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ABSTRACT. In this paper, we complete our previous works ( Cattiaux, Leon and Prieur
(2014-a), Cattiaux, Leon and Prieur (2014-b), Cattiaux, Leon and Prieur (2014-c))
on the (non-parametric) estimation of the characteristics (invariant density, drift term,
variance term) of some ergodic hamiltonian systems, under partial observations. More
precisely, we introduce recursive estimators using the full strength of the ergodic behav-
ior. We compare the theoretical results obtained with these estimators to the results we
proved for the ones we have introduced previously.

MSC 2010 : 62G07, 60H10, 60F05.

Keywords : hypoelliptic diffusion, nonparametric estimation, recursive estimation, par-
tial observations.

1. INTRODUCTION.

Let (Zt = (X, V) e R¥ ¢ > 0) be governed by the following Ito stochastic differential
equation :

dY, = odW,— (c(X,,Y,)Y, + VV(X,))dt. (1.1)

Each component Y (1 <4 < d) is the velocity of a particle 7 with position X*. Function
c is called the damping force and V' the potential, o is some symmetric positive definite
constant matrix and W is a standard Brownian motion.
We shall assume that ¢ and V' are regular enough for the existence and uniqueness of a
non explosive solution of (1.1). We shall also assume that the process is ergodic with a
unique invariant probability measure u, and that the convergence in the ergodic theorem
is quick enough. Some sufficient conditions will be discussed below.
These models are important due to their physical relevance. They have a long history.
We refer to Wu (2001) and Cattiaux et al. (2014-a) for a detailed bibliography. We have
chosen the terminology “damping Hamiltonian systems” in reference to Wu. Such systems
are also called “kinetic diffusions” by several authors.

Once the probabilistic picture is well understood, it is particularly relevant to build
statistical tools for these models. In a series of previous papers, we have built several
estimators for the characteristics of such processes: non parametric estimators for the
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2 P. CATTIAUX, J. LEON, AND C. PRIEUR

invariant density in Cattiaux, Leon and Prieur (2014-a), for the drift term in Cattiaux,
Leon and Prieur (2014-b), and various estimators for the noise or the diffusion term in
Cattiaux, Leon and Prieur (2014-c). The most important fact is that all these estimators
are built under partial observations, i.e. we assume that the position only can be observed,
the velocity is then estimated. This is in accordance with the concrete situations where
these processes can be used as a pertinent model.

The second common fact in these papers is that we assume high frequency observations,
i.e. the process X; is observed at times kh, (k € RT) for some parameter h,, going to 0
as n goes to infinity (but of course nh, — +00).

In the present paper, we propose recursive estimators.
Recursive estimation is of course particularly well adapted to the ergodic situation, where
one can observe the process on a long time interval. To be more precise, denote by ps the
invariant density (see the next section for its existence) and by b the drift term

We introduce the two natural estimations of Y and dY,

1 1
Al(Xt, h) = E (Xt+h — Xt) and hAQ(Xt, h) = % (Xt+h + thh — 2Xt> . (12)

We define the following three estimators

Pra(2,9) Zbd bd ( bii ba.i ’ (1:3)

for the invariant density,

X . 1 — 1 r—X; y—A(Xi, hy)
rn\Ls br.n ) = K ’
Prn(,y) by (7, ) n 121 bi ;b4 < by bai

for the drift term, and finally

R 3 1
Grn = Z; E- Ao(Xisn, hi) >< Ao(Xipn, hi) (1.5)

1=

) AQ(XH_Q;Z“ hl) s (14)

n

for the (constant) diffusion matrix, where A = x >< z denotes the symmetric matrix
with entries A;; = 27 2¥, 27 denoting the jth coordinate of z.
The recursion formulae are thus

prlent) = T ) g e (P S e )
. A n—1 . N
Prn(2,Y) bpn(2,y) = n Pr,(n—-1) (z,y) by (n—l)(xvy) +
b 1b K (xblfN7y A;Efn,hn)) BalXutzhas ),
. n—1,
Orn o Or,(n— om h ( n+hy hn) >< A2(Xn+hn; hn)

We intend to give sufficient conditions on the discretization steps h,, bandwidth b, ,
and bs,, and kernels K, for these estimators to be consistent and provide some confidence



RECURSIVE ESTIMATION FOR HAMILTONIAN SYSTEMS. 3

intervals.
In the whole paper K will be a smooth kernel with compact support, satisfying

/K(x, y)dzdy = 1.

It is worth noticing that the observations will be only locally high frequency, i.e. what
is needed is the joint observation of (X, X,tn,, Xnion,, Xnisn,) and we will choose h,,
going to 0 and assume that 3h, < 1 for all n. In the case of complete observation, we
only need to observe the position process at integer times.

Of course, all these estimators are the “recursive” form of the estimators we have
introduced in our previous works.

Recursive estimation for the density of stationary sequences has a long history too,

starting presumably with Wegman and Davis (1979). One can mention among others a
series of papers by E. Masry (Masry (1986), Masry (1987), Masry (1989), Masry and
Gyorfi (1987)) and more recently Liang and Baek (2004) and Amiri (2009). We refer
to Amiri (2010) for a more complete bibliography.
Though these papers do not study explicitly diffusion processes, the results therein can
be applied to the case of complete observation of some stationary diffusion processes.
However we decided to give here complete new proofs for two major reasons: first the
proofs of the Central Limit Theorem given in these papers, based on an intricate block
decomposition can and will be simplified, second we are dealing with the partial observa-
tion case. In addition, some key assumption in all these papers is not clearly satisfied for
our model, though it is presumably true. A precise description and comparison will be
given later (see Section 5.2 for further discussion).

The plan of the paper is the following: after recalling some properties of the model,
we study recursive estimators for the invariant density and the drift under complete
observation. Then, as in Cattiaux et al. (2014-a) and Cattiaux et al. (2014-b), we show
that looking at estimators with partial observation, introduce a small perturbation of the
fully observed case, at least for well chosen h,,. Finally we study the diffusion coefficient
in the spirit of the final section of Cattiaux et al. (2014-c).

Large parts of the proofs being similar to what we have done in our previous works, we
only indicate the modifications or simplifications in the present setting.

The main results of the paper can be summarized as follows: choosing h,, = n=? for
some 3 > 1/2 as close as 1/2 we want, one can find kernels K and bandwidths b, ;
such that the recursive estimators simultaneously converge to the invariant density, drift
term and diffusion term. In addition we are able to find confidence intervals for all these
quantities, of respective size n=% for 6, < 1/2, n=% for 6, < 1/4 and n=/2.

2. THE MODEL AND ITS PROPERTIES.
We are obliged to recall some facts on the model. A more detailed discussion is contained
in Cattiaux et al. (2014-a).

We shall first give some results about non explosion and long time behaviour. In a
sense, coercivity can be seen in this context as some exponential decay to equilibrium.
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Let | - | denote the euclidean norm in R¢.
Let us first introduce some sets of assumptions:

Hypothesis H;:

(i) the potential V is lower bounded, smooth over R% V and its first three partial
derivatives have polynomial growth at infinity and there exists v > 0 such that

+o00 > liminf rVV(z)
|z| =400 |:L‘|

>v>0,
the latter being often called “drift condition”,
(ii) the damping coefficient ¢(x,y) is smooth and bounded, its first two derivatives are
bounded by some polynomial, and there exist ¢, L > 0 so that ¢*(x,y) > ¢ld > 0,
V(lz| > L,y € R%), where ¢*(x,y) is the symmetrization of the matrix c(z,y),
given by 5(ci;(2,y) + ¢ji(, y))1<ij<d;

(iii) o is uniformly elliptic, i.e. here o1 exists.

These conditions ensure that there is no explosion, and that the process is positive
recurrent with a unique invariant probability measure p. In some of our previous papers we
assumed that o = Id, but of course multiplying Y by o~! we are immediately reduced (for
the probabilistic properties) to the case o = Id. Furthermore p admits some exponential
moment, hence polynomial moments of any order.

We will denote by P;f(z) = E,(f(Z:)) which is well defined for all bounded function f,
P, extends as a contraction semi-group on LP(u) for all 1 < p < 4o00.
Another key feature is that the process is actually a-mixing, i.e.

Proposition 2.1. There exist some constants C' > 0 and p < 1 such that:
Vg, fel>®w), Vt>0,
£ [ tdn

g—/gdu

i.e., in the stationary regime, (Zy, t > 0) is a-mizing with exponential rate.

|Covy, (f(Z4), 9(Zo))| < C p'? (2.2)

o0

Actually, using the semi-group property and the Riesz-Thorin interpolation theorem,
one can extend the previous mixing condition in the following way: if g, f € L%(u) for

some ¢ > 2, then for ¢ > 0,
g—/gdu ‘f—/fdu

As explained in section 2.2 of Cattiaux et al. (2014-a), the infinitesimal generator L is
hypo-elliptic, which implies that

|Covy, (f(Z4), 9(Zo))| < C pla=r2

(2.3)

q q

p(dz) = ps(z) dz
for some smooth function p;.
At the same time, for all £ > 0 the law of the process has a density p(t, z,.) with respect
to Lebesgue measure, which is smooth, and satisfies for any ¢ty > 0 and for all compact
subsets A and A,
sup  sup |p(t,2,2)] = Q(A, A') < +00. (2.4)

2€A, 2/ €Al t>tg
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One can relax the C°° assumption on the coefficients into a C* assumption, for a large
enough k, but this is irrelevant.
Furthermore it can be shown that p, is everywhere positive.

One can relax some assumptions and still have the same conclusions:

Hypothesis H;:

(a) One can relax the boundedness assumption on ¢ in H;, assuming that for all
N > 0: supp, <y yerd c(z,y)||m.s. < +00, where H.S. denotes the Hilbert-Schmidt
norm of a matrix; but one has to assume in addition conditions (3.1) and (3.2) in
Wu (2001). An interesting example (the Van der Pol model) in this situation is
described in Wu (2001) subsection 5.3.

(b) The most studied situation is the one when c is a constant matrix. Actually almost
all results obtained in Wu (2001) or Bakry et al. (2008) in this situation extend
to the general bounded case.

Nevertheless we shall assume now that c is a constant matrix.
In this case a very general statement replacing H; (i) is given in Theorem 6.5 of
Bakry et al. (2008). Tractable examples are discussed in Example 6.6 of the same
paper. In particular one can replace the drift condition on V' by

|li‘m}rnf IVV|*(x) >0 and ||[V*V|gs < |VV].

T|—+00
Notice that one can relax the repelling strength of the potential, and obtain, no

more exponential but sub-exponential or polynomial decay (see the discussion in
Bakry et al. (2008)).

From now on in the whole paper we will assume that Hypothesis H; (or Hs) is fulfilled.
In all the proofs of the paper C' denotes some constant which may vary from line to line.
We also use the expression in the stationary regime when the process is stationary, i.e.
when Z; is distributed according to u.

3. ESTIMATION OF THE INVARIANT DENSITY AND OF THE DRIFT TERM IN THE
STATIONARY REGIME: COMPLETE OBSERVATION CASE.

To begin with, we look at the recursive estimators under complete observation. This is

not our main goal, but as in Cattiaux et al. (2014-a), it is a first step for our study.

3.1. Invariant density. Introduce

n

i 1 1 r—X; y=-Y;
r,mn 9 = - K ’ ' 31
Prn(, ) o Z bl b, ( b bai ) .

=1

We have the following first result

Lemma 3.2. Assume that by, and by, are non-increasing sequences of real numbers (say
between 0 and 1), going to 0 as n — +oo. Then for all (x,y), as n — 400,

E.(Prn(z,y)) = ps(2,9) -
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If in addition nb?  b%., — 400 as n — +o00, then

1,n “n,2

C
d d
n bl,n bn,2

hence prn(x,y) converges to ps(x,y) in L?(u) norm, as n — +00.

varM (ﬁr,n (ZL‘, y)) S

Proof. A simple change of variables shows that

1 - X; y Y;
]E'u (bdbdK( by )) / K U U ps Ub1,i,y—vb27i)dudv
1,0 72,0 1, 71

so that using the smoothness of p, and the fact that K has compact support, it follows

that
1 r—X; y-Y
E,| ———K (T,
12 (blli’z bgﬂ ( bLZ‘ ) b2’i >) — P (I‘ y)

as ¢ goes to infinity. The first result then follows from the Cesaro rule.

For the variance we have the decomposition Var,(p,,(z,vy)) = Vi(n) + 2V,(n) with

I~ ! r—Xo y—Yp
him = 2 Var, | K 3.3
l(n) n2 ; bidZ b%i ar/L ( ( bl,i 9 b27,L' )) ( )
1 "1 )
- 2 Z W K (U, U) ps(x - Ubl,i; Yy — Ubg,i) du dv
ne o\ =7 91,92,
1 1 d 1d 2
) Z p2d p2d biibo; | K(u,v)ps(x — uby i,y — vby;)dudv
n® = 0193,
< C
~onb{, b,
where C' =|| ps |lLoo(supp+1) | K*(u, v)dudv, and
1 & 1 1
n2 (3.4)
n? 121 ; by, b3 bil,j bg,j

T — X y—%) (fE—Xj—i ?/—Yj—i>)
COV K 9 )K 9 °
g ( ( b1, ba.i b ba,;

In order to bound the previous quantity, we have two options.
On one hand we may write

~ X, y- Y, X, y— Y,
EM(K(I 0 4 O)K(x =i Y >>_bi’1bglbd b //Kuv (', v)
bl,z’ b2,i bl,j b27j

ps(x — uby i,y — vbo) p(§ — 4, (x — uby i,y — vbay), (x — u'by j,y — Vb)) dudvdu’dv’

blfl b2)7’ bl’] 27.]

1 1
bl g, o
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At the same time,

By | K I—Xo,y—Yb :b?ibgi
by by T

so that
1 - Xy y—Y, - X, y=-Y._,;
COVM<K<:U 0 Y 0),K<x =i Y ))‘gc.
b ba,i bl,j bQJ
On the other hand, we may use (2.3) in order to get for any 2 < g < 400,

bi’lbgl bd bd
z — Xo y—YO) (x_Xj—i y—Yj—z))
Cov, | K , K ,
#( ( b bai b ; ba,;

Using roughly the monotonicity of the sequences b_;, we thus get

/K(u, V) ps(x — uby 4,y — vbe ;) dudv

d 1d
<C bl,i b?,i

d/q ,d/q 1d/q 1d/a (i—i)(g—
< Cbl,/iq 527/1,‘1 bL/JfI bg,/jqp(] )a-2)/2q

J 1)(¢—2)/2q

Va(n) < n2 Zme 1, 2d171) 2d(17l)

=1 7>t b b
o & PHa=2)/20
< — (n—k) min | 1
= 9 ) od(1—1) 2d(1_L
n® o b1 o

The sum splits into two terms, depending on which term reaches the minimal value. But
roughly, for all 1 < k,, < n, we have, with ¢ = +oo for simplicity, a bound of the form

kny, pln/? 1
V Sl O A L — -
2(m) < ( Tl ) T\ o,

1
In(1/b1,) +In(1/be,) <k, < (bd i ) ,
2.n
hence the result. [l

provided

The previous proof gives us the feeling of the right normalization for a Central Limit
Theorem. Let us state the result

Theorem 3.5. Assume that Hi or Hs is fulfilled. Assume in addition that the following
assumption Hy 1s satisfied

(Hi) there exists m € N* such that for all multi-index (my, my) € N%x N? such that
m > |ma| + [me| > 1, [uw™ 0™ K(u,v)dudv = 0.
Let by, and by, be non increasing sequences of real numbers satisfying

(la) b1, and by, go to 0 asn — 400,
2a)  nb{ b3, = +oo asn — +oo,
b{ b4

(2a)
(3a) there exists X > 0 such that lim,_,, ., + (Z?:l bl‘ftéj) =3.
(4a)

n

\/ nbcll,nbg,n (% Z?d max(by ;, b2,z’)m+1) — 0 as n — +o00.

4a,
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Then, in the stationary regime

nb‘fvnbgm (Drn(z,y) — ps(z,9)) SNy Vs (O, Y ps(z,y) /KQ(s,t)dsdt) )

n—-+oo

Remark 3.6. Typical allowed bandwidths are b;,, = n™% for j = 1,2 with a; > 0,
d(aq + a) < 1 and then choosing m such that 1 < d(a; + ag) +2(m + 1) min(aq, az). In
this case ¥ = 1/(1 + d(a1 + aw)).

These conditions are satisfied in particular once

L < min(m, as) < max(or, a2) < o
—_—— min(o, & max\ vy, —_—
2(d—|—m+1) 1, 42) > 1, X2 2d7

in which case the rate we obtain is at most n” with 7 < MT—EIH) . &

Remark 3.7. It is always possible to build some kernel K satisfying Hg for a given m.
First we may take K(z) = II32, K1(2;) and choose K satisfying Hx in dimension 1.

To build K; choose for instance some even function 1 which is C*° and compactly sup-
ported in [—1, +1], positive on its support. Then consider the space of polynomials R(u),
equipped with the L%(¢)(u)du) norm, and its completion H(¢). Tt is not difficult to see
that, for all k& € N*, the family 1, u,u?,...,u* is an independent family of vectors for the
euclidean norm induced by the L?(¢)(u)du) norm. We may thus find some polynomial M
with degree m which is orthogonal to all the v’ for j = 1,...,m and satisfies < M,1 >=1
with < -, > the usual scalar product in L?(¢)(u)du). It remains to choose K; = M1).
The previous shows that we may choose m as large as we want. &

Proof. First, the bias term B, = \/nb{ b3, (E.(pra(z,y)) — ps(z,y)) can be treated

exactly as in Cattiaux et al. (2014-a) section 5 step 3. It is for this term that the conditions
on K and (4a) are required.

Next we show that nb{, b§  Var,(p,.(z,y)) converges as n — +oo. According to the
proof of the previous Lemma, we see that this convergence amounts to the convergence

of

nbd b Vi(n)

But

nb{, b3, Vi(n) = Vi (n) + Viz(n)
with

1 (= b0, )

Vn(n)zﬁ Z y g’ ps(x,y) /K (u,v)dudv ,
i=1 1,i72,3

while

b b5

1 (=0
Vig(n) = - (Z W /Kz(u,v)(ps(x — uby s,y — vba;) — ps(x,y)) dudv) :
i=1 72,0

Using the regularity of py (here the local Lipschitz property) we see that

b nb . n bd_nlbd_nl
‘/12(n) < Ci <Z “Ln 72n < Cbl,nb2,n

d—17d—1
n i=1 bl,i b2,i
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thanks to the monotonicity of the sequences, and the latter goes to 0. Finally

lim nbd bd Varu(ﬁr’n(x,y))zﬂps(x,y)/KQ(U,U)dudv. (3.8)

n—-+0o0o

To prove the Central Limit Theorem it remains to use the Lindeberg method. As shown
in Bardet et al. (2008) Theorem 1, the proof amounts to check two conditions. Define

U bd bd K r—X; y-Y;
iwn — \/_b bgl bl,i ) bQ,i

then what is required is
(1)  there exists some § > 0 such that

lim A, := lim Z E,(|Uin|*™) = 0
=1

n—-+oo n—-+o0o

(2) forallaeR,

n
lim Tn = lim Z ‘COVH (eia(Ul,n-i-...—i—Uv;—l,n)7 eian,n)| =0.

n—+0o n—-+00
We have
d(1+6) , d(1+9)
A = 1,n b2 E (K2+26 <I—X() y_YO))
n s
n1+6 — 2dZ (1+0) gdz 1+9) b ba.;

1+5)b (1+5)

1,n
S n1+5 Z 1+2§ 1+2§)
=1 Y13 22

d 1d
C - bl,an,n

5 1do pdo E: d 1d
n bl,nbz,n n = bl,ibQ,i

so that, under our assumptions, 4, — 0 as n — +oc.
As in Bardet et al. (2008), we write

}COVM (ela(Ul,n'i‘---'FUi—l,n)’ ezan,n>| — Gzan’")

I

i—1
E Cov, <6ia(U1’"+'“+Uj,n) _ eiaUrnttUj1.n)
7j=1

(3.9)
(as usual empty sums are equal to 0). Consider a random variable U}, independent from
(Ui, -.,Uj—1,), with same distribution as U;,. Then, following Bardet et al. (2008),
we note that each element in the sum of the right hand term of Equality (3.9) is equal to

}COV# (eia(U1,n+...+Uj7n) i eia(U1,n+...+Uj,17n)7 (eian,n . eian*’"))|

which is bounded, arguing as in the proof of Lemma 3.2, by

o bd bd
C(a)min [ E,(|U; ,||U; .. ’plfj/Q 1n%n
" < (il nbf ;b5 ;b9 b3,

blann . pil?
SC()—n mm(l —bcll b BT b

1,572,
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T, < iin Yo 2 min | 1,
by ;b3 ;b1 ;05 ;

i=1 j=1

- (00,
< C’(a)Z(n—k)mm( ’n’ b T

k=1

k(n)

< ClOm) Wb+ gr)

so that choosing again

e > k(n) > In(1/by ) + In(1/bs)
2.n

we obtain that T}, — 0. ]

Remark 3.10. As we have seen Hg is only required to control the bias term.

Lemma 3.2 is essentially contained in Amiri (2010) chapter 2, where a still more compli-
cated estimator is studied. For the Central Limit Theorem, usual proofs in the recursive
framework are using intricate block decompositions. Here we follow the beautiful and
now classical Lindeberg method (using Rio’s decomposition). The calculations are done
in Bardet et al. (2008) proof of Proposition 4.2 for the case of the classical kernel estimator
of the density, under weak dependence. It is adapted here to our framework. %

3.2. Drift term. The most difficult part in our previous study is presumably the
estimation of the drift term in Cattiaux et al. (2014-b) Proposition 4.2. Similarly to what
we have done in this paper introduce

n

~ 1 1 X, y-Y;
H,,(z,y) =~ K , Ao(Xiion  hi) . 311
) = 3 gt 1 (T ) Ml h) 11

As for the density, using Cesaro’s rule, it is easy to see that ﬁm is an asymptotically
unbiased estimator of b(z,y)ps(z,y), provided the bandwidths b, and h, go to 0 at
infinity. Next it is enough to closely follow the proof of Proposition 4.2 in Cattiaux et al.
(2014-b) keeping in mind that if the times ih,, are replaced by i, this does not introduce
any modification since what is important is the size of the windows defining A;(X, h;).
Since some things will differ (in particular the normalization of the kernels), we will give a
proof (indicating the differences with Cattiaux et al. (2014-b)) of the following statement

Theorem 3.12. Assume that Hi or Ho, and Hx are fulfilled.
Let h,,, b1, and by, be non increasing sequences of real numbers satisfying, as n — +00,

(Ib)  h, <1/3 for alln, hy,, by, and by, go to 0,
nhy, bd an — +00 ,

(2b)
(3b)  there ezists 0 > 0 such that & (Zn ki bg") — 0,
(4b)
(5b)

=1 hi bd ba

A /nbcll,nbgmhn (% Z?:l max(bu, b27i)m+1) — 0,
1_
there exists some r > 1 such that ,/nb‘inbg,nhn (% Z?zl hi (b?,ibg,i); 1) -0,

4b
ob
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d pd
(6b)  there exists some p > 1 such that Bobinbn S, h? (b;{z.bg{i)%*z — 0,

Then, in the stationary regime

nb‘li,nbg,nh” (ﬁr’n(l’7 y) - b(l’, y)p5<$, y)) L> UN <07 gps(x7 y)(/ K2<S7 t)det> Id) :

n——+o0o

Remark 3.13. Assume that h, is such that >_;" | h? < 400. Then for (6) to be satisfied,

. hn(b$ b3 /P
it suffices that —Lp2m
nbl,nb2,n

the most interesting.

Now assume that b;,, =n~% and h, = n~" for some positive a; and . It is not difficult
to see that, choosing p as close to 1 as necessary, (6) is again automatically satisfied,
whatever the positive value of 5. For (1) to (5) to be satisfied, it is then enough to
assume

— 0, which is automatic, thanks to (2). This situation is not

B+dlag+ar) <1< p+dlag+ )+ 2min(S, (m+ 1) min(aq, as)),

and in this case we have 6 = 1/(1 + 8 + d(ag + az)).
As we have seen in Remark 3.7, we may choose m as large as we want, so that the previous
conditions amounts to

B + d(Oél + CKQ) <l< Bﬁ + d(Oél + 042) . (314)
Hence we may choose the «;’s as small as possible and [ larger than but close to 1/3 to
get the quasi optimal rate n'/3. O

Proof. We give the main modifications w.r.t. the proof of Proposition 4.2 in Cattiaux et
al. (2014-b). We decompose

S, = n b‘f,nbgm h., (ﬁr,n(x, y) — b(z, y)ps(z, y))
= /nbd b b (Ho(z,y) — BH, (2, y) + EH, (2, y) — b(a, y)ps(z, y))
= Iln + IQTL'
Define
i+3h;  pt i+2h;  pit2h
I, = / b( X, Ys)dsdt + / b(Xs, Ys)dsdt,
i+2h; i+2h; i+h; t
and ‘ ‘
i+3h; i+2h;
200, = (Ws — VVi_._ghi)dS + / (Wi+2hi — Ws)ds.
i+2h; i+h;

The vector 1/nb§l7nbg’nhnﬁ[r7n(x,y) can be decomposed in two terms: the one driving

the bias in the central limit theorem

Sni(z,y) = \/m - K . )l
’1([[‘ y) n 1,nY2n n Zzl bizbg,’b blvi b2,i h’L2
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and the one driving the variance

I — 1 r—X, y—Y;\ 1
Spolz,y) = \/nbd b4 h, — K ., “ ) o5 0 Wi
72(37 y) n 1,nY2n n ZZI btli,lbgﬂ bLZ' b27i h? o

Notice that ES,, o(z,y) = 0. We thus have
Ton =E, Spa(z,y) — \/nb”f’nbg’nhn b(x,y)ps(z,y), (3.15)

Ty = (Sn,l - Eusn,l (377 y)) + Sn,2(37a y) . (3'16>

while

First step: Showing that Z,, — 0.

We define
i+3h; t
P, = / (P(X.,Y)) — b(X,, Y))dsdt
i+2h; i+2h;

i+2h; i+2h;
+/ / (Pb(X,,Y:) — b(X,,Y;))dsdt .
i+h; t

Thanks to stationarity, it holds

n

1 1 r—Xo y—Yo\ 1
Top = /bl 04 h, E, | - K , —
2 n 1,nY2n Y (n Z b?y,bgjl ( bl,i b27i ) hlg sBO) +

=1

1l < 1 r—Xo y—Yo
Jnbd b B (=) —— K : b(Xo,Yo) — b(x, y)ps(z,y) | -
_'_ n 1n“2n 123 (TL ; bilbg’@ ( bl,i b2,i > ( 0 0) ('I y)p (.77 y))

The second summand in the above expression can be treated as for the density and goes

to 0 as soon as
1 n
A/ nb‘inbg,nhn (; Z max(bl,i, bgyi)m+1> — 0.
i=1

The first summand can be decomposed into a sum /nb{, b3, hn 7 (A + Ag;) with

1 Shi -t 1 rT—u Y —v
Ay =15 // / (Psb(u, v) = b(u, v)) WK( Pt ) ds dt p(du, dv),
7 2]’L1 2hl l,Z 2,1 171 271

fi ha tth. We thus only study Ajy; for which

we have (].| denoting the norm in R?) as in Cattiaux et al. (2014-b)

1 . . 1/r 1
Ay < CMy hy ——— (/ Kr(t—t Y ”) u(du,dv)) < CM,h; (bE02,)7 "
blﬂ'bgyi bl,i b2,i Y

with p > 1, r < +00 € N* such that ]lj + % = 1. Accordingly the first summand goes to
zero as n tends to infinity, provided

/b b b (% S b (b;{ing)“) 0.
=1

Ay; being similar just changing f;:i f;h into




RECURSIVE ESTIMATION FOR HAMILTONIAN SYSTEMS. 13

Second step: Study of S, o

We now consider the term driving the variance. As in the proof of Proposition 4.2 in
Cattiaux et al. (2014-b) one can study the behavior of the characteristic function ®,,(t)
of S, 2, recall that

r— X y—Yi\ oW,
Sna2(2,y) \/W Zbdbd < bii b2,z‘) i

and that ES,, »(z,y) = 0.
If < -,- > denotes the usual scalar product in R?, introduce the random function f,,(¢)
(t € RY)

2pd pd n 1 of z—Xp Y=Y
& lot| b§ b8 hn D0kq b2 3 K ( bk bog

f n(t> -
One can follow the method used in Cattiaux et al. (2014-b) to show that the convergence
of ®,, amounts to the convergence in Probability of f,.

Now define
1 « 1 x—Xp y—Yx
T = B B —K2( 3 )
LnZ2n gy, ; b34b3% b bip | bog
Let
A=0p.(a9) [ K, 0)dudo.
where 4 oa
g bl annhn
0= lim — —_
n—+o0o N ; bil,kbg,k hk
Then
b{,.b4

E.(|Z, — A]) < Z b nbd e /K2 u,v) |ps(z — uby g,y — vboy) — ps(z,y)|dudv

2,k

1 - bd i
A
< - K2 s —ub Y b — Ps\y dud
< nZ/ (1,0) [ps( — by — vb) — pali, )lduce
1 &b ,03,
A,
(o e )
using the monotonicity propertles of all sequences. This proves, using Cesaro’s rule again
that E,(|Z, — A4]) = 0.

Thus Z,, — 0ps(z,y) [ K*(u,v)dudv, in L*(p). Using the bounded convergence theorem,
we deduce that

£(0) B o5 pon) [ K3t

9
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so that we get that
0
Spa(z,y) % o N (o, 5 psl) / K2(s, t)dsdt) m) .
n—-+00
Third step: showing that S, 1(x,y)) — E,(S,1(x,y)) = 0

Let us denote by B¥ the k" coordinate of the vector B; . Defining
1 r—X y—-Y_ 1

*(i X,Y) = K
(27 x? y7 ) ) blliﬂbg’z ( bl’z ’ bQ}z‘ >h2 ml ?
we have
1 n
Sna =\ hab{ b, — D> T2y, X5, V7).
i=1
so that
m\/&fﬂ(sﬁ,ﬂ

= (Z Var, (T¥(i, 2,5, X, Y;)) + Y _ Cov,(T%(i, 2,9, X, Y3), T* (1, 2, y, X, m))) .
= i#l
To bound the above expression we first bound as we did for the first step

B, ((T*(i, 2,y, X;,Y;))?) <

C
41.2d 1,2d
h; bl,ib2,z’

K’ (:r b_1X0 y b—2Yo) (/Ohi(hi — 5) (Pb(Xo, Yo) — b(Xo, Yo)) ds) 2]

T—u y—uv )
< P _
= b2db2d // ( by b )( sb(u, v) — b(u,v))” dsdp

- - P,b(u, v) — b(u,v)\>
< K2 T uy v ) 9 d d
- b2d52d / / ( bii ' boy S pras

We may argue as in the first step, this time using Hélder inequality for some conjugate
pair (p, q) to conclude that

IN

E,

Eu((rk(ia%annYi))Z) < Ch? (bl,z‘bQ,i)(d/p)_Qd- (3.17)
It follows
e ;Varu (i, oy X0, YD) < 0 ——=r2n ; b (b b5,)7

the latter going to 0 thanks to (6).

Let us now compute the covariances.
One has thanks to stationarity and mixing inequality (2.2) (remark that b ;b4 . T%(i,.) is
bounded)
bd bd
ZCOV“ (i,2,y, X:, ), T*(l, 2, 4, X1, V7)) <
1#£l
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N pi=il?
< (¢ Ln’2nln il -~
N " 2 2 min b b 015

i=1 j=1

n—1 p]/2
j=1

kn /2
P
< Ch, </<; b;lnbgn,b N )

which goes to 0 for an appropriate choice of kn. O

IN

Putting together the previous two theorems, we may deduce exactly as in Cattiaux et
al. (2014-b) proof of theorem 4.1 the following

Corollary 3.18. Assume that all the assumptions of Theorem 3.5 and Theorem 3.12 are
satisfied. Then, defining b,,, = H,,,/Drn we have in the stationary regime

[nd pd 7 _ D 2
nbl,an,nhn (br,n(xay) b(l',y)) m O'N( —3])3 x y /K S, t det) [d)

Remark 3.19. In the setting of Remark 3.13 the quasi optimal rate is still n'/?. &

4. ESTIMATION OF THE INVARIANT DENSITY AND OF THE DRIFT TERM IN THE
STATIONARY REGIME: PARTIAL OBSERVATION CASE.

We turn to the study of the estimators p,.,, and b,,, defined in (1.3) and (1.4).

4.1. Estimation of the invariant density.

If we can only observe the position process, we have to consider instead of Y; its natural
approximation —5i—.
7

Recall our estimator

_ X, _ Xign,=Xi
Z Yy >

)

Theorem 4.1. Assume that Hy (or 7—[2) and Hy are fulfilled. Assume in addition that
conditions (1a) up to (6a) are satisfied, where (1a) up to (4a) are given in Theorem 3 and

(5&) hmnHJroo \/ nb(li,nbg,n (% Z;’l 1 ;«5—;) = O
(6a)  for some p > 1, limy,_, o0 4/nbf 05, (% S M—_Wp)) —-0.

Then in the stationary regime

B ) = pale)) 2 N (0. S pute) [ K
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Proof. We want to evaluate the expectation of the difference :

\ 10108, (Bs(, y) — Bs(, ) (4.2)
/0,08, oy oy Nini X v v
_ 1,n02, Z 1 (K (x X; v T >—K($ X vy YZ>)’

d pd o )
\/ﬁ i—1 bl,ibQ,i bl,z b2,z

Vbl Iy 1
= S A;.
Vi 2_; b1 b
We will closely follow Step 2 in the proof of Theorem 3.3 of Cattiaux et al. (2014-a).
Introduce M, = % fzu (Ys — Y;)ds, defined for i < u <i+ h;.
Then we may write
—1 [tk r—X; y—Y; = M

A = V,K , : ) (Y, = Y)du.

hibs, / ’ ( b b ) e =Y

Arguing as in the referred proof we can show that for all conjugate pair (p,q) with 1 <
p < 400,

B (IAD) < o (n20, + 1 02)
hiba ; ’ ’
Hence
— VO,
]E b b Arn ) _~rn ) S 7 7 E’ AZ
(Vo st = patrl) < Y S B

=1

o Ol o U 4R

d jd+1
\/ﬁ i=1 bl,ib2,i hi

It follows that y/nb{ b9 | (Prn(z,y) — Pra(z,y)) goes to 0 in L' as soon as (5a) and (6a)

are satisfied. The proof follows from Slutsky’s lemma and Theorem 3. OJ

Remark 4.3. Assume that b;,, = n=% and h,, = n=". For (1la) up to (4a) to be satisfied,
we have seen in Remark 3.6 that the condition

d(ag 4+ ag) < 1 < d(ag + az) +2(m + 1) min(ay, as) (4.4)

is sufficient and in Remark 3.7 that we can choose m as large as we want, so that the
previous amounts to d(()q + ag) < 1.

Since we can choose p as close to 1 as we want, we easily see that (6a) is automatically
satisfied as soon as (5a) is satisfied. The latter implies

1+Oég(d—|—2) < 54—6{011. (45)

It follows that, if we are only interested in estimating the invariant density, we may take
[ large enough for the latter to be satisfied. But of course we are interested in the
simultaneous estimation of both the invariant density and the drift term, so that (4.5)
will become some restrictive condition, we shall study in more details at the end of the
next subsection. &
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4.2. Estimation of the drift.

Introduce
X1+h —-X;

i - X; ¥— :
rn .CC ?J ; bd bd < bl,i ) b2,z’ ) AQ(Xi+2hi7hi) : (46)
We shall first prove the analogue of Theorem 3.12.

Theorem 4.7. Assume that Hy (or Hs) and Hx are fulfilled. Assume in addition that
conditions (1b) up to (8b) are satisfied, where (1b) up to (6b) are given in Theorem 3.12
and

: d 1d 1\ Vhi —
(7b)  for some e > 1, lim,, 4o 1/nhnbS 05, (; Yo bd“bdf/(”f)) =0,
2. 01,4

(8b)  for some e >0 and somer > 1+¢,

o [1S h;
: d 1d E ?
nEIJPoo nh b b ( bd+1b T— 1)/T> 0.

=1

Then in the stationary regime

. 0
Vb, (Hen(@,9) = po(@,)b(e,y) ) —2—> o (o, 3 o) / K(s, t)dsdt) fd) .

Proof. Starting from Theorem 3.12; as in the previous subsection, it remains to consider
D,, defined by
n

1 1
D, = \/m (E;b‘fzbglA Ao z+2hwhz‘)) )
X;
r— X, y—Y _X, y— L
Ai = K ) - K ) . ’
< < bl,z’ b2,i ) < bl’i b2’i ))

as in the previous subsection.
As before we decompose Ag(Xjiop,, hi) = % (I; + M;), I; being the bounded variation

where

part and 91, the martingale part. More precisely we define

i+3h; i+2h;
M, = o ( / (W, — Wisan )ds + / (Wian —Ws>ds> ,

i+2h; i+

h;
i+3h; i+2h; i+2h;
I; —/ / 9(X,, Y, dsdt+/ / 9(Xs, Ys)dsdt .
+2h; t

We want now to control

1 < 1 1
For the first term, we use Holder inequality for some € > 0,

e\ 1/(1+¢) o) /e e/ (1+¢)
E.(|4; I|) < E, (JAi') E, (|;]0+9)/) :

el ol e
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Similarly to what we have done in the previous proof we may show on one hand that

. C(e)
E,.(|4;|") < hzb—éf"'

On the other hand, according to the proof in Cattiaux et al. (2014-b) (see formula (7.7)
therein), one has

(200 + n2Er). (4.8)

)

EM (‘Ii|(1+5)/5) < C(a,u, U) h?(l—i-g) '
Finally,

142¢
1+4¢
. + 1

Eu(|ALD) < Oleuv) — (W9 b, + nepil) me
2.
h§/2bd/'(1+5) hsbd/p(lJrs)
S C(E—:,U,U) 7 1,4 + 171, ‘
ba,i bai

Hence y/nhybf b4, M, — 0 according to (7b) and (8b).

It remains now to bound N,,.
To this end we compute the expectation of the square. But the terms A; 9; are centered
and uncorrelated. It follows (similarly to Cattiaux et al. (2014-b)) that

C & 1
N2 < = E — WE,(| A
n — n2 p h,?b%fib%fil 1 ;Uf(| ‘ )

c - 1 3 1 21d 31d/p
n2 ; hib24p2e h; hi 12, (hiby; + hibyy)

where we have used (4.8) with ¢ = 1, and finally

Clw 1 - Vhi

i=1 Y1, i=1 i

Again |/nh,b{, b3, N, — 0 according to (7b) and (8b). O

Remark 4.9. If lim,, , o, /nh,b¢ b3 (l > %) = 0 for some positive x;’s, then
’ ) n v 21015

the same holds for all n;’s with 79 > ko, 71 < k1 and 7o < ky. Hence it is easy to see that

(7b) and (8b) amounts to

(7-8-b’)  there exists 7 > 1 such that

: / d pd 1o~ Vi _
Now assume as usual that b;,, = n~* and h,, = n™? for some positive a; and f3.
(7-8-b’) is satisfied as soon as
1+ (d+2)as < 285.
In particular, for all the conditions in Theorem 4.7 and Theorem 4.1 to be satisfied it
is sufficient that both conditions (3.14) and 1 4 (d + 2)as < f + B A day are fulfilled.
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Unfortunately, as for our estimators in Cattiaux et al. (2014-b), both conditions are
incompatible.

If we do not want to multiply the observations, we have to choose the same discretization
step h,, in both Hm and p,,. But as we did in Cattiaux et al. (2014-b) Theorem 4.1 and
proposition 4.4, we may choose different bandwidths for both estimators, denoted by H?
and b for respectively the density estimator and the drift estimator.

The required conditions are then, on one hand

dlof +ab) <1 and 1+ab(d+2)<p+BAdd}, (4.10)
and, on the other hand
BHdlaf +aly <1 <38+daf +ad) and 1+al(d+2)<28+dal’. (4.11)

We also want 8 + d(a + ofl) to be as small as possible. But it is easily seen that
this quantity has to be larger than 1/2. We will describe a typical situation in the next
Corollary. &

According to the previous discussion we have

Corollary 4.12. Assume that Hy (or Hs) and Hy are fulfilled.

Assume in addition that bl = n=" (resp. i, = n= ) and h, =n=? for some positive
a;’s and . Denote by ﬁm (resp. prn) the estimators built with the bandwidths bfn (resp.
bfn) and the discretization step h,. Finally assume that all the parameters satisfy (4.10)
and (4.11) and that

m min(af? o o ab) > 1.

Then, defining lA)m = Am/ﬁm we have in the stationary regime

~ D )
nbcll,nbg,nhn (br,n(x7y) - b([[‘, y)) — UN (07 M(/ K2(87 t)det) Id) )

n—-+0o00

where 0 = 1/(1 + B+ d(ad? + all)).

Remark 4.13. In the previous Corollary we may choose any § > 1/2, then daf > 1/2,
then dmax(all, ol! | of) sufficiently small and finally m large enough for all the assump-
tions of the previous Corollary to be satisfied. It yields a quasi optimal rate of order
1/4
ne.
Notice that if we want to estimate simultaneously p, and b, we may use two estimators of
s, say pr,, and P both with h, = n~" for some 3 > 1/2, the first one with bandwidths

r,n’

o, the second one with ol and look at (pf,, (H,,,/p%,,)) simultaneously. %

5. ADDITIONAL RESULTS AND COMMENTS ON THE PREVIOUS SECTIONS.

5.1. Non stationary case. This subsection will be very short and can be reduced to
the following sentence :

“All the results of the two previous sections are still true if the initial distribution is
either a Dirac mass or is absolutely continuous with respect to pu.”

Indeed the situation here is very simple: if we replace Y 1", by 77", with (I,/n) — 0,
we obtain exactly the same results as the first [, terms go to 0 starting from any initial
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distribution. Next we have to compare the law of Z; to p. But thanks to geometric
ergodicity (or exponential mixing see Proposition 2.1), it is known that the total variation
distance between both is less than Cp'» provided the initial distribution satisfies the
conditions we have mentioned (see e.g. Bakry et al. (2008)). The conclusion is then
straightforward using Markov property and [,, = clog(n).

5.2. Comparison with existing results.  The rate of convergence for the recursive
estimators are much better than the ones we obtain in Cattiaux et al. (2014-a) and
Cattiaux et al. (2014-b) (see e.g Proposition 4.4 in Cattiaux et al. (2014-b)). For the
density the main reason is that we do not need the small time bounds for the transition
kernel as in Cattiaux et al. (2014-a) (see Konakov et al. (2010), Cattiaux (1990), Cattiaux
(1986)), for the unnormalized drift estimator H,., the gain is not as important.
In comparison with the existing literature on recursive estimation for the density (see
e.g. Amiri (2010) for a review), the results in Section 3 are similar. Of course in many
quoted references the authors also studied almost sure results in the spirit of the log-log
law. Again see Amiri (2010) for a review.
The assumption made in all these references is that the transition kernel ps(.,.) satisfies
sup || pS,t(-a D) = Ds @ s [leo< +00.

|t—s|>1
In our situation, we do not know about such uniform bound, though it is presumably
true.

6. ESTIMATION OF THE VARIANCE.

We turn to the estimation of o. To this end we merely follow Section 4 in Cattiaux et
al. (2014-c), though here we only consider the o constant case, which introduces various
simplifications.

Recall that

) 3w 1
Orn =5 - ; h_z Ao (Xign hi) >< Do(Xign,, hi) -
Theorem 6.1. Assume that Hy (or Ha) and Hx are fulfilled. Also assume that o is

symmetric (i.e. we take the symmetric square root of o*c ). Assume in addition that, as
n — +oo,

1 n
— h; — 0. 6.2
NG ; (6.2)
Then, in the stationary regime or in the situation of subsection 5.1
\/ﬁ(é‘nn — 0'2) L—i-) UNd’dO,
n—-—+0o0

where Nd7d 18 a symmetric gaussian random matriz whose entries Nﬂ are N(O, 1+ 51@,1),
all entries for k > 1 being independent.

Remark 6.3. Condition (6.2) is satisfied when h,, = n=" with 3 > 1/2. &
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Proof. In the sequel the indices (k,[) denote respectively the index of the row and of the
column of a matrix.

Using Ito’s formula we have

R (Aa(Xp, h) >< Ao(Xs, h))k,l =
t+h

- /t_h (h = |u—t]) (Hy (0dW,,)" + Hy, (0dW,)") + (6.4)

I /Hh(h —|u—t]) (H*b'(Z,) + HLb*(2,))du

t+h
+/ (h—|u—t\)20,ildu,
t—h

with
H, = (h—|s —t]) (cdWs + b(Zy)ds) .
t—h
As explained in Cattiaux et al. (2014-c) formula (4.5) applied in our situation, it holds
for all j € N and s between t — h and t + h,

E.(|Hy|*) < C(j) (s — (t = h))? h*. (6.5)
Now we can write
a'r,n - 02 =
3 n 1 1 i+2h; ‘ 5 o
= 3, ZF Ao(Xign;, hi) >< Ao (Xign,, i) — 7 / (hi — |s — (i + hy)|)?0°ds
i=1 i Ji
3 NS84 SV 4+ VY
2n —
where
k.l 1 i+2hi . “ . k l l k
SSt = 7 (hi —lu—i—="ng|) | (hi—]|s—1i—h|)((cdWs)" (cdW,)" 4+ (6dWy)' (adW,)")
k.l 1 i+2h; . v . k 1.l 1k
SVt = 3 (hi —[u—i—hg|) [ (hi—]|s—i—h|)((cdW,)*(Z,)du + (cdW,)'b*(Z,)du)
' 1 ' i+2h; ' m
+ﬁ (h; — |u —1i— hy]) / (hy —|s—i— hi])((aqu)k bl(ZS)ds + (Oqu)lbk(Zs)dS)
k.l ]. i+2h; . “ . k [ l k
VvHs = 73 (hi —Ju—i—"h;|) | (hi—|s—1i—h|)(b"(Zs)ds b (Z,)du+ b (Zs)ds b"(Z,)du) .

It is immediate that the random matrices (M; = %0*1531»0*1)@- are independent, with

centered entries such that VarM(Mik’l) = 1+ d;;. Hence according to the usual Central
Limit Theorem,

1 — D
— E M, ——— o Ny 40.
\/ﬁ — n—+0o ’
1=



22 P. CATTIAUX, J. LEON, AND C. PRIEUR

It remains to prove that the remaining terms go to 0 in L.
First, it is not hard to see that
E,(VVM]) < Ch
so that \/iﬁ S EL([VVH]) = 0 according to (6.2).
Next, to control SV; we are led to control two types of terms: either martingale terms

NE = [ = - i = D ) ()
or bounded variation terms
1 i+2h;
B = [ = i = ) ) V(2

The martingale terms are centered and to prove the convergence of their normalized sum
to 0 in L'(u), it is enough to prove the convergence to 0 of the variance. But for i # j
the covariance Cov, (N, N f’l) = 0 so that the variance

1 n " C n 1 i+2h; ) 9 ! 9 C i
Vare (o= 2 N <D e [0 (s lem i BlPEN(B{@)?) du< T by
i=1 i=1 =t

goes to 0 provided h,, goes to 0, hence we get convergence to 0 in L*. Here we have used

[/ pit2h; 2 i+2h;
E, (/ 9(u)du> <CHnE, (/ 92(u)du> :

For the bounded variation term we use the same trick as in Cattiaux et al. (2014-c) writing
Vi(Z,) = (V¥ (Z,) — b5 (Z;)) + b*(Z;). The terms

i [ G lum i = mal) ¥ (Z)da,
are thus centered and satisfy Covﬂ(ij’ll, Bjkll) =0 for i # j. As before it follows

1 n C n 1 i+2h; .
Var, (% ZB&%) <SS [ i i RGP Z))) du.
i=1 i=1 ¢V

But

kl
Bi,l =

B = By (@207 [ (1= i = hPelois) < O,
so that again Var, (\/Lﬁ Z?:l Bff) < % Z?:l h; goes to 0, and we get convergence to 0
in L'.
It remains to look at \/Lﬁ E, (Z?Zl |Bf2l]> where

i+2h;
o [ = )20 (04(20) — $(Z))du.

But, according to what we have done before
B, (vi(u) (04(Z,) = V(Z))) < Bu((vH(w))*)Y? (B ((BF(Z.) = V*(Z0))*)* < OB 0™

kl
Bi,2 =
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It follows that
—E B ) < — S,

which goes to 0 thanks to (6.2). O
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