N
N

N

HAL

open science

Track Initiation of Low-Earth-Orbit Objects using
Statistical Modeling of Sparse Observations

Thibaut Castaings, Benjamin Pannetier, Florent Muller, Michele Rombaut

» To cite this version:

Thibaut Castaings, Benjamin Pannetier, Florent Muller, Michéle Rombaut.
Low-Earth-Orbit Objects using Statistical Modeling of Sparse Observations. IEEE Transactions on

Aerospace and Electronic Systems, 2014, 51 (1), pp.258-269. 10.1109/TAES.2014.130484 .

01070959

HAL Id: hal-01070959
https://hal.science/hal-01070959
Submitted on 2 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Track Initiation of


https://hal.science/hal-01070959
https://hal.archives-ouvertes.fr

Track Initiation of Low-Earth-Orbit Objects
using Statistical Modeling of Sparse
Observations

Thibaut Castaings'?, Benjamin Pannetier', Florent Muller', and Michéle Rombaut?

IONERA, Chemin de la Huniére, 91123 Palaiseau, France
2GIPSA-lab, 11 rue des Mathématiques, 38402 Saint Martin d’Heres, France

castaings.t@gmail.com, {benjamin.pannetier, florent.muller } @onera.fr,
michele.rombaut @ gipsa-lab.grenoble-inp.fr

Abstract—In this paper, we investigate a new track initi-
ation technique enabling the use of a low-cost radar system
for Low-Earth-Orbit surveillance. This technique is based
on a first association of observations with little ambiguity
followed by a fast Initial Orbit Determination. This study
supports the feasibility of the system as this technique shows
a coverage of 84,4% within 6 days, with a combinatorial
complexity kept under control when assessed in a realistic
multitarget tracking context.

Index Terms—Multiple hypothesis tracking, track initia-
tion, Low-Earth-Orbit, space debris, narrow fence, short
arcs, orbit determination, hypothesis testing.

I. INTRODUCTION

Following recent events, tracking the small space debris
for collision avoidance has become a topic of great interest
[11, [2], [3], [4]. The risk of collision in Mid-Earth-
Orbit (MEO) and Geosynchronous-Earth-Orbit (GEO) is
of lesser concern to operators, as compared to the risk of
collision in Low-Earth-Orbit (LEO) which is much higher
due to a high debris density at this range of altitudes.
Consequently, this study focuses only on LEO objects
(those having a geodetic altitude between 160Km and
2000Km, i.e. the revolution period ranges between 88
minutes and 127 minutes). For the LEO objects, radar-
based sensors [5], [6] are more adapted than optical sensors
for illumination reasons. Those sensors use a large Field
Of Regard (FOR), making the estimation of an orbit at each
pass of an object in the FOR possible. The association
of several passes can be decided from the correlation of
their orbits in order to keep the combinatorial complexity
under control during the tracking. Such systems being
part of the United States Space Surveillance Network, the

United States Space Command (USSPACECOM) is able
to provide the Space-Track Two-Lines Element (TLEs)
catalog [7] containing the orbits of more than 15,000
objects with a diameter greater than 10cm, including the
maneuvering satellites. However, the estimated number
of smaller lethal objects is even greater [8], [9] and has
become a significant threat for space systems.

In order to track ever smaller and more numerous
objects, current sensors and methods are pushed to their
limits. The best trade-off criterion to detect smaller objects
with a survey radar is to increase the frequency of the
emitted radio-wave and to reduce the FOR. On the one
hand, a higher frequency leads to a higher radar cross-
section for objects of smaller size, because a resonance
occurs when the wavelength is about the size of the
scatterer (Mie scattering) [10], [11]. On the other hand,
the wavelength appears in the denominator of the Signal-
to-Noise Ratio (SNR), making it decrease as the frequency
increases. To counteract this unfavorable effect, a reduced
FOR, for instance a FOR of a wide cross-elevation and
narrow elevation (narrow detection fence), is a possible
option. As a result, a proper increase in frequency and a
proper reduction of the FOR yield an increased SNR for
smaller objects.

Although this option is less costly, it involves less obser-
vations (for instance one or two observations per pass), i.e.
Short Arcs (SAs), from which an orbit cannot be estimated
using the existing techniques, making even harder the
problem of associating the observations originated from
the numerous LEO objects and filtering the generally high
number of False Alarms (FAs). Currently, no reliable data
processing approach has been proposed to address this



problem. This study aims at developing a method enabling
to process SAs in order to support the feasibility, from a
data processing perspective, of a system using a reduced
FOR for cataloging the small LEO objects.

In this paper, we propose and investigate a new track
initiation technique enabling first the association of SAs at
one revolution of interval with little ambiguity and then a
fast Initial Orbit Determination (IOD). This technique fol-
lows from two preliminary studies that we have presented
in the conference papers [12] and [13]. The association
of observations at one revolution of interval relies on
the characterization of correct pairs of SAs in a well-
chosen feature space, and the principle of the proposed
IOD lies in a temporary circular orbit approximation. The
combinatorial complexity being the main difficulty en-
countered, a Track-Oriented Multiple Hypothesis Tracker
(TOMHT) [14], [15], [16], [17], [18] has been adapted and
implemented to assess the efficiency of the proposed track
initiation technique in a realistic simulation.

Figure (1) shows examples of simulated observations (in
a local spherical frame of reference East-North-Up (ENU))
obtained over a period of about 9 hours with: a radar of
large Field Of Regard (160°x20°) (top); a radar of narrow
FOR (160°x2°) (bottom).
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Figure 1. Example of simulated observations of the satellite “THOR

ABLESTAR DEB” from the Space-Track TLE catalog that would be
accumulated over a period of about 9 hours in a topocentric spherical
frame of reference ENU using: a radar of large Field Of Regard
(160°x20°) (top); a radar of narrow FOR (160°x2°) (bottom). In both
cases the sensor is located at 45° latitude with a Line Of Sight (LOS)
of 20° of elevation. No False Alarm (FA) has been added nor any
observation noise. Range is not represented.

In the large-FOR case, observations can be associated
into arcs using well-known data association techniques
such as, e.g. a Global Nearest Neighbor approach [14],
[19]. Then, an Initial Orbit (IO) is estimated with

a sufficient precision for each arc using Initial Orbit
Determination (IOD) techniques such as Gibbs method,
Herrick-Gibbs method, Lambert’s or even Battin’s method
depending on the available data [20], [21]. The orbits
are then propagated to relevant times in order to assess a
possible correlation [22], [23]. When a sufficient number
of observations are associated, a least-square minimization
is performed in order to get a Definitive Orbit (DO), i.e.
an orbit of high accuracy [22], [24].

In the narrow-FOR case, the information contained in
each arc is highly degraded: only one or two observations
with a high redundancy — i.e. a Short Arc (SA) — are
available for each pass of an object.

An orbit cannot be estimated from SAs using existing
techniques because they require a minimal number of
observations with a small amount of redundancy (i.e. the
observations should be spread over an arc of sufficient
length with regard to the measurement noise in order to
meet requirements of coplanarity). In a realistic scenario,
the SAs must therefore be associated at one or several
revolutions of interval before an IO calculation is attempted
whereas the high number of objects and FAs implies a
tremendous number of associative hypotheses for each new
detection (one revolution takes 88 to 127 minutes).
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Figure 2. Example of simulated observations of the objects contained in
the Space-Track catalog obtained with a radar of narrow FOR (160°x2°)
located at 45° latitude with a Line Of Sight (LOS) of 20° of elevation,
in a topocentric spherical frame of reference ENU. The circles represent
observations of one particular object. No False Alarm (FA) has been
added. Range is not represented.



Figure 2 shows a couple of scans resulting from sim-
ulated detections of the Space-Track TLE catalog objects
that would be obtained with a radar of narrow Field Of
Regard (160°x2°). The observations of an object generally
occur in one or several revolutions of interval and should
be associated within a prohibitive number of possibilities.
The approach proposed and investigated in this paper
addresses this problem.

This paper is organized as follows: we first briefly state
the hypotheses related to the sensor and the dynamic model
in Section II. The principle of the new tracking block is
then presented in Section III. Techniques to associate the
observations from scan to scan as well as the observations
from revolution to revolution are explained first. Then,
the calculus of a circular orbit enabling the use of more
regular techniques for the following observation-to-track
associations (and thus completing the track initiation) is
described. Choices in the implementation of the TOMHT
are discussed in Section IV and its performance is assessed
and discussed in Section V. Finally, a conclusion is drawn
in Section VL.

II. SPACE OBJECT TRACKING

Tracking an object consists in estimating its position in
time from known (observed) past positions. This requires
the use of a sensor and a dynamic model. In this section,
the sensor characteristics are presented. The dynamic
model (namely the Simplified General Perturbation model,
or SGP) used in this study is also briefly presented
although the details of its equations are not recalled for
the sake of simplicity (for that, the reader should refer
to the reference papers [7], [24]). Finally, the principle
of the well-known Gauss-Newton Least-Square algorithm
used in this study for the Definitive Orbit (DO) estimation
is briefly recalled.

A. Sensor Characteristics

Under certain technological conditions, some basic elec-
tromagnetic considerations [25] lead to the conclusion
that the best trade-off criterion to detect smaller objects
is to increase the frequency of the emitted radio-wave
[10], which requires a reduced Field Of Regard (FOR)
to moderate a possible cost increase of the sensor. Typical
specifications for the design of actual space surveillance
systems are adopted in the simulations:

o The sensor is located at latitude 45° with a FOR

oriented toward the equator with arbitrarily-chosen
20° Line-Of-Sight (LOS) elevation. The FOR has a
wide cross-elevation (160°) and a narrow elevation

(2%,

o The sensor produces one scan of the whole FOR every
10s (Track-While-Scan mode),

o The sensor provides range p, azimuth 6 and eleva-
tion ¢ measurements (pulsed mono-static) for each
detection, with a precision of 0, = 30m in range,
og = 0.2° in cross-elevation and o, = 0.2° in
elevation,

o The false alarm rate is 1 FA/s.
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Figure 3.  Shape of the Field Of Regard (FOR) in an East-North-Up
frame of reference. The FOR is represented in red.
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Figure 4.  Orientation of the Field Of Regard (FOR) in a geocentric
frame of reference.

Figure 3 and 4 represent the FOR shape and orientation.

The sensor located at position S provides 3D posi-
tion measurements {p,6,$} in a topocentric, spherical
frame of reference East-North-Up (ENU). Those mea-
surements can be expressed as well in an Earth-Centered
Inertial (ECI) frame of reference {O, u5<!, uf!, uf} or
in an Earth-Centered Fixed (ECF) frame of reference
{0, uEEF ufF uECF) (an ECF follows the rotation of the
Earth in an ECI).

The sensor as defined here provides observations of
range, azimuth and elevation grouped into scans so that:

zj(k) = {p;(k),0;(k), d;(k)} (D

is the j-th observation of the k-th scan degraded with a

Gaussian noise of covariance R = diag(o?, 05, 07),



Z(k) = {z;(F)}jeq. ..mu) 2)

is the set of my observations constituting the k-th scan.

B. The Simplified General Perturbation model

Predicting the position of an object taken from the
Space-Track TLE catalog requires the use of a Simple
General Perturbation (SGP) model. This model has been
developed and described in [7] and predicts the effect
of perturbations caused by the Earth’s five first spherical
harmonics and the atmospheric drag [7], [24], [26]. The
chosen orbital state components are given in Table I.

Table I
DEFINITIONS OF THE CHOSEN ORBITAL STATE COMPONENTS.

t : Element Set Epoch,

n  : Mean Motion (revolutions/day), related to
Semi-major axis a by Kepler’s third law

: Eccentricity

: Orbit Inclination (degrees)

: Right Ascension of Ascending Node (degrees)
: Argument of Perigee (degrees)

: Mean Anomaly (degrees)

: Drag Term
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Figure 5. Example of an orbit represented by an ellipse in an ECI frame
of reference.

For each object, the state vector X, (all the components
vary with time) is associated to an orbit and defined as
[n, e, i, Q, w, M, Bx|T or [n, e, i, , w, M|T depending on
the availability of B (the drag term Bx has an influence
on a long time span and might be unavailable for short
tracks), and Pxx its covariance matrix.

The published versions [7], [24] of the SGP propagation
model provide a function fsgp defined so that:

fSGP(Xtmt) = (r’V)XtU;t 3)

where X, is the orbital state at time to and (r,Vv)x,
is the couple position-velocity associated to X;, at time ¢
in an ECF frame of reference. The function fsgp enables
therefore the propagation of X,, to time ¢ and deduces
position r and velocity v from a propagated orbit X,.

Then, an observation zx, . can be predicted by select-
ing the position r and expressing it in an ENU frame of
reference through some mapping function h.

C. Definitive orbit estimation

A state vector X, and its covariance matrix Pxx ; are
estimated from a set of m observations {z, };—1,...m» and
the SGP model in the case of space object tracking, using
for example a least square minimization criterion which
can be written as:

m
X; = argmin Z(ZX,ti — zti)TR_l(ZX)ti —z,) (4

X =1
where Zx ., and z refer to, respectively, the i-th pre-
dicted observation and the i-th observation. In this study,
the Gauss-Newton Least-Square (GNLS) algorithm [27]
is used to compute Definitive Orbits (DO). Estimating
a definitive orbit requires associated observations and a
good initial guess (i.e. close enough to the solution)
[22]. The use of a least-square criterion to estimate a
DO assumes observability, i.e. the solution is unique. In
the case of non-observability, i.e. in a case where the
number of non-redundant observations is too low with
respect to the measurement noise and the complexity of the
underlying model, the algorithm can diverge or converge

to an incorrect value.

III. TRACK INITIATION

This study is focused on the track initiation (i.e. the
association process that enables a DO estimation) of a
satellite in LEO in a sparse data context such as using
a narrow fence-type radar. An object produces one or
two observations at each pass in a narrow FOR with a
large amount of redundancy, disabling the estimation of
an orbit at each pass. To this day, to the best of our
knowledge, no approach has been proposed to address
this issue. In this paper, we therefore propose new
techniques to first associate observations at one revolution
of interval and then to compute an Initial Orbit (IO) at a
low computational cost. In this section, the principles of
these methods are described.



A. Association of observations in successive scans

Associating observations in successive scans into SAs
(arcs of one or two observations per pass) makes it possible
to reduce the number of redundant tracks and can be done
using elementary techniques. The assumption is that two
observations z;(k) and z;(k+1) are close in an ECI frame
of reference. SAs are formed by comparing some distances
d, and d,, between the observations z;(k) and z;(k + 1)
in successive scans to some thresholds ~, and ~, ). These
distances are defined in an ECI frame of reference: d, is
their difference of radius and d,., is the length of the arc
of longitude between them at altitude of z; (see Figure
6). To associate two observations z;(k) and z;(k + 1),
the distances must be less than the thresholds v, and ;.
which are chosen so that more than 95% of a test sample
consisting in simulated pairs of observations originated
from the same object in successive scans fall below them,
this threshold value resulting from a trade-off between
recall and accuracy.

Figure 6. Example of d, and d, in an ECI frame of reference. A is
the difference of the longitudes of the observations in an ECI frame of
reference.

B. Association of observations at one revolution of interval

Associating at least two Short Arcs (SAs) into a track is
necessary because only one SA is not sufficient to estimate
an orbit. To this purpose, this method relies on the high
identifiability of pairs of observations that originated from
the same object at one revolution of interval: generally
speaking, a non-maneuvering satellite takes ‘“neighboring”
positions from one revolution to the other in an ECI
frame of reference. Simulation results show that more
than 99% of the LEO objects of the Space-Track TLE
catalog appear in the FOR at one revolution of interval
at least once over a 30-days time span in the sensor set-
up described in Section II. In [12], we show that the
association of observations originated from the same object

at one revolution of interval can be achieved with a low
ambiguity by extracting features from every pair of SAs
and comparing them to a predefined pattern.

1) Feature extraction: A neighborhood of two obser-
vations at one revolution of interval in an ECI frame
of reference can be defined as the Euclidean distance
between them. However in the case of the LEO objects
and a narrow fence-type radar, the Euclidean distance is
pessimistic because its symmetry neglects the information
lying in the shape of the FOR or in the specificities of
the LEO population. As a consequence, we propose to
extract the following feature vector x; ; € R® from a pair
of observations z; and z; at one revolution of interval:

T(Zi7 Zj)
dr (Zi, Z j)
drx(2i,25) 4)
dy(zi,2;)
r(2i)
where the following notations are used. In an ECI frame
of reference:
7(2zi,2z;) is the time difference between z; and z;,
d.(z;,2;) is their difference of radius 7,
dra(z;,2;) is the length of the arc of longitude between
z; and z; at the altitude r(z;) of z,,
dg(zi,z;) is the difference of azimuth of detection 6.
The feature 7 depends on r(z;) according to Kepler’s
third law, assuming a circular orbit. As for d, and d,,,
they are correlated with dy. The use of 7, d,., d,.) and r
as features showed good results in simulation [12]. In this
study, the use of dy enables a better precision through its
influence on d, and d,).
When the correlation between two SAs containing sev-
eral observations has to be tested, mean values are used.

Xij =

2) Pattern identification: We aim at discriminating the
pairs of observations originated from the same object
(hypothesis H7) at one revolution of interval from the
pairs of observations originated from different objects
or FAs (hypothesis Hy). To this purpose, we simulate
the detections of the LEO objects of the Space-Track
TLE catalog in the sensor set-up defined in the prequel,
associate the observations using ground-truth data from
the catalog and extract a set of feature vectors {xp,}
from the observations at one revolution of interval. Then,
a boundary encompassing most of the feature vectors
xp, 1S defined to enable the testing of candidate pairs
of observations in an online procedure: we estimate the
(1 — v)-quantile Q(1 — v) defined as the minimal volume
C on R® that encompasses at least a fraction 1 — v of
the underlying probability distribution of the set {x, },



measured by p, as shown in Eq. (6) where B(R®) is a
class of measurable subsets of R® and 4 is a Lebesgue
measure on this set.

Ql-v)= w(C) (6)

arg min
CeB(R3),p(C)>1—v

We solved Eq. (6) by a One-Class Support Vector
Machine (One-Class SVM) [28]. This extension of the
better-known bi-class SVM [29][30][31] requires one set
of “labeled data” {x g, } (i.e. a set of features correspond-
ing to the class of vectors to be recognized) as input during
training while being able to deal with unlabeled data {x} in
the online procedure. More details are given in Appendix.

3) Hypothesis test: The number of valid pairs can be
further reduced using a likelihood ratio L; ;, testing the
hypothesis H; “All the observations of the track originated
from the same object” against the hypothesis Hy “All the
observations of the track originated from different objects
or FAs” :

p(xi,5Hh)

p(xi,;|Ho)

where p(x; ;|H1) can be read directly from an estimation
of the distribution inside the boundary (in this study, the
Parzen-Rosenblatt windows [32] are used) and p(x;_ ;| Ho)
is defined according to [33] as the density of extraneous
observations:

L; ; =log @)

.3

N
1(C)

where N is the number of observations z; forming a valid
pair with z; and p(C) the volume of C' resulting from
solving Eq. (6). The likelihood ratio L; ; is compared to
a threshold defined according to the standard Sequential
Probability Ratio Test (SPRT) [34] in order to eliminate
further candidate pairs of observations.

p(xi ;| Ho) ®)

4) Preliminary results: In this study, the pattern pre-
sented herein before has been computed using the obser-
vations resulting from the simulation of the LEO objects of
the Space-Track TLE catalog and the sensor set-up defined
in Section II, over a 30-days timespan. A One-Class SVM
has been used on the extracted pairs of observations with
v = 0.05. The output pattern enables the correlation of
7.45 pairs of SAs for each new SA on the mean, the cases
where no valid pair could be found being excluded. The
associated recall rate is 90.89% over a set of more than
26,000 SAs.

C. Orbit determination from a pair of observations at one
revolution of interval

To initiate the tracking, a state X (the orbital param-
eters) should be computed for each pair of correlated
observations at one revolution of interval resulting from
the association technique presented in the prequel. Initial
Orbit Determination (IOD) has been widely studied and
many approaches and extensions have been developed [20].
When two observations are available, Lambert’s problem
can be solved even for multiple revolutions [21]. However,
this processing is computationally intense especially when
the observation noise is taken into account. This is critical
in our application since the number of hypotheses to test is
very high. Moreover, the iterative processes needed in the
resolution of Lambert’s problem may diverge due to the
closeness of the two positions in an ECI frame of reference
with regard to the observation noise. This is related to the
low state observability also encountered in other studies
dealing with IOD using sparse data such as [35]. In [13],
we showed that a temporary circular orbit could be taken
as an Initial Orbit in order to find a third SA and process a
definitive orbit determination for most of the LEO satellites
contained in the Space-Track TLE catalog.

1) Determination of an initial circular orbit: A circular
orbit is defined by a null eccentricity (e = 0). In this case,
the parameter w is meaningless and can be set to a null
value as well. Then, let X, refer to the state vector [n, i, {2,
M]T. The parameters 4, {2 and M can then be computed
easily with simple geometrical considerations and n is
known within a good accuracy because the observations
are at about one revolution of interval. The formulas are
straightforward for two observations z; and zs:

2r+ 6
o~ )
i
1 ™~ arccos p 4z (10)
Ipl

Q~ T~ 4 arccos P ux (11)

2 [p-ux +p-uyl
M ~ 4 arccos CosTRry ux FSMITL Uy (12)

[ ]

where r; and ry are the position vectors associated to z;
and z- in a Euclidean ECI frame of reference with unit
vectors uy, uy and uzy,
0 is the angle formed by r; and ro,
7 is the time difference between z; and zs,
p is the cross product of r; and rs.

In order to take into account the observation noise
(i.e. to compute a covariance matrix associated with an
estimated orbit) a Monte Carlo method is used. Random



samples are drawn from the noise distribution (Gaussian
noise of covariance diag(c?>, 07, ai)) and used to generate
samples of a distribution of circular orbits. From these,
the mean and covariance are computed and taken as an
initial circular orbit {X4, Pxx 4} to initiate the tracking.
A diagonal matrix Dxx 4 = diag(k1, k2, k3, k4) is added
to Pxx 4 in order to modelize the impact of the circular
orbit approximation.

2) Association of a third observation: A circular orbit
has been estimated from two observations at one revolution
of interval. A third SA at several revolutions of interval
must be associated to enable the estimation of a Definitive
Orbit (DO) and initiate the tracking.

In this study, the Unscented Transform (UT) [36] is chosen
for its performance and low computational cost. The
principle of the UT lies in the computation and propagation
of specific points called “sigma-points” which have the
same statistical features as the distribution defined by
{X,Pxx}. The sigma-points propagated through fsgp
are used to estimate the distribution of the predicted
observation {z, Pz}, where P35 is the covariance matrix
of z (see Appendix for more details). A validation gate is
obtained from such a distribution as the domain where the
cumulative density function of {z, Pzz} is smaller than a
predefined threshold ~. Usually and in this study, + is set
to 95%.

The association of a third observation (it may appear
several hours later) enables the testing of the convergence
of a Gauss-Newton Least-Square (GNLS) algorithm for a
reduced number of candidate observations. If the GNLS
algorithm converges, then it provides the sequence of
observations with a definitive orbital state {X, Pxx}.

In [13], simulations showed that in our case, 17.71 SAs
on the mean are correlated with a two-SA track using
an initial circular orbit before an observation enables the
convergence of a GNLS algorithm.

IV. TRACK-ORIENTED MULTIPLE HYPOTHESIS
TRACKING (TOMHT)

The approach presented in the prequel generates many
possible tracks, including redundant tracks corresponding
to the same object or tracks that do not correspond to
any object. The TOMHT algorithm aims at associating
observations into tracks representing actual targets and to
estimate a state for each detected target. The TOMHT has
been first proposed in [15] and further modified by other
authors, such as [14], [16], [17].

A. Principle

Initially, tracks are formed from new observations and
existing tracks using for instance an UT regardless to
whether two tracks share an observation, resulting in a
high number of association hypotheses (tracks). Then,
the low quality tracks are deleted and the surviving tracks
are combined into feasible hypotheses (hypotheses where
tracks do not share any observation). After a hypothesis-
level track deletion step, the remaining tracks are updated,
merged and propagated to the time of the next scan.

1) Track-level pruning: To prevent the number of hy-
potheses from exploding, the low quality tracks are deleted.
For that, a score is defined for each track and compared
to thresholds to delete or confirm the track accordingly.
Usually, the log-likelihood ratio L*!, where I is a track
index and k& denotes the scan number, is chosen and
expressed as Eq. (13), where H; is the hypothesis “All
the observations of the track originated from the same
object”, Hy is the hypothesis “All the observations of the
track originated from different objects or FAs” and c is a

start value reflecting the probabilities of H; and Hy, i.e.
¢ = log LU
& P(Ho)"

p(T™!|Hy)

kal = logm +c (13)

L*! is computed recursively as new observations are
associated to the track. The quantity p(7"'|H;) is
computed using Mahalanobis distances between predicted
observations and the new observations. As for p(T*!|Hy),
it uses the density of extraneous measurements as in [14],
[33]. The threshold values for track deletion and track
confirmation can be defined according to the standard
Sequential Probability Ratio Test (SPRT) formulation [34].
The SPRT involves «, the error of type I, and (3, the error
of type II in the calculation of the thresholds.

2) Hypothesis-level pruning: After a track-level dele-
tion step using the SPRT, the surviving tracks are separated
into clusters (sets of tracks bound by common obser-
vations) so that the association problem is divided into
independent smaller problems.

For each cluster, the tracks are combined into feasible
hypotheses, i.e. into subsets such that two tracks cannot
share directly any observation. In order to delete tracks
with regard to global considerations, the “hypothesis-level”
probability of each track in each cluster is computed from
the likelihood of each track the cluster contains [14] so
the tracks of insufficient probability may be deleted. This
hypothesis-level pruning strategy is not well suited to the
track initiation technique proposed in this study because it
yields categorical probabilities (the dynamic model is very



deterministic when observable). It is therefore not used in
the simulations.

N-scan pruning is another popular pruning approach. It
consists in the deletion of all the association hypotheses
that do not include the /V-th newest observation of the most
likely track for each target. This method has shown to be
effective in many applications and has been implemented
in this study. In the simulations, setting N = 2 appeared
to be a relevant choice.

After this pruning step, the surviving tracks can be
merged before updating to avoid redundant computation.

B. Track merging

Redundant tracks (i.e. tracks that correspond to the same
object) may be generated and could imply unnecessary
computation of state estimates. A popular approach is
presented in [37]. It relies on assessing the similarity
between the states of two tracks using the state vector
estimates and covariance matrices: a criterion is defined
on the statistical distance (i.e. Mahalanobis) or on each
component, the choice of the criterion depending on the
context. If the merging criteria meet, then the track of
maximum likelihood is kept whereas the other are deleted.
This technique has been implemented and is used in
simulation.

In this study, merging criteria regarding the number
of common observations, the lengths of tracks and the
statistical distance between two tracks are used.

C. Relevancy of the deletion steps

The combinatorial complexity involved in tracking the
LEO population is limited by the use of a gating function
of sufficient precision and a score-function providing suffi-
cient separability between the correct and incorrect tracks.
Unlike the gating function, the score-function relies on a
Multi Target Tracking (MTT) algorithm to delete tracks.
Therefore, analyzing the behavior of the score (likelihood
ratio) is of interest in order to implement a suitable MTT
algorithm. This analysis shows that the log-likelihood ratio
should not be used to delete unconfirmed tracks.

Figure 7 shows the evolution of the scores of correct
tracks against the number of observations they comprise.
This simulation has been made using the Space-Track
TLE catalog and a SGP propagator on a simulation of
observations from the sensor described in Section II over
three days.

Figure 7 shows that on the mean the scores stay about
zero when a low number of observations is available
for each track and increase significantly afterward. This
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Figure 7. Evolution of the scores of correct tracks against the number
of observations. A low state observability prevents the scores from
increasing when the number of available observations is low.

behavior reflects that the likelihood is a poor criterion for
pruning when the system observability is low whereas it is
a good criterion when the system is observable. Therefore,
the system observability should be taken into account when
pruning. In the implemented algorithm, the likelihood is
taken into account only for the tracks that enable a Gauss-
Newton Least-Square (GNLS) convergence. Besides, any
track sharing an observation with a confirmed track is
deleted (this would be a consequence of a high-level
pruning process) as well as any track containing more than
4 observations (see Figure 7) for which the GNLS failed
to converge.

V. PERFORMANCE
A. Setting of the algorithm

The implementation of the TOMHT involves many
parameters which should be set to proper values. Most of
them, such as the probabilities of type I and type II errors
a and O related to the thresholds defined by the SPRT
[34] may be easily set according to the user requirements
and to the peculiarities of the problem. However, some
parameters involved in the new techniques presented in
this work have a significant impact on the performance of
the overall algorithm and require arduous tuning. These
are:

o the threshold Ymereing related to the statistical distance
computed to assess the similarity between two tracks
during the merging step (see Section IV-B),

o the coefficients of the diagonal matrix Dxx 4 =
diag(k1, ko, k3, kq) reflecting the uncertainty induced
by the assumption of circular orbits made in III-C1.

Table II lists the main parameter values retained for the
simulations.



Table II
MAIN PARAMETER VALUES RETAINED FOR SIMULATION.

Parameter Value

a 1.157 x 10~¢
8 1073

“Ymerging 95%

k1 (associated to m) 8 x 107 rad/s
ko (associated to 7) 8 x 1073 rad
ks (associated to €) 8 x 1073 rad
k4 (associated to M) 8 x 1079 rad

The value of « is obtained from the SPRT assuming
that a false confirmed track occurring once on 10 days on
the mean is acceptable, and the values of § and Ymerging
are arbitrarily chosen. The «’s are chosen from trajectories
computed from the Space-Track catalog. Their values are
adjusted so that the correlations of interest occur.

B. Simulation conditions

To assess the performance of the method proposed
in this paper, the implementation of the TOMHT for
tracking small LEO objects is applied on a set of simulated
observations generated by 500 objects of the Space-Track
catalog. The objects are chosen in the Space-Track catalog
so that their orbits are close to generate a difficult tracking
problem (the chosen objects all pass in the Field Of Regard
(FOR) on a short time span). The propagation function
fsap provided in [24] (see Section II-B) is used to simulate
the positions of the selected objects over 6 days. Then, the
detections and associated measurements are simulated in
the sensor-related assumptions provided in Section II-A.

No maneuver of the satellites has been simulated. In-
deed, we assume that the LEO objects considered in
this study are too small (less than 10cm) to carry fuel.
The bigger objects such as maneuvering satellites can be
cataloged by existing systems such as some components
of the US SSN as well as the French system GRAVES.

False Alarms (FA) are randomly added to each scan
where actual objects appear: 232,850 FAs are added
to the 23,285 scans resulting from the simulation (i.e.
1 FA/s according to Section II), making the detection
density realistic while avoiding the processing of clutter-
only scans.

The resulting simulated observations are set as input
of the implemented TOMHT based on the track initiation
function proposed in this paper.

C. Criteria of performance

In order to assess the number of objects the algorithm
would be able to track as well as its ability to delete
tracks efficiently, we calculate the evolutions in time of
three key performance criteria: the ratio of the number
of objects the algorithm can track with no redundancy
and a high degree of certainty (non-redundant, confirmed
tracks) over the number of simulated objects (Figure
8); the total number of nodes (each node corresponds
to an observation-to-track association hypothesis, the
hypotheses being efficiently stored in a hierarchical tree
structure) stored in memory (Figure 9); the ratio of the
number of redundant confirmed tracks over the total
number of confirmed tracks (Figure 10).
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Figure 8. Evolution of the ratio of tracked objects over all the simulated
objects.
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Figure 9. Evolution of the total number of nodes stored in memory.

At the end of the simulation, more than 84.4% of the
simulated objects are tracked with no redundancy. The
used memory stops increasing and less than 1% of the
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Figure 10. Evolution of the ratio of the number of redundant confirmed
tracks over the total number of confirmed tracks.

total number of confirmed tracks are redundant during the
simulated time.

D. Discussion and leads for improvement

The evolutions of the assessed criteria appear quite
satisfactory. Indeed, the amount of used memory stagnates
(Figure 9) and the redundant tracks are properly merged
(Figure 10) while the ratio of tracked objects increases
quickly after a short simulated time until it reaches a fair
value of 84.4% (Figure 8).

The simulated objects are taken from the Space-Track
catalog meaning that tracking 100% of the simulated
objects corresponds to the tracking performance of the U.S.
Space Surveillance Network (US SSN), which consists in
several sensors distributed all over the world. In this study,
a sensor of reduced FOR providing sparse observations
with a rather low accuracy is assumed and still, the
proposed algorithm could track successfully about 84.4%
of the simulated objects. However, the proposed approach
may result in a less reactive system compared to the US
SSN as a few days are necessary to lock onto most of the
objects but, as mentioned earlier, a set of non-maneuvering
objects such as the space debris is assumed, making the
system reactivity of lesser concern.

As for the amount of used memory (Figure 9), a
clear stagnation occurs after about 24 hours of simulated
time. This corresponds to the time required to accumulate
enough observations for the first tracks to be confirmed or
pruned. The slow increase of the amount of used memory
after 24 hours is due to the prolongation of the confirmed
tracks.

The ratio of tracked objects being an end point criterion
(the system aims at tracking as many objects as possible),

it is important to understand why it does not reach a higher
value. This may be explained by two reasons: firstly, some
objects may be lost; secondly, some objects with particular
orbital states would not be tracked. However, no tracked
objects were lost in simulation.

An object may never be tracked because: the object
does not pass in the FOR at one revolution of interval; the
object passes in the FOR at one revolution of interval but
the pair of SAs it generates is rejected; the circular orbit
assumed for a pair of SAs originated from the object does
not correlate with the correct third SA.

In [12], simulations over a period of 30 days show

that 99.8% of the LEO objects contained in the Space-
Track TLE catalog pass in the FOR at one revolution of
interval at least once and that 37.4% of the SAs from the
same object are observed at one revolution of interval on
the mean. As a consequence, the first reason mentioned
to explain why an object may not be tracked should be
discarded. However, the boundary and smoothing applied
on the distributions resulting from the method proposed in
[12] might result in too high a rejection rate.
As for the third reason, most of the objects are indeed
of very low eccentricities i.e. more than 80% of the
LEO objects contained in the Space-Track catalog have
an eccentricity smaller than 0.02, making quite relevant
the circular orbit assumption for the IOD. However, the
set of the objects that could not be tracked should be
studied in order to determine whether or not specific orbit
parameter values are more frequent comparing to the set
of the tracked LEO objects.

VI. CONCLUSION

The high combinatorial situation resulting from the
low state observability of each SA has been avoided in
the cataloging of Low-Earth-Orbit objects in a complex,
realistic scenario comprising several hundreds of objects
as well as false alarms. The tested implementation of
the proposed approach, which relies on the statistical
modeling of pairs of observations and a fast, circular orbit
estimation, enables to track a large majority (84.4%) of
the objects simulated from the Space-Track catalog with
a small amount of redundancy after convergence and a
controlled memory usage. Therefore, the performance and
its analysis tend to support the feasibility of the proposed
approach.

From a systems design perspective, this approach ap-
pears to be promising taking into account that only one
low-precision, narrow fence-type sensor enables a cov-
erage of 84.4% whereas the system issuing the Space-
Track catalog, which corresponds to the reference coverage



of 100% in simulation, is composed of several sensors
distributed all over the world.

In future works, the combinatorial complexity will be
modeled in order to predict the computational requirements
to solve a scenario with a realistic number of objects (i.e.
more than 100,000).

APPENDIX
A. Observation prediction using the Unscented Transform

Let Xy, and Pxx ;, be the state vector (orbital state)
and the associated covariance matrix of dimension n and
nxn (n=06orn =7). The statistical moments of this
distribution is captured by 2n + 1 sigma-points defined as:

Xz(t)o = Xto
Xio = Xto +

X;:” = Xi, —+/(n+ K)Pxxf;g”

(n+ K)Pxx", (14)

where & is a scaling parameter and w/PXXftO is the ¢-th
column of an L-triangular matrix obtained from a Cholesky
decomposition of Pxx ;.

The o-points are propagated through fsgp and h (h
denotes the mapping from ECF to ENU) at time ¢:

2n
7, = Z ©'(ho fSGP)(Xiov t)

(15)

i=0
Qn . .

Poe = 3 ¢'((ho foor)(Xist) — )  (16)
i=0
x((ho fsap) (Xt t) — Z¢)"

where 0 .

v = f%f
4)01_+ = 2(n1+/i)
¥ - 2(n+k)

Then, Z; and Pzz; can be used to correlate new
observations at time ¢ with the track of state X, .

B. Principle of the One-Class Support Vector Machine

The One-Class Support Vector Machine (OC-SVM)
is an extension of the better-known bi-class SVM
[29][30][31] that aims at defining a simple decision func-
tion foc.sym in order to label input vectors {x} as belong-
ing or not belonging to a given class H;. To this purpose,
the OC-SVM requires a set of “labeled data” {xp, } and
considers the origin as the prototype of a second class.
Since a separating hyperplan is not optimal or may not

even exist in the original space E, a mapping function ®
is introduced:

EFE — F

®: x — d(x)

A7)
where F' is a feature space in which a separating hyperplan
S exists. In F, the separating hyperplan Sr can be
defined by the couple {w,b} € FF x R :

xeESpesw-x—b=0 (18)

The distance of Sp to the origin is ﬁ and can be
maximized solving the following quadratic program:

! 9 1
SwlP-b+ =& a
al;%ﬁn 2||w|| + i i & (19)

subject to w - ®(xpy, ;) > b—§;,6 >0 (20)

where v is the regularization parameter introduced in
Eq. (6), [ the number of training samples xp, ; and
& a vector of slack variables which enable to deal with
mislabelled data and regularize the classification. Since
nonzero slack variables are penalized in the objective
function, the function foc.sym defined as:

fOC—SVM(X) = sgn(w . @(X) — b) (21)

is expected to be positive for most of the training samples
xH,,; and therefore in the corresponding half-space of F.
Back in E, this half-space corresponds to the minimal
volume C that encompasses at least a fraction 1 — v of
the underlying probability distribution of the set {x, },
defined as the (1 — v)-quantile Q(1 — v) in Eq. (6).

The “kernel trick” enables to express foc.sym in a
more straightforward way. Using the method of Lagrange
multipliers, w can be expressed as:

W = Zai@(le,i) (22)

where the «; are the Lagrange multipliers. Then, foc.svm
can be rewritten as:

focsvm(x) = sgn (Z ;i ®(xm, i) - P(x) — b)

= sgn (Z oik(xp, 4,%) — b) (23)

where k is a kernel function (such as a Gaussian kernel)
defined so that k(xp, ;,x) = ®(xp, ;) - P(x) in order to
avoid an explicit determination of ®.
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