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Observer-based Controller For Microrobot in Pulsatile Blood Flow

Lounis Sadelli, Matthieu Fruchard, Antoine Ferreira

Abstract—
We propose an observer-based controller for a magnetic

microrobot immersed in the human vasculature. The drag force
depends on the pulsatile blood velocity and specially acts on
the microrobot dynamics. In the design of advanced control
laws, the blood velocity is usually assumed to be known or
set to a constant mean value to achieve the control objectives,
whereas the sole robot position is measured. We prove the
stability of the proposed observer-based controller combining
a backstepping controller with a mean value theorem (MVT)
based observer. The resulting estimation of the blood velocity
is then illustrated and compared to high gain observer results
through simulations.

I. I NTRODUCTION

Therapeutic untethered nano and microrobots control has
been an ongoing interest for many researchers since such
systems can perform complex surgical procedures and reach
remote places with lessened medical side effects [1], [2].
Different propulsion strategies have been proposed, mainly
based on magnetic deported actuation: robots with elastic
flagellum [3], [4], [5], with helical flagellum [6], [7], bead
pulled robots or swarm of robots [8], [9].

Whatever the proposed design, these systems face
nonlinear forces: blood drag, electrostatic force, etc [10],
[11]. Among these forces, the nonlinear drag force both
prevails at a small scale and is the most disturbed by
external time-varying perturbations because of the pulsatile
blood flow. Its measurement is often assigned to ultrasonic
sensors [12] or magnetic resonance imaging devices [13]
that exploit the Doppler effect. Yet this solution calls for
an end-effector servoing so as to track the robot. Moreover,
the devices resolution is not compatible with the precision
required to discriminate the spatial parabolic blood flow
profile (see Fig 1) the robot faces depending on its position
in the vessel. Another solution relies ona priori knowledge
of the blood velocity, either using computational solutions
of the Navier Stokes equation [14], or analytical expressions
of the blood velocity profiles [10]. However, the former
is not well suited for real-time purposes, whilst the latter
requires a precisea priori knowledge of the vessel geometry.
Considering the blood flow as a disturbance to reject it
is neither a good idea since drag is the dominant force:
blood velocity is thus relevant for control purposes. To
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Fig. 1. Microrobot in a blood vessel. (a) binded by ligand, including a
payload; (b) binded by magnetic and interaction forces. (c) The microrobots
do not face the same drag force because of the parabolic blood flow profile.

avoid the drawbacks of the aforementioned approaches, we
have consequently proposed in [15] a high gain observer to
estimate the blood velocity and inject it in the control law.
Yet, high gain observers are known for their output noise
sensitivity, especially as the system dimension increases, as
underlined in [16].

The purpose of this paper is to propose an alternative
state estimation of the blood velocity using a MVT-based
observer so as to both improve robustness to noise and prove
the stability of the observer-based controller. The model
of the microrobot dynamics taking into account the blood
velocity modeled by a truncated Fourier series is first recalled
in Section II. Section III is dedicated to the design of a
stable MVT observer-based backstepping controller. Finally,
simulations results illustrate the efficiency of the proposed
approach and are compared to the high gain observer results
in Section IV. Conclusions and discussions on open issues
are summarized in Section V.

II. M ODELING

Let us consider a microrobot of massm, made of ferro-
magnetic particles and a payload, navigating in the arterial
network. Any system immersed in a moving fluid is –at least–
subjected to two forces: the drag force and the buoyancy
force. This section is devoted to briefly introduce these forces
and the magnetic motive force (seee.g.[10] for more details).
For sake of simplicity, we here only consider a1D model.
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Fig. 2. Blood velocityξ1 (black solid line), mean valueξ1,0 (gray solid
line) andnth order truncated Fourier seriesξ1,n: ξ1,1 (blue dots),ξ1,2
(black dashes) andξ1,3 (green crosses).

A. Forces

1) Hydrodynamic drag force:In a fluidic environment,
any system faces the drag force which opposes its motion:


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whereA is the frontal area, the drag coefficientCd is given
by [17], β is a dimensionless ratio related to the wall effect
caused by the partial vessel occlusion by the robot [18], and
v denotes the relative velocity between the robot and the
fluid. η and ρf denote respectively the blood viscosity and
density. In the case of a spherical microrobot of radiusr, the
drag force can be rewritten as:

~Fd = −
(

a|v|+ bv2 + c
v2

1 + d
√

|v|

)

~v

||~v|| (2)

The parameters in (2) are inherited from (1):
{

a = 6πηr/β, b = 0.2ρfπr
2/β2

c = 3ρfπr
2/β2, d =

√

2rρf/(βη)
(3)

Arterial pulsatile flow profiles are usually modeled using
the Womersley model [19], which results in a truncated
Fourier series as shown on Fig. 2. It is easy to show that
any blood velocityξ1 expressed as anth order truncated
Fourier series is solution of the autonomous system:
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(4)

∀k ∈ {1, . . . , n} and where the mean value isξ2n+1, up to

a constant factor
n
∏

i=1

i2. See [15] for technical details.

2) Magnetic force: Three main propulsion designs for
magnetic microrobots have been developped: bead pulled,
elastic flagellated, and helical tailed robots, see [1] for a
survey. In1D, their magnetic motive force is given by [10]:

~Fm = β2~u− β3~v (5)

whereβ3 is related to the drag exerting on the helical tail,
and is null for elastic flagellated and bead pulled robots. The
control inputu is the magnetic field gradient∇B and the
frequency of the oscillating magnetic fieldB for bead pulling
and flagellated robots, respectively.β2 is proportional to the
robot magnetization, radius, and ferromagnetic ratio, denoted
~M , r, andτm respectively.

3) Apparent weight:The apparent weight of the robot
results from the contribution of the weight and the buoyancy:

~Wa = V (ρ− ρf )~g (6)

where the robot density isρ = τmρm+(1− τm)ρp with ρm
and ρp the magnetic and payload densities, respectively.V
denotes the robot volume.

B. State Space Representation

The reduced system(Sr) is derived from (2), (5) and (6):

(Sr) :




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where the statez componentsz1 andz2 denote respectively
the robot position and velocity,u the control input andξ1 the
blood velocity. The outputy is the robot position measured
by an imager,i.e. C1 = [1 0]. The functionφ is given by:
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(8)
whereσ is the sign function.

Let x = [zT , ξT ]T ∈ R2n+3 denote an extended state vector.
The extended system(Se) is inherited from (7) and (4):

(Se) :

{

ẋ = A(0)x+Bf(x, u)

y = C2x
(9)

with BT = [0 1 01×2n+1] andC2 = [C1 01×2n+1]. Function
f is chosen so thatA(0) contains the linear part of(Se):

f(x, u) = φ(x) + β2u+
(a+ β3)(x2 − x3)

m
(10)
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with

χ1 =

[

0 1
0 −(β3 + a)/m− α

]

χ3 =

[

0
ω2

]

χ2 =

[

0 0
(β3 + a)/m+ α 0

]

̥i =

[

0 1
−i2ω2 0

]

(12)
The knowledge ofx1, x2, x3 is required to implement

a stabilizing control law. Since onlyx1 is measured, an
observer is thus necessary. The next section is devoted to
the synthesis of the observer-based controller.

III. M AIN RESULT

Lemma 1 Let zref = [zr(t), żr(t), z̈r(t)] denote any contin-
uous and bounded reference trajectory, andKz denote any
compact subset of a neighborhood of(zr, żr). ∀x ∈ K =
Kz ×Kξ, systems(7) and (9) satisfies the properties:
P1) φ is locally γ-Lipschitz onK;
P2) System(7) is locally controllable alongzref ;
P3) System(9) satisfies(A1, C2) and (A2, C2) observable,

with A1 = A(0) andA2 = A(γ − a+β3

m
);

P4) f is differentiable with respect tox and ∀j ≤ 2n+ 3,
∃(aj , bj) ∈ R2 such that:

aj ≤ ∂f
∂xj

(x, u) ≤ bj ∀x ∈ K, ∀u (13)

Proof: Properties (P1) and (P2) have been
demonstrated in [15] and [20], respectively. In particular,
the local controllability of system (7) is inherited from the
controllability of its linearized time-variant system along
the reference trajectoryzref (t) [21], [22].

Let Υ denote the observability matrix determinant associated
with the pair(C2, A(α)). It is straightforward that:

Υ =
[

((β3 + a)/m+ α)2n+1
n−1
∏

i=0

ω4i
]

ω2n (14)

Property (P4) is inherited from (10), from (P1) and from
the properties ofφ established in Lemma 1 of [15], namely
∂φ
∂x2

= − ∂φ
∂x3

and∀x ∈ K:

a+β3

m
≤ ∂φ

∂x3

(x) ≤ γ (15)

Using (10) and (15), it is straightforward that:

0 ≤ ∂f(x,u)
∂x3

= −∂f(x,u)
∂x2

≤ γ − a+β3

m

∂f(x,u)
∂xj

= 0 ∀j /∈ {2, 3}
(16)

A. Observer

We previously have proposed a high gain observer in
[15] to estimate the extended state vector in (9). Yet this
observer raises two issues. First, even for small dimensional
systems, it is difficult to design the observer in order to
obtain relatively low gainL because of the high value of
the local Lipschitz constantγ. Second, even for a blood
velocity defined as a first-order truncated Fourier series, the

system (9) dimension is5. Using higher order truncated
series emphasizes this issue since the gain matrix is formed
in ascending powers ofL. That is the reason why we propose
another observer based on [23].

Proposition 1 Let U denote the compact set of admissible
inputs. Under assumptions of Lemma (1),∀x(0) ∈ K,
∀x̂(0) ∈ K, ∀u ∈ U ,

{

˙̂x = A(0)x̂+Bf(x̂, u) +Ko(y − C2x̂)

ŷ = C2x̂
(17)

is an exponential observer of system (9) onK with the
symmetric positive definite matricesPo, Qo and the gain
Ko that satisfy the Linear Matrix Inequalities (LMI):

(Ai −KoC2)
TPo + Po(Ai −KoC2) < −Qo, ∀i ∈ {1, 2}

(18)

Proof: Let x̃ = x− x̂ denote the estimation error. Let
Co(x, x̂) = {λx + (1 − λ)x̂, 0 ≤ λ ≤ 1} and C̄o(x, x̂)
denote a convex and its convex hull. Applying the MVT to
f , ∃θ(t) ∈ C̄o(x, x̂) such that:

f̃ = f(x)− f(x̂) =

(

2n+3
∑

j=1

eTj
∂f
∂xj

(θ(t), u(t))

)

x̃(t) (19)

with {e1, . . . e2n+3} denoting the canonical basis ofR2n+3.

Let A(h(t)) = A(0) + B
2n+3
∑

j=1

hj(t)e
T
j with

hj(t) =
∂f
∂xj

(θ, u).

Then, using (9) and (17), the estimation error dynamics
satisfies the LPV system:

˙̃x = (A(h(t))−KoC2)x̃ (20)

Property (P4) implies that the parameterh(t) evolves in
a bounded setH whose vertexV is given by:

V = {α = (α1, · · · , α2n+3)|αj ∈ {aj , bj}} (21)

From (P4), V reduces toV = {a3, b3} = {0, γ − a+β3

m
}.

For all Po symmetric positive definite, a candidate Lya-
punov function is given by:

Vo(x̃) = x̃TPox̃ ≤ λ̄‖x̃‖2 (22)

with λ̄ the highest eigenvalue ofPo.

Differentiating (22) using (20) leads to:

V̇o(x̃) = x̃TQ(h(t))x̃ (23)

with the time-varying matrixQ(h) affine in h defined by:

Q(h(t)) = (A(h(t))−KoC2)
TPo + Po(A(h(t))−KoC2)

(24)
Let Ko, Po andQo satisfy (18). SinceA(a3) = A1 and

A(b3) = A2, we consequently haveQ(α) < −Qo ∀α ∈ V.



Using the principle of convexity, we then haveQ(h(t)) <
−Qo, ∀h ∈ H. Hence, we have

V̇o(x̃) < −x̃TQox̃ (25)

Let λ denote the smallest eigenvalue ofQo, we then have

V̇o(x̃) < −λ‖x̃‖2 ≤ −(λ/λ̄)Vo(x) (26)

It follows from (26) that (17) is an exponential observer for
system (9).

B. Controller

Proposition 2 Under assumptions of Lemma (1), the back-
stepping control lawu = κ(x):

κ(x) = − (k2 + k1)z̄2 + (1− k21)z̄1 + φ(x)− z̈r
β2

(27)

stabilizes the system(7) along anyC0 reference trajectory
for any bounded initial statex(0) with the controller gains
k1, k2 > 0 and z̄1 = z1 − zr, z̄2 = z2 + k1z1 − żr.

Proof: Let z̄1 = z1−zr and z̄2 = z2− żr−α for some
stabilizing functionα.

• A candidate Lyapunov function is:

V1 =
1

2
z̄21 =⇒ V̇1 = z̄1(z2 − żr) = z̄1(z̄2 + α) (28)

Settingα = −k1z̄1 leads to:

V̇1 = −k1z̄
2
1 + z̄1z̄2 (29)

Since ˙̄z1 = z2 − żr = z̄2 + α = z̄2 − k1z̄1, we obtain:

˙̄z2 = φ(x) + β2u+ k1(z̄2 − k1z̄1)− z̈r (30)

• In this last step, the candidate Lyapunov function is:

V2 = V1 +
1

2
z̄22 (31)

Differentiating (31) using (30), we obtain:

V̇2 = −k1z̄
2
1 + z̄2(φ(x)+β2u+k1z̄2+(1−k21)z̄1− z̈r)

(32)
Using u = κ(x) given by (27) leads to:

V̇2 = −k1z̄
2
1 − k2z̄

2
2 (33)

C. Stability of the observer-based controller

Proposition 3 Under assumptions of Proposition (1), the
observer-based control laŵu = κ(x̂):

κ(x̂) = − (k2 + k1)ˆ̄z2 + (1− k21)ˆ̄z1 + φ(x̂)− z̈r
β2

(34)

stabilizes the system(7) along anyC0 reference trajectory
for any initial state(x(0), x̂(0)) ∈ K2 with the controller
gains k1, k2 > 0, ˆ̄z1 = ẑ1 − zr, ˆ̄z2 = ẑ2 + k1ẑ1 − żr and
z̃ = z − ẑ.

Proof: Replacingu with û in (32), we obtain:

V̇2 = −k1z̄
2

1 − k2z̄
2

2 + z̄2

(

φ̃+ (k1 + k2)˜̄z2 + (1− k2

1)˜̄z1
)

(35)
with φ̃ = φ(x)− φ(x̂). Using property (P1) leads to:

V̇2 ≤ −k1‖z̄1‖
2 − k2‖z̄2‖

2 + γ‖z̄2‖‖x̃‖

+(k1 + k2)‖z̄2‖‖˜̄z2‖+ (1− k2

1)‖z̄2‖‖˜̄z1‖
(36)

Yet we have the following bound:

z̄2 = z2 + k1z̄1 =⇒ ˜̄z2 = z̃2 + k1 ˜̄z1

=⇒ ‖˜̄z2‖ ≤ ‖z̃2‖+ k1‖˜̄z1‖
(37)

So using (37) in (36) yields:

V̇2 ≤ −k1‖z̄1‖
2 − k2‖z̄2‖

2 + γ‖z̄2‖‖x̃‖

+(k1 + k2)‖z̄2‖‖z̃2‖+ (1 + k1k2)‖z̄2‖‖˜̄z1‖

≤ −ηc‖z̄‖
2 + ζc‖z̄‖‖x̃‖

(38)

with ηc = min(k1, k2) andζc = (1 + γ + k1 + k2 + k1k2).

Consider the Lyapunov functionW (z̄, x̃) with ζ > 0:

W (z̄, x̃) = ζV2(z̄) + Vo(x̃) (39)

Using (38) and (26), the time derivative ofW (z̄, x̃) is:

Ẇ (z̄, x̃) ≤ −ζηc‖z̄‖2 + ζζc‖z̄‖‖x̃‖ − λ‖x̃‖2 (40)

Choosingζ = ηcλ/ζ
2
c thus results in:

Ẇ (z̄, x̃) ≤ −ζηc‖z̄‖2/2− λ‖x̃‖2/2 (41)

Setκ1 = max(ζ/2, λ̄) andκ2 = min(ζηc, λ)/2, we get:

W (z̄, x̃) ≤ κ1(‖z̄‖2 + ‖x̃‖2)
Ẇ (z̄, x̃) ≤ −κ2(‖z̄‖2 + ‖x̃‖2)

(42)

We consequently have:

Ẇ (z̄, x̃) ≤ −κ2

κ1
W (z̄, x̃) (43)

Thereforez̄ andx̃ exponentially converge to zero, and the
same goes forz and x̃.

TABLE I

PARAMETERS VALUES

Blood viscosity η 16× 10−3 [Pa.s]
Blood density ρf 1060 [kg.m−3]

Ferromagnetic density ρm 7500 [kg.m−3]
Robot radius r 2.5 10−4 [m]

Vessel diameter D 3 10−3 [m]
Payload density ρp 1500 [kg.m−3]

Ferromagnetic ratio τm 0.75
Magnetization M 1.23× 106 [A.m−1]

Controller gains (k1, k2) (7, 14)
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(h) Blood velocity and its estimation error
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(i) Blood velocity and its estimation error
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(j) Control input:∇B.
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(k) Control input:∇B.
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(l) Control input:∇B.

Fig. 3. From left to right: simulation with MVT-observern = 1, simulation with high gain observern = 1, and simulation with MVT-observern = 2.
From top to bottom: robot position, robot velocity, blood velocity, and control input.

TABLE II

INITIAL CONDITIONS AND MVT OBSERVER GAINS

n = 1
x0 (0 0 0.1075 0 0.05)
x̂0 (0.001 0.01 0 0.001 0.01)
Ko (68.09 1340.76 1051.07 3561.35 549.92)

n = 2
x0 (0 0 0.0659 0.3566 0.1239 − 0.8082 0.2)
x̂0 (0.001 0.01 0 0.001 0.001 0.001 0.01)
Ko (33.0 579.1 566.8 3337.0 276.4 − 4039.4 1296.4)

IV. SIMULATIONS

In the simulations, a Gaussian white noise with a standard
deviation of 500µm is added to the measured output to
model the medical imagers resolution. The nominal values
of parameters are given in Table I. The robot is bead pulled,
so that we haveβ2 = τmM

ρ
and β3 = 0. Without loss of

generality, the reference trajectory is a fixed point.
The first set of simulations compares the results of the

proposed approach with results of the high gain observer
developped in [15] (with a gainL = 3) for a blood velocity

modeled by a first-order Fourier series. For the second set
of simulations, the blood velocity is modeled by a second-
order Fourier series. The high gain is so high that the
innovation terms dwarf the observer dynamics and amplify
the noise tremendously: we address this simulation only for
the observer detailed in Proposition (1). Table II gives the
initial conditions and the MVT observer gains.

A. First-order truncated blood velocity (n = 1)

The first simulation shows that the MVT-observer-based
controller is stable despite the output noise. The Fig. 3(a)
(resp. 3(d)) illustrates the real and estimated microrobot
positions (resp. velocities) and the associated estimation
errors. The microrobot position and velocity converge to
zero after a1s long transient phase that corresponds to
the observer convergence time. Once stabilized the position
and velocity estimation errors are less than400µm and
5mm.s−1, respectively. Similarly, the Fig. 3(g) shows that
the blood velocity estimation error is less than5mm.s−1



once the observer has converged. The Fig. 3(j) illustrates
that the control input is not affected by noise.

The second simulation illustrates the results obtained with
a high gain observer and the same controller than in the
previous simulation. The Fig. 3(b) (resp. 3(e)) illustrates the
real and estimated microrobot positions (resp. velocities) and
the associated estimation errors. The high gain converges
twice more quickly than the MVT observer due to high
values of the innovation terms. Yet the price to pay is a
higher sensitivity to noise, which is noticeable on Fig. 3(b)
and 3(h): the position estimation error is around2mm and
the blood velocity estimation error is around50mm.s−1. The
high gain observer performs better than the MVT observer
only for the microrobot velocity estimation, with an error
less than2mm.s−1. The control input is far more affected
by noise (Fig. 3(k)) than in the previous simulation.

B. Second-order truncated blood velocity (n = 2)

The third simulation illustrates the results obtained forn =
2 using the MVT observer-based controller. The convergence
rate of the observer is the same than forn = 1. The
estimation errors on the microrobot position, velocity and
on the blood velocity are respectively less than250µm,
4mm.s−1 and 4mm.s−1 (see Fig. 3(c)-3(i)). The observer
here gives better results than forn = 1 because the gains
on the first three components are smaller than in the case
n = 1. One can notice that the shape of the second order
velocity shown on Fig. 3(i) is very close to the real profile
of blood velocity (see Fig. 2).

V. D ISCUSSION AND CONCLUSION

Measurement of average blood flow velocity has been
largely addressed in the literature. Yet such information
is neither sufficient nor accurate enough for controlling
microrobots in blood vessels. The pulsatile blood velocity
affects nonlinearly the drag force, which in turn affects
the microrobot dynamics. We take advantage of the Fourier
series decomposition of the blood velocity to propose an
observer-based controller using the sole measurement of the
microrobot position obtained thanks to an imager. Simula-
tions illustrate the improved robustness to noise of the MVT
based observer with respect to the high gain observer we
have previously developed.

Extension of the approach to a2D model is an ongoing
work. The main difficulty is induced by the increased Lips-
chitz constant of a system including the electrostatic force.
The estimation of the blood pulsation is still an open issue,
since the resulting perturbation model becomes nonlinear and
non uniformly observable. Kazantsis-Kravaris Luenberger
observer has been tested, but the resulting estimated state
is not yet suitable for control purpose.

This approach can not only benefit to the control of
magnetic microrobots, but also as an alternative to direct
measurement of the blood velocity. It may also merge the
two advantages,e.g. for a removal of the plaques in clogged
arteries followed by an inspection of the blood velocity
changes so as to check if the plaques have been removed.

REFERENCES

[1] B. J. Nelson, I. K. Kaliakatsos, and J. J. Abbott, “Microrobots for min-
imally invasive medecine,”Annual Review of Biomedical Engineering,
vol. 12, pp. 55–85, 2010.

[2] G. Kosa, M. Shoham, and M. Zaaroor, “Propulsion method for
swimming microrobots,”IEEE Transactions on Robotics, vol. 23(1),
pp. 137–150, 2007.

[3] M. C. Lagomarsino, F. Capuani, and C. P. Lowe, “A simulationstudy
of the dynamics of a driven filament in an aristotelian fluid,”Journal
of Theoretical Biology, vol. 224(2), pp. 215–224, 2003.

[4] A. A. Evans and E. Lauga, “Propulsion by passive filaments and active
flagella near boundaries,”Physical Review E, vol. 82(4), p. 041915,
2010.

[5] R. Dreyfus, J. Beaudry, M. L. Roper, M. Fermigier, H. A. Stone, and
J. Bibette, “Microscopic artificial swimmers,”Nature, vol. 437, pp.
862–865, 2005.

[6] J. Edd, S. Payen, B. Rubinsky, M. L. Stoller, and M. Sitti,“Biomimetic
propulsion for a swimming surgical microrobot,”IEEE International
Conference on Intelligent Robots and Systems, Las Vegas, pp. 2583–
2588, 2003.

[7] L. Zhang, K. E. Peyer, and B. J. Nelson, “Artificial bacterial flagella
for micromanipulation,”Lab on a chip, vol. 10, no. 17, pp. 2203–2215,
2010.

[8] J. J. Abbott, K. E. Peyer, M. C. Lagomarsino, L. Zhang, L. X.Dong,
I. K. Kaliakatsos, and B. J. Nelson, “How should microrobots swim?”
International Journal of Robotics Research, vol. 28, pp. 1434–1447,
2009.

[9] J.-B. Mathieu, G. Beaudoin, and S. Martel, “Method of propulsion
of a ferromagnetic core in the cardiovascular system throughmag-
netic gradients generated by an mri system,”IEEE Transactions on
Biomedical Engineering, vol. 53, no. 2, pp. 292–299, 2006.

[10] L. Arcese, M. Fruchard, and A. Ferreira, “Endovascularmagnetically-
guided robots: navigation modeling and optimization,”IEEE Transac-
tions on Biomedical Engineering, vol. 59(4), pp. 977–987, 2012.

[11] P. Vartholomeos and C. Mavroidis, “In silico studies of magnetic
microparticle aggregations in fluid environments for mri-guided drug
delivery,” IEEE Transactions on Biomedical Engineering, vol. 59(11),
pp. 3028–3038, 2012.

[12] K. W. Ferrara, B. G. Zagar, J. B. Sokil-Melgar, R. H. Silverman, and
I. M. Aslanidis, “Estimation of blood velocity with high frequency
ultrasound,” IEEE Transactions on Ultrasonics, Ferroelectrics and
Frequency Control, vol. 43(1), pp. 149–157, 1996.

[13] R. Ponzini, C. Vergara, G. Rizzo, A. Veneziani, A. Roghi, A. Vanzulli,
O. Parodi, and A. Redaelli, “Womersley number-based estimatesof
blood flow rate in doppler analysis: In vivo validation by means of
phase-contrast mri,”IEEE Transactions on Biomedical Engineering,
vol. 57(7), pp. 1807–1815, 2010.

[14] C. S. Kim, C. Kiris, D. Kwak, and T. David, “Numerical simulation
of local blood flow in the carotid and cerebral arteries underaltered
gravity,” Journal of Biomechanical Engineering, vol. 128(2), pp. 194–
202, 2006.

[15] M. Fruchard, L. Arcese, and E. Courtial, “Estimation of the blood
velocity for nanorobotics,”IEEE Transactions on Robotics, vol. 30,
no. 1, pp. 93–102, 2014.

[16] A. Krener and W. Kang, “Locally convergent nonlinear observers,”
SIAM, vol. 42, no. 1, pp. 155–177, 2003.

[17] F. White,Viscous Fluid Flow. McGraw Hill New-York, 1991.
[18] R. Kehlenbeck and R. D. Felice, “Empirical relationships for the

terminal settling velocity of spheres in cylindrical columns,” Chemical
Eng. Technology, vol. 21, pp. 303–308, 1999.

[19] J. Womersley, “Method for the calculation of velocity, rate of flow
and viscous drag in arteries when the pressure gradient is known,”
The Journal of physiology, vol. 127(3), pp. 553–563, 1955.

[20] L. Arcese, M. Fruchard, and A. Ferreira, “Adaptive controller and
observer for a magnetic microrobot,”IEEE Transactions on Robotics,
vol. 29(4), pp. 1060–1067, 2013.

[21] L. M. Silverman and H. E. Meadows, “Controllability and observ-
ability in time-variable linear systems,”SIAM Journal on Control and
Optimization, vol. 5, pp. 64–73, 1967.

[22] A. Isidori, Nonlinear control systems. Springer-Verlag London, 1995.
[23] A. Zemouche and M. Boutayeb, “On lmi conditions to design ob-

servers for lipschitz nonlinear systems,”Automatica, vol. 49, no. 2,
pp. 585 – 591, 2013.


