Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case

Abstract : A multi-dimensional junction is obtained by identifying the boundaries of a finite number of copies of an Euclidian half-space. The main contribution of this article is the construction of a multidimensional vertex test function G(x, y). First, such a function has to be sufficiently regular to be used as a test function in the viscosity solution theory for quasi-convex Hamilton-Jacobi equations posed on a multi-dimensional junction. Second, its gradients have to satisfy appropriate compatibility conditions in order to replace the usual quadratic pe-nalization function |x − y| 2 in the proof of strong uniqueness (comparison principle) by the celebrated doubling variable technique. This result extends a construction the authors previously achieved in the network setting. In the multi-dimensional setting, the construction is less explicit and more delicate. Mathematical Subject Classification: 35F21, 49L25, 35B51.
Type de document :
Article dans une revue
Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2017, 37, pp.6405 - 6435. 〈10.3934/dcds.2017278〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01073954
Contributeur : Cyril Imbert <>
Soumis le : vendredi 25 août 2017 - 03:24:57
Dernière modification le : mardi 24 avril 2018 - 17:20:06

Fichiers

dimsup-hal3.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Cyril Imbert, R Monneau. Quasi-convex Hamilton-Jacobi equations posed on junctions: The multi-dimensional case. Discrete and Continuous Dynamical Systems - Series A, American Institute of Mathematical Sciences, 2017, 37, pp.6405 - 6435. 〈10.3934/dcds.2017278〉. 〈hal-01073954v3〉

Partager

Métriques

Consultations de la notice

132

Téléchargements de fichiers

42