On the values of logarithmic residues along curves

Abstract : We consider the germ of a reduced curve, possibly reducible. F.Delgado de la Mata proved that such a curve is Gorenstein if and only if its semigroup of values is symmetrical. We extend here this symmetry property to any fractional ideal of a Gorenstein curve. We then focus on the set of values of the module of logarithmic residues along plane curves, which determines the values of the Jacobian ideal thanks to our symmetry Theorem. Moreover, we give the relation with Kähler differentials, which are used in the analytic classification of plane branches. We also study the behaviour of logarithmic residues in an equisingular deformation of a plane curve.
Type de document :
Pré-publication, Document de travail
27 pages, this version corresponds to v3 of Arxiv, translation of previous version with added res.. 2014
Liste complète des métadonnées

Littérature citée [28 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01074409
Contributeur : Delphine Pol <>
Soumis le : dimanche 4 octobre 2015 - 21:48:34
Dernière modification le : lundi 5 février 2018 - 15:00:03
Document(s) archivé(s) le : mardi 5 janvier 2016 - 10:18:40

Fichier

values-log-res.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01074409, version 2
  • ARXIV : 1410.2126

Collections

Citation

Delphine Pol. On the values of logarithmic residues along curves. 27 pages, this version corresponds to v3 of Arxiv, translation of previous version with added res.. 2014. 〈hal-01074409v2〉

Partager

Métriques

Consultations de la notice

85

Téléchargements de fichiers

79