Vector quantization and clustering in presence of censoring

Abstract : We consider the problem of optimal vector quantization for random vectors with one censored component and applications to clustering of censored observations. We introduce the definitions of the empirical distortion and of the empirically optimal quantizer in presence of censoring and we establish the almost sure consistency of empirical design. Moreover, we provide a non asymptotic exponential bound for the difference between the performance of the empirically optimal k-quantizer and the optimal performance over the class of all k-quantizers. As a natural application of the new quantization criterion, we propose an iterative two-step algorithm allowing for clustering of multivariate observations with one censored component. This method is investigated numerically through applications to real and simulated data.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01075676
Contributeur : Svetlana Gribkova <>
Soumis le : dimanche 19 octobre 2014 - 14:30:03
Dernière modification le : mercredi 28 novembre 2018 - 01:24:39
Document(s) archivé(s) le : vendredi 14 avril 2017 - 12:07:01

Fichier

clustering_censure.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01075676, version 1

Citation

Svetlana Gribkova. Vector quantization and clustering in presence of censoring. 2014. 〈hal-01075676〉

Partager

Métriques

Consultations de la notice

382

Téléchargements de fichiers

141