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aLaboratoire de Mécanique et d’Acoustique,
CNRS UPR 7051, Aix-Marseille University, Ecole Centrale Marseille

31, Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France
bLaboratoire Brestois de Mécanique et des Systèmes,
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Abstract

The aim of this study is to estimate the effective response, as well as the statistics of the fields
(average and fluctuations per phase) in linear viscoelastic heterogeneous materials. To this effect,
a variational method based on a rate variational principle (RVP) has recently been introduced by
the authors in which, at each time step, the stress or strain fields are approximated by those of
a linear thermoelastic comparison composite. In the present study, a different derivation of this
estimate is proposed, based on a simple approximation of the stress field along the time steps.
The present study also explores the accuracy of the RVP model by comparing its predictions with
reference results, either in closed form (for specific two-phase particulate composites) or obtained
by full-field simulations (FFT method) for 2D polycrystals. A differential equation for the second
moment of the stress field in the individual phases of two-phase particulate composites is given
for the first time. These comparisons show that the RVP model delivers a very accurate estimate
of the effective behavior as well as of the statistics of the local fields in two-phase particulate
composites. For polycrystalline materials subjected to monotonic loading, the effective behavior
and the statistics of the local fields are well predicted. The agreement is less accurate for cycling
loadings.

Keywords: Homogenization, visco-elasticity, Maxwellian solid, two-phase composite,
2D-polycrystal

1. Introduction

This study is devoted to the effective response of composites made from linear viscoelastic
phases, more specifically Maxwellian phases, characterized by a relation between the linearized
strain ε and the Cauchy stress σ in the form:

ε = εe + εv, εe = M e(r) : σ, ε̇v = M v(r) : σ, (1)

where M e(r) and M v(r) denote respectively the elastic and viscous compliance moduli of phase r

(with inverse Le(r) and Lv(r)) and where an over-dot denotes derivation with respect to time.
The motivation for studying the homogenization of the rather elementary Maxwell model (1)

is twofold. First, it is a prerequisite to the study of more physical linear time-dependent models
such as the Burger’s model or the generalized Maxwell’s model which was found by Diani and
Gilormini (2014) to capture accurately the behavior of styrene butadiene rubbers. Second, it is
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a natural prerequisite to the study of nonlinear viscoelastic composites, where the importance of
higher-order statistics of the fields is now well established.

Several Mean Field Homogenization methods (MFH) can be used to predict the effective prop-
erties of linear viscoelastic composites. The most classical procedure is based on the correspondence
principle. Upon application of the Laplace-Carson transform, the boundary value problem solved
by the local stress and strain fields becomes a linear elastic problem in the Laplace domain (Hashin,
1970). Then classical MFH methods can be applied to obtain the effective behavior of the compos-
ite in the Laplace domain. The effective relaxation function in the time domain is then obtained
by an inverse Laplace-Carson transform. As is well known, even when the individual phases have a
“short memory” (such as the Maxwell model (1)), the effective behavior of composites made from
different such phases may exhibit a “long memory” effect which manifests itself in the effective
constitutive relations through an integral kernel (e.g. Sanchez-Hubert and Sanchez-Palencia, 1978;
Laws and Mc Laughlin, 1978; Francfort and Suquet, 1986; Suquet, 1987; Turner and Tomé, 1993;
Rougier et al., 1993, among others).

The procedure based on the Laplace transform is convenient when the inverse Laplace transform
of the effective complex moduli can be performed in closed form. This is the case for specific forms of
these moduli and Laws and Mc Laughlin (1978), Rougier et al. (1993), Masson et al. (2012) derived
explicit expressions for the effective creep kernels of several classes of composites or polycrystals
with specific microstructures. Unfortunately, and this is a first limitation of the correspondence
principle, for other important classes of microstructures (polycrystals with arbitrary microstructure
for example), the inversion has to be performed numerically and approximations are required (such
as the collocation method Schapery, 1962; Rekik and Brenner, 2011). A second limitation of the
correspondence principle is that it does not give access to higher-order statistics of the fields in
the different phases, besides the first moment, since the Laplace transforms of the higher-order
moments of a field are not the higher-order moments of the Laplace transforms of this field (in
contradiction with what is sometimes assumed in the literature). It is actually an open question
to find exact relations for the higher-order statistics of fields (stress, strain-rate) in the different
constituents of viscoelastic composites, even linear ones. An analytical result is given here for the
second moment of the stress field in the specific case of incompressible two-phase composites with
a microstructure corresponding to one of the Hashin-Shtrikman bounds. A third limitation of
the correspondence principle, actually inherent to all constitutive relations expressed by integral
kernels with long memory effects, is that when they are used in a structural computation (by the
Finite Element Method for instance), the integration of the constitutive relations at each time step
of the global resolution requires the storage of the whole stress (or strain) history along the whole
loading path. However, constitutive relations with integral kernels can be equivalently formulated
by means of internal variables satisfying first-order differential equations. In specific situations the
number of internal variables can be rigorously reduced to a finite number, as shown by Ricaud and
Masson (2009) for particulate composites, or can be truncated to a finite number as proposed as
an approximation by Vu et al. (2012).

A different approach to estimate the effective behavior of linear viscoelastic composites, based
on the interaction law of Molinari (2002), has been explored by Mercier et al. (2005) who retrieved
the exact effective response of two-phase composites with incompressible Maxwellian behavior.
Unfortunately, this approach, like the one based on the correspondence principle, cannot estimate
the higher-order statistics of the stress (or strain) fields (intraphase fluctuations) which are re-
quired for nonlinear constituents by the most recent nonlinear homogenization theories (see Ponte
Castañeda, 2002a,b; Idiart et al., 2006; Idiart and Ponte Castañeda, 2007).

Lahellec and Suquet (2007a, 2007b, 2013) have recently proposed two variational approaches to
couple elastic and dissipative effects in composite materials. These approaches apply when these
two aspects of the behavior of the phases can be described by means of two constitutive potentials
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(within the class of standard generalized materials). The first potential is the free-energy density
w(ε, εv). The second potential is the dissipation potential φ(ε̇v) which describes the evolution of
the irreversible mechanisms. Using a discretization in time of the evolution equations, Lahellec
and Suquet (2007a); Lahellec and Suquet (2013) have derived an incremental variational principle
governing the state of the composite at the end of a time step, assuming that the state at the
beginning of the time step is known. A nice feature of these variational principles is that, unlike
the correspondence principle, they are not restricted to linear phases. They allowed the authors
to extend to phases governed by two potentials some of the approaches initially developed in non-
linear homogenization for phases governed by a single potential (see Lahellec and Suquet, 2007b,c;
Lahellec and Suquet, 2013). The two slightly different approches have been applied successfully to
elasto-viscoplastic phases (without threshold, sometimes called nonlinear viscoelasticity) subjected
to loading-unloading conditions along radial paths. However limitations of the first estimate have
appeared for non radial loading conditions, involving rotation of the principal axes of the loading
which were not observed (or to a lesser extent) with the second estimate (called RVP since it is
based on a rate variational principle). The aim of this paper is to present a simplified version
of the RVP estimate and to explore further its capability to predict accurately both the effective
response of composites and polycrystals, and the first and second-order statistics of the fields in
the individual constituents.

The present paper is organized as follows. In section 2, a simplified and heuristic derivation
of the RVP model of Lahellec and Suquet (2013), initially proposed for elasto-(visco)plasticity, is
given. This model is applied in section 3 to two-phase particulate composites and in section 4
to 2D polycrystals. The accuracy of its predictions for the second-order statistics of the fields is
shown in section 3 by comparison with the exact expression of the second moment of the stress
field (derived in Appendix A) in incompressible two-phase particulate composites.

2. A simplified version of the variational estimate of Lahellec and Suquet (2013)

2.1. Strain-rate formulation

The composite materials considered in the present study are made from N different homo-
geneous constituents, or phases, which are assumed to be randomly distributed in a specimen
occupying a volume V , at a length scale that is much smaller than the size of V . Each constituent
is linear viscoelastic (and Maxwellian), governed by the constitutive relations (1). Define

M e(x) =
N∑
r=1

M e(r)χ(r)(x),

(with a similar definition for M v(x)), where χ(r) is the characteristic function of phase r. The
volume averages of a function f over the composite V and over phase r are denoted as f = ⟨f⟩ =
1

|V |
∫
V
fdv and f

(r)
= ⟨f⟩

r
= 1

|Vr|
∫
Vr

fdv respectively.

A strain-rate formulation is used and the boundary value problem to be solved to determine
the local stress and strain rate fields in the volume element V consists of the equilibrium equations,
compatibility conditions, constitutive relations and boundary conditions1:

ε̇(x, t) = M e(x) : σ̇(x, t) +M v(x) : σ(x, t), div σ = 0, ⟨ε̇(t)⟩ = ε̇(t). (2)

1Boundary conditions are not specified nor discussed here. They are of the classical types, see Suquet (1987) or
Ponte Castañeda and Suquet (1998) for more details, ensuring that the validity of Hill’s lemma between the stress
and strain fields.
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The effective behavior of the composite is defined as the relation between the average stress σ(t)
at time t and the history of the average strain before t, ε(s), 0 ≤ s ≤ t.

The time derivative of σ in (2) can be approximated by a difference quotient after use of an
implicit (backward) Euler-scheme. The time interval of study [0, T ] is discretized into time intervals
t0 = 0, t1, ...., tn, tn+1, ..., tN = T . The time step tn+1 − tn is denoted by ∆t (its dependence on n
is omitted for simplicity), the value f(tn) of a function f evaluated at time tn is denoted by fn.
Assuming that σn is known at time tn, the time-discretization procedure applied to (2) leads to
the following system in which the strain rate ε̇n+1 is the kinematic unknown :

ε̇n+1(x) =
1
∆t

(
M e(r) +∆tM v(r)

)
: σn+1(x)− 1

∆tM
e(r) : σn(x) in phase r.

div σn+1(x) = 0, ⟨ε̇n+1(x)⟩ = ε̇n+1.

 (3)

This discretized boundary value problem involves a non classical thermoelastic constitutive rela-

tion between σn+1 and ε̇n+1 with piecewise uniform elastic moduli ∆t
(
M e(r) +∆tM v(r)

)−1

but

with a non-piecewise uniform eigenstrain −M e(r) : σn(x). Because of the nonuniformity of this
eigenstrain, the fields (stress and strain-rate) solutions of (3) cannot be estimated by standard
Mean Field Homogenization analytical methods. Indeed, the effective eigenstrain in thermoelastic
composites can only be expressed, to the authors’ knowledge, conveniently when the eigenstrains
are uniform within the different phases. In order to circumvent this difficulty (and to make the
eigenstrain piecewise constant), one can replace in (3) σn(x) by its average per phase ⟨σn(x)⟩r.
It will be shown in section 3 that this approximation (denoted RVP1st) is a poor approximation
(and an underestimate) to the exact effective response of the composite.

The aim of the present work is precisely to approximate the eigenstrain in (3) by an expression
different from the average per phase, still involving a piecewise uniform eigenstrain in order to
resort to classical results for thermoelastic composites.

2.2. Heuristic derivation of the RVP estimate

It is shown here that the RVP estimate of Lahellec and Suquet (2013) amounts to replacing
the actual stress field σn by a stress field σ̂n defined as follows :

σ̂n(x) = H(r)σn+1(x) + (I −H(r)) : σ(r)
n , (4)

where σn+1(x) is unknown, H(r) is an unknown fourth-order tensor (uniform over phase r) and

σ
(r)
n is an unknown second-order tensor (uniform over phase r). Replacing σn(x) by σ̂n(x) in (3)

leads to the following boundary value problem:

σ = L(r)
0 : ε̇+ τ

(r)
0 in phase r, div σ(x) = 0, ⟨ε̇⟩ = ε̇, (5)

where ε̇ and σ stand for ε̇n+1 and σn+1 in (3) and

M e
0
(r)

= M e(r) :
(
I −H(r)

)
, L(r)

0 = ∆t
(
M e

0
(r)

+∆tM v(r)
)−1

,

τ
(r)
0 =

(
M e

0
(r)

+∆tM v(r)
)−1

: M e
0
(r)

: σ
(r)
n .

 (6)

The problem (5) is now a boundary value problem for a linear thermoelastic comparison composite

with uniform elastic moduli L(r)
0 and uniform eigenstrain −1/∆tM e

0
(r)

: σ
(r)
n in phase r. Standard

homogenization results for N -phase thermoelastic composites can therefore be used to estimate
the effective behavior and the statistics of the fields ε̇(x), σ(x) solution of (5).
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It remains to specify how H(r) and σ
(r)
n are chosen. If they could be chosen in such a way that

the fields σn(x) and σ̂n(x) would coincide at every material point x, then the problems (3) and
(5) would be equivalent. Unfortunately this equality cannot be achieved pointwisely in general.
It is proposed to relax the equality between the fields σ̂n and σn, in the sense that it is no more
required that they coincide at every material point, but only that they share the same first and
second-order statistics per phase :

⟨σn⟩r = ⟨σ̂n⟩r, (7)

and
⟨σn ⊗ σn⟩r = ⟨σ̂n ⊗ σ̂n⟩r. (8)

The equality between the first and second moments of σn and σ̂n in phase r can be re-written as
the equality between the first moment and the fluctuations of these fields. Following Idiart and
Ponte Castañeda (2007) the (quadratic) fluctuations of a field σ in phase r is defined as

C(r)(σ) =
⟨(

σ − σ(r)
)
⊗
(
σ − σ(r)

)⟩
r
, σ(r) = ⟨σ⟩

r
. (9)

According to (4), σ is the only field contributing to the fluctuations of σ̂n and therefore (8) can

be replaced by a relation between the fluctuations of σn and the fluctuations of σ. Then, σ
(r)
n and

H(r) solve the two following equations:

⟨σn⟩r = H(r)⟨σ⟩
r
+ (I −H(r)) : σ(r)

n , (10)

C(r)(σn) = C(r)(H(r) : σ), (11)

where σ is the solution of the boundary value problem (5). It enters (10) and (11) through its first

and second-order statistics which depend in a nonlinear (and implicit) way on σ
(r)
n and H(r). In

summary, assuming that the first moment and the fluctuations of the field σn at time tn are known
in each individual phase, r, the resolution of the system of equations (10) and (11) allows for the

determination of σ
(r)
n and H(r) . Then the first moment and the fluctuations of the new field

σ at time tn+1, solution of the linear thermoelastic problem (5), can be determined by standard
relations in thermoelastic composites. Note however, that the system of equations (10) and (11)

which is to be solved for σ
(r)
n and H(r) is nonlinear, and can have several roots. It is solved

numerically and details on the numerical procedure are given in Appendix B, under the additional
simplification that H(r) can be defined using a single scalar h(r).

2.3. Variational justification

Lahellec and Suquet (2013) originally derived the RVP estimate of section 2.2 through a varia-
tional principle. The connection with this original derivation can be made as follows. The equations
defining the problem (3) are the Euler–Lagrange equations of the variational problem :

d̃
(
ε̇
)
= Inf

⟨ε̇⟩=ε̇

⟨
Inf
ε̇v

D(ε̇, ε̇v)
⟩
, (12)

with εv the viscous strain and D is the rate-potential defined for a Maxwell solid by :

D (ε̇, ε̇v) =
∆t

2
(ε̇− ε̇v) : Le : (ε̇− ε̇v) + σn : (ε̇− ε̇v) +

1

2
ε̇v : Lv : ε̇v. (13)

Then, using the variational procedure of Ponte Castañeda (1992) the following estimate for the
effective potential d̃ is obtained :

d̃
(
ε̇
)
≈ Inf

⟨ε̇⟩=ε̇

[⟨
Inf
ε̇v

D0(ε̇, ε̇
v)
⟩
+
⟨
Stat
ε̇v

∆D(ε̇, ε̇v)
⟩]

, (14)
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where D0 is the rate-potential for a linear comparison composite defined by :

D(r)
0 (ε̇, ε̇v) =

∆t

2
(ε̇− ε̇v) : Le

0
(r)

: (ε̇− ε̇v) + σ(r)
n : (ε̇− ε̇v) +

1

2
ε̇v : Lv(r) : ε̇v, (15)

and ∆D = D − D0. The rate-potential D(r)
0 involves the reference stress tensor σ

(r)
n , already

introduced in (4), and the reference elastic stiffness tensor Le
0
(r)

which is the inverse of M e
0
(r)

introduced in (6) and which can be related to H(r) by :

Le
0
(r)

=
(
I −H(r)

)−1

: Le(r).

The infimum problem in (14) is equivalent to (5). Finally, the reference tensors σ
(r)
n and Le

0
(r)

are
chosen so that the homogenized potential d̃ is stationary :

d̃
(
ε̇
)
≈ Stat

σ
(r)
n ,Le

0
(r)

{
Inf

⟨ε̇⟩=ε̇

[⟨
Inf
ε̇v

D0(ε̇, ε̇
v)
⟩
+
⟨
Stat
ε̇v

∆D(ε̇, ε̇v)
⟩]}

. (16)

These two stationarity conditions are equivalent to (7) and (8) which shows that the two approaches
(heuristic and variational) are equivalent.

Lahellec and Suquet (2013) also showed that if Le
0
(r)

is chosen proportional to Le(r) (ie Le
0
(r)

=

θ(r)Le(r) with θ(r) a scalar variable) or equivalently H(r) is chosen proportional the identity fourth-

order tensor (ie H(r) = h(r)I with h(r) = 1− θ(r)
−1

) the equation (11) reduces to :

C(r)(σn) :: L
e(r)−1

= C(r)(H(r) : σ) :: Le(r)−1
. (17)

3. Two-phase particulate composites

The accuracy of the RVP is assessed in this section for two-phase materials composed of a matrix
reinforced by isotropically distributed spherical inclusions. In addition, their microstructure is such
that their linear (either purely elastic or purely viscous) properties are accurately described by the
Hashin-Shtrikman estimate (with the reference medium being the actual matrix).

3.1. The RVP method for composites with isotropic phases

Consider a composite with isotropic phases with elastic and viscous properties characterized
by :

Le(r) = 2µ(r)K + 3k(r)J and Lv(r) = 2η(r)K +∞J , (18)

where J and K are the usual fourth-order projectors on hydrostatic and deviatoric symmetric
second-order tensors, k(r) and µ(r)are the bulk and the shear elastic moduli of phase (r) and η(r)

its viscosity (note that this particular form of Lv(r) enforces incompressibility of the viscous strain).

For simplicity, the tensor H(r) is chosen proportional to the identity tensor :

H(r) = h(r)I. (19)

The different tensors entering (6) take the form :

L(r)
0 = 2µ

(r)
∆,0K + 3k

(r)
∆,0J ,

µ
(r)
∆,0 =

µ(r)η(r)

µ(r) + η(r)(1− h(r))/∆t
, k

(r)
∆,0 =

k(r)

1− h(r)

τ
(r)
0 =

(
η(r)(1− h(r))/∆t

µ(r) + η(r)(1− h(r))/∆t
K + J

)
: σ(r)

n .


(20)
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σ
(r)
n and h(r) are determined by the closure relations (10) and (17). Given the choice (19), these

relations become respectively

⟨σn⟩r = h(r)⟨σ⟩
r
+
(
1− h(r)

)
σ

(r)
n ,

C(r)(σn) ::

(
K

2µ(r)
+

J

3k(r)

)
= (h(r))2C(r)(σ) ::

(
K

2µ(r)
+

J

3k(r)

)
.

 (21)

Keeping in mind the comments made at the end of section 2.2, it is reminded that the system
(21) is nonlinear in h(r) since ⟨σ⟩r and C(r)(σ) depend on h(r). The resolution of this nonlinear
system is discussed in Appendix B. It is shown in figure B.10 that, in certain circumstances, the
second equation in (21) may have several roots. A heuristic procedure for determining the most
physical root is then proposed for two-phase composites.

Remark : The simplicity of the choice (19) with only one scalar unknown could be found too

restrictive. Other forms for the tensor H(r) have been explored and in particular the isotropic

decomposition H(r) = h
(r)
J J+h

(r)
K K with 2 scalar unknowns h

(r)
J and h

(r)
K . The resulting nonlinear

problem was more complex but no significant improvement was observed (and the results are
consequently not reported here).

3.2. Incompressible phases

We address first the case where both phases are viscoelastic and incompressible for which an
explicit solution for the effective response as well as for the first and second moments of the fields
in the individual phases is available in closed form (see Appendix A). Two sets of data have been
considered. In the first set of data, the inclusions (phase 1) are stiffer than the matrix, both in the
elastic and in the viscous regime.

c(1) = 0.4, µ(1) = 30 Gpa, µ(2) = 1 Gpa, η(1) = 6 Gpa.s, η(2) = 2 Gpa.s. (22)

In the second set of data, the contrast between the phases is inverted between the elastic regime
and the viscous regime (the inclusions are elastically stiffer than the matrix but their viscosity is
lower):

c(1) = 0.4, µ(1) = 30 Gpa, µ(2) = 1 Gpa, η(1) = 2 Gpa.s, η(2) = 6 Gpa.s. (23)

The problem is tridimensional. The composite is sheared alternatively at macroscopic strain-rate
with constant absolute value but with a change in sign between two subsequent time periods :

ε̇ = ±ε̇0 (e1 ⊗ e2 + e2 ⊗ e1)

with ε̇0 = 2 10−3 s−1. The average stress in the matrix and in the inclusions is also a pure
shear parallel to the applied macroscopic shear. The predictions of the RVP model are compared
in figure 1 with the exact solution derived in Appendix A. The estimate RVP1st, obtained by
replacing directly in (3) σn(x) by its average per phase ⟨σn(x)⟩r, is also shown. The agreement of
the RVP prediction with the exact result is excellent, not only for the effective response but also
for the first and second moments (and fluctuations) of the stress field in the matrix (there is no
stress fluctuations in the inclusions according to the Hashin-Shtrikman estimate). By contrast the
predictions of the RVP1st estimate are not accurate.

Influence of the time step

The influence of the time-step ∆t on the accuracy of the predictions is discussed in figure 2.
As can be seen, both the effective response and the fluctuations converge quite rapidly when the
time step is reduced. It is recalled that the backward Euler scheme chosen to discretize in time the
constitutive equations is implicit and inconditionally stable. Typically 200 time steps are sufficient
to capture accurately the loading branch of the effective response.

7



σ
1
2
(G

P
a
)

ε12

√

C
(2
) (
σ
)
::
K
/√

σ
:
σ

σ
1
2
(G

P
a
)

ε12

√

C
(2
) (
σ
)
::
K
/√

σ
:
σ

Figure 1: Incompressible particulate composite subject to cyclic shearing. (a) and (b): material data (22). (c) and
(d): material data (23). Comparison between the RVP estimate (solid line), RVP1st estimate (dashed line) and the
exact solution of Appendix A (symbol). Left: effective response (macroscopic stress as a function of the macroscopic
strain). Right: fluctuations of the stress field in the matrix as a function of time t.
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σ
1
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ε12

√
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K
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σ
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σ

Figure 2: Incompressible particulate composite under shear. Influence of the time increment ∆t. Material data (22).
Comparison between the RVP model (solid line) for different time increments and the exact solution of Appendix A
(symbol). Left: effective response (macroscopic stress as a function of the macroscopic strain). Right: fluctuations
of the stress field in the matrix as a function of time t.

3.3. Compressible phases

We consider now a composite made of a compressible viscoelastic matrix reinforced by com-
pressible elastic particles. Again the microstructure of the composite is such that the linear (elastic
or viscous) properties of the composite are accurately described by the Hashin-Shtrikman estimate.
The effective response of such composites can be obtained by a slight modification of the work of
Ricaud and Masson (2009) (these authors assume that both phases have identical elastic properties,
but their result can be easily extended to phases with different elastic properties).

Two volume fractions of inclusions and two relaxation times for the matrix are considered. The
material data are as follows:

– Inclusion : c(1) = 0.17 or 0.4, µ(1) = 6 GPa and k(1) = 20 GPa,

– Matrix: µ(2) = 3 GPa, k(2) = 10 GPa and τ (2) = η(2)

µ(2) = 1 s or 10 s.

The composite is subjected to two different loading conditions. First, it is subjected to an isochoric
deformation, alternatively in tension and compression, at a macroscopic strain-rate with constant
absolute value but with a change in sign between two subsequent time periods:

ε̇ (t) = ±ε̇0E0, E0 = e1 ⊗ e1 −
1

2
e2 ⊗ e2 −

1

2
e3 ⊗ e3, ε̇0 = 5. 10−2 s−1. (24)

The corresponding predictions of the RVP model are compared in Figure 3 with the exact response
of the composite (obtained by extending the results of Ricaud and Masson) for two different volume
fractions of inclusions and two different relaxation times for the matrix. The agreement is again
seen to be very satisfactory.

The second loading involves a rotation of the principal axes of the overall deformation:

ε (t) = ε1 (sinωt E0 + (1− cosωt)E1) , (25)
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Figure 3: Compressible particulate composite. Cyclic loading condition (24). Effective response of the composite:
exact response (symbols) and predictions of the RVP model (solid line). (a): c(1) = 0.17 and τ (2) = 1 s, (b):
c(1) = 0.4 and τ (2) = 1 s, (c): c(1) = 0.17 and τ (2) = 10 s and (d): c(1) = 0.4 and τ (2) = 10 s.
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20
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20
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cycle.
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where E0 is defined in (24),

E1 =
1

2
(e1 ⊗ e2 + e2 ⊗ e1 + e1 ⊗ e3 + e3 ⊗ e1) ,

and
ε1 = 5 10−2 and ω =

π

20
rad.s−1.

The predictions of the RVP model are compared with the exact reference results in figure 3 4.
Again the agreement is seen to be good. A more detailed examination of these two loading cases
leads to the following observations :

1. In all cases, the RVP model tends to overestimate the exact response of the composite (the
model is a bit too stiff).

2. In the first loading the RVP model coincides with the exact result in the purely elastic and
purely viscous limits. The error is maximum in the transient regime with a maximum of 11%
when the volume fraction of inclusions is large and when the relaxation time of the matrix
is large (c(1) = 0.4 and τ (2) = 10 s see Figure 3 (d)).

3. The RVP model is less accurate for the second loading conditions but still captures correctly
the rotation of the loading axes . The error increases with the inclusion volume fraction c(1)

and with the matrix relaxation time τ (2) with a maximum of 10 % for the stabilized cycle
when c(1) = 0.4, τ (2) = 10 s see Figure 4 (d).

4. 2D polycrystals

In this section the RVP estimate derived in section 2.2 is applied to 2D polycrystals. In a
crystal with K slip systems, the viscoelastic (Maxwell type) constitutive relation reads (in the
crystal coordinates) :

ε = εe + εv, εe = M e : σ, ε̇v =
K∑

k=1

γ̇(k)µ(k), γ̇(k) = γ̇0,(k)
σ : µ(k)

σ0,(k)
.

µ(k) and γ(k) denote respectively the Schmid tensor of the k-th system and the slip along this
system:

µ(k) =
1

2
(m(k) ⊗ n(k) + n(k) ⊗m(k)),

where n(k) and m(k) denote respectively the unit vectors orthogonal to the slip plane and parallel
to the slip direction of the k-th system. σ0,(k) et and γ̇0,(k) denoted respectively the threshold
stress and a reference slip rate which define the viscosity of the kth slip system. In the laboratory
frame, these relations read in grain r :

ε = εe + εv, εe = M e(r) : σ, ε̇v =

K∑
k=1

γ̇(k)µ
(r)
(k), γ̇(k) = γ̇0,(k)

σ : µ
(r)
(k)

σ0,(k)
. (26)

M e(r) and µ
(r)
(k) are obtained from the tensors M e and µ by rotation :

M e(r) = QT (r)QT (r)M eQ(r)Q(r) and µ
(r)
(k) = QT (r)µ(k)Q

(r),

where Q(r) defines the orientation of grain (r). For the special class of polycrystals consisting of
columnar orthorhombic grains (see Liu and Ponte Castañeda, 2004) all the grains are cylindrical
with parallel axes (parallel to e3) and their orientation is defined by a single angle β(r) (see figure
5). When such columnar polycrystals are loaded by an antiplane shear strain :
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Figure 5: 2D polycrystals.

ε = ε13(e1 ⊗ e3 + e3 ⊗ e1) + ε23(e2 ⊗ e3 + e3 ⊗ e2), (27)

the only two slip systems that can be activated are defined by :

µ(1) =
1

2
(e1 ⊗ e3 + e3 ⊗ e1) et µ(2) =

1

2
(e2 ⊗ e3 + e3 ⊗ e2). (28)

The boundary value problem (2) is two dimensional and the only non-zero components of the
strain and stress tensors are ε13, ε23, σ13 et and σ23 which are functions of x1 and x2. Moreover if
the crystal have orthotropic symmetry, the only components of the elastic stiffness moduli tensor
which enter the boundary value problem are the shear moduli L1313 and L2323 denoted g(1) et and
g(2) in the sequel. Then, M e is defined as :

M e =
(
2g(1)

)−1
G(1) +

(
2g(2)

)−1
G(2), with G(i) = 2

(
µ(i) ⊗ µ(i)

)
. (29)

The tensors G(i) have the following properties :

G(i) : G(j) = δijG(i), G(i) : µ(i) = µ(i) and µ(i) : µ(i) =
1
2 .

Note that the constitutive behavior (26) belongs to the more general class of Maxwellian solids (1)

with a viscous compliance tensor M v(r) defined by :

M v(r) =
K∑

k=1

(
2gv(k)

)−1

G
(r)
(k), with G

(r)
(i) = 2

(
µ

(r)
(i) ⊗ µ

(r)
(i)

)
and gv(k) =

σ0,(k)

γ̇0,(k)
(30)

4.1. The RVP estimate applied to 2D polycrystals
Consider a 2D polycrystal made of N grains characterized by the elastic and the viscous compli-

ance moduli (29) and (30). As in section 3, the tensor H(r) in the r-th grain is chosen proportional
to the identity tensor :

H(r) = h(r)I, (31)

This choice leads to the following tensors for the local problem (6) :

L(r)
0 =

2∑
k=1

2g
(r)
∆,(k)G

(r)
(k), g∆,(k) =

g(k)∆tgv(k)

g(k)∆t+ gv(k)
(
1− h(r)

)
τ
(r)
0 =

2∑
k=1

gv(k)
(
1− h(r)

)
g(k)∆t+ gv(k)

(
1− h(r)

)G(r)
(k) : σ

(r)
n .

 (32)
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σ
(r)
n and h(r) are determined thanks to the specific form taken by the closure relations (10) and

(17), given the choice (31). The relations (7) and (17) become respectively :

⟨σn⟩r = h(r)⟨σ⟩r +
(
1− h(r)

)
σ

(r)
n ,

C(r)(σn) ::

(
2∑

k=1

1

2g(k)
G

(r)
(k)

)
= (h(r))2C(r)(σ) ::

(
2∑

k=1

1

2g(k)
G

(r)
(k)

)
.

 (33)

The first and second moments of the field σ solution of the boundary value problem (5) are
estimated by the self-consistent model. For the checkerboard polycrystal (see figure 6), this model
gives the exact value of the effective elastic shear modulus (g̃ =

√
g(1)g(2)) and of the effective

viscosity (g̃v =
√
gv(1)g

v
(2)) (see Lebensohn et al., 2005).

The resolution of the system of equations (33) is discussed in Appendix B. As for two-phase
composites, the second equation in (33) may have several roots. But unlike in the case of two-
phase composites, no heuristic procedure for selecting the most physical root has been found by
the authors when the number of grains (or equivalently of unknowns h(r)) is large. This is why
the results presented below for random polycrystals are restricted to monotonic loadings for which
the system (33) has a single set of roots.

As in section 3, the simple choice (31) for H(r) can be questioned. Other forms have been

explored, in particular H(r) = h
(r)
1 G(1) + h

(r)
2 G(2). No significant improvement was observed and

the corresponding results are not shown here.

4.2. Untextured random polycrystals

The polycrystals considered in this section are composed of equiaxed, randomly oriented grains.
The accuracy of the model is assessed by comparison with reference results obtained by full-field
simulations performed with a computational method based on Fast Fourier Transforms, originally
proposed by Moulinec and Suquet (1998) for composites and extended by Lebensohn (2001) to
polycrystals. The reference results shown here were obtained using the freeware CRAFT (freely
available at http://craft.lma.cnrs-mrs.fr). The microstructures are Voronoi tessellations in which
the grains are randomly oriented (defined by a single angle β between 0 and π). The macroscopic
behavior of such polycrystals tends to be isotropic when the number of grains is increased. A typical
microstructure is shown in figure 6. All computations are performed on 8 different configurations
containing 2000 grains each, discretized over a 4096× 4096 Fourier grid. Ensemble averages of the
results are taken by the following relation (as in Lebensohn et al., 2005) (with Nc = 8, Nc being
the number of configurations) :

f =
1

Nc

Nc∑
j=1

⟨f⟩j , with ⟨f⟩j the average of f in the j − th configuration. (34)

The first and second moments are defined for 10 different angular sectors I (between 0 and π) as:

{f}I =
1

Nc

Nc∑
j=1

∑
i

c(i)

cI
⟨f⟩ji and

{
f2
}
I
=

1

Nc

Nc∑
j=1

∑
i

c(i)

cI
⟨
f2
⟩j
i

with cI =
∑
i

c(i), (35)

where ⟨f⟩ji is the average of f over grain i in the j-th configuration, and where the summation over
i extends over all grains i whose orientation, defined by the angle β(i), is in the following angular
sector :

π(I − 1)

10
≤ β(i) <

πI

10
and I = 1, ..., 10.
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The average of the stress fluctuations is defined as :

CI(σ) :: K = 2
{
(σ13 − {σ13}I)

2
+ (σ23 − {σ23}I)

2
}
I

(36)

The predictions of the RVP estimate are obtained by computing the first and the second moment
of the stress field (solution of the boundary value problem (6)) by the self-consistent method with

40 families i of grains, with the same volume fraction c(i) = 1/40 and with orientation β(i) = (i−1)π
40

(to ensure macroscopic isotropy of the polycrystal). The first moment and the fluctuations of the
stress field given by the RVP estimate (using the self-consistent model) are compared with the
ensemble averages of the full-field calculations according to the relations (35) and (36).

Figure 6: 2D polycrystals. Left: Voronoi tessellation. Right: checkerboard

The mechanical characteristics of the single crystal are :

g(1) = 1 MPa, g(2) = 1 MPa, gv(1) = 1 MPa . s, gv(2) = 400 MPa . s,

corresponding to relaxation times τ(1) = 1 s and τ(2) = 400 s for the different slip systems.

Two loadings are considered: a monotonic simple shear test (at constant strain-rate) and a
creep test at two different levels of stress.

Monotonic simple shear test at constant strain-rate. The imposed overall strain is :

ε(t) = ε̇13 t (e1 ⊗ e3 + e3 ⊗ e1) with ε̇13 = 5. 10−1 s−1

The macroscopic stress, the first moment and the fluctuations of the stress field estimated by the
RVP model and obtained by the full-field calculations are compared in figure 7. The statistics of
the stress field (first moment and fluctuations) as a function of the grain orientation are shown
at 3 specific times corresponding to t1 = 1s, t2 = 200s et and t3 = 1200s (these 3 specific times
are shown by 3 circles in figure 7 (a)). At time t1, the polycrystal behavior is purely elastic
(instantaneous response), at time t3, it is purely viscous (long time response). At time t2 elasticity
and viscosity are coupled (transient response).

Although the contrast between the relaxation times of the slip systems is large (τ(2) = 400 τ(1)),
the macroscopic response is very well estimated by the RVP model (the maximum error is less than
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2%). At the 3 specific times, the RVP model gives a very accurate estimate of the first moment of
the stress field as a function of the grain orientation. The RVP model predicts a constant stress
fluctuation (no dependence on the grain orientation), which is consistent with the results of the
FFT simulations (the small variations could be induced by the finite number of grains used in the
computations).

The independence of the fluctuations on the orientation is exactly predicted by the self-
consistent scheme in the purely elastic or purely viscous limits. Indeed it is found the average
and standard deviations of the resolved shear stresses in a 2d polycrystal given in Lebensohn et al.
(2004) 2 that with the self-consistent scheme :√

CI(σ) :: K

σ : σ
=

∣∣∣√M − 1
∣∣∣

√
M + 1

√
M + 1

2
√
M

, (37)

where M is the contrast of the moduli (elastic or viscous) in the two directions M = µ1/µ2. In
the present example, the contrast in the purely viscous regime is M = 400 and the ratio (37) is
found equal to 2.86 which is consistent with the fluctuations observed in figure 7(c), both for the
RVP model and the FFT simulations, when t = t3.

The fluctuations of the stress field increase with time: at time t1, there is no fluctuations since
there is no contrast in the elastic moduli and at time t3 these fluctuations are large because of the
important contrast between the viscosities of the slip systems. This evolution of the fluctuations
during the simulation is very accurately captured by the model with a maximum error of about
8%.

Creep test with stress discontinuity. The macroscopic imposed stress is defined as:

σ = σ13 (t) (e1 ⊗ e3 + e3 ⊗ e1)

with

σ13 (t) =

{
1 when t < 2000 s
2 when t > 2000 s.

The RVP estimates and the full-field computations are shown in figure 8. Again a good accuracy
of the RVP model for the estimates of the macroscopic behavior and the statistics of the stress
field (first moment and fluctuations for 3 time values) is observed.

4.3. Checkerboard

This section is devoted to the two-phase checkerboard (see Milton, 2002; Lebensohn et al.,
2005). This 2D polycrystal (shown on figure 6), is composed of two phases (with the same volume
fraction c(1) = c(2) = 0.5), distributed in 4 grains repeated periodically. The orientation of phase
(1) is β(1) = 0 and that of phase (2) is β(2) = π

2 . The reference results used to assess the accuracy
of the RVP model are obtained with full-field simulations (FFT) on a 4096×4096 Fourier grid. The
RVP estimates are obtained with the exact analytical result for the checkerboard. The polycrystal
is subjected to the following macroscopic strain :

ε (0) = 0, ε̇ (t) = ±ε̇0 (e1 ⊗ e3 + e3 ⊗ e1) , ε̇0 = 5. 10−1 s−1. (38)

Different set of elastic and viscous shear moduli are considered :

• g(1) = 10 MPa, g(2) = 10 MPa, gv(1) = 0.2 MPa.s and gv(2) = 20 MPa.s.

• g(1) = 10 MPa, g(2) = 100 MPa, gv(1) = 0.2 MPa.s and gv(2) = 20 MPa.s.

2Note however that their expression for τ
(r)
2 should be multiplied by

√
M , but that does not affect the fluctuations
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Figure 7: Random polycrystal under shear at constant strain-rate. Comparison between the RVP model
(solid line) and the full-field (FFT) simulations (symbols). (a) Macroscopic stress σ13. The three time
steps for which the statistics of the stress field are compared are shown by circles. (b) Norm of the first
moment of the stress as a function of the grain orientation. (c) Stress fluctuations as a function of the
grain orientation.
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Figure 8: Random polycrystal subjected to a creep test. Comparison between the RVP model (solid
line) and the full-field (FFT) simulations (symbols). (a) Effective response in the first loading stage
(σ13 = 1MPa) and the three time steps for which the statistics of the stress field are compared (circles).(b)
Effective behavior in the first and the second loading stages (σ13 = 1 MPa and σ13 = 2 MPa ). (c) Norm
of the first moment of the stress as a function of the grain orientation. (d) Stress fluctuations as a function
of the grain orientation.
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• g(1) = 10 MPa, g(2) = 100 MPa, gv(1) = 20 MPa.s and gv(2) = 20 MPa.s.

The overall response predicted by by the RVP model is compared in figure 9 with the reference
results (full-field FFT simulations). These plots call for the following comments.

• In the first part of the loading history (t < 2s), the RVP estimate is very accurate for all
material parameters, the maximum error is less than 1 %.

• The accuracy of the model is poorer in the transient zone when the elastic and the viscous
effects are coupled (just after the inversion of the loading direction, for t > 2s and t > 6s).

• The discrepancy between the macroscopic stress predicted by the proposed model and the
reference results increases when the transient zone is extended and when the viscous contrast
is large.

5. Conclusion

A simplified derivation of the variational estimate RVP of Lahellec and Suquet (2013) has been
presented for linear viscoelastic composites. This estimate not only predicts the effective response
of these composites, but also the first and second-order statistics of the local stress field in the
different phases.

Using a step by step procedure is used (discretization of the time interval of study in different
time step), the stress and strain fields at each time step are solution of a thermoelastic problem with
a nonuniform eigenstrain. It is shown here that when this nonuniform eigenstrain is approximated
by its average in each phase (first moment approximation, model RVP1st), the effective response
of the composite is not accurately estimated.

In the proposed model (RVP), the nonuniform eigenstrain field is approximated by another
field which has the two following merits :

(i) both fields have the same first and second moments (and not only the same first moment as
in the model RVP1st),

(ii) the resulting problem is a classical thermoelastic problem (with a piecewise constant eigen-
strain) and the statistics of the local fields can be estimated by classical homogenization
schemes (Hashin–Shtrikman lower bound and self-consistent estimate for the applications
considered in this paper).

The accuracy of the proposed method is assessed for two classes of composites (with Maxwellian
phases):

(i) Two-phase particulate composites (with isotropic phases). The statistics of the local fields
solutions of the boundary value problem (in the RVP model) are estimated by the Hashin–
Shtrikman lower bound and reference results (which are exact for such a microstructure) are
obtained.

(ii) 2D columnar polycrystals under antiplane loading. The statistics of the local fields are
estimated with the self-consistent estimate and the reference results are obtained by full field
simulations (FFT).

These comparisons show that in two-phase particulate composites the RVP model gives a very good
estimate of the effective behavior as well as of the first moments and the intraphase fluctuations of
the local fields for both monotonic and cyclic loadings. By comparison, the RVP estimate is less
accurate for polycrystals but is the only model available for predicting the higher-order statistics
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Figure 9: Checkerboard under cyclic loading. Comparison between the
RVP model (solid line) and the full-field (FFT) simulations (symbols).
(a) g(1) = 10 MPa, g(2) = 10 MPa, gv(1) = 0.2 MPa.s and gv(2) = 20 MPa.s.
(b) g(1) = 10 MPa, g(2) = 100 MPa, gv(1) = 0.2 MPa.s and gv(2) = 20 MPa.s.
(c) g(1) = 10 MPa, g(2) = 100 MPa, gv(1) = 20 MPa.s and gv(2) = 20 MPa.s.
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in viscoelastic media. For monotonic loadings (macroscopic strain or stress imposed) the effective
behavior and the statistics of the local field are well predicted. For cyclic loadings, the possibility
of mulitple roots is still an obstacle to a proper application of the method to polycrsyatls with a
large number of different phases. For the checkerboard (a specific two-phase polycrystal, the RVP
model can be applied but its predictions the effective response estimated by the RVP model can
deviate from the reference results (depending on the material parameters) in the transient zone
between elasticity and viscosity the purely elastic and the purely viscous regimes.
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Appendix A. First and second moments of the stress in particulate two-phase incom-
pressible Maxwellian composites

The aim of this appendix is to derive a set of differential equations satisfied by the first and the
second moments of the stress field in a specific class of two-phase incompressible composites with
overall isotropy made from incompressible, isotropic and Maxwellian phases. The microstructure of
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these composites are such that their linear properties are well described by one of Hashin-Shtrikman
bounds.The constitutive relations of the phases read as3

ε̇ =
1

2µ(r)
ṡ+

1

2η(r)
s =

1

2µ(r)

(
ṡ+

1

τ (r)
s

)
, (A.1)

where τ (r) = η(r)/µ(r) is the relaxation time of phase r. Upon application of the Laplace-Carson
transform, these constitutive relations read in Laplace space (assuming that their initial state is
stress-free and undeformed)

s∗(p) = 2µ(r)∗(p)ε∗(p), µ(r)∗(p) =
µ(r)

1 + 1
τ(r)p

. (A.2)

The microstructure of the composites is such that their effective linear properties (either purely
elastic or purely viscous) are accurately described by the Hashin-Shtrikman estimate (phase 1
denotes the inclusions, phase 2 is the matrix):

µ̃(µ(2), µ(1)) = µ(2) + c(1)
µ(1) − µ(2)

1 + c(2)β
µ(1) − µ(2)

µ(2)

, β =
2

2 + d
, (A.3)

with a similar relation for η̃, and where d = 2 or 3 is the dimension of space. As shown by Ricaud
and Masson (2009) and Vu et al. (2012), the effective constitutive relations of these composites
can be expressed with two internal variables only, as:

s(t) = 2µ1(ε(t)− β1(t)) + 2µ2(ε(t)− β2(t)), (A.4)

where the evolution of the two tensorial internal variables β1 and β2 is governed by two differential
equations

τ iβ̇i(t) + βi(t) = ε(t), βi(0) = 0, (A.5)

involving the two relaxation times τ2 and τ1

τ1 = τ (2)τ (1)
µ(2)(1− βc(2)) + µ(1)βc(2)

τ (2)µ(2)(1− βc(2)) + τ (1)µ(1)βc(2)
, τ2 = τ (2).

}
(A.6)

The corresponding weights µi are given by:

µ1 = µ(2)µ(1) 1− c(2)

(1− βc(2))

1

µ(2)(1− βc(2)) + µ(1)βc(2)
, µ2 = µ(2) c

(2)(1− β)

1− βc(2)
.

}
(A.7)

Appendix A.1. First moments

The average strain in the inclusions in a linearly elastic composite is given by the Hashin-
Shtrikman estimate as:

ε(1) = a(1)ε, a(1)(µ(1), µ(2)) =
1

1 + βc(2)
(
µ(1) − µ(2)

µ(2)

) . (A.8)

3By incompressibility, the hydrostatic stress is left undetermined by the constitutive relations

24



This relation can be applied with the moduli µ(r)∗(p) in Laplace space to obtain the Laplace
transform of the average strain and stress in the inclusions:

s(1)
∗
(p) = 2µ(1)∗(p)a(1)(µ(1)∗(p), µ(2)∗(p))ε∗(p)

=
2ε∗(p)p

1

µ(1)τ (1)
+ βc(2)

(
1

µ(2)τ (2)
− 1

µ(1)τ (1)

)
+ p

[
1

µ(1)
+ βc(2)

(
1

µ(2)
− 1

µ(1)

)] .
Transforming back in real space it is found that the average stress in the inclusions is solution of
the differential equation:

ṡ
(1)

(t) +
1

τ1
s(1)(t) = 2µ1

1− βc(2)

c(1)
ε̇(t). (A.9)

This differential equation can be interpreted in two different, but complementary, ways. First,
defining the purely elastic response of the inclusion to the macroscopic strain path ε(t) as:

s(1)e (t) = 2µ(1)a(1)ε(t), a(1) = a(1)(µ(1), µ(2)),

(A.9) becomes, after some algebra,

ṡ
(1)

(t) +
1

τ1
s(1)(t) = ṡ

(1)

e (t),

which confirms that for short times, the stress response is essentially elastic:

t ≃ 0, s(1)(t) ≃ 0, ṡ
(1)

(t) ≃ ṡ
(1)

e (t).

Second, defining the purely viscous response of the composite as

s(1)v (t) = 2µ(1)
v a(1)v ε̇(t), a(1)v = a(1)(η(1), η(2)),

the differential equation (A.9) becomes, after some algebra,

τ1ṡ
(1)

(t) + s(1)(t) = s(1)v (t).

Therefore, for long times, if the overall strain-rate goes asymptotically to a limit ε̇
∞
, the stress

response in the inclusions is essentially viscous and goes to a limit:

t → +∞, ṡ
(1)

(t) → 0, s(1)(t) → s(1)v (+∞) = 2µ(1)
v a(1)v ε̇

∞
.

The first moment of the stress in the matrix is simply obtained by the averaging rule:

s(2)(t) =
1

c(2)

(
s(t)− c(1)s(1)(t)

)
. (A.10)

Appendix A.2. Second moment of the stress

Define
S(r)(t) = ⟨s(t) : s(t)⟩

r
. (A.11)

In the inclusion phase, the stress delivered by the Hashin-Shtrikman estimate is uniform4

S(1)(t) = s(1)(t) : s(1)(t), (A.12)

4This is a well-known result for elastic composites, which therefore also holds for viscoelastic composites after
Laplace transform. The inverse Laplace transform does not affect the spatial homogeneity of the stress field in the
inclusions.
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where s(1)(t) is known as solution of (A.9).
Then multiplying (A.1) by σ et integrating over the volume element yields, after proper use of

Hill’s relation:

σ : ε̇ = ⟨σ : ε̇⟩ =
2∑

r=1

c(r)

2µ(r)

(
⟨ṡ(t) : s(t)⟩

r
+

1

τ (r)
⟨s(t) : s(t)⟩

r

)
=

2∑
r=1

c(r)

4µ(r)

(
Ṡ(r) +

2

τ (r)
S(r)

)
,

(A.13)
and after a few manipulations:

Ṡ(2) +
2

τ (2)
S(2) =

4µ(2)

c(2)
σ : ε̇− c(1)

c(2)
µ(2)

µ(1)

(
Ṡ(1) +

2

τ (1)
S(1)

)
.

A differential equation for S(2)(t) is obtained. The right-hand-side, which is known, can be re-
arranged. Multiplying (A.9) by s(1) one gets

1

2
Ṡ(1) +

1

τ1
S(1) = 2µ1

1− βc(2)

c(1)
ε̇ : s(1),

and the final form of the differential equation for S(2) is:

Ṡ(2) +
2

τ (2)
S(2) =

4µ(2)

c(2)
σ : ε̇− 4µ(2)

c(2)
µ1

µ(1)
(1− βc(2))s(1) : ε̇− 2

c(1)

c(2)
µ(2)

µ(1)

(
1

τ (1)
− 1

τ1

)
S(1). (A.14)

In summary, the determination of S(2)(t) along a loading path requires first the integration of the
differential equations (assuming that the initial state is stress-free and undeformed):

τ1β̇1 + β1 = ε(t), β1(0) = 0,

τ2β̇2 + β2 = ε(t), β2(0) = 0,

τ1ṡ
(1)

+ s(1) = s(1)v (t), s(1)(0) = 0.

 (A.15)

Then s(t), s(1)(t) and S(1)(t) are obtained from (A.4), (A.9) and (A.12). Finally S(2)(t) is obtained
by integration of (A.14).

These integrations can be performed explicitly in simple situations. Consider for instance the
case of macroscopic simple slip:

ε̇(t) = ε̇0 = ε̇0e1 ⊗s e2,

integration of (A.15) yields:

s(t) = sv(1− e−
t

τ1 ) +
2µ

(2)
v c(2)(1− β)

1− βc(2)

(
e−

t
τ1 − e−

t
τ1

)
ε̇0, (A.16)

s(1)(t) = s(1)v (1− e−
t

τ1 ), sv = 2η̃ε̇0, s(1)v = 2η(1)a(1)v ε̇0. (A.17)

Then, integrating (A.14) leads to:

S(2)(t) = A0
τ (2)

2
(1− e

− 2t

τ(2) ) +A1τ
(2)(e

− t

τ(2) − e
− 2t

τ(2) )

+ A2
τ (2)τ1

2τ1 − τ (2)
(e−

t
τ1 − e

− 2t

τ(2) ) +A3
τ (2)τ1

2(τ1 − τ (2))
(e−

2t
τ1 − e

− 2t

τ(2) )

where

A0 =
4µ(2)

c(2)
(sv − c(1)a(1)v s(1)v ) : ε̇0, A1 =

4µ(2)

c(2)
(sv +

c(1)

1− βc(2)
s(1)v ) : ε̇0,

A2 = −4µ(2)

c(2)
c(1)

1− βc(2)
s(1)v : ε̇0, A3 = −4µ(2)c(1)

c(2)
a(1)v

(
1− τ (1)

τ1

)
s(1)v : ε̇0,

(A.18)
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Appendix B. Determination of σ(r)
n and h(r)

σ
(r)
n and h(r) solve the set of equations :

⟨σn⟩r = h(r)⟨σ⟩
r
+
(
1− h(r)

)
σ

(r)
n ,

C(r)(σn) :: L
e(r)−1

= (h(r))2C(r)(σ) :: Le(r)−1
.

 (B.1)

These equations are the particular form of equations (10) and (11) whenH(r) is chosen proportional

to the identity fourth-order tensor (ie H(r) = h(r)I). To avoid numerical difficulties, this set of

equations is solved in two steps: first, σ
(r)
n is eliminated by the first equation of (B.1), and then,

the second equation of (B.1) is solved numerically.

Appendix B.1. Elimination of σ
(r)
n

Assuming the h(r)’s to be known for the time being, the first moment ⟨σ⟩r of the stress in the
individual phases of the LCC can be expressed as

⟨σ⟩
r
=
(
L(r)

0 :
(
A(r) : ε̇+ a(r)

)
+ τ

(r)
0

)
, (B.2)

where A(r) is a 4th-order tensor depending on the microstructure, on L(r)
0 and the homogenization

scheme used and a(r) a 2nd-order tensor depending on A(s)|s=1,N and τ
(s)
0 |s=1,N (It is important

to note that this last dependency is linear). The first equation in (B.1) can be re-written as :

⟨σn⟩r = h(r)
(
L(r)

0 :
(
A(r) : ε̇+ a(r)

)
+ τ

(r)
0

)
+
(
1− h(r)

)
σ(r)

n (B.3)

Assuming the h(s)|s=1,N to be known, (B.3) is a set of N tensorial linear equations for σ
(r)
n |r=1,N

which can be solved analytically (N is the number of phases).

Appendix B.2. Computation of h(s)|s=1,N

The h(r)|s=1,N are determined by means of the second relation in (B.1). This relation makes use
of the fluctuations of the stress field solution of the boundary value problem (6). These fluctuations
are first related to the fluctuations of the strain-rate field with the elastic law (6) :

C(r)(σ) = L(r)
0 : C(r)(ε̇) : L(r)

0 . (B.4)

To compute the fluctuations of the strain rate field, we introduce the following variational form of
the boundary value problem (6) :

w̃0

(
ε̇
)
= Inf

⟨ε̇⟩=ε̇
⟨w0(ε̇)⟩ with w0(ε̇) =

1

2
ε̇ : L(r)

0 : ε̇+ τ
(r)
0 : ε̇. (B.5)

Following Idiart and Ponte Castañeda (2007), the fluctuations of the strain-rate field are then given
by :

C(r)(ε̇) = ⟨ε̇⊗ ε̇⟩r − ⟨ε̇⟩r ⊗ ⟨ε̇⟩r =
2

c(r)
∂w̃0

∂L(r)
0

− ⟨ε̇⟩r ⊗ ⟨ε̇⟩r . (B.6)

At this stage of the computation of the hs)|s=1,N , the particular form (class of symmetry) of

the tensor L(r) is accounted for in the second equation of (B.1). Two cases are considered here:
isotropic and orthotropic (with 2D antiplane problem) tensors.
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Isotropic case: In the isotropic case, the second equation of (B.1) takes the simplified form of
the second equation of (21) which is rewritten as :

C(r)(σn) ::

(
K

2µ(r)
+

J

3k(r)

)
= (h(r))2C(r)(σ) ::

(
K

2µ(r)
+

J

3k(r)

)
. (B.7)

Applying (B.4), this relation becomes :

C(r)(σn) ::

(
K

2µ(r)
+

J

3k(r)

)
= (h(r))2 (⟨ε̇⊗ ε̇⟩r − ⟨ε̇⟩r ⊗ ⟨ε̇⟩r) ::

2µ
(r)
∆,0

2

µ(r)
K +

3k
(r)
∆,0

2

k(r)
J

 (B.8)

The projections of the second moment of the strain rate field on the tensors K and J are obtained
by derivation of w̃0:

⟨ε̇⊗ ε̇⟩r :: K =
1

cr

∂w̃0

∂µ
(r)
∆,0

and ⟨ε̇⊗ ε̇⟩r :: J =
2

3cr

∂w̃0

∂k
(r)
∆,0

. (B.9)

2D antiplane polycrystals : In that case, the second equation of (B.1) takes the simplified form
of the second equation of (33) which is rewritten as :

C(r)(σn) ::

(
2∑

k=1

1

2g(k)
G

(r)
(k)

)
= (h(r))2C(r)(σ) ::

(
2∑

k=1

1

2g(k)
G

(r)
(k)

)
. (B.10)

Using (B.4), this relation becomes :

C(r)(σn) ::

(
K

2µ(r)
+

J

3k(r)

)
= (h(r))2 (⟨ε̇⊗ ε̇⟩r − ⟨ε̇⟩r ⊗ ⟨ε̇⟩r) ::

 2∑
k=1

2g
(r)
∆,(k)

2

g(k)
G

(r)
(k)

 (B.11)

The projections of the second moment of the strain-rate field on the tensors G
(r)
(k) are obtained by

derivation of w̃0:

⟨ε̇⊗ ε̇⟩
r
:: G

(r)
(k) =

1

cr

∂w̃0

∂g
(r)
∆,(k)

. (B.12)

Appendix B.3. Two-phase particulate composites

For two-phase particulate composite with inclusions stiffer than the matrix the Hashin-Shtrikman
lower bound is used to estimate the statistics of the strain rate field solution of the boundary value
problem (6). This bound is also used to derive the reference results to avoid any possible error due
to the homogenization scheme. This estimate predicts no fluctuation of the strain and stress fields
in the inclusions. Therefore

h(1) = 0 and σ(1)
n = ⟨σn⟩1. (B.13)

h(2) is solution of equation (B.8) which has to be solved numerically in the general case (closed-
form solutions can be found in very particular situations such as incompressible materials studied
in section 3.2). Numerical difficulties are expected in the resolution of equation (B.8), which can
be put in the form f(h(2)) = 0, where f is a rational fraction with several poles. These poles come

from the expression of σ
(2)
n resulting from (B.3) and from the expression of ⟨σ⟩

2
. σ

(2)
n is, again, a

rational fraction with denominator DEN(h).
In order to avoid the singularities due to the zeros of DEN in the resolution of (B.8), this

equation can be regularized by multiplying both sides by DEN(h). The improvement is illus-
trated in figure B.10 where the variations with h of f before regularization (solid line) and after
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regularization (dashed line) are shown. These variations are shown for two different time steps,
the first corresponding to h < 1 , i.e.

C(2)(σn) ::

(
K

2µ(2)
+

J

3k(2)

)
< C(2)(σ) ::

(
K

2µ(2)
+

J

3k(2)

)
,

and the other one corresponding to h > 1, i.e.

C(2)(σn) ::

(
K

2µ(2)
+

J

3k(2)

)
> C(2)(σ) ::

(
K

2µ(2)
+

J

3k(2)

)
.

Figure B.10 also shows that equation (B.8) can have several roots. (see figure B.10(b) for
h > 1). The two plots in this figure correspond to two different times along the loading and to
two different situations for the nonlinear equation (B.8). In figure B.10(a), the equation has a
single solution h < 1 found as the intersection between the dotted line and the horizontal axis.
By contrast, figure B.10(b) corresponding to a different time along the loading, two solutions are
found. Unfortunately, there is no theoretical justification argument to discriminate the different
solutions and a more pragmatic approach is used. In most cases (all the cases of section 3.3)
the smallest positive value of h(2) is the best choice. In a few other cases (see section 3.2 for an

example), when C(2)(σ) :: Le(r)−1
(the left part of equation 17) decreases to very small values,

the other solution has to be used to obtain the best estimate. Let h0 = 0, h1 be the smallest
root of (B.8), h2 be the largest root, s(hi) and C(2) (σ(hi)) be respectively the average and the
fluctuations of the stress field associated with the choice h(2) = hi. Then, h(2) is systematically
taken equal to h1, except when one of the two conditions (B.14) or (B.15) is met :

C(2) (σ(h1)) ::

(
K

2µ(2)
+

J

3k(2)

)
< C(2)(σn) ::

(
K

2µ(2)
+

J

3k(2)

)
and s(2)(h1) > sn

(2), and s(h1) : s(h1) < s(h0) : s(h0).

 (B.14)

C(2) (σ(h1)) ::

(
K

2µ(2)
+

J

3k(2)

)
< C(2)(σn) ::

(
K

2µ(2)
+

J

3k(2)

)
and s(2)(h1) < sn

(2), and s(h1) : s(h1) > s(h0) : s(h0).

 (B.15)

Appendix B.4. 2D polycrystals

In untextured polycrystals, the statistics of the strain-rate field (and therefore the stress field)
are estimated by the self-consistent method. For polycrystals with N grains the h(s)|s=1,N are
found by solving the set of N nonlinear equations (B.11). Two classes of polycrystals are studied
in section 4 :

i) Polycrystals with a large number of grains. The RVFP estimate can be implemented un-
der monotonic load (constant rate of macroscopic stress or strain), there is only one set of
h(s)|s=1,N verifying the conditions on the first and second moment of the stress. However,
for cyclic loadings where there might be several solutions in each grain, we do not have a
criterion for selecting the roots.

ii) Checkerboard. A checkerbopard is a specific two-phase composite. Therefore the RVP es-
timted can be implemented both for monotonic and cyclic loadings. Under cyclic loading it

is observed that C(r)(σ) ::
(∑2

k=1
1

2g(k)
G

(r)
(k)

)
may decrease to very small values which makes

equation (B.10) ill-conditioned. In this case, as for two-phase particulate composites, more
than one set of h(s)|s=1,N may satisfy the equations and the choice between the different
solutions is made by using the prescription of Appendix B.3.
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Figure B.10: Regularization of equation (B.8). Data as in figure 3 (c). Original function f (solid line)
compared with the regularized function (dashed line) as a function of h. (a) and (b) correspond to a
situation where there is only one root h < 1 to the equation f = 0 (for t = 1 s). (b) is a close-up of (a).
(c) and (d) correspond to a situation where the equation f = 0 has two roots h > 1 (for t = 11 s). (d) is
a close-up of (c).
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