i ∈ [k]
and that the coefficients αj

i,x are uniquely determined.

ǫ1 a

a : 2/3
b : 4/3

b : −1

1/16

a : 3/4
b : 5/4

a : −3/16

b : −7/8

Figure 2: Normalized prefix representation of automaton from Figure 1 for P = {ǫ, a}.

If we relax the conditions in such a way that the set {u̇p : u ∈ P} spans Vp but may be

not linearly independent, then the equations ˙uixp =
∑k

j=1 α
j
i,xu̇jp may not determine the

coefficients αj
i,x. Additional constraints can be added in order to minimize the magnitude

of negative coefficients. From now on, we will replace the conditions ˙uixp =
∑k

j=1 α
j
i,xu̇jp

with

˙uixp =

k
∑

j=1

αj
i,xu̇jp and

k
∑

j=1

|αj
i,x|p(ujΣ∗) minimal
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which is equivalent to demand that
∑

M ′[i,j]<0 |M ′[i, j]| be minimal since
∑k

j=1 α
j
i,xp(ujΣ

∗) =
p(uixΣ

∗) is a constant.
Not all rational stochastic languages can be computed by a PA (Dharmadhikari, 1963;

Denis and Esposito, 2008) (see Fig. 3).

q0λ q1 q2λ
√
2

−ρ sinα
ρ cosα

1 ρ sinα

ρ cosα

1

ρ

1

Figure 3: For any α ∈ R and 0 < ρ < 1, there exists λ > 0 such that the automaton
defines a stochastic language, which can be computed by a PA iff α/π ∈ Q.

However, it has been shown in (Bailly and Denis, 2011) that any rational stochastic
language admits a normalized prefix linear representation where the total magnitude of the
negative coefficients is arbitrarily small. See an example on Fig. 4.

01 1 2 3 4 5
0.266

t0

0.307

t1

0.838

t2

0.930

t3

0.669

t4

0.269

−0.024
0.234

t5

Figure 4: Given the automaton described in Fig. 3, with ρ = 0.5, α = arccos 0.6 and
λ = 0.3040.., it defines a stochastic language. Let An be the n-dimensional nor-
malized prefix linear representation which minimizes the magnitude of the sum
Dn of the negative weights. We have D3 = −1.793, D4 = −0.358, D5 = −0.082
and D6 = −0.024. The figure shows A6 and ∀i ∈ [n], ti = 1−

∑

x,j Mx[i, j].

3.2. Baum-Welch initialization

The spectral algorithm outputs linear representations that converge to the target distri-
bution in ℓ1 norm (Bailly, 2011; Hsu et al., 2009) : so, it can be assumed that if the learning
set is big enough, the output series r is absolutely convergent. But r is not a stochastic
language : we can not assume that r(Σ∗) = 1 neither that ∀u ∈ Σ∗, r(u) ≥ 0. We want to
show that our approach - choosing r as the initial model for BW - improves the result of
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the spectral learning algorithm when the output representation is sufficiently close to the
target.

Experiments on PAutomaC benchmark show that for most problems, the representation
output by the spectral algorithm is such that r(Σ∗) is close to 1 and

∑

u∈S:r(u)<0 r(u) is
small (cf. Figure 1). Thereby, given the rank-k series r output by the spectral learning
algorithm,

— We consider the series r′ = r
r(Σ∗) .

— We choose an initial prefix set P of size k which maximizes the volume |Det({u̇r :
u ∈ P})| and such that ∀u ∈ P , r′(uΣ∗) > 0.

— We compute the normalized prefix linear representation A0 = 〈I(0), (M (0
x )x∈Σ, T

(0)〉
of r′, according to P .

We then define a sequence of linear representations Am by :
— Let m = 0.
— While there exists i, j ∈ [k] and x ∈ Σ such that M

(m)
x [i, j] < 0

— let i ∈ [k] and x ∈ Σ such that
∑

j;M
(m)
x [i,j]<0

|M (m)
x [i, j]| is maximal ; let u ∈ P

be the string corresponding to i ; P = P ∪ {ux} ;
— let m = m + 1 and let Am be the normalized prefix linear representation of r′

associated with P .
Every linear representation Am is equivalent to r′ and the global magnitude of the

negative coefficients tends to 0 as m increases. A PA Bm is computed from each Am by
applying the following normalization procedure :

Mx[i, j] =
|Mx[i, j]|

∑

k |Mx[i, k]|+ |T [i]| and T [i] =
|T [i]|

∑

k |Mx[i, k]|+ |T [i]| .

If the global magnitude of the negative coefficients of Am is small and if r is close to the
target, the series computed by the PA Bm should be also close to the target. It can serve
as an initial point for the Baum-Welch algorithm.

3.3. Experimentation on PAutomaC problems

In this section, we apply the method described in section 3.2 on 10 problems extracted
from the PAutomaC challenge. Some descriptive elements can be found in Table 1. Each
problem proposes a training set S (of 2×104 or 1×105 strings) drawn according to a target
model p and a test set (of 1× 103 strings) on which the perplexity of a candidate series will
be evaluated.

LetHS be the empirical Hankel matrix of S indexed by the sets U and V with |U | ≤ 3000
(we constrain |U | in order to allow the use of standard SVD using NumPy and SciPy
implementations). Let Â(k) be the rank-k representation learned from HS by using the
spectral algorithm. A random sub-sampling validation – taking 25% of S as validation set
– is performed to determine the best rank in term of likelihood : i.e. k∗ = argmax

k
L(Â(k)),

where L(Â(k)) denotes the likelihood of the model Â(k) computed on the validation set. Let
p̂ be the series computed by Â(k∗). Results are detailed in Table 1.

Then, we computed a sequence of m linear representations B
(r)
m for any given rank r and

any m ∈ [0, 10] that can be used as starting point for the Baum-Welch algorithm. We denote

8
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C
(k)
m the linear representations obtained by applying the Baum-Welch algorithm on B

(k)
m .

Let (k∗,m∗) = argmax
k,m

L(Ĉ
(k)
m ), where L(Ĉ

(k)
m ) is computed on a validation set. Results are

detailed in Table 2.

Problem number 4 7 12 20 24 30 31 33 39 42
|Σ| 4 13 13 18 5 10 5 15 14 9

Target series rank 10 12 12 8 5 9 12 6 6 6
perplexity target 80.818 51.224 21.655 90.972 38.729 22.926 41.214 31.865 10.002 16.004

k∗ 11 12 13 9 5 10 13 7 7 7

perplexity Â(k∗) 80.868 51.308 21.772 95.770 38.763 23.041 41.527 32.399 10.042 16.028
neg. values on test set 0.5 % 0.0 % 1.1 % 9.0% 0.0 % 3.8% 3.0% 1.1 % 1.0 % 0.7 %∑

w∈Σ∗ p̂(w) 1.007 1.005 0.889 1.075 0.969 0.897 0.978 1.453 0.831 0.970

PAutomaC ranking Â(k∗) Last Last Last Last Last Last Last Last Last Last

Table 1: Results given by the spectral algorithm applied on 10 PAutomaC problems.

Problem number 4 7 12 20 24 30 31 33 39 42

(k∗,m∗) 11, 2 12, 1 13, 3 9, 7 5, 7 9, 5 12, 3 4, 7 7, 1 7, 0

perplexity L(C
(k∗)
m∗ ) 81.408 51.251 21.700 184.459 38.736 23.459 42.710 32.050 10.003 16.006

sum of neg. weights in B
(k∗)
m∗ 0.821 0.012 1.850 4.728 0.007 2.566 6.276 0.379 3.500 0.394

PAutomaC ranking C
(k∗)
m∗ Last 2nd 4th Last 3rd Last Last Last 2nd 2nd

Table 2: Results given by the method described in Section 3.2 applied on the same PAu-
tomaC problems.

For 6 problems out of the 10 studied, the method significantly improves the quality
of the solution allowing 3 of them to be on the PAutomaC podium. Also, note that 3 of
the problems that could not be improved were originally the ones giving the most negative
values on the test set and that 2 of them where the ones with the highest remaining negative
values in the prefix representation before applying on it a normalization procedure. This
tends to confirm that the method proposed in this section is able to give good results when
the quality of the initial model is close enough to the target solution.

4. Grammatical inference and Structured Low-Rank Approximation

In the previous section, we showed that when the spectral method is able to output a
model close to the target, we can improve it by applying a likelihood maximization pro-
cedure. Having a good approximation of the target is then crucial and in this section we
propose to consider Structured Low-Rank Approximation (SLRA) (Markovsky, 2008, 2012)
methods for improving the output given by the spectral algorithm. Indeed, the core step
of the spectral algorithm is based on a low-rank approximation of the empirical matrix HS

given by a rank-k truncated singular values decomposition : LkDkR
T
k = HSk. Note that

HSk is the best rank-k approximation of HS in term of Frobenius norm (Stewart, 1992).
However, HSk is no longer a Hankel structured matrix. As a consequence, the reconstruc-
tion step of the spectral algorithm – building from HSk the rank-k linear representation
〈I, (Mx)x∈Σ, T 〉 defining the series p̂ – can be seen as another matrix approximation bet-
ween the unstructured HSk and the expected Hankel structured Hp̂. See Figure 5 for an
illustration.
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HS

rank(Hs) >> k ❉
Hankel structured ❯

LkDkR
T
k = HSk

rank(Hsk) = k ❯
No structure ❉

< I, (Mx)x∈Σ, T > ⇔ Hp̂

rank(Hp̂) = k ❯
Hankel structured ❯

approx. approx.

truncated SVD reconstruction

Figure 5: Diagram summarizing the different approximation steps made by the spectral
algorithm : The first one is done for obtaining the target rank without the
correct matrix structure and the second one can be seen as a recovery the Hankel
structure property.

SLRA corresponds to the problem of finding a low rank structure-preserving approxima-
tion of a given data matrix. In particular, the SLRA framework supports Hankel structured
matrices. Let Hslra be a low-rank approximation of HS obtained by SLRA. Since both rank
and structure are correct, we can directly apply the procedure presented in Section 2.2 on
Hslra to build a rank-k linear representation computing the series p̂ without an additio-
nal approximation, i.e. for any sets U and V indexing HS we have ∀u ∈ U and ∀v ∈ V ,
Hslra[u, v] = p̂(uv).

In the next subsection, we introduce the SLRA framework in the context of our gramma-
tical inference problem and evaluate its relevance on a small example. Basically, the SLRA
framework can provide, in theory, a nice solution to the problem addressed by spectral me-
thods. However, this framework is strongly non-convex and thus cannot be applied directly
on large real problems. To deal with this drawback, we discuss, in a second step, some
strategies to deal with big matrices and show some preliminary results on the PAutomaC
challenge.

4.1. From grammatical inference to SLRA

Let S be a sample of strings i.i.d. from an unknown distribution p of rank k and HS ∈
Rm×n be the empirical Hankel matrix built from S and indexed by a pair (U, V ) ⊆ Σ∗×Σ∗.
Let pS = [pS(w1), . . . , pS(wnp)] ∈ Rnp be the vector that contains the empirical probabilities
of each string wi of S without duplicates. The Hankel structure of HS can be modeled from
pS by an affine structure defined by a mapping S : Rnp → Rm×n such that :

Hs = S (pS) =

np
∑

i=1

Si pS(wi),

where matrices Si ∈ Rm×n, indexed by the same pair (U ,V ), encode the Hankel structure

such that ∀u ∈ U and ∀v ∈ V , Si[u, v] =

{

1 if wi = uv
0 otherwise.

For example, considering the 3 strings sample S = {ǫ, ǫ, a} and taking U = V = {ǫ, a}, we
have HS =

[

1 0
0 0

]

× pS(ǫ) +

[

0 1
1 0

]

× pS(a) =

[

2/3 1/3

1/3 0

]

.

10
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The SLRA outputs a Hankel structured matrix S (p̂S) that is a rank-k approximation
of HS by means of the following minimization problem :

minimize
p̂S∈R

np
||p̂S − pS|| subject to rank(S (p̂S)) ≤ r. (1)

The rank constraint rank(S (p̂S)) ≤ r is actually equivalent to find a matrix R ∈ Rd×m,
where d = m−r, such that rank(R) = d and RS (p̂S) = 0 (Usevich and Markovsky, 2013).
Then, Problem (1) can be reformulated as a double minimization problem as follows :

minimize
R:rank(R)=d

f(R), where (2)

f(R) := min||p̂S − pS||22 subject to RS (p̂S) = 0 (3)

The inner minimization problem (3) is a least-norm problem and has a closed form
solution. On the other hand, the outer problem (2) is by nature non convex making thus the
SLRA formulation intractable on large problems. As shown below, the SLRA formulation
applied on small problems is very appropriate for the probabilistic grammatical inference
problem we consider. However, if some progress has been done recently (Markovsky and
Usevich, 2014), this non-convexity issue makes impossible to apply the SLRA approach on
full empirical Hankel matrices. We provide at the end of the section a first attempt to deal
with this drawback accompanied with an evaluation on PAutomaC.

4.2. Evaluation on a small problem

To evaluate the SLRA approach, we consider the rank-k linear representation of Figure 1,
denoted by A, computing the series p and let S be a set of strings i.i.d. from p. In order
to stand in a realizable case for SLRA, we consider a small sub-matrix H ′

S of HS following
the approach from (Balle et al., 2012) to learn a model. The rank of the target model is
k = 2 so for this example, this approach only needs the informations from a sub-matrix
H ′

S ∈ R5×5 to be applied. Let dquad denote the quadratic distance between two series, define

by dquad(p1, p2) =
[
∑

w∈Σ∗(p1(w) − p2(w))
2
] 1
2 . In order to evaluate the two methods, we

used the following experimental setup. First, we consider different sizes of training set i.i.d.
from p (from 500 to 50000 strings). For each sample, we fill the matrix H ′

S and apply the
SLRA optimization problem to obtain a rank-2 approximation H ′

slra, from which we build a
linear representation of the series p̂slra. We compare this approach to the method consisting
in applying the spectral method on H ′

S giving the series p̂S . We repeat each experiment
100 times and we compare the quality of the different methods according to the following
2 measures :

— d1(H
′
S , H

′
slra) = ||Hp −H ′

S ||2 − ||Hp −H ′
slra||2,

— d2(p̂S , p̂slra) = dquad(p̂S , p)− dquad(p̂slra, p).
The first one evaluates the quality of the low rank approximation with respect to the target
matrix Hp and the second one the quality of the inferred model in terms of quadratic
distance to the target. A positive value indicates that the SLRA approach is better than
the spectral one. The results are reported on Figure 6.

The two evaluation measures confirm that the solution found by the SLRA method is
significantly better than the spectral approach. Moreover, using a one-tail Student t-test, the
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Figure 6: Comparison of the performances of the SLRA approach and the spectral one on
the toy problem of Figure 1 according to different learning sample sizes. The
results evaluated by the gain in terms of distance d1 (2-norm) are presented on
the left and those in terms of distance d3 (quadratic distance to the target) are
given on the right.

results are statistically significant with a p-value always lower than 10−6. This illustrates
that SLRA is clearly able to provide good approximations to a target model when the
problem is feasible. In the next section, we present a solution for larger problems.

4.3. Using SLRA on large problems

Due to its non-convexity, the SLRA formulation cannot be applied to real problems :
If the matrix is big the problem is intractable and on the other hand if the matrix is too
small we may face to a dramatic loss of information and even to an incapacity to obtain a
sufficient rank, implying poor results. Another strategy is to use SLRA as a preprocess to
improve the quality of the information in the empirical Hankel matrix before applying the
spectral algorithm. The simple idea proposed here is to apply SLRA on a submatrix of the
empirical Hankel matrix and to apply the spectral method on the Hankel matrix updated
with the values returned by SLRA. Given a empirical matrix HS and a target rank, we
propose the following procedure :

— Extract a small squared sub-matrix H ′
S from HS in order to maximize the quantity

of information in H ′
S such that the rank of H ′

S is greater than the target rank and
that the size is compatible with the computing resources in order to apply the SLRA
problem.

— Apply the SLRA formulation on H ′
S with the desired rank to obtain H ′

slra.
— Replace in the whole matrix HS each occurrence of the variables in H ′

S by their new
values in H ′

slra to obtain a matrix H ′′
S .

— Apply the spectral algorithm on H ′′
S .

We have evaluated this strategy on 10 problems of the PAutomaC challenge and com-
pared it to the classical spectral learning algorithm.

We used the following measures to assess the quality of the results : (i) the distance
of the Hankel matrices from the target matrix H ′

p in terms of Frobenius norm ; (ii) the

12
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Problem 4 7 12 20 24 30 31 33 39 42

dimension H′
S 18× 18 18× 18 27× 27 26× 26 12× 12 20× 20 22× 22 12× 12 23× 23 18× 18

||H′
S −H′

p||F 3.70e−3 5.98e−3 4.60e−3 1.54e−3 8.68e−3 3.77e−3 5.29e−3 2.43e−3 5.19e−3 4.47e−3

||H′
slra

−H′
p||F 3.30e−3 5.98e−3 4.60e−3 1.47e−3 8.24e−3 3.76e−3 5.25e−3 2.19e−3 5.16e−3 4.32e−3

dquad(p̂S , p) 2.24e−3 5.27e−3 4.07e−3 1.65e−3 5.05e−3 4.36e−3 4.17e−3 2.33e−3 3.98e−3 3.96e−3

dquad(p̂slra, p) 2.08e−3 5.28e−3 4.07e−3 1.62e−3 4.77e−3 4.36e−3 4.16e−3 2.06e−3 3.97e−3 3.92e−3

Perplexity p̂S 80.862 51.308 21.929 95.466 38.763 23.041 41.527 32.395 10.030 16.026
Perplexity p̂slra 80.861 51.308 21.927 95.457 38.756 23.041 41.529 32.385 10.030 16.026

Table 3: Evaluation of SLRA used as a preprocess of the spectral method. The first line
indicates the PAutomaC problems considered and the second the selected size of
the sub-matrix on which the SLRA is applied. The following two lines shows the
modifications made by SLRA on the Hankel matrices in term of || · ||F . The next
four lines show the modifications made by SLRA on the learned models in terms
of dquad and perplexity. If SLRA has made an improvement over the classical
method, the result is shown in bold.

quadratic distance of the learn series with the target series p ; (iii) the perplexity of the
learn models over the test set. The results are reported on Table 3.

First, we observe that, in terms of Frobenius norm, the SLRA-based approach is able
to improve the quality of the information contained in the matrix H ′

S for 9 problems out
of 10. Moreover, for 7 problems, models inferred from H ′′

S are better in term of quadratic
distance than models inferred from H ′

S which means that we were able to move closer to
the target and a gain in terms of perplexity is observed for 5 problems. This shows that
SLRA can bring some valuable information to the empirical matrix which leads to produce
better models. As a conclusion, these preliminary results show that SLRA can be a very
relevant tool for learning low-rank linear representations.

5. Conclusion

In this paper, we have studied two possible directions for improving the solution output
by spectral methods for learning linear representation of stochastic languages.

First, we provided an approach allowing one to maximize the likelihood of a sample
from a model given by the spectral methods. This strategy is based on a renormalization of
the model accompanied with an iterative procedure allowing one to reduce the magnitude
of negative coefficients thanks to an extension of the model. Once the negative coefficients
are eliminated, we obtain a starting point for the BW algorithm used afterwards to update
the coefficients of the model in order to maximize the likelihood of the learning sample.
Our experiments show that this approach can improve the spectral algorithm if the model
output by this algorithm is sufficiently close to the target solution.

In a second step, we studied the Structured Low Rank Approximation methods in the
context of our learning problem. This approach allows one to obtain a low-rank represen-
tation of a matrix while preserving its (Hankel) structure which corresponds exactly to
the problem spectral methods aims at solving. We have illustrated the interest of this ap-
proach on a synthetic problem and its limitations on big Hankel matrices – coming with
real applications– due to the non-convexity of its nature. We have proposed a preliminary
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approach consisting of applying the SLRA framework on a small feasible subpart of the
full Hankel matrix. This strategy tends to improve the final output of the method but is
not completely convincing since the SLRA is only modifying a relatively small amount of
data of the Hankel matrix HS . As a consequence, the model obtained is still relatively close
to the spectral solution and in our preliminary experiments, combining SLRA with the
Baum-Welch procedure does not bring a significative gain.

A natural perspective of this work is to find new approaches for applying SLRA on a
larger amount of data of the empirical matrix. For example, trying to use many SLRA on
random sub-matrices or projections with a relevant combination of the results is a natural
perspective.
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