Skip to Main content Skip to Navigation
Journal articles

Riemannian mathematical morphology

Abstract : This paper introduces mathematical morphology operators for real-valued images whose support space is a Riemannian manifold. The starting point consists in replacing the Euclidean distance in the canonic quadratic structuring function by the Riemannian distance used for the adjoint dilation/erosion. We then extend the canonic case to a most general framework of Riemannian operators based on the notion of admissible Riemannian structuring function. An alternative paradigm of morphological Riemannian operators involves an external structuring function which is parallel transported to each point on the manifold. Besides the definition of the various Riemannian dilation/erosion and Riemannian opening/closing, their main properties are studied. We show also how recent results on Lasry-Lions regularization can be used for non-smooth image filtering based on morphological Riemannian operators. Theoretical connections with previous works on adaptive morphology and manifold shape morphology are also considered. From a practical viewpoint, various useful image embedding into Riemannian manifolds are formalized, with some illustrative examples of morphological processing real-valued 3D surfaces.
Document type :
Journal articles
Complete list of metadata

Cited literature [34 references]  Display  Hide  Download
Contributor : Jesus Angulo Connect in order to contact the contributor
Submitted on : Sunday, January 17, 2016 - 2:47:28 PM
Last modification on : Wednesday, November 17, 2021 - 12:27:13 PM
Long-term archiving on: : Monday, April 18, 2016 - 10:11:24 AM


Files produced by the author(s)



Jesus Angulo, Santiago Velasco-Forero. Riemannian mathematical morphology. Pattern Recognition Letters, Elsevier, 2014, 47, pp.93-101. ⟨10.1016/j.patrec.2014.05.015⟩. ⟨hal-00877144v3⟩



Record views


Files downloads