J. Bedrossian, N. Rodríguez, and A. L. Bertozzi, Local and global well-posedness for aggregation equations and Patlak???Keller???Segel models with degenerate diffusion, Nonlinearity, vol.24, issue.6, pp.1683-1714, 2011.
DOI : 10.1088/0951-7715/24/6/001

F. Bouchut, Introduction to the mathematical theory of kinetic equations, of Series in Applied Math. Gauthier-Villars, 2000.

N. Bournaveas, V. Calvez, S. Gutiérrez, and B. Perthame, Global Existence for a Kinetic Model of Chemotaxis via Dispersion and Strichartz Estimates, Communications in Partial Differential Equations, vol.105, issue.1, pp.1-379, 2008.
DOI : 10.1090/S0273-0979-04-01004-3

F. Boyer and P. Fabrie, Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models, Applied Math. Sci, vol.183, 2013.
DOI : 10.1007/978-1-4614-5975-0

URL : https://hal.archives-ouvertes.fr/hal-00777731

J. A. Carrillo, M. Fornasier, G. Toscani, and F. Vecil, Particle, kinetic, and hydrodynamic models of swarming, Modeling and Simulation in Science, pp.297-336, 2010.
DOI : 10.1007/978-0-8176-4946-3_12

J. A. Carrillo, S. Hittmeir, and A. , CROSS DIFFUSION AND NONLINEAR DIFFUSION PREVENTING BLOW UP IN THE KELLER???SEGEL MODEL, Mathematical Models and Methods in Applied Sciences, vol.22, issue.12, p.1250041, 2012.
DOI : 10.1142/S0218202512500418

S. Chandrasekhar, Brownian Motion, Dynamical Friction, and Stellar Dynamics, Reviews of Modern Physics, vol.21, issue.3, pp.383-388, 1949.
DOI : 10.1103/RevModPhys.21.383

Y. L. Chuang, M. R. D-'orsogna, D. Marthaler, A. L. Bertozzi, and L. S. Chayes, State transitions and the continuum limit for a 2D interacting, self-propelled particle system, Physica D: Nonlinear Phenomena, vol.232, issue.1, pp.33-47, 2007.
DOI : 10.1016/j.physd.2007.05.007

J. Coulombel, F. Golse, and T. Goudon, Diffusion approximation and entropybased moment closure for kinetic equations, Asymptot. Anal, vol.45, issue.12, pp.1-39, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00020761

M. Crandall and L. Tartar, Some relations between non-expansive and order preserving mappings, Proc. Am, pp.385-390, 1980.

F. Cucker and S. Smale, Emergent Behavior in Flocks, IEEE Transactions on Automatic Control, vol.52, issue.5, pp.852-862, 2007.
DOI : 10.1109/TAC.2007.895842

F. Cucker and S. Smale, On the mathematics of emergence, Japanese Journal of Mathematics, vol.75, issue.1, pp.197-227, 2007.
DOI : 10.1007/s11537-007-0647-x

P. Degond, A. Frouvelle, and J. Liu, Macroscopic Limits and Phase Transition in a System of Self-propelled Particles, Journal of Nonlinear Science, vol.19, issue.3, pp.427-456, 2013.
DOI : 10.1007/s00332-012-9157-y

URL : https://hal.archives-ouvertes.fr/hal-00621766

R. , D. Perna, and P. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math, vol.98, pp.511-547, 1989.

M. R. D-'orsogna, Y. L. Chuang, A. L. Bertozzi, and L. S. Chayes, Self-propelled particles with soft-core interactions: Patterns, stability, and collapse, Phys. Rev. Lett, issue.10, p.96104302, 2006.

J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Math. AMS, vol.29, 2001.
DOI : 10.1090/gsm/029

N. Ghani and N. Masmoudi, Diffusion limit of the Vlasov-Poisson-Fokker-Planck system, Communications in Mathematical Sciences, vol.8, issue.2, pp.463-479, 2010.
DOI : 10.4310/CMS.2010.v8.n2.a9

A. Fasano, A. Mancini, and M. Primicerio, EQUILIBRIUM OF TWO POPULATIONS SUBJECT TO CHEMOTAXIS, Mathematical Models and Methods in Applied Sciences, vol.14, issue.04, pp.503-533, 2004.
DOI : 10.1142/S0218202504003337

T. Goudon, HYDRODYNAMIC LIMIT FOR THE VLASOV???POISSON???FOKKER???PLANCK SYSTEM: ANALYSIS OF THE TWO-DIMENSIONAL CASE, Mathematical Models and Methods in Applied Sciences, vol.15, issue.05, pp.737-752, 2005.
DOI : 10.1142/S021820250500056X

URL : https://hal.archives-ouvertes.fr/hal-00018817

T. Goudon, J. Nieto, F. Poupaud, and J. Soler, Multidimensional high-field limit of the electrostatic Vlasov???Poisson???Fokker???Planck system, Journal of Differential Equations, vol.213, issue.2, pp.418-442, 2005.
DOI : 10.1016/j.jde.2004.09.008

URL : https://hal.archives-ouvertes.fr/hal-00018818

J. M. Greenberg and W. Alt, Stability results for a diffusion equation with functional drift approximating a chemotaxis model, Transactions of the American Mathematical Society, vol.300, issue.1, pp.235-258, 1987.
DOI : 10.1090/S0002-9947-1987-0871674-4

S. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, vol.1, issue.3, pp.415-435, 2008.

M. A. Herrero and J. J. Velázquez, Singularity patterns in a chemotaxis model, Mathematische Annalen, vol.XXI, issue.Fasc. 4, pp.58-623, 1996.
DOI : 10.1007/BF01445268

T. Hillen and K. J. Painter, A user???s guide to PDE models for chemotaxis, Journal of Mathematical Biology, vol.15, issue.1, pp.183-217, 2009.
DOI : 10.1007/s00285-008-0201-3

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I. Jahresber, Deutsch. Math.-Verein, vol.105, issue.3, pp.103-165, 2003.

D. Horstmann, Generalizing the Keller???Segel Model: Lyapunov Functionals, Steady State Analysis, and Blow-Up Results for Multi-species Chemotaxis Models in??the??Presence of Attraction and Repulsion Between Competitive Interacting Species, Journal of Nonlinear Science, vol.13, issue.2, pp.231-270, 2011.
DOI : 10.1007/s00332-010-9082-x

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Transactions of the American Mathematical Society, vol.329, issue.2, pp.819-824, 1992.
DOI : 10.1090/S0002-9947-1992-1046835-6

E. Keller and L. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, vol.26, issue.3, pp.399-415, 1970.
DOI : 10.1016/0022-5193(70)90092-5

C. D. Levermore, Moment closure hierarchies for kinetic theories, Journal of Statistical Physics, vol.23, issue.5-6, pp.1021-1065, 1996.
DOI : 10.1007/BF02179552

C. D. Levermore, Entropy-based moment closures for kinetic equations, Transport Theory and Statistical Physics, vol.37, issue.4-5, pp.591-606, 1997.
DOI : 10.1016/0022-0396(80)90089-3

P. Lions, Mathematical topics in fluid mechanics, Compressible models, pp.1996-98

J. Nieto, F. Poupaud, and J. Soler, High-Field Limit for the Vlasov-Poisson-Fokker-Planck System, Archive for Rational Mechanics and Analysis, vol.158, issue.1, pp.29-59, 2001.
DOI : 10.1007/s002050100139

J. K. Parrish, S. V. Viscido, and D. Grünbaum, Self-Organized Fish Schools: An Examination of Emergent Properties, The Biological Bulletin, vol.202, issue.3, pp.296-305, 2002.
DOI : 10.2307/1543482

B. Perthame, Transport Equations in Biology, Frontiers in Math, 2007.

F. Poupaud, Diagonal Defect Measures, Adhesion Dynamics and Euler Equation, Methods and Applications of Analysis, vol.9, issue.4, pp.533-561, 2002.
DOI : 10.4310/MAA.2002.v9.n4.a4

F. Poupaud and M. Rascle, Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients, Communications in Partial Differential Equations, vol.1042, issue.1-2, pp.337-358, 1997.
DOI : 10.1070/SM1967v002n02ABEH002340

F. Poupaud and J. Soler, Parabolic limit and stability of the Vlasov-Poisson- Fokker-Planck system, Math. Models Methods Appl. Sci, vol.10, pp.1027-1045, 2000.

R. Robert, Unicit?? de la solution faible ?? support compact de l?????quation de Vlasov-Poisson, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.324, issue.8, pp.873-877, 1997.
DOI : 10.1016/S0764-4442(97)86961-3

M. B. Short, M. R. D-'orsogna, V. B. Pasour, G. E. Tita, P. J. Brantingham et al., A STATISTICAL MODEL OF CRIMINAL BEHAVIOR, Mathematical Models and Methods in Applied Sciences, vol.18, issue.supp01, pp.1249-1267, 2008.
DOI : 10.1142/S0218202508003029

E. Stein, Singular Integrals and Differentialability Properties of Functions, 1971.

J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Physical Review E, vol.58, issue.4, pp.4828-4858, 1998.
DOI : 10.1103/PhysRevE.58.4828

Y. Tyutyunov, L. Titova, and R. Arditi, A Minimal Model of Pursuit-Evasion in a Predator-Prey System, Mathematical Modelling of Natural Phenomena, vol.2, issue.4, pp.122-134, 2007.
DOI : 10.1051/mmnp:2008028

F. Vecil, P. Lafitte, and J. Linares, A numerical study of attraction/repulsion collective behavior models: 3D particle analyses and 1D kinetic simulations, Physica D: Nonlinear Phenomena, vol.260, 2013.
DOI : 10.1016/j.physd.2012.12.010

URL : https://hal.archives-ouvertes.fr/hal-00726486

T. Vicsek, A. Czirok, E. Ben-jacob, I. Cohen, and O. Shochet, Novel Type of Phase Transition in a System of Self-Driven Particles, Physical Review Letters, vol.75, issue.6, pp.1226-1229, 1995.
DOI : 10.1103/PhysRevLett.75.1226

T. Vicsek and A. Zafeiris, Collective motion. Phys, Reports, vol.5174, issue.3, pp.71-140, 2012.