Adaptive matched filters for contrast imaging
Sébastien Ménigot, Iulian Voicu, Anthony Novell, Méloouka El Kateb Hachemi Amar, Jean-Marc Girault

To cite this version:

HAL Id: hal-01075515
https://hal.archives-ouvertes.fr/hal-01075515
Submitted on 17 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License
1. Introduction

Conventional ultrasound contrast imaging systems use a fixed transmit frequency. However, it is known that the insonified medium (microbubbles) is time-varying and, therefore, an adapted time-varying excitation is expected. We suggest an adaptive imaging technique which selects the optimal transmit frequency that maximizes the contrast tissue ratio (CTR). This ratio can be maximized if the microbubbles backscattered power is maximized.

\[
CTR = \frac{E_{\text{bubbles}}}{E_{\text{tissue}}}, \quad \text{with} \quad \begin{cases} \frac{E_{\text{bubbles}}}{E_{\text{tissue}}} \end{cases}
\]

Two matched filters (MF) techniques are used to improve the image contrast. The first technique is an adaptive MF technique and the second is a RLS technique derived from identification theory.

2. Materials

- Microbubbles SonoVueTM: mean diameter of 4.5 μm with shell thickness of 1 nm; Resonance frequency: f\textsubscript{R} = 2.1 MHz
- Concentration: 1/2000 diluted solution of SonoVueTM
- Immersed in a blood mimicking fluid (BMF)

Acoustical Measurements
- Arbitrary function generator piloted by Matlab\textregistered
- 2 perpendicular transducers:
 1. Emission: 2.25 MHz - BW 74%
 2. Reception: 3.5 MHz - BW 63%

3. Methods

1. Switch in position 1
2. Sending a pulse on the bubbles
3. Receiving the backscattered signal
4. Repeating (1-3) 20 times
5. Linear combination (ACP) from this 20 signals
6. Identification system with an adaptive filter
7. Switch in position 2
8. Amplification of the signal such as E\textsubscript{S} = E\textsubscript{2} and reversal
9. Pulse is the signal
10. Return to ??

4. Matched Filter

First Matched Filter

\[
x(t) \quad \text{Transducer 1} \quad \text{Bubbles} \quad \text{Transducer 2} \quad y(t)
\]

Recursive Least Squares (RLS) filter

Identification by RLS, i.e. minimizing the squared error such as

\[
e_n = y_n - x_n \hat{\theta}_{n-1}
\]

Gain between signal in (fig 1) and signal in (fig 4) : 17.68 dB

5. Results & Discussion

- **5.1 Results & Discussion: first simulation**
- **5.2 Results & Discussion: second simulation**
- **5.3 Results & Discussion: experiment**

Compared to the non-optimized imaging technique, the both proposed methods give a gain superior to around 5 dB.
- Advantage: gain improvement
- Drawback: increasing of the system complexity.

6. Conclusion & future prospects

- Optimization works well even though for nonlinear system
- Implementation in an open echograph.