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Abstract. The Webster-Lokshin equation is a partial differential equation
considered in this paper. It models the sound velocity in an acoustic domain.
The dynamics contains linear fractional derivatives which can admit an in-
finite dimensional representation of diffusive type. The boundary conditions
are described by impedance condition, which can be represented by two finite
dimensional systems. Under the physical assumptions, there is a natural en-
ergy inequality. However, due to a lack of the precompactness of the solutions,
the LaSalle invariance principle can not be applied. The asymptotic stability

of the system is proved by studying the resolvent equation, and by using the

Arendt-Batty stability condition.

1. Introduction. Our goal is to study the internal asymptotic stability of an
infinite-dimensional linear model, namely a wave equation in a 1-D bounded do-
main. A classical undamped wave equation is known to be a conservative system,
which can be described by a group of operators. On our more realistic model,
there are two physical causes of dissipation: the damping at the boundaries and the
internal damping.

First note that usual boundary conditions at the two ends of the pipe, either
Dirichlet or Neumann boundary conditions are reflecting and account for a con-
servation of the wave energy; on the contrary, boundary conditions of impedance
type are absorbing, and translate into dissipation of the wave energy, localized at
the boundaries only. Most models of impedance are formulated in the frequency
domain, and not the time domain; hence, since the impedances at stake, seen as
transfer functions, happen to be positive real, one can apply the celebrated Kalman-
Yakubovich-Popov lemma to build a realization, at least in finite dimension, see e.g.
[11, 30] among other references. The latter realization happens to be of major help
in deriving an energy balance, which will prove useful in the stability analysis of
the coupled system.
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Second, there are different types of internal damping models for waves, corre-
sponding to losses during the propagation; the most common ones are fluid or vis-
cous damping, and Kelvin-Voigt or Rayleigh damping. Both these models are local
in time, and allow for a straightforward semigroup formulation. Fluid damping cor-
responds to a uniform shift of the poles in the spectral domain, or to an exponential
window in the time domain: the stability analysis of the system is quite elementary,
see e.g. [19, Theorem 5.38]. With Kelvin-Voigt damping, the high-frequency modes
are more heavily damped than the low-frequency ones, a situation which does oc-
cur in applications, making this model more realistic; the stability analysis can be
performed by various methods, see e.g. [19, Section 4.3].

We are concerned here with a more complex damping model, known as damping
of fractional order in time: causal fractional integrals or derivatives are non-local
operators in time, which require an infinite-dimensional diagonal realization of dif-
fusive type (see e.g. [31] and [27] independently, see also [25]) in order to get a
semigroup formulation. An energy inequality is associated to this formulation, and
a natural way to proceed to analyze stability would then be to use LaSalle’s invari-
ance principle; in infinite dimension though, the use of this principle requires to
check the precompactness of the trajectories in the extended energy space. Unfor-
tunately there is no simple way to check this property a priori, since the diffusive
realization is made on an unbounded domain. This is the reason why we resort
to some more sophisticated stability theorem, which requires the analysis of the
spectrum of the generator of the extended semigroup, see [2] and [20].

The Lokshin equation has been introduced in [17, 18], and referred to in [13].
It has been established in [7] in the frequency domain and formulated in the time
domain with fractional derivatives in [29]. For refined models of axi-symmetric
pipes with varying cross-section, one can refer to [16] to understand what the best
choice of variable z is for the Webster wave equation.

For the Lokshin model, there is a natural decay of the wave energy, as observed in
[25], based on a spectral analysis first carried out in [24]. For the proof of stability,
applying LaSalle’s invariance principle requires a precompactness property (see e.g.
[9, 8, 1]), which is not easy to get a priori.

Use of LaSalle invariance principle is possible when ε = η = 0, i.e. when there
are no internal damping terms in the wave equation (1). More precisely, when
ε = η = 0, the infinitesimal generator of the semigroup realizing the PDE under
consideration in this paper has a compact resolvent. Therefore, in that case, LaSalle
invariance principle can be applied, as in [1], [22, §.2], to prove asymptotic stability.

However, in presence of a diffusive realization either of standard or extended
type, lack of precompactness is to be found, and we have to resort on [2, Stability
theorem] and spectrum techniques (in our framework, it is equivalent to [20]).

See [26] for the stability proof of an ordinary differential equation coupled with
a infinite dimension system coming from a diffusive representation. The paper [26]
can be seen as the behavior of one mode of the wave equation coupled with an
infinite dimensional system representing the fractional integrals and derivatives.
The present paper can be seen as a generalization of [26] since the model under
consideration is described by two coupled partial differential equations. This work
has also a strong connection with the study of well-posedness of the Webster-Lokshin
equation, as carried out in [14] and [15]. Some of the stability results proved here
have been announced in [22].



ASYMPTOTIC STABILITY OF WEBSTER-LOKSHIN EQUATION 3

The paper is organized as follows: in Section 2, the acoustic model is presented,
together with the physical motivations; especially the notion of impedance is de-
tailed. Then, in Section 3 realizations in the sense of systems theory are recalled:
first, dissipative realizations for positive-real impedances are presented in § 3.1, and
second dissipative realizations for positive pseudo-differential time-operators of dif-
fusive type (such as fractional integral and derivatives) are given in § 3.2. Both
these realizations enable to give an abstract formulation of the wave equation as a
first order system in § 3.3. Its well-posedness is finally analyzed in § 3.4.

The core of the paper is Section 4, devoted to the study of asymptotic stability
of the above model, once formulated as a first-order system. Since no compactness
property can be found a priori, thus forbidding the use of LaSalle’s invariance
principle, then a refined analysis of the spectrum of the generator of the semigroup
is carried out. The main result is Theorem 2, the proof of which heavily relies on
Proposition 1, which is technical and will be proved in five steps.

Finally, Section 5 is devoted to conclusions on the problems treated in this pa-
per and future works, including some possible generalizations and interesting open
questions.

Notation: Given z ∈ C, we denote its real part and its imaginary part by ℜ(z)
and ℑ(z) respectively, and its complex conjugate by z. Symbol R

+ denotes the set
of positive values. Finally x′ or M ′ denotes the transpose of a vector or a matrix
respectively, either real or complex.

2. Acoustic model and physical motivations. Consider an axi-symmetric duct
between z = 0 and z = 1 with cross section radius r(z) (satisfying 0 < r0 ≤ r ≤
R0 <∞ a. e.), where r : [0, 1] → R is a function which is both bounded from below
and essentially bounded (it does not need to be continuous), then the velocity
potential φ (with appropriate scaling) satisfies the following equation:

∂2
t φ+ (η(z) ∂α

t + ε(z) ∂−β
t ) ∂tφ− 1

r2(z)
∂z(r

2(z) ∂zφ) = 0, (1)

for some α, β ∈ (0, 1) and ε, η ∈ L∞(0, 1; R+). The terms in ∂α
t and ∂

−β
t model

the effect of viscous and thermal losses at the lateral walls. The symbol ∂−β
t stands

for the Riemann-Liouville fractional integral of order β, whereas ∂α
t stands for the

Riemann-Liouville fractional derivative of order α: both these operators are causal
convolution products1 with slowly decaying kernels, and their precise meaning will
be given in Section 3.2 below when writing a realization.

We can reformulate (1) as a first order system in the (p, v) variables, where
p = ∂tφ is the pressure, and v = −r2 ∂zφ is the volume velocity:

∂tp = − 1

r2
∂zv − ε ∂

−β
t p− η ∂α

t p , (2)

∂tv = −r2 ∂zp , (3)

To take into account the interaction with the exterior domain, one can add
dynamical boundary conditions at z = 0, 1 that are of impedance type:

pi(t) = ℓi(hi ⋆ vi)(t) (4)

1Let us recall that the causal convolution product of two locally integrable functions h and v

is defined by (h ⋆ v)(t) =
R

t

0
h(t − τ) v(τ) dτ for almost every t ≥ 0.
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where ⋆ stands for the causal convolution product with respect to the time variable,
ℓ0 = −1, and ℓ1 = 1, and where it is used the shorthand notation pi(t) = p(z = i, t)
and vi(t) = v(z = i, t) for i = 0, 1. In (4), hi are causal functions of time, and
let us denote their Laplace transforms by Zi(s) which are usually called acoustic
impedances. Conditions (4) are formulated in the Laplace domain as

p̂i(s) = ℓiZi(s) v̂i(s) for i = 0, 1 , (5)

Such boundary conditions model very various absorbing boundary conditions. As
an example, let us select h1 = Z1δ0, where Z1 is a given strictly positive and finite
value in R and δ0 is the Dirac function at t = 0: the limit case when Z1 = 0,
ε = 0, η = 0 would give, with (2) and (3), the Dirichlet boundary condition for the
p-variable and the Neumann boundary condition for the v-variable; similarly, the
other limit case when Z1 = ∞, ε = 0, η = 0 would give the Neumann condition for
the p-variable and the Dirichlet condition for the v-variable. Therefore, boundary
condition (4) models time-varying Robin-type boundary conditions for the p and
the v-variables: it does indeed interpolate between classical homogeneous Dirichlet
and Neumann conditions (which are not addressed in this work), while preserving
passivity.

The assumptions on the boundary conditions that will be needed in this work
are collected in

Assumption 1. The acoustic impedances Zi in the boundary conditions (5), sat-
isfy, for each i = 0, 1,

1. Zi is a rational function without any pole at s = 0;
2. ℜ(Zi(s)) > 0, ∀s ∈ C, ℜ(s) ≥ 0;

Under this assumption, item 1 will allow us to consider a realization of the bound-
ary conditions in finite dimension. Item 2 means that Zi(s) are strictly positive real
in the sense of [19, ch. 5]. This latter item exludes both Dirichlet and Neumann
boundary conditions; indeed, it imposes some dissipation of the energy, as will be
seen from an energy balance law.

Assumption 1 holds as soon as hi are real-valued functions of positive type, the
algebraic structure of which are sums of Dirac measures and of causal polynomial-
exponential functions (see e.g. [28]).

System (2)-(3)-(5) can be transformed into a first order system in time, using
appropriate realizations for the pseudo-differential operators involved in this model:

• dissipative realizations for the boundary conditions written in terms of the
positive-real impedances. This is done using Kalman-Yakubovich-Popov lemma
in finite dimension, are recalled in § 3.1;

• dissipative realizations for the internal dynamics, more precisely for positive

pseudo-differential time-operators of diffusive type, such as ∂−β
t and ∂α

t , as
presented in § 3.2.

This is the aim of next section together with the well-posedness of the model.

3. Realization and well-posedness.

3.1. Dissipative realizations for positive-real impedances. Under item 1 of
Assumption 1, there exists a minimal realization (Ai, Bi, Ci, di) with state xi of
finite dimension ni (Ai ∈ R

ni×ni , Bi ∈ R
ni×1, Ci ∈ R

1×ni and di ∈ R), such that,
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for all i = 0, 1,

d

dt
xi(t) = Ai xi +Bi vi(t), xi(0) = 0 (6)

ℓipi(t) = Ci xi(t) + di vi(t). (7)

Moreover, with item 2 of Assumption 1, using the Kalman-Yakubovich-Popov lem-
ma (see e.g. [6, page 35] or [30]), there exists Pi ∈ R

ni×ni , Pi = P ′
i > 0, such that

the following energy balance holds, for each T > 0, and for any vi ∈ L2([0, T ); R),

ℓi

∫ T

0

pi(t) vi(t) dt =
1

2
x′i(T )Pi xi(T ) +

1

2

∫ T

0

(
x′i(t) vi(t)

)
Mi

(
xi(t)
vi(t)

)
dt, (8)

with Mi :=

(
−A′

iPi − PiAi C ′
i − PiBi

Ci −B′
iPi 2di

)
= M′

i ≥ 0.

The right-hand side of (8) is split into two terms, a storage function evaluated at
time T only, proportional to x′i(T )Pixi(T ), and a dissipated energy on the time inter-
val (0, T ), which involves the non-negative symmetric matrix Mi ∈ R

(ni+1)×(ni+1).
We denote, for all x = (x0, x1) ∈ R

n0 × R
n1 ,

Ex :=
1

2
x′0P0x0 +

1

2
x′1P1x1.

Thus, when ε = η = 0, the global system (2)–(3)–(5) can be put in the abstract
form d

dt
X = AX, where:

A




x0

x1

p

v


 =




A0x0 +B0 v(z = 0)
A1x1 +B1 v(z = 1)

−r−2∂zv

−r2∂zp


 ; (9)

together with the boundary conditions p(z = 0) = −C0x0 − d0 v(z = 0) and p(z =
1) = C1x1 + d1 v(z = 1). In the sequel, we shall analyze the well-posedness of this
system. Let us introduce the following spaces of complex-valued functions:

L2
p := {p,

∫ 1

0

|p|2 r2(z) dz < +∞} ,

L2
v := {v,

∫ 1

0

|v|2 r−2(z) dz < +∞} ,

H1
p := {p ∈ L2

p,

∫ 1

0

(|p|2 + |∂zp|2) r2 dz < +∞} ,

H1
v := {v ∈ L2

v,

∫ 1

0

(|v|2 + |∂zv|2) r−2 dz < +∞} ,

H := C
n0 × C

n1 × L2
p × L2

v ,

and

V := C
n0 × C

n1 ×H1
p ×H1

v .

For i = 0, 1, we equip C
ni with the norm x 7→ x′Pix, and we consider the L2-norm

on L2
p (resp. on L2

v) with the weight r2 (resp. r−2). The hermitian product on H

is thus written as, for all X = (x0, x1, p, v) and Y = (y0, y1, q, w) in H

(X,Y )H =
∑

i=0,1

x′iPiyi +

∫ 1

0

p(z)q(z) r2 dz +

∫ 1

0

v(z)w(z) r−2 dz.
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The norm on H is denoted ‖ ‖H , i.e. for all X = (x′0, x
′
1, p, v)

′ ∈ H, ‖X‖2
H =∑

i=0,1 x
′
iPixi +

∫ 1

0
|p|2 r2 dz +

∫ 1

0
|v|2 r−2 dz.

The domain of operator A reads:

D(A) =

{
(x′0, x

′
1, p, v)

′ ∈ V,

∣∣∣∣
p(z = 0) = −C0x0 − d0 v(z = 0)
p(z = 1) = C1x1 + d1 v(z = 1)

}
.

Note that D(A) is densely embedded in H.

Lemma 1. Operator −A is monotone. More precisely, the following equality holds,
for all X = (x′0, x

′
1, p, v)

′ ∈ D(A):

ℜ(−AX, X)H =
1

2

(
x′0 v(0)

)
M0

(
x0

v(0)

)
+

1

2

(
x′1 v(1)

)
M1

(
x1

v(1)

)
. (10)

Proof. Let us recall that, for all (X,Y ) ∈ H ×H,

ℜ(X, Y )H =
1

4
‖X + Y ‖2

H − 1

4
‖X − Y ‖2

H .

Thus, for all (X,Y ) = ((x′0, x
′
1, p, v)

′, (y′0, y
′
1, q, w)′) ∈ H ×H, we have

ℜ(X, Y )H =
∑

i=0,1

ℜ(x′iPiyi) + ℜ(

∫ 1

0

pq r2 dz) + ℜ(

∫ 1

0

vw r−2 dz) .

We compute, for all X = (x′0, x
′
1, p, v)

′ in D(A),

ℜ(AX, X)H =
∑

i=0,1 ℜ(x′iPi(Aixi +Biv(z = i)))

−ℜ(
∫ 1

0
p∂zv dz) −ℜ(

∫ 1

0
v∂zpdz)

=
∑

i=0,1 ℜ(x′iPi(Aixi +Biv(z = i))) −ℜ(
∫ 1

0
∂z(pv) dz)

=
∑

i=0,1 ℜ(x′iPi(Aixi +Biv(z = i)))

−ℜ(p(z = 1)v(z = 1)) + ℜ(p(z = 0)v(z = 0))

=
∑

i=0,1 ℜ(x′iPi(Aixi +Biv(z = i))) − C1x1v(z = 1) − d1|v(z = 1)|2
−C0x0v(z = 0) − d0|v(0)|2

using the definition of D(A).

Then, recalling that Mi :=

(
−A′

iPi − PiAi C ′
i − PiBi

Ci −B′
iPi 2di

)
, we can deduce that

equation (10) holds. Now, since Mi ≥ 0 for i = 0, 1, we get that for all X in D(A),
(−AX, X)H ≥ 0, which prove that −A is a monotone operator.

3.2. Dissipative realizations for positive pseudo-differential time-operators
of diffusive type. For all γ ∈ (0, 1), let us introduce the following kernel function
hγ : R

+ → R
+, for all t > 0,

hγ(t) :=

∫ ∞

0

e−ξt dMγ(ξ) (11)

where dMγ(ξ) = µγ(ξ) dξ with density µγ(ξ) := sin(γπ)
π

ξ−γ . Following e.g. [23], we

can compute hγ(t) := 1
Γ(γ) t

γ−1, for t > 0, where Γ is the Euler gamma function.

The definition of the Riemann-Liouville fractional integral of order γ of a locally
integrable function v reads Iγv := hγ ⋆ v, a causal convolution; it enjoys the nice

property Iγ1 ◦ Iγ2 = Iγ1+γ2 , ∀γ1, γ2 > 0. Since I1v(t) :=
∫ t

0
v(τ) dτ is the integral

of function v, it is convenient to denote it also by ∂−1
t v; whence for any γ ∈ (0, 1)

the notation ∂
−γ
t v will be used preferably throughout the paper for the fractional

integral Iγ .



ASYMPTOTIC STABILITY OF WEBSTER-LOKSHIN EQUATION 7

The following functional spaces will be of interest in the sequel,

Hγ = L2(R+; C; dMγ) ,

Vγ = L2
(
R

+; C; (1 + ξ) dMγ

)
,

H̃γ = L2(R+; C; ξ dMγ) .

We also introduce the notations cγ :=
∫ ∞
0

dMγ(ξ)
1+ξ

<∞. The condition cγ <∞ will

be useful for the well-posedness condition.

3.2.1. Standard diffusive representations for fractional integrals. Let us define θ :
R

+ → C by, for all t > 0, θ(t) = hβ ⋆p (t), where ⋆ is the causal convolution product
(the definition of which has been recalled after (4)). Note that since hβ ∈ L1(0, T )
and p ∈ L2(0, T ), we have θ ∈ L2(0, T ). Let us consider the realization of the
input-output system p ∈ L2(0, T ) 7→ θ ∈ L2(0, T ) (which will help us in yielding a

representation of the fractional integral operator ∂−β
t introduced in (1), as done in

Section 3.3 below, see e.g., [21, 27, 26])

∂tϕ(ξ, t) = −ξ ϕ(ξ, t) + p(t) , (12)

ϕ(ξ, 0) = 0 , ∀ ξ ∈ R
+ , (13)

θ(t) =

∫ +∞

0

ϕ(ξ, t) dMβ(ξ) . (14)

Using hβ ⋆ p ∈ L2(0, T ), we have |hβ ⋆ p(t)| < ∞ for a.e. t ∈ (0, T ). Then using
integral representation (11) of hβ and Fubini theorem, we get

∫ ∞

0

∫ t

0

e−ξ(t−τ)p(τ) dτ dMβ(ξ) =

∫ t

0

∫ ∞

0

e−ξ(t−τ) dMβ(ξ)p(τ) dτ ,

and thus θ(t) = ∂
−β
t p(t) for a.e. t ∈ (0, T ). The following energy balance can be

formally obtained:

ℜ(

∫ T

0

p(t) θ(t) dt) =
1

2

∫ ∞

0

|ϕ(ξ, T )|2 dMβ(ξ) +

∫ T

0

∫ ∞

0

ξ |ϕ(ξ, t)|2 dMβ(ξ) dt .

(15)
Similarly to (8), the right-hand side of (15) is split into two terms, a storage function
evaluated at time T only, the following energy

Eϕ(T ) :=
1

2
‖ϕ(T )‖2

Hβ
=

1

2

∫ ∞

0

|ϕ(ξ, T )|2 dMβ(ξ),

and a dissipated energy on the time interval (0, T ).

3.2.2. Extended diffusive representations for fractional derivatives. For α ∈ (0, 1),

let us define θ̃ : R
+ → C by, for all t > 0, θ̃(t) = d

dt
(h1−α ⋆ p) (t). It can be shown

that θ̃(t) = ∂α
t p, the Riemann-Liouville fractional derivative of order α of function

p; indeed the above formula reads ∂α
t p(t) = d

dt

∫ t

0
h1−α(t− τ) p(τ) dτ , see e.g. [23].

Here, under regularity assumptions on function p, the property ∂α1

t ◦ ∂α2

t = ∂α1+α2

t

holds ∀α1, α2 > 0 such that α1 + α2 < 1.
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Consider now the dynamical system with input p ∈ H1(0, T ) and output θ̃ ∈
L2(0, T ):

∂tϕ̃(ξ, t) = −ξ ϕ̃(ξ, t) + p(t) , (16)

ϕ̃(ξ, 0) = 0 , ∀ ξ ∈ R
+ , (17)

θ̃(t) =

∫ ∞

0

∂tϕ̃(ξ, t) dM1−α(ξ) =

∫ ∞

0

[p(t) − ξ ϕ̃(ξ, t)] dM1−α(ξ) . (18)

Then it can be checked that θ̃(t) = ∂α
t p(t) for a.e. t ∈ (0, T ). The following energy

balance can be formally computed:

ℜ(

∫ T

0

p(t) θ̃(t) dt) =
1

2

∫ ∞

0

|ϕ̃(ξ, T )|2ξ dM1−α(ξ) +

∫ T

0

∫ ∞

0

|p− ξ ϕ̃|2 dM1−α dt .

(19)
Again the right-hand side of (19) is split into two terms, a storage function evaluated
at time T only

Ẽeϕ(T ) :=
1

2
‖ϕ̃(T )‖2

eH1−α
=

1

2

∫ ∞

0

|ϕ̃(ξ, T )|2ξ dM1−α(ξ),

and a dissipated energy on the time interval (0, T ).

3.3. An abstract formulation. Now, using representations (6)-(7), (12)-(14), and
(16)-(18), when ε 6= 0 and η 6= 0, the global system (2)-(3)-(5) can be realized into
the first order differential equation in time

d

dt
X = AX , (20)

where X := (x′0, x
′
1, p, v, ϕ, ϕ̃)′ and

A




x0

x1

p

v

ϕ

ϕ̃




:=




A0x0 +B0 v(z = 0)
A1x1 +B1 v(z = 1)

−r−2∂zv − ε
∫ +∞
0

ϕ dMβ − η
∫ +∞
0

[p − ξ ϕ̃] dM1−α

−r2 ∂zp

−ξϕ+ p

−ξϕ̃+ p



. (21)

The boundary conditions are, for each i ∈ {0, 1},

p(i) = ℓi(Cixi + di v(i)) (22)

must be taken into account in the functional spaces of the solutions. In the sequel,
we shall analyze the well-posedness of this system. Let us compute, at least formally,
the following energy balance
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d

dt

(
1

2

∫ 1

0

|p(z, t)|2 r2(z) dz +
1

2

∫ 1

0

|v(z, t)|2 r−2(z) dz

)

+
d

dt

(
Ex(t) +

∫ 1

0

ε(z)Eϕ(z, t) r2(z) dz +

∫ 1

0

η(z)Ẽeϕ(z, t) r2(z) dz

)

= −1

2

(
x′0 v(0)

)
M0

(
x0

v(0)

)
− 1

2

(
x′1 v(1)

)
M1

(
x1

v(1)

)

−
∫ 1

0

‖ϕ‖2
eHβ
ε(z) r2(z) dz −

∫ 1

0

‖p− ξ ϕ̃‖2
H1−α

η(z) r2(z) dz,

(23)
that will be proved in Theorem 1 below.

3.4. Well-posedness of the global system. We shall apply Lümer-Phillips the-
orem in order to show existence and uniqueness of solutions to (20).

According to identity (23), the natural energy space for the solution X would be
the following Hilbert space:

H := C
n0 × C

n1 × L2
p × L2

v × L2(0, 1;Hβ ; ε r2 dz) × L2(0, 1; H̃1−α; η r2 dz) ,

with norm, the square of which is equal to

‖X‖2
H =

∑

i=0,1

x′iPixi +

∫ 1

0

|p|2 r2 dz +

∫ 1

0

|v|2 r−2 dz

+

∫ 1

0

( ∫ ∞

0

|ϕ(ξ)|2 dMβ(ξ)
)
ε(z) r2(z) dz

+

∫ 1

0

( ∫ ∞

0

ξ|ϕ̃(ξ)|2 dM1−α(ξ)
)
η(z) r2(z) dz .

It is such that its hermitian product for X = (x′0, x
′
1, p, v, ϕ, ϕ̃)′ and Y = (y′0, y

′
1, q, w, ψ, ψ̃)′

satisfies:

ℜ(X , Y)H =
∑

i=0,1

ℜ(x′iPiyi) + ℜ(p, q)L2
p

+ ℜ(v, w)L2
v

+

∫ 1

0

ℜ(ϕ, ψ)Hβ
ε(z) r2(z) dz +

∫ 1

0

ℜ(ϕ̃, ψ̃) eH1−α
η(z) r2(z) dz .

We define the Hilbert space V as:

V := C
n0 × C

n1 ×H1
p ×H1

v × L2(0, 1;Vβ ; ε r2 dz) × L2(0, 1; H̃1−α; η r2 dz) ,

where L2(0, 1;Vβ ; ε r2 dz) and L2(0, 1; H̃1−α; η r2 dz) are respectively the sets of

functions ϕ and ϕ̃ such that
∫ 1

0
‖ϕ‖2

Vβ
ε(z) r2(z) dz <∞ and

∫ 1

0
‖ϕ̃‖2

eH1−α

η(z) r2(z) dz <
∞.

We set as domain of the operator A, the space defined by:

D(A) :=





(x′0, x
′
1, p, v, ϕ, ϕ̃)′ ∈ V,

∣∣∣∣∣∣∣∣

p(z = 0) = −C0x0 − d0 v(z = 0)
p(z = 1) = C1x1 + d1 v(z = 1)
(p− ξϕ) ∈ L2(0, 1;Hβ ; ε r2 dz)
(p− ξϕ̃) ∈ L2(0, 1;V1−α; η r2 dz)





. (24)

Note that D(A) is densely embedded in H.
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Lemma 2. The operator A : D(A) ⊂ H → H is well-defined.

The proof of this lemma is postponed to Appendix A. The well-posedness of the
global system is established in the following result.

Theorem 1. Operator A generates a C0-semigroup of contractions and, for each
initial condition X0 ∈ H, there exists a unique weak solution X ∈ C0([0,+∞);H)∩
C1([0,+∞);D(A∗)′) to

{
d

dt
X (t) = AX (t) , ∀t > 0,

X (0) = X0 ;
(25)

where D(A∗)′ is the topological dual of D(A∗) with respect to the pivot space H.
Moreover, for each initial condition X0 ∈ D(A), there exists a unique strong

solution X ∈ C0([0,+∞);D(A)) ∩ C1([0,+∞);H) to (25) and it satisfies

d

dt

{
1

2
‖X (t)‖2

H

}
= ℜ(AX (t), X (t))H ≤ 0 . (26)

Proof. We shall first prove the monotonicity of the operator −A : D(A) ⊂ H → H.
Let X = (x′0, x

′
1, p, v, ϕ, ϕ̃)′ ∈ D(A). Using (10), we have

ℜ(−AX, X)H =
1

2

(
x′0 v(0)

)
M0

(
x0

v(0)

)
+

1

2

(
x′1 v(1)

)
M1

(
x1

v(1)

)

+ℜ
∫ 1

0

( ∫ +∞

0

ϕ dMβ

)
p ε r2 dz

+ℜ
∫ 1

0

( ∫ +∞

0

[p− ξϕ̃] dM1−α

)
p η r2 dz

+

∫ 1

0

ℜ(ξϕ− p, ϕ)Hβ
ε r2 dz +

∫ 1

0

ℜ(ξϕ̃− p, ϕ̃)H̃1−α
η r2 dz

=
1

2

(
x′0 v(0)

)
M0

(
x0

v(0)

)
+

1

2

(
x′1 v(1)

)
M1

(
x1

v(1)

)

+

∫ 1

0

( ∫ +∞

0

ξϕϕ dMβ

)
ε r2 dz

+

∫ 1

0

( ∫ +∞

0

[p− ξϕ̃] [p− ξϕ̃] dM1−α

)
η r2 dz

=
1

2

(
x′0 v(0)

)
M0

(
x0

v(0)

)
+

1

2

(
x′1 v(1)

)
M1

(
x1

v(1)

)

+

∫ 1

0

‖ϕ‖2
eHβ
ε r2 dz +

∫ 1

0

‖p− ξ ϕ̃‖2
H1−α

η r2 dz .

therefore ℜ(−AX , X )H ≥ 0, for all X in D(A) and the inequality in equation (26)
will be fulfilled.

The maximality of −A has been already proved in [15] and [14, Theorem 2.2.1],
by applying Lax-Milgram theorem: in this latter reference however, only strong
solutions were examined (i.e. when X0 lies in D(A)); moreover, only real-valued
functional spaces were considered, whereas here, complex-valued functional spaces
are allowed, and their study proves necessary for the spectral consideration of sec-
tion 4 below.
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An alternative and new proof provided here is to note that the maximality of
−A is a special case of Proposition 1 below, with λ = 1.

From the monotonicity and maximality of the operator −A, and applying Lümer-
Phillips theorem (see e.g. [19, Theorem 2.27]), one concludes that A generates a
C0-semigroup of contraction, and that (26) holds. The existence and uniqueness
of weak or strong solution can be found in e.g. [12, Chapter 3]. Concerning the
regularity of the weak solutions, we refer to [32, Theorem 4.1.6], where the space
X−1 is defined and identified as D(A∗)′ in [32, Proposition 2.10.2].

4. Asymptotic stability. The aim of this section is to prove the following:

Theorem 2. Under Assumption 1, we have the asymptotic stability property for
(1) with the boundary conditions (5). It means that both the following properties
hold:

• (Stability) for each initial condition X0 ∈ H, the unique (weak) solution X ∈
C0([0,+∞);H) to (25) satisfies

‖X (t)‖H ≤ ‖X0‖H ;

• (Attractivity) for each initial condition X0 ∈ H, the unique (weak) solution
X ∈ C0([0,+∞);H) to (25) satisfies

‖X (t)‖H −→t→∞ 0 .

Let us first make a comment of physical nature on the above attractivity result:
as soon as ε > 0 or η > 0, even with homogenous Dirichlet or Neumann boundary
conditions instead of (5), this result would be true, as already proved in [22, §3.]. In
the opposite case, when both ε = 0 and η = 0, Robin-type boundary conditions (5)
with item 2 of Assumption 1 are required to prove the attractivity result, as already
done in [22, §2.].

The proof of the stability part of Theorem 2 follows from the fact that A generates
a semigroup of contractions, as claimed in Theorem 1.

Now, to prove the attractivity part of Theorem 2, let us apply [2, Stability
theorem], that is recalled here:

Theorem 3. [2, Stability theorem] Let us consider the infinitesimal generator A
of a bounded C0-semigroup on a reflexive Banach space. Assume that no eigenvalue
of A lies on the imaginary axis. If σ(A) ∩ iR is countable, then the semigroup
generated by A is attractive, which means that the solutions X of the differential

equation
d

dt
X (t) = AX (t) tend to 0 with t→ ∞.

The attractivity part of Theorem 2 follows from this result, Theorem 1 and both
the following lemmas:

Lemma 3. We have

σ(A) ∩ {iα, α ∈ R, α 6= 0} = ∅ .

Lemma 4. λ = 0 is not an eigenvalue of A.

Let us first prove Lemma 4.
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Proof. From (21) we get that (x0, x1, p, q, ϕ, ϕ̃) ∈ Ker(A) ∩D(A) if and only if





−A0x0 −B0v(0) = 0
−A1x1 −B1v(1) = 0

1
r2 ∂zv + ε

∫ ∞
0
ϕ dMβ(ξ) + η

∫ ∞
0

(p− ξϕ̃) dM1−α(ξ) = 0
∂zp = 0
ξϕ = p

ξϕ̃ = p

(27)

First note that, in the special case ε = η = 0 when there is no internal damping,
system (27) simplifies into four equations only, the two differential equations on v, p
imply that they are constant functions, and the two algebraic equations on x0, x1

impose the boundary conditions on v, p; as in the general case below, these functions
are found to be 0 thanks to item 2 of Assumption 1.
In the general case, the fourth equation of (27) implies that p is a constant function.
Now the third and the fifth equation of (27) imply that 1

r2 ∂zv+ε
∫ ∞
0

p
ξ

dMβ(ξ) = 0.

Since dMγ(ξ) = sin(γπ)
π

ξ−γ dξ, the integral
∫ 1

0
p
ξ

dMβ(ξ) converges if and only if

p = 0. Thus p is identically equal to zero. This implies with the third equation of
(27) that v is a constant function.

Let us recall the boundary conditions p(z = 0) = −C0x0 − d0 v(z = 0) and
p(z = 1) = C1x1 +d1 v(z = 1). Since (6)-(7) is a minimal realization of Zi and with
item 1 of Assumption 1, s = 0 is not a pole of Zi and thus Ai is invertible for each
i = 0, 1. This gives x0 = −A−1

0 B0v(0) and thus p(0) = (−C0A
−1
0 B0 − d0))v(0) =

−Z0(s = 0)v(0). Similarly, we have p(1) = Z1(s = 0)v(1). Recall that, under
item 2 of Assumption 1, the acoustic impedances Zi(s) are strictly positive real,
thus p = v = 0.

Now ξϕ = 0 and ξϕ̃ = 0 are equivalent to ϕ(ξ) = 0 and ϕ̃(ξ) = 0, for all ξ > 0.
This concludes the proof of Lemma 4.

Thus to complete the proof of Theorem 2, it remains to prove Lemma 3; it is a
special case of the Proposition 1 below with λ = iω 6= 0.

Proposition 1. For λ ∈ {iω, ω 6= 0} ∪ {λ ∈ R, λ > 0}, the resolvent operator
(λI −A)−1 is a bounded operator from H to H.

Proof of Proposition 1. Let λ ∈ {iω, ω 6= 0} ∪ {λ ∈ R, λ > 0}. Let us first note
that, for all (x′0, x

′
1, p, v, ϕ, ϕ̃)′ ∈ D(A),

(λI −A)




x0

x1

p

v

ϕ

ϕ̃




=




λx0 −A0x0 −B0v(z = 0)
λx1 −A1x1 −B1v(z = 1)

λp+ r−2∂zv + ε
∫ ∞
0
ϕdMβ + η

∫ ∞
0

(p− ξϕ̃) dM1−α

λv + r2∂zp

λϕ+ ξϕ− p

λϕ̃+ ξϕ̃− p




(28)
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Let us consider the following resolvent equation, for all (y′0, y
′
1, f, g, χ, χ̃)′ ∈ H, we

look for some (x′0, x
′
1, p, v, ϕ, ϕ̃)′ ∈ D(A) such that




y0
y1
f

g

χ

χ̃




= (λI −A)




x0

x1

p

v

ϕ

ϕ̃




. (29)

We divide the proof into five steps, as follows:

Step 1: solving (29) with respect to (x0, x1);
Step 2: solving (29) with respect to p;
Step 3: solving (29) with respect to v;
Step 4: solving (29) with respect to (ϕ, ϕ̃);
Step 5: checking that the solution (x0, x1, p, v, ϕ, ϕ̃) belongs to D(A).

Step 1: solving (29) with respect to (x0, x1). Recall that, under item 2 of
Assumption 1, Zi(s) = di + Ci(s Ini

− Ai)
−1Bi is strictly positive real and the

realization is minimal: thus, all eigenvalues of Ai are poles of Zi(s), with strictly
negative real parts. Thus λ 6∈ σ(Ai) and one can solve the first two algebraic
equations with respect to x0, x1,

xi = (λIni
−Ai)

−1(yi +Biv(i)) (30)

for i = 0, 1. At this stage the function v is still to be determined.
Imposing from now on that we look for solutions belonging to D(A), we have

p(z = i) = ℓi(Cixi + di v(z = i)) for each i = 0, 1, and thus, with (30)

p(i) = ℓi
(
Zi(λ)v(i) + Ci(λIni

−Ai)
−1yi

)
, (31)

and

v(i) =
1

Zi(λ)

(
ℓip(i) − Ci(λIni

−A)−1yi

)
. (32)

Note that Zi(λ) 6= 0, since the acoustic impedances are strictly positive real, and
λ > 0 or λ = iω with ω 6= 0.

Step 2: solving (29) with respect to p. With the last two equations of (29),
we get

ϕ =
χ+ p

λ+ ξ
, (33)

and

ϕ̃ =
χ̃+ p

λ+ ξ
. (34)

Both equations imply

ϕ =
1

λ+ ξ
p+

1

λ+ ξ
χ , (35)

and

p− ξϕ̃ =
λ

λ+ ξ
p− ξ

λ+ ξ
χ̃ . (36)
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Together with (28), the third equation of (29) yields

(
λ+ ε

∫ ∞

0

1

λ+ ξ
dMβ(ξ) + η

∫ ∞

0

λ

λ+ ξ
dM1−α(ξ)

)
p+ r−2∂zv = h (37)

where h is defined by

h := f − ε

∫ ∞

0

χ(ξ)

λ+ ξ
dMβ(ξ) + η

∫ ∞

0

ξχ̃(ξ)

λ+ ξ
dM1−α(ξ) .

Using Cauchy-Schwarz inequality (with χ ∈ Hβ locally, and χ̃ ∈ H̃1−α locally) and
using the boundness of ε and η, one can easily check that h ∈ L2

p.
We choose to solve (37) in the unknown variables (p, v) in a weak sense, in order

to recover the regularity that is needed. To do that, we introduce q ∈ H1
p . We have

r2∂zq ∈ L2
v and, with the fourth equation of (29), g = λv + r2∂zp ∈ L2

v. Thus

−λ
∫ 1

0

v∂zq dz = −
∫ 1

0

g∂zq dz +

∫ 1

0

r2∂zp∂zq dz .

By integrating in part in the first integral, we get

λ

∫ 1

0

∂zvq dz = −
∫ 1

0

g∂zq dz + λ(v(1)q(1) − v(0)q(0)) +

∫ 1

0

r2∂zp∂zq dz . (38)

Taking the hermitian product of (37) with λqr2, and using (38), we get

λ2
∫ 1

0
pqr2 dz + λ

∫ ∞
0

1
λ+ξ

dMβ(ξ)
∫ 1

0
pqεr2 dz + λ2

∫ ∞
0

1
λ+ξ

dM1−α(ξ)
∫ 1

0
ηpqr2 dz

+λ(v(1)q(1) − v(0)q(0)) −
∫ 1

0
g∂zq dz +

∫ 1

0
∂zp∂zqr

2 dz = λ
∫ 1

0
hqr2 dz . (39)

With (32), we compute

v(1)q(1) − v(0)q(0) =
1

Z1(λ)
p(1)q(1) +

1

Z0(λ)
p(0)q(0)

− 1

Z1(λ)
C1(λIn1

−A1)
−1y1q(1) (40)

+
1

Z0(λ)
C0(λIn0

−A0)
−1y0q(0)

Thus, using (40), we can rewrite (39) as an equation in the unknown p ∈ H1
p ,

such that a(p, q) = l(q) holds ∀q ∈ H1
p , for some appropriate sesquilinear form a

and anti-linear form l. In the case λ > 0, the complex version of Lax-Milgram
applies, the coercivity of the underlying sesquilinear form a being garanteed thanks
to ℜ(a(p, p)) ≥ min(1, λ2) ‖p‖H1

p
, the positivity of Zi(λ) for i = 0, 1 when λ > 0,

and the fact that λ > 0. This case is being used in Theorem 1, when proving the
maximality of A. But it is not general when λ = iω with ω 6= 0. The coercivity of
a is certainly lost in that case. This is the reason why we resort to the Fredholm
alternative, which is the proof that is presented here, which holds true in both cases.

With (40) at hand, we can rewrite (39) as

−(Kλp, q)H1
p

+ (p, q)H1
p

= l(q)
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where

(Kλp, q)H1
p

:= (−λ2 + 1)
∫ 1

0
pq r2 dz − λ

∫ ∞
0

1
λ+ξ

dMβ(ξ)
∫ 1

0
pq ε r2 dz

−λ2
∫ ∞
0

1
λ+ξ

dM1−α(ξ)
∫ 1

0
pq η r2 dz

− λ
Z1(λ) p(1)q(1) − λ

Z0(λ) p(0)q(0),

l(q) := λ
∫ 1

0
h q r2 dz +

∫ 1

0
g ∂zq dz + µ1 q(1) − µ0 q(0)

with

µi :=
λ

Zi(λ)
Ci(λIni

−Ai)
−1yi .

Note that l is anti-linear in H1
p . The continuity of l follows from trace theorem

and the definition of the hermitian product in H1
p . Thus, by Riesz representation

theorem, there exists an L ∈ H1
p such that we have, for all q ∈ H1

p ,

l(q) = (L, q)H1
p
.

Lemma 5. Operator Kλ : H1
p → H1

p is compact in H1
p .

The proof of this lemma is postponed to Appendix B.
Now, with the Fredholm alternative, only two cases may occur:

• either 1 is an eigenvalue of Kλ:
• or 1 is not an eigenvalue ofKλ and then (Kλ−I)−1 does exist and is continuous

on H1
p .

We may prove the following

Lemma 6. The value 1 is not an eigenvalue of Kλ.

Proof. To prove Lemma 6, we assume the converse and show a contradiction. If 1
is an eigenvalue, then there exists p ∈ H1

p , p 6= 0, such that (Kλp, p)H1
p

= (p, p)H1
p
.

By definition of the operator Kλ, we get

λ2
∫ 1

0
|p|2 r2 dz +

∫ 1

0
|∂zp|2 r2 dz +

∫ ∞
0

λ(λ+ξ)
|λ+ξ|2 dMβ(ξ)

∫ 1

0
|p|2 ε r2 dz (41)

+
∫ ∞
0

λ2(λ+ξ)
|λ+ξ|2 dM1−α(ξ)

∫ 1

0
|p|2ηr2 dz + λ

Z1(λ) |p(1)|2 + λ
Z0(λ) |p(0)|2 = 0 .

Two cases may been inspected:

• if λ > 0, then, due to item 2 of Assumption 1, by inspecting the real part
of the left-hand side of (41), a strictly positive value is obtained: this is a
contradiction;

• else if λ = iω, with ω 6= 0, then, by inspecting the imaginary part of (41) we
get

ℑ(λ)
( ∫ ∞

0
ξ

|λ+ξ|2 dMβ(ξ)
∫ 1

0
|p|2 ε r2 dz

+
∫ ∞
0

|λ|3
|λ+ξ|2 dM1−α(ξ)

∫ 1

0
|p|2 η r2 dz + ℜ(Z1(λ)) |p(1)|2

|Z1(λ)|2

+ℜ(Z0(λ)) |p(1)|2
|Z0(λ)|2

)
= 0

which is a contradiction with ℜ(Zi(iω)) > 0 (which follows from item 2 of
Assumption 1), ε(z) ≥ 0, and η(z) ≥ 0, for all z ∈ [0, 1].

This concludes the proof of Lemma 6.
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Combining the Fredholm alternative and Lemma 6, the map H → H1
p ,

(y0, y1, f, g, χ, χ̃) 7→ p exists and is continuous.

Step 3: solving (29) with respect to v. With the fourth equation of (29) we
can define v = 1

λ
(g − r2 ∂zp). It only belongs to L2

v a priori. But with (37),

p ∈ H1
p ⊂ L2

p and h ∈ L2
p, we have ∂zv ∈ L2

p hence v ∈ H1
p . Therefore the map

H → H1
v , (y0, y1, f, g, χ, χ̃) 7→ v is well-defined and continuous.

Step 4: solving (29) with respect to (ϕ, ϕ̃). In order to check that the unique
solution X belongs to V, we need to prove that ϕ ∈ L2(0, 1;Vβ ; ε r2 dz) and ϕ̃ ∈
L2(0, 1; H̃1−α; η r2 dz), using p ∈ H1

p ⊂ L2
p, χ ∈ L2(0, 1;Hβ ; ε r2 dz) and χ̃ ∈

L2(0, 1; H̃1−α; η r2 dz).
Note that, for all ξ > 0,

1

|λ+ ξ| ≤ max

(
1,

1

|λ|

) √
2

1 + ξ
. (42)

and let Mλ :=
√

2 max
(
1, 1

|λ|

)
.

Recall (35). On the first hand, due to (42), since ‖ 1
1+ξ

‖2
Vβ

= cβ one has

‖ 1
λ+ξ

p‖2
L2(0,1;Vβ ;ε r2 dz) ≤ Mλ‖ 1

1+ξ
p‖2

L2(0,1;Vβ ;ε r2 dz)

≤ Mλcβ ‖ε‖∞ ‖p‖2
L2

p
;

on the other hand, since ‖ 1
1+ξ

χ‖2
Vβ

= ‖ 1√
1+ξ

χ‖2
Hβ

, then one has

‖ 1
λ+ξ

χ‖2
L2(0,1;Vβ ;ε r2 dz) ≤ Mλ‖ 1

1+ξ
χ‖2

L2(0,1;Vβ ;ε r2 dz)

≤ Mλ‖χ‖2
L2(0,1;Hβ ;ε r2 dz).

Similar considerations apply to ϕ̃ = 1
λ+ξ

p + 1
λ+ξ

χ̃; indeed ‖ 1
1+ξ

‖2
eH1−α

≤ c1−α

implies

‖ 1
λ+ξ

p‖2
L2(0,1; eH1−α;η r2 dz)

≤ Mλ‖ 1
1+ξ

p‖2
L2(0,1; eH1−α;η r2 dz)

≤ Mλc1−α ‖η‖∞ ‖p‖2
L2

p
;

whereas we have

‖ 1

λ+ ξ
χ̃‖2

L2(0,1; eH1−α;η r2 dz)
≤Mλ‖χ̃‖2

L2(0,1; eH1−α;η r2 dz)
.

Thus, with (37), the map

H → L2(0, 1;Vβ ; ε r2 dz) × L2(0, 1; H̃1−α; η r2 dz)
(y0, y1, f, g, χ, χ̃) 7→ (ϕ, ϕ̃)

is also well-defined and continuous.

Step 5: checking that the solution (x0, x1, p, v, ϕ, ϕ̃) belongs to D(A). At the
end of Step 4, it is proved that there exists a unique (x0, x1, p, v, ϕ, ϕ̃) in V solving
(29). It remains to show that this solution belongs to D(A).

It has already been taken explicitely into account that p(z = 0) = −C0x0 −
d0 v(z = 0), p(z = 1) = C1x1 + d1 v(z = 1) in Step 1 of this proof.

What remains to be proved is that p − ξϕ ∈ L2(0, 1;Hβ ; ε r2 dz) and p − ξ ϕ̃ ∈
L2(0, 1;V1−α; η r2 dz). Let us check that successively.
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• From ξ ϕ − p = − λ
λ+ξ

p + ξ
λ+ξ

χ and (42), one easily deduces that (p − ξϕ) ∈
L2(0, 1;Hβ ; ε r2 dz), since

‖ λ

λ+ ξ
p‖2

L2(0,1;Hβ ;ε r2 dz) ≤ |λ|Mλcβ ‖ε‖∞ ‖p‖2
L2

p
,

and using ξ
1+ξ

≤ 1,

‖ ξ

λ+ ξ
χ‖2

L2(0,1;Hβ ;ε r2 dz) ≤Mλ‖χ‖2
L2(0,1;Hβ ;ε r2 dz).

• One checks that ξ ϕ̃ − p = − λ
‖a+ξ

p + ξ
λ+ξ

χ̃ ∈ L2(0, 1;V1−α; η r2 dz) by firstly

noting that

‖ λ

λ+ ξ
p‖2

L2(0,1;V1−α;η r2 dz) ≤ |λ|Mλc1−α ‖η‖∞ ‖p‖2
L2

p
,

and secondly using ‖ ξ
λ+ξ

χ̃‖2
V1−α

≤Mλ‖
√

ξ
1+ξ

χ̃‖2
eV1−α

≤Mλ‖χ̃‖2
eV1−α

to deduce

‖ ξ

λ+ ξ
χ̃‖2

L2(0,1;V1−α;η r2 dz) ≤Mλ‖χ̃‖2
L2(0,1;eV1−α;η r2 dz)

.

This concludes the proof of Proposition 1.

5. Conclusion. In this paper, the stability of Webster-Lokshin equation has been
proven, under physically relevant assumptions. This equation models the sound
propagation in a bounded acoustic domain. A representation in an infinite dimen-
sional space has been used to represent the fractional integrals and fractional deriva-
tives, whereas the boundary conditions of the partial differential equation are given
by a finite dimensional dynamics. Exploiting the energy decay is not sufficient to
prove the stability since the LaSalle invariance principle did not apply. However
a study of the resolvent equation is fruitful when using the Arendt-Batty stability
condition.

This work leaves many questions open. In particular it could be interesting to
study the speed of convergence as the time goes to the infinity. More precisely, even
if it is known that exponential stability does not hold (see e.g. [26, Remark 2.7] for
the one-dimensional case, or [21] for fractional differential equations), employing the
resolvent equation approach and applying [4, 5], we might be able to characterize
the speed of decay.

As a possible illustration of previous research line, designing a numerical scheme
as in [14, Chapter 3] may me fruitful to check the convergence speed of the energy.

Another question is to relax item 1 of Assumption 1, and make use of a dissipative
realization in an infinite-dimensional space, as in [3], for a passive non-rational
impedance.

More difficult questions of theoretical nature then arise when dealing with non-
linear PDE models, such as the Burgers-Lokshin model, which is being used in
musical acoustics to model brassy effects in wind instruments: both nonlinearity
and fractional derivatives are to be found in this wave equation. But different
techniques to study asymptotic stability, if any, will have to be used, following e.g.
[10] and references therein. Again an energy balance can be fruitful to compute
candidate Lyapunov functions.
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Appendix A. Proof of Lemma 2. To prove that A : D(A) ⊂ H → H is well-
defined, let us consider each term of (21) separately.

• for the first two components of equation (21), due to the trace theorem

|v(z = i)| ≤ c0 ‖v‖H1

for some positive constant c0, therefore |v(z = i)| ≤ c0 ‖r2‖L∞‖v‖H1
v
;

• for the third component, on the one hand we have

‖r−2 ∂zv‖L2
p

=

√∫ 1

0

(∂zv)2r−2 dz ≤ ‖v‖H1
v
.

One the other hand, using Schwarz inequality
∣∣∣∣
∫ ∞

0

ϕ dMβ

∣∣∣∣
2

≤
(∫ ∞

0

|ϕ|dMβ

)2

≤ cβ

∫ ∞

0

(1 + ξ)|ϕ|2 dMβ ;

hence ∥∥∥∥ε
∫ ∞

0

ϕ dMβ

∥∥∥∥
2

L2
p

≤ cβ ‖ε‖L∞ ‖ϕ‖2
L2(0,1;Vβ ;εr2 dz).

Finally, using again Schwarz inequality, we have
∣∣∫ ∞

0
(p− ξϕ̃) dM1−α

∣∣2 ≤
∣∣∫ ∞

0
(p− ξϕ̃) dM1−α

∣∣2

≤
( ∫ ∞

0
(1 + ξ)|p− ξϕ̃|2 dM1−α(ξ)

)( ∫ ∞
0

1
1+ξ

dM1−α(ξ)
)
.

Hence
∥∥η

∫ ∞
0

(p− ξϕ̃) dM1−α

∥∥2

L2
p

=
∫ 1

0
η2(z)|

∫ ∞
0

(p− ξϕ̃) dM1−α|2r2(z) dz

≤ c1−α ‖η‖L∞

∫ 1

0
‖p− ξϕ̃‖2

V1−α
η(z)r2(z) dz

≤ c1−α ‖η‖L∞ ‖p− ξϕ̃‖2
L2(0,1;V1−α;η r2 dz);

• for the fourth component, obviously, ‖r2∂zp‖L2
v
≤ ‖p‖H1

p
;

• for the fifth component, (p−ξϕ) ∈ L2(0, 1;Hβ ; ε r2 dz), by definition of D(A);

• for the sixth component, since V1−α ⊂ H̃1−α, we simply have

‖p− ξϕ̃‖
L2(0,1; eH1−α;η r2 dz) ≤ ‖p− ξϕ̃‖L2(0,1;V1−α;η r2 dz).

Hence, there exists a C > 0, such that for all X ∈ D(A), ‖AX‖H ≤ C‖X‖V . This
concludes the proof of Lemma 2.

Appendix B. Proof of Lemma 5. We have Kλ = Kλ
0 +Kλ

1 +Kλ
2 where Kλ

0 , Kλ
1

and Kλ
2 are three operators on H1

p respectively defined by, for all (p, q) ∈ H1
p ×H1

p ,

(Kλ
i p, q)H1

p
= − λ

Zi(λ)p(i)q(i) , ∀i = 0, 1

(Kλ
2 p, q)H1

p
=

∫ 1

0
Ωλ(z) p q r2 dz

where Ω(z) := −λ2 + 1 − λ
∫ ∞
0

1
λ+ξ

dMβ(ξ) ε(z) − λ2
∫ ∞
0

1
λ+ξ

dM1−α(ξ) η(z).

The continuity Kλ
i , for i = 0, 1, is due to the continuity of the trace function.

Moreover, by Riesz representation theorem, (Kλ
i p, q)H1

p
= (p,̟i)H1

p
(q,̟i)H1

p
for a

suitable ̟i ∈ H1
p . Therefore {̟i}⊥ = Ker(Kλ⋆

i ) hence {̟i} = Im(Kλ
i ). Thus for

i = 0, 1, Kλ
i is of rank one, hence compact.

Now we note that, for all (p, q) ∈ H1
p ×H1

p ,

|(Kλ
2 p, q)H1

p
| ≤ C‖p‖H1

p
‖q‖H1

p

for a suitable C > 0. Thus Kλ
2 is continuous on H1

p .
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First, using Riesz representation theorem, it can easily be proved that Kλ
2 is

defined as a bounded operator on H1
p .

Second, taking q = Kλ
2 p in the definition, and using Cauchy-Schwarz inequality,

we prove the following:

∀p ∈ H1
p , ‖Kλ

2 p‖H1
p
≤ ‖Ωλ‖L∞ ‖p‖L2

p
.

Now, let (pn)n∈N be a bounded sequence in H1
p ; since (0, 1) is a bounded domain,

thanks to Rellich-Kondrakov theorem, we can extract a subsequence (pn)n′∈N that
is convergent in L2

p. Hence,

‖Kλ
2 pn′ −Kλ

2 pm′‖H1
p
≤ ‖Ωλ‖L∞ ‖pn′ − pm′‖L2

p
,

meaning that (Kλ
2 pn′)n′∈N is a Cauchy sequence in H1

p ; since the Hilbert space H1
p

is complete, it follows that the sequence (Kλ
2 pn′)n′∈N is convergent. Hence, operator

Kλ
2 : H1

p → H1
p is compact.

Therefore the operator Kλ : H1
p → H1

p is a compact operator in H1
p since it is

the sum of three compact operators.
This concludes the proof of Lemma 5.
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2009.

E-mail address: denis.matignon@isae.fr

E-mail address: Christophe.Prieur@gipsa-lab.fr


