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Combining Face Averageness and Symmetry for

3D-based Gender Classification

Baiqiang Xia, Boulbaba Ben Amor, Hassen Drira, Mohamed Daoudi, and
Lahoucine Ballihi.

Abstract

Although human face averageness and symmetry are valuable clues in so-

cial perception (such as attractiveness, masculinity/femininity, healthy/sick,

etc.), in the literature of facial attribute recognition, little consideration has

been given to them. In this work, we propose to study the morphologi-

cal differences between male and female faces by analyzing the averageness

and symmetry of their 3D shapes. In particular, we address the following

questions: (i) is there any relationship between gender and face average-

ness/symmetry? and (ii) if this relationship exists, which specific areas on

the face are involved? To this end, we propose first to capture densely both

the face shape averageness (AVE) and symmetry (SYM) using our Dense

Scalar Field (DSF), which denotes the shooting directions of geodesics be-

tween facial shapes. Then, we explore such representations by using classical

machine learning techniques, the Feature Selection (FS) methods and Ran-

dom Forest (RF) classification algorithm. Experiments conducted on the

FRGCv2 dataset show a significant relationship exists between gender and

facial averageness/symmetry when achieving a classification rate of 93.7% on

the 466 earliest scans of subjects (mainly neutral) and 92.4% on the whole
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FRGCv2 dataset (including facial expressions).

Keywords:

3D Face, Gender Classification, Face averageness, Face symmetry, Dense

Scalar Field, Feature selection, Random Forest.

1. Introduction1

Human gender perception is an extremely reliable and fast cognitive pro-2

cess since the face presents a clear sexual dimorphism [1]. In human face3

analysis using machines [3], automatic gender classification is an active re-4

search area. Developed solutions could be useful in human computer in-5

teraction (intelligent user interface, video games, etc.), visual surveillance,6

collecting demographic statistics for marketing (audience or consumer pro-7

portion analysis, etc.), and security industry (access control, etc.). Research8

on automatic gender classification using facial images goes back to the begin-9

ning of the 1990s. Since then, significant progress has been reported in the10

literature [4, 5, 6, 7, 8]. Fundamentally, proposed techniques differ in (i) the11

format of facial data (2D still images, 2D videos or 3D scans); (ii) the choice12

of facial representation, ranging from simple raw 2D pixels or 3D cloud of13

points to more complex features, such as Haar-like, LBP and AAM in 2D,14

and shape index, wavelets and facial curves in 3D; and (iii) the classifiers,15

for instance Neural Networks, SVM, and Boosting methods [4].16

1.1. Related work on 3D-based gender classification17

Statistically, the male and the female faces present different morphological18

characteristics in geometrical features, such as in the hairline, the forehead,19

the eyebrows, the eyes, the cheeks, the nose, the mouth, the chin, the jaw, the20
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neck, the skin and the beard regions [13]. Usually, the female brow tends to be21

more arched than that of the male (which is more horizontal), the noses and22

chins in male faces are more prominent than those in female faces [27], and23

men have a more acute nasolabial angle than women [26]. The 3D face scans,24

which capture the spatial structure of the facial surfaces, allow to capture25

these differences between male and female faces more easily compared to 2D26

texture images. Thus, the goal of 3D-based gender classification is to develop27

a fast and automatic approach which yields high classification performance28

compared to the 2D-based approaches.29

In [9], Liu et al. analyze the relationship between facial asymmetry and30

gender. They impose a 2D grid on each 3D face to represent the face with31

3D grid points. With the selected symmetry plane, which equally separates32

the face into right and left halves, the distance difference between each point33

and its corresponding reflected point is calculated as height differences (HD).34

In addition, the angle difference between their normal vectors is calculated35

as orientation differences (OD). The approach based on HD-face achieves36

91.16% and the approach based on OD-face achieves 96.22%. However, these37

performances are reported on a private dataset of 111 full 3D neutral face38

models of 111 subjects, and 3D face manual landmarks are needed.39

In [12], Lu et al. use Support Vector Machine (SVM) to classify ethnicity40

(Asian and Non-Asian) and gender (Male and Female). A merging of two41

frontal 3D face databases (UND and MSU databases) is used for the exper-42

iments. The best gender classification results using 10-fold cross-validation43

reported is 91%. However, this approach is based on six landmarks (inside44

and outside corners of the eyes, the nose tip, and the chin point) manually45
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labeled. Moreover, the results are obtained only on neutral faces.46

In [15], Wu et al. use 2.5D facial surface normals recovered with Shape47

From Shading (SFS) from intensity images for gender classification. The48

best average gender recognition rate reported is 93.6% with both shape and49

texture considered. However, seven manual landmarks are needed and a50

small dataset of neutral scans has been used to perform the experiments.51

In [16], Hu et al. propose a fusion-based gender classification method52

from 3D frontal faces. Each 3D face shape is separated into four face regions53

using face landmarks. With the extracted features from each region, the54

classification is done using SVM on a subset of the UND dataset and another55

database captured by themselves. Results show that the upper region of56

the face contains the highest amount of discriminating gender information.57

Fusion is applied to the results of four face regions and the best result reported58

is 94.3%. Their experiments only involve neutral faces. In this study, no59

attention is given to facial expressions.60

In [3], Toderici et al. employ MDS (Multi-Dimensional Scaling) and61

wavelets on 3D face meshes for gender classification. They use the 400762

3D scans of the 466 subjects from the FRGCv2 dataset for gender classifi-63

cation. Experiments are carried out subject-independently with no common64

subject used in the testing stage of 10-fold cross validation. With polynomial65

kernel SVM, they achieve 93% gender classification rate with the unsuper-66

vised MDS approach, and 94% classification rate with the wavelets-based67

approach. Both approaches significantly outperform the kNN and kernel-68

kNN approaches.69

In [17], Ballihi et al. extract facial curves (26 level curves and 40 radial70
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curves) from 3D faces for gender classification. The features are extracted71

from lengths of geodesics between facial curves from a given face to the Male72

and Female templates computed using the Karcher Mean Algorithm. The73

Adaboost algorithm is then used to select salient facial curves. They obtained74

a classification rate of 84.12% with the nearest neighbor classifier when using75

the 466 earliest scans of the FRGCv2 dataset as the testing set. They also76

performed a standard 10-fold cross-validation for the 466 earliest scans of77

FRGCv2, and obtain 86.05% with Adaboost.78

Compared to [17], in the current paper, we represent mathematically fa-79

cial bilateral symmetry and averageness for gender classification using Dense80

Scalar Fields. The DSFs denoting the shooting directions for geodesics be-81

tween facial shapes, are both novel and interesting. We view this representa-82

tion for gender classification as the main contribution of this paper. The set83

of facial deformations is a nonlinear space while the set of Dense Scalar Field84

(DSF) is a vector space. The only remaining challenge is the large dimen-85

sionality of DSF, which is handled using a feature-selection-based dimension86

reduction, followed by a Random Forest classifier. In terms of experimental87

performances, the present approach have achieved higher classification rates88

compared to [17]. In summary, the novelty of this paper is in represent-89

ing bilateral symmetry and face averageness using DSF and its successful90

application to the gender classification problem.91

1.2. Methodology and contributions92

From the above analysis, existing works on 3D-based gender classification93

are based on local or global low-level feature extraction (see table 2 for a94

complete summary) followed by classical classification methods. To the best95
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of our knowledge, no work has been done considering high-level cues, such as96

face averageness and bilateral face symmetry, except the study in [9] which97

investigates the relationship between facial symmetry and gender. Using98

sparse measures of height differences (HD), and orientation differences (OD)99

on a defined grid imposed on full 3D face models, their process requires100

manual landmarks on the face and the experiments are performed on a small101

dataset. The main contributions of this work are as follows :102

☞ We introduce two high-level features, face averageness (AVE) and bilat-103

eral face symmetry (SYM), for 3D-based gender classification. These104

primary facial perception features are rarely considered in the literature105

of facial attribute recognition.106

☞ We provide an interesting mathematical tool, named Dense Scalar107

Field (DSF) [18], to capture densely and quantitatively the average-108

ness/symmetry differences on the face surface. The DSFs grounding on109

Riemanniann shape analysis are capable to densely capture the shape110

differences in 3D faces (such as averageness/symmetry differences).111

☞ We propose a fully-automatic gender classification without any hu-112

man interaction. We achieve competitive results compared to the113

approaches in the state-of-the-art on a challenging dataset, FRGCv2.114

Also, we provide a comprehensive study of the robustness of the pro-115

posed approach against age, ethnicity and expression variations.116

An overview of the proposed approach is shown in Figure 1. Firstly, dur-117

ing the first step an algorithm commonly used for facial scans preprocessing is118

applied. Its includes hole filling, facial part cropping and 3D mesh smoothing119
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Figure 1: Flow chart of the proposed gender classification approach. There
are various pipelines for gender classification. Namely, the pipelines are,
(1) the symmetry DSF features (SYM-Original), (2) the selected features
of symmetry DSF features (SYM-Selection), (3) the averageness DSF fea-
tures (AVE-Original), (4) the selected features of averageness DSF features
(AVE-Selection), (5) the fusion of symmetry and averageness DSF features
by concatenation (FUS-Original), and (6) the selected features of the fusion
of symmetry and averageness DSF features (FUS-Selection).

applied to each scan, together with nose tip detection and pose normaliza-120

tion, as proposed in [17] or [12]. We denote the preprocessed face as S. The121

plane which equally separates the preprocessed face S into right and left122

halves is picked up as the middle plane. This plane P (t,−→nh) passes through123

the detected nose tip t and has a horizontal normal −→nh from the frontal view.124

Secondly, a DSF extraction step goes after the preprocessing. Here, the pre-125

processed face S is approximated by a collection of radial curves defined over126

the facial region and stemming from the nose tip. Then, the Dense Scalar127

Field (DSF) features are computed, pair-wisely, to capture the shape dif-128

7



ferences (averagenesss/symmetry differences) between corresponding radial129

curves on each indexed point. Thus, we obtain two DSFs for each scan, an130

averageness DSF and a symmetry DSF. A fusion descriptor is then obtained131

for each scan by concatenating its averageness DSF and symmetry DSF.132

Thirdly, after DSF extraction, we investigate the two following classification133

pipelines. In the first pipeline, Random Forest classifier is applied directly134

on the obtained feature vectors - averageness DSFs, symmetry DSFs and135

fusion DSFs. In the second pipeline, we first apply a supervised feature se-136

lection (FS) algorithm on the averageness, symmetry and their fusion DSFs,137

then the Random Forest (RF) classifier is applied on the selected features for138

gender classification.139

This work relates closely to the work previously published in [17], in terms140

of face representation by an indexed collection of radial curves, which is one141

of the first steps of our approach’s pipeline. However, while this face param-142

eterization is in common, the feature extraction step is completely different.143

Indeed, in [17], the features are extracted from lengths of geodesics be-144

tween facial curves from a given face to the Male and Female templates. In145

contrast, this work considers the shooting vectors on the geodesics be-146

tween facial curves to capture shape differences. The DSFs are computed to147

describe densely the Symmetry and Averageness of a given face. This allows148

to compute densely and and locally the facial features on each point of the149

face.150

The rest of the paper is organized as follows: in section 2, we high-151

light our methodology for extracting features that contain 3D facial avera-152

geness/symmetry difference; in section 3, we detail the classifier, the feature153
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selection method, and the fusion method for gender classification; experimen-154

tal results and discussions are presented in section 4 while section 5 concludes155

the work.156

2. Feature Extraction Methodology157

As mentioned earlier, after the preprocessing, the next step of our ap-158

proach is to extract densely the averageness and symmetry features from159

faces. Both of them are based on a Riemannian shape analysis of 3D face.160

2.1. Background on Dense Scalar Field Computation161

The idea to capture locally and densely face asymmetry and its average-162

ness is to represent facial surface S by a set of parameterized radial curves163

emanating from the nose tip t. Such an approximation can be seen as a so-164

lution to facial surface parameterization which approximates the local shape165

information. Then, a Dense Scalar Field (DSF), based on pairwise shape166

comparison of corresponding curves, is computed along these radial curves167

on each point. A similar framework has been used in [18] for 4D face ex-168

pression recognition by quantifying deformations across 3D face sequences169

followed by a classification technique. More formally, a parametrized curve170

on the face, β : I → R
3, where I = [0, 1], is represented mathematically171

using the square-root velocity function [19], denoted by q(t), according to:172

q(t) = β̇(t)√
‖β̇(t)‖

. This specific parameterization has the advantage of capturing173

the shape of the curve and providing simple calculus [19].174

Let us define the space of such functions: C = {q : I → R
3, ‖q‖ = 1} ⊂175

L
2(I,R3), where ‖ ·‖ implies the L2 norm. With the L2 metric on its tangent176

spaces, C becomes a Riemannian manifold. Given two curves q1 and q2, let ψ177
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denote a path on the manifold C between q1 and q2, ψ̇ ∈ Tψ(C) is a tangent178

vector field along the path ψ ∈ C. In our case, as the elements of C have a179

unit L2 norm, C is a hypersphere of the Hilbert space L2(I,R3). The geodesic180

path ψ∗ between any two points q1, q2 ∈ C is simply given by the minor arc181

of great circle connecting them on this hypersphere, ψ∗ : [0, 1] → C, given182

by:183

ψ∗(τ) =
1

sin(θ)
(sin((1− τ)θ)q1 + sin(θτ)q2) (1)

and θ = dC(q1, q2) = cos−1(〈q1, q2〉). We point out that sin(θ) = 0 if the184

distance between the two curves is null, in other words q1 = q2. In this case,185

for each τ , ψ∗(τ) = q1 = q2. The tangent vector field along this geodesic186

ψ̇∗ : [0, 1] → Tψ(C) is given by (2):187

ψ̇∗ =
dψ∗

dτ
=

−θ
sin(θ)

(cos((1− τ)θ)q1 − cos(θτ)q2) (2)

Knowing that on a geodesic, the covariant derivative of its tangent vector188

field is equal to 0, ψ̇∗ is parallel along the geodesic ψ∗ and we shall represent it189

with ψ̇∗|τ=0. This vector ψ̇
∗|τ=0 represents the initial velocity of the geodesic190

path connecting q1 to q2 and called also the shooting vector for this geodesic.191

Accordingly, (2) becomes:192

ψ̇∗|τ=0 =
θ

sin(θ)
(q2 − cos(θ)q1) (3)

with θ 6= 0. Thus, ψ̇∗|τ=0 is sufficient to represent this vector field; the193

remaining vectors can be obtained by parallel transport of ψ̇∗|τ=0 along the194

geodesic ψ∗. with the magnitude of ψ̇α
∗
at each point, located in curve βSα195
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with index k, we build a Dense Scalar Field (DSF) on the facial surface S,196

V k
α = |ψ̇∗

α|(τ=0)(k)|. This Dense Scalar Field quantifies the shape difference197

between corresponding curves on each indexed point.198

2.2. Face symmetry description199

The idea of the face symmetry description is to capture the bilateral200

symmetry difference in the face by DSF. Symmetry difference is defined as201

the deformation from a face point to its corresponding symmetrical point202

on the other side of face. In practice, symmetry DSF is calculated on each203

indexed point of the corresponding symmetrical curves in the preprocessed204

face S. Let βα denote the radial curve that makes an angle α with the205

middle plane PS(t,
−→nh) from the frontal view of S, and β2π−α denotes the206

corresponding symmetrical curve that makes an angle (2π−α) with PS(t,−→nh).207

The tangent vector field ψ̇α
∗
that captures the deformation from βα to β2π−α208

is then calculated. With the magnitude of ψ̇α
∗
at each point, located in the209

curve βα with index k, we build a symmetry Dense Scalar Field (symmetry210

DSF) on the facial surface.211

This Dense Scalar Field quantifies the shape difference between corre-212

sponding symmetrical curves on each point of the preprocessed face S. Some213

examples illustrating this symmetry descriptor are shown in Figure 2. For214

each subject, face in column (a) shows the 2D intensity image; column (b)215

illustrates the preprocessed 3D face surface S; column (c) illustrates the the216

3D face S with extracted curves; column (d) shows the symmetry degree as217

a color-map of the DSF mapped on S. The color bar is shown in the up-218

right corner. The hot colors mean the minimum difference (i.e. maximum219

symmetry) and cold colors signify the maximum difference (i.e. minimum220
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Figure 2: Illustrations of the symmetry DSFs on faces. (a) 2D intensity
image; (b) preprocessed 3D face S; (c) 3D face S with extracted curves; (d)
color-map of symmetry DSF mapped on S with three poses. While the cold
colors reflect lower symmetrical regions, the warm colors represent higher
symmetrical parts of the face.

symmetry). The hotter the color, the higher is magnitude of the bilateral221

symmetry. In this work, the symmetry DSFs are generated with 200 radial222

curves extracted from each face and 100 indexed points on each curve. Thus,223

the size of each DSF is 20000. The average time consumed for extracting224

all 200 curves for each face is 1.048 seconds, and for generating the bilateral225

symmetry descriptor (symmetry DSF) on all the 200 × 100 points of each226

face is 0.058 seconds. The average preprocessing time consumed for each227
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Source face

#02463d548
Target face

#04200d74
Template Face

Figure 3: The averageness face template is defined as the middle point of
the geodesic path between two representative faces randomly taken from the
male and female classes in the FRGCv2 dataset.

scan is 0.116 seconds. The total computation time (including preprocessing)228

for each scan is less than 1.25 seconds. All our programs are developed in229

C++ and executed on Intel Core i5 CPU 2.53 GHZ with 4Go of RAM.230

2.3. Face averageness description231

As mentioned earlier, generally, male faces have more prominent features232

(forehead, eyebrows, nose, mouth, etc.) in comparison with female faces.233

Here, our aim is to capture the morphologcial sexual differences between234

male and female faces by comparing their shape differences to a defined face235

template. We assume that such differences change with the face gender.236

Thanks to DSF, presented in subsection 2.1, we are able to capture densely237

such shape differences as long as a face template is defined.238

As shown in Figure 3, the face template is defined as the middle point239

of the geodesic path which connects a male face (ID: 02463d548; Age: 48;240

White) to a female face (ID: 04200d74; Age: 21; White) taken from the241

FRGCv2 dataset. With the two faces represented by collections of radial242

curves, we compute pair-wisely the geodesic path between corresponding243
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curves using equation (1). By interpolation, we have the middle point of the244

geodesic which we take as the face template T.245

For a preprocessed face S, let βSα denote the radial curve that makes246

an angle α with the middle plane PS(t,
−→nh) from the frontal view of S, and247

βTα denotes the curve that makes the same angle α with PT (t,−→nh) in the248

averageness face template T. The tangent vector field ψ̇α
∗
that represents the249

projection of the deformation between the given face and the template face,250

in the tangent space associated with the template face, is then calculated on251

each point. Similar to the symmetry descriptor, with the magnitude of ψ̇α
∗
at252

each point, located in curve βSα with index k, we build an averageness Dense253

Scalar Field (averageness DSF) on the facial surface, V k
α = |ψ̇∗

α|(τ=0)(k)|. This254

Dense Scalar Field quantifies the shape difference between corresponding255

curves of S and T on each indexed point.256

Figure 4 shows this averageness descriptor. For each subject, the face in257

column (a) shows the 2D intensity image; column (b) illustrates the prepro-258

cessed 3D face surface S; column (c) shows the 3D face S with extracted259

curves; column (d) shows color-map of the Averageness DSF mapped on S260

with three poses. The hot colors mean the minimum difference (i.e. maxi-261

mum averageness) and cold colors signify the maximum difference (i.e. min-262

imum averageness). The hotter the color, the higher is the magnitude of the263

averageness.264

3. Gender classification265

In this work, face averageness and symmetry are different types of infor-266

mation in the 3D facial shapes. Each of them provides a perspective (maybe267
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Figure 4: Illustrations of the averageness DSFs on faces. (a) 2D intensity
image; (b) preprocessed 3D face surface S; (c) the 3D face S with extracted
curves; (d) color-map of the Averageness DSF mapped on S with three poses.
While the cold colors reflect lower averageness, the warm colors represent
higher averageness on the face.

correlated perspectives) in face perception. Thus, we first study individu-268

ally their relationship with gender, then we combine them to find out if it269

enhances the gender classification results, which means that they contribute270

to gender classification in different ways. In practice, we use an early fusion271

method which consist in concatenating the averageness DSF and symmetry272

DSF features of each scan, to form the fusion DSF description. Then, we273

explore the performance of the Random Forest algorithm with the avera-274
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geness DSF, the symmetry DSF and the fusion DSF in different scenarios,275

in combination of Feature Selection methods. It has been demonstrated by276

Perez et al. in [29], that different types of information (such as gray scale277

intensity, range image and LBP texture) contributes to face based gender278

classification differently, and the fusion of multi-information yields a better279

classification performance.280

3.1. Feature Selection281

The size of the features is another important characteristic of the ap-282

proach. As pointed out by Bekios-Calfa et al. in [28], in limited computa-283

tional resource contexts, such as the mobiles, the development of resource-284

limited algorithms is important for applications of computer vision and pat-285

tern recognition. In their work, they make use of LDA techniques to reduce286

feature size. In our work, we use feature selection methods to select a much287

smaller set of the features to reduce the computational cost. Compared with288

LDA techniques, feature selection methods do not tranferm the meaning and289

values of feature, thus they allow to track back to the corresponding point290

on the face.291

Feature subset selection is the process of identifying and removing as292

much irrelevant and redundant information as possible [22]. It is a central293

problem in machine learning. The earliest approaches for feature selection294

were the filter methods. These algorithms use heuristics based on general295

characteristics of the data to evaluate the merit of feature subsets. Another296

school of approaches argues that the bias of a particular induction algorithm297

should be taken into account when selecting features. This method, called298

the wrapper [23], uses an induction algorithm along with a statistical re-299
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sampling technique such as cross-validation to estimate the final accuracy of300

feature subsets. The filter methods operate independently of any learning301

algorithm. The undesirable features are filtered out of the data before the302

learning begins. They are generally much faster than wrapper methods, es-303

pecially on data of high dimensionality. Since the averageness, symmetry and304

fusion DSFs are really dense and possibly redundant after DSF extraction, we305

use a feature selection procedure on the DSFs to get rid of the irrelevant and306

redundant features. For the merits of filter methods, we chose a filter, named307

Correlation-based-Feature-Selection (CFS) [22]. It is an algorithm that cou-308

ples the evaluation formula based on an appropriate correlation measure and309

a heuristic search strategy. The central hypothesis of CFS is that good fea-310

ture sets should contain features that are highly correlated with the class,311

yet uncorrelated with each other. The feature evaluation formula (Pearsons312

correlation coefficient), based on ideas from test theory, provides an opera-313

tional definition of this hypothesis. Within CFS, we try two heuristic search314

strategies, the Best-First search strategy and the Greedy-Step-Wise search315

strategy. The Best-First search strategy [24] is an AI search strategy that al-316

lows back-tracking along the search path. It moves through the search space317

by greedy hill-climbing augmented with a back-tracking facility. When the318

path being explored becomes non-improving, the Best-First search will back-319

track to a more promising previous subset and continue the search from there.320

The stopping criterion is the number of consecutive non-improving nodes (5321

in our experiments) that result in no improvement. For Greedy-Step-Wise, it322

performs a greedy forward or backward search through the space of attribute323

subsets. It stops when the addition/deletion of any remaining attributes324
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results in a decrease in evaluation.325

Selected Features for SYM (Symmetry)
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Figure 5: Feature selection. (a) selected points of symmetry DSF in the face;
(b) color-map of original symmetry DSF; (c) selected points of averageness
DSF in the face; (d) color-map of original averageness DSF; (e) selected
points of both averageness DSF and symmetry DSF in face.

After Feature selection, we retain 301 salient points for averageness DSF,326

271 salient points for symmetry DSF, and 365 salient points for the fusion.327

The feature selection procedure significantly reduces the size and complexity328

of original DSF description. Figure 5 shows the selected features of aver-329

ageness DSF and symmetry DSF in faces. Column (a) maps the selected330

features of symmetry DSF in the face; Column (b) shows the color-map of331

original symmetry DSF on the face ; Column (c) maps the selected points332

of averageness DSF in the face ; Column (d) shows the original averageness333

DSF on the face; Column (e) maps the selected points of both averageness334

DSF and symmetry DSF in the face. For both averageness DSF and sym-335

18



metry DSF, we observe dense distribution of salient points around the nose336

and eyes regions. More salient points exist in forehead regions in average-337

ness DSF, and more salient points exist in cheek regions in symmetry DSF.338

These observations show that averageness DSF and symmetry DSF share339

both similarities and differences. In other words, they are complementary in340

face description.341

3.2. Gender classification based on Random Forest342

Face-based gender classification is a binary classification problem which343

estimates the gender c of a given test face into Male or Female c ∈ {Male, Female}.344

We carry out gender classification experiments with the well-known machine345

learning algorithm, Random Forest. Random Forest is an ensemble learning346

method that grows many classification trees t ∈ {t1, .., tT} [25]. To classify a347

new face from an input vector (DSF-based feature vector v = V k
α ), each tree348

gives a classification result and the forest chooses the classification having349

the most votes. In the growing of each tree, firstly, N instances are sampled350

randomly with replacement from the original data, to make the training set.351

Then, if each instance comprises of M input variables, a constant number m352

(m<<M) is specified. At each node of the tree, m variables are randomly353

selected out of the M and the best split on these m variables is used to split354

the node. The process goes on until the tree grows to the largest possible355

extent, without pruning.356

The performance of the forest depends on the correlation between any357

two trees, and the strength of each individual tree. The forest error rate358

increases when the correlation decreases, or the strength increases. Reducing359

m reduces both the correlation and the strength. Increasing it increases both.360
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Thus, an optimal m is needed for the trade-off between the correlation and361

the strength. In Random Forest, the optimal value ofm is found by using the362

oob-error rate (out-of-bag-error rate). It is reported that face classification363

by Random Forest achieves a lower error rate than some popular classifiers,364

including SVM [20]. As far as we know, there is no reported work in the365

literature of face-based gender classification using Random Forest.366

4. Experiments367

The FRGCv2 database was collected by researchers from the University368

of Notre Dame [21] and contains 4007 3D face scans of 466 subjects with369

differences in gender, ethnicity, age and expression. For gender, there are370

1848 scans of 203 female subjects and 2159 scans of 265 male subjects. The371

ages of subjects range from 18 to 70, with 92.5% in the 18 − 30 age group.372

When considering ethnicity, there are 2554 scans of 319 White subjects,373

1121 scans of 99 Asian subjects, 78 scans of 12 Asian-southern subjects, 16374

scans of 1 Asian and Middle-east subject, 28 scans of 6 Black-or-African375

American subjects, 113 scans of 13 Hispanic subjects, and 97 scans of 16376

subjects subjects whose ethnicity are unknown. About 60% of the faces have377

a neutral expression, and the others show expressions of disgust, happiness,378

sadness and surprise. All the scans in FRGCv2 are near-frontal. With this379

dataset, we conducted two experiments. The first one is to examine the380

robustness of our approach to age and ethnicity variations. It uses the 466381

earliest scan of each subject in FRGCv2, of which more than 93% are neutral-382

frontal. The second one extends to examine the robustness of our approach383

to variations of expression. It considers all the 4007 scans in FRGCv2, about384
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40% of which are expressive faces. For these experiments, the results are385

generated in a subject-independent fashion, using a 10-fold cross-validation386

setup.387

4.1. Data preprocessing388

The 3D face models present some imperfections, such as the holes (caused389

by the absorption of the laser in the dark areas like eyebrows and eyes and390

by the self-occlusions), the hair, and the spikes (caused by acquisition noise).391

Thus, a preprocessing step is needed to limit their influence. Firstly, through392

boundary detection, link-up and triangulation, holes are filled in each scan.393

Secondly, since the scans in FRGCv2 are all near-frontal, the nose tip is de-394

tected with a simple algorithm. The nose tip is detected by analyzing the395

peak point of the face scan in the depth direction. Then, the mesh is cropped396

with a sphere centered at the nose tip to discard the hair and the neck re-397

gions. Finally, a smoothing filter is used to distribute evenly the 3D vertices398

which capture the original 3D shape. We next perform the well-known Iter-399

ative Closest Point (ICP) algorithm to normalize the poses of the obtained400

meshes according to a reference mesh (frontal). The symmetry plane is then401

picked up as the plane that has as origin the nose tip and has an horizontal402

normal. In practice, the preprocessing step is performed automatically on403

the whole FRGCv2 dataset without any manual intervention. We obtained404

4005 well preprocessed scans after preprocessing. The failed two scans (with405

scan id 04629d148 and 04815d208) were resulted from wrong nose tip detec-406

tion. Considering the ratio of failure is rather tiny (2/4007<0.0005), we omit407

the influence of the two failed scans for the results generation.408
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Figure 6: The reported results of the proposed methods1using Random Forest
with different number of trees.
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4.2. Robustness to variations of age and ethnicity409

Among the 466 earliest scans, 431 scans are neutral-frontal and 35 are410

expressive-frontal. In our 10-fold cross validation setup, the 466 scans are411

randomly partitioned into 10 folds with each fold containing 46 − 47 scans.412

In each round, 9 of the 10 folds are used for training while the remaining413

fold is used for testing. The average recognition rate and standard devia-414

tion for 10 rounds then give a statistically significant performance measure.415

The relationship between the gender classification result and the number of416

trees used in the Random Forest is depicted in Figure 6(a). It demonstrates417

that a significant relationship exists between gender and facial averageness418

and facial symmetry considered separately. We note also that both the fu-419

sion and the feature selection improve the gender classification results. In420

fact, the fusion descriptor outperforms individual averageness and symmetry421

descriptor. This implies that facial averageness and symmetry relate to gen-422

der in different ways. At the same time, results after the feature selection423

always override the results without feature selection. This means that the424

original averageness DSF and symmetry DSF contain redundant information.425

Gender-related features are distributed unequally in the facial regions. The426

best gender classification rate is 93.78%, achieved by 80-Tree Random Forest427

with the fusion descriptor after feature selection. This result is detailed in428

the confusion matrix in Table 1. The recognition rate for females (92.02%) is429

1Methods as described in Figure 1 : (1) the symmetry DSF features (SYM-Original),
(2) the selected features of symmetry DSF features (SYM-Selection), (3) the averageness
DSF features (AVE-Original), (4) the selected features of averageness DSF features (AVE-
Selection), (5) the fusion of symmetry and averageness DSF features by concatenation
(FUS-Original), and (6) the selected features of the fusion of symmetry and averageness
DSF features (FUS-Selection).
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slightly lower than for male ones (95.44%). It is probably due to the fact that430

more male faces were used for training. We also performed a 10-fold 100-431

repetition experiment with Random Forest under the same setting, which432

resulted at an average classification rate of 92.84% with a standard deviation433

of 3.58%.434

Table 1: Confusion matrix of RF-based classification.

% Female Male
Female 91.63 8.37
Male 4.56 95.44
Recognition Rate =93.78± 4.29%
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Figure 7: DSFs on faces with different Age.
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Figure 8: DSFs on faces with different Ethnicity.

Figure 7 illustrates the color-maps of symmetry DSF and averageness435

DSF on female faces with age differences and Figure 8 illustrates the color-436

maps of symmetry DSF and averageness DSF on male faces with differences437

in ethnicity. The information related to age, ethnicity and identity of scans438

are presented in the 2D images in the upper row of each figure. Based on439

the middle rows of Figure 7 and Figure 8, we can observe that the bilateral440

symmetry of both genders convey a visually symmetrical pattern, where the441

color-map of left-face is globally in symmetry with the right-face, although442

subtle local asymmetry exists. Low-level deformations (red color) are usually443

located near the middle plane and high-level deformations (yellow and green444

colors) happen more frequently in further areas. The asymmetry, in female445

faces, change obviously more smoothly than in male faces. On the other446
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hand, with the lower rows of Figure 7 and Figure 8, we observe that female447

faces exhibit more deformations in mouth, nose and eye regions to deform448

from the averageness face template. More subtly, in cheek and forehead449

regions, the color is more consistent in male faces. All of these observations450

above stay relatively consistent with changes of age and ethnicity. We believe451

that these common patterns contribute to the robustness of our approach to452

variations of age and ethnicity to some extent.453

Figure 9: Gender classification results of different age group (the blue bars
show the average recognition rate of each age group, and the red line shows
the number of scans in this age group).

As it is well known that face perception is strongly affected by age [30],454

we provide Figure 9 to analyze gender classification performance for different455

age groups. In this figure, the blue bars show the average recognition rate for456

each age group, and the red line shows the number of scans in the same age457

group. We could confirm that gender classification is strongly influenced by458

the age. Generally, although the gender classification results decrease from459

above 90% to about 80% when increasing the age, all these results are near or460
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above 80%. That is to say the performance of our approach stays relatively461

high with age variation. Moreover, due to unbalanced age distribution of462

scans in FRGCv2 dataset, we see the number of scans decreased significantly463

when the age is increased. We assume that this is also a reason for the464

decrease of the gender classification results.465
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Figure 10: Gender classification results of different ethnicity group (the blue
bars show the average recognition rate of each age group, and the red line
shows the number of scans in this ethnic group).

Figure 10 analyzes the relationship between the obtained classification466

rate when varying the ethnicity. Here, the whole FRGCv2 dataset is sepa-467

rated into Asian and Non-Asian groups. We can see that the gender clas-468

sification rates, shown by the blue bars, stay above 90% when varying the469

ethnicity. The classification rate of Non-Asian group is 3− 4 percent higher470

than that of the Asian group. This is probably due to a more sufficient train-471

ing step has been involved with Non-Asian group, since it contains more than472
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two times of the number of the scans of the Asian group, as shown in the473

figure by the red line.474

4.3. Robustness to expression variations475

In this experiment, with all the preprocessed scans of FRGCv2, we first476

performed the DSF extraction for averageness, symmetry and fusion descrip-477

tors, and then did the 10-fold subject-independent cross-validation with Ran-478

dom Forest. For each round, the scans of 46 subjects are randomly selected479

for testing, and the scans of the remaining subjects are dedicated to the480

training. For all the 10 rounds of experiments, no common subjects are used481

in training/testing. The relationship between the classification result and482

the number of trees used in Random Forest is shown in Figure 6(b). We note483

again that both fusion and feature selection improve the results. The best484

result achieved with the fusion and feature selection is 92.46% ± 4.79 with485

100-Tree Random Forest. We argue this result by the fact that the majority486

of the selected features are located on the facial areas which are less affected487

by the expressions in particular the nose, the eyebrows, and the forehead as488

illustrated in Figure 5. Considering the FRGCv2 dataset is a challenging489

dataset which contains as many as 4007 scans with various changes in age,490

ethnicity and expression, we claim even more confident that a significant re-491

lationship exists between gender and 3D facial averageness/symmetry, and492

our method is effective and robust to ethnicity and expression variations.493

28



#02463d550 #02463d552 #02463d556 #02463d558 #02463d562

T
ex

tu
re

 i
m

ag
es

Low

High

S
y

m
m

et
er

y
A

v
er

ag
en

es
s

Low

High

Figure 11: DSFs on faces with different expressions.

Figure 11 shows color-maps of DSFs generated for a subject with differ-494

ent expressions. Similar to the observations in Figure 7 and Figure 8, we495

perceive again in the middle row of Figure 11 that the symmetry deforma-496

tions on both sides of the face are globally in symmetry, although tiny local497

asymmetry exists in areas like eye corners and lips. Low-level deformations498

(red) always locate near the middle plane and high-level deformations (yel-499

low and green) occur more frequently in farther areas. With the lower rows500

of Figure 7 and Figure 11, we observe again that female faces require more501

deformation in mouth, nose and eye regions to deform from the averageness502

face template. In cheek and forehead regions, the color is more consistent in503

male faces. All these visible patterns do not change significantly with expres-504

sion variations. We assume that these patterns contribute to the robustness505
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of our approach to expression changes. Figure 6(c) shows the best gender506

recognition results (shown as bars) and their standard deviation (shown as507

black lines) in our experiment. It shows that the gender recognition rate508

increases with both fusion and feature selection, and the performances of all509

the approaches change little between the 466 earliest scans protocol and the510

whole FRGCv2 dataset protocol. It means our approach is even relatively511

robust to the size of the training set.512
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Figure 12: Gender classification results of different expression group (the
blue bars show the average recognition rate of each age group, and the red
line shows the number of scans in this expression group).

Again, in Figure 12, we illustrate the effects of expression variations on513

the proposed approach. We separated the FRGCv2 dataset into Open-mouth514

and Closed-mouth groups. Despite the fact of the unbalanced number of515

training scans in Open-mouth and Closed-mouth groups, as shown by the516

red line, the results shown by the blue bars in the figure are all above 90%,517

and the results between these two groups are comparable with each other.518
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4.4. Comparison with state of the art519

Table 2 gives a comparison of this work with previous studies in 3D-based520

gender classification. With differences in the dataset, landmarking, exper-521

iment settings and so on, it is difficult to compare and rank these works522

simply according to the result values. Compared with our work, works in [9],523

[14], [15] are based on relatively smaller dataset which leave doubts about the524

statistical significance of their performances on larger and more challenging525

datasets. Works in [9], [12], [14], [15] require manual landmarking, thus they526

are not fully-automatic. Works in [9], [14], [15], [16] use different experi-527

mental settings other than the most prevailing 10-fold cross-validation. Our528

work addressed gender classification in a fully automatic way without man-529

ual landmarking. Experimented on a large dataset, FRGCv2, which contains530

challenging variations in expression, age and ethnicity, and reached competi-531

tive results with literature. The nearest works to ours are done by Ballihi et532

al. in [17] and Toderici et al. in [3]. With the 466 Earliest scans of FRGCv2533

and standard 10-fold cross-validation, Ballihi et al. achieved 86.05% classifi-534

cation rate, while we achieved a much higher result of 93.78% by combining535

facial shape averageness and bilateral asymmetry. In [3], Toderici et al. also536

performed automatic 10-fold cross-validation on the FRGCv2 dataset in a537

subject-independent fashion. In general, we have achieved comparable re-538

sults than them. They achieve about 1% higher gender classification rate539

than us. While we achieve a lower standard deviation which signifies better540

stability of the algorithm than theirs2.541

2During the work, we found 8 scans of a subject (id 04662, female indeed) had been
mislabeled as male in the FRGCv2 metadata. We corrected them before the experiments.
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Table 2: Comparison of our approach to earlier studies.

Reference Dataset Auto Features Classifiers Experiment
settings

Results Shape/
Texture

Ballihi et
al. [17]

466 earli-
est scans of
FRGCv2

Yes facial curves Adaboost 10-fold cross-
validation

86.05% Shape

Toderici
et al. [3]

All scans of
FRGCv2

Yes Wavelets Polynomial-
SVM

10-fold cross-
validation

Male : 94 ± 5%
Female : 93± 4%

Shape

Hu et al.
[16]

729 UND
scans and
216 private
scans

Yes Curvature
based shape
index

RBF-SVM 5-fold cross-
validation

94.03% Shape

Han et al.
[14]

61 3D scans
in GavabDB

No Geometry
Features

RBF-SVM 5-fold cross-
validation

82.56 ± 0.92% Shape

Wu et al.
[15]

Needle maps
of 260 sub-
jects from
UND

No PGA features Posterior
Probability

200 train/60
test, 6 repeti-
tions

93.6 ± 4% Shape+
Texture

Lu et al.
[12]

1240 scans
from UND
and MSU

No Grid element
values

Posterior
Probability

10-fold cross-
validation

91 ± 3% Shape+
Texture

Liu et al.
[9]

111 full 3D
scans of 111
subjects

No Variance Ra-
tio in HD and
OD faces

linear clas-
sifier

half train/
half test, 100
repetitions

HD:91.16±3.15%
OD:96.22±2.30%

Shape

Our
work1

466 earli-
est scans of
FRGCv2

Yes AVE+SYM
DSFs

Random
Forest

10-fold cross-
validation

93.78 ± 4.29% Shape

Our
work2

All scans of
FRGCv2

Yes AVE+SYM
DSFs

Random
Forest

10-fold cross-
validation

92.46 ± 3.58% Shape

5. Conclusion542

In this paper, we have proposed a fully automatic approach based on 3D543

facial averageness/symmetry differences for gender classification. We have544

proposed to use our Dense Scalar Fields grounding on Riemannian Geom-545

etry to capture densely facial averageness and its bilateral symmetry. The546

remaining challenge is the large dimensionality of the DSFs, which is handled547

using a feature-selection-based dimension reduction, followed by a Random548

Forest classifier. Despite the wide range of age, ethnicity and facial ex-549

pressions, our method achieves a gender classification result of 93.78% ±550

4.29% with 466 earliest scans of subjects, and 92.46% ± 3.58 on the whole551

32



FRGCv2 dataset. We have also demonstrated that a significant relationship552

exists between the gender and these two high-level cues in face perception,553

the face averageness and symmetry. Our approach is competitive with state-554

of-the-art approaches. One of the limitations of the proposed approach is the555

dependence on near-frontal pose of faces to compute the symmetry and the556

averageness DSFs.557
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