N

N

Countermeasures Against High-Order Fault-Injection
Attacks on CRT-RSA
Pablo Rauzy, Sylvain Guilley

» To cite this version:

Pablo Rauzy, Sylvain Guilley. Countermeasures Against High-Order Fault-Injection Attacks on
CRT-RSA. Fault Diagnosis and Tolerance in Cryptography, Sep 2014, Busan, South Korea.
10.1109/FDTC.2014.17 . hal-01071425

HAL Id: hal-01071425
https://hal.science/hal-01071425
Submitted on 14 Oct 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://hal.science/hal-01071425
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Countermeasures Against High-Order
Fault-Injection Attacks on CRT-RSA

Pablo Rauzy and Sylvain Guilley
Institut Mines-Télécom ; Télécom ParisTech ; CNRS LTCI
{firstname.lastname}Qtelecom-paristech.fr

Abstract

In this paper we study the existing CRT-RSA countermeasures against fault-injection at-
tacks. In an attempt to classify them we get to achieve deep understanding of how they work.
We show that the many countermeasures that we study (and their variations) actually share
a number of common features, but optimize them in different ways. We also show that there
is no conceptual distinction between test-based and infective countermeasures and how either
one can be transformed into the other. Furthermore, we show that faults on the code (skipping
instructions) can be captured by considering only faults on the data. These intermediate results
allow us to improve the state of the art in several ways: (a) we fix an existing and that was
known to be broken countermeasure (namely the one from Shamir); (b) we drastically optimize
an existing countermeasure (namely the one from Vigilant) which we reduce to 3 tests instead of
9 in its original version, and prove that it resists not only one fault but also an arbitrary number
of randomizing faults; (c) we also show how to upgrade countermeasures to resist any given
number of faults: given a correct first-order countermeasure, we present a way to design a prov-
able high-order countermeasure (for a well-defined and reasonable fault model). Finally, we pave
the way for a generic approach against fault attacks for any modular arithmetic computations,
and thus for the automatic insertion of countermeasures.

1 Introduction

Private information protection is a highly demanded feature, especially in the current context of
global defiance against most infrastructures, assumed to be controlled by governmental agencies.
Properly used cryptography is known to be a key building block for secure information exchange.
However, in addition to the threat of cyber-attacks, implementation-level hacks must also be con-
sidered seriously. This article deals specifically with the protection of a decryption or signature
crypto-system (called RSA [?]) in the presence of hardware attacks (e.g., we assume the attacker
can alter the RSA computation while it is being executed).

It is known since 1997 (with the BellCoRe attack by Boneh et al. [?]) that injecting faults
during the computation of CRT-RSA (CRT for “Chinese Remainder Theorem”) could yield to
malformed signatures that expose the prime factors (p and ¢) of the public modulus (N = p - q).
Notwithstanding, computing without the fourfold acceleration conveyed by the CRT optimization is
definitely not an option in practical applications. Therefore, many countermeasures have appeared.
Most of the existing countermeasures were designed with an attack-model consisting in a single fault
injection. The remaining few attempts to protect against second-order fault attacks (i.e., attacks
with two faults).

Looking at the history of the development of countermeasures against the BellCoRe attack, we
see that many countermeasures are actually broken in the first place. Some of them were fixed
by their authors and/or other people, such as the countermeasure proposed by Vigilant [?], which
was fixed by Coron et al. [?] and then simplified by Rauzy & Guilley [?]; some simply abandoned,
such as the one by Shamir [?]. Second-order countermeasures are no exception to that rule, as
demonstrated with the countermeasure proposed by Ciet & Joye [?], which was fixed later by
Dottax et al. [?]. Such mistakes can be explained by two main points:

e the almost nonexistent use of formal methods in the field of implementation security, which
can itself be explained by the difficulty to properly model the physical properties of an im-
plementation which are necessary to study side-channel leakages and fault-injection effects;

e the fact that most countermeasures were developed by trial-and-error engineering, accumu-
lating layers of intermediate computations and verifications to patch weaknesses until a fixed
point was reached, even if the inner workings of the countermeasure were not fully understood.

Given their development process, it is likely the case that existing second-order countermeasures
would not resist third-order attacks, and strengthening them against such attacks using the same
methods will not make them resist fourth-order, etc.

The purpose of this paper is to remedy to these problems. First-order countermeasures have
started to be formally studied by Christofi et al. [?], who have been followed by Rauzy & Guilley [?,
?], and Barthe et al. [?]. To our best knowledge, no such work has been attempted on high-order
countermeasures. Thus, we should understand the working factors of a countermeasure, and use
that knowledge to informedly design a generic high-order countermeasure, either one resisting any
number of faults, or one which could be customized to protect against n faults, for any given n > 1.

Notice that we consider RSA used in a mode where the BellCoRe attack is applicable; this
means that we assume that the attacker can choose (but not necessarily knows) the message that is
exponentiated, which is the case in decryption mode or in (outdated) deterministic signature mode
(e.g., PKCS #1 v1.5). In some other modes, formal proofs of security have been conducted [?, ?].

Contributions In this paper we propose a classification of the existing CRT-RSA countermea-
sures against the BellCoRe fault-injection attacks. Doing so, we raise questions whose answers lead
to a deeper understanding of how the countermeasures work. We show that the many countermea-
sures that we study (and their variations) are actually applying a common protection strategy but
optimize it in different ways (Sec. 4). We also show that there is no conceptual distinction between
test-based and infective countermeasures and how either one can be transformed into the other
(Prop. 2). Furthermore, we show that faults on the code (skipping instructions) can be captured
by considering only faults on the data (Lem. 1). These intermediate results allow us to improve
the state of the art in several ways:

e we fix an existing and that is known to be broken countermeasure (Alg. 10);

e we drastically optimize an existing countermeasure, while at the same time we transform it
to be infective instead of test-based (Alg. 11);

e we also show how to upgrade countermeasures to resist any given number of faults: given a
correct first-order countermeasure, we present a way to design a provable high-order counter-
measure for a well defined and reasonable fault model (Sec. 4.2).

Finally, we pave the way for a generic approach against fault attacks for any modular arithmetic
computations, and thus for the automatic insertion of countermeasures.

Organization of the paper We recall the CRT-RSA cryptosystem and the BellCoRe attack in
Sec. 2. Then, to better understand the existing countermeasures, we attempt to classify them in
Sec. 3, which also presents the state of the art. We then try to capture what make the essence
of a countermeasure in Sec. 4, and use that knowledge to determine how to build a high-order
countermeasure. We last use our findings to build better countermeasures by fixing and simplifying
existing ones in Sec. 5. Conclusions and perspectives are drawn in Sec. 6. The appendices contain
the detail of some secondary results.

2 CRT-RSA and the BellCoRe Attack

This section summarizes known results about fault attacks on CRT-RSA (see also [?], [?, Chap. 3]
and [?, Chap. 7 & 8]). Its purpose is to settle the notions and the associated notations that will
be used in the later sections, to present our novel contributions.

2.1 RSA

RSA is both an encryption and a signature scheme. It relies on the fact that for any message
0 <M< N, (M) = M mod N, where d = ¢! mod p(N), by Euler’s theorem!. In this
equation, ¢ is Euler’s totient function, equal to (V) = (p —1)- (¢ — 1) when N = p-q is a
composite number, product of two primes p and q. For example, if Alice generates the signature
S = M? mod N, then Bob can verify it by computing S¢ mod N, which must be equal to M
unless Alice is only pretending to know d. Therefore (N, d) is called the private key, and (N, e) the
public key. In this paper, we are not concerned about the key generation step of RSA, and simply
assume that d is an unknown number in [1,(N) = (p—1)-(¢—1)[. Actually, d can also be chosen
to be equal to the smallest value e™! mod A(N), where A\(N) = =Urla1) g the Carmichael

ged(p—1,g—1)
function (see PKCS #1 v2.1, §3.1).

2.2 CRT-RSA

The computation of M? mod N can be speeded-up by a factor of four using the Chinese Remainder
Theorem (CRT). Indeed, numbers modulo p and ¢ are twice as short as those modulo N. For
example, for 2,048 bits RSA, p and ¢ are 1,024 bits long. CRT-RSA consists in computing S, = M
mod p and S, = M mod ¢, which can be recombined into S with a limited overhead. Due to
the little Fermat theorem (the special case of the Euler theorem when the modulus is a prime),
Sp = (M mod p)d mod (=1 mod p. This means that in the computation of Sp, the processed
data have 1,024 bits, and the exponent itself has 1,024 bits (instead of 2,048 bits). Thus the
multiplication is four times faster and the exponentiation eight times faster. However, as there are
two such exponentiations (modulo p and ¢), the overall CRT-RSA is roughly speaking four times
faster than RSA computed modulo N.

This acceleration justifies that CRT-RSA is always used if the factorization of N as p- ¢ is
known. In CRT-RSA, the private key has a richer structure than simply (V,d): it is actually the
5-tuple (p, q,dp, dq,1q), where:

e dy=d mod (p— 1),

"We use the usual convention in all mathematical equations, namely that the “mod” operator has the lowest
binding precedence, i.e., a X b mod ¢ X d represents the element a X b in Z¢x 4.

e d;=d mod (¢ —1), and

° i, = ¢! mod p.

The CRT-RSA algorithm is presented in Alg. 1. It is straightforward to check that the signature
computed at line 3 belongs to [0,p- ¢ — 1]. Consequently, no reduction modulo N is necessary
before returning S.

Algorithm 1: Unprotected CRT-RSA

Input : Message M, key (p,q,dp,dy,1q)
Output: Signature M¢ mod N

1.5, = M9 mod p // Intermediate signature in Z,
2 S, = M9 mod ¢ // Intermediate signature in Z,
3 S=8,+¢q- (iq . (Sp — Sq) mod p) // Recombination in Zy (Garner’s method [7])

4 return S

2.3 The BellCoRe Attack

In 1997, a dreadful remark has been made by Boneh, DeMillo and Lipton [?], three staff of Bell
Communication Research: Alg. 1 could reveal the secret primes p and ¢ if the line 1 or 2 of the
computation is faulted, even in a very random way. The attack can be expressed as the following
proposition.

Proposition 1 (BellCoRe attack). If the intermediate variable S, (resp. Sg) is returned faulted
as S (resp. Sy)2 then the attacker gets an erroneous signature S and is able to recover q (resp.
p) as ged(N, S — 5).

Proof. For any integer x, gcd(NN, z) can only take 4 values:
e 1,if N and x are coprime,
e p, if x is a multiple of p,
e ¢, if x is a multiple of ¢,
e N if x is a multiple of both p and ¢, i.e., of N.

In Alg. 1, if S} is faulted (i.e., replaced by 3; # Sp), then S — S=gq- ((ig - (Sp—Sq) mod p) —
(iq (3\ Sy) mod p)), and thus ged (X, S—§) = q. If S, is faulted (i.e., replaced by 3; # S;), then
S— 8= (S -5, ¢) — (¢ mod p) iy (Sq — -8, 7) =0 mod p because (¢ mod p)-i; =1 mod p, and
thus S — S is a multiple of p. Addltlonally, S —Sisnot a multiple of ¢. So, gecd(N,S — S) p. O

Before continuing to the next section, we will formalize our attack model by defining what is a
fault injection and what is the order of an attack.

Definition 1 (Fault injection). During the execution of an algorithm, the attacker can:

In other papers, the faulted variables (such as X) are written either as X* or X in this paper, we use a hat
which can stretch to cover the adequate portion of the expression, as it allows to make an unambiguous difference
between X° and X¢.

e modify any intermediate value by setting it to either a random wvalue (randomizing fault) or
zero (zeroing fault); such a fault can be either permanent (e.g., in memory) or transient (e.g.,
in a register or a bus);

e skip any number of consecutive instructions (skipping fault).

At the end of the computation the attacker can read the result returned by the algorithm.

Remark 1. This fault injection model implies that faults can be injected very accurately in timing
(the resolution is the clock period), whereas the fault locality in space is poor (the attacker cannot
target a specific bit). This models an attacker who is able to identify the sequence of operations by
a simple side-channel analysis, but who has no knowledge of the chip internals. Such attack model
is realistic for designs where the memories are scrambled and the logic gates randomly routed (in
a sea of gates).

Lemma 1. The effect of a skipping fault (i.e., fault on the code) can be captured by considering
only randomizing and zeroing faults (i.e., fault on the data).

Proof. Indeed, if the skipped instructions are part of an arithmetic operation:
e cither the computation has not been done at all and the value in memory where the result is
supposed to be stays zero (if initialized) or random (if not),
e or the computation has partly been done and the value written in memory as its result is
thus pseudo-randomized (and considered random at our modeling level).
If the skipped instruction is a branching instruction, then it is equivalent to do a zeroing fault on
the result of the branching condition to make it false and thus avoid branching. O

Definition 2 (Attack order). We call order of the attack the number of fault injections in the
computation. An attack is said to be high-order if its order is strictly more than 1.

3 Classifying Countermeasures

The goal of a countermeasure against fault-injection attacks is to avoid returning a compromised
value to the attacker. To this end, countermeasures attempt to verify the integrity of the compu-
tation before returning its result. If the integrity is compromised, then the returned value should
be a random number or an error constant, in order not to leak any information.

An obvious way of achieving that goal is to repeat the computation and compare the results,
but this approach is very expensive in terms of computation time. The same remark applies to
the verification of the signature (notice that e can be recovered for this purpose from the 5-tuple
(p,q,dp,dq,iq), as explained in App. A). In this section we explore the different methods used by

?
the existing countermeasures to verify the computation integrity faster than (M%) = M mod N.

3.1 Shamir’s or Giraud’s Family of Countermeasures

To the authors knowledge, there are two main families of countermeasures: those which are de-
scendants of Shamir’s countermeasure [?], and those which are descendants of Giraud’s [?].

The countermeasures in Giraud’s family avoid replicating the computations using particular
exponentiation algorithms. These algorithms keep track of variables involved in intermediate steps;
those help verifying the consistency of the final results by a consistency check of an invariant that

is supposed to be spread till the last steps. This idea is illustrated in Alg. 2, which resembles the
one of Giraud. The test at line 5 verifies that the recombined values S and S’ (recombination
of intermediate steps of the exponentiation) are consistent. Example of other countermeasures in
this family are the ones of Boscher et al. [?], Rivain [?] (and its recently improved version [?]), or
Kim et al. [?]. The former two mainly optimize Giraud’s, while the latter introduce an infective
verification based on binary masks. The detailed study of the countermeasures in Giraud’s family
is left as future work.

Algorithm 2: CRT-RSA with a Giraud’s family countermeasure

Input : Message M, key (p, q,dp,dq,iq)
Output: Signature M¢ mod N, or error

1 (Sp,S,) = ExpAlgorithm (M, d,)) // ExpAlgorithm(a,b) returns (a’,a®™')
2 (Sy,5;) = ExpAlgorithm(M, d;)

3 §S=5,+q (ig-(Sp — Sg) mod p) // Recombination
a4 8 = S& +q- (iq . (S{D — S[;) mod p) // Recombination for verification

s if M-S"#S mod pg then return error

6 return S

Indeed, the rest of our paper is mainly concerned with Shamir’s family of countermeasures. The
countermeasures in Shamir’s family rely on a kind of “checksum” of the computation using smaller
numbers (the checksum is computed in rings smaller than the ones of the actual computation). The
base-two logarithm of the smaller rings cardinal is typically equal to 32 or to 64 (bits): therefore,
assuming that the faults are randomly distributed, the probability of having an undetected fault is
2732 or 2794 4 e., very low. In the sequel, we will make a language abuse by considering that such
probability is equal to zero. We also use the following terminology:

Notation 1. Let a a big number and b a small number, such that they are coprime. We call the
ring Zqp an overring of Z,, and the ring Zy a subring of Z.

Remark 2. RSA is friendly to protections by checksums because it computes in rings Z, where a
is either a large prime number (e.g., @ = p or a = q) or the product of large prime numbers (e.g.,
a = p-q). Thus, any small number b > 1 is coprime with a, and so we have an isomorphism between
the overring Zq, and the direct product of Z, and Zy, i.e., Zgp = Zg X Zp. This means that the
Chinese Remainder Theorem applies. Consequently, the nominal computation and the checksum
can be conducted in parallel in Zg,.

The countermeasures attempt to assert that some invariants on the computations and the
checksums hold. There are many different ways to use the checksums and to verify these invariants.
In the rest of this section we review these ways while we attempt to classify countermeasures and
understand better what are the necessary invariants to verify.

3.2 Test-Based or Infective

A first way to classify countermeasures is to separate those which consist in step-wise internal checks
during the CRT computation and those which use an infective computation strategy to make the
result unusable by the attacker in case of fault injection.

Definition 3 (Test-based countermeasure). A countermeasure is said to be test-based if it attempts
to detect fault injections by verifying that some arithmetic invariants are respected, and branch
to return an error instead of the numerical result of the algorithm in case of invariant violation.
Examples of test-based countermeasures are the ones of Shamir [?], Aumdiller et al. [?], Vigilant [?],
or Joye et al. [?].

Definition 4 (Infective countermeasure). A countermeasure is said to be infective if rather than
testing arithmetic invariants it uses them to compute a neutral element of some arithmetic operation
in a way that would not result in this neutral element if the invariant is violated. It then uses the
results of these computations to infect the result of the algorithm before returning it to make it
unusable by the attacker (thus, it does not need branching instructions). Examples of infective
countermeasures are the ones by Blomer et al. [?], Ciet & Joye [?], or Kim et al. [?].

The extreme similarity between the verifications in the test-based countermeasure of Joye et
al. [?] (see Alg. 3, line 9) and the infective countermeasure of Ciet & Joye [?] (see Alg. 4, lines 10
and 11) is striking, but it is actually not surprising at all, as we will discover in Prop. 2.

Algorithm 3: CRT-RSA with Joye et al.’s countermeasure [?]

Input : Message M, key (p,q,dp,dy,1q)
Output: Signature M¢ mod N, or error

1 Choose two small random integers r; and rs.

2 Store in memory p' =p-r1, ¢ =q-ro, i; = ql_l

mod p’, N =p-q.

’
3 S;/D = M mod ¢(®) mod p’ // Intermediate signature in Zp,,
4 Spr = Mdr mod o(r1) o g // Checksum in Z,,
’
5 SZ/I = M% mod (@) mod ¢ // Intermediate signature in Zgr,
6 Sgr = Mda mod (r2) 1o d ry // Checksum in Z,,
7 Sp =S, mod p // Retrieve intermediate signature in Z,
8 S, =S, mod q // Retrieve intermediate signature in Z,

o if SZ’, # Spr mod r; or S(’Z # Sgr mod 72 then return error

10 return S = Sy +¢q - (ig - (Sp — Sq) mod p) // Recombination in Zy

Proposition 2 (Equivalence between test-based and infective countermeasures). Fach test-based
(resp. infective) countermeasure has a direct equivalent infective (resp. test-based) countermeasure.

Proof. The invariants that must be verified by countermeasures are modular equality, so they are

of the form a = b mod m, where a, b and m are arithmetic expressions.

It is straightforward to transform this invariant into a Boolean expression usable in test-based
countermeasures: if a !'= b [mod m] then return error.

To use it in infective countermeasures, it is as easy to verify the same invariant by computing a
value which should be 1 if the invariant holds: ¢ := a - b + 1 mod m. The numbers obtained this
way for each invariant can then be multiplied and their product ¢*, which is 1 only if all invariants
are respected, can be used as an exponent on the algorithm’s result to infect it if one or more
of the tested invariants are violated. Indeed, when the attacker perform the BellCoRe attack by

computing ged(N, S — gc\) as defined in Prop. 1, then if ¢* is not 1 the attack would not work. [

Algorithm 4: CRT-RSA with Ciet & Joye’s countermeasure [?]

Input : Message M, key (p, q,dp,dq,iq)
Output: Signature M¢ mod N, or a random value in Zy

1 Choose small random integers r1, 72, and 3.

2 Choose a random integer a.

3 Initialize v with a random number

4 Store in memory p’' =p-r1, ¢ =q-re, iy = ¢ ! modp', N=p-q.

5 SI/) = a+ Md» modo(®) mod P’ // Intermediate signature in Zp,,
6 Spr =a-+ Mde mod o(r1) od 1 // Checksum in Z,,
7 S:Z =a+ M mode(d) mod q // Intermediate signature in Zgr,
8 Sgr=a+ Mda mod @(r2) 6q T // Checksum in Z,,
o §'=8+4q (i (S, —S;) modp) // Recombination in Znr,r,
10 =5 —S5,+1 modnr // Invariant for the signature modulo p
11 cg =5 =S4, +1 mod ry // Invariant for the signature modulo ¢
12 y=(r3-c1+ (2" —13) - ca)/2! // v=1 if c¢1 and c2 have value 1
13 return S =95 —a” mod N // Infection and result retrieval in Zn

By Prop. 2, we know that there is an equivalence between test-based and infective counter-
measures. This means that in theory any attack working on one kind of countermeasure will be
possible on the equivalent countermeasure of the other kind. However, we remark that in practice
it is harder to do a zeroing fault on an intermediate value (especially if it is the result of a computa-
tion with big numbers) in the case of an infective countermeasure, than it is to skip one branching
instruction in the case of a test-based countermeasure. We conclude from this the following rule
of thumb: it is better to use the infective variant of a countermeasure. In addition, it is generally
the case that code without branches is safer (think of timing attacks or branch predictor attacks
on modern CPUs).

Note that if a fault occurs, ¢* is not 1 anymore and thus the computation time required to
compute S¢ might significantly increase. This is not a security problem, indeed, taking longer
to return a randomized value in case of an attack is not different from rapidly returning an error
constant without finishing the computation first as it is done in the existing test-based counter-
measures. In the worst case scenario, the additional time would be correlated to the induced fault,
but we assume the fault to be controlled by the attacker already.

3.3 Intended Order

Countermeasures can be classified depending on their order, i.e., the maximum order of the attacks
(as per Def. 2) that they can protect against.

In the literature concerning CRT-RSA countermeasures against fault-injection attacks, most
countermeasures claim to be first-order, and a few claim second-order resistance. For instance,
the countermeasures by Aumiiller et al. [?] and the one by Vigilant [?] are described as first-
order by their authors, while Ciet & Joye [?] describe a second-order fault model and propose a
countermeasure which is supposed to resist to this fault model, and thus be second-order.

However, using the finja® tool which has been open-sourced by Rauzy & Guilley [?], we found
out that the countermeasure of Ciet & Joye is in fact vulnerable to second-order attacks (in our
fault model of Def. 1). This is not very surprising. Indeed, Prop. 2 proves that injecting a fault, and
then skipping the invariant verification which was supposed to catch the first fault injection, is a
second-order attack strategy which also works for infective countermeasures, except the branching-
instruction skip has to be replaced by a zeroing fault. As expected, the attacks we found using finja
did exactly that. For instance a zeroing fault on S, (resp. S;) makes the computation vulnerable
to the BellCoRe attack, and a following zeroing fault on Sy, (resp. Sy,) makes the verification pass
anyway. To our knowledge our attack is new. It is indeed different from the one Dottax et al. [?]
found and fixed in their paper, which was an attack on the use of v (see line 12 of Alg. 4). It is true
that their attack model only allows skipping faults (as per Def. 1) for the second injection, but we
have concerns about this:

e What justifies this limitation on the second fault? Surely if the attackers are able to inject

two faults and can inject a zeroing fault once they can do it twice.

e Even considering their attack model, a zeroing fault on an intermediate variable x can in
many cases be obtained by skipping the instructions where the writing to happens.

e The fixed version of the countermeasure by Dottax et al. [?, Alg. 8, p. 13] makes it even closer
to the one of Joye et al. by removing the use of a and 7. It also removes the result infection
part and instead returns S along with values that should be equal if no faults were injected,
leaving “out” of the algorithm the necessary comparison and branching instructions which
are presented in a separate procedure [?, Proc. 1, p. 11]. The resulting countermeasure is
second-order resistant (in their attack model) only because the separate procedure does the
necessary tests twice (it would indeed break at third-order unless an additional repetition of
the test is added, etc.).

An additional remark would be that the algorithms of intended second-order countermeasures
does not look very different from others. Moreover, Rauzy & Guilley [?, ?] exposed evidence that
the intendedly first-order countermeasures of Aumiiller et al. and Vigilant actually offer the same
level of resistance against second-order attacks, i.e., they resist when the second injected fault is a
randomizing fault (or a skipping fault which amounts to a randomizing fault).

3.4 Usage of the Small Rings

In most countermeasures, the computation of the two intermediate signatures modulo p and modulo
q of the CRT actually takes place in overrings. The computation of S, (resp. S;) is done in Zy,,
(resp. Zgy,) for some small random number 7 (resp. r2) rather than in Z, (resp. Z,). This allows
the retrieval of the results by reducing modulo p (resp. ¢) and verifying the signature modulo 7
(resp. r2), or, if it is done after the CRT recombination, the results can be retrieved by reducing
modulo N = p - q. The reduction in the small subrings Z,, and Z,, is used as the checksums for
verifying the integrity of the computation. It works because small random numbers are necessarily
coprime with a big prime number.

An interesting part of countermeasures is how they use the small subrings to verify the integrity
of the computations. Almost all the various countermeasures we studied had different ways of
using them. However, they can be divided in two groups. On one side there are countermeasures
which use the small subrings to verify the integrity of the intermediate CRT signatures and of

*http://pablo.rauzy.name/sensi/finja.html (we used the commit 782384a version of the code).

http://pablo.rauzy.name/sensi/finja.html

the recombination directly but using smaller numbers, like Blémer et al.’s countermeasure [?], or
Ciet & Joye’s one [?]. On the other side, there are countermeasures which use some additional
arithmetic properties to verify the necessary invariants indirectly in the small subrings. Contrary
to the countermeasures in the first group, the ones in the second group use the same value r for ¢
and ro. The symmetry obtained with r; = r9 is what makes the additional arithmetic properties
hold, as we will see.

3.4.1 Verification of the Intermediate CRT Signatures

The countermeasure of Blomer et al. [?] uses the small subrings to verify the intermediate CRT
signatures. It is exposed in Alg. 5. This countermeasure needs access to d directly rather than d, and
dq as the standard interface for CRT-RSA suggests, in order to compute d;, =d mod p(p-r1) and
dy = d mod ¢(q-72), as well as their inverse e}, = d;,_l mod p(p-r1) and e = d;_l mod ¢(q-72)
to verify the intermediate CRT signatures.

We can see in Alg. 5 that these verifications (lines 6 and 7) happen after the recombination
(line 5) and retrieve the checksums in Z,, (for the p part of the CRT) and Z,, (for the g part) from
the recombined value S’. It allows these tests to verify the integrity of the recombination at the
same time as they verify the integrity of the intermediate CRT signatures.

Algorithm 5: CRT-RSA with Blomer et al.’s countermeasure [?]

Input : Message M, key (p,q,d,iq)
Output: Signature M¢ mod N, or a random value in Zy

1 Choose two small random integers 1 and rs.

2 Store in memory p' =p-ri, ¢ =q-ro, i) = ¢!

/

mod p', N=p-q, N'=N-ri-r9,d),, dy, e, e.

3 S{D =M% mod P’ // Intermediate signature in Zy,,
4 Sg =M% mod q // Intermediate signature in Zg,,
5 §'=8+4q (i (S, —S;) modp) // Recombination in Znr,r,
6 c1 =M — S +1 mod 71 // Invariant for the signature modulo p
7 cg =M — 5% +1 mod T9 // Invariant for the signature modulo ¢
8 return S = 5“2 mod N // Infection and result retrieval in Zy

3.4.2 Checksums of the Intermediate CRT Signatures

The countermeasure of Ciet & Joye [?] uses the small subrings to compute checksums of the
intermediate CRT signatures. It is exposed in Alg. 4. Just as the previous one, the verifications
(lines 10 and 11) take place after the recombination (line 9) and retrieve the checksums in Z,,
(for the p part of the CRT) and Z,, (for the ¢ part) from the recombined value S’, which enables
the integrity verification of the recombination at the same time as the integrity verifications of the
intermediate CRT signatures.

We note that this is missing from the protection of Joye et al. [?], presented in Alg. 3, which
does not verify the integrity of the recombination at all and is thus as broken as Shamir’s counter-
measure [?]. The countermeasure of Ciet & Joye is a clever fix against the possible fault attacks

10

on the recombination of Joye et al.’s countermeasure, which also uses the transformation that we
described in Prop. 2 from a test-based to an infective countermeasure.

3.4.3 Overrings for CRT Recombination

In Ciet & Joye’s countermeasure the CRT recombination happens in an overring Zy,,,, of Zy
while Joye et al.’s countermeasure extracts in Z, and Z, the results S, and S, of the intermediate
CRT signatures to do the recombination in Zy directly.

There are only two other countermeasures which do the recombination in Zy that we know of:
the one of Shamir [?] and the one of Aumiiller et al. [?]. The first one is known to be broken, in
particular because it does not check whether the recombination has been faulted at all. The second
one seems to need to verify 5 invariants to resist the BellCoRe attack®, which is more than the
only 2 required by the countermeasure of Ciet & Joye [?] or by the one of Blomer et al. [?], while
offering a similar level of protection (see [?]). This fact led us to think that the additional tests are
necessary because the recombination takes place “in the clear”. But we did not jump right away
to that conclusion. Indeed, Vigilant’s countermeasure [?] does the CRT recombination in the Z 2
overring of Zy and seems to require 7 verifications® to also offer that same level of security (see
[?7]). However, we remark that Shamir’s, Aumiiller et al.’s, and Vigilant’s countermeasures use the
same value for r; and ro.

3.4.4 Identity of r; and ro

Some countermeasures, such as the ones of Shamir [?], Aumiiller et al. [?], and Vigilant [?] use a
single random number 7 to construct the overrings used for the two intermediate CRT signatures
computation. The resulting symmetry allows these countermeasures to take advantage of some
additional arithmetic properties.

Shamir’s countermeasure In his countermeasure, which is presented in Alg. 6, Shamir uses a
clever invariant property to verify the integrity of both intermediate CRT signatures in a single
verification step (line 9). This is made possible by the fact that he uses d directly instead of d,
and dy, and thus the checksums in Z, of both the intermediate CRT signatures are supposed to be
equal if no fault occurred. Unfortunately, the integrity of the recombination is not verified at all.
We will see in Sec. 5.1 how to fix this omission. Besides, we notice that d can be reconstructed
from a usual CRT-RSA key (p, q,dp, dq,14); we refer the reader to Appendix A.

Aumiiller et al.’s countermeasure Contrary to Shamir, Aumiiller et al. do verify the integrity
of the recombination in their countermeasure, which is presented in Alg. 7. To do this, they
straightforwardly check (line 10) that when reducing the result S of the recombination modulo p
(resp. q), the obtained value corresponds to the intermediate signature in Z,, (resp. Z,). However,
they do not use d directly but rather conform to the standard CRT-RSA interface by using d, and
dq. Thus, they need another verification to check the integrity of the intermediate CRT signatures.
Their clever strategy is to verify that the checksums of S, and S; in Z, are conform to each other

“The original Aumiiller et al.’s countermeasure uses 7 verifications because it also needs to check the integrity of
intermediate values introduced against simple power analysis, see [?, Remark 1].

5Vigilant’s original countermeasure and its corrected version by Coron et al. [?] actually use 9 verifications but
were simplified by Rauzy & Guilley [?] who removed 2 verifications.

11

Algorithm 6: CRT-RSA with Shamir’s countermeasure [?]

Input : Message M, key (p,q,d,iq)
Output: Signature M¢ mod N, or error

1 Choose a small random integer r.

2p =p-r

3 51/7 = Md mod (@) mod p’ // Intermediate signature in Z,,
aq=q-r

5 Sé = Md mod e(d) pod q // Intermediate signature in Zg,
6 Sp =25, mod p // Retrieve intermediate signature in Z,
7S¢ = Stll mod ¢ // Retrieve intermediate signature in Z4
8 S=S8,+¢q-(ig- (Sp —Sq) mod p) // Recombination in Zy

o if S, #S5, mod r then return error

10 return S

(lines 11 to 13). For that they check whether Spdq is equal to Sqdp in Z,, that is, whether the
invariant (M%)% = (M%)% mod r holds.

The two additional tests on line 4 verify the integrity of p’ and ¢/. Indeed, if p or ¢ happen
to be randomized when computing p’ or ¢’ the invariant verifications in Z, would pass but the
retrieval of the intermediate signatures in Z, or Z, would return random values, which would
make the BellCoRe attack work. These important verifications are missing from all the previous
countermeasures in Shamir’s family.

Vigilant’s countermeasure Vigilant takes another approach. Rather than doing the integrity
verifications on “direct checksums” that are the representative values of the CRT-RSA computation
in the small subrings, Vigilant uses different values that he constructs for that purpose. The
clever idea of his countermeasure is to use sub-CRTs on the values that the CRT-RSA algorithm
manipulates in order to have in one part the value we are interested in and in the other the value
constructed for the verification (lines 8 and 17).

To do this, he transforms M into another value M’ such that:

= M mod N,
|1+ r modr?

which implies that:
M?% mod N,

S = M'"" mod Nr?=
1+ dr mod r2.

The latter results are based on the binomial theorem, which states that (1 4+)% = ZZ:O (Z) rk =
1+dr+ (;l) r2 + ..., which simplifies to 1 + dr in the Z,2 ring.

This property is used to verify the integrity of the intermediate CRT signatures on lines 11
and 20. It is also used on line 24 which tests the recombination using the same technique but with
random values inserted on lines 21 and 22 in place of the constructed ones. This test also verifies
the integrity of .

12

Algorithm 7: CRT-RSA with Aumiiller et al.’s countermeasure® [?]

Input : Message M, key (p,q,dp,dy,1q)
Output: Signature M¢ mod N, or error

1 Choose a small random integer r.

2p =p-r

3¢ =q-r

4 if p 20 mod por ¢ #0 mod q then return error

5 S::? = Mde mod () mod P’ // Intermediate signature in Zp,
6 Stlz = Mda mod ¢(d) mod ¢ // Intermediate signature in Zg,
7 Sy = S::? mod p // Retrieve intermediate signature in Z,
8 Sq= Stll mod ¢ // Retrieve intermediate signature in Z,
9 S=S8,+¢q-(ig- (Sp —Sq) mod p) // Recombination in Zy
10 if S# S5, modpor S# S, mod g then return error

11 Sy = SZ') mod 7 // Checksum of S, in Z,
12 Sgr = S; mod 7 // Checksum of S, in Z,

13 if S, %0 mod @) £ g dp med @(r) y6d r then return error

14 return S

Two additional tests are required by Vigilant’s arithmetic trick. The verifications at lines 10
and 19 ensure that the original message M has indeed been CRT-embedded in MI’, and Mé.

4 The Essence of a Countermeasure

Our attempt to classify the existing countermeasures provided us with a deep understanding of
how they work. To ensure the integrity of the CRT-RSA computation, the algorithm must verify
3 things: the integrity of the computation modulo p, the integrity of the computation modulo g,
and the integrity of the CRT recombination (which can be subject to transient fault attacks). This
fact has been known since the first attacks on Shamir’s countermeasure. Our study of the existing
countermeasures revealed that, as expected, those which perform these three integrity verifications
are the ones which actually work. This applies to Shamir’s family of countermeasures, but also
for Giraud’s family. Indeed, countermeasures in the latter also verify the two exponentiations and
the recombination by testing the consistency of the exponentiations indirectly on the recombined
value.

4.1 A Straightforward Countermeasure

The result of these observations is a very straightforward countermeasure, presented in Alg. 9. This
countermeasure works by testing the integrity of the signatures modulo p and ¢ by replicating the
computations (lines 1 and 3) and comparing the results, and the integrity of the recombination
by verifying that the two parts of the CRT can be retrieved from the final result (line 5). This

SFor the sake of simplicity we removed some code that served against SPA (simple power analysis) and only kept
the necessary code against fault-injection attacks.

13

Algorithm 8: CRT-RSA with Vigilant’s countermeasured [?]

with Coron et al.’s fixes [?] and Rauzy & Guilley’s simplifications [?]

Input : Message M, key (p,q,dp,dq,iq)
Output: Signature M¢ mod N, or error

1 Choose small random integers r, Ry, and Rs.

2 N=p-q

sp=p-r?

4 iy =p~ ! mod r?

5 M, =M mod p

6 By =Dp-ip

7 A, =1— B, mod p’

8 MZ’) = Ap . Mp + Bp . (1 —|—T) mod p/ // CRT insertion of verification value in M;
9 S;) = Mz’)dp mod ¢ (p') mod p/ // Intermediate signature in sz

10 if MZ') # M mod p then return error
n if B,- S, # B, - (1+d,-r) mod p’ then return error

12 ¢ =q-1r?

13 igr = ¢~ ' mod 72

14 My =DM mod ¢

15 By =q - igr

16 Ay =1— B, mod ¢

17 Mé =A, My;+ B, - (1+r) mod ¢ // CRT insertion of verification value in M,
18 St/z = Médq mod ¢(q") mod q’ // Intermediate signature in Z,-2

19 if M; # M mod ¢ then return error
20 if By - S, # By (1 +dy-7r) mod ¢ then return error

21 Spr = SZ/’ —B,-(1+d, -r—Ry) // Verification value of S, swapped with R
22 Sy = St/l —By-(1+dg-r—Rs) // Verification value of S, swapped with Rs
23 S, = Sgr + ¢ (ig - (Spr — Sgr) mod p’) // Recombination in Zy,.2

// Simultaneous verification of lines 2 and 23
24 if pg- (S, — Ro—q-iq- (R1 — R2)) #0 mod Nr? then return error

25 return S =S, mod N // Retrieve result in Zy

14

countermeasure is of course very expensive since the two big exponentiations are done twice, and is
thus not usable in practice. Note that it is nonetheless still better in terms of speed than computing
RSA without the CRT optimization.

Algorithm 9: CRT-RSA with straightforward countermeasure

Input : Message M, key (p,q,dp,dq,iq)
Output: Signature M¢ mod N, or error

1.5, = Mde mod () mod p // Intermediate signature in Z,
2 if S, # M% mod p then return error

3 Sy = M mod (9) 1od ¢ // Intermediate signature in Z,
4 if S, # M% mod ¢ then return error

5 S=S5,+¢q- (ig- (Sp —Sy) mod p) // Recombination in Zy
6 if %S, modpor S#S; modqg then return error

7 return S

Proposition 3 (Correctness). The straightforward countermeasure (and thus all the ones which
do equivalent verifications) is secure against first-order fault attacks as per Def. 1 and 2.

Proof. The proof is in two steps. First, prove that if the intermediate signatures are not correct,
then the tests at lines 2 and 4 returns error. Second, prove that if both tests passed then either the
recombination is correct or the test at line 6 returns error.

If a fault occurs during the computation of S, (line 1), then it either has the effect of zeroing
its value or randomizing it, as shown by Lem. 1. Thus, the test of line 2 detects it since the two
compared values won’t be equal. If the fault happens on line 2, then either we are in a symmetrical
case: the repeated computation is faulted, or the test is skipped: in that case there are no faults
affecting the data so the test is unnecessary anyway. It works similarly for the intermediate signature
in Zy.

If the first two tests pass, then the tests at line 6 verify that both parts of the CRT computation
are indeed correctly recombined in S. If a fault occurs during the recombination on line 5 it will
thus be detected. If the fault happens at line 6, then either it is a fault on the data and one of the
two tests returns error, or it is a skipping fault which bypasses one or both tests but in that case
there are no faults affecting the data so the tests are unnecessary anyway. O

4.2 High-Order Countermeasures

Using the ﬁnja3 tool we were able to verify that removing one of the three integrity checks indeed
breaks the countermeasure against first-order attacks. Nonetheless, each countermeasure which has
these three integrity checks, plus those that may be necessary to protect optimizations on them,
offers the same level of protection.

Proposition 4 (High-order countermeasures). Against randomizing faults, all correct countermea-
sures (as per Prop. 3) are high-order. However, there are no generic high-order countermeasures
if the three types of faults in our attack model are taken into account, but it is possible to build
nth-order countermeasures for any n.

15

Proof. Indeed, if a countermeasure is able to detect a single randomizing fault, then adding more
faults will not break the countermeasure, since a random fault cannot induce a verification skip.
Thus, all working countermeasures are high-order against randomizing faults.

However, if after one or more faults which permit an attack, there is a skipping fault or a
zeroing fault which leads to skip the verification which would detect the previous fault injections,
then the attack will work. As Lem. 1 and Prop. 2 explain, this is true for all countermeasures, not
only those which are test-based but also the infective ones. It seems that the only way to protect
against that is to replicate of the integrity checks. If each invariant is verified n times, then the
countermeasure will resist at least n faults in the worst case scenario: a single fault is used to break
the computation and the n others to avoid the verifications which detect the effect of the first fault.
Thus, there are no generic high-order countermeasures if the three types of faults in our attack
model are taken into account, but it is possible to build a nth-order countermeasure for
any n by replicating the invariant verifications n times. U

Existing first-order countermeasures such as the ones of Aumiiller et al. (Alg. 7, 13), Vigi-
lant (Alg. 8, 11), or Ciet & Joye (Alg. 4) can thus be transformed into nth-order countermeasures,
in the attack model described in Def. 1 and 2. As explained, the transformation consists in repli-
cating the verifications n times, whether they are test-based or infective.

This result means that it is very important that the verifications be cost effective. Fortunately,
as we saw in Sec. 3 and particularly in Sec. 3.4 on the usage of the small rings, the existing
countermeasures offer exactly that: optimized versions of Alg. 9 that use a variety of invariant
properties to avoid replicating the two big exponentiations of the CRT computation.

5 Building Better or Different Countermeasures

In the two previous sections we learned a lot about current countermeasures and how they work.
We saw that to reduce their cost, most countermeasures use invariant properties to optimize the
verification speed by using checksums on smaller numbers than the big ones which are manipulated
by the protected algorithm. Doing so, we understood how these optimizations work and the power
of their underlying ideas. In this section apply our newly acquired knowledge on the essence of
countermeasures in order to build the quintessence of countermeasures. Namely, we leverage our
findings to fix Shamir’s countermeasure, and to drastically simplify the one of Vigilant, while at
the same time transforming it to be infective instead of test-based.

5.1 Correcting Shamir’s Countermeasure

We saw that Shamir’s countermeasure is broken in multiple ways, which has been known for a long
time now. To fix it without denaturing it, we need to verify the integrity of the recombination as
well as the ones of the overrings moduli. We can directly take these verifications from Aumiiller et
al.’s countermeasure. The result can be observed in Alg. 10.

The additional tests on line 4 protect against transient faults on p (resp. ¢) while computing
p' (resp. ¢'), which would amount to a randomization of S}, (resp. S;) while computing the
intermediate signatures. The additional test on line 7 verifies the integrity of the intermediate

signature computations.

16

Algorithm 10: CRT-RSA with a fixed version of Shamir’s countermeasure

(new algorithm contributed in this paper)

Input : Message M, key (p,q,d,iq)
Output: Signature M¢ mod N, or error

1 Choose a small random integer r.

2p =p-r

3¢ =q-r

4 if P 20 mod p or ¢ 20 mod g then return error

5 51/7 = Md mod (@) pod p’ // Intermediate signature in Z,,
6 Sé = Md mod e(d) pod q // Intermediate signature in Zg,

7 if S}, # S, mod r then return error

8 Sp =25, mod p // Retrieve intermediate signature in Z,
9 Sy = Stll mod ¢ // Retrieve intermediate signature in Z4
10 S=5+¢q- (iq . (Sp — Sq) mod p) // Recombination in Zn

1 if S# S, mod p or S# S, mod ¢ then return error

12 return S

5.2 Simplifying Vigilant’s Countermeasure

The mathematical tricks used in the Vigilant countermeasure are very powerful. Their understand-
ing enabled the optimization of his countermeasure to only need 3 verifications, while the original
version has 9. Our simplified version of the countermeasure can be seen in Alg. 11. Our idea is that
it is not necessary to perform the checksum value replacements at lines 21 and 22 of Alg. 8 (see
Sec. 3.4). What is more, if these replacements are not done, then the algorithm’s computations
carry the CRT-embedded checksum values until the end, and the integrity of the whole computation
can be tested with a single verification in Z,» (line 23 of Alg. 11).

This idea not only reduces the number of required verifications, which is in itself a security
improvement as shown in Sec. 3.2, but it also optimizes the countermeasure for speed and reduces
its need for randomness (the computations of lines 21 and 22 of Alg. 8 are removed).

The two other tests that are left are the ones of lines 10 and 19 in Alg. 8, which ensure that the
original message M has indeed been CRT-embedded in M, and M;. We take advantage of these
two tests to verify the integrity of N both modulo p and modulo ¢ (lines 17 and 20 of Alg. 11).

Remark 3. Note that we also made this version of the countermeasure infective, using the trans-
formation method that we exposed in Sec. 3.2. As we said, any countermeasure can be transformed
this way, for instance Alg. 13 in the Appendix B presents an infective variant of Aumiiller et al.’s
countermeasure.

6 Conclusions and Perspectives

We studied the existing CRT-RSA algorithm countermeasures against fault-injection attacks, in
particular the ones of Shamir’s family. In so doing, we got a deeper understanding of their ins
and outs. We obtained a few intermediate results: the absence of conceptual distinction between

17

Algorithm 11: CRT-RSA with our simplified Vigilant’s countermeasure, under its infective avatar

(new algorithm contributed in this paper)

Input : Message M, key (p,q,dp,dq,iq)

Output: Signature M¢ mod N, or a random value in Zy

1 Choose a small random integer 7.
N=p-q

[V

s p=pr

4 iy =p~ ! mod r?

5 M, =M modp

6 By =Dp-ip

7 A, =1— B, mod p’

8 M, =A, - M,+B,-(1+7r) mod p’
o q =q-r?

10 igr = ¢ ' mod 72

11 My;=M mod ¢

12 By =q - igr

13 Ay =1— B, mod ¢

1a My =A, Mg+ By-(1+7) mod ¢
15 S;:Mz’jdp mod () 10d P’

16 Spr=1+dy, -7

17 ¢p =M, +N—-M+1 mod p

18 SézMéd" mod ¢(¢) 16q ¢

19 Sp =14dy-r

20 ¢g = M;+N—-M+1 mod g

21 S = S;—i—q' (iq - (SI/? —Sl;) mod p’)

22 Sr - Sq'r‘ + q- (Zq . (Spr — Sqr) mod p/)

23 cg =5 —S,+1 mod r?

24 return S = S’°r%° mod N

// CRT insertion of verification value in MI',

// CRT insertion of verification value in Mé

// Intermediate signature in Z,,

// Checksum in Z,» for S,

// Intermediate signature in Z,»
// Checksum in Z,2 for S

// Recombination in Zp,2

// Recombination checksum in Z,2

// Retrieve result in Zn

18

test-based and infective countermeasures, the fact that faults on the code (skipping instructions)
can be captured by considering only faults on the data, and the fact that the many countermeasures
that we studied (and their variations) were actually applying a common protection strategy but
optimized it in different ways. These intermediate results allowed us to describe the design of a
high-order countermeasure against our very generic fault model (comprised of randomizing, zeroing,
and skipping faults). Our design allows to build a countermeasure resisting n faults for any n at
a very reduced cost (it consists in adding n — 1 comparisons on small numbers). We were also
able to fix Shamir’s countermeasure, and to drastically improve the one of Vigilant, going from 9
verifications in the original countermeasure to only 3, removing computations made useless, and
reducing its need for randomness, while at the same time making it infective instead of test-based.

Except for those which rely on the fact that the protected algorithm takes the form of a CRT
computation, the ideas presented in the various countermeasures can be applied to any modular
arithmetic computation. For instance, it could be done using the idea of Vigilant consisting in using
the CRT to embed a known subring value in the manipulated numbers to serve as a checksum.
That would be the most obvious perspective for future work, as it would allow a generic approach
against fault attacks and even automatic insertion of the countermeasure.

A study of Giraud’s family of countermeasures in more detail would be beneficial to the com-
munity as well.

Acknowledgment

We would like to thank Antoine Amarilli for his proofreading which greatly improved the editorial
quality of our manuscript.

References

19

A Recovering d and e from (p, q,d,, dy, i,)

We prove here the following proposition:

Proposition 5. It is possible to recover the private exponent d and the public exponent e from the
5-tuple (p, q,dp,dq,1q) described in Sec. 2.2.

Proof. Clearly, p— 1 and ¢ — 1 are neither prime, nor coprimes (they have at least 2 as a common
factor). Thus, proving Prop. 5 is not a trivial application of the Chinese Remainder Theorem. The
proof we provide is elementary, but to our best knowledge, it has never been published before.
The numbers p1 = W_ll,q—l) and ¢1 = Wll,q—l) are coprime, but there product is not equal
to AM(INV). There is a factor ged(p — 1,¢ — 1) missing, since A(N) =py - q1 - ged(p — 1,q — 1).

Now, ged(p — 1,9 — 1) is expected to be small. Thus, the following Alg. 12 can be applied
efficiently. In this algorithm, the invariant is that p, and ¢s, initially equal to p; and ps, remain
coprime. Moreover, they keep on increasing whereas r9, initialized to r1 = ged(p — 1,q — 1), keeps

on decreasing till 1.

Algorithm 12: Factorization of A(N) into two coprimes, multiples of p; and ¢; respectively.

InPUt ‘b1 = gcd(pp:ll_’qfl)a q1 = gcd(pq:llyqfl) and = ng(p - 17 q— 1)

Output: (ps, g2), coprime, such as ps - ga = A\(N)

1 (p2,q2,72) < (P1,q1,71)
g < ged(p2, r2)
while g # 1 do

P24 p2-g

T9 < T2/g

g < ged(p2,72)
end

N e ok woN

]

g < ng(q27 TQ)
o while g #1 do

10 a2 < q2-9g
11 T9 < T2/g
12 g < ged(ga,m2)
13 end

// p2, g2 and r2 are now coprime
14 G2 <= QG272 // p2 < p2 -T2 would work equally
15 (rg <= 12/r2 = 1) // For more pedagogy

16 return (p2,q2)

Let us denote ps and g5 the two outputs of Alg. 12, we have:
e d,, = d, mod po, since pa|(p — 1);
e dy, =d; mod ¢y, since ga|(q — 1);
e i19 =po~ ' mod ¢o, since py and ¢o are coprime.
We can apply Garner’s formula to recover d:

d = dp, +pa - ((ir2 - (dgy — dp,)) mod g2) . (1)

By Garner, we know that 0 < d < ps - g2 = A(N), which is consistent with the remark made in the
last sentence of Sec. 2.1.

20

B

Once we know the private exponent d, the public exponent e can be computed as the inverse
of d modulo \(N).

Infective Aumuller CRT-RSA

The infective variant of Aumiiller protection against CRT-RSA is detailed in Alg. 13.

O

Algorithm 13: CRT-RSA with Aumdiller et al.’s countermeasured, under its infective avatar

(new algorithm contributed in this paper)

Input : Message M, key (p,q,dp,dq,iq)
Output: Signature M¢ mod N, or a random value

Choose a small random integer r.

p=p-r

3 cg=p +1 modp

¢=qr

5 co=¢ +1 modq

10
11

12

13

14

15

16

S) = Mdv mod ©(0) od pf
Sy = Mda mod () mod ¢

Sp =8, mod p
Sy =8, mod ¢

S=8g+q-(iqg- (Sp — Sg) mod p)
c3=98-S5,+1 modp

ca=8-S5,+1 mod q

Spr:S,/, mod r

Sgr =8, mod r

c5 = Spqu mod ¢(r) _Sqrdp mod ¢(r) +1 mod r

return S5c1¢2¢3c¢4¢s

// Intermediate signature in Z,,

// Intermediate signature in Zg,

// Retrieve intermediate signature in Z,

// Retrieve intermediate signature in Z,

// Recombination in Zxy

// Checksum of S, in Z,
// Checksum of S; in Z,

21

	Introduction
	CRT-RSA and the BellCoRe Attack
	RSA
	CRT-RSA
	The BellCoRe Attack

	Classifying Countermeasures
	Shamir's or Giraud's Family of Countermeasures
	Test-Based or Infective
	Intended Order
	Usage of the Small Rings
	Verification of the Intermediate CRT Signatures
	Checksums of the Intermediate CRT Signatures
	Overrings for CRT Recombination
	Identity of r1 and r2

	The Essence of a Countermeasure
	A Straightforward Countermeasure
	High-Order Countermeasures

	Building Better or Different Countermeasures
	Correcting Shamir's Countermeasure
	Simplifying Vigilant's Countermeasure

	Conclusions and Perspectives
	Recovering d and e from (p, q, dp, dq, iq)
	Infective Aumüller CRT-RSA

