Uncertainty quantification for functional dependent random variables

Simon Nanty 1, 2, * Céline Helbert 3, 1 Amandine Marrel 2, 1 Nadia Pérot 2, 1 Clémentine Prieur 4, 1
* Auteur correspondant
4 AIRSEA - Mathematics and computing applied to oceanic and atmospheric flows
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, UJF - Université Joseph Fourier - Grenoble 1, INPG - Institut National Polytechnique de Grenoble
Abstract : This paper proposes a new methodology to quantify the uncertainties associated to multiple dependent functional random variables, linked to a quantity of interest, called the covariate. The proposed methodology is composed of two main steps. First, the functional random variables are decomposed on a functional basis. The decomposition basis is computed by the proposed Simultaneous Partial Least Squares algorithm which enables to decompose simultaneously all the functional variables. Second, the joint probability density function of the coefficients of the decomposition associated to the functional variables is modelled by a Gaussian mixture model. A new method to estimate the parameters of the Gaussian mixture model based on a Lasso penalization algorithm is proposed. This algorithm enables to estimate sparse covariance matrices, in order to reduce the number of model parameters to be estimated. Several criteria are proposed to assess the efficiency of the methodology. Finally, its performance is shown on an analytical example and on a nuclear reliability test case.
Type de document :
Article dans une revue
Computational Statistics, Springer Verlag, 2017, 32 (2), pp.559-583. 〈10.1007/s00180-016-0676-0〉
Liste complète des métadonnées

Littérature citée [38 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01075840
Contributeur : Simon Nanty <>
Soumis le : jeudi 28 juillet 2016 - 08:20:29
Dernière modification le : samedi 11 novembre 2017 - 01:12:35
Document(s) archivé(s) le : samedi 29 octobre 2016 - 11:38:32

Fichier

Article.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Simon Nanty, Céline Helbert, Amandine Marrel, Nadia Pérot, Clémentine Prieur. Uncertainty quantification for functional dependent random variables. Computational Statistics, Springer Verlag, 2017, 32 (2), pp.559-583. 〈10.1007/s00180-016-0676-0〉. 〈hal-01075840v2〉

Partager

Métriques

Consultations de la notice

443

Téléchargements de fichiers

108