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Abstract

We study the best-arm identification problem in linear bgndhere the rewards
of the arms depend linearly on an unknown param@teand the objective is to
return the arm with the largest reward. We characterize tmeptexity of the
problem and introduce sample allocation strategies thihapms to identify the
best arm with a fixed confidence, while minimizing the samplédet. In partic-
ular, we show the importance of exploiting the global linstwucture to improve
the estimate of the reward of near-optimal arms. We analg@toposed strate-
gies and compare their empirical performance. Finally, &g-aroduct of our
analysis, we point out the connection to theptimality criterion used in optimal
experimental design.

1 Introduction

The stochastic multi-armed bandit problem (MAB)|[16] offer simple formalization for the study
of sequential design of experiments. In the standard madelarner sequentially chooses an arm
out of K and receives a reward drawn from a fixed, unknown distributedative to the chosen
arm. While most of the literature in bandit theory focused lba problem of maximization of
cumulative rewards, where the learner needs to trade-pfbeation and exploitation, recently the
pure exploratiorsetting [5] has gained a lot of attention. Here, the learsesuhe available budget
to identify as accurately as possible the best arm, withgind to maximize the sum of rewards.
Although many results are by now available in a wide rangetifrigs (e.g., best-arm identification
with fixed budget|[2, 11] and fixed confidence [7], subset $&ladE,[12], and multi-bandit [9]),
most of the work considered only the multi-armed settinghvid independent arms.

An interesting variant of the MAB setup is the stochas$itiear banditproblem (LB), introduced
in [3]. In the LB setting, the input spack is a subset oR¢ and when pulling an arra, the learner
observes a reward whose expected value is a linear contninattiz: and an unknown parameter
6* € R?. Due to the linear structure of the problem, pulling an arsesjiinformation about the
paramete* and indirectly, about the value of other arms. Therefore,astimation ofK’ mean-
rewards is replaced by the estimation of thieatures of*. While in the exploration-exploitation
setting the LB has been widely studied both in theory and actice (e.g., [1, 14]), in this paper we
focus on the pure-exploration scenario.

The fundamental difference between the MAB and the LB bastidentification strategies stems
from the fact that in MAB an arm is no longer pulled as soon ssith-optimality is evident (in
high probability), while in the LB setting even a sub-optlmam may offer valuable information
about the parameter vectdt and thus improve the accuracy of the estimation in disciatiig
among near-optimal arms. For instance, consider the gituahen/K—2 out of K arms are already
discarded. In order to identify the best arm, MAB algorithwsuld concentrate the sampling on
the two remaining arms to increase the accuracy of the estiofatheir mean-rewards until the
discarding condition is met for one of them. On the contrayB pure-exploration strategy would
seek to pull the armx € X whose observed reward allows to refine the estindatalong the
dimensions which are more suited in discriminating betwéertwo remaining arms. Recently, the
best-arm identification in linear bandits has been studieifixed budget setting [10], in this paper
we study the sample complexity required to identify the fiestar arm with a fixed confidence.

*This work was done when the author was a visiting researcher at MftResearch New-England.
fCurrent affiliation: Google DeepMind.



2 Preliminaries

The setting. We consider the standard linear bandit model. Kett R? be a finite set of arms,
where|X| = K and thely-norm of any arme € X, denoted byi|z||, is upper-bounded by..
Given an unknown parametét ¢ R?, we assume that each time an arrg X' is pulled, a random
rewardr(z) is generated according to the linear modet) = z ' 6* + ¢, wheree is a zero-mean
i.i.d. noise bounded ifi-o; o]. Arms are evaluated according to their expected rewdré* and
we denote byr* = argmax,cy 2 ' 6* the best arm int’. Also, we usdl(f) = arg max,cx = ' 0

to refer to the best arm corresponding to an arbitrary patemieLet A(z,z’) = (z — ') T6* be
the valuegapbetween two arms, then we denotedyr) = A(z*, =) the gap ofr w.r.t. the optimal
arm and byA,,;;, = minger A(z) the minimum gap, whera ,;;, > 0. We also introduce the sets
Y={y=2a—-2a Ve,2’ € X} andy* = {y = «* — z,Vo € X} containing all the directions
obtained as the difference of two arms (or an arm and the apinm) and we redefine accordingly
the gap of a direction a&(y) = A(z,2’) whenevery = x — a’.

The problem. We study the best-arm identification problem. Li¢t) be the estimated best arm
returned by a bandit algorithm aftersteps. We evaluate thguality of z:(n) by the simple regret
R, = (z* — 2(n))T6*. While different settings can be defined (see [8] for an oesvyj here we
focus on thee, §)-best-arm identification problem (the so-called PAC sgjtinvhere givere and

d € (0,1), the objective is to design an allocation strategy and ap&tgpcriterion so that when
the algorithm stops, the returned atifn) is such thaﬁP’(Rn > e) < 4, while minimizing the
needed number of steps. More specifically, we will focus enddise of = 0 and we will provide
high-probability bounds on the sample complexity

The multi-armed bandit case.In MAB, the complexity of best-arm identification is chamdted
by the gaps between arm values, following the intuition thatmore similar the arms, the more pulls
are needed to distinguish between them. More formally, tmeptexity is given by the problem-

dependent quantitflyas = Zfil é i.e., the inverse of the pairwise gaps between the best arm

and the suboptimal arms. In the fixed budget cafgyg determines the probability of returning the
wrong arm [2], while in the fixed confidence case, it charaotsrthe sample complexity [7].

Technical tools. Unlike in the multi-arm bandit scenario where pulling onmatoes not provide
any information about other arms, in a linear model we caerlaye the rewards observed over time
to estimate the expected reward of all the armg&’inLet x,, = (x1,...,2,) € X™ be a sequence
of arms and’ry, ..., r,) the corresponding observed (random) rewards. An unbiastédate of

0* can be obtained by ordinary least-squares (OL$),as Alby,, whereAy, =37z €
R4 andby, = Y1, x4 € R For any fixed sequence,, through Azuma’s inequality, the
prediction error of the OLS estimate is upper-bounded ihggpbability as follows.

Proposition 1. Letc = 20v/2 and¢’ = 6/x2. For every fixed sequenes,, we havé
P (Vn eN,Vz e X, |xT9* — mTé,L| <cl[z| 421 \/log(c’nQK/5)> >1-4. (@8]
While in the previous statement, is fixed, a bandit algorithm adapts the allocation in respdns

the rewards observed over time. In this case a differentpigbability bound is needed.

Proposition 2 (Thm. 2 in [1]). Let ég be the solution to the regularized least-squares probleth wi
regularizern and letAl = nl; + Ax. Then for allz € X and every adaptive sequengg such

that at any step, x; only depends ofw,r1,...,x¢—1,7:—1), W.p.1 — §, we have
* 2 1+nl? n *
70 a0 < el (o o () ).

The crucial difference w.r.t. EG] 1 is an additional factét, the price to pay for adapting, to the
samples. In the sequel we will often resort to the notion afige (or “soft” allocation)\ € D,
which prescribes thproportionsof pulls to armz andD* denotes the simplex’. The counterpart
of the design matrix4 for a design\ is the matrixA, = >, . A(z)zz". From an allocatior,,
we can derive the corresponding design as\x, () = Ty, (x)/n, whereT,, (x) is the number of
times arm is selected irx,,, and the corresponding design matrixdig, = nAy

Xn

Whenever Prop.1 is used for all directiopsc ), then the logarithmic term becomasg(c'n>K?/9)
because of an additional union bound. For the sake of simplicity, in thesbag always uskg,, (K2/6).



3 The Complexity of the Linear Best-Arm Identification Problem

As reviewed in Secf]2, in the MAB case the complexity
of the best-arm identification task is characterized by the
reward gaps between the optimal and suboptimal arms.
In this section, we propose an extension of the notion of
complexity to the case of linear best-arm identification.

In particular, we characterize the complexity by the Per-c..)
formance of aroraclewith access to the parametgr. ‘

Stopping condition. LetC(x) ={# € R¢,x € T1(9)} be s 2

the set of parametetswhich admitx as an optimal arm.

As illustrated in Fig[lLL () is the cone defined by theFigure 1: The cones corresponding to three
intersection of half-spaces such tiidt:) = N, cx{f € ams (dots) irR”. Sinced” € C(z1), then
R4, (z — /)70 > 0} and all the cones together form & = 1. The confidence sef”(x,) (in
partition of the Euciidean spad’. We assume that thed"€" IS aé".g”ﬁ‘ir‘]"”thg'rerft'%?ﬁ.g? and
oracle knows the coné(z*) containing all the param-gétﬁfi”énd;’? ma;bue ggtir?]lalyl (xn),
eters for whichz* is optimal. Furthermore, we assume ’ '

that for any allocationx,,, it is possible to construct a confidence &t(x,) C R such that

0* € S*(x,) and the (random) OLS estimate belongs toS*(x,) with high probability, i.e.,
]P’(é” € S*(xn)) > 1 — 6. As aresult, the oracle stopping criterion simply checketivbr the

confidence sef*(x,,) is contained irC(z*) or not. In fact, whenever for an allocatios, the set
S*(x,,) overlaps the cones of different armse X, there is ambiguity in the identity of the arm

H(én). On the other hand when all possible valuedpre included with high probability in the
“right” cone C'(z*), then the optimal arm is returned.

Lemma 1. Letx,, be an allocation such tha*(x,,) C C(z*). ThenP(I1(d,,) # a*) < 4.

C(Tz)

Arm selection strategy. From the previous lemrfat follows that the objective of an arm selection
strategy is to define an allocatien, which leads taS*(x,,) C C(z*) as quickly as possibféSince
this condition only depends on deterministic objed$(k,,) andC(z*)), it can be computed inde-
pendently from the actual reward realizations. From a gedoaé point of view, this corresponds
to choosing arms so that the confidence$Htx,,) shrinks into the optimal con€(z*) within the
smallest number of pulls. To characterize this strategy @elrio make explicit the form & (x,,).
Intuitively speaking, the mor&*(x,,) is “aligned” with the boundaries of the cone, the easier it is
to shrink it into the cone. More formally, the conditiét (x,,) C C(z*) is equivalent to

Ve € X,V € S*(x,), (z* —2) 0 >0 & Vyec Y V0ecS (x,),y (0°—0)<Ay).

Then we can simply use Prdg. 1 to directly control the tgrni* — #) and define
8" (xa) = {0 € R,y € ",y (0" = 0) < cllyl| 121 V/Iog, (K2/0) } ®)
Thus the stopping conditiof* (x,,) C C(z*) is equivalent to the condition that, for apye V*,

cllyll azr v1og, (K2/6) < A(y). @)

From this condition, the oracle allocation strategy sinfpliows as

cllyll agrv/1og, (K2/6) yllag:

x" = arg min max = arg min max =n 5
n T AT e A(y) SN e TA(y) ©)

Notice that this strategy does not return an uniformly aatestimate of* but it rather pulls arms
that allow to reduce the uncertainty of the estimatiofobver the directions of interest (i.€/*)
below their corresponding gaps. This implies that the dbjeof Eq.[5 is to exploit the global linear
assumption by pulling any arm it that could give information abo@t over the directions id*,
so that directions with small gaps are better estimatedttiase with bigger gaps.

2For all the proofs in this paper, we refer the reader to the long versitiveqiaper[18].
3Notice that by definition of the confidence set and sifige— 6* asn — oo, any strategy repeatedly
pulling all the arms would eventually meet the stopping condition.



Sample complexity.We are now ready to define the sample complexity of the oradieh corre-

sponds to the minimum number of steps needed by the allocatiBq.[B to achieve the stopping

condition in Eq[#. From a technical point of view, it is momngenient to express the complexity of

the problem in terms of the optimal design (soft allocatimsjead of the discrete allocatiar . Let

p*(A\) = maxyey- y||i,1/A2(y) be the square of the objective function in Efj. 5 for any design
A

X\ € D*. We define the complexity of a linear best-arm identificapoablem as the performance
achieved by the optimal desigtt = argminy p*(\), i.e.

[yl -
Hig = mi A= gt (). 6
Lo = min max s P (A) (6)

This definition of complexity is less explicit than in the easf Hyag but it contains similar ele-
ments, notably the inverse of the gaps squared. Nonethaisssad of summing the inverses over
all the arms,H g implicitly takes into consideration the correlation betmethe arms in the term
||y||i,1, which represents the uncertainty in the estimation of e lgetweenc* and x (when
A

y = x* — x). As a result, from Ed.]4 the sample complexity becomes

N* = c*Hglog, (K?/5), ©)
where we use the fact that, if implemented oxesteps, \* induces a desigh matrid y« = nAj-
andmax, ||y||% 1 /A*(y) = p*(A*)/n. Finally, we bound the range of the complexity.

o

Lemma 2. Given an arm se’ C R¢ and a parameteé*, the complexityd, g (Eq.[8) is such that
yl[?/(LAL;,) < Hig < 4d/A; (8)

max min min*

yeY*
Furthermore, ifX is the canonical basis, the problem reduces to a MAB Hidg < H g < 2Hwag.

The previous bounds show that,,;, plays a significant role in defining the complexity of the
problem, while the specific shape afimpacts the numerator in different ways. In the worst case
the full dimensionalityd appears (upper-bound), and more arm-set specific quanstieh as the
norm of the armd. and of the direction®*, appear in the lower-bound.

4 Static Allocation Strategies

The oracle stopping condition (EQl 4) and allg-jnpyt: decision space € R%, confidences > 0
cation strategy (Ed.15) cannot be implemented iBet:t = 0; YV = {y = (z — 2/);z £ 2’ € X}
practice sincé*, the gapsA(y), and the direc- | while Eq.[11 is not truelo
tions Y* are unknown. In this section we investit if G-allocationthen
gate how to define algorithms that only rely onthe z: = argmin max 2T (A+zz") 2
information available fron and the samples col-| 40 if)(ffé(lloéétionthen
lected over time. We introduce an empirical Stop- ., — arg min maxy ' (A +zz") "'y

yey

ping criterion and two static allocations. dit zeX
endal

Empirical stopping criterion. The stopping con- | Updatef, = A; 'b;, t =t +1
dition $*(x,) C C(z*) cannot be tested since end while

S8*(x,) is centered in the unknown paramefér | Return armil(0.)

andC(z*) depends on the unknown optimal arm
x*. Nonetheless, we notice that givaf) for each

x € X the cone<’(z) can be constructed beforehand. l§e§1xn) be a high-probability confidence
set such that for any,,, 6,, € §(xn) andP(6* € S(x,,)) > 1 — 4. Unlike S*, S can be directly
computed from samples and we can stop whenever there existsuch tha@(xn) C C(x).
Lemma 3. Letx,, = (z1,...,z,) be an arbitrary allocation sequence. If aftersteps there exists

an armaz € X such thatS(x,,) C C(z) thenP(I1(4,,) # =*) < 6.

Figure 2: Static allocation algorithms

Arm selection strategy. Similarly to the oracle algorithm, we should design an atamn strategy
that guarantees that the (random) confidencése;) shrinks in one of the cone&¥ ) within the
fewest number of steps. Lé\, (z,2') = (z — 2')" 6, be the empirical gap between arms’.
Then the stopping conditioﬁ(xn) C C(z) can be written as
e X, Vel € X W0 € S(xy), (x—2')T0>0
& e Ve e X V0eS(x,), (x—a) (b, —0) < An(z,2').  (9)



This suggests that the empirical confidence set can be defthed
8xn) = {0 € Ry € 2,57 (0 — 0) < cllyll az1 VVIow, (K2]5)} (10)

Unlike $*(x,), §(xn) is centered ind,, and it considers all directiong € ). As a result, the
stopping condition in EQ.]19 could be reformulated as

Jr € X, V2" € X, cllx — 2’| ;-1 /log,, (K2/6) < An(z,2). (11)

Although similar to Eq[ ¥, unfortunately this condition can be directly used to derive an alloca-
tion strategy. In fact, it is considerably more difficult tefthe a suitable allocation strategy to fit a

random confidence sétinto a coneC(x) for anx which is not known in advance. In the following

we propose two allocations that try to achieve the conditioq.[11 as fast as possible by imple-
menting a static arm selection strategy, while we presenti@ rsophisticated adaptive strategy in
Sect[5. The general structure of the static allocationsiinnsarized in Fid. 2.

G-Allocation Strategy. The definition of theZ-allocation strategy directly follows from the ob-
servation that for any paiz,2’) € X we have thatlz — /||, 1 < 2maxgrex [12"] 4= 1. This

suggests that an allocation minimizingax,.c x ||x\|A_1 reduces an upper bound on the quantity

tested in the stopping condition in EqJ11. Thus, for any fixgde define the&7-allocation as
G

X'IL

= arg rgcltln max || |A;§ . (12)

We notice that this formulation coincides with the stand@rdptimal design (hence the name of
the allocation) defined in experimental design thebry [E&tS.2] to minimize the maximal mean-
squared prediction error in linear regression. Thallocation can be interpreted as the design that
allows to estimat@* uniformly wellover all the arms int’. Notice that theZ-allocation in Eq[IP

is well defined only for a fixed number of stepsand it cannot be directly implemented in our case,
sincen is unknown in advance. Therefore we have to resort to a mooeéimental” implementation.
In the experimental design literature a wide number of agprate solutions have been proposed to
solve theNP-hard discrete optimization problem in Egl 12 (see [4, 1¥sfume recent results and
[18] for a more thorough discussion). For any approxin@tellocation strategy with performance
no worse than a factdd + 3) of the optimal strategx&, the sample complexitiV @ is bounded as
follows.

Theorem 1. If the G-allocation strategy is implemented with #&approximate method and the
stopping condition in Eq.11 is used, then

16¢2d(1 +Aﬁ§ log,,(K?/9) AI(Oye) = 2*| > 1. (13)

min

PINC <

Notice that this result matches (up to constants) the weasé value ofV* given the upper bound
on H g. This means that, although completely static,@hallocation is already worst-case optimal.

X Y-Allocation Strategy. Despite being worst-case optimal-allocation is minimizing a rather
loose upper bound on the quantity used to test the stoppitagion. Thus, we define an alternative
static allocation that targets the stopping condition infElymore directly by reducing its left-hand-
side for any possible direction . For any fixedn, we define theY' )-allocation as

XYy _

Xﬂ

arg Imn max ||y |A 1. (14)
yey

X Y-allocation is based on the observation that the stoppimgliton in Eq.[I1 requires only the
empirical gaps\(z, 2’) to be well estimated, hence arms are pulled with the objectiincreasing

the accuracy of directions i instead of armsX’. This problem can be seen as a transductive variant
of the G-optimal design.[19], where the target vectdtare different from the vector¥ used in the
design. The sample complexity of th&)-allocation is as follows.

Theorem 2. If the X'Y-allocation strategy is implemented with@&approximate method and the
stopping condition in Eq.11 is used, then

32¢2d(1 log,, (K?/§ i

min

P|NYY <

Although the previous bound suggests thgy achieves a performance comparable to ¢he
allocation, in factt’)) may be arbitrarily better tha¥-allocation (for an example, see [18]).
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5 X' Y-Adaptive Allocation Strategy

iﬂuﬁugg%ﬁ;ﬁg- ZIL%C;g;qgusg?gg'gfé Inpgt: decision spaAca’eRd; parametery; confidencey
sound since they minimize upper-boundse =1 X =&3 1=Y; po=1; no=d(d+1) +1

on the quantities used by the stopping¥hile || > 1do

condition (Eq[IIL), they may be very sub tj :1P; ,

optimal w.r.t. the ideal performance o = 540 = 1

the oracle introduced in Segl 3. Typit “Whes'/t=ar’ 1(X%a‘}1)/”j*1Td° S
cally, an improvement can be obtained y ~ Selectarme, = arg minmaxy " (A +zz )"y
moving to strategies adapting on the re- Updated; — A,_1x+ vt =141

wards observed over time. Nonetheless, 7 — ax o 47 Ay '

as reported in Prof] 2, whenevey, is end while veYi

not a fixed sequence, the bound in EB.12 computes = Sy wers; 0= A;'D

should be used. As a result, a factgi X1 =X -

would appear in the definition of the con; fo]r x e X do

fidence sets and in the stopping condi-  if 32:(|z — 2'|| ,~1/log,, (K2/3) < A;(«,x) then
tion. This directly implies that the sample A B {2}

complexity of a fully adaptive strategy 4

would scale linearly with the dimensions onq for

ality d of the problem, thus removingany .., = {y = (z — 2'); 2,2’ € Xj11}

advantage w.r.t. static allocations. In factend while

the sample complexity ofi- and X)- | ReturnlII(d;)

allocation already scales linearly with - - : -
and from Lem[2 we cannot expect to im- Figure 3: X Y-Adaptive allocation algorithm

prove the dependency ah,,;,. Thus, on the one hand, we need to use the tighter bounds [ Eqg.
and, on the other hand, we require to be adaptive w.r.t. ssnpi the sequel we propose a phased
algorithm which successfully meets both requirementsguaistatic allocation within each phase
but choosing the type of allocation depending on the sangtiesrved in previous phases.

Algorithm. The ideal case would be to define an empirical version of thelerllocation in Ed.]5
so as to adjust the accuracy of the prediction only on thectiines of interes))* and according to
their gapsA(y). As discussed in Se¢il 4 this cannot be obtained by a diregttation of EqIIL. In
the following, we describe a safe alternative to adjust tleeation strategy to the gaps.

Lemma 4. Letx,, be a fixed allocation sequence afigl its corresponding estimate far*. If an
armz € X is such that

Jo' € X sitl|a’ — x| 4o14/log,, (K2/0) < A, (2, z), (16)

then armz is sub-optimal. Moreover, if EQ.1L6 is true, we say thatominatese.

Lem.[4 allows to easily construct the set of potentially gt arms, denoteé?(xn), by removing
from X all the dominated arms. As a result, we can replace the stgpmindition in Eq[II, by

just testing whether the number of non-dominated drﬁ’(&nﬂ is equal to 1, which corresponds to
the case where the confidence set is fully contained intogdesgone. Usingt (x,,), we construct
Y(xn) ={y=z—2';2,2" € X(x,)}, the set of directions along which the estimatiodheeds

to be improved to further shrinﬁ(xn) into a single cone and trigger the stopping condition. Note
that if x,, was an adaptive strategy, then we could not use L&m. 4 tordiscas but we should rely
on the bound in Proja] 2. To avoid this problem, an effectivatim is to run the algorithm through

phases. Lej € N be the index of a phase and its corresponding length. We denoteﬁythe set
of non-dominated arms constructed on the basis of the sarmpliected in the phasg— 1. This

set is used to identify the directiotj%» and to define ataticallocation which focuses on reducing
the uncertainty of* along the directions iy);. Formally, in phasg we implement the allocation

x;,, = argminmax [Jy|| ;1 17
nj YyeY; J

which coincides with at')-allocation (see Eq_14) but restricted dh. Notice thatx),  may still

use any arm i’ which could be useful in reducing the confidence set alongétiye directions in



J7j. Once phasg is over, the OLS estimat¥ is computed using the rewards observed within phase
j and then is used to test the stopping condition in[E§. 11. Wieertbe stopping condition does
not hold, a new sefjH is constructed using the discarding condition in LE. 4 andva phase is
started. Notice that through this process, at each phHake aIIocationxﬁLj is static conditioned on
the previous allocations and the use of the bound from Piepstlll correct.

A crucial aspect of this algorithm is the length of the phase<On the one hand, short phases allow
a high rate of adaptivity, sinc&’; is recomputed very often. On the other hand, if a phase is too

short, it is very unlikely that the estimafé may be accurate enough to actually discard any arm.
An effective way to define the length of a phase in a deterriénigay is to relate it to the actual
uncertainty of the allocation in estimating the value oftla#f active directions i07j. In phasej, let
PN = max, s ||y||i,1, then given a parametere (0, 1), we define
A

n; =min{n € N: pj()\le)/n <ap’ ' (NN /nja b, (18)
wherex/, is the allocation defined in EG.117 and ™' is the design corresponding g, ", the
allocation performed at phage— 1. In words,n; is the minimum number of steps needed by
the X'Y-adaptive allocation to achieve an uncertainty over alldinections of interest which is a
fraction« of the performance obtained in the previous iteration. déothat given)Aij andp’~! this
guantity can be computed before the actual beginning ofgoghabhe resulting algorithm using the
X Y-Adaptive allocation strategy is summarized in Fig. 3.

Sample complexity. Although the X' Y-Adaptive allocation strategy is designed to approach the
oracle sample complexitiV*, in early phases it basically implementstd/’-allocation and no sig-

nificant improvement can be expected until some directioasdescarded fromy. At that point,

X Y-adaptive starts focusing on directions which only conta#ar-optimal arms and it starts ap-
proaching the behavior of the oracle. As a result, in stuglifie sample complexity ot )-Adaptive

we have to take into consideration the unavoidable pricésaading “suboptimal” directions. This
costis directly related to the geometry of the arm spacearnfiaences the number of samples needed
before arms can be discarded frdn To take into account this problem-dependent quantity,rwe i
troduce a slightly relaxed definition of complexity. Moreepisely, we define the number of steps
needed to discard all the directions which do not contdiri.e. ) — Y*. From a geometrical point
of view, this corresponds to the case when for any pair of gtilal arms(x, ), the confidence set
S*(x,,) does not intersect the hyperplane separating the @énrgsandC(2’). Fig.[ offers a simple
illustration for such a situationS* no longer intercepts the border line betweEn») andC(x3),
which implies that direction:; — x3 can be discarded. More formally, the hyperplane containing
parameterg for which z andz’ are equivalent is simplg(z) N C(«’) and the quantity

M* = min{n € N,Vz # z*,Va' # 2*,S*(x¥Y) N (C(z) NC(x")) = B} (19)
corresponds to the minimum number of steps needed by the &tatallocation strategy to discard
all the suboptimaldirections. This term together with the oracle complexity characterizes the
sample complexity of the phases of the)/-adaptive allocation. In fact, the length of the phases is
such that either they correspond to the complexity of thelerar they can never last more than the

steps needed to discard all the sub-optimal directions. iesult, the overall sample complexity of
the X Y-adaptive algorithm is bounded as in the following theorem.

Theorem 3. If the XY-Adaptive allocation strategy is implemented witl3-@pproximate method
and the stopping condition in EQ.]11 is used, then

(1+ B) max{M*, DN*} rc\/log, (K?/6) N
P|N < og(L/e) 1og( o )/\H(HN)_:U]EI—J. (20)

We first remark that, unliké’ and X'y, the sample complexity ot')-Adaptive does not have any
direct dependency afhandA ,;, (except in the logarithmic term) but it rather scales with thacle
complexity N* and the cost of discarding suboptimal directidds. Although this additional cost
is probably unavoidable, one may have expected MxtAdaptive may need to discard all the
suboptimal directions before performing as well as thelerabus having a sample complexity of
O(M*+N*). Instead, we notice tha{ scales with thenaximunof A/ * andN*, thus implying that
X Y-Adaptive may actually catch up with the performance of treecke (with only a multiplicative
factor of16/«) whenever discarding suboptimal directions is less expetisan actually identifying
the best arm.




6 Numerical Simulations

We illustrate the performance &f)-Adaptive and compare it to th&)-Oracle strategy (E@]5), the

static allocationst’) andG, as well as with the fully-adaptive version af) whereX’ is updated
at each round and the bound from Pitdp.2 is used. For a fixeddemfd = 0.05, we compare the
sampling budget needed to identify the best arm with prdipabit leastl — §. We consider a set
of armsX’ € R?, with |X'| = d + 1 including the canonical basis(, . . ., e;) and an additional arm
Tgs1 = [cos(w) sin(w) 0 ... 0]T. We choos#* =2 0 0 ... 0]", and fixw = 0.01, so that
Amin = (1 — xg4+1) T 0* is much smaller than the other gaps. In this setting, an effiGdampling
strategy should focus on reducing the uncertainty in thectiong = (x1 — 24+1) by pulling the
armzo = eo Which is almost aligned witly. In fact, from the rewards obtained fram it is easier
to decrease the uncertainty about the second compongéhttbiat is precisely the dimension which
allows to discriminate betweem andxg.1. Also, we fixa = 1/10, and the noise ~ N(0,1).
Each phase begins with an initialization matry, obtained by pulling once each canonical arm. In
Fig.[4 we report the sampling budget of the algorithms, ayedaover 100 runs, faf = 2. .. 10.

The results. The numerical results show that)-

x10°

Adaptive is effective in allocating the samples to *°[—=mmwm
shrink the uncertainty in the directiop Indeed, 3,:‘557“%&
X Y-adaptive identifies the most important direction o L=vonce /

after few phases and is able to perform an allocatio
which mimics that of the oracle. On the contrary,
XY and G do not adjust to the empirical gaps and

consider all directions as equally important. This £ g /

r of Samaes

4

behavior forcest’) and( to allocate samples until 2 i

the uncertainty is smaller thaln,, in all directions.
Even though the Fully-adaptive algorithm also iden-
tifies the most informative direction rapidly, théd N NN

Dimension of the input space

term in the bound delays the discarding of the arnigyyre 4: The sampling budget needed to identify
and prevents the algorithm from gaining any advaghe best arm, when the dimension grows frii
tage compared t&'y andG. As shown in Fig[¥4, toR'°.

the difference between the budgett-Adaptive and the static strategies increases with the num-
ber of dimensions. In fact, while additional dimensionséhhttle to no impact ont’y-Oracle and

X Y-Adaptive (the only important direction remaifisndependently from the number of unknown
features of9*), for the static allocations more dimensions imply morecliions to be considered
and more features @f to be estimated uniformly well until the uncertainty fallsleowv A ;.

7 Conclusions

In this paper we studied the problem of best-arm identificatiith a fixed confidence, in the linear
bandit setting. First we offered a preliminary charactaian of the problem-dependent complexity
of the best arm identification task and shown its connectiitim thhe complexity in the MAB setting.
Then, we designed and analyzed efficient sampling stratdgrethis problem. Thex-allocation
strategy allowed us to point out a close connection withmakiexperimental design techniques, and
in particular to the G-optimality criterion. Through thecead proposed strategy, V-allocation,
we introduced a novel optimal design problem where thertgstims do not coincide with the arms
chosen in the design. Lastly, we pointed out the limits tHatlg-adaptive allocation strategy might
have in the linear bandit setting and proposed a phasediaigo X' )-Adaptive, that learns from
previous observations, without suffering from the dimenality of the problem. Since this is one of
the first works that analyze pure-exploration problems @lihear-bandit setting, it opens the way
for an important number of similar problems already studirethe MAB setting. For instance, we
can investigate strategies to identify the best-linear @whan having a limited budget or study the
best-arm identification when the set of arms is very largenfamite). Some interesting extensions
also emerge from the optimal experimental design liteetsuch as the study of sampling strategies
for meeting the G-optimality criterion when the noise isaresckedastic, or the design of efficient
strategies for satisfying other related optimality cisiesuch as V-optimality.
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A Comparison betweenG-allocation and X’ Y-allocation

We define two examples illustrating the difference betwéert and theX') allocation strategies.
Let us consider a problem with C R? and armsr; = [1 ¢/2]" andxy = [1 —¢/2]T, wheree €
(0,1). Inthis case, both static allocations pull the two arms #reesnumber of times, thus inducing
an optimal design\(z1) = A(z2) = 1/2. We want to study the (asymptotic) performance of
the allocation according to the different definition of emeax,cx 2" A} 'z andmax,cy y A} 'y
used byG and X' Y-allocation respectively. We first notice that

AR A AR A

As a result, for bothr; andzs we have

[ ¢/2JA5 [ 6}2 —[1 /2] [ : 4/062 } { 6}2 ] _9.

On the other hand, if we consider the directipe: z1 — z2 = [0 €], we have

wafd ][]

This example shows that indeed the performance achievai)bgnay be similar to the performance
of G-optimal. Let us now consider a different setting where the armsz; = [1 0] andas =

[1 — e 0] are aligned on the same axis. In this case, the problem redoce 1-dimensional
problem and both strategies would concentrate their dilme@nz; = [1 0] since it is the arm
with larger norm and it may provide a better estimat@ofAs a result, while th&7-allocation has
a performance of, the ¥ Y-allocation over the directiof 0] has a performance, which can be
arbitrarily smaller thari.

0 A" { )

B Proofs

B.1 Lemmas

Proof of Lemm&l1 The proof follows from the fact that i&*(x,) C C(z*) andd,, € S*(x,)
x

with high probability, therf,, € C(z*) which implies thafl1(d,,) = z* by definition of the cone
C(x™). O

Before proceeding to the proof of Lemina 2 we introduce thiefohg technical tool.

Proposition 3 (Equivalence-Theorem in [L3])Define f(x;&) = 2" M (¢)~1x, where M (¢) is a
d x d non-singular matrix and: is a column vector ifR¢. We consider two extremum problems.

The first is to choosé so that

(1) ¢ maximizesdet M (&) (D-optimal desigh
The second one is to choaSeo that

(2) & minimizes max f(z;§) (G-optimal desigh

We note that the integral with respect §oof f(x;¢) is d; hence,max f(x;£) > d, and thus a
sufficient condition fot to satisfy (2) is

(3) max f(2;€) = d.
Statements (1), (2) and (3) are equivalent.

Proof of Lemma&l2 Upper-bound. We have the following sequence of inequalities

R
X
yevs A2(y) — A2

min

4 2
A2 Iwnea%(HxHA;l»

min

2
a1 <
;ggﬁl\yl\%l <
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where the second inequality comes from a triangle inequatit |y| |i,1. Thus we obtain
A

||y||3\—1 4 4d
* Oy kY : N : 112 _
p O\ )7 /\IEDH%“ f/ré%)}i AQ(?J) AZ /\IgDH%c Iwnea?}C(HbLHA;l A2

min min

where the last equality follows from the Kiefer-Wolfowitgvalence theorem presented in Pidp. 3.
Lower-bound.

We focus on the numerat@FA;ly. SinceA, is a positive definite matrix, we define its decompo-
sition Ay = QT'QT, where( is an orthogonal matrix and is the diagonal matrix containing the

eigenvalues. As a result the numerator can be written as
yTAxly _ yTQrleTy — waflw,

where we rename® "y = w. If we denote byy,... the largest eigenvalue df, (i.e., the largest
value inT"), then

wTF’lw > 1/’Ymaxw—rw = 1/711151’(||y||2'

The largest eigenvalug,, ... is upper-bounded by the sum of the largest eigenvalues oh#igces
Az)zz " which isA(z)||z||2. As a result, we obtain the boungh.. < >, A\(x)||z||2 < L, since
||z|[» < L andX is in the simplex. Thus we have

2
ol 1l maxyey-
- LA?

min

. yl|?
min max — max .
AeDkyeyx A2(y) — Lyeyr A(y)?

Comparison with the K-armed bandit complexity.

Finally, we show how the sample complexity reduces to thesknguantity in the MAB case. If the
arms inX coincide with the canonical basis Bff, then for any allocation\ the design matrix\

becomes a diagonal matrix of the form diagr: ), ..., AM(xk)). As a result, we obtain
lyll% - 1/\ 1/Mx*
H g = min max Y~ min max [Mz) + 1/ M@ )
reDkyey* A2(y)  AeDkzeX—{z*} A2(x)

If we use the allocation\(z) = 1/(vA2(z)) andA(z*) = 1/(VAmin), With v = 1/A2. 4
> esar 1/A%(z), we obtain

H, < a VAQ ($> + VAIZnin a + A12nin
max —_— = max v v
LB = zeX —{z*} Az((E) zeX —{z*} Az(l‘)
1 1
=2 =2gg+ 3 ) =M

On the other hand, letting be the second best arm addz*) = Anin, we have that

H g = min max 1/A(z) +1/A(z")
AeDk xF#x* A2 (3;)
— min max {max L/A@) + 1/A(@") 1/A@) + 1/A<x*>}
AeDk TAT* Az(m) ’ A2(1.*)
. 1/A(x) . M
> g o | e a0 o
= min max M
AeDk zeX A2(x)

We setlA/Q(ff)) equal to a constantand thus we geh(z) = x5y Sinceg Y-,y xrgy = Lo it
follows that:
1 1 1
€= Z A2(x) B Z A2(z) + A2
reX THET*

min

= Hyps-
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Thus, we get thatiyag < Hig < 2Hwag. This shows thatd g is a well defined notion of
complexity for the linear best-arm identification problendahe corresponding sample complexity
N* is coherent with existing results in the MAB case.

Proof of Lemm&3.The proof follows from the fact that §(x,,) C C(«) and§* € §(xn) with high

probability, therd* € C(x) which implies thafl(6,,) = v = z*. O

B.2 Proofs of Theoren{l and Theoremil2

Proof of Theorerhl1The statement follows from Profpl 1 and the performance girea for the
different implementations of th@-optimal design. By recalling the empirical stopping caiuati in
Eq.[11 and the definitiop®(\) = max, = A} 'z, we notice that from a simple triangle inequality
applied to||y|| 4-1, a sufficient condition for stopping is that for anye X

4¢2p§ log,, (K% /9)
n

< A2(2*, ),

Wherepf = p%(\) and xf is the allocation obtained from rounding the optimal design

obtained from the continuous relaxation or the greedy mergal algorithm. From Profpl 1 we have
that the following inequalities

- Clog,, (K2/8
An(a*,2) > Aa*,2) = cl|a* — 2| 42 Vlog, (K2/6) > A", x) — 2 %(/)
hold with probabilityl — 6. Combining this with the previous condition and since thadition

must hold for all: € &X', we have that a sufficient condition to stop using éhallocation is

2 G 2
16¢%ply log,, (K7/0) _ A,
n
which defines the level of accuracy that tfeallocation needs to achieve before stopping. Since
p& < (14 B)d then the statement follows by inverting the previous indiua O
Proof of Theorerhl2We follow the same steps as in the proof of Theorém 1. O

C Implementation of the Allocation Strategies

In this section we discuss about possible implementatidmiseoallocation strategies illustrated in
sections ¥ and]5 and we discuss their approximation accguemantees.

The efficient rounding procedure. We first report the general structure of the efficient rougdin
procedure defined in [15, Chapter 12] to implement a desigro an allocationk,, for any fixed
number of steps. Letp = supd\) the support oh fl then we want to compute the number of pulls
n; (with¢ = 1,...,p) for all the arms in the support of. Basically, the fast implementation of the
design is obtained in two phases, as follows:

¢ In the first phase, given the sample sizand the number of support poiniswe calculate
their corresponding frequencies = [(n — %p))\i], whereny, no,...,n, are positive
integers wichKp n; > n.
e The second phase loops until the discrepa(n@igp nl) —n is0, either:
— increasing a frequenay; which attains:; /\; = min;<,(n — 1)/A; ton;4q, Or
— decreasing somey, with (ny — 1)/Ar = max;<,(n;, —1)/A;ton — 1.
An interesting feature of this procedure is that when moviegn »n to n + 1 the corresponding

allocationsx,, andx,,; only differ for one element which is increased by 1, i.e., the discrete
allocation is monotonic im.

“For a fixed design. € R¥, we say that itsupportis given by all arms inX’ whose corresponding features
in \ are different than 0.
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Implementation of the G-allocation. A first option is to optimize a continuous relaxation of the
problem and compute the optimal design. h€(\) = max, = A} 'z, the optimal design is

G _ : 2 _ : G
A" = arg jnin max H:v||A;1 = arg muin p \). (21)
This is a convex optimization problem and it can be solvedgitiie projected gradient algorithm,
interior point techniques, or multiplicative algorithm$o move from the design® to a discrete

allocation we use the efficient rounding technique preseab®ve and we obtain that the resulting

aIIocationxf; is guaranteed to be monotonic as the number of times anzaisrpulled is non-
decreasing wittt. Thus fromx$ we obtain a simple incremental rule, where the afnis the arm
for which x¢ recommends one pull more thansfy ;. An alternative is to directly implement an
incremental version of Eq. L2 by selecting at each stbp greedy arm
ALl zxTAZY

Ty = i 247(A Nl = i ATAgt e Xl (22

z¢ = arg min max ( x; 1 TTT ) % = arg min max T ', (22)
where the second formulation follows from the matrix inv@endemma. This allocation is somehow
simpler and more direct than using the continuous relawdtic it may come with a higher efficiency
loss.

Before reporting the performance guarantees for the twdeimentations proposed above, we in-
troduce an additional technical lemma which will be usefiulie proofs on the performance guar-
antees. Although the lemma is presented for a specific definiff uncertaintyp, any other notion
including design matrices of the kind, will satisfy the same guarantee.

Lemma 5. Letp(\) = max,cx z' A} 'z be a measure of uncertainty of interest for any design
A € DK, We denote by* = arg min,cpx p()\) the optimal design and for any > d we introduce
the optimal discrete allocation as
xTA;1 x
x, = arg min max ———"—,
Xp €EXM zeX n

where)y, is the (fractional) design correspondingg,. Then we have

pN) < p(x;) < (14 2)p(0), (23)

wherep = supg \*) is the number of points in the support)f. If d linearly independent arms are
available inX’, then we can upper bound the size of the suppokt‘and obtain

o(0) < olx) < (14 XY 50 (24)

Proof. The first part of the statement follows by the definition\éfas the minimizer op. Letx,,
by an efficient rounding technique applied dhsuch as the one described in Lemma 12.8 in [15].
Thenx,, has the same support as and an efficiency loss bounded pyn. As a result, we have

plxs) < pl%a) < (14 2) (1),

where the first inequality comes from the fact titis the minimizer ofp among allocations of
lengthn. Then, from Caratheodory’s theorem (see eLg., [15] ) thebmurof support points used
in \* is upper bounded by < d(d + 1)/2 + 1 (under the assumption that there ardéinearly
independent arms i&’). The final result follows by a rough maximizationdfd + 1)/2n + 1/n <
d(d+1)/n. O

Remark 1. Note that the same upper-bound for the number of supportgboids for any design,
due to the properties of the design matrices. In fact, anigdesatrix is symmetric by construction,
which implies that it is completely described By= d(d 4+ 1)/2 elements and can thus be seen as
a point inR”. Moreover, a design matrix is a convex combination of a subfsgoints inR” and
thus it belongs to the convex hull of that subset of pointsta@eodory’s theorem states that each
point in the convex hull of any subset of pointsk# can be defined as a convex combination of at
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mostD+1 points. It directly follows that any design matrix can be egsed usingd(d+1)/2)+1
points.

It follows that the aIIocationcté obtained applying the rounding procedure has the follovpieidor-
mance guarantee.
Lemma 6. For anyt > d, the rounding procedure defined in[15, Chapter 12] returnsaflocation
x¢, whose corresponding des@ﬁ A X is such that
: d+d*+2
GG
< - )d.

0% < (1+ o )

Proof of Lemm&l6 We follow the same steps as in the proof of Lenirtha 5 to obtainghm 3 =

d*gt” Then, noting that the performance of the optimal straggg\*“) = d (from Prop[3), the
results follows.

Implementation of the X’Y-allocation. Notice that the complexity of the&’Y-allocation triv-
ially follows from the complexity of theG-allocation and it is NP-hard. As a result, we need

to propose approximate solutions to compute an alloca:ti;gi’/( as for theG-allocation. Let
p*Y(\) = max,cy y ' Ay 'y, then the first option is the compute the optimal solutiorhtdontin-
uous relaxed problem

AYY = arg min ma 2_, = arg min p*Y(\). 25
g muir Me;dlyIIAkl g min p (M) (25)

And then compute the corresponding discrete aIIocat';gH using the efficient rounding procedure.
Alternatively, we can use an incremental greedy algorithmctvat each stepreturns the arm

. T Ty 1
Ty = arg ;Iél;(l Iynea)%(y (Axt_1 + zx ) Y. (26)
Lemma 7. Foranyt > d, the rounding procedure defined [n[15, Chapter 12] returnsatlocation
x*, whose corresponding desigit¥ = A < is such that
Y d+d>+2
XY (D) < 2(1 + %)d.

Proof of Lemm&]7 The proof follows from the fact that for any pdir, ')

[lo = |l agz <2 max [Ja”|] o1

Then the proof proceeds as in Lemiia 6. O

Implementation of X’ Y-adaptive allocation. The allocation rule in Eq._17 basically coincides with
the X Y-allocation and its properties extend smoothly.

D Proof of Theorem[3

Before proceeding to the proof, we first report the proofsvaf &dittional lemmas.

Proof of LemméalLlet y = 2’ — . Using the definition o@(xn) in Eq.[10, and the fact that
0* € S(x,,) with high probability, we have

(' — ) (B — 07) < clle’ — |, \/log, (K2/3).
Since the condition in E@._16 is true, it follows that

(' = 2)T (0 — 07) < clla’ — 2| 421 V/1og,, (K?/0) < A, (a',2) &
—(@ )T <0z <o
thusz is dominated by’ andx cannot be the optimal arm. O

We recall that from any allocatiar,, the corresponding desigt is such thab, (z) = T,,(z)/n.
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Lemma 8. For any phasg, the length is such that; < max{A*, 18 N*} with probability1 — 6.

Proof of Lemm&l8 We first summarize the different quantities measuring théopmance of an
allocation strategy in different settings. For any desiga DX, we define

[yl - .
Pr(N) = max a PN = max|lylli s PO = max lyll3- (27)
For anyn, we also introduce the value of each of the previous quastitihen the corresponding
optimal (discrete) allocation is used

pr=r" )i oY =Y Osy)s ol ="M\ (28)
Finally, we introduce the optimal designs

A =arg min p*(\); AYY =arg min p*Y(\); M =arg min p/()\). (29)
reDK reDK AeDK

Let ¢* be the smallest such that there exists a pair, 2’), with = # «* andz’ # «*, such that the
confidence sef = {0 : Vy € Y, |y (6 — 0*)| < €} overlaps with the hyperplar®z) N C(z").
SinceM* is defined as the smallest number of steps needed by Jhstrategy to avoid any overlap
betweenS* and the hyperplane¥(z) N C(z'), then we have that aftée/* steps

l)X * 1 g K2 5
c\/M O]\/;E / ) < €. (30)
We consider two cases to study the Iength of a pb‘ase

NER - .
Case 1:\/ 7+ > TG From Eq[3D it immediately follows that

, ¥y
Pn; < Pu-
n; — M*

(1)

From definitions in Eqd._27 aid 28, sinf}@ C Y we have for anya, p? < p¥Y. As a result, if
n; > M*, sincep’, /n is a non-increasing function, then we would have the sequefinequalities

% < Pgw* < Pf}*]
nj - M* - .2\4*7
which contradicts Eq. 31. Thus; < M*.

J . . .
Case 2:4/ pn—f < ——= . We first relate the performance at phaseith the performance of
J cy/log,, (K2/9)
the oracle. For any
= P 0g) €9/ 00y) = macy A V0 ) < ma 5 e 3
=p i) S p x) =maxy LY =max ————A(y) < max ———— max Y).
" o * yeY; A yeY; AQ(Z/) yeY; A2(y) yeY;

If now we considern = n;, then the definition case 2 implies that the estimation e\(/pﬂj /n;jis

small enough so that all the directiong)in- Y* have already been discarded fr(fmandf)j cy*.
Thus

, yTASL v , ,
pl < max ———— max A*(y) = p;, max A°(y). (32)
YT yey A%(y)  yey, " yey,

This relationship does not provide a boundronyet. We first need to recall from Prdg. 1 that for
anyy € Y (and notably for the directions §i;) we have

[y (01— 07)] < e/yT A7y log, (K2/6),
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whereA;_; = A_;—. is the matrix constructed from the pulls within phgse 1. Sincex’ ! is
Al

obtained from &t Y-allocation applied on directions [ﬁj_l, we obtain that for any € )AJj

A — log (K2/6)p‘fff
Tih. . _ g Viog, (K2/5) TAT y = - =
57 (01— 0%)] < o\/log, (K270) max 1y ALy “’\/ o

yeYVji_1

Reordering the terms in the previous expression we havéahatyy € 37j

log,, (K2/8)pi; ",
nj—1 ’

Aly) < Ajoa(y) + C\/

Since the directiory is included inJA)j then the discard condition in Elq.116 failed fgrimplying

log,, (K2 /8)pt !

thatﬁj_l(y) <ec i=L Thus we finally obtain

Mnj—1

log,,(K2/8)pl; ",
nj—1 '

max A(y) < 20\/

yEyj
Combining this with Eq_32 we have
log,, (K2/8)pi !

nj—1

Vi * 2
pr, < Py, ic
j nj nj_1

Using the stopping condition of phag@nd the relationship between the performapicave obtain
that at timen = n; — 1

P%-,l « P
J J
«

> g
T omjo1 o Ac?log, (K2/6) py,

3 ‘ﬁ?u

We can further refine the previous inequality as

)

I aph. N~ P, < api. Ph;
~ AN~ c?log, (K2/0)px- py, — AN* py

S|

where we use the definition &f* in Eq.[7, which implies:\/log,, (K?2/d)p%. /N* < 1. Reordering
the terms and using = n; — 1, we obtain

AN* Pl 1 P,
o p%j P
From Lemmab and the optimal designs defined inEQ. 29 we have
AN* (1 +d(d+1)/(n; — 1))p’ (M) A +d(d+1)/(n; — 1))p*(A)
a pI (M) () '
Using the fact that the algorithm forces > d(d + 1) + 1, the statement follows. O

n; <1+

Proof of Theorerhl3Let J be the index of any phase for whi¢;l%| > 1. Then there exist at least
one armx € X (besidex*) for which the discarding condition in Lemrha 4 is not triggeérwhich
corresponds to the fact that for all armse X

clle = a'll oy V108, (K2/5) = Ay (e,2').

nJy

By developing the right hand side, we have

~ J ] K2/§
Aj(z,2") > Az, 2") —c||x—x’||A_} Vg, (K2/8) > Apin — ¢ w

I, ng
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which leads to the condition

J ] K?2/§
%2 w > A (33)
\ ny

Using the phase stopping condition and the initial valug’ofve have

J J-1 0
Pny_

Pny < nio1 JP — o

ngy nj—1 no

By joining this inequality with Eq._33 we obtain
J > Af}nin
~ 4c?log, (K2/5)’
and it follows that/ < log(4c? log,,(K?2/8)/A2. )/ log(1/a) which together with Lemmia 8 leads

min

to the final statement. O

E Additional Empirical Results

For the setting described in Sé&¢. 6, in order to point out ifferdnt repartitions of the sampling

budget over arms, in Fig] 5 we present the number of samplesatdd per arm, for the case when
the input spac&’ C R5. We remind that the arms denoteg . . ., z5 form the canonical basis and
armzg = [cos(w) sin(w) 0 0 0].

Samples/arm| X' Y-oracle | XY-adaptive ERY G | Fully-adaptive
1 207 263 | 29523| 28014 740
To 41440 52713 | 29524| 28015 149220
T3 2 3 29524 | 28015 1
T4 2 51 29524| 28015 1
T5 1 2| 29524] 28015 1
T 0 2 1 1 1
Budget 41652 52988 | 147620| 140075 149964

Figure 5: The budget needed by the allocation strategies to identify themesvhent C R® and their
sample allocation over arm&’) andG allocate samples uniformly over the canonical arms whi-oracle
and.X’Y-adaptive use most of the samples for argn(corresponding to the most informative direction).

We can notice that even though the Fully-adaptive algorittentifies the most informative direction
and focuses the sampling on aim its sample complexity still has a growth linear in the dirsien,
due to the extra/d term in his bound. Consequently, the advantage over thie staategies is
canceled. On the other hantly-adaptive “learns” the gaps from the observations and afléescthe
samples very similarly t& )-oracle, without suffering a large loss in terms of the sangpbudget.
However,X’ Y-adaptive’'s sample complexity has to account for the thieitelizations made at the
beginning of a new phase.

Finally, we notice that in this problem that static allooas, X'} andG, perform a uniform alloca-
tion over the canonical arms. Another interesting rematfasthe number of pulls to one canonical
arm is smaller than the samples tl#aY’-oracle allocated tas. This is explained by the “mutual
information” coming from the multiple observations on allattions, which helps in reducing the
overall uncertainty of the confidence set.
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