A 1-parameter family of spherical CR uniformizations of the figure eight knot complement
Martin Deraux

To cite this version:

HAL Id: hal-01071444
https://hal.archives-ouvertes.fr/hal-01071444
Submitted on 5 Oct 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A 1-PARAMETER FAMILY OF SPHERICAL CR UNIFORMIZATIONS
OF THE FIGURE EIGHT KNOT COMPLEMENT

MARTIN DERAUX

Abstract. We construct a 1-parameter family of representations of the fundamental
group of the figure eight knot complement into $PU(2, 1)$, such that peripheral subgroups
are mapped to parabolic elements. We show that for small values of the twist of these par-
obolic elements, these representations are the holonomy of a spherical CR uniformization
of the figure eight knot complement.

1. Introduction

The existence of a complete hyperbolic structure on a 3-manifold has important topo-
logical consequences. For instance, this gives a definition of the volume of a knot (when a
knot admits a complete hyperbolic structure, that structure is unique by Mostow rigidity,
so the volume of that metric is a well-defined invariant).

In this paper, we focus on another kind of geometric structures on 3-manifolds, namely
structures modeled on the boundary of a symmetric space X of negative curvature (transi-
tion maps are required to be locally given by isometries of X). The visual boundary $\partial_\infty X$
is then a 3-dimensional sphere if $X = H^4_R$ or H^2_C.

The first case gives rise to the theory of flat conformal structures, and the second one to
the theory spherical CR structures. In the first case, one considers the unit ball model of
H^4_R, so the visual boundary is $S^3 \subset \mathbb{R}^4$, and the group of isometries of H^4_R
acts as Möbius transformations (i.e. transformations that map spheres into spheres, of possibly infinite
radius). Alternatively, one can use stereographic projection and think of S^3 as $\mathbb{R}^3 \cup \{\infty\}$;
this would also correspond to using the upper half plane model for H^3_R.

In the second case, using the ball model $B^2 \subset \mathbb{C}^2$ one can identify $\partial_\infty H^3_C$
with the unit sphere $S^3 \subset \mathbb{C}^2$. The action on the boundary is best understood in stereographic projection,
and identifying $S^3 \setminus \{p_\infty\} \simeq \mathbb{R}^3 \simeq \mathbb{C} \times \mathbb{R}$ with the Heisenberg group. Isometries of H^3_C
fixing p_∞ then acts as automorphisms of the Heisenberg group. Of course the Heisenberg
group acting on itself by left translations gives many automorphisms (which correspond to
the action of unipotent matrices), and one gets the full automorphism group by adjoining
a rotation in $\mathbb{C} \times \mathbb{R}$ around the \mathbb{R} factor, and scaling of the form $(z, t) \mapsto (\lambda z, \lambda^2 t)$ (which
corresponds to a loxodromic isometry), see section 3.2.

Even though a lot of partial results have been obtained (see [17], [13] for instance), the
classification of 3-manifolds that admit a spherical CR structure is far from understood.

Date: October 5, 2014.
When a manifold admits a spherical CR structure, the moduli space of such structures is also quite mysterious.

In this paper, we will be interested in a special kind of spherical CR structures, namely spherical CR uniformizations (in the literature, these are sometimes called complete spherical CR structures). These are characterized by the fact that the developing map of the structure is a diffeomorphism onto its image, which is a possibly proper open set in S^3. In that case, the holonomy group is a discrete subgroup $\Gamma \subset PU(2,1)$, and the image of the developing map is the domain of discontinuity Ω_Γ of Γ (i.e. the largest open set where the action is proper). The quotient $\Gamma \setminus \Omega_\Gamma$ is called the manifold at infinity of Γ.

The classification of 3-manifolds that admit a spherical CR uniformization is also an open problem.

Recall that H^2_C is a homogeneous under the action of $PU(2,1)$, and the isotropy group of a point is isomorphic to $U(2)$. In particular, finite subgroups of $U(2)$ such that nontrivial elements fix only the origin (in other words the groups should not contain any complex reflection) yield spherical CR uniformizable 3-manifolds with finite fundamental group.

In a similar vein, quotients of the Heisenberg group yield Nil manifolds that trivially admit a spherical CR uniformization, such that the holonomy group has a global fixed point, which is now in $\partial_\infty H^2_C$ instead of H^2_C.

It is also natural to consider stabilizers of totally geodesic subspaces in H^2_C, namely copies of H^2_R and of H^1_C. In that setting, Fuchsian groups (i.e. discrete subgroups of $SO(2,1)$ or $SU(1,1)$, seen as subgroups of $SU(2,1)$) produce as their manifold at infinity a circle bundle over a surface (or more generally over a 2-orbifold). This class is more interesting than the previous one, because it is known that the corresponding groups often admit deformations (but not always, see [27]). We will summarize the results in this well developed line of research by saying simply that many Seifert 3-manifolds admit spherical CR uniformizations (see [15], [1], [19], [28] and others).

The class of hyperbolic manifolds that admit a spherical CR uniformization is also far from being understood. In a number of beautiful results that appeared in the last decade, Schwartz discovered that many hyperbolic manifolds admit spherical CR uniformizations, see [23], [25] and [26]. His starting point was to consider representations of triangle groups into $PU(2,1)$, see [24], and to determine the manifold at infinity of well chosen such representations.

More recently, the figure eight knot complement was shown to admit a spherical CR uniformization [7] by following a somewhat different strategy, namely it was found as a byproduct of Falbel’s program for finding representations of fundamental groups of triangulated 3-manifold into $PU(2,1)$ (see [9]), or in $SL(3,\mathbb{C})$ (see [3]).

Falbel’s construction turned out to produce lots of representations, and in fact so many that the geometric properties of the resulting representations are in general difficult to analyze. In order to make the list more tractable (and also for other reasons related to the study of Bloch groups), the search is often restricted to representations such that peripheral subgroups are mapped to unipotent matrices (matrices with 1 as their only eigenvalue). The boundary unipotent representations for non-compact 3-manifolds with low complexity (i.e those that can be built by gluing up to three ideal tetrahedra) are listed in [11], and
the geometry of some of these representations are analyzed in [7] and [5]. It turns out very few representations in that list are discrete.

It is quite clear however that the unipotent restriction is somewhat artificial. Part of the point of the present paper is to show that, at least in some cases, there are many boundary parabolic representations that are not unipotent, and that these representations carry just as much interesting geometric information about the 3-manifold.

Let \(M \) denote the figure eight knot complement. The main goal of this paper is to show that \(M \) admits a 1-parameter family of pairwise non-conjugate spherical CR uniformizations.

We will build on the fact that \(M \) admits a unique spherical CR uniformization with unipotent boundary holonomy, as was shown in [7]. For future reference, we will refer to that structure simply as the boundary unipotent uniformization of \(M \) (see the precise uniqueness statement in [7]), and we denote the corresponding holonomy representation by \(\rho \). In view of Schwartz's spherical CR Dehn surgery theorem [26], one expects that small deformations of the boundary unipotent holonomy representation should still be discrete, and they should have a manifold at infinity given by some Dehn filling of the figure eight knot complement.

In order to turn this into a proof, one could try and prove that the boundary unipotent representation satisfies the hypotheses of Schwartz's theorem, i.e. that its image is a horotube group (without exceptional parabolic elements), and that its limit set is porous. If that works, then it is enough to show that the group admits deformations, and to study the type of the deformed unipotent element; Schwartz’s surgery formula shows in particular that (under some technical assumptions), if there are deformations where the unipotent peripheral holonomy stays parabolic, then the manifold at infinity should not change at all in small deformations.

Although a few examples of non-compact hyperbolic manifolds are known to admit spherical CR uniformizations (see [23], [25], [7]), the deformation theory of the holonomy representations of these examples is still quite mysterious. In particular, there are only two examples where non-trivial deformations are known to exist such that peripheral elements map to parabolic elements. These two examples are the figure eight knot complement and the Whitehead link complement. The results announced by Parker and Will, see [20] say that there are at least two different spherical CR uniformizations of the Whitehead link complement, and that there is a 1-parameter family of representations interpolating between their holonomy representations.

The first result of our paper gives an explicit construction of parabolic deformations.

Theorem 1.1. There is a continuous 1-parameter family of irreducible representations \(\rho_t : \pi_1(M) \to PU(2,1) \), such that for each \(t \), \(\rho_t \) maps peripheral subgroups of \(M \) onto a cyclic group generated by a single parabolic element with eigenvalues \(e^{it}, e^{it}, e^{-2it} \).

Given the eigenvalue condition, it should be clear that the representations \(\rho_t \) are pairwise non-conjugate. We will choose \(\rho_t \) so that \(\rho_0 \) is the holonomy of the boundary unipotent spherical CR uniformization.
Note that the existence of such parabolic deformations was independently discovered by Pierre-Vincent Koseleff, using a variant of the method devised by Falbel to parametrize boundary unipotent representations of 3-manifolds, see [9], [3] and [11] for instance. An alternative parametrization of this family can also be obtained from the description of the full character variety, see [10].

We will use a more naïve construction, which is closer in spirit to Riley’s parametrization of the character variety of the figure eight knot group (or more generally 2-bridge knot groups) into $PSL_2(\mathbb{C})$, see [22].

Our main result is the following.

Theorem 1.2. There exists a $\delta > 0$ such that for $|t| < \delta$, ρ_t is the holonomy of a spherical CR uniformization of the figure eight knot complement.

In order to show this, we will study the Ford domain for the image of ρ_0, and we will show that it is generic enough for its combinatorics to be preserved under small deformations of ρ_0. Note that this argument turns out to fail for the Ford domain of the holonomy of the spherical CR uniformization of the Whitehead link complement announced in [20]. Indeed, the corresponding Ford domain has the same local combinatorial structure as the Dirichlet domain described in [7], in particular it has lots of tangent spinal spheres.

It will be clear to the reader familiar with the notion of horotubes [26] that the Ford domain exhibits an explicit horotube structure for the group, but since our construction of horotubes is actually very close to proving Theorem 1.2, we will give a detailed argument that does not quote Schwartz’s result. Of course in many places, our proof parallels some of the intermediate results in [26].

We will not attempt to give an explicit allowable range of parameters t in Theorem 1.2, although it would certainly be interesting to do so (and also to try and make this range optimal).

The bulk of the work will be to describe the Ford domain for the holonomy group of the unipotent uniformization of M, and to show that it is generic enough for putative small deformations to have a fundamental domain with the same combinatorics.

The genericity that we will prove is genericity at infinity, namely we will show that each ideal vertex in the Ford domain lies on precisely three faces that intersect transversely at that point. For finite vertices, no genericity is to be expected, since the group is known to contain elliptic elements of order 3 and 4 (see [7]). In fact all the deformations we consider will preserve the conjugacy classes of these elliptic elements, and we will show that they do not affect the non-generic character of the fundamental domains at these points:

Proposition 1.3. The image of ρ_t is a triangle group. More specifically, for all t, we have $\rho_t(g_2)^4 = \rho_t(g_1g_2)^3 = \rho_t(g_2g_1g_2)^3 = id$.

Acknowledgements: This work was partly supported by the ANR, through the grant SGT ("Structures Géométriques Triangulées"). The author also benefited from generous support from the GEAR network (NSF grants DMS 1107452, 1107263, 1107367), via funding of an long term visit at ICERM. The author warmly thanks ICERM for its hospitality.
2. The real hyperbolic Ford domain

In this section, we review the description of a cusp neighborhood for the figure eight knot complement. This is probably familiar to most readers, but the details will be used in the identification of the manifold at infinity of our complex hyperbolic groups.

Moreover, quite remarkably, the local combinatorics of the real hyperbolic Ford domain turn out to be exactly the same as the local combinatorics of our fundamental domain for the action of the group on the domain of discontinuity.

Recall that fundamental group has presentation

\[\langle g_1, g_2, g_3 \mid g_2 = [g_3, g_1^{-1}], g_1g_2 = g_2g_3 \rangle, \]

with peripheral subgroup generated by \(g_3^{-1} \) and \(g_1(g_1g_2)^{-1}g_2g_3^{-1} \).

From this, one can find all type-preserving representations of \(\pi_1(\mathbf{m004}) \) up to conjugation, as in [21]. Indeed, the generators \(g_1 \) and \(g_3 \) should be parabolic elements in \(SL_2(\mathbb{C}) \), which we may assume to fix 0 and \(\infty \) respectively. Since all parabolic elements are conjugate, we may assume

\[G_1 = \begin{pmatrix} 1 & 0 \\ -\omega & 1 \end{pmatrix}; \quad G_3 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}. \]

The relation \(G_1[G_3, G_1^{-1}] = [G_3, G_1^{-1}]G_3 \) in \(PSL_2(\mathbb{C}) \), is easily seen to imply \(\omega^2 + \omega + 1 \), so we may take

\[\omega = \frac{-1 + i\sqrt{3}}{2}. \]

The stabilizer of \(\infty \) in \(PSL_2(\mathbb{Z}[\omega]) \) is clearly given by translations by Eisenstein integers, but the stabilizer in the group generated by \(G_1 \) and \(G_3 \) is slightly smaller, it can be checked to be generated by translations by 1 and \(2i\sqrt{3} \) (see [21] for more details).

Recall that the Ford isometric sphere of an element

\[\begin{pmatrix} a & b \\ c & d \end{pmatrix} \]

is bounded by the circle \(|cz + d| = 1 \). The Ford domain turns out to be the region bounded by all spheres of radius 1 centered at Eisenstein integers. A schematic picture is shown in Figure 1, where the faces corresponding to \(G_1^{\pm 1} \) (resp. \(G_2^{\pm 1} \)) are shaded in the same color, so the corresponding 2-faces get identified by the corresponding isometries. The complete description of identifications on bottom face of the prism is given in Figure 2, and there are also identifications on the vertical sides of the prism, which are simply given by translations whenever these sides are parallel. Note that these identifications are described in [21]; using current computer technology, they can also be found using the pictures produced by SnapPy.

3. Basic complex hyperbolic geometry

In this section we review some basic material about the complex hyperbolic plane. The reader can find more details in [14].

Figure 1. A fundamental domain for the action of Γ is an infinite chimney over the union of four hexagons, each hexagon living in a unit hemisphere around the appropriate Eisenstein integer.

Figure 2. Bottom of the prism (spine of the figure eight knot complement).

Recall that $\mathbb{C}^{2,1}$ denotes \mathbb{C}^3, equipped with a Hermitian form of signature (2,1). The standard such form is given by $\langle Z, W \rangle = V_1 \bar{W}_3 + V_2 \bar{W}_2 + V_3 \bar{W}_1 = W^* J V$, where

$$J = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$
We denote by $U(2, 1)$ the subgroup of $GL(3, \mathbb{C})$ that preserves that Hermitian form, and by $PU(2, 1)$ the same group modulo scalar matrices. It is sometimes convenient to work with $SU(2, 1)$, which is a 3-fold cover of $PU(2, 1)$.

The complex hyperbolic plane $H^2_\mathbb{C}$ is the set of negative complex lines in \mathbb{C}^2, equipped with a Kähler metric that is invariant under the action of $PU(2, 1)$. Such a metric is unique up to scaling, and it turns out to have constant holomorphic sectional curvature (which one can choose to be -1).

It is well known that the maximal totally geodesic submanifolds of $H^2_\mathbb{C}$ are copies of $H^1_\mathbb{C}$ (with curvature -1) and copies of $H^2_\mathbb{R}$ (with curvature $-1/4$).

3.1. Bisectors. The corresponding distance function is given by

$$\cosh^2 \frac{1}{2} d(z, w) = \frac{|\langle Z, W \rangle|^2}{\langle Z, Z \rangle \langle W, W \rangle},$$

where Z (resp. W) denotes a representative of z (resp. w). Given two points $p \neq q \in H^2_\mathbb{C}$, the locus $\mathcal{B}(p, q)$ of points that are equidistant of p and q is often called a bisector. Beware that isometries switching p and q do not fix the corresponding bisector pointwise, and in fact bisectors are not totally geodesic.

Every bisector in $H^2_\mathbb{C}$ is diffeomorphic the unit ball in \mathbb{R}^3, in such a way that the vertical axis is the real spine, complex slices are horizontal disks, and real slices are disks in vertical planes containing the vertical axis. One way to do this explicitly for the bisector $\mathcal{B}(p, q)$ is to scale q by a complex number of modulus one so that $\langle p, q \rangle$ is real and negative. Then an orthogonal basis for \mathbb{C}^2 is given by $v_0 = p + q$, $v_1 = p - q$, $v_2 = v_0 \times v_1$ (\times denotes the Hermitian cross product, see p.43 of [14]). Of course this basis can be made Lorentz orthonormal by scaling its vectors so that $\langle v_0, v_0 \rangle = -1$, $\langle v_1, v_1 \rangle = 1$ and $\langle v_2, v_2 \rangle = 1$. The bisector then can be parametrized by $(z, t) \in \mathbb{C} \times \mathbb{R}$ by taking vectors of the form

$$v_0 + i t v_1 + z v_2.$$
When \(p, q \in H_\mathbb{C}^2 \), we simply choose lifts such that \(\langle \tilde{p}, \tilde{p} \rangle = \langle \tilde{q}, \tilde{q} \rangle \). In this paper, we will mainly use these parametrization when \(p, q \in \partial_\infty H_\mathbb{C}^2 \); in that case, the condition \(\langle \tilde{p}, \tilde{p} \rangle = \langle \tilde{q}, \tilde{q} \rangle \) is vacuous, since all lifts are null vectors.

In that case, we choose some fixed lift \(\tilde{p} \) for the center of the Ford domain, and we take \(\tilde{q} = Gp \) for some \(G \in U(2, 1) \). If a different matrix \(G' = SG \), with \(S \) a scalar matrix, note that the diagonal element of \(S \) is a unit complex number, so \(\tilde{q} \) is well defined up to a unit complex number.

The complex slices of \(B(p, q) \) are obtained as (the set of negative lines in) \((\bar{z}\tilde{p} - \bar{q})^\perp \) for some arc of values of \(z \in S^1 \), which is determined by requiring that \(\langle \bar{z}\tilde{p} - \bar{q}, \bar{z}\tilde{p} - \bar{q} \rangle > 0 \).

Since a point of the bisector is on precisely one complex slice, we can parametrize \(B(p, q, r) \) by \((z_1, z_2) \in S^1 \times S^1 \) via

\[
V(z_1, z_2) = (\bar{z}_1 p - q) \otimes (\bar{z}_2 p - r) = q \otimes r + z_1 r \otimes p + z_2 p \otimes q.
\]

The Giraud disk is a disk in \(S^1 \times S^1 \), determined by requiring \(\langle V(z_1, z_2), V(z_1, z_2) \rangle < 0 \).

The boundary at infinity \(\partial_\infty B(p, q, r) \) is a circle, given in spinal coordinates by the equation

\[
\langle V(z_1, z_2), V(z_1, z_2) \rangle = 0
\]

Note that the above choice of two lifts of \(q \) and \(r \) affects the spinal coordinates by rotation on each of the \(S^1 \) factors.

A defining equation for trace of another bisector \(B(a, b) \) on the Giraud disk \(B(p, q, r) \) can be written in the form

\[
|\langle V(z_1, z_2), a \rangle| = |\langle V(z_1, z_2), b \rangle|,
\]

provided \(a, b \) are suitably chosen lifts. The expressions \(\langle V(z_1, z_2), a \rangle \) and \(\langle V(z_1, z_2), b \rangle \) are affine in \(z_1, z_2 \). These can be parametrized fairly explicitly, because one can solve equation (3) for one of the variables \(z_1 \) or \(z_2 \), simply by solving a quadratic equation (see section 2.3 of [7] for a detailed explanation of how this works).

Note that our parameters really give a parametrization of the intersection in \(P_2^\mathbb{C} \) of the extors extending the bisectors, see chapter 8 of [14]. The Giraud disk is a disk in the intersection of the extors, which is a torus.

3.2. Siegel half space and the Heisenberg group.

The complex analogue of the upper half space model for \(H_\mathbb{R}^n \) is the Siegel half space, which is obtained by sending the line spanned by \((1,0,0)\) to infinity. We denote the corresponding point of \(\partial_\infty H_\mathbb{C}^2 \) by \(p_\infty \).

More precisely, we take affine coordinates \(z_1 = Z_1/Z_3 \), \(z_2 = Z_2/Z_3 \), and a negative complex line has a unique representative of the form \((z_1, z_2, 1)\) with

\[
2\Re(z_1) + |z_2|^2 < 0
\]

A large part of the stabilizer of the point at infinity is given by unipotent upper triangular matrices. One easily checks that such a matrix preserve the Hermitian form \(J \) if and only
if it can be written as
\[
\begin{pmatrix}
1 & -\tilde{a}\sqrt{2} & -|a|^2 + is \\
0 & 1 & a\sqrt{2} \\
0 & 0 & 1
\end{pmatrix}
\]
for some \((a, s) \in \mathbb{C} \times \mathbb{R}\). Since these upper triangular matrices form a group, we get a group law on \(\mathbb{C} \times \mathbb{R}\), given by
\[
(a, s) \ast (a', s') = (a + a', s + s' + 2Im(a\tilde{a}')).
\]
This is the so-called Heisenberg group law.

The action of the unipotent stabilizer of \(p_\infty\) is simply transitive on \(\partial_\infty H^2_\mathbb{C} - \{p_{\text{infty}}\}\), so we will often identify the latter with \(\mathbb{C} \times \mathbb{R}\).

The boundary at infinity of totally geodesic subspaces can be seen in somewhat simple terms in \(\mathbb{C} \times \mathbb{R}\). The boundary of a copy of \(H^1_\mathbb{C}\) (which is the intersection of an affine line in \(\mathbb{C}^2\) with the Siegel half space) is called a \(\mathbb{C}\)-circle. These are ellipses that project to circles in \(\mathbb{C}\) (or possibly vertical lines, if they go through \(p_\infty\)).

The boundary of copies of \(H^2_\mathbb{R}\) (which are images under arbitrary isometries of the set of real points in the Siegel half space) intersect the boundary at infinity in a so-called \(\mathbb{R}\)-circle. In Heisenberg, these are curves that project to lemniscates in \(\mathbb{C}\) (see chapter 4 of [14], for instance).

The full stabilizer of \(p_\infty\) is generated by the above unipotent group, together with the isometries of the form
\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & e^{i\theta} & 0 \\
0 & 0 & 1
\end{pmatrix},
\begin{pmatrix}
\lambda & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1/\lambda
\end{pmatrix},
\]
where \(\theta, \lambda \in \mathbb{R}, \lambda \neq 0\). The first one acts on Heisenberg as a rotation with vertical axis:
\[(a, s) \mapsto (e^{i\theta}a, s),\]
whereas the second one acts as
\[(a, s) \mapsto (la, l^2s).\]

There is a natural invariant metric on the Heisenberg group, called the Cygan metric, given by
\[d(g, g') = ||g^{-1}g'||,\]
and the norm of an element of the Heisenberg group is given by
\[
||(z, t)|| = ||z||^2 + it|^{1/2}
\]
Spinal spheres turn out to be the boundary at infinity of bisectors.

3.3. Ford domains and the Poincaré polyhedron theorem. Let \(\Gamma\) be a subgroup of \(PU(2, 1)\), let \(q \in \partial_\infty H^2_\mathbb{C}\) and let \(Q\) denote a lift of \(q\) in \(\mathbb{C}^{2,1}\).

Definition 3.2. The Ford domain for \(\Gamma\) centered at \(q\) is the set \(F_{\Gamma, q}\) of points \(z \in H^2_\mathbb{C}\) such that
\[
||Z, Q|| \leq ||Z, G(Q)||
\]
where \(G\) is a matrix representative of some element \(g \in \Gamma\).
The inequality is actually independent of the lift $G \in U(2, 1)$ chosen for $g \in PU(2, 1)$.

For a given $g \in \Gamma$ and lift $G \in U(2, 1)$, we denote by B_g the bisector given in homogeneous coordinates by

$$|(Z, Q)| = |(Z, G(Q))|. \tag{6}$$

We denote by $b_g = B_g \cap F$, i.e. the face of F that lies on the bisector B_g. For a general $g \in \Gamma$, b_g may have dimension smaller than 3 (in fact it is often empty).

The basic fact is that if q has trivial stabilizer in Γ, then $F = F_{\Gamma, q}$ is a fundamental domain for its action. However, it is customary to take q to have a nontrivial stabilizer $H \subset \Gamma$, in which case F is only a fundamental domain modulo the action of H. In other words, in that case, F is a fundamental domain for the decomposition of Γ into cosets of H.

It is usually very hard to determine F explicitly; in order to prove that a given polyhedron is equal to F, the main tool is the Poincaré polyhedron theorem. The basic idea is that the sides of F should be paired by isometries, and the images of F under these so-called side-pairing maps should give a local tiling of $H_2^\mathbb{C}$. If they do (and if the quotient of F by the identifications given by the side-pairing maps is complete), then the Poincaré polyhedron implies that the images of F actually give a global tiling.

Once a fundamental domain is obtained, one gets an explicit presentation of Γ in terms of the generators given by the side-pairing maps together with a generating set for the stabilizer H, the relations corresponding to so-called ridge cycles (which correspond to the local tiling near each codimension two face).

For more details on this theorem, see [7], [8] and [18].

4. A BOUNDARY PARABOLIC FAMILY OF REPRESENTATIONS

In this section, we parametrize a neighborhood of the unipotent solution in the character variety $\chi(\pi_1(M), PU(2, 1))$. We will use the presentation

$$\langle g_1, g_2, g_3 \mid g_1g_2 = g_2g_3, g_2 = [g_3, g_1^{-1}] \rangle.$$

If the fixed points of G_1 and G_3 are distinct, we may assume

$$G_1 = \begin{pmatrix} \lambda & a & b \\ 0 & \lambda^2 & c \\ 0 & 0 & \lambda \end{pmatrix}, \quad G_3 = \begin{pmatrix} \lambda & 0 & 0 \\ f & \lambda^2 & 0 \\ c & d & \lambda \end{pmatrix}, \tag{7}$$

were $|\lambda| = 1$.

Note that the representation considered in [7] is obtained by taking

$$\lambda = 1, a = d = 1, c = f = -1, b = \overline{c} = -(1 + i\sqrt{7})/2$$

in equation (7).

The fact that G_1 and G_3 be isometries of the form J implies

$$c = -\overline{a}\lambda, \quad f = -\overline{d}\lambda.$$
We then compute the commutator $G_2 = [G_3, G_1^{-1}]$, and consider the system of equations given by $R = 0$, where
\begin{equation}
R = G_1 G_2 - G_2 G_3.
\end{equation}
Note that this already restricts the character variety, since we only consider representations into $U(2, 1)$ rather than $PU(2, 1)$, but this is fine if we are after a neighborhood of the unipotent solution, where the relation (8) holds in $U(2, 1)$.

Requiring that G_1 and G_3 preserve the standard antidiagonal form, we must have
\begin{equation}
\begin{cases}
|d|^2 + \bar{a} \lambda + e \bar{\lambda} = 0 \\
|a|^2 + \bar{b} \lambda + b \bar{\lambda} = 0
\end{cases}
\end{equation}
The (1,1)-entry of R is given by
\begin{equation}
(|a|^2 e - |d|^2 b)(1 + \bar{a}d - \lambda^3 - \bar{\lambda}^3).
\end{equation}
The first factor does not vanish for ρ_2, so in its component we must have
\begin{equation}
1 + \bar{a}d = \lambda^3 + \bar{\lambda}^3.
\end{equation}

Note that by conjugation by a diagonal matrix with diagonal entries k_1, k_2, k_3, we can assume that $a \in \mathbb{R}$ (and we can also impose that $|b|$ is given by any positive real number). Equation (11) then implies that d is real as well, so from this point on we assume
\begin{equation*}
a, d \in \mathbb{R}.
\end{equation*}

The (2,2)-entry of R can then be written as
\begin{equation}
- (|a|^2 e - |d|^2 b)(a^2 e \bar{\lambda}^4 + a^2 d^2 \bar{\lambda}^3 - ad + be \bar{\lambda}^5 - 1 + bd^2 \bar{\lambda}^4),
\end{equation}
so we get the equation
\begin{equation}
a^2 e \bar{\lambda}^4 + a^2 d^2 \bar{\lambda}^3 - ad + be \bar{\lambda}^5 - 1 + bd^2 \bar{\lambda}^4.
\end{equation}
Using the relations (9) and (11), (12), can be rewritten as
\begin{equation}
be \lambda = \lambda^3 + \bar{\lambda}^3.
\end{equation}

As mentioned above, by conjugation by a diagonal matrix, we can adjust $|b|$, for instance so that
\begin{equation*}
|b|^2 = \lambda^3 + \bar{\lambda}^3,
\end{equation*}
and in that case (13) implies
\begin{equation*}
|e|^2 = |b|^2.
\end{equation*}
We will now show that, given λ, the following system has precisely two solutions:
\begin{equation}
\begin{cases}
a^2 + \bar{b} \lambda + b \bar{\lambda} = 0 \\
d^2 + \bar{e} \lambda + e \bar{\lambda} = 0 \\
1 + ad = \lambda^3 + \bar{\lambda}^3 \\
be \lambda = \lambda^3 + \bar{\lambda}^3 \\
|b|^2 = \lambda^3 + \bar{\lambda}^3.
\end{cases}
\end{equation}
In order to do that, note that the first three imply

\[b\bar{e} + \bar{b}e = 1 - 2(\lambda^3 + \bar{\lambda}^3), \]

and the last two imply

\[e = \bar{b}\lambda. \]

Putting these two together, we get

\[(15) \quad \Re(b^2\lambda) = \frac{1}{2} - 2c, \]

where we have written

\[(16) \quad c = (\lambda^3 + \bar{\lambda}^3)/2. \]

The equation \(\Re(z) = \frac{1}{2} - 2c \) has a solution with \(|z| = 2c \) if and only if

\[2c \geq \frac{1}{2} - 2c, \]

and in that case one gets a simple formula for the solutions (intersect a vertical line with the circle of radius \(|2c| \) centered at the origin).

We get that (15) has solutions if and only if \(c \geq \frac{1}{8} \), and the solutions are given by

\[(17) \quad b^2\lambda = \frac{1}{2} - 2c \pm i\sqrt{\frac{1}{2}(4c - \frac{1}{2})}. \]

This determines \(b \) up to its sign, opposite values clearly giving conjugate groups (they differ by conjugation by a diagonal matrix). The two values also yield isomorphic groups, obtained from each other by complex conjugation.

We will choose the solution to match the notation for the unipotent solution given in [7], which corresponds to \(\lambda = 1, a = d = 1, b = -\frac{1+i\sqrt{7}}{2} \) and \(e = -\frac{1-i\sqrt{7}}{2} \).

As a consequence, we take

\[b = -\frac{1 + i\sqrt{8c - 1}}{2\sqrt{\lambda}}, \]

where we take the squareroot to vary continuously near \(\lambda = 1 \).

The system (14) then gives values for the other parameters, namely

\[(18) \quad e = 2c/b\lambda = -\frac{1 - i\sqrt{8c - 1}}{2\sqrt{\lambda}}, \]

and one easily writes an explicit formula for \(a \) and \(d \) (once again, these are determined only up to sign, but changing \(a \) to \(-a\) can be effected by conjugation by a diagonal matrix). The formula is as follows,

\[a = \sqrt{4\mu^2 - 3\mu + \sqrt{8c - 1}(4\mu^2 - 1)}\nu, \quad d = \sqrt{4\mu^2 - 3\mu - \sqrt{8c - 1}(4\mu^2 - 1)}\nu, \]
where we have written $\sqrt{\lambda} = \mu + i\nu$ with μ, ν real. In terms of this new parameter, the condition $c > 1/8$ translates into

$$\mu > \cos\left(\frac{1}{3} \arctan \frac{\sqrt{\lambda}}{3}\right) = 0.9711209254\ldots$$

4.1. Triangle group relations. The following matrices can be computed explicitly:

$$G_2 = \begin{pmatrix}
1 + \ell^3 & ab - d\lambda^2 & (e + b)\lambda \\
ab - d\lambda^2 & -\ell^3 & 0 \\
(e + b)\lambda & 0 & 0
\end{pmatrix}$$

$$G_1G_2 = \begin{pmatrix}
\ell & a(1 - \ell^3) - ed\ell^2 & (e + b) \\
-\lambda^2(ae + d\lambda^2) & -\ell & 0 \\
(e + b) & 0 & 0
\end{pmatrix}$$

$$G_2^2G_1 = \begin{pmatrix}
\ell^2(ab + d\ell) & -\ell^3(at + ed) & (e + b)\ell \\
\lambda & -\ell^3 & 0 \\
(ab + d\ell) & 0 & 0
\end{pmatrix}$$

In particular,

$$\text{tr}(G_2) = 1, \quad \text{tr}(G_1G_2) = 0, \quad \text{tr}(G_2G_1G_2) = 0,$$

or in other words,

$$G_2^3 = \text{id}, \quad (G_1G_2)^3 = \text{id}, \quad (G_2^2G_1)^3 = \text{id}.$$

The last two relations imply that

$$(G_2G_1G_2)^3 = \text{id}.$$

Proposition 4.1. Throughout the twist parabolic deformation, we have $G_1G_2 = G_2G_3$, $G_2 = [G_3, G_1^{-1}]$, $G_2^4 = \text{id}$, $(G_1G_2)^3 = \text{id}$, $(G_2G_1G_2)^3 = \text{id}$.

4.2. Fixed points of elliptic elements. Note also that for each of the three matrices G_2, G_1G_2 and $G_2^2G_1$, the negative eigenvector is the one with eigenvalue 1 (indeed, this is true for the unipotent solution, so it hold throughout the corresponding component of the character variety).

For future reference, we give explicit formulas for these fixed points:

$$p_2 = \left(1 + \ell^3, ab - d\lambda^2, (\lambda + \ell^2)(e + b)\right),$$

$$p_{12} = \left(1 + \ell, -\lambda^2(ae + d\lambda^2), (1 + \lambda)(e + b)\right),$$

$$p_{112} = \left(1 + \lambda, \ell^2(ab + d\lambda), (\lambda + \lambda^2)(e + b)\right).$$

Lemma 4.2. Throughout the deformation, p_2 is on six bounding bisectors, corresponding to the group following elements

$$2, \ 2, \ 3, \ 12, \ \overline{13}, \ \bar{13}.$$
Proof: The statement about $G_2^{±1}$ is obvious since p_2 is fixed by G_2. The other four statements all follow from
\[(18) \quad d(p_2, p_0) = d(p_2, (G_2G_1)^{-1}p_0).\]
Indeed,
\[d(p_2, (G_2G_1)^{-1}p_0) = d(p_2, G_2^{-1}G_1^{-1}G_2^{-1}p_0) = d(p_0, G_1G_2p_0),\]
where we have used $(G_1G_2)^3 = id$. Similarly, using $G_1G_2 = G_2G_3$, we get
\[d(p_2, G_1G_2p_0) = d(p_2, G_2^{-1}G_1G_2p_0) = d(p_0, G_3p_0).\]
Finally, using $G_2 = [G_3, G_1^{-1}]$ we get
\[d(p_2, G_3p_0) = d(p_2, G^{-1}G_3p_0) = d(p_0, G^{-1}G_3p_0).\]
In order to prove (18), we compute
\[G_1^{-1}G_2^{-1}p_0 = (\overline{b} + \overline{c})\ell(\overline{b}, a, \lambda),\]
and we observe $|(\overline{b} + \overline{c})\ell| = 1$, so we need only check
\[|\langle p_2, p_0 \rangle| = |\langle p_2, X \rangle|,\]
where $X = (\overline{b}, a, \lambda)$. Now
\[|\langle p_2, p_0 \rangle|^2 = |(\ell + \lambda^3)(\overline{b} + \lambda)|^2 = |1 + \lambda^3|^2 = 2 + \ell^3 + \lambda^3,\]
and
\[\langle p_2, X \rangle = \lambda(2 - \ell^3 - \lambda^3 - b^2\ell), \quad |\langle p_2, X \rangle|^2 = 2 + \ell^3 + \lambda^3.\]

\[\square\]

Lemma 4.3. Through the deformation, $p_{\overline{1}21} = G_1^{-1}p_2$ stays on six bounding bisectors, corresponding to the following group elements:
\[2, \overline{1}21, \overline{1}21, \overline{1}31, \overline{1}\overline{1}211, \overline{1}\overline{1}311.\]
Proof: The statement follows from Lemma 4.2 by conjugation by G_1^{-1} (which by definition fixes p_0). \[\square\]

5. Combinatorics of the Ford domain in the unipotent case

In this section, we denote by Γ the image of ρ_0. It is generated by the matrices
\[G_1 = \begin{pmatrix} 1 & 1 & -\frac{1}{2} - \frac{\sqrt{7}}{2}i \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}, \quad G_3 = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -\frac{1}{2} + \frac{\sqrt{7}}{2}i & 1 & 1 \end{pmatrix}.\]
One then sets
\[G_2 = [G_3, G_1^{-1}].\]
We will sometimes use word notation, so that $23\overline{1}3$ denotes $G_2G_3G_1^{-1}G_3$, for instance.
We consider the Ford domain centered at the fixed point of G_1, which is p_∞ in the notation of section 3.3, and work in the Siegel half space.
We denote by \(P = \langle G_1 \rangle \), and by \(F \) the corresponding Ford domain. We wish to prove that \(F \) is a fundamental domain for the action of the cosets of \(P \) in \(\Gamma \).

We denote by \(S = \{ G_2, G_2^{-1}, G_3, G_3^{-1} \} \), and by \(S^P \) the set of all conjugates of elements of \(S \) by powers of \(G_1 \). We consider the partial Ford domain \(D \) defined in homogeneous coordinates \(Z \) by the inequalities

\[
|\langle Z, Q \rangle| \leq |\langle Z, G(Q) \rangle|
\]

for all \(G \in S^P \). Clearly \(F \subset D \), but we mean to prove:

Theorem 5.1. \(F = D \).

The key steps in the proof of Theorem 5.1 will be the following:

- Determine the combinatorics of \(D \);
- Show that the elements in \(S \) together with their conjugates under powers of \(G_1 \) define side-pairing maps for \(D \);
- Verify the hypotheses of the Poincaré polyhedron theorem.

5.1. **Statement of the combinatorics.** Clearly \(D \) is \(G_1 \)-invariant, so it is enough to describe the combinatorics of \(b_g \) for \(g \in S \), i.e. \(g = G_2^{\pm 1}, G_2^{\pm 1} \). We will call the corresponding four faces \(b_1, b_2, b_3 \) and \(b_4 \); the corresponding bisectors will be denoted by \(B_1, B_2, B_3 \) and \(B_4 \). Finally, the spinal spheres at infinity of these four bisectors will be denoted by \(S_1, S_2, S_3, S_4 \).

We describe their combinatorics in the form of pictures, see Figures 3-4. Each picture is drawn in projection from a picture where the bisector is identified with the unit ball in \(\mathbb{R}^3 \) (see section 3.1). Concretely, we use spinal coordinates on 2-faces, and parametrize 1-faces by solving equations of the form 3 for one of the variables.

We also give a list of vertices on the core faces, and also a list of the bounding bisectors that each vertex lies on, see 1 and 2.

<table>
<thead>
<tr>
<th>Word</th>
<th>bounding bisectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2, 2, 3, 121, 121, 131</td>
</tr>
<tr>
<td>121</td>
<td>2, 121, 121, 131, (\overline{1}^2 21^2, \overline{1}^2 31^2)</td>
</tr>
<tr>
<td>21^2</td>
<td>2, 121, (\overline{1}^2 21^2, \overline{1}^2 31^2, \overline{1}^3 21^3, \overline{1}^3 31^3)</td>
</tr>
<tr>
<td>121^2</td>
<td>2, 121, (\overline{1}^2 21^2, \overline{1}^2 31^2, \overline{1}^3 21^3, \overline{1}^3 31^3)</td>
</tr>
</tbody>
</table>

Table 1. Finite vertices on the face for \(G_2 \). For each vertex \(v \), we give a word \(w \) for an element that fixes precisely \(v \), and list the words for the bounding bisectors that contain \(v \).

5.2. **Effective local finiteness.** The goal of this section is to show that a given face of the Ford domain intersects only finitely many faces. Since the domain is by construction \(G_1 \)-invariant, we start by normalizing \(G_1 \) in a convenient form. We will work in the Siegel half space, see section 3.2.
Figure 3. The combinatorics of the face corresponding to G_2 and G_2^{-1}; all 2-faces are labelled, except for the boundary at infinity, which is a disk bounded by the most exterior curve. We also label the finite vertices, namely for $w \in \Gamma$, p_w denotes being the isolated fixed point of w.

Figure 4. The combinatorics of the face corresponding to G_3 and G_3^{-1}.
A natural set of coordinates is obtained by arranging that G_2^2 map \(p_\infty \) to the origin in the Heisenberg group. There is a unique Heisenberg translation that achieves this, given by

\[
Q = \begin{pmatrix}
1 & \frac{3-i\sqrt{7}}{4} & -\frac{1}{2} \\
0 & 1 & -\frac{3-i\sqrt{7}}{4} \\
0 & 0 & 1
\end{pmatrix}.
\]
Sphere	Center	radius
S_1 | $(\frac{3+i\sqrt{7}}{4\sqrt{2}}, 0)$ | 1
S_2 | $(-\frac{3+i\sqrt{7}}{4\sqrt{2}}, 0)$ | 1
S_3 | $(-\frac{1}{2\sqrt{2}}, -\frac{\sqrt{7}}{8})$ | $2^{-1/4}$
S_4 | $(-\frac{1}{\sqrt{2}}, \frac{\sqrt{7}}{2})$ | $2^{-1/4}$

Table 3. Centers and radii of core spinal spheres.

One then gets

$$QG_1Q^{-1} = \begin{pmatrix} 1 & 1 & -\frac{1}{2} \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix},$$

and

$$QG_2Q^{-1} = \begin{pmatrix} 0 & 0 & -\frac{1}{2} \\ 0 & -1 & 0 \\ -2 & 0 & 0 \end{pmatrix}.$$
Recall that \mathbb{R}-circles are by definition given by the trace at infinity of totally geodesic copies of $H^2_\mathbb{R}$ in $H^2_\mathbb{C}$. The corresponding real planes in $H^2_\mathbb{C}$ are preserved by A_1, and their union is the so-called \textit{invariant fan} of A_1 (see [16]).

Among all these \mathbb{R}-circles, the x-axis is somewhat special because of the following:

\textbf{Proposition 5.3.} The \mathbb{R}-plane bounded by the x-axis contains the fixed point of G_2.

Indeed, the fixed point of A_2 is given by

$$V = \left(-\frac{1}{2}, 0, 1\right),$$

and for $W = (-x^2 + it, x\sqrt{2}, 1)$,

$$\langle V, p_\infty \rangle \langle p_\infty, W \rangle \langle W, V \rangle = -\frac{1}{2}(1 + x^2) + it$$

which is real if and only if $t = 0$.

Note that equation (21) shows that for any bisector B_1 and B_2 not containing p_∞, $G^k_1B_1 \cap B_2 = \emptyset$ whenever k is large enough. Indeed, it follows from the detailed study of bisector intersection in [14] that, if two bisectors intersect, then the corresponding spinal spheres must intersect.

Moreover, this claim can easily be made effective, i.e. one can get explicit bounds on how large k needs to be for the above intersection to be empty. If $S_j = \partial_\infty B_j$ is contained in a strip $\alpha_j \leq x \leq \beta_j$, one can simply take $k > \beta_j - \alpha_j$, or $k < \alpha_2 - \beta_2$. Note that bounds α_j, β_j can be computed fairly easily from the equations of the relevant spinal spheres (see the Table 3 giving the centers and radii).

In particular, we get:

\textbf{Proposition 5.4.}

- S_1 intersects $G^k_1S_1$ only if $-2 \leq k \leq 2$;
- S_1 intersects $G^k_1S_2$ only if $-4 \leq k \leq 1$;
- S_2 intersects $G^k_1S_2$ only if $-3 \leq k \leq 1$;
- S_1 intersects $G^k_1S_3$ only if $-4 \leq k \leq 0$.
- S_2 intersects $G^k_1S_3$ only if $-2 \leq k \leq 2$;
- S_2 intersects $G^k_1S_4$ only if $-2 \leq k \leq 2$;
- S_3 intersects $G^k_1S_3$ only if $-2 \leq k \leq 2$;
- S_3 intersects $G^k_1S_4$ only if $-2 \leq k \leq 1$;
- S_1 intersects $G^k_1S_4$ only if $-2 \leq k \leq 2$;
- S_4 intersects $G^k_1S_4$ only if $-2 \leq k \leq 2$.

This is not an optimal result, since it takes into account only the variable x and the fact that G_1 translates by one unit in the direction of the x-axis. The optimal result is not far from this though, the point of Proposition 5.4 is to get down to a finite list of bounding bisectors intersecting a given one (so that we can use effective computational tools). We will give much more precise information in the next section.

5.3. \textbf{Proof of the combinatorics.}

5.3.1. \textit{General procedure.} The techniques we use in order to justify the combinatorics are very similar to the ones explained in detail in [7] and [8]. Note that one can think of justifying the combinatorics as a special case of finding the connected components of (many)
semi-algebraic sets. Indeed, F is clearly semi-algebraic, defined by inequalities, indexed by $I = \mathbb{N}$:

$$F = \{ z \in \mathbb{C}^2 : \forall i \in I, f_i(z) < 0 \}.$$

For convenience, we make the convention that $f_0(z) < 0$ is the defining equation for the unit ball, in other words

$$f_0(z) = \langle \tilde{z}, \tilde{z} \rangle,$$

where $\tilde{z} = (z, 1)$. In particular, we consider the boundary at infinity of complex hyperbolic space as a bounding face. All other equations have the form $f_j < 0$ where

$$f_j(z) = |\langle \tilde{z}, \tilde{p}_j \rangle|^2 - |\langle \tilde{z}, \gamma_j \tilde{p}_0 \rangle|^2.$$

The facets are of F described by taking some subset $J \subset I$, and replacing the inequalities indexed by elements of J by the corresponding equality:

$$F_J = \{ z \in \mathbb{C}^2 : \forall j \in J, f_j(z) = 0, \forall i \in I \setminus J, f_i(z) < 0 \}.$$

The fact that I is infinite will not be a problem because of the results in section 5.2.

More generally, we will consider sets of the form

$$F_{J,K} = \{ z \in \mathbb{C}^2 : \forall j \in J, f_j(z) = 0, \forall i \in K, f_i(z) < 0 \},$$

where J and K are disjoint. In particular F_J is the same as $F_{J,J\setminus J}$, and $F_{J,\emptyset}$ is the $|J|$-fold bisector intersection containing F_J.

We will call k-faces the facets of our polytopes that have dimension k. Moreover, 3-faces will be simply called faces, 2-faces will be called ridges, 1-faces will be called edges, and 0-faces will be called vertices.

The pictures in Section 5.1 include the statement that each facet is topologically (in fact piecewise smoothly) a disk with piecewise smooth boundary (with pieces of the boundary corresponding to facets of codimension one higher). This is not at all obvious; one of the difficulties is the fact that the sets F_J are in general not connected, in strong contrast with Dirichlet or Ford domains in the context of constant curvature geometries (see the discussion in [6]).

For a given J, K, there is an algorithm to decide whether $F_{J,K}$ is empty or not, and furthermore one can list its connected components (and even produce triangulations). One possible approach to this is the cylindrical algebraic decomposition of semi-algebraic sets, see [2] for instance.

The main issue when using such algorithms is that the number of semi-algebraic sets to study is extremely large. If F has N faces, in principle one has to deal with $\binom{N}{k}$ potential facets of codimension k, where $k = 1, 2, 3, 4$, which is a fairly large number of cylindrical decompositions. Rather, we will bypass the cylindrical decomposition and use as much geometric information as we can in order to restrict the number of verifications. Also, rather than using affine coordinates in \mathbb{C}^2, we use natural parametrizations for bisector intersections, deduced from spinal coordinates (see section 3.1).

Going back to geometry, the inequality defining complex hyperbolic space in \mathbb{C}^2 (which corresponds to f_0) is of course very different from the other inequalities. In particular,
when using the notation $F_{J,K}$, we will always assume one of the index sets J or K contains 0.

If K contains 0, then by definition $F_{J,K}$ is contained in H^2_C; we will denote by $\hat{F}_{J,K}$ its extension to projective space, namely
$$\hat{F}_{J,K} = F_{J,K\setminus\{0\}}.$$

We will also refer to the following set as the trace at infinity of $F_{J,K}$,
$$\partial_\infty F_{J,K} = F_{J\cup\{0\},K\setminus\{0\}}.$$

By $\mathcal{F}_{J,K}$, we mean the set obtained from the definition of $F_{J,K}$ by replacing $<$ by \leq, i.e.
$$F_{J,K} = \{z \in \mathbb{C}^2 : \forall j \in J, f_j(z) = 0, \forall i \in K, f_i(z) \leq 0\},$$

which is also
$$\mathcal{F}_{J,K} = \bigcup_{L \subset K} F_{J\cup L, K\setminus L}.$$

Note that in general, this is not the closure of $F_{J,K}$ in \mathbb{C}^2.

We focus on an algorithm for determining the combinatorics of ridges, or in other words facets of the form F_J with $|J| = 2$. In most cases, we will also assume $0 \notin J$, i.e. we study finite facets rather than faces in $\partial_\infty H^2_C$. The algorithm will produce a description of the facets in ∂F_J, so we get a list of the 1- and 0-faces along the way. The 3-faces are easily deduced from the 2-faces.

The basis for our analysis is the following, which follows from the theory of Gröbner bases and the LLL algorithm (see [4] for instance). Let ℓ be a number field.

- There is an algorithm to determine whether a system of n polynomial equations defined over ℓ in n unknowns is 0-dimensional (i.e. whether there are only finitely many solutions in \mathbb{C}^n);

- If the system is indeed 0-dimensional, there is an algorithm to determine the list of solutions; their entries lie in a finite extension $k \supset \ell$.

- Polynomials with coefficients in ℓ can be evaluated at the solutions of a point with coordinates in k, and one can determine whether the value is positive (resp. negative or zero).

When such systems have solution sets with unexpectedly high dimension, there is usually a geometric explanation (typically some of the intersecting bisectors share a slice, see [8] for instance). We will not address this issue, since it never occurs in the situation of the present paper.

In all situations we will consider in this paper, the extension ℓ will a quadratic number field, and k will have degree at most four over ℓ. This makes all computations very quick (using capabilities of recent computers, and standard implementations of Gröbner bases and the LLL algorithm).

For the rest of the discussion, we make the following assumptions:

1. For every $L \subset I$ with $|L| = 4$, F_L has dimension zero.
Proposition 5.5. Let they can be checked efficiently using a computer, in particular we state these assumptions are by no means necessary in order to determine the combinatorial structure of $F_{J,K}$, but they will simplify the discussion in several places. Note also that they can be checked efficiently using a computer, in particular we state

Proposition 5.5. Let M be the figure eight knot complement. Then the Ford domain of the irreducible boundary unipotent representation $p : \pi_1(M) \to PU(2,1)$, centered at the fixed point of the holonomy of any peripheral subgroup satisfies assumptions 1, 2 and 3.

The combinatorial description of F_J (i.e. its connected components, and the list of facets adjacent to it) can be obtained by starting from a description of F_J, and repeatedly studying $F_{J,K \cup \{x\}}$ from $F_{J,K}$, where $x \in I$ is not in $J \cup K$. The latter inductive step is done as follows.

The boundary $\partial F_{J,K}$ can be described as a union of arcs contained in $F_{J \cup \{k\}, K \setminus \{k\}}$ for some $k \in K$ (the arcs may not be equal to $F_{J \cup \{k\}, K \setminus \{k\}}$, for instance $F_{J \cup \{x\}}$ may have a double point).

For each arc a in $\partial F_{J,K}$ as above, we study the set $F_{J \cup \{k,x\}}$, which by assumption 1 is obtained by solving a 0-dimensional system. Keeping only solutions that lie in a, we get a subdivision of a into connected components of $a \setminus F_{J \cup \{k,x\}}$, and for each such component we check whether or not it is in $F_{J \cup \{k\}, \{x\}}$. If so, it is a component of the boundary of $F_{J,K \cup \{x\}}$.

We then compute the critical points of the restriction to F_J of the equation f_x (this can be done because of assumption 2), and determine whether any such critical point is inside $F_{J,K}$.

Suppose c is in $F_{J,K}$. By assumption 3, either $g_x(c) = 0$ or $g_x(c) < 0$.

- If $g_x(c) = 0$ and c is a saddle point for the restriction g_x of f_x, then a neighborhood of c in $F_{J,K \cup \{x\}}$ has two components (each homeomorphic to a disk). In a neighborhood of c, $F_{J,K \cup \{x\}}$ will have four boundary arcs. Each such arc will either connect c to another saddle point, or it will connect it to a point of the form $F_{J \cap \{k_1,x\}}$ in the boundary of $C_{J,K}$.

- Otherwise, the assumption $g_x(c) < 0$ rules out the possibility that there is an isolated component of $g_x = 0$ inside $F_{J,K}$, and every arc of $F_{J \cup \{x\}, K}$ must intersect the boundary of $F_{J,K}$.

Now collecting the boundary arcs with the inside arcs (joining two points that are either saddle or boundary vertices $F_{J \cap \{k,x\}}$), we get a stratum decomposition for $F_{J,K \cup \{x\}}$.

This also gives a simple way to determine connected components of $F_{J,K}$. Given such a connected component $C_{J,K}$, we can check its topology by studying the boundary $\partial C_{J,K}$; in particular particular, $C_{J,K}$ is homeomorphic to a disk if and only if $\partial C_{J,K}$ has only one component.
5.3.2. Sample computations. We determine some sets F_J, $|J| = 2$ explicitly, in order to illustrate the phenomena that can occur when applying the algorithm from the previous section. The general scheme to parametrize $F_{J,\emptyset}$ is explained in [7], for instance.

When $0 \notin J = \{j, k\}$, we distinguish two basic cases, depending on whether p_0, p_j and p_k are in a common complex line. This happens if and only if some/any lifts $\tilde{p}_j \in \mathbb{C}^3$ are linearly dependent. In that case, the bisectors $F_{(j)}$ and $F_{(k)}$ have the same complex spine, and their intersection is either empty or a complex line (this never happens in the Ford domains studied in this paper).

Otherwise, $F_{J,\emptyset}$ can be parametrized by vectors of the form

$$(\tilde{z}_1 p_0 - p_j) \otimes (\tilde{z}_2 p_0 - p_k) = z_1 p_{k0} + z_2 p_{0j} + p_{jk},$$

with $|z_1| = |z_2| = 1$, and where p_{mn} denotes $p_m \otimes p_n$ (see section 3.1).

Valid pairs (z_1, z_2) in the Clifford torus $|z_1| = |z_2| = 1$ are given by pairs where

$$\langle z_1 p_{k0} + z_2 p_{0j} + p_{jk}, z_1 p_{k0} + z_2 p_{0j} + p_{jk} \rangle < 0,$$

which can be rewritten as

$$\Re(\mu_0(z_1) z_2) = \nu_0(z_1),$$

for μ_0 and ν_0 affine in z_1, \tilde{z}_1.

In terms of the notations of section 5.3.1, the restriction g_0 of f_0 to $F_{J,\emptyset}$ is given by

$$g_0(z_1, z_2) = \Re(\mu_0(z_1) z_2) - \nu_0(z_1)).$$

We will sometimes use log-coordinates (t_1, t_2) for $F_{J,\emptyset}$, and write, for $j = 1, 2$,

$$z_j = \exp(2\pi it_j).$$

Given $l \notin J$, we already mentioned in section 3.1 how to write the restriction g_l of f_l to F_J. Note that $\langle p_{k0}, p_0 \rangle = \langle p_{0j}, p_0 \rangle = 0$, so the equation f_z reads

$$|\langle p_{jk}, p_0 \rangle| = |\langle z_1 p_{k0} + z_2 p_{0j} + p_{jk}, p_l \rangle|,$$

which again can be written in the form

$$\Re(\mu_l(z_1) z_2) = \nu_l(z_1).$$

In order to compute the critical points of the restriction to $|z_1| = |z_2| = 1$ of a function $h(z_1, \tilde{z}_1, z_2, \tilde{z}_2)$, we search for points where

$$\begin{align*}
\frac{\partial h}{\partial z_1} z_1 - \frac{\partial h}{\partial \tilde{z}_1} \tilde{z}_1 &= 0 \\
\frac{\partial h}{\partial z_2} z_2 - \frac{\partial h}{\partial \tilde{z}_2} \tilde{z}_2 &= 0
\end{align*}$$

Gröbner bases for the corresponding systems tell us whether these critical points are non-degenerate (see assumption 3), and if so, we can compute them fairly explicitly, i.e. describe their coordinates as roots of explicit polynomials (in particular they can be computed to arbitrary precision).

Proposition 5.6. Let $J = \{1, 2\}$. Then F_J is empty, and \overline{F}_J is a singleton, given by $F_{\{1,2,3,5,10,11\}}$.

Figure 6. Steps of the algorithm to determine $F_{\{1,2\}}$.

Proof: For $J = \{1, 2\}$, we get

$$\mu_0(z_1) = -2 - \bar{z}_1, \quad \nu_0(z_1) = -3 + z_1 + \bar{z}_1.$$

The discriminant

$$|\mu|^2 - \nu^2 = -6 + 16\Re z_1 - 2\Re z_1^2$$

vanishes precisely for four complex values of z_1, which are the roots of

(22)

$$z_1^4 - 8z_1^3 + 6z_1^2 - 8z_1 + 1.$$

Since we know $F_{J,\{0\}}$ is connected (see [14], Theorem 9.2.6), we know that at most two of these roots lie on the unit circle. In fact, $z_1 = z_2 = 1$ gives a point in $F_{J,\{0\}}$, so $F_{J,\{0\}}$ is non empty, hence there must be two (complex conjugate) roots on the unit circle. Indeed, these roots have argument $2\pi t$ with $t = \pm 0.20682703\ldots$.

A more satisfactory way to check that the polynomial (22) has precisely two roots on the unit circle is to split $z_1 = x_1 + iy_1$ into its real and imaginary parts (this gives a general method that does not rely on geometric arguments).

Indeed z_1 is a root of (22) if and only if (x_1, y_1) is a solution of the system $-6 + 16x_1 - 2x_1^2 + 2y_1^2 = 0, x_1^2 + y_1^2 = 1$. These equations imply that $x_1 = 2 \pm \sqrt{3}$, and then

$$y_1^2 = 2 - 4x_1,$$

which is positive only for $x_1 = 2 - \sqrt{3}$, and then we get $y_1 = \pm \sqrt{4\sqrt{3} - 6}$.

In order to run the algorithm from the preceding section, we write the restriction g_3 of f_3 to $F_{J,\emptyset}$, which is given by

$$-3 + 2\Re\left\{\frac{1 \pm i\sqrt{7}}{2}z_1 + \frac{5 \pm i\sqrt{7}}{2}z_2 + \frac{-3 \pm i\sqrt{7}}{2}z_1\bar{z}_2\right\}.$$

Groebner bases calculations show that the system $g_0(z) = g_3(z) = |z_1|^2 - 1 = |z_2|^2 - 1 = 0$ has precisely two solutions, given in log-coordinates by

$$(-0.20418699\ldots, -0.03294828\ldots), \quad (0.15576880\ldots, -0.07655953\ldots).$$

Once again, the most convenient way to use Gröbner bases is to work with four variable x_1, y_1, x_2, y_2 given by real and imaginary parts of z_1 and z_2 (with extra equations $x_1^2 + y_1^2 = 1$.

The combinatorics of $F_{J,K}$ for $K = \{0, 3\}$ are illustrated in Figure 6(b). It is a disk with two boundary arcs, given by $F_{\{1,2,0\},\{3\}}$ and $F_{\{1,2,3\},\{0\}}$.

As the next element to include in K, we choose 5 rather than 4, in order to shorten the discussion slightly. The curve $F_{\{1,2,5\},0}$ intersects $F_{\{1,2,0\},0}$ two points, given in log-coordinates by
\[(0.04600543 \ldots , 0.20593006 \ldots), (0.05483483 \ldots , -0.17019919 \ldots).\]
Only the second one is inside the arc $F_{\{1,2,0\},\{3\}}$.

The curve $F_{\{1,2,5\},0}$ intersects $F_{\{1,2,3\},0}$ in five points, given by $(z_1, z_2) = (1, 1), (i, -i), (-i, i), \left(\frac{9 + 5i\sqrt{7}}{16}, \frac{-3 + i\sqrt{7}}{4}\right), \left(\frac{-3 + i\sqrt{7}}{4}, \frac{1 - 3i\sqrt{7}}{8}\right)$.

only one of which is in $F_{\{1,2,3,\{0\}}$, namely $(1, 1)$.

Now $F_{\{1,2\},\{0,3,5\}}$ has three boundary arcs, given by $F_{\{1,2,0\},\{3,5\}}, F_{\{1,2,3\},\{0,5\}}$ and $F_{\{1,2,5\},\{0,3\}}$ (see Figure 6(c)).

Next, we include 10 in K. The curve $F_{\{1,2,10\},0}$ intersects $F_{\{1,2,0\},0}$ in two points, none of which is in $F_{\{1,2,0\},\{3,5\}}$. Hence the arc $F_{\{1,2,0\},\{3,5\}}$ is either completely inside, or completely outside $F_{\{1,2,0\},\{3,5,10\}}$. One easily checks that it is outside, by taking a sample point.

The curve $F_{\{1,2,10\},0}$ intersects $F_{\{1,2,3\},0}$ in five points, none of which is in $F_{\{1,2,3\},\{0,5\}}$. The arc $F_{\{1,2,3\},\{0,5\}}$ is either completely inside, or completely outside $F_{\{1,2,3\},\{0,5,10\}}$ and a sample point shows it is outside.

Similarly, the curve $F_{\{1,2,10\},0}$ intersects $F_{\{1,2,5\},0}$ in six points, none of which is in $F_{\{1,2,5\},\{0,3\}}$, and the arc $F_{\{1,2,5\},\{0,3\}}$ is completely outside $F_{\{1,2,3\},\{0,5,10\}}$.

This implies that $F_{\{1,2\}}$ is empty (see Figure 6(d)).

Finally we consider the intersection of $F_{\{1,2,10\},0}$ with the three vertices of $F_{\{1,2,0,3,5\}}$. One easily checks that the only intersection is the point with complex spinal coordinates given by $(1, 1)$, and this point indeed a vertex of F. It is in homogeneous coordinates in \mathbb{C}^3 given by
\[\left(\frac{3 - i\sqrt{7}}{2}, -2, \frac{3 - i\sqrt{7}}{2}\right),\]
and that it is on precisely six bounding bisectors (by construction it is on B_1 and B_2, and it is also in B_3, B_5, B_{10} and B_{11}). In terms of the notation of section 5.3.1, this point is $F_{\{1,2,3,5,10,11\}}$.

In fact one easily checks that this point is the fixed point of G_2 (which by definition of the bounding bisectors is obviously in $B_1 \cap B_2$).
\[\square\]

\textbf{Remark 5.7.} (1) Throughout the proof of Proposition 5.6, we have ignored the issue of critical points. In principle, at each stage, we may have missed some isolated components of the curves $F_{\{1,2,6\},0}$; if this were the case, the set $F_{\{1,2\}}$ would still be contained in the set which we just described, hence it must be empty anyway.

(2) The curves $F_{\{1,2,10\},0}$ and $F_{\{1,2,3\},0}$ are in fact tangent at $(1, 1)$, which is a vertex of F. We shall come back to this point later, when discussing stability of the combinatorics of F under deformations.
Proposition 5.8. \(F_{\{1,3\}} \) is combinatorially a triangle, with three boundary arcs given by \(F_{\{1,3,0\}}, F_{\{1,3,5\}}, F_{\{1,3,11\}} \), and three vertices given by \(F_{\{0,1,3,5\}}, F_{\{0,1,3,11\}} \), and \(F_{\{1,2,3,5,10,11\}} \).

Proof: As in the argument for \(F_{\{1,2\}} \), we study \(F_{J,K} \) for increasing sets \(K \), freely choosing the order we use to increase \(K \). We describe an efficient way to get down to \(F_{\{1,3\}} \) in the form of a picture, see Figure 7.

![Diagram of steps of the algorithm to determine \(F_{\{1,3\}} \).](image)

We start by studying \(F_{\{1,3\},\{5\}} \). Note that the curve \(F_{\{1,3,5\},\emptyset} \) has two double points. These points can be obtained by writing the equation \(g_5 \) as

\[
\mathfrak{R}(\mu(z_1)z_2) = \nu(z_1),
\]

where

\[
\mu(z_1) = \frac{3 + i\sqrt{7}}{2} - z_1, \quad \nu(z_1) = 1 - \mathfrak{R}\left(\frac{3 + i\sqrt{7}}{2}z_1\right).
\]

The discriminant \(|\mu(z_1)|^2 - \nu(z_1)^2\) is given by

\[
2 + \mathfrak{R}\left(-1 - \frac{3i\sqrt{7}}{4}z_2^2\right),
\]

which vanishes for \(z_1 = \pm \frac{-3 - i\sqrt{7}}{4} \). Plugging this back into the equation \(g_5 \) gives \(z_2 = \mp \frac{-3 - i\sqrt{7}}{4} \).

One easily checks that \(g_0(z_1, z_2) > 0 \) for these two double points, i.e. they lie outside complex hyperbolic space.

One checks that \(F_{\{1,3,5\},\emptyset} \) intersects \(F_{\{1,3,0\},\emptyset} \) in precisely two points (and these intersections are transverse), so we get two arcs in the boundary of \(F_{\{1,3\},\{0,5\}} \), namely \(F_{\{1,3,5\},\{0\}} \) and \(F_{\{1,3,0\},\{5\}} \) (see Figure 7(a)).

In principle, there could be an extra arc in \(F_{\{1,3,5\},\emptyset} \), not intersecting \(F_{\{1,3,0\},\emptyset} \), so we compute critical points of \(g_5 \). Their are given by solutions of the system

\[
\begin{align*}
\Im\{z_2 + \frac{3 + i\sqrt{7}}{2}z_1\} &= 0 \\
\Im\{(z_1 + \frac{3 + i\sqrt{7}}{2})z_2\} &= 0,
\end{align*}
\]
that satisfy $|z_1| = |z_2| = 1$.

There are four such critical points, of the form $(\pm \alpha, \pm \alpha)$ where $\alpha = \frac{3 - i\sqrt{7}}{4}$ (of course this list includes the double points computed before). The corresponding points are outside F, in fact $g_0(\pm \alpha, \pm \alpha) > 0$.

A similar analysis justifies part (b) of Figure 7, i.e. that $T_{\{1,3\},\{0,5,11\}}$ is combinatorially a triangle (with one side on $\partial_\infty H^2_\infty$).

We sketch how to justify that $F_{\{1,3\}} = F_{\{1,3\},\{0,5,11\}}$. For $k = 2$ and $k = 10$, the curve $F_{\{1,3,k\},\emptyset}$ actually goes through a vertex of $F_{\{1,3\}} = F_{\{1,3\},\{0,5,11\}}$; for $k \neq 0, 2, 5, 10, 11$, $F_{\{1,3,k\},\emptyset}$ does not intersect even $T_{\{1,3\},\{0,5,11\}}$.

We start by studying $F_{\{1,3,0\},\emptyset} \cap F_{\{1,3,2\},\emptyset}$. In order to use standard root isolation methods, we use real equations, in x_1, y_1, x_2, y_2. Computing a Groebner basis for the ideal generated by the equations $g_0, g_3, x_1^2 + y_1^2 - 1$ and $x_2^2 + y_2^2 - 1$, we see that it contains

$$39 - 840\sqrt{7}y_2 + 4088y_2^2 + 608y_3^2\sqrt{7} - 9152y_2^4 + 1024y_5^2\sqrt{7} + 7168y_6^2,$$

which has precisely two real roots, given approximately by $y_2^{(1)} = 0.01815877 \ldots$ and $y_2^{(2)} = 0.65602473 \ldots$.

The Groebner basis also gives an expression for x_1, y_1, x_2 in terms of y_2, namely

$$x_1 = \{ -4943 + 16836\sqrt{7}y_2 - 142640y_2^2 + 53184y_3^2\sqrt{7} + 72128y_4^2 - 75264y_5^2\sqrt{7} \}/14725,$$

$$y_1 = \{ 5058\sqrt{7} + 45888y_2 - 112560y_2^2\sqrt{7} + 309472y_3^2 + 74432y_4^2\sqrt{7} - 422912y_5^2 \}/14725,$$

$$x_2 = \{ 20 - 21\sqrt{7}y_2 + 16y_2^2 + 32y_3^2\sqrt{7} \}/19.$$

Substituting either value $y_2^{(j)}$ gives two points $a^{(j)} = (x_1^{(j)}, y_1^{(j)}, x_2^{(j)}, y_2^{(j)}), j = 1, 2$ and we claim that $g_5(a^{(1)}) > 0$ and $g_{11}(a^{(2)}) > 0$. Clearly this can be checked by simple interval arithmetic, in fact

$$g_5(a^{(1)}) = 3.80716606 \ldots, g_{11}(a^{(2)}) = 3.94518313 \ldots.$$

The analysis of $F_{\{1,3,5\},\emptyset} \cap F_{\{1,3,2\},\emptyset}$ is in a sense simpler, because all the solutions to the corresponding system are defined over $\mathbb{Q}(i, \sqrt{7})$. The system has precisely five solutions, given by

$$(i, \frac{1+i\sqrt{7}}{4} + i\frac{1-i\sqrt{7}}{4}), (-i, \frac{1-i\sqrt{7}}{4} - i\frac{1+i\sqrt{7}}{4}),$$

$$(-\frac{3+i\sqrt{7}}{4}, \frac{3-i\sqrt{7}}{4}), (\frac{9+5i\sqrt{7}}{16}, -\frac{9+5i\sqrt{7}}{16}, (1, \frac{3+i\sqrt{7}}{4}).$$

Only one of these solutions satisfies $g_0 \leq 0$, namely the last one (in other words, only one intersection point lies $\overline{T_{\{1,3\},\emptyset}}$).

Note that we already found one point in $F_{\{1,3,2\},\emptyset} \cap F_{\{1,3,5\},\emptyset}$, namely the fixed point of G_2 (see the proof of Proposition 5.6).

Similarly, one verifies that $F_{\{1,3,2\},\emptyset} \cap F_{\{1,3,11\},\emptyset}$ contains precisely six points, only one of which gives a point in (the closure of) complex hyperbolic space.

Once again, since we already know one point in this intersection (namely the fixed point of G_2), we get that $F_{\{1,3,2\},\emptyset}$ with $\partial F_{\{0,1,3,5,11\},\emptyset}$ consists of precisely one point. This implies that $\partial F_{\{0,1,3,5,11\},\emptyset}$ is either completely inside or completely outside $\partial F_{\{0,1,3,5,11,2\},\emptyset}$. It is
easy to check that it is inside, by testing a sample point (for instance one of the other vertices of the triangle $\partial F_{0,1,3,5,11}$).

We now show that $F_{1,3,2}$ does not intersect $F_{0,1,3,5,11}$, by computing the critical points of g_2. There are six critical points, given by

$$(-1, -\frac{1+3i\sqrt{7}}{8}, \frac{3-i\sqrt{7}}{4}, \pm\frac{1+i\sqrt{7}}{\sqrt{8}}, \pm\frac{1-i\sqrt{7}}{\sqrt{8}}),$$

and one easily checks that none of them is inside $F_{0,1,3,5,11}$. In particular, we get that the minimum value of g_3 on $\bar{F}_{0,1,3,5,11}$ is 0, and it is realized precisely at one vertex (namely the fixed point of G_2).

In other words, we get $F_{0,1,3,5,11} = F_{0,1,2,3,5,11}$, i.e. including the inequality $g_2 < 0$ at this stage has no effect. An entirely similar computation shows that $F_{0,1,2,3,5,11} = F_{0,1,2,3,5,10,11}$.

For all $k \neq 0, 1, 2, 3, 5, 10, 11$, $F_{0,1,3,k}$ does not intersect even the closure $\bar{F}_{0,1,2,3,5,11}$, and one can use arguments as above using interval arithmetic.

Similar arguments allow us to handle the detailed study of all the polygons that appear on Figure 3 and 4.

Proposition 5.9. $F_{1,4}$ is a Giraud disk, which is entirely contained in the exterior of B_5. In particular, $F_{1,4}$ is empty.

Proof: We will prove that $F_{1,4}$ does not intersect the Giraud torus $\widehat{F}_{1,4}$. In order to see this, we use complex spinal coordinates, and write $g_5(z_1, z_2)$ for the restriction of f_5 to the Clifford torus $|z_1| = |z_2| = 1$.

One computes explicitly that

$$g_5(z_1, z_2) = 4 + 2\mathcal{R}\left\{\frac{1+i\sqrt{7}}{2}z_1\bar{z}_2\right\}.$$

This is clearly always positive when $|z_1| = |z_2| = 1$.

In other words, the Giraud torus $\widehat{F}_{1,4}$ is entirely outside F. \hfill \Box

Proposition 5.10. $F_{1,6}$ is empty. The Giraud torus $\widehat{F}_{1,6}$ is completely outside complex hyperbolic space, in other words the bisectors B_1 and B_6 are disjoint.

Proof: We write the equation of $F_{0,1,6}$ in spinal coordinates for the Giraud torus $F_{1,6}$, which reads

$$g_0(z_1, z_2) = 18 - 2\mathcal{R}\{4(z_1 + z_2) + z_1\bar{z}_2\}.$$

Clearly this is non-negative when $|z_1| = |z_2| = 1$, and in that case it is zero if and only if $z_1 = z_2 = 1$.

In other words, \hat{B}_1 and \hat{B}_2 intersect in a point in \mathbb{P}^2_C. Note that this point is not in the closure of F, in fact it is strictly outside the half spaces bounded by B_2, B_3, B_5, B_7 and B_{11}.

\hfill \Box
Proposition 5.11. $F_{\{3,8\}}$ is empty. The Giraud torus $F_{\{3,8\},\emptyset}$ contains a disk in H^2_c, but $\overline{F}_{\{3,8\},\{2,6\}}$ is empty.

Proof: The proof is actually very similar to that of Proposition 5.8, but since the corresponding set is empty, we go through some of the details.

The curves $F_{\{3,8,2\},\emptyset}$ intersects $F_{\{3,8,0\},\emptyset}$ in precisely two points, and cuts out a disk in the Giraud disk $F_{\{3,8\},\emptyset}$, so that $F_{\{3,8\},\{0,2\}}$ is a disk with only two boundary arcs.

One then easily verifies that $F_{\{3,8,6\},\emptyset}$ does not intersect $\overline{T}_{\{3,8\},\{0,2\}}$, so $F_{\{3,8\},\{0,2,6\}}$ is either equal to $F_{\{3,8\},\{0,2\}}$ or is empty (one needs to check critical points in order to verify this).

By taking a sample point z, and checking $f_6(z) > 0$, one gets that $F_{\{3,8\},\{0,2,6\}}$ is empty. □

The study of $B_1 \cap B_k$ for various values of k is similar to one of the previous few propositions, we list the relevant arguments in Table 4. When the proof is similar to Proposition 5.9, the indices l listed in brackets indicate that $B_1 \cap B_k$ is entirely outside the half space bounded by B_l.

The corresponding list of arguments used to study of $B_3 \cap B_k$ for various values of k in Table 5.

Note that the arguments for B_2 (resp. B_4) are of course almost the same as those for B_1 (resp. B_3), since the corresponding faces are actually paired by G_2 (resp. G_3).

Prop 5.4	8, 14-16, 21-25, 29-33, 35
Prop 5.6	2, 12, 19, 26
Prop 5.8	3, 5, 9, 10, 11, 18, 20, 28
Prop 5.9	4[5,10], 7[3], 13[2,5,10], 17[9], 27[9,18], 36[17,28,34]
Prop 5.10	6, 34

Table 4. We list the indices where the arguments of each proposition apply to study $B_1 \cap B_k$.

Prop 5.4	16, 17, 22-36
Prop 5.6	10, 13
Prop 5.8	1, 2, 5, 6, 7, 11
Prop 5.9	9[11], 14[7], 15[7], 18[1,10], 19[11], 20[7], 21[6,13]
Prop 5.10	4, 12
Prop 5.11	8

Table 5. We list the indices where the arguments of each proposition apply to study $B_3 \cap B_k$.

5.3.3. **Genericity.** In order study deformations ρ_t of the boundary unipotent representation $\rho_0 : \pi_1(M) \to PU(2,1)$, we will need more information that just the combinatorics.
We will determine the non-transverse bisector intersections, and prove that they remain non-transverse in the family of Ford domains for groups in the 1-parameter family where the unipotent generator becomes twist parabolic.

The basic fact is the following, which follows from the restrictive character of the bounding bisector, namely they are all covertical (because they define faces of a Ford domain).

Proposition 5.12. Let \(J = \{ j, k \} \) with \(j \neq k \). Then the intersection \(F_{\{ j \}, \emptyset} \cap F_{\{ k \}, \emptyset} = F_{J, \emptyset} \) is transverse at every point of \(F_{J, \emptyset} \).

The analogous statement is not true when \(|J| \geq 3 \), since \(F_{J, \emptyset} \) can have singular points (see Figure 6 for instance). This will not be bothersome in the context of our polyhedron \(F \), because of the following.

Proposition 5.13. Suppose \(|J| = 3 \) and \(F_J \) is non-empty. Then the corresponding intersection of three bisectors (or two bisectors and \(\partial_\infty H_C^2 \)) is transverse at every point of \(F_J \).

Proof: This follows from the fact that double points of \(F_{J, \emptyset} \) occur only away from the face \(F_J \). Indeed, one can easily locate these double points by the techniques explained in section 5.3.2, and check that they are outside \(F \) by using interval arithmetic. \(\square \)

The situation near vertices is slightly more subtle, mainly because our group contains some torsion elements, hence one expects the intersections to be non-generic near the fixed points of those torsion elements.

We will check possible tangencies between 1-faces intersecting at each vertex. More generally, for each \(j \neq k \), we will study tangencies between all the curves of the form \(F_{\{ j, k, l \}, \emptyset} \) for \(j \neq j, k \) that occur at a vertex of \(F \).

Proposition 5.14. Let \(p \) be an ideal vertex of \(F \), i.e. a vertex in \(\partial_\infty H_C^2 \). Then there are precisely three bounding bisectors \(B_i, B_j \) and \(B_k \) meeting at \(p \) (where \(i, j, k > 0 \)). The intersection of the four hypersurfaces in \(C^2 \) given by the three extors \(\hat{B}_i, \hat{B}_j, \hat{B}_k \), and \(\partial_\infty H_C^2 \) is transverse; in particular, none of the six incident 1-faces are tangent at \(p \).

Proof: We treat the example of \(F_{\{ 0, 1, 3, 5 \}} \), the other ones being entirely similar. The parametrization of the Giraud disk \(F_{\{ 1, 3 \}, \{ 0 \}} \) was already explained in section 5.3.2.

The relevant vertex satisfies
\[
\begin{align*}
x_1 &= 0.80979557 \ldots, \quad y_1 = -0.58671213 \ldots, \quad x_2 = -0.53336432 \ldots, \quad y_2 = 0.84588562 \ldots
\end{align*}
\]

We write the equations of the bisectors in affine coordinates for complex hyperbolic space corresponding to the spinal coordinates, i.e. such that \((z_1, z_2)\) corresponds to
\[
p_{13} + z_{13}p_{30} + z_{23}p_{01},
\]
where \(p_{jk} \) stands as before as the box product \(p_j \boxtimes p_k \).

In these coordinates, \(B_1 \) is given by \(|z_1| = x_1^2 + y_1^2 = 1 \), and \(B_3 \) is given by \(|z_2| = x_2^2 + y_2^2 = 1 \), and of course other bisectors have more complicated equations.
The equation of the boundary of the ball is
\[2 - \sqrt{7} y_2 - 4 x_1 + x_2 - y_2 \sqrt{7} y_1 + 2 x_1^2 + 2 y_1^2 + x_2^2 + y_2^2 - x_2 x_1 - y_2 y_1, \]
and the equation for \(B_5 \) is given by
\[3(x_1 + x_2) - \sqrt{7}(y_1 + y_2) - 2x_2 x_1 - 2 y_2 y_1 - x_1^2 - y_1^2 - x_2^2 - y_2^2. \]

One then computes the gradient of each of these four equations, and checks that they are linearly independent at the point from equation (23) (this is readily done using interval arithmetic).

Proposition 5.15. There are precisely six bounding bisectors containing \(p_2 \), indexed by \(1,2,3,5,10,11 \). The pairwise and 3-fold intersections of these six bisectors are all transverse, but some 4-fold are not, namely \(\{1,2,3,10\}, \{1,2,5,11\}, \{3,5,10,11\} \).

Proof: The list of bisectors that contain this vertex were already justified in section 4.2. We work in spherical coordinates for \(B_1 \cap B_3 \), and as in the preceding proof, we use \(z_j = x_j + iy_j \), \(j = 1,2 \) as global coordinates on \(\text{H}^3 \). The point \(p_2 \) is given by \(z_1 = 1, z_2 = \frac{3+i\sqrt{7}}{4} \).

The equations of the six bisectors are as follows:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 - 4(x_1^2 + y_1^2)</td>
</tr>
<tr>
<td>2</td>
<td>2 + x_1 + 2x_2 + (y_1 - 2y_2)\sqrt{7} + (x_1y_2 - x_2y_1)\sqrt{7} + 3(x_1x_2 + y_1y_2) - (x_1^2 + y_1^2) - 4(x_2^2 + y_2^2)</td>
</tr>
<tr>
<td>3</td>
<td>4 - 4(x_2^2 + y_2^2)</td>
</tr>
<tr>
<td>5</td>
<td>3(x_1 + x_2) - \sqrt{7}(y_1 + y_2) - 2(x_2x_1 + y_2y_1) - (x_1^2 + y_1^2) - (x_2^2 + y_2^2)</td>
</tr>
<tr>
<td>10</td>
<td>2 - 4(x_1 - x_2) + 4(x_2x_1 + y_2y_1) - 2(x_1^2 + y_1^2) - 2(x_2^2 + y_2^2)</td>
</tr>
<tr>
<td>11</td>
<td>3 - 2x_2 + 3x_1 + \sqrt{7}y_1 + 3(x_1x_2 + y_1y_2) + (x_2y_1 - y_2x_1)\sqrt{7} - 4(x_1^2 + y_1^2) - (x_2^2 + y_2^2)</td>
</tr>
</tbody>
</table>

One computes the gradients at the point \(x_1 = 1, y_1 = 0, x_2 = 3/4, y_2 = \sqrt{7}/4 \), which are given by
\[
\begin{align*}
 v_1 &= (-8, 0, 0, 0) \\
 v_2 &= (3, \sqrt{7}, -1, -3\sqrt{7}) \\
 v_3 &= (0, 0, -6, -2\sqrt{7}) \\
 v_5 &= (-1/2, -3\sqrt{7}/2, -1/2, -3\sqrt{7}/2) \\
 v_{10} &= (-5, \sqrt{7}, 5, -\sqrt{7}) \\
 v_{11} &= (-9/2, 5\sqrt{7}/2, -1/2, -3\sqrt{7}/2)
\end{align*}
\]

and the claim of the proposition follows from explicit rank computations.

The tangent vectors to the intersection are given by
\[
\begin{align*}
 u_1 &= (0, 8/3, -\sqrt{7}/3, 1) \\
 u_2 &= (0, 0, -3\sqrt{7}, 1) \\
 u_3 &= (-2\sqrt{7}/3, -2/3, -\sqrt{7}/3, 1)
\end{align*}
\]

and one easily checks that any curve tangent to these vectors must exit the polyhedron in a transversal fashion, more specifically, the exited bisectors are given in Table 6.
Table 6. Each direction tangent vector u_k to a non-tranverse quadruple intersection at p_2 exits the polyhedron; in the last two columns we list the two half spaces it exits (transversely) in the $\pm u_k$ direction.

<table>
<thead>
<tr>
<th>vector</th>
<th>tangent to</th>
<th>exit in + direction</th>
<th>exit in - direction</th>
</tr>
</thead>
<tbody>
<tr>
<td>u_1</td>
<td>1, 2, 3, 10</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>u_2</td>
<td>1, 2, 5, 11</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>u_3</td>
<td>3, 5, 10, 11</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

6. Side pairings

6.1. Faces paired by G_2. We now justify the fact that G_2^{-1} defines an isometry between the faces for G_2 and G_2^{-1}. On the level of 2-faces, this follows from the following.

Proposition 6.1. The isometry G_2^{-1} maps

1. G_3p_0 to $G_1^{-1}G_3p_0$;
2. $G_1^{-1}G_3^{-1}p_0$ to $G_1G_3^{-1}p_0$;
3. $G_1^{-1}G_3p_0$ to $G_1^{-1}G_2^{-1}p_0$;
4. $G_1^{-1}G_2p_0$ to $G_3^{-1}p_0$;
5. $G_1^{-2}G_3^{-1}p_0$ to $G_1G_3^{-1}p_0$;
6. $G_1G_2p_0$ to G_3p_0;
7. $G_1^{-1}G_2^{-1}p_0$ to $G_1G_3p_0$;
8. $G_1^{-2}G_2^{-1}p_0$ to $G_1^2G_2p_0$.

Proof: We show a slightly stronger statement, namely in order to show that $G_2^{-1}gp_0 = hp_0$, we will exhibit $h^{-1}G_2^{-1}g$ as an explicit power of G_1.

The result follows from the presentation of the group (strictly speaking, they only depend on the relations we know to hold, not on the fact that this really gives a presentation). For the sake of brevity, we use word notation.

1. $3\bar{1}23 = \bar{2}1\bar{2}2\bar{1}2 = \bar{2}1\bar{2} = 1$;
2. $3\bar{1}2\bar{1}3 = \bar{2}1\cdot121\bar{1}2\cdot1\cdot12\bar{1}2\cdot1 = \bar{2}(12\bar{1}2)(12\bar{1}2)12\bar{1}2 = \bar{2}^{4}\bar{1} = \bar{1}$;
3. $212\bar{1}23 = 21\bar{2}1\bar{2}12 = \bar{1}$;
4. $3\bar{2}12 = Id$;
5. $2\bar{1}2\bar{1}23 = 2(1\bar{2}1)^{2}2 = 2(1\bar{2}1)2 = \bar{1}$;
6. $3\bar{2}12 = Id$;
7. $2\bar{1}212 = 1$;
8. $\bar{2}1\bar{2}1\bar{2}2 = 1^{2}$.

On the level of vertices, we have

- $G_2^{-1}p_2 = p_2$;
- $G_2^{-1}p_{12} = p_{323}$;
- $G_2^{-1}p_{21} = p_{23}$;
6.2. Faces paired by G_3. The corresponding statement about the side-pairing map for the other two base faces is the following.

Proposition 6.2. The isometry G_3^{-1} maps

1. $G_2 p_0$ to $G_3^{-1} G_3^{-1} p_0$;
2. $G_2^{-1} p_0$ to $G_2^{-1} p_0$;
3. $G_1 G_2 p_0$ to $G_1 G_2 p_0$;
4. $G_1 G_3^{-1} p_0$ to $G_1 G_3^{-1} p_0$;
5. $G_1 G_3 p_0$ to $G_1 G_3 p_0$;
6. $G_1 G_3 p_0$ to $G_1 G_3^{-1} p_0$.

Proof:

(1) follows from $3 \bar{1} 32 = \bar{2} 3 2 = 1$;
(2) follows from $2 \bar{1} 3 \bar{1} 2 = 2 \bar{1} 2 = 1$;
(3) follows from $2 \bar{1} 3 \bar{1} 2 = 2 \bar{1} 2 \bar{1} 2 = 1$;
(4) follows from $3 \bar{1} 32 = \text{Id}$;
(5) follows from $2 \bar{1} 3 \bar{1} 2 = 2 \bar{1} 2 \bar{1} 2 = 1$;
(6) follows from $2 \bar{1} 3 \bar{1} 2 = 2 \bar{1} 2 \bar{1} 2 = (212)^3 = \bar{1}^2$.

On the level of vertices, we have

- $G_3^{-1} p_2 = p_{323}$;
- $G_3^{-1} p_{121} = p_{121}$.

The last equality holds because

$3 \bar{1} 3 \bar{1} 2 = 2 \bar{1} 2 \bar{1} 2 = (212)^3 \bar{1} 2 = 132$.

7. Ridge cycles

Because of Giraud’s theorem, the ridge cycles automatically satisfy the hypotheses of the Poincaré polyhedron theorem. In particular, we get the following:

Theorem 7.1. D is a fundamental domain for the action of cosets of $\langle G_1 \rangle$ in Γ. In particular, $D = F$ (see Theorem 5.1).

Every ridge cycle is equivalent to one of the cycles listed in Table 7 (equivalent means that we allow shifting within the cycle, and also conjugation by a power of G_1). We list the cycle until we come back to the image of the initial ridge under a power of G_1 (in that case we close up the cycle by G_1^{-k}).

Using the relations

$12 = 23, \quad (12)^3 = (21)^3 = \text{id}$,

the other relations give $2^4 = \text{id}$. Indeed, $\bar{1}^3 3 \bar{1} 2 = \text{id}$ gives

$\text{id} = \bar{1}^3 3 \bar{1} 2 = \bar{1} 3 2 1 2 1 = \bar{1} 2 1 2 1 2 1 = 1(21)^2 2 1 2 1 = 21(2^4) \bar{1} 2$.

It is easy to check that the above set of relations is actually equivalent to
\[12 = 23, \quad (12)^3 = (121)^3 = 2^4 = \text{id}. \]

We summarize the above discussion in the following:

Theorem 7.2. The group \(\Gamma \) has a presentation given by
\[
\langle G_1, G_2, G_3 \mid G_2 = [G_3, G_2^{-1}], G_1 G_2 = G_2 G_3, G_2^4 = \text{id}, (G_1 G_2)^3 = \text{id}, (G_2 G_1 G_2)^3 = \text{id} \rangle
\]

8. **Topology of the manifold at infinity**

In this section, we prove that \(\Gamma \setminus \Omega \) is indeed homeomorphic to the figure eight knot complement. This was already proved in [7] using a very different fundamental domain for the action of the group.

We write \(F \) for the Ford domain for \(\Gamma \), \(E \) for \(\partial_{\infty} F \), and \(C \) for \(\partial E \). By construction \(F, E \) and \(C \) are all \(G_1 \)-invariant.

We will use Heisenberg coordinates \((z, t)\) for \(\partial H^2_\infty \setminus \{p_\infty\} \), see section 5.2. In these coordinates, the action of \(G_1 \) is given by
\[
G_1(z, t) = (z - 1, t + \Im(z)).
\]

It follows from the results in section 5.1 that \(C \) is tiled by hexagons, and that there are four orbits of these hexagons under the action of \(G_1 \). We need a bit more information about the identifications on these hexagons, namely we need

- The incidence relations between various hexagons, and
- The identifications on \(C \) given by side-pairing maps.

The incidence relations follow immediately from the results in section 5.1, we summarize it in Figure 5.

The union \(U \) of the four hexagons labelled 1,2,3,4 is embedded in \(C \), and the action of \(G_1 \) induces identifications on \(\partial U \). We denote by \(\sim \) the corresponding equivalence relation on \(U \); it is easy to check that \(U/\sim \) is a torus.

We get the following result.

Proposition 8.1. \(C \) is an unknotted topological cylinder, and \(E \) is the region exterior to \(C \).
Proof: It follows from the fact that C is invariant under the action of G_1 that it is an unknotted cylinder in $\mathbb{C} \times \mathbb{R}$ (it is a \mathbb{Z}-covering of $C/\langle G_1 \rangle$). In fact, the real axis gives a core curve for the solid cylinder bounded by C. In view of G_1-invariance, it is enough to check that the interval $[0, 1]$ on the x-axis is outside E. This is readily checked, in fact this interval is actually completely inside the spinal sphere S_1. □

The identifications in C come from side pairings, which are described in section 6. Figures 3 and 4 contain a list of vertices, which are uniquely determined by the list of faces they are on (in fact they are on precisely three bisectors).

For instance, there is a vertex on $b_1 \cap b_3 \cap G_1(b_1)$. By Proposition 6.1, G_2^{-1} maps this to the vertex on $b_2 \cap b_3 \cap G_1^{-1}b_3$. The vertex on $b_1 \cap b_3 \cap G_1^{-1}(b_3)$ is mapped to the vertex on $b_2 \cap G_1^{-1}(b_2) \cap G_1^{-1}b_3$. The image of these two points determine the image of the entire hexagon on b_1 (in Figure 5, the map flips the orientation of the hexagon).

By doing similar verifications, one checks that the identification pattern on the hexagons on S_1, \ldots, S_4 is the same as the one for the Ford domain of the holonomy of the real hyperbolic structure on the figure eight knot complement, see Figure 2.

Now since the exterior of C is homeomorphic to $C \times [0, +\infty]$ (in a G_1-equivariant way), we get:

Corollary 8.2. $\Gamma \setminus E$ is homeomorphic to the figure eight knot complement.

9. Stability of the combinatorics

The first remark is that distinct bounding bisectors for the Ford domain for the unipotent solution are never cospinal, and as a consequence the intersections $\hat{\gamma}_1 \cap \hat{\gamma}_2$ are uniquely determined by the triple $p_0, \gamma_1p_0, \gamma_2p_0$. Of course, this property will hold for all values of the twist parameter of G_1.

Now every point of an open 2-face is on precisely two bounding bisectors, and that intersection is transverse. In other words, every open 2-face will survive in small perturbations.

A similar remark holds for 1-faces, namely no 1-face of the Ford domain for the boundary unipotent case is contained in a geodesic. In fact every point on an open 1-face is on precisely three bounding bisectors, and these intersect transversely as well.

The only issue is to analyze vertices. The ideal vertices are simple, since they are defined as the intersection of four hypersurfaces (three bounding bisectors and the boundary of the ball) that intersect transversely.

The finite vertices are on more than four bounding bisectors, but they are also fixed by elliptic elements in the group. In fact, we already justified that they stayed on the same bisectors for small deformations, see section 4.2, more specifically Lemmas 4.2 and 4.3. The transversality statement of Proposition 5.15 will remain true for small perturbations as well.

This implies that the combinatorics stay stable in small deformations.
10. Stability of the side pairing

Let $F^{(0)}$ be the Ford domain for the boundary unipotent group, and $F^{(t)}$ the one for the twist parabolic group corresponding to parameter t.

The proof that $F^{(0)}$ has side-pairings relies on the determination of the precise combinatorics, and also of the group relations. By the previous section, the combinatorics are stable, and by Proposition 4.1, the relations hold throughout the deformation. The proof of Propositions 6.1 and 6.2 then shows that $F^{(t)}$ has side-pairings, at least for small values of t.

The verification that the Ford domain for the boundary unipotent group satisfies the hypotheses of the Poincaré polyhedron theorem is given in section 7. Since all intersections of bounding bisectors are Giraud disks, the cycle condition is a direct consequence of the existence of pairings.

Let Γ_t denote the image of ρ_t. We now get:

Theorem 10.1. There exists a $\delta > 0$ such that whenever $|t| < \delta$, Γ_t is discrete with non-empty domain of discontinuity, and its manifold at infinity is homeomorphic to the figure eight knot complement. Moreover, still for $|t| < \delta$, Γ_t has the presentation

$$\langle G_1, G_2, G_3 \mid G_2 = [G_3, G_1^{-1}], G_1G_2 = G_2G_3, G_2^4 = id, (G_1G_2)^3 = id, (G_2G_1G_2)^3 = id \rangle.$$

References

