
HAL Id: hal-01069809
https://hal.science/hal-01069809

Submitted on 6 Oct 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Radial Basis Function (RBF)-based Interpolation and
Spreading for the Immersed Boundary Method

Francisco Toja-Silva, Julien Favier, Alfredo Pinelli

To cite this version:
Francisco Toja-Silva, Julien Favier, Alfredo Pinelli. Radial Basis Function (RBF)-based Interpolation
and Spreading for the Immersed Boundary Method. Computers and Fluids, 2014, 105, pp.66-75.
�10.1016/j.compfluid.2014.09.026�. �hal-01069809�

https://hal.science/hal-01069809
https://hal.archives-ouvertes.fr


Radial Basis Function (RBF)-based Interpolation and

Spreading for the Immersed Boundary Method

Francisco Toja-Silvaa,b,∗, Julien Favierc, Alfredo Pinellid
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Abstract

Immersed boundary methods are efficient tools of growing interest as they
allow to use generic CFD codes to deal with complex, moving and deformable
geometries, for a reasonable computational cost compared to classical body-
conformal or unstructured mesh approaches. In this work, we propose a
new immersed boundary method based on a radial basis functions frame-
work for the spreading-interpolation procedure. The radial basis function
approach allows for dealing with a cloud of scattered nodes around the im-
mersed boundary, thus enabling the application of the devised algorithm to
any underlying mesh system. The proposed method can also keep into ac-
count both Dirichlet and Neumann type conditions. To demonstrate the
capabilities of our novel approach, the imposition of Dirichlet boundary con-
ditions on a 2D cylinder geometry in a Navier-Stokes CFD solver, and the
imposition of Neumann boundary conditions on an adiabatic wall in an un-
steady heat conduction problem are considered. One of the most significant
advantage of the proposed method lies in its simplicity given by the algo-
rithmic possibility of carrying out the interpolation and spreading steps all
together, in a single step.
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1. Introduction

When considering complex geometries, immersed boundary (IB) methods
constitute an efficient alternative to avoid either difficult or even impossible
grid generation procedures when dealing with body-fitted formulations or
extra computational costs associated with unstructured grid solvers. Those
difficulties associated to classical body fitted or unstructured solvers, be-
come even more severe for moving or deformable boundary, as is the case in
fluid-structure interaction problems. Moreover, in those cases, the immersed
boundary methods are not restricted to small boundary displacements such
as other techniques based on smooth mesh deformation [1]. An alternative to
immersed boundary methods is the immersed finite element method (IFEM)
proposed by Zhang et al. [2]. This work extends the idea of the discrete
Delta functions to unstructured meshes using the idea of Reproducing Ker-
nel Particle Methods (RKPM). Both fluid and solid domains are modeled
with finite element methods and the continuity between the fluid and solid
sub-domains are enforced via the interpolation of the velocities, and the dis-
tribution of the forces with the reproducing kernel particle method (RKPM)
Delta function. The immersed boundary method was historically introduced
by Peskin [3], in a pioneering work focussed on heart dynamics. Since then
it has continuously evolved to tackle numerical simulations of new scien-
tific domains, from biomedical to chemical engineering and aeronautics. The
classical approach is to solve the problem equations on a uniform cartesian
grid (Eulerian) for both solid and fluid phases. The boundary of the solid
is described through a set of markers (Lagrangian) which do not coincide
with the fluid mesh points. The communications between fluid and solid is
done through volume forces that enforce the no-slip boundary condition and
ensure the conservation at the wall of linear momentum, force and torque by
means of interpolation-spreading operators (discrete Delta functions in the
case of the classical method). Using the same discrete Delta functions for
both interpolation and spreading guarantees conservation of energy, along
with conservation of force and torque [4].

A review of the different flavours of the method can be found in [5], where
they are divided in two groups. The first group of techniques, called “con-
tinuous forcing” [3, 6, 7], where the derivation of the body forces is carried
out before the discretisation step, have been widely used when dealing with
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sharp boundaries and rigid objects [5]. The second group termed as “discrete
forcing” methods [8, 12, 13, 14, 15, 16] is based on a set of singular body
forces, defined on the Eulerian fluid nodes, to enforce the desired boundary
values. This second group of techniques allows to use larger time-steps and,
certain formulations, can handle sharp boundaries too [14]. The immersed
boundary method that is proposed in the present work, which makes use of
radial basis functions (RBFs), can be classified within the second group.

Traditionally, RBFs have been used for scattered data interpolation and
their processing, and for function approximation. In the last decades, RBFs
have also been employed as basis functions for the solution of PDEs, in-
cluding fluid dynamics conservation laws (see the seminal paper by Kansa
[34]). Applications that are related with the present contribution, include
the interpolation of the displacements of boundary nodes of moving meshes
to inner unstructured domains [19], data transfer through interfaces of non-
matching meshes [20], multivariable interpolation in fluid-solid-interaction
problems [21], etc. More recently, RBFs have been also applied in the con-
text of immersed boundary methods. Specific works proposing RBFs for
interpolation in fluid-structure interaction applications are briefly reviewed
hereafter. Mai-Duy and Tran-Cong [22] introduce one-dimensional integrated
RBF networks within a collocation framework to solve PDEs on Cartesian
grids. In the proposed formulation, Dirichlet boundary conditions are en-
forced in a direct way, while Neumann boundary conditions are imposed
by means of integration constraints. Fang et al. [23] use Gaussian RBFs to
smooth Gibbs oscillations occurring in velocity derivatives near the immersed
boundary when spectral-like discretization of the Navier-Stokes equations is
used in conjunction with the IB method. Shankar et al. [24] introduce a para-
metric RBF model to represent the surface of the immersed elastic object.
This approach allows for tracking the deformation of the surface efficiently
since just a small set of Lagrangian markers is required to that end. Surface
boundary conditions are imposed via an interpolation-spreading approach us-
ing pseudo delta functions defined on a larger set of immersed surface nodes.
Liu et al. [25] use local RBFs (also termed as RBF-FD, i.e., RBF-generated
finite differences) to solve the compressible Navier-Stokes equations. The
boundary conditions are kept into account by modifing locally the values of
the nodes neighbouring the domain limiting surface in such a way that the
interpolated values are the desired ones at the boundary. The whole bound-
ary value enforcement procedure is carried out at each Runge-Kutta stage of
their time stepping algorithm (a three stage RK method). Thai-Quang et al.
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[17] present a direct forcing method based on compact integrated radial basis
functions, using a smoothed version of the discrete delta functions to trans-
fer the physical quantities between Eulerian and Lagrangian nodes. Shankar
et al. [18] use RBF-based symmetric Hermite interpolation to extend the
Augmented Direct Forcing method [16] to handle objects with concavities
or objects in close proximity. This modified version of the Augmented Di-
rect Forcing method was used in conjunction with an RBF-FD method for
solving reaction-diffusion equations on object surfaces. Their method only
requires the coordinates of the scattered nodes representing the surface and
its normal-to-the-surface vectors at those locations.

In the present work we propose an original immersed boundary method
based on radial basis functions interpolation. To the best of our knowledge,
the method differs from previous literature implementations, proving to be
easier to implement and more versatile than existing ones. The most signifi-
cant advantages of the present method are: i) it is aplicable to any underlying
grid system because based on an interpolation-spreading process defined on
a scattered cloud of nodes; ii) the weights of the RBF are calculated in-
dependently from the velocity of the nodes (i.e., for static geometries they
only depend on the geometry); and, iii) both interpolation and spreading (or
convolution) are carried out simultaneously in a single stage.

The paper is organised as follows: firstly, the formulation of the RBFs
used within the IB algorithm is presented; next, the numerical algorithm
that we envisaged to impose Dirichlet boundary conditions is presented and
validated in the context of a 2D Navier-Stokes solver. Afterwards, the im-
position of Neumann boundary conditions is discussed and applied in the
case of a 2D unsteady heat conduction problem. Finally, conclusions and
recommendations for further future works are given.

2. RBF interpolation from an arbitrarily scattered set of nodes

Following the basic idea behind immersed boundary methods, we define a
set of Lagrangian nodesXi, i = 1 · · ·m on the immersed surface Γ surrounded
by a cloud of neighbouring nodes (Eulerian nodes) xk, k = 1 · · ·n, belonging
to the underlying fluid grid. The key idea of the IB method is to compute the
fluid velocity at nodes Xi via interpolation from the xk, and thus find the set
of localised forces (per unit mass, and unit time) on the interface that restore
the desired velocity condition on Γ. Typically, this set of singular forces Fi,
defined on Γ, is later on distributed on the fluid nodes via a convolution
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(spreading) operation, obtaining a set of Eulerian forces fk, k = 1 · · ·n. More
details on how this procedure has been adapted to the present algorithm will
be illustrated later on. Here, we just highlight that one of the key ingredients
of any IB method is the transfer of a force field from the Lagrangian to the
Eulerian nodes and viceversa [4, 35]. We will write the relationship between
the force defined on the immersed surface and the one acting on the fluid as:

F = Wf, with F = (F1, F2, · · · , Fn)
T and f = (f1, f2, · · · , fm)

T (1)

where W is a transformation matrix with m rows and n columns (in general,
n 6= m) which entries depend on the basis functions used for the interpolation.
The W matrix must obey the constraint of having all its column-sum equal
to unity to conserve the total force,

∑m
i=1 Fi =

∑n
k=1 fk, and to guarantee

energy conservation (i.e., the work done by the forces in the two grid systems,
see [20, 21]). Indeed if

∑

i Wi,k = 1, we have:

∑

i

Fi =
∑

i

∑

k

Wi,kfk =
∑

k

fk
∑

i

Wi,k =
∑

k

fk (2)

Thus, the column-sum of W must be equal to unity independently of the
interpolatory technique that is used. Next, we assemble matrix W making
use of RBFs also introducing the inverse operator that transfer the force data
from the immersed interface to the fluid grid. We start by writing one of the
equations of (1), that provides the interpolated value on a point Xl of the
immersed surface as a function of the n values on the fluid grid:

Fl =
n∑

j=1

ωjfj , with Fl = F (Xl) and fj = f(xj) (3)

where ωi, i = 1, · · ·n are unknown interpolation weights. To determine the
values of the weights, we rewrite (3) as:

Fl =
n∑

j=1

[
n∑

k=1

λj,kφ(‖Xl − xk‖) + γj

]

︸ ︷︷ ︸

ωj

fj , (4)

Where φj,k = φ(‖xj − xk‖) is a radial basis function: a symmetric function
which value just depends on the Euclidean distance ‖xj−xk‖ between nodes.
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To determine the value of the unknown parameters λj,k and γj (and thus of
ωj), for each node xj , j = 1, · · · , n we impose the cardinality conditions:

n∑

k=1

λj,kφj,k + γj = δj,k (5)

(where δj,k is the usual Kroeneker symbol) together with the constraint that
the interpolant should exacly represent a constant function

∑n
k=1 λj,k = 0.

Thus, for each node of the support xj, we need to solve a linear system of
equations to determine the λj,k, k = 1 · · ·n:











φ1,1 · · · φ1,n 1
· · · · · · · · · · · ·
φj,1 · · · φj,n 1
· · · · · · · · · · · ·
φn,1 · · · φn,n 1
1 · · · 1 0





















λj,1

· · ·
λj,j

· · ·
λj,n

γj











=











0
· · ·
1
· · ·
0
0











(6)

For the present work we have used the inverse multiquadric radial basis
functions (IMQ-RBF):

φj,k ≡ φ(rj,k) := {
1

√
1 + (ǫrj,i)2

: j, k ∈ ℑl}, rj,k = ‖xj − xk‖ (7)

where ℑl denotes the interpolation support of node Xl (that is discussed in
detail later), ǫ > 0 is the shape parameter and rj,k the radial distance between
the nodes j and k. Note that φi,i = 1. The optimum value of the shape
parameter ǫ depends on the noise in the data set, and it has to be determined
according to each application. In summary, by solving the linear systems
formed by Eqs. (6) we determine the weights λj,k that are independent on
the location of Xl. Next, we compute the ωj by evaluating the expression
ωj =

∑n
k=1 λj,kφ(‖Xl − xk‖) + γj to be used in the interpolatory formula

(3). By considering all the Lagrangian points Xl, and thus all the respective
Eulerian support ℑl, we can compute all the weights ωj that correspond to
the entries of matrix W appearing in (1).

An important feature of this interpolant is that the weights λj,k can be also
used to approximate the value of the derivative (or of any linear differential
operator L(f)) at the Lagrangian node l. Indeed, we have:

L(f)(Xl) =

n∑

j=1

n∑

k=1

[λj,kL(φ)(‖Xl − xk‖) + γj ] fj (8)
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Where L(φ)(‖Xl−xk‖) is the linear differential operator applied to the IMQ-
RBF evaluated in Xl.

In the particular case of the normal derivative to the immersed boundary
Γ at point Xl where the unit normal vector is ~n and the tangent vector
is given by ~τ = [τx, τy]

T , one can define the linear differential operator via
the projection P = I − ττT (where I is the identity matrix). Using P , the
approximation to the normal derivative of a function f at Xl = (xl, yl) reads:

L(f)(Xl) = ~∇f · ~n =
n∑

j=1

n∑

k=1

P ~∇φ(‖Xl − xk‖)fj (9)

with ~∇φ(‖Xl − xk‖) = (∂xφ(‖Xl − xk‖), ∂yφ(‖Xl − xk‖))
T and:

∂xφ(‖Xl − xk‖) ≡ −
ǫ2(xl − xk)

(1 + (ǫrl,k)2)3/2
, (10)

∂yφ(‖Xl − xk‖) ≡ −
ǫ2(yl − yk)

(1 + (ǫrl,k)2)3/2
, (11)

i.e., the partial x and partial y derivatives of (7). The convergence order of
the IMQ-RBF depends on both the smoothness of the target function and
the node density of the data sites. For smooth target functions that lie in
its native space, the IMQ-RBF can exhibit spectral convergence. For a full
discussion, see [26]. In the present case, described in §3.1, the interpolation
functions have a first order convergence rate. The order that can be achieved
is mainly related with the support used for the interpolation. Figure 1 shows
the norm of the interpolation error ERBF at the immersed surface defined by

ERBF = max
l

{URBF} , (12)

where URBF refers to the interpolation error of an arbitrary known field at
each Lagrangian point l (difference between the interpolated value and the
known function at the point). The given results correspond to the method
and the support choice described in the next section.

3. Imposition of Dirichlet boundary conditions

A common way of dealing with the incompressible Navier Stokes equa-
tions is by employing a continuous projection method (see [9] and [10], for
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Figure 1: Norm of the interpolation error at the Lagrangian points for the
case described in §3.1. Red squares: interpolation error; solid line: ∆x (1st
order); dashed line: ∆x2 (2nd order).

example). In this framework, a popular time advancement procedure (as it
is done in [8] for instance) reads as:

u∗ − un

∆t
= −Nl(u

n, un−1)−Gφn−1 +
1

Re
L(u∗, un), (13)

for the predicted momentum equation, and

Lφ =
1

∆t
Du∗, (14)

for the value of the projector (i.e., the pseudo pressure) that enforces the
divergence free condition via:

un+1 = u∗ −∆tGφn, (15)
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In the given, time discretised equations, u∗ is the predicted velocity field, un

is the velocity field obtained at the time-step n, ∆t is the time step, Nl, G and
D are, respectively, the finite-difference discrete approximation of the non-
linear, the gradient and the divergence operators, L is the discrete Laplacian
and φ is a projection variable (related to the pressure field). Normally, all
those operators are defined on a staggered grid system [11].

To impose assigned Dirichlet boundary values on the immersed boundary
Γ, the above time sequence is modified by carrying out the time advancement
of the predicted momentum equations in two stages: Firstly, a fully explicit
prediction step is performed without body force (without keeping into ac-
count the Dirichlet values on Γ) by advancing Eq. (13). The predicted
velocity field u∗ leads to a predicted force field u∗/∆t (per unit mass), that
is interpolated on the immersed boundary using the procedure described in
the previous section. Next, we determine the necessary force per unit mass
required to enforce the desired boundary conditions on Γ.

F =
Uo

∆t
−

I(u∗)

∆t
, (16)

In (16), Uo is the desired velocity distribution on the immersed boundary, and
I is the interpolator operator (Eulerian mesh to immersed surface). Once the
value of the restoring force F on Γ has been determined, we seek corrections
to the momentum equation, discretised on the Eulerian mesh, by introducing
a set of singular body forces. In other words, we should determine the values
of f to be assigned to the interpolating Eulerian nodes to recover the values
of F on Γ given by (16):

f = R(u∗/∆t), (17)

where R refers to the interpolation-spreading using a radial basis function.
The regularized force f is then added to the right hand side of the momentum
equations, and the time advancement of Eq. (13) is repeated:

u∗ − un

∆t
= −Nl(u

n, un−1)−Gφn−1 +
1

Re
L(u∗, un) + f. (18)

The algorithm completes the time step with the usual solution of the pressure
Poisson equation, Eq. (14), and the completion of the projection step (i.e.,
equation (15)).
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3.1. Methodology

For sake of clarity, we consider Γ to be a circle of radius r, centred at
(xc,yc). The Eulerian nodes neighbouring the immersed surface belong to a
an anulus of width 2∆r defined along the immersed boundary. The nodes
enclosed in this region will be the ones involved with the interpolation and
spreading operations (see figure 2). We start by tagging the inner nodes,

Figure 2: Diagram of the interpolation support.

adjacent to the embedded surface, using the following condition:

Sr−∆r < (xin, yin) < Sr, (19)

Similarly, the outer nodes satisfy:

Sr < (xout, yout) < Sr+∆r. (20)

where Sr+α is the circumference of a circle of radius r+α centred at (xc,yc).
For more general geometries, to tag the inner and outer nodes, one could
resort to a level set function [28] (in the simple case of a circle given by
h(x, y) = (x−xc)

2+(y−yc)
2−r2) and discriminate the position according to

the sign of the function (positive/negative value at point (x,y) corresponds to
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an outer/inner location). The number of inner Eulerian nodes will also define
the number of Lagrangian nodes used to discretise Γ. The same number will
also define the size of the linear system to be solved for the interpolation-
spreading process (i.e., n, the size of matrixW of equation (1)). As explained
in the following, if the number of Lagrangian nodes is equal to the number of
inner Eulerian nodes, the resulting linear system will have the same number
of equations and unknowns (square matrix). Other choices are possible if a
least square approximation of the boundary values is seeked. In this case
to improve the accuracy of the method, one should specify a number of
Lagrangian nodes larger than the number of Eulerian nodes falling within the
internal part of the anulus. The interpolation support is shown in figure 2. A
number of numerical experiments has been performed considering different
boundary layer thickness (i.e., Reynolds numbers of the flow around the
circle) and different mesh sizes. Those numerical experiments suggest that
a good compromise between stability and accuracy is attained for a number
of Lagrangian nodes taken to be about three times the number of nodes in
the inner region. The set of all inner points corresponds to the union of the
interpolation supports of each Lagrangian node. The interpolation support
for each one of them, is determined using another smaller circle centered
on a point belonging to Sr and with a radius of ∆r. This circle is thus
tangent to both Sr+∆r and Sr−∆r (see figure 2). After a parametric study,
the value of ∆r = ∆x has been found to be robust over variations of the Γ
geometry (circular, elliptical, with sharp arcs, etc.). Both the inner Eulerian
and Lagrangian nodes that fall within this circle, constitute the inner subset
of the support that is used for the interpolation step.

Once the set of all the supports is defined, we proceed to interpolate the
fluid velocity onto the Lagrangian nodes using a the compact radial basis
function method described in the previous section. Firstly, we evaluate the
weights ωj(Xl) using (6) in conjunction with (7). Concerning the value of
the parameter ǫ appearing in (7), we have found, via a parametric study,
that the value ǫ = Re/∆x is a robust choice over variations of the Reynolds
number Re. This point clearly requires further investigation. However, in
this work, we simply use this empirically-determined value and found that
it performs quite well in the ranger 25 < Re < 250. During our numerical
experiments we have also systematically verified that the column-sum of all
weigths in matrix W (i.e., equation (1)) is indeed equal to unity.

Having determined the value of the interpolating weights, the fluid veloc-
ity (computed using Eq. (13) is estimated on each nodeXl by the Lagrangian

11



interpolation formula:

ul

∆t
= ω1

u1

∆t
+ ω2

u2

∆t
+ ...+ ωn

un

∆t
. (21)

As previously mentioned, the fluid velocity is decomposed into an esti-
mated velocity u∗ (computed by Eq. 13), and a regularized force f imposing
the desired conditions on Γ. In the specific case of homogeneous Dirichlet
conditions (no-slip: UXl

= 0 on Γ), the merging of the interpolated values
with the unknown values on the support, leads to:

0 = ωi1(
u∗

i1

∆t
+ fi1) + ...+ ωin(

u∗

in

∆t
+ fin) + ωo1

u∗

o1

∆t
+ ... + ωon

u∗

on

∆t
. (22)

Equation (22) is an overdetermined system of linear equations Wf = b,
having the values of f at the internal support nodes as unknowns. The
matrix W , and the right-hand-side of the system are given by:

W =










ωi1(l1) 0 0 ωi4(l1) 0
0 ωi2(l2) 0 ωi4(l2) 0
...

...
...

...
...

ωi1(ln−1) 0 0 0 ωi5(ln−1)

0 0 ωi3(ln) 0 ωi5(ln)










, (23)

and

b =











−
∑

ωi
u∗

i

∆t
|l1 −

∑
ωo

u∗

o

∆t
|l1

−
∑

ωi
u∗

i

∆t
|l2 −

∑
ωo

u∗

o

∆t
|l2

...

−
∑

ωi
u∗

i

∆t
|ln−1

−
∑

ωo
u∗

o

∆t
|ln−1

−
∑

ωi
u∗

i

∆t
|ln −

∑
ωo

u∗

o

∆t
|ln











(24)

As the matrix W is not necessarily squared, we use a classical least square
method to compute the regularized force fi:

W TWf = W T b. (25)

Before proceeding further, a word of caution is due. We have found that
when one or more external Eulerian nodes, belonging to the support, are
excessively close to the embedded surface (normal distance less than 0.1∆x),
the weights can take on very large values leading to numerical instabilities.

12



This numerical issue can be fixed by assigning to those nodes the same ve-
locity as the closest ones laying on Γ. In the case of non-regular grids, this
normal distance can be computed as 0.1∆r, being ∆r the thickness of the in-
terpolation support, which is defined according to the mean distance between
the cells close to the embedded surface. Since the boundary is approximated
as piecewise linear, the accuracy is hardly affected by dividing a segment into
two parts [13]. According to Gibou et al. [27], this approach preserve second
order accuracy when solving the Poisson equation in irregular domains.

3.2. Results and discussion

To validate the proposed methodology, we have considered the case of
a flow around a circular cylinder of diameter D at two Reynolds numbers,
ReD = 30 and ReD = 185. Following the numerical settings of [8], the
dimensions of the domain are Lx = 49D in streamwise direction and Ly =
34D in the normal direction. The center of the cylinder is located at (x, y) =
(9D, 17D). The mesh spacing is ∆x = ∆y = 0.0576D (Cartesian mesh).

The no-slip boundary condition at the cylinder wall are imposed using the
proposed algorithm. It is found that the methodology is able to reproduce
successfully the characteristics of the flow at both ReD = 30 and ReD = 185.
Figures 3 and 4 show the velocity fields and the vorticity contours. There is
a qualitative agreement with the literature: at ReD = 30 the flow remains
steady with the presence of a recirculating region in the wake; at ReD = 185,
periodic shedding vortices are formed downstream of the body (even if this
case is nominally a 3D one since an instability in the spanwise direction
should already be present, many authors have considered the 2D numerical
study of the flow).

A more quantitative analysis is provided in Table 1 that shows compar-
isons with the literature on the values of the main topological parameters of
the wake at Re = 30 (see figure 5). Table 2 gives quantitative comparisons
for the higher Re, unsteady case considering the values of the Strouhal num-
ber and the drag mean coefficient obtained. A general good agreement is
obtained, confirming the correct treatment of the boundary condition at the
wall using the present method.

Figure 6 shows the norm of the interpolation error El at the immersed
surface defined by

El = max
l

{Ul} , (26)

where Ul refers to the interpolated velocity computed at each Lagrangian
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(a) Streamwise velocity u. (b) Vertical velocity v.

(c) Vorticity contours.

Figure 3: Mean velocity and vorticity contours at ReD = 30.

l/D a/D b/D θ CD

Present 1.71 0.56 0.53 47.93 1.78
Pinelli et al. [8] 1.70 0.56 0.52 48.05 1.80
Coutanceau et al. [29] 1.55 0.54 0.54 50.00 -
Tritton [30] - - - - 1.74

Table 1: Comparison of the main parameters of the wake and the drag coef-
ficient at ReD = 30 with other works and experimental data.

point Xl after the advancement of the second corrected momentum equation.
From the figure, it clearly appears that the global method is of order one.
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(a) Streamwise velocity u. (b) Vertical velocity v.

(c) Instantaneous vorticity contours.

Figure 4: Instantaneous velocity and vorticity contours at ReD = 185.

St CD

Present 0.195 1.31
Pinelli et al. [8] 0.196 1.43
Vanella et al. [31] - 1.38
Guilmineau et al. [32] 0.195 1.28
Lu et al. [33] 0.195 1.31

Table 2: Comparison of the Strouhal number and the drag coefficient at
ReD = 185 with other works and experimental data.
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Figure 5: Shape parameters of the wake formed at Re = 30 [8].

4. Treatment of Neumann boundary conditions

We have tested the viability of our approach for imposing Neumann con-
ditions by considering a simple 2D heat conduction equation around a ther-
mically insulated cylinder.

Considering constant physical properties, and an implicit time advancing
treatment, the governing equation of the heat conduction problem reads as:

T n+1 − T n

∆t
= α∇2T n+1, (27)

where T is the temperature and α the thermal diffusivity, set to a value
of α = 110 · 10−6m2/s (which would correspond to copper thin plate). In
what follows, we describe the method by which Neumann conditions ∂T

∂~n
= 0

are imposed at the immersed surface.

4.1. Methodology

As for the case of Dirichlet conditions, the internal and the external nodes
of the Eulerian grid defined by the embedded surface are found using the level
set method. The subsequent selection of the support is also performed in the
same way as previously described. The choice on the number of Lagrangian
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Figure 6: Norm of the interpolation error at the immersed surface for a
Dirichlet boundary condition. Red squares: error u; blue asterisks: error v;
solid line: ∆x (1st order); dashed line: ∆x2 (2nd order).

nodes defining the immersed contour is more demanding for the case of Neu-
mann conditions. We have found that the minimal number necessary to
mantain the accuracy is about the double than the one required for imposing
Dirichlet values.

As already mentioned, the use of radial basis functions for the interpola-
tion of the derivative of the variable over the immersed boundary is a simple
variation of the technique used for the interpolation of the values of the
variable, thus rendering the method very friendly.

The first step is to evaluate the weights ωi of the function, applying the
following relationship between the Lagrangian node l and each Eulerian node
1 . . . n within the interpolation support:

φ~nl,1 = ω0 + ω1φ1,1 + ω2φ1,2 + ... + ωnφ1,n
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φ~nl,2 = ω0 + ω1φ2,1 + ω2φ2,2 + ... + ωnφ2,n

...

φ~nl,n = ω0 + ω1φn,1 + ω2φn,2 + ... + ωnφn,n, (28)

where φi,j is the radial basis function between the node i and the node
j, and φ~nl,i is the derivative radial basis function between the l Lagrangian
node and the i Eulerian node projected on the normal surface direction ~n,
as previously defined. By adding the extra condition: ω1 +ω2 + ...+ωn = 0,
the following linear system of equations is obtained.










1 φ1,2 ... φ1,n 1
φ2,1 1 ... φ2,n 1
...

...
. . .

...
...

φn,1 φn,2 ... 1 1
1 1 ... 1 0



















ω1

ω2
...
ωn

ω0










=










φ~nl,1

φ~nl,2
...

φ~nl,n

0










. (29)

By interpolating the value of the temperatune normal derivative at each
Lagrangian node as:

∂T

∂~n
= ω1T1 + ω2T2 + ...+ ωnTn; (30)

and following the same methodology as for the Dirichlet case, we can
write the equation:

0 = ωi1(T
∗

i1 + δi1) + ... + ωin(T
∗

in + δin) + ωo1T
∗

o1 + ...+ ωonT
∗

on, (31)

In (31), T ∗

i is the temperature on the boundary without having imposed any
condition of the surface, and δi is the correction term to be applied to the
nodes inside the embedded surface.

Using the same algebraic manipulations as for the Dirichlet case, we fi-
nally obtain the linear system W f = b, with

W =










ωi1(l1) 0 0 ωi4(l1) 0
0 ωi2(l2) 0 ωi4(l2) 0
...

...
...

...
...

ωi1(ln−1) 0 0 0 ωi5(ln−1)

0 0 ωi3(ln) 0 ωi5(ln)










(32)
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and

b =










−
∑

ωiT
∗

i |l1 −
∑

ωoT
∗

o |l1
−
∑

ωiT
∗

i |l2 −
∑

ωoT
∗

o |l2
...

−
∑

ωiT
∗

i |ln−1
−

∑
ωoT

∗

o |ln−1

−
∑

ωiT
∗

i |ln −
∑

ωoT
∗

o |ln










(33)

Again, if W is not a squared matrix, the solution is found by resorting
to a least square formulation: W T W δ = W T b. We have found that
the direct sum of the correction terms δi to the estimated temperatures T ∗

i

induce a strong jump close to the immersed body. To avoid this problem,
the corrections δi are included in the governing equation of the problem (27)
instead. If Ti denotes the final (i.e., that keeps into account the Neumann
conditions) temperature field, the values T ∗

i = Ti−δi are introduced into the
finite difference-discretized governing equation, obtaining:

aP (Ti,j − δi,j) + aS(Ti,j−1 − δi,j−1) + aN(Ti,j+1 − δi,j+1)+

aE(Ti+1,j − δi+1,j) + aW (Ti−1,j − δi−1,j) = b,
(34)

where aI and b are the coefficients of the finite difference discretization of the
governing equation. Separating the unknowns in Eq. (34) yields:

aPTi,j + aSTi,j−1 + aNTi,j+1 + aETi+1,j + aWTi−1,j =

b+ aP δi,j + aSδi,j−1 + aNδi,j+1 + aEδi+1,j + aW δi−1,j.
(35)

which, finally gives the linear system A T = b, where A is the same
matrix as the first linear system that must be solved to obtain the estimated
temperature field (i.e., standard finite difference Laplacian matrix).

4.2. Results and discussion

Following the procedure described above, we compute the temperature
distrihution within a section of an infinitely long bar. The boundary on
the right (east, E) is a perfectly insulated edge while the other three edges
are maintained at a prescribed temperature value: TN = 100, TS = 25 and
TW = 75. Figure 7a shows the temperature field obtained for the whole do-
main without having introduced any immersed boundary. In the same figure,
the location of the immersed boundary that has been considered as a vali-
dation experiment has been introduced for illustrative purposes. Figure 7b
shows the temperature field obtained when the insulated condition if applied
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using our immersed boundary method. As expected, the temperature isolines
approach the embedded surface in an orthogonal fashion (left hand side of
the embedded surface).

(a) Without immersed boundary. (b) With immersed boundary.

Figure 7: Final temperature field T (x, y). External boundary conditions:
TN = 100, TS = 25, TW = 75 and the right hand side wall is considered
adiabatic.

To complete the validation, the same problem has been tackled using a
body conforming mesh. Figure 8 shows a longitudinal section in x direction
at the center of the domain, where it can be seen that the results of both
methodologies, body conformal (blue line) and immersed boundary using
radial basis function (black line), fully agree.

Furthermore, figure 9 gives the values of the normal derivative of the
temperature field just outside the vertical wall, using finite differences. The
values of this parameter approach to zero (black squares) in front of the
values without considering the adiabatic embedded surface (red circles).

Figure 10 shows the norm of the interpolation error Ed at the immersed
surface defined by

Ed = max
l

Ud, (36)

where Ud refers to the interpolated temperature derivative from the external
side computed at each Lagrangian point l. It results a decreasing of order
∆x (1st order).

The method was also checked for other geometries as, for example, a
circular adiabatic surface (see figure 11).
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Figure 8: Streamwise section of the temperature field at the center of the do-
main. Red line: without considering the adiabatic embedded surface. Black
line: considering the adiabatic embedded surface. Blue line: body conformal
case.

5. Conclusions

In this work, we have presented a new interpolation and spreading proce-
dure based on radial basis functions. The procedure is easy to implement and
allows the imposition of both Dirichlet and Neumann boundary conditions.
Both interpolation and spreading tasks are carried out together within the
same stage, which yields a straightforward implementation. As the radial
basis functions require a scattered cloud of points, another advantage is that
the method works for any type of mesh, even unstructured.

To validate the method, a Dirichlet boundary condition has been imposed
on a 2D cylinder geometry in a Navier-Stokes CFD solver, and a Neumann
boundary condition has been imposed in an adiabatic embedded surface in
an unsteady heat conduction problem. The obtained results agree with lit-
erature results.

The convergence rate of this method is one. This value is expected to be
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Figure 9: Normal derivative of the closest temperature field outside the verti-
cal wall, in front of the height. Red circles: without considering the adiabatic
embedded surface. Black squares: considering the adiabatic embedded sur-
face.

increased by future works on the interpolation support. This new interpola-
tion support should use more external nodes, since the first order accuracy
derives from the order of the interpolation process. The most important
challenge is to define a simple rule to select the appropriated nodes that will
be able to deal with any surface shape.

A first version of the method is presented in this work, showing to be
robust over variations of geometry and Reynolds number (staying in laminar
flows). As deeper improvements of the method, further investigations on the
size and shape of the interpolation support are expected, as well as the use
of other kinds of RBFs and other ways to determine the shape parameter.
Finding the optimal number of Lagrangian nodes for different geometries
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Figure 10: Norm of the interpolation error of the derivative at the immersed
surface. Red squares: derivative error; solid line: ∆x (1st order); dashed
line: ∆x2 (2nd order).

is also a remaining issue, which is also encountered in other methods in
literature.

Short-term applications of the work also includes the imposition of Neu-
mann boundary conditions on the Poisson equation in a CFD code, and the
use of the present method to implement wind turbine models such as actuator
disc and actuator line ones.
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(a) Without immersed boundary. (b) With immersed boundary.

Figure 11: Temperature field T (x, y). External boundary conditions: TN =
100, TS = 25, TW = 75 and TE = 50.
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