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Adaptive control of microrobot in pulsatile flow

Lounis Sadelli, Matthieu Fruchard, Antoine Ferreira

Abstract—
We propose an observer-based adaptive controller for a

magnetic microrobot navigating in blood vessels. The pulsatile
blood flow nonlinearly affects the drag force which dominates
the microrobot dynamics. Instead of using a priori knowledge
of the blood flow, we synthesize a mean value theorem (MVT)
based observer to on-line estimate the pulsatile blood velocity.
We then prove the stability of the observer-based adaptive
controller in presence of parametric uncertainties. Simulation
results illustrate the efficiency of the proposed approach.

I. I NTRODUCTION

Therapeutic untethered nano and microrobots control
have been an ongoing interest for many researchers since
such systems can perform complex surgical procedures and
reach remote places with lessened medical side effects [1],
[2], [3]. Different propulsion strategies have been proposed,
mainly based on magnetic deported actuation: robots
with elastic flagellum [4], [5], [6], with helical flagella
[7], [8], bead pulled robots or swarm of robots [9], [10], [11].

Whatever the proposed design, these systems face
nonlinear forces: blood drag, electrostatic force, etc [12],
[13]. Among these forces, the nonlinear drag force both
prevails at a small scale and is the most disturbed by external
time-varying perturbations because of the pulsatile blood
flow. Its measurement, by means of either ultrasonic sensors
or Magnetic Resonance Imaging (MRI) devices [14], raises
two issues: the need for an end-effector servoing to track the
robot, and a resolution that can not discriminate the spatial
parabolic blood flow profile (see Fig 1) the robot faces
depending on its position in the vessel.A priori knowledge
of the blood velocity suffers from the need for an accurate
knowledge of the vessel geometry in the case of a Navier
Stokes computational approach or analytical approach
[12] as well. Since blood velocity is required for control
purposes, disturbance rejection is not appropriate either. To
circumvent these issues, we have consequently proposed
high gain and MVT based observers [15] respectively in
[16], [17] to estimate the blood velocity and use it in
the control law. Yet the robot modeling involves many
physical and physiological parameters whose variability
induces parametric uncertainties. Significant errors on the
parameters can degrade or even lead to instability of both
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Fig. 1. Microrobot in a blood vessel. (a) binded by ligand, including a
payload; (b) binded by magnetic and interaction forces. The microrobots
(c) and (d) do not face the same drag force because of the parabolic blood
flow profile.
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Fig. 2. Blood velocityξ1 (black solid line), mean valueξ1,0 (gray solid
line) andnth order truncated Fourier seriesξ1,n: ξ1,1 (blue dots),ξ1,2
(black dashes) andξ1,3 (green crosses).

estimation and tracking.

This paper addresses the Lyapunov stability of the pro-
posed observer-based controller despite parametric uncertain-
ties. Section II briefly recaps the modeling of an endovas-
cular robot facing a pulsatile blood flow. The synthesis of
the adaptive MVT observer-based backstepping controller
in then detailed in Section III. This result is illustrated
in Section IV by a simulation that shows the robustness
to both parametric uncertainties and noise measurement.
Conclusions and discussions on open issues are summarized
in Section V.



II. M ODELING

Let us consider a microrobot of massm, made of ferro-
magnetic particles and a payload (ligand, drugs, micelle...),
navigating in the arterial network. Any system immersed in
a moving fluid is –at least– subjected to two forces: the drag
force and the buoyancy force. This section briefly introduces
these forces and the magnetic force that controls the robot
along a reference trajectory (seee.g. [12] for more details).
For sake of simplicity, we here only consider a1D model.

A. Forces

1) Hydrodynamic drag force:In a fluidic environment,
any system faces the drag force which opposes its motion:


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whereA is the frontal area, the drag coefficientCd is given
by [18], β is a dimensionless ratio related to the wall effect
caused by the partial vessel occlusion by the robot [19], and
v denotes the relative velocity between the robot and the
fluid. η and ρf denote respectively the blood viscosity and
density. In the case of a spherical microrobot of radiusr, the
drag force can be rewritten as:

~Fd = −
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a|v|+ bv2 + c
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1 + d
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||~v|| (2)

The parameters in (2) are inherited from (1):
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Arterial pulsatile flow profiles are usually modeled using
the Womersley model [20], which results in a truncated
Fourier series as shown on Fig. 2. Blood velocityξ1 ex-
pressed as anth order truncated Fourier series is solution of
the (2n)-dimensional autonomous system:

(Sξ)



















































ξ̇1 = ξ2
ξ̇2 = −ω2(ξ1 − ξ3)
...

ξ̇2k−1 = ξ2k
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...

ξ̇2n = −ω2n2ξ2n−1 + ω2n2vm

(4)

with mean blood velocityvm. See [16] for technical details.

2) Magnetic force: Three main propulsion designs for
magnetic microrobots have been developped: bead pulled,
elastic flagellated, and helical tailed robots, see [1] for a
survey. In1D, their magnetic motive force~Fm can be written
as [12]:

~Fm = β2~u− β3~v (5)

whereβ3 is related to the drag exerting on the helical tail,
and is null for elastic flagellated and bead pulled robots. The
control inputu is the magnetic field gradient∇B and the
frequency of the oscillating magnetic fieldB for bead pulling
and flagellated robots, respectively.β2 is proportional to the
robot magnetization, radius, and ferromagnetic ratio, denoted
~M , r, andτm respectively.

3) Apparent weight:The apparent weight of the robot
results from the contribution of the weight and the buoyancy:

~Wa = V (ρ− ρf )~g (6)

where the robot density isρ = τmρm+(1− τm)ρp with ρm
and ρp the magnetic and payload densities, respectively.V
denotes the robot volume.

B. State Space Representation

The reduced system(Sr) is derived from (2), (5) and (6):
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where the statez componentsz1 andz2 denote respectively
the robot position and velocity,u the control input andξ1 the
blood velocity. The outputy is the robot position measured
by an imager,i.e. C1 = [1 0]. The functionφ is given by:
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where θ = V (ρf − ρ)g/m and σ respectively denote the
unknown parameter and the sign function.

Let x = [zT , ξT ]T ∈ R2n+2 denote an extended state
vector. The extended system is inherited from (7) and (4):

(Se) :

{

ẋ = A(0)x+Bf(x, u) +Bθ + Vm

y = C2x
(9)

with BT = [0 1 01×2n], C2 = [C1 01×2n] and V T
m =

[01×(2n+1) ω2n2vm]. Function f is chosen so thatA(0)
contains the linear part of(Se):

f(x, u) = φ(x) + β2u+
(a+ β3)(x2 − x3)

m
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A(α) =

















χ1 χ2 O2 · · · O2

O2 ̥1 χ3 · · · O2

...
. . .

. ..
. . .

...

O2 · · · . .. ̥n−1 χ3

O2 · · · · · · O2 ̥n

















(11)



with

χ1 =

[

0 1
0 −(β3 + a)/m− α

]

χ3 =

[

0 0
ω2 0

]

χ2 =

[

0 0
(β3 + a)/m+ α 0

]

̥i =

[

0 1
−i2ω2 0

]

(12)
The knowledge ofx1, x2, x3 is required to implement

a stabilizing control law. Since onlyx1 is measured, an
observer is thus necessary. The next section is devoted to
the synthesis of the observer-based controller.

III. M AIN RESULT

Lemma 1 Let zref = [zr(t), żr(t), z̈r(t)] denote any con-
tinuous and bounded reference trajectory, andKz denote
any compact subset of a neighborhood of(zr, żr). ∀x ∈
K = Kz ×Kξ, the systems(7) and (9) satisfies the following
properties:

P1) φ is locally γ-Lipschitz onK;
P2) System(7) is locally controllable alongzref ;
P3) System(9) satisfies(Ā1, C̄) and (Ā2, C̄) observable,

with Ā1 = Ā(0) and Ā2 = Ā(γ − a+β3

m
) with Ā(α)

and C̄ defined as:

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[

C2 0
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(13)

P4) f is differentiable with respect tox and ∀j ≤ 2n+ 2,
∃(aj , bj) ∈ R2 such that:

aj ≤ ∂f
∂xj

(x, u) ≤ bj ∀x ∈ K, u ∈ U (14)

Proof: Properties (P1) and (P2) have been
demonstrated in [16] and [21], respectively. In particular,
the local controllability of system (7) is inherited from the
controllability of its linearized time-variant system along
the reference trajectoryzref (t) [22], [23].

Let ∆ denote the observability matrix determinant associated
with the pair(C̄, Ā(α)). It is straightforward that:

∆ = ((β3 + a)/m+ α)2nω2n
n
∏

i=1

i2ω4(i−1) (15)

Property (P4) is inherited from (10), from (P1) and from
the properties ofφ established in Lemma 1 of [16], namely
∂φ
∂x2

= − ∂φ
∂x3

and∀x ∈ K:

a+β3

m
≤ ∂φ

∂x3

(x) ≤ γ (16)

Using (10) and (16), it is straightforward that:

0 ≤ ∂f(x,u)
∂x3

= −∂f(x,u)
∂x2

≤ γ − a+β3

m

∂f(x,u)
∂xj

= 0 for all j = 1, 4, 5, · · · , 2n+ 2
(17)

A. Observer

We have previously proposed a high gain observer in
[16] to estimate the extended state vector in (9). Yet this
observer raises two issues. First, even for small dimensional
systems, it is difficult to design the observer in order to
obtain relatively low gainL because of the high value of
the local Lipschitz constantγ. Second, even for a blood
velocity defined as a first-order truncated Fourier series, the
system (9) dimension is4. Using higher order truncated
series emphasizes this issue since the gain matrix is formed
in ascending powers ofL. That is the reason why we propose
another observer based on [24].

Proposition 1 Let U denote the compact set of admissible
inputs. Under assumptions of Lemma (1),∀x(0) ∈ K,
∀x̂(0) ∈ K, ∀θ̂(0) ∈ Kθ, ∀u ∈ U :
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θ = Kθ(y − C2x̂)

(18)
is an exponential observer of system (9) onK × Kθ with
the symmetric positive definite matricesPo, Qo and the gain
K̄ = (KTKT

θ )
T that satisfy the Linear Matrix Inequalities:

(Āi − K̄C̄)TPo + Po(Āi − K̄C̄) < −Qo, ∀i ∈ {1, 2} (19)

Proof: Let x̃ = x− x̂ denote the estimation error. Let
Co(x, x̂) = {λx + (1 − λ)x̂, 0 ≤ λ ≤ 1} and C̄o(x, x̂)
denote a convex and its convex hull. Applying the MVT to
f , ∃̺(t) ∈ C̄o(x, x̂) such that:

f̃ = f(x, u)− f(x̂, u) =

(

2n+2
∑

j=1

eTj
∂f
∂xj

(̺(t), u(t))

)

x̃(t)

(20)
with {e1, . . . e2n+2} denoting the canonical basis ofR2n+2.

Let A(h(t)) = A(0) + B
2n+2
∑

j=1

hj(t)e
T
j with

hj(t) =
∂f
∂xj

(̺(t), u(t)).

Then, using (9) and (18), the estimation error dynamics
satisfies the LPV system:







˙̃x = (A(h(t))−KC2)x̃+Bθ̃

˙̃
θ = −Kθ(y − C2x̂)

(21)

where θ̃ = θ − θ̂ denotes the parameter estimation error.

Let ǫ = (x̃T , θ̃)T , then system (21) can be rewritten as

ǫ̇ = (Ā(h(t))− K̄C̄)ǫ (22)

with

Ā(h(t)) =

[

A(h(t)) B
O1×(2n+2) 0

]

(23)



Property (P4) implies that the parameterh(t) evolves in a
bounded setH whose vertexV is given by:

V = {α = (α1, · · · , α2n+2)|αj ∈ {aj , bj}} (24)

From (P4), V reduces toV = {a3, b3} = {0, γ − a+β3

m
}.

For all Po symmetric positive definite, a candidate Lya-
punov function is given by:

Vo(ǫ) = ǫTPoǫ ≤ λ̄‖ǫ‖2 (25)

with λ̄ the highest eigenvalue ofPo.

Differentiating (25) using (22) leads to:

V̇o(ǫ) = ǫTQ(h(t))ǫ (26)

with the time-varying matrixQ(h) affine in h defined by:

Q(h(t)) = (Ā(h(t))−K̄C̄)TPo+Po(Ā(h(t))−K̄C̄) (27)

Let K̄, Po and Qo satisfy (19). SinceĀ(a3) = Ā1

and Ā(b3) = Ā2, we consequently haveQ(α) < −Qo

∀α ∈ V. Using the principle of convexity, we then have
Q(h(t)) < −Qo, ∀h ∈ H.

Hence, we have

V̇o(ǫ) < −ǫTQoǫ (28)

Let λ denote the smallest eigenvalue ofQo, we then have

V̇o(ǫ) < −λ‖ǫ‖2 ≤ −(λ/λ̄)Vo(ǫ) (29)

It follows from (29) that (18) is an exponential observer for
system (9).

B. Controller

Proposition 2 Under assumptions of Lemma (1), the back-
stepping control lawu = κ(x, θ):

κ(x, θ) = − (k2 + k1)z̄2 + (1− k21)z̄1 + φ(x) + θ − z̈r
β2

(30)

stabilizes the system(7) along anyC0 reference trajectory
for any bounded initial statex(0) with the controller gains
k1, k2 > 0 and z̄1 = z1 − zr, z̄2 = z2 + k1z1 − żr.

Proof: Let
{

z̄1 = z1 − zr
z̄2 = z2 − żr − α

(31)

for some stabilizing functionα.
• A candidate Lyapunov function is:

V1 =
1

2
z̄21 =⇒ V̇1 = z̄1(z2 − żr) = z̄1(z̄2 + α) (32)

Settingα = −k1z̄1 leads to:

V̇1 = −k1z̄
2
1 + z̄1z̄2 (33)

Since ˙̄z1 = z2 − żr = z̄2 + α = z̄2 − k1z̄1, we obtain:

˙̄z2 = φ(x) + θ + β2u+ k1(z̄2 − k1z̄1)− z̈r (34)

• In this last step, the candidate Lyapunov function is:

V2 = V1 +
1

2
z̄22 (35)

Differentiating (35) using (34), we obtain:

V̇2 = −k1z̄
2
1+z̄2(φ(x)+θ+β2u+k1z̄2+(1−k21)z̄1−z̈r)

(36)
Using u = κ(x, θ) given by (30) leads to:

V̇2 = −k1z̄
2
1 − k2z̄

2
2 (37)

C. Stability of the observer-based controller

Proposition 3 Under assumptions of Proposition (1), the
observer-based control laŵu = κ(x̂, θ̂):

κ(x̂, θ̂) = − (k2 + k1)ˆ̄z2 + (1− k21)ˆ̄z1 + φ(x̂) + θ̂ − z̈r
β2

(38)

stabilizes the system(7) along anyC0 reference trajectory for
any initial state(x(0), x̂(0)) ∈ K2 and θ̂(0) ∈ Kθ with the
controller gainsk1, k2 > 0, ˆ̄z1 = ẑ1−zr, ˆ̄z2 = ẑ2+k1ẑ1−żr
and z̃ = z − ẑ.

Proof: Replacingu with û in the equation (36), we
obtain:

V̇2 = −k1z̄
2

1 + z̄2

(

φ̃+ (k1 + k2)˜̄z2 + (1− k2

1)˜̄z1 − k2z̄2 + θ̃
)

= −k1z̄
2

1 − k2z̄
2

2 + z̄2

(

φ̃+ (k1 + k2)˜̄z2 + (1− k2

1)˜̄z1 + θ̃
)

(39)
with φ̃ = φ(x)− φ(x̂). Using property (P1) leads to:

V̇2 ≤ −k1‖z̄1‖
2 − k2‖z̄2‖

2 + γ‖z̄2‖‖x̃‖

+(k1 + k2)‖z̄2‖‖˜̄z2‖+ (1− k2

1)‖z̄2‖‖˜̄z1‖+ ‖z̄2‖‖θ̃‖
(40)

Yet we have the following bound:

z̄2 = z2 − żr + k1z̄1 =⇒ ˜̄z2 = z̃2 + k1 ˜̄z1

=⇒ ‖˜̄z2‖ ≤ ‖z̃2‖+ k1‖˜̄z1‖
(41)

So using (41) in (40) yields:

V̇2 ≤ −k1‖z̄1‖
2 − k2‖z̄2‖

2 + γ‖z̄2‖‖x̃‖

+(k1 + k2)‖z̄2‖‖z̃2‖+ (1 + k1k2)‖z̄2‖‖˜̄z1‖+ ‖z̄2‖‖θ̃‖

≤ −k1‖z̄1‖
2 − k2‖z̄2‖

2 + γ‖z̄2‖‖x̃‖

+(1 + k1k2 + k1 + k2)‖z̄2‖‖x̃‖+ ‖z̄2‖‖θ̃‖

≤ −ηc‖z̄‖
2 + ζc‖z̄‖‖ǫ‖

(42)
with ηc = min(k1, k2) andζc = (2 + γ + k1 + k2 + k1k2).

Consider the Lyapunov functionW (z̄, ǫ) with ζ > 0:

W (z̄, ǫ) = ζV2(z̄) + Vo(ǫ) (43)

Using (42) and (29), the time derivative ofW (z̄, ǫ) is given
by:

Ẇ (z̄, ǫ) ≤ −ζηc‖z̄‖2 + ζζc‖z̄‖‖ǫ‖ − λ‖ǫ‖2 (44)

Choosingζ = ηcλ/ζ
2
c thus results in:

Ẇ (z̄, ǫ) ≤ −ζηc‖z̄‖2/2− λ‖ǫ‖2/2 (45)



TABLE I

PARAMETERS NOMINAL VALUES

Blood viscosity η 16× 10−3 [Pa.s]
Blood density ρf 1060 [kg.m−3]

Ferromagnetic density ρm 7500 [kg.m−3]
Robot radius r 2.5 10−4 [m]

Vessel diameter D 3 10−3 [m]
Payload density ρp 1500 [kg.m−3]

Ferromagnetic ratio τm 0.75
Magnetization M 1.23× 106 [A.m−1]

Controller gains (k1, k2) (7, 14)
Mean blood velocity vm 0.05 [m.s−1]

TABLE II

INITIAL CONDITIONS FOR THE SYSTEM AND THE OBSERVER

(xT (0) θ) (0 0 0.1075 0 − 8.179)

(x̂T (0) θ̂(0)) (0.001 0.01 0 0.001 − 9)

Setκ1 = max(ζ/2, λ̄) andκ2 = min(ζηc, λ)/2, then we
can write:

W (z̄, ǫ) ≤ κ1(‖z̄‖2 + ‖ǫ‖2)
Ẇ (z̄, ǫ) ≤ −κ2(‖z̄‖2 + ‖ǫ‖2)

(46)

We consequently have:

Ẇ (z̄, ǫ) ≤ −κ2

κ1
W (z̄, ǫ) (47)

Thereforez̄ and ǫ = (x̃T , θ̃)T exponentially converge to
zero, and the same goes forz, x̃ and θ̃.

IV. SIMULATION RESULTS

The simulation is performed by taking into account the
limitations of the actuators. In order to not exceed the
capacity of the magnetic device, the control inputs are time-
scaled asua(t) = u(t)/k(t) with k(t) = max[1, |u(t)|/usat].
The microrobot position is assumed to be measured within
an accuracy of100µm consistent with the best imagers
resolution. A Gaussian white noise with a standard deviation
of 100µm is thus added to the measured output. The nominal
values of parameters are given in Table I. The robot is bead
pulled, so that we haveβ2 = τmM

ρ
andβ3 = 0. Without loss

of generality, the reference trajectory is a fixed point. The
blood velocity is modeled by a first-order Fourier series.
Table II gives the initial conditions for the system and the
observer.

The MVT observer gain is:

K̄T =
[

18.60 3.25 102 3.01 102 1.33 103 6.85 104
]

The simulation shows that the MVT-observer-based con-
troller is stable despite the presence of measurement noise.
The Figure 3 (resp. 4) illustrates the real and estimated
microrobot positions (resp. velocities) and the associated
estimation errors. The latter have converged in less than
1.5s. The microrobot position and velocity converges to
zero after a2s long transient phase that corresponds to the

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

0

5

10
x 10

−3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3
x 10

−3

Real Estimated

2 2.5 3 3.5 4 4.5 5
0

2

4
x 10

−5

Time (s)

P
o
s
it
io

n
(m

)

Time (s)

E
r
r
o
r
(m

)

Fig. 3. Real and estimated positions / Position estimation error.
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Fig. 4. Real and estimated velocities / Velocity estimation error.
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0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Time (s)

usat

−usatM
a
g
n
et

ic
F
ie

ld
g
ra

d
ie

n
ts

(T
m

−
1 )

Fig. 6. Control input:∇B.

parametric error convergence time. The tracking is degraded
at the beginning of the simulation because the control input
reaches the saturation. Once stabilized the position and ve-
locity estimation errors are less than40µm and900µm.s−1,
respectively. Similarly, the Figure 5 shows that the blood
velocity estimation error is less than700µm.s−1 once the
observer has converged. The Figure 6 illustrates that the
control input is not too much affected by noise. The Figure 7
illustrates the real and estimated parameter and the associated
estimation error: convergence occurs within2s.
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Fig. 7. On-line estimation of the unknown parameter and parametric error
θ̃.

V. D ISCUSSION AND CONCLUSION

Many studies on the measurement of the average blood
velocity are available in the literature. Unfortunately, this
information is neither sufficient nor accurate enough for
controlling microrobots navigating in the vasculature. The
drag force has a major impact on the dynamic behavior
of the system and this force strongly and nonlinearly
depends on the relative velocity between the robot and the
time-varying blood flow. The blood velocity is pulsatile
and periodic. Since any periodic signal has a Fourier
series decomposition, it is then possible to define a dynamic
model of the blood velocity, yielding to an extending system.

We have proposed an observer-based controller using
the sole measurement of the microrobot position obtained
thanks to an imager. Since the nonlinear modeling
describes both physical and physiological forces, it is also
affected by many biological parameters uncertainties. To
robustify the tracking with respect to these uncertainties,
an adaptive observer-based controller has been developed
and its relevancy and efficiency is illustrated through
simulation. The parametric uncertainty acts on the dynamics
of non measurable state, which is a difficult case to deal
with. Yet the system is stabilized despite noise measurement.

Extension of the approach to a2D model is an ongoing
work. The main difficulty lies in the necessity to take
into account the electrostatic force, which may raise some
issues about the Lipschitz constant which in turn induces
high gains and sensitivity to noise. The estimation of the
blood pulsation is still an open issue, since the resulting
perturbation model becomes nonlinear and non uniformly
observable.
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