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Observer-based Controller For Microrobot in Pulsatile Blood Flow

Lounis Sadelli, Matthieu Fruchard, Antoine Ferreira

Nanorobots

Abstract— -

We propose an observer-based controller for a magnetic (a) Ligand+Payload
microrobot immersed in the human vasculature. The drag force
depends on the pulsatile blood velocity and specially acts on ,
the microrobot dynamics. In the design of advanced control

laws, the blood velocity is usually assumed to be known or
set to a constant mean value to achieve the control objectives, zoom -
whereas the sole robot position is measured. We prove the _— °
stability of the proposed observer-based controller combining
a backstepping controller with a mean value theorem (MVT)

based observer. The resulting estimation of the blood velocity
is then illustrated and compared to high gain observer results
through simulations.

I. INTRODUCTION -
~QFy

Therapeutic untethered nano and microrobots control has
been an ongoing interest for many researchers since such————=
systems can perform complex surgical procedures and reach== ©
remote places with lessened medical side effects [1], [%.,

«—Ofw

Difterent propulsion strategies have been proposed, mainf %L, bheorehet n 2 bood vesse () bides by lgsning
based on magnetic deported actuation: robots with elastg not face the same drag force because of the parabolic bimagpfbfile.
flagellum [3], [4], [5], with helical flagellum [6], [7], bead
pulled robots or swarm of robots [8], [9].

avoid the drawbacks of the aforementioned approaches, we

Whatever the proposed design, these systems fabhave consequently proposed in [15] a high gain observer to
nonlinear forces: blood drag, electrostatic force, etc],[10estimate the blood velocity and inject it in the control law.
[11]. Among these forces, the nonlinear drag force botlet, high gain observers are known for their output noise
prevails at a small scale and is the most disturbed kbsensitivity, especially as the system dimension increases
external time-varying perturbations because of the pildsat underlined in [16].
blood flow. Its measurement is often assigned to ultrasonic
sensors [12] or magnetic resonance imaging devices [13] The purpose of this paper is to propose an alternative
that exploit the Doppler effect. Yet this solution calls forstate estimation of the blood velocity using a MVT-based
an end-effector servoing so as to track the robot. Moreovaspserver so as to both improve robustness to noise and prove
the devices resolution is not compatible with the precisiothe stability of the observer-based controller. The model
required to discriminate the spatial parabolic blood flowof the microrobot dynamics taking into account the blood
profile (see Fig 1) the robot faces depending on its positiovelocity modeled by a truncated Fourier series is first tedal
in the vessel. Another solution relies anpriori knowledge in Section Il. Section Ill is dedicated to the design of a
of the blood velocity, either using computational soluton stable MVT observer-based backstepping controller. Kinal
of the Navier Stokes equation [14], or analytical exprassio simulations results illustrate the efficiency of the pragubs
of the blood velocity profiles [10]. However, the formerapproach and are compared to the high gain observer results
is not well suited for real-time purposes, whilst the lattein Section IV. Conclusions and discussions on open issues
requires a precise priori knowledge of the vessel geometry.are summarized in Section V.

Considering the blood flow as a disturbance to reject it
is neither a good idea since drag is the dominant force: Il. MODELING
blood velocity is thus relevant for control purposes. To Let us consider a microrobot of mass, made of ferro-

L. Sadelli and M. Fruchard are with the Laboratory PRISMEmagnetIC pamdes ar.ld a paylo_ad, nawgatlng_ m. the atteria
EA 4229, Univ. Orleans, 63 Av de Latre de Tassigny,18020 network. Any systemimmersed in a moving fluid is —at least—
Bourges Cedex, Francé,ouni s. sadel | i @i v-orleans.fr  subjected to two forces: the drag force and the buoyancy
mat t hi eu. fruchard@niv-orleans. fr force. This section is devoted to briefly introduce thesedsr

A. Ferreira is with the Laboratory PRISME EA4229, . . L
INSA-CVL, 88 Bd Lahitolle, 18000, Bourges, France. and the magnetic motive force (se.[10] for more details).
antoine.ferreira@nsa-cvl.fr For sake of simplicity, we here only consided ® model.
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2) Magnetic force: Three main propulsion designs for

magnetic microrobots have been developped: bead pulled,
elastic flagellated, and helical tailed robots, see [1] for a
survey. In1D, their magnetic motive force is given by [10]

o
o
i

o
o
i

\ Fy = Bati — B30 (5)
1‘\ where 3s is related to the drag exerting on the helical tail,
\\ - F and is null for elastic flagellated and bead pulled robot® Th
\ control inputu is the magnetic field gradier’? B and the
| frequency of the oscillating magnetic fielgifor bead pulling
and flagellated robots, respectiveBs is proportional to the

robot magnetization, radius, and ferromagnetic ratioptkeh
M, r, andr,, respectively.
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Fig. 2. Blood velocity¢; (black solid line), mean valug; o (gray solid

line) and nth order truncated Fourier seri&€s. ,: &1,1 (bllje dots), &1 2

3) Apparent weight: The apparent weight of the robot
(black dashes) ang; 3 (green crosses).

results from the contribution of the weight and the buoyancy

I/T/va = V(p - pf)g (6)
where the robot density i8 = 7, pm + (1 — 7)) pp With py,
A. Forces and p, the magnetic and payload densities, respectivily
1) Hydrodynamic drag force:ln a fluidic environment, denotes the robot volume.
any system faces the drag force which opposes its motion:
) 7N\2 7 B. State Space Representation
— v v
Fq = 2pfACd (5) TGl The reduced systerfs,.) is derived from (2), (5) and (6)
24 6
Cy = —4———— 404 (1) . o1 0 0
ool 607 = o o] s et e
Re — M y = CIZ
pn

(7)
where 4 is the frontal area, the drag coefficiefif; is given ~where the state components;; andz;, denote respectively
by [17], § is a dimensionless ratio related to the wall effecthe robot position and velocity, the control input and; the

caused by the partial vessel occlusion by the robot [18], ardood velocity. The outpuy is the robot position measured
v denotes the relative velocity between the robot and tHgy an imagerj.e. C4

i je.Ci =]
fluid.  and p; denote respectively the blood viscosity and

density. In the case of a spherical microrobot of radiuthe

1 0]. The function¢ is given by:
drag force can be rewritten as:

<z><z,f>=[— oz — 51>(<a Bl — ] bz — €1

(22 — £1)? ) 1

. 5 +e +Vier —p)g|—>

Fg = - a|v|+bv2+c Y ) 1+ dy/|z2 — & m

d\/|v G (8)
) . whereo is the sign function.

The parameters in (2) are inherited from (1)

a = 6mnr/B, b = 02psmr?/p? Letx = [T, ¢T)T

c = 3pymr?/B, d =

€ R?"*+3 denote an extended state vector.
2rp/(Bn) ®) The extended systerfS,) is inherited from (7) and (4)
Arterial pulsatile flow profiles are usually modeled using
the Womersley model [19], which results in a truncated
Fourier series as shown on Fig. 2. It is easy to show that
any blood velocityé; expressed as ath order truncated ,;ih BT —
Fourier series is solution of the autonomous system:

& = A0)z+ Bf(z,u)
Se): 9
(Se) { y Cya 9)

[0 1 01><2n+1] andCQ

[C1 01x2n+1]. Function
f is chosen so thatl(0) contains the linear part qfS.)
b1 = Eop (a+ B3)(x2 — 3)
b, = —w(k&p-1 — Eapi1) fl@,u) = ¢(z) + Bru+ (10)
(Se) : 4) mn
. x1 X2 O O2x1
S2n+1 0 Oy F1 x3 -+ O
vk € {1,...,n} and where the mean value §s,,+1, up to Ala) = | ¢ ] ) (11)
a constant facto | 2. See [15] for technical details. Oy -+ O2x1 Fn X3
i=1 0 - .-

0



with system (9) dimension i$. Using higher order truncated

0 1 0 series emphasizes this issue since the gain matrix is formed
X1= [0 —(Bs +a)/m — a] X3 = Lﬂ] in ascending powers df. That is the reason why we propose
another observer based on [23].
_ 0 0 1 0 1
= [(53 +a)/m+a 0} = [_i%ﬂ O] 12) Proposition 1 Let/ denote the compact set of admissible

) . ) inputs. Under assumptions of Lemma (Ii(0) € K,
The knowledge ofzy,xs,x3 is required to implement Vi(0) € K, Yu € U,

a stabilizing control law. Since only; is measured, an
observer is thus necessary. The next section is devoted to
the synthesis of the observer-based controller.

>

= A(0)+ Bf(z,u) + K,(y — C2%)

X O 7
Yy = 2T

1. M AIN RESULT is an exponential observer of system (9) knwith the
Lemma 1 Letz,..r = [2:(t), %.(t), 2.(t)] denote any contin- symmetric positive definite matricg’,, Q, and the gain

uous and bounded reference trajectory, afid denote any K, that satisfy the Linear Matrix Inequalities (LMI):
compact subset of a neighborhood (af., 2,). Vz € K =

K. x K¢, systemg7) and (9) satisfies the properties: (Ai = K,Co)" Py + Po(Ai — KoC2) < —Qo, Vi€ {1,2}
P1) ¢ is locally y-Lipschitz onk; (18)

P2) System(7) is locally controllable alongz.; Proof: Let # = z — # denote the estimation error. Let
P3) Systen(g) satisfies(41, C2) and (Ay, C) observable, Co(z,%) = {Mr + (1 - XN)z,0 < X < 1} and Co(x, %)
with A, = A(0) and A, = A(y — oy, denote a convex and its convex hull. Applying the MVT to
P4) f is differentiable with respect to andVj < 2n + 3, £, 30(t) € Co(z, #) such that:
3(aj,b;) € R? such that:

~ M3
<)<t Veek v (3 f=f<x>—f<az=>=( Ze?agw(t),u(t»)fm (19)

j=1
Proof: Properties R1) and @2) have been .4 {er
demonstrated in [15] and [20], respectively. In particular ’
the local controllability of system (7) is inherited frometh 2n+3 T )
controllability of its linearized time-variant system ap €t A(t) = A0) + B J; hj(t)e;  with
the reference trajectory,.,(t) [21], [22]. hy(t) % (0, ).

...e2,+3} denoting the canonical basis Bf"*3.

Let T denote the observability matrix determinant associated Then, using (9) and (17), the estimation error dynamics

with the pair(Csy, A(a)). It is straightforward that: satisfies the LPV system:

T = [((53 +a)/m + a)* ! 1_1 w‘“} W (14) = (A(h(t) — K,Co)i (20)

o _ Property P4) implies that the parametés(t) evolves in
Property P4) is inherited from (10), fromR1) and from 3 pounded set{ whose vertexV is given by:
the properties ofp established in Lemma 1 of [15], namely

22 = - 9% andvx € K: V={a= (o, ams)le; € {a;,0;}}  (21)

%ﬂa < 8%(3,) < v (15) From (P4), V reduces toV = {as,bs} = {0, — %}.
Using (10) and (15), it is straightforward that: For all P, symmetric positive definite, a candidate Lya-

0< Bfa(;c-,u) _ _Bfﬁ(;m) <y afnﬁs punov function is given by:
. ’ (16) -\ AT s Y52
2 — 0 vj ¢ {2.3} Vo(@) = & Poit < A7 (22)
m with )\ the highest eigenvalue d?,.
Differentiating (22) using (20) leads to:
A. Observer 9 . ) 9 (20)
We previously have proposed a high gain observer in Vo(#) = 27 Q(h(1)Z (23)

[15] to estimate the extended state vector in (9). Yet thig the time-varying matrixQ(h) affine in i defined by:
observer raises two issues. First, even for small dimeasion

systems, it is difficult to design the observer in order taQ(h(t)) = (A(h(t)) — K,C2)T P, + Po(A(h(t)) — K,C5)
obtain relatively low gainl because of the high value of (24)
the local Lipschitz constany. Second, even for a blood Let K,, P, andQ, satisfy (18). Sinced(a3) = A; and
velocity defined as a first-order truncated Fourier serfss, t A(b3) = A2, we consequently hav@(a) < —Q, Va € V.



Using the principle of convexity, we then ha¥gh(t)) < Proof: Replacingu with @ in (32), we obtain:
—Q,, Vh € H. Hence, we have
, Vo =—kiZt —koZ + % (¢ + (kb1 + k2)52 + (1 — kD)
V(%) < =i Qok (25) ’ 13— kast 4 2 (4 (b + k) ! 135)
Let )\ denote the smallest eigenvalue @f, we then have with ¢ = ¢(z) — ¢(2). Using property P1) leads to:
. — 3 — 12 — 112 — ~
Vo(#) < Al|Z|2 < —(A/A)Vo(z) (26) Vo < —kaillz2]]” — ko z]] +7\|Zj|||\w|\ (36)
(k1 + k)l 22| |1Z2]] + (1 — kD) Z2l12
It follows from (26) that (17) is an exponential observer for (r Rl 2]+ Dlizll=l
system (9). Yet we have the following bound:
[ | - .
Za=2m+kiZi = Z=4%+kzn

B. Controller - N - (37)
= [|22]| < ||Z2|| + k21|

Proposition 2 Under assumptions of Lemma (1), the back-

stepping control lawu = k(z): So using (37) in (36) yields:
() = (k2 k)Z + (L=kD)z + o(x) — 2 27) Vo < —k1\|21|\25k2~\|22|\2+'y||22\||\:i|\7 )
P (k1 + k)l 22| [|Z2]] 4 (1 4 kak2) || 22|21 ] (38)
stabilizes the systerfv) along anyC° reference trajectory < —nellzl” + ClENEN
for any bounded initial state:(0) with the controller gains B
ki,ko >0 andz; = 21 — 2, 2o = 29 + k121 — 2. with Ne = min(kl,kg) and(c = (1 +v+ k1 + ko + klkg).

Proof: Letz =z —z andz; = 2, — 2. —aforsome  consider the Lyapunov functioW (2, #) with ¢ > 0:
stabilizing functiona.

« A candidate Lyapunov function is: W(z,2) = (Va(2) + Vo(2) (39)
V= %5% — Vi =Z1(22— %) =71 (%2 + ) (28) Using (38) and (26), the time derivative 8f (z,Z) is:
Settinga = —k; 7, leads to: W(z,&) < —nellzll* + ¢CllzllE] — Al &> (40)
Vi=—-kiZ24+ 5% (29)  Choosing¢ = n.)/¢? thus results in:
Sincez; = 29 — 3, = Zo + o = Zy — k1Z1, We obtain: W(z2) < —Cnellzl?/2 = AllF|2/2 (41)

Zy = ¢($> + Bou + k/’l(ig —k1z1) — (30)

« In this last step, the candidate Lyapunov function is:

Setx; = max((/2,\) and ky = min(¢n., A)/2, we get:

) Wz < m(lE? + | #2) )
_92 .
Va=Vi+ 5% (31) W(zE) < —ma(2?+ 72

Differentiating (31) using (30), we obtain: We consequently have:
Vo= —kizi + 2 + Bau+kiZo+ (1 —k})z — 2 :
2 127 + 22(¢(z) + Bau+ k122 + ( )21 (;2)) Wz, 7)< —@W(Z 7) (43)
K1
Using v = k(z) given by (27) leads to:
Thereforez andz exponentially converge to zero, and the

’ =2 =2 ~
Vo = —k1z) — k2Z) (33)  same goes for andz.
- |
C. Stability of the observer-based controller TABLE |
Proposition 3 Under assumptions of Proposition (1), the PARAMETERS VALUES
observer-based control lad = x(%): Blood viscosity n 16 x 10> [Pa.s]
. . Blood density Py 1060 [kg.m~>
o (ko Ek)Z 4+ (1—k)z + o(&) — 2 34 Ferromagnetic density|  pm 7500 [kg.m °
r(#) = — B (34) Robot radius T 25102 [m]
Vessel diameter D 3102 [m]
stabilizes the systerfv) along anyC° reference trajectory Payload density Pp 1500 [kg.m~7]
initi 5 2 i Ferromagnetic ratio Tm 0.75
for' any initial statﬁe (x(O),at(O)) € K AWIth thAe coptroller Magnetization o T35 105 [Am=T]
galns kl’AkQ >0,21 =% — 2zp, 22 = 22+ k121 — 4 and Controller gains k1, k2) (7,14)

Z=Z—Z.
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Fig. 3.

From left to right: simulation with MV T-observer = 1, simulation with high gain observer = 1, and simulation with MV T-observen = 2.

From top to bottom: robot position, robot velocity, blood agty, and control input.

TABLE Il

INITIAL CONDITIONS AND MVT OBSERVER GAINS

IV. SIMULATIONS

modeled by a first-order Fourier series. For the second set
of simulations, the blood velocity is modeled by a second-

To (000.1075 0 0.05) : : . L ;
n=1 %0 (0:001 0.01 0 0.001 0.01) order Fourier series. The high gain is so high that the
K, (68.09 1340.76 1051.07 3561.35 549.92) innovation terms dwarf the observer dynamics and amplify
, (0(8 860168%(1135665001-10233168-08102(3)20?-)2) the noise tremendously: we address this simulation only for

n = Z0 . . . . . . . . . .
K, [ (33.0579.1566.8 3337.0 276.4 — 4039.4 1206.1) the observer detailed in Proposition (1). Table Il gives the

initial conditions and the MVT observer gains.

A. First-order truncated blood velocityh(= 1)
The first simulation shows that the MVT-observer-based

In the simulations, a Gaussian white noise with a standambntroller is stable despite the output noise. The Fig. 3(a)
deviation of 500um is added to the measured output to(resp. 3(d)) illustrates the real and estimated microrobot
model the medical imagers resolution. The nominal valugzositions (resp. velocities) and the associated estimatio
of parameters are given in Table I. The robot is bead pulleéyrors. The microrobot position and velocity converge to
so that we haved, = Tm—pM and 33 = 0. Without loss of
generality, the reference trajectory is a fixed point.

The first set of simulations compares the results of thand velocity estimation errors are less th&®Oum and
proposed approach with results of the high gain observémm.s~!, respectively. Similarly, the Fig. 3(g) shows that
developped in [15] (with a gai. = 3) for a blood velocity

zero after als long transient phase that corresponds to
the observer convergence time. Once stabilized the positio

the blood velocity estimation error is less thamm.s—!



once the observer has converged. The Fig. 3(j) illustrates

that the control input is not affected by noise.

The second simulation illustrates the results obtainet wit[ ]
a high gain observer and the same controller than in th
previous simulation. The Fig. 3(b) (resp. 3(e)) illusteatbe
real and estimated microrobot positions (resp. velogites!
the associated estimation errors. The high gain converges!
twice more quickly than the MVT observer due to high
values of the innovation terms. Yet the price to pay is a[4]
higher sensitivity to noise, which is noticeable on Fig.)3(b
and 3(h): the position estimation error is aroubhdm and
the blood velocity estimation error is aroub@nm.s~. The
high gain observer performs better than the MVT observe
only for the microrobot velocity estimation, with an error
less than2mm.s~!. The control input is far more affected

by noise (Fig. 3(k)) than in the previous simulation.

B. Second-order truncated blood velocity € 2)
The third simulation illustrates the results obtainedrfcr

2 using the MVT observer-based controller. The convergence
rate of the observer is the same than for= 1. The
estimation errors on the microrobot position, velocity and[]

on the blood velocity are respectively less thab0um,

4mm.s~! and4mm.s—! (see Fig. 3(c)-3(i)). The observer
here gives better results than far= 1 because the gains [10]
on the first three components are smaller than in the case
n = 1. One can notice that the shape of the second ordan]
velocity shown on Fig. 3(i) is very close to the real profile

of blood velocity (see Fig. 2).

V. DISCUSSION AND CONCLUSION

Measurement of average blood flow velocity has been
largely addressed in the literature. Yet such informatiofi3]
is neither sufficient nor accurate enough for controlling
microrobots in blood vessels. The pulsatile blood velocity
affects nonlinearly the drag force, which in turn affects
the microrobot dynamics. We take advantage of the Fouri€fl
series decomposition of the blood velocity to propose an
observer-based controller using the sole measuremengof th
microrobot position obtained thanks to an imager. Simuld2]
tions illustrate the improved robustness to noise of the MVT
based observer with respect to the high gain observer ws]

have previously developed.

Extension of the approach to2D model is an ongoing
work. The main difficulty is induced by the increased Lips-
chitz constant of a system including the electrostaticdorc
The estimation of the blood pulsation is still an open issué}gl
since the resulting perturbation model becomes nonlinggr a
non uniformly observable. Kazantsis-Kravaris Luenbergd?®l
observer has been tested, but the resulting estimated state

is not yet suitable for control purpose.

This approach can not only benefit to the control of
magnetic microrobots, but also as an alternative to diregf,
measurement of the blood velocity. It may also merge thi3]
two advantages.g.for a removal of the plaques in clogged
arteries followed by an inspection of the blood velocity
changes so as to check if the plagues have been removed.
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