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Abstract: In this note it is shown that the index coefficients and location parameters in the standard triangular

binary-choice model are identified under an assumption of symmetry on the joint density of the latent disturbances.

Identification of average effects follows. The implied restrictions suggest semiparametric rank estimators that are√
n-consistent and asymptotically normal under standard conditions.
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Introduction

A difficult issue in microeconometrics is the non- and semiparametric identification of causal parameters

in triangular limited dependent-variable models (see, e.g., Chesher, 2007). When endogenous variables

exhibit discrete variation, such parameters are generally set- rather than point identified (see, e.g., Chesher,

2005, 2010). The problem appears most severe in a bivariate binary-choice model—a cornerstone model

for empirical practice—where the attention has shifted toward inferring local average treatment-effect

(LATE) parameters (Imbens and Angrist, 1994). Vytlacil and Yildiz (2007) showed how both the average

structural function and the average treatment effect can be recovered in a specification featuring weak

separability and large-support conditions. Yildiz (2004) suggested a multistep estimator for a linear-

index version of their model. Shaikh and Vytlacil (2010) showed that omitting the support condition

results in set identification. Here, I complement these analyses with the finding that point identification

in the benchmark bivariate binary-choice model can also be achieved when the disturbances are known

to be drawn from an elliptical distribution. The analogy principle leads to rank-based estimators whose

large-sample properties are easy to analyze.

1 Information and identification

Let the observable random variable W ≡ (Y, D, X, Z) have distribution P , supported on W ≡ {0, 1} ×
{0, 1} × X × Z . The canonical bivariate binary-choice model (see, e.g., Heckman, 1978) takes the form

Y = 1{Xβ + Dδ ≥ µU + U}, D = 1{Zγ ≥ µV + V }, (U, V )⊥(X, Z), (1)

for conformable unknown x and z vectors β and γ, and scalars δ, µU , and µV . Assume that the density of

(U, V ), fU,V , is absolutely continuous and symmetric, that is, fU,V (u, v) = fU,V (−u,−v). The centering

∗Address: U.C. Louvain, Center for Operations Research and Econometrics, Voie du Roman Pays 34, B-1348 Louvain-la-
Neuve, Belgium. Tel. +32 10 474329; E-mail: koen.jochmans@uclouvain.be.

[1]



of the density at zero is innocuous due to the inclusion of the location parameters µV and µU . The first

components of both β and γ are normalized to unity. This is without loss of generality provided that their

true value is non-zero. Consequently, identification and estimation statements concerning β and γ below

relate to their last x − 1 and z − 1 components, respectively.

The specification in (1) entails sign restrictions that provide non-trivial information on the unknown

parameters in both equations. A familiar support condition on X and Z implies these to be sufficiently

informative to point identify the index coefficients and the location parameters.

First-stage equation. Because of the triangular structure of (1), identifying γ and µV poses little

complication. On letting FV be the marginal distribution of V ,

E[D|Z = z] = FV (zγ − µV ) = 1 − FV (µV − zγ).

The first equality follows from the independence of V and Z. The second transition stems from the fact

that symmetry of fU,V implies symmetry of its marginals. Let sgn{·} be the sign function. Then, for each

(z1, z2) in Z ⊗ Z ,

sgn{E[D|Z = z1] − E[D|Z = z2]} = sgn{(z1 − z2)γ} (2)

because FV (·) is monotone (Han, 1987), and

sgn{E[D|Z = z1] − E[(1 − D)|Z = z2]} = sgn{(z1 + z2)γ − 2µV } (3)

because FV (·) is symmetric (Chen, 2000). Suppose that the first component of Z has an everywhere-

positive Lebesgue density given realizations of the remaining z −1 components and suppose that Z is not

contained in a linear subspace of Rz . Then (2) and (3) point identify γ and µV (see, e.g., Manski, 1985,

Han, 1987).

Second-stage equation. Introduce the shorthand notation Y ∗ ≡ Xβ − µU and D∗ ≡ Zγ − µV and

define C(τ) ≡ 1{−|τ | < V ≤ |τ |}. By index sufficiency,

E[Y |Y ∗ = ι, D = 1, C(τ) = 1] =
E[Y D|Y ∗ = ι, D∗ = τ ] − E[Y D|Y ∗ = ι, D∗ = −τ ]

sgn{τ}Pr[C(τ) = 1]
, (4)

E[Y |Y ∗ = ι, D = 0, C(τ) = 1] =
E[Y (1 − D)|Y ∗ = ι, D∗ = τ ] − E[Y (1 − D)|Y ∗ = ι, D∗ = −τ ]

sgn{−τ}Pr[C(τ) = 1]
. (5)

For each non-zero τ in the support of D∗, the indicator C(τ) defines the subpopulation of compliers

(Angrist, Imbens, and Rubin, 1996) associated with shifting the propensity score of D from −|τ | to |τ |. The

relative size of this subpopulation is identified as Pr[C(τ) = 1] = sgn{τ}
[
E[D|D∗ = τ ]−E[D|D∗ = −τ ]

]
.

So the conditional expectations for compliers are identified from the right-hand sides of (4) and (5)

provided that the value of β can be learned in the population, which is the case (see (8)). Within each
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complier population (i.e., for each τ), D is exogenous. Moreover, (4) and (5) can be compactly expressed

as E[Y |Y ∗ = ι, D = d, C(τ) = 1] = Pr[U ≤ ι + dδ − µU | − |τ | < V ≤ |τ |], so that

sgn{E[Y |Y ∗ = ι1, D = d1, C(τ) = 1]−E[Y |Y ∗ = ι2, D = d2, C(τ) = 1]} = sgn{(x1−x2)β+(d1−d2)δ} (6)

for each pair (w1, w2) in W ⊗ W . Furthermore, given C(τ) = 1, U is symmetrically distributed around

zero, as

Pr[U ≤ u|C(τ) = 1] = Pr[U ≤ u| − |τ | < V ≤ |τ |] = Pr[U > −u| − |τ | < V ≤ |τ |] = Pr[U > −u|C(τ) = 1].

Consequently,

sgn{E[Y |Y ∗ = ι1, D = d1, C(τ) = 1] − E[(1 − Y )|Y ∗ = ι2, D = d2, C(τ) = 1]}
=

sgn{(x1 + x2)β + (d1 + d2)δ − 2µU}.
(7)

The sign restrictions in (6) and (7) provide information on all parameters of the second-stage equation.

Here, restricting attention to compliers can be understood as an artificial-truncation argument, similar in

spirit as Powell (1986) and Honoré (1992). Symmetry of the error distribution is restored by correcting

for the presence of always-takers and never-takers (see, again, Angrist, Imbens, and Rubin, 1996). This

is apparent from the right-hand side of both (4) and (5).

Identifying the expected value of Y for a complier group given realizations of Y ∗ in stead of X does

not preclude variation in X but requires β to be identified. Index sufficiency implies that

E[Y D|Y ∗ = ι, D∗ = τ ]

E[D|D∗ = τ ]
= Pr[U ≤ ι + δ|V ≤ τ ],

E[Y (1 − D)|Y ∗ = ι, D∗ = τ ]

E[(1 − D)|D∗ = τ ]
= Pr[U ≤ ι|V > τ ],

regardless of symmetry. Therefore, given D = d and D∗ = τ , variation in X is exogenous and

sgn{E[Y |Y ∗ = ι1, D = d, D∗ = τ ] − E[Y |Y ∗ = ι2, D = d, D∗ = τ ]} = sgn{(x1 − x2)β} (8)

by a standard application of control-function arguments.

Using variation within complier populations allows to disentangle δ and µU . By itself, symmetry, at

best, provides information on a linear combination of these parameters. This is so because mirroring fU,V

around the origin requires changing D. Recall that E[Y D|Y ∗ = ι1, D
∗ = τ ] = Pr[U ≤ ι1 + δ, V ≤ τ ] and

that

E[(1 − Y )(1 − D)|Y ∗ = ι2, D
∗ = −τ ] = Pr[U > ι2, V > −τ ] = Pr[U ≤ −ι2, V ≤ τ ].

So,

sgn{E[Y D|Y ∗ = ι1, D
∗ = τ ] − E[(1 − Y )(1 − D)|Y ∗ = ι2, D

∗ = −τ ]} = sgn{ι1 + ι2 + δ − 2µU} (9)

and, by an analogous argument, it is readily established that

sgn{E[Y (1 − D)|Y ∗ = ι1, D
∗ = τ ] − E[(1 − Y )D|Y ∗ = ι2, D

∗ = −τ ]} = sgn{ι1 + ι2 + δ − 2µU}. (10)
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These moment conditions do not allow to separately learn δ and µU .

For the above sign restrictions to be powerful enough to uniquely pin down all of β, δ, and µU X

needs to be able to shift Y ∗ sufficiently given D∗ = τ for all τ . Let the first component of X have an

everywhere-positive Lebesgue density given realizations of both the x − 1 remaining components and D∗.

Suppose that X is not contained in a linear subspace of Rx . Then (6), (7), (8), and (9) point identify all

second-stage parameters. The proof to this claim is virtually identical as the argument in the standard

case (see, again, Manski, 1985 or Han, 1987).

Average effects. Given identification of the coefficients, one can learn policy parameters that involve

averages with respect to the marginal distribution of U . To illustrate, consider the average structural

function at (X = x, D = 1), that is,
∫

1{ι1 + δ ≥ u} dFU (u) for ι1 = xβ − µU . By the law of total

probability, it can equivalently be expressed as an average over D∗ of
∫

1{ι1 + δ ≥ u} dFU (u|V ≤ τ) Pr[D = 1|D∗ = τ ] +

∫
1{ι2 ≥ u} dFU (u|V > τ) Pr[D = 0|D∗ = τ ],

for ι2 = ι1 + δ. The first integral is nonparametrically identified, and so is the propensity score for D.

The second integral can be computed in the population as E[Y |Y ∗ = ι2, D = 0, D∗ = τ ], and is thus also

identified. Identification of other average-effect parameters follows in the same way.

2 Estimation

Suppose throughout a random sample of size n has been drawn from P . Let Wi ≡ (Yi, Di, Xi, Zi),

i = 1, . . . , n, denote the realizations.

First-stage equation. Han (1987) (and later also Cavanagh and Sherman, 1998) used (2) and suggested

inferring β by maximizing

qγ(g) ≡ 1

n(n − 1)

n∑

i=1

∑

j 6=i

Di(1 − Dj) 1{(Zi − Zj)g > 0} + (1 − Di)Dj 1{(Zi − Zj)g < 0}

with respect to g. Sherman (1993) gave conditions under which doing so leads to a
√

n-consistent and

asymptotically-normal estimator. The asymptotic efficiency of this procedure can be improved by the

weighting argument in Subbotin (2008).

Chen (2000) utilized (3) and proposed to maximize

qγ,µV
(g, µ) ≡ 1

n(n − 1)

n∑

i=1

∑

j 6=i

DiDj 1{(Zi + Zj)g > 2µ} + (1 − Di)(1 − Dj) 1{(Zi + Zj)g < 2µ}

either with respect to µ using an asymptotically-linear estimator of γ or jointly over (g, µ). Both these

procedures yield
√

n-consistent and asymptotically-normal estimators under the conditions outlined in

Chen (2000).
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A third option would be to set

(γ̂, µ̂V ) ≡ arg max (qγ(g) + qγ,µV
(g, µ)).

Because (2) is not redundant given (3), this estimator will be more efficient than the simultaneous proce-

dure based on qγ,µV
(g, µ) alone.

Second-stage equation. For each i = 1, . . . , n, construct D̂∗
i ≡ Ziγ̂ − µ̂V . Consider a symmetric

univariate kernel function K{·} and a bandwidth σ = σ(n) that satisfies limn→∞ σ = ∞. Define the

weight ω̂−
i,j ≡ σK{σ(D̂∗

i − D̂∗
j )}. An estimator of β based on (9) in the spirit of Han’s (1987) rank

estimator is β̂ ≡ arg max qβ(b), for

qβ(b) ≡ 1

n(n − 1)

n∑

i=1

∑

j 6=i

[
Yi(1 − Yj) 1{(Xi − Xj)b > 0} + Yj(1 − Yi) 1{(Xi − Xj)b < 0}

]
ω̂−

i,j .

The large-sample behavior of this estimator of β—
√

n-consistency and asymptotic normality under the

appropriate conditions—and its asymptotic covariance matrix follow from Theorem 2 and Proposition 2

in Jochmans (2011), respectively.

For each i = 1, . . . , n, use β̂ to construct Ŷ ∗
i ≡ Xiβ̂. Observe that, contrary to Y ∗

i , Ŷ ∗
i does not include

and estimate of µU . Let λ̂i,j ≡ σ2K{σ(Ŷ ∗
i − Ŷ ∗

j )}K{σ(D̂∗
i + D̂∗

j )}. The use of a product kernel is not

crucial. To implement the restrictions in (4) and (5), let I be an indicator that can take on the values

zero and one. For each i, construct the outcomes

Ŝi(I) ≡ Yi[IDi + (1 − I)(1 − Di)] −
1

n−1

∑
j 6=i Yj [IDj + (1 − I)(1 − Dj)] λ̂i,j

1

n−1

∑
j 6=i λ̂i,j

,

F̂i(I) ≡ (1 − Yi)[IDi + (1 − I)(1 − Di)] −
1

n−1

∑
j 6=i(1 − Yj)[IDj + (1 − I)(1 − Dj)] λ̂i,j

1

n−1

∑
j 6=i λ̂i,j

.

Abstract away from any need for trimming to keep the denominator well defined. Standard smoothness

conditions yield Ŝi(I)
p→ Si(I) ≡ Yi[IDi +(1−I)(1−Di)]−E[Y [ID+(1−I)(1−D)]|Y ∗ = Y ∗

i , D∗ = −D∗
i ]

and also F̂i(I)
p→ Fi(I), in obvious notation. So,

E[S(I)|Y ∗ = Y ∗
i , D∗ = D∗

i ] ∝ sgn{ID∗
i − (1 − I)D∗

i } E[Y |Y ∗ = Y ∗
i , D = I, C(D∗

i ) = 1],

and similarly for F (I). The factor of proportionality is Pr[C(D∗
i ) = 1] and is irrelevant for our purposes.

The generated outcomes Ŝi(I) and F̂i(I) can be used to construct a criterion function for (δ, µU ). By

analogy to ω̂−
i,j , let ω̂+

i,j ≡ σK{σ(D̂∗
i + D̂∗

j )}. Consider

ζδ
i,j(d) ≡

[
Ŝi(1) 1{Ŷ ∗

i − Ŷ ∗
j > −d} + Ŝj(0) 1{Ŷ ∗

i − Ŷ ∗
j < −d}

]
ω̂+

i,j sgn{D̂∗
i − D̂∗

j},
ζ

µU

i,j (µ) ≡
[
F̂i(0) 1{Ŷ ∗

i + Ŷ ∗
j > 2µ} + Ŝj(0) 1{Ŷ ∗

i + Ŷ ∗
j < 2µ}

]
ω̂−

i,j sgn{D̂∗
i + D̂∗

j},
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whose average over the empirical product measure serve as the data counterparts to (6) when either µU

or δ is differenced out. While these random variables suffice to infer the remaining unknowns, they can

be complemented with the information in (9) and (10), which is non-redundant. Define

ζ
δ,µU

i,j (d, µ) ≡
[
Ŝi(1) 1{Ŷ ∗

i + Ŷ ∗
j > 2(µ − d)} + F̂j(1) 1{Ŷ ∗

i + Ŷ ∗
j < 2(µ − d)}

]
ω̂−

i,j sgn{D̂∗
i + D̂∗

j},
ζ

µU ,δ
i,j (µ, d) ≡

[
Yi 1{Ŷ ∗

i + Ŷ ∗
j > 2µ − d } +(1 − Yj) 1{Ŷ ∗

i + Ŷ ∗
j < 2µ − d}

]
ω̂+

i,j 1{Di 6= Dj}.

An objective function that can form the basis for inference on (δ, µU ) then follows as

qδ,µU
(d, µ) ≡ 1

n(n − 1)

n∑

i=1

∑

j 6=i

ζδ
i,j(µ) + ζ

µU

i,j (µ) + ζ
δ,µU

i,j (d, µ) + ζ
µU ,δ
i,j (µ, d),

and the
√

n-consistency and asymptotic normality of its maximizer follow from arguments similar to those

for β̂. Like with the first-stage equation, estimation of β and (δ, µU ) can also be done by maximizing jointly

over all second-stage coefficients using β̂ from above to perform the matching. This procedure can be

iterated in the matching parameter. qδ,µU
(d, µ) could also be complemented by qβ(b) were such a strategy

to be followed.
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