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Adaptive control of microrobot in pulsatile flow

Lounis Sadelli, Matthieu Fruchard, Antoine Ferreira

Abstract—

We propose an observer-based adaptive controller for a
magnetic microrobot navigating in blood vessels. The pulsatile
blood flow nonlinearly affects the drag force which dominates
the microrobot dynamics. Instead of using a priori knowledge
of the blood flow, we synthesize a mean value theorem (MVT)
based observer to on-line estimate the pulsatile blood velocity.
We then prove the stability of the observer-based adaptive
controller in presence of parametric uncertainties. Simulation
results illustrate the efficiency of the proposed approach.

Nanorobots

I. INTRODUCTION

Therapeutic untethered nano and microrobots control
have been an ongoing interest for many researchers since

such systems can perform complex surgical procedures ang. 1.

Microrobot in a blood vessel. (a) binded by ligandluding a
reach remote places with lessened medical side effects [l(zgyload: (b) binded by magnetic and interaction forces. Therardbots

[2], [3]. Different propulsion strategies have been praghs rowaB(rjogi(]I?e.do not face the same drag force because of the piaralmmd
mainly based on magnetic deported actuation: robots
with elastic flagellum [4], [5], [6], with helical flagella

0.127 -

[7], [8], bead pulled robots or swarm of robots [9], [10], 11 ] - Z‘;"if’g?
0.10-| f/\\ ‘,"‘f\\‘ €
Whatever the proposed design, these systems face 1 /Ir\\\ /;f”\\\ Soes e
nonlinear forces: blood drag, electrostatic force, etc],[12 < %%/ A b

[13]. Among these forces, the nonlinear drag force both 2
prevails at a small scale and is the most disturbed by externa — %%,
time-varying perturbations because of the pulsatile blood -
flow. Its measurement, by means of either ultrasonic sensors
or Magnetic Resonance Imaging (MRI) devices [14], raises

two issues: the need for an end-effector servoing to traek th 1 Y/ :
robot, and a resolution that can not discriminate the spatia 0 A,
parabolic blood flow profile (see Fig 1) the robot faces 1

depending on its position in the vessAl.priori knowledge I I P T

of the blood velocity suffers from the need for an accurate Time (s)

knowledge of the_vessel geometry in the Case of a Nav'% g. 2. Blood velocity¢; (black solid line), mean valug; o (gray solid
Stokes computational approach or analytical approadiie) andnth order truncated Fourier serigs »: £1,1 (blue dots),&1,2
[12] as well. Since blood velocity is required for control(black dashes) ang 3 (green crosses).

purposes, disturbance rejection is not appropriate eiffer

circumvent these issues, we have consequently proposed

high gain and MVT based observers [15] respectively iRstimation and tracking.
[16], [17] to estimate the blood velocity and use it in
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the control law. Yet the robot modeling involves many Thjs paper addresses the Lyapunov stability of the pro-
physical and physiological parameters whose variabilitposed observer-based controller despite parametric tacer

induces parametric uncertainties. Significant errors @n thies, Section I briefly recaps the modeling of an endovas-
parameters can degrade or even lead to instability of bofyar robot facing a pulsatile blood flow. The synthesis of

_ _ the adaptive MVT observer-based backstepping controller
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EA 4229, Univ. Orleans, 63 Av de Lattre de Tassigny,igo20 IN then detailed in Section Hll. This result is illustrated
Bourges Cedex, Francé,ouni s. sadel | i @i v-orleans.fr in Section IV by a simulation that shows the robustness
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S : to both parametric uncertainties and noise measurement.
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I[l. MODELING 2) Magnetic force: Three main propulsion designs for
) ) magnetic microrobots have been developped: bead pulled,
Let us consider a microrobot of mass, made of ferro-  gasiic flagellated, and helical tailed robots, see [1] for a

magnetic particles and a payload (ligand, drugs, micglle.. syryey. In1D, their magnetic motive forcé}, can be written
navigating in the arterial network. Any system immersed inyg [12]:

a moving fluid is —at least— subjected to two forces: the drag F — Boil — Bai} 5

. . . . m BZU 537) ( )
force and the buoyancy force. This section briefly introduce . ) ] )
these forces and the magnetic force that controls the rob§fi€re s is related to the drag exerting on the helical tail,
along a reference trajectory (seey.[12] for more details). @nd is null for elastic flagellated and bead pulled robote Th

For sake of simplicity, we here only consider ® model. control input« is the magnetic field gradierB and the
frequency of the oscillating magnetic fielgifor bead pulling

and flagellated robots, respectiveBs is proportional to the
robot magnetization, radius, and ferromagnetic ratioptiesh

1) Hydrodynamic drag force:dn a fluidic environment, M, r, andr,, respectively.
any system faces the drag force which opposes its motion: 3) Apparent weight:The apparent weight of the robot
results from the contribution of the weight and the buoyancy

A. Forces

-,

. 1 7\? 7 .
Fy = 2pfAcd<”“'> v Wa = V(o s ©)
4

5/ 1@l
o, _ 24 n 404 1) where the robot density i8 = 7, pm + (1 — 7)) pp With py,
4 7 Re '] ++vRe ’ and p,, the magnetic and payload densities, respectivily.
Re — 2rps|| V]| denotes the robot volume.
B B. State Space Representation

where A is the frontal area, the drag coefficiefi; is given The reduced systelfs,.) is derived from (2), (5) and (6):
by [18], 8 is a dimensionless ratio related to the wall effect 0 1 0 0 0
caused by the partial vessel occlusion by the robot [19], anc%S ) z = {O 0} zZ+ {52} u+ {¢(2’ 5)] + H 0
v denotes the relative velocity between the robot and the = Cyz ’
fluid. » and p; denote respectively the blood viscosity and 7
density. In the case of a spherical microrobot of radiuthe  \here the state components:; and z, denote respectively
drag force can be rewritten as: the robot position and velocity, the control input and; the

blood velocity. The outpuy is the robot position measured

F, = — <a|v| L b2 +c v’ U ) by an imagerj.e. C; = [1 0]. The functiong is given by:
1+dy/|v] ) Y]]
€)=~ otz = ) (0 + Bz = 6l 4 8o~ 1)
The parameters in (2) are inherited from (1): 5
G &1) )] 1
_ Omr b o= 0.2pymr? L+dy/[zo =&l ]m’ (8)
g’ B2
3psmr? d = 2rp;s @) where = V(py — p)g/m and o respectively denote the
¢ g2 - 6n unknown parameter and the sign function.

Arterial pulsatile flow profiles are usually modeled using Let » = [:7,¢7]7 ¢ R2?"*2 denote an extended state
the Womersley model [20], which results in a truncatedector. The extended system is inherited from (7) and (4):
Fourier series as shown on Fig. 2. Blood velocfty ex- .
pressed as ath order truncated Fourier series is solution of (s,) # = A+ Bf(w,u)+ B+ Vi (9)
the (2n)-dimensional autonomous system: y = Cha

with BT = [0 1 01x24], Co = [C1 O1x20) @and V,I =

&1 i &2 ) [01x(2n41) w?n®v,]. Function f is chosen so that(0)
& = WG -&) contains the linear part ofS,):
L (a+ Bs)(w2 — x3)
(Se) fok—1 = & (4) fz,u) = () + fou + m (10)
S = —w(K*&n-1 — Coryr) X1 xa Os o O
: O2 F1 x3 -+ O
fon = —wn?ou_1+w?nun, Ala)=| ¢ o o (11)
with mean blood velocity,,. See [16] for technical details. Oy -+ v Fau_i X3

Oy o0 e O Fn



with A. Observer

|0 1 10 0 We have previously proposed a high gain observer in
X1 = [O —(B3+a)/m— a] X3 = Lﬁ O} [16] to estimate the extended state vector in (9). Yet this
observer raises two issues. First, even for small dimeation
Yo = [ 0 0} Fi= [ 8 ) 1] systems, it is difficult to design the observer in order to
(B3 +a)/m+a 0O —t'w® 0 obtain relatively low gainL because of the high value of
. _ . (12) the local Lipschitz constant. Second, even for a blood
. ZP;biIli(zniﬁvgvﬁc:)grﬁrocl)fﬁ\’/vm’sﬁcés Orr?&umiesd r‘?]%&l?upjrfgqe:rg velocity defined as a first-order truncated Fourier sertes, t
. ' ! L ' system (9) dimension id. Using higher order truncated
observer |s'thus necessary. The next section is devoted Series er(np))hasizes this issue sir?ce '[?16 gain matrix is formed
the synthesis of the observer-based controller. in ascending powers di. That is the reason why we propose

. MAIN RESULT another observer based on [24].

Lemma 1 Let z,..; = [2-(t),2-(t), 2-(t)] denote any con-
tinuous and bounded reference trajectory, akid denote
any compact subset of a neighborhood (ef, z,.). Vx €
K =K, x K¢, the system§7) and (9) satisfies the following
properties:

Proposition 1 Let &/ denote the compact set of admissible
inputs. Under assumptions of Lemma (¥y(0) € K,
Vz(0) € K, V(0) € Ky, Yu € U:

= A(0)Z + B(f(d,u) +0) + K(y — Cod) + Vi,

S

P1) ¢ is locally v-Lipschitz onk; 0 Ooi
P2) System(7) is locally controllable alongz,.; y = T
P3) System(9) satisfies(A4;,C) and (A, C) observable, y _ Ko(y — Coi)
with 4, = A(0) and A, = A(y — “E5) with A(a) (18)
and C' defined as: is an exponential observer of system (9) knx K, with
~ Aa) B the symmetric positive definite matricEs, Q, and the gain
Ala) = { 0 0 ] K = (KTK}I)T that satisfy the Linear Matrix Inequalities:
1x(2n+2) (13)
c - [0 0] (A; — KC)T'P, + P,(A; — KC) < —Q,, Vi € {1,2} (19)
P4) f is differentiable with respect to andVj < 2n + 2, Proof: Let Z = x — & denote the estimation error. Let
J(a;,b;) € R? such that: Co(x,2) = {dxz+ (1 = N, 0 < XA < 1} and Co(x, 2)

of denote a convex and its convex hull. Applying the MVT to
a; < go-(w,u) <bj  VeeKueld  (14)  f 3pt) € Co(z, ) such that:

Proof: Properties 1) and £2) have been . . My o 3
demonstrated in [16] and [21], respectively. In particular / = f(z,u) = f(Z,u) = ( 2. € Ba; (0(t), u(t)) ) &(t)
the local controllability of system (7) is inherited frometh ! (20)

controllability of its linearized time-variant system alp with {e1,...eanio} denoting the canonical basis B2,
the reference trajectory,.;(t) [22], [23].

2n+2
Let h(t = A B h;(t)el  with
Let A denote the observability matrix determinant associated et A(h(t) 0) + J; ity Wi
with the pair(C, A(«)). It is straightforward that: hi(t) = %fj(g(t),u(t)).
A = ((B3+a)/m+ a)?"w?" Hz’?w‘*(i—l) (15) Then, using (9) and (18), the estimation error dynamics
i=1 satisfies the LPV system:

Property P4) is inherited from (10), fromK1) and from i = (A(R(1)) 7K02)i+89~
the properties ofy established in Lemma 1 of [16], namely ) (21)
g—i:—% andvz € K: 0 = —Ky(y—Caoit)

ol < P2@) < v (16)  whered = 6 — 6 denotes the parameter estimation error.

Using (10) and (16), it is straightforward that:
Af(xuw) _  8f(zu) a+Bs
0 S T - T S Y- “m . 1 [
I i @7 ¢ = (A(n(t) — KC)e (22)
% =0 forall j=1,4,5,--,2n+2

Let e = (z7,6)7, then system (21) can be rewritten as

" Ah(r) = [g“hft”ﬂ b } (23)



Property P4) implies that the parametér(t) evolves in a
bounded se# whose verteX) is given by:

V= {a = (ala T 7a2n+2)‘aj S {aj,bj}}

From (P4), V reduces toV = {a3, b3} = {0,7 —

(24)
)

For all P, symmetric positive definite, a candidate Lya-
punov function is given by:

Vo(e) = € Poe < Alle]| (25)
with X the highest eigenvalue d?,.
Differentiating (25) using (22) leads to:
Vo(e) = €' Q(h(1))e (26)

with the time-varying matrixQ(h) affine in h defined by:
Q(h(t)) = (A(h(t)) = KC)" Py + Py (A(h(t)) - KC) (27)
Let K, P, and Q, satisfy (19). SinceA(as) = A,
and A(bs) = A,, we consequently hav€(a) < —Q,
Ya € V. Using the principle of convexity, we then have
Q(h(t)) < —Qo, Yh € H.
Hence, we have
Vo(e) < —€"Que (28)
Let A denote the smallest eigenvalue @f, we then have
Vo(e) < =Allel* < =(A/N)Vo(e) (29)

It follows from (29) that (18) is an exponential observer for

system (9).
[ ]
B. Controller
Proposition 2 Under assumptions of Lemma (1), the back
stepping control law = k(z, 6):
ko +ki1)zo+ (1 —kDzy + p(x) +0 — 2
B2
stabilizes the systerfv) along anyC’ reference trajectory

for any bounded initial state;(0) with the controller gains
ki,ko >0 andfl =21 — Zp, 29 = 290 + k121 — 2.

{

for some stabilizing functionv.
« A candidate Lyapunov function is:
1
= 5

Settinga = —k1 z; leads to:

k(x,0) = ! " (30)

Proof: Let
z1
22

Z1 — Zp
20 — Zp —Q

(31)

2= Vi=Z(2n—%)=Z(R2+0a) (32)
Vi=—ki1Z2 4+ 212 (33)
Sincez; = 29 — 2, = 79 + a = Zy — k12, We obtain:

22 = qS(x) + 0 + ﬁgu + kl(zg — klzl) — 57« (34)

« In this last step, the candidate Lyapunov function is:

1
V2:V1+§

Differentiating (35) using (34), we obtain:

(39)

-2
22

"/2 = 7]612%4’22(¢($)+9+ﬁ2u+k122+(17](3%)21727«)

(36)

Using u = k(z, 6) given by (30) leads to:
Vo = —k1 22 — koZ2 (37)
[ |

C. Stability of the observer-based controller

Proposition 3 Under assumptions of Proposition (1), the
observer-based control law = (&, 0):

(ko 4+ k1)Z2+ (1 — k22 + ¢(2) + 0 — 2
B2

stabilizes the syste(i) along anyC° reference trajectory for
any initial state(z(0),2(0)) € K% and §(0) € Ky with the

controller gainsky, ko > 0, 21 = 21— 2, 20 = 20+ k121 — %
andz =z — 3.

k(2,0) = — - (38)

Proof: Replacingu with 4 in the equation (36), we
obtain:
Vo = kit 42 (64 (b1 + k) + (1 - B)5 — oz +0)
= —k12? — koZ2 + % (J) + (k1 +k)z+ (1 —kDHZ + é)

s (39)
with ¢ = ¢(z) — ¢(&). Using property P1) leads to:

Va < —kal|z | = kallz2]® +llz2)lZ]

+(ky + k)| Z2ll1Z2]] + (L = BD)|IZ2 122 ]] + 1220111
(40)

Yet we have the following bound:

222227,’/3’7«4*](1121 :>22:52+k121

(41)

= |22l < [|Z2]l + K1l Z1
So using (41) in (40) yields:
Va < —ka|z)|® = kal|Z2)) + ]|z 2]
+(k1 + k)| 22/l | 221l + (1 + K1 ko) || 22|21 ]| + (12211116
< —kallz® = ka2 + 1|z |12
+(1+ kaka + k1 + ko) ||zl 12]] + (| Z2[[[16]]

< —nell 21 + Cellzl el “2)

with Ne = min(kl, kz) and (e = (2 + v+ ki + ko + klkz).
Consider the Lyapunov functioW’(z, €) with ¢ > 0:
W(z,€) = (Va(Z) + Vy(e) (43)

Using (42) and (29), the time derivative 8 (z, €) is given
by:

W(z,e) < —=Cnellzl® + ¢Cellzllllell = Allel®  (44)
Choosing¢ = n.)\/¢? thus results in:
W(z,e) < —Cnellzl?/2 = Alle]l?/2 (45)



TABLE | « 107

—Real Estimated

PARAMETERS NOMINAL VALUES T,
Blood viscosity n 16 x 10~2 [Pa.s] g /\/_/_\
Blood density of 1060 [kg.m~> 8 o
Ferromagnetic density|  pm 7500 [kg.m > -5 05 1 15 2 25 3 35 7 75 5
Robot radius r 2.510~% [m] gx107 o Tme(s) : : :
Vessel diameter D 31073 [m] =, Pt : : : :
Payload densiy [ p, | 1500 [hgm™7] 5 W WP M AN
Ferromagnetic ratio Tm, 0.75 = 2 25 3 35 4 45
Magnetization M 1.23 x 105 [Am™ 1] % 05 1 1 P 25 3 35 7 75 5
Controller gains (K1, k2) (7,14) Time (s)
Mean blood velocity U, 0.05 [m.s~1]

Fig. 3. Real and estimated positions / Position estimatioor.err

o
N}

Velocity (ms™!)
o
T

TABLE I
INITIAL CONDITIONS FOR THE SYSTEM AND THE OBSERVER

(=T (0) 0) (000.10750 — 8.179)
(@7 (0) 6(0)) | (0.001 0.01 00.001 — 9)

—Real Estimated

|
o
IN)

o
o
o
=
P
2
~
N
o
w
w
o
IS
IS
o
o

Error (ms™")
o
&

I
N}

Setk; = max(¢/2,) and k; = min(¢n., \)/2, then we

o

can write: 0 0.5 1 15 2 25 3 35 4 45 5
Time (s)
W(ze) < ma(ll2]* + [lell*)
. - ) (46) Fig. 4. Real and estimated velocities / Velocity estimatiamrer
W(z,e) < —ra(llZ]" + [l€]l®)
We consequently have: 7 —Real _Estmated
. K 2
Wiz < —Z2W(z0) CUN W/
K1 3
Thereforez ande = (z7,0)7 exponentially converge to f”-“% o5 1 15 2 25 3 35 4 45 s
zero, and the same goes forz andé. % 02 e
= 7
SO M st i N
" & Ol\rv\ ‘ M S B B
00 0.5 1 15 2 25 3 35 4 45 5

IV. SIMULATION RESULTS ’ ' Time (s)

. The_ simulation is performed by taking into account th%ig. 5. Real and estimated Blood velocities / Blood velocigyireation
limitations of the actuators. In order to not exceed therror.

capacity of the magnetic device, the control inputs are time
scaled asi, (t) = u(t)/k(t) with k(t) = maxX1, |u(t)|/usat]-
The microrobot position is assumed to be measured With o
an accuracy ofl00um consistent with the best imagers £ | i
resolution. A Gaussian white noise with a standard dewviatioz |
of 100um is thus added to the measured output. The nomini= Z-01
values of parameters are glven in Table I. The robot is bee - £ -02
pulled, so that we havg, = == andf; = 0. Without loss ~ Z-0s
of generality, the reference trajectory is a fixed point. Th( T B 1 Y —
blood velocity is modeled by a first-order Fourier series. Time (s)

Ugat

dients (Tm")

Table 1l gives the initial conditions for the system and the Fig. 6. Control input:v .
observer.
The MVT observer gain is: parametric error convergence time. The tracking is degrade

at the beginning of the simulation because the control input
reaches the saturation. Once stabilized the position and ve

The simulation shows that the MVT-observer-based corlecity estimation errors are less tha@um and900um.s~*,
troller is stable despite the presence of measurement.noisespectively. Similarly, the Figure 5 shows that the blood
The Figure 3 (resp. 4) illustrates the real and estimateglocity estimation error is less thai0um.s~! once the
microrobot positions (resp. velocities) and the assodiatebserver has converged. The Figure 6 illustrates that the
estimation errors. The latter have converged in less thamntrol input is not too much affected by noise. The Figure 7
1.5s. The microrobot position and velocity converges tdllustrates the real and estimated parameter and the assdci
zero after a2s long transient phase that corresponds to thestimation error: convergence occurs within

K" =[18.60 3.2510% 3.0110%> 1.3310% 6.85 10"]



A": ----Real - Estimated [4]
g 4
£ o J
g 6
g® (5]
_qg | | | | | L | | |
0 0.5 1 15 2 25 3 35 4 45 5
Time (s)
A‘AZO T T T T T T T T 6
[6]
E 0k Olk ‘, n ﬁ A 4 p
z 0
= ‘ ~ A S SR (7]
0 0.5 1 15 2 25 3 35 4 4.5 5
Time (s)
Fig. 7. On-line estimation of the unknown parameter and pangretror 18]
0.
El

V. DISCUSSION AND CONCLUSION

Many studies on the measurement of the average blo?1 !
velocity are available in the literature. Unfortunateligjst
information is neither sufficient nor accurate enough for
controlling microrobots navigating in the vasculature.eTh 1]
drag force has a major impact on the dynamic behaviér
of the system and this force strongly and nonlinearly
depends on the relative velocity between the robot and ﬂffz]
time-varying blood flow. The blood velocity is pulsatile
and periodic. Since any periodic signal has a Fourier
series decomposition, it is then possible to define a dynanit!
model of the blood velocity, yielding to an extending system

We have proposed an observer-based controller usifif
the sole measurement of the microrobot position obtained
thanks to an imager. Since the nonlinear modeling
describes both physical and physiological forces, it i® al?[lS]
affected by many biological parameters uncertainties. To
robustify the tracking with respect to these uncertainties
an adaptive observer-based controller has been develo&%
and its relevancy and efficiency is illustrated throug
simulation. The parametric uncertainty acts on the dynamic
of non measurable state, which is a difficult case to de&”]
with. Yet the system is stabilized despite noise measuremen

[18]

Extension of the approach to 2D model is an ongoing (19]
work. The main difficulty lies in the necessity to take
into account the electrostatic force, which may raise soniedl
issues about the Lipschitz constant which in turn induces
high gains and sensitivity to noise. The estimation of thegj;
blood pulsation is still an open issue, since the resulting
perturbation model becomes nonlinear and non uniformleéz]
observable.

[23]
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