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conditions it is a norm on LD(�)D . Finally, �D: LD(�)D −→
L1(��, R3) is the trace mapping assigning the boundary value
�D(w) to any w ∈ LD(�)D .

It should be mentioned that although we consider only load-
ing by boundary traction for the sake of simplicity, body forces
may be included in the analysis using the same methods as
in [3]. (We indicate below some of the adaptations used when
body forces are included.)

The notion of load capacity ratio is an application to plas-
ticity of ideas presented in our previous work [3–5] where we
consider stress fields on bodies whose maxima are the least.
The general setting may be described as follows.

Let � represent the region occupied by the body in space
so that the body is supported on a part �0 of its boundary and
let t be the external surface traction acting on the part �t of
its boundary. The mechanical properties of the body are not
specified, and so, there is a class of stress fields that satisfy the
equilibrium conditions with the external loading. (Clearly, dis-
tinct distributions of the mechanical properties within the body
will result in general distinct equilibrating stress distributions.)
Each equilibrating stress field in this class has its own maximal
value, and we denote by �opt

t the least maximum.
Specifically, the magnitude of the stress field at a point is

evaluated using a norm on the space of matrices. It is noted
that yield conditions in plasticity usually use seminorms on the
space of stress matrices rather than norms and the adaptation
needed for plasticity will be described further below. By the
maximum of a stress field we mean the essential supremum
over the body of its magnitude, and later for plasticity, the
essential supremum of the value of the yield function. Thus, we
ignore excessive values on regions of zero volume. The traction
fields that we admit are essentially bounded also. The set �
is assumed to be open, bounded and its boundary is assumed
to be smooth. Furthermore, it is assumed that �t and �0 are
disjoint open subsets of the boundary whose closures cover the
boundary, and that their closures intersect on a smooth curve.

Subject to these assumptions (see further details in Section 2)
our first result is:

Theorem 1.1. (i) The existence of stresses: Given an essen-
tially bounded traction field t on �t , there is a collection �t of
essentially bounded symmetric tensor fields, interpreted physi-
cally as stress fields, that represent t in the form∫

�t

t · w dA=
∫
�

�ij �ij (w) dV ,

� ∈ �t , w ∈ C∞(�, R3), (1.3)

where �(w)= 1
2 (∇w + ∇wT).

(ii) The existence of optimal stress fields: Let

�opt
t = inf

�∈�t

{
ess sup

x∈�
|�(x)|

}
. (1.4)

Then, there is a stress field �̂ ∈ �t such that

�opt
t = ess sup

x∈�
|̂�(x)|. (1.5)

(iii) The expression for �opt
t : The optimum satisfies

�opt
t = sup

w∈C∞(�,R3)

| ∫�t
t · w dA|∫

� |�(w)| dV
, (1.6)

where the magnitude of �(w)(x) is evaluated using the norm
dual to the one used for the values of stresses.

Item (i) above is of theoretical interest. It is a representation
theorem for the virtual work performed by the traction field
using tensor fields that we naturally interpret as stresses. It
should be noted that the existence of stress is not assumed
here a priori. The expression for the representation by stresses
turns out to be the principle of virtual work (1.3). Thus, the
equilibrium conditions are derived mathematically on the basis
of quite general assumptions. Item (i) also ensures us that the
representing stress fields are also essentially bounded. Item (ii)
states that the optimal value is actually attainable for some
stress field and not just as a limit process.

Next, we consider generalized stress concentration factors
for the given body. For a given external loading, traditional
stress concentration factors are used by engineers to specify
the ratio between the maximal stress in the body and the maxi-
mum nominal stress obtained using simplified formulas where
various geometric irregularities are not taken into account.
Regarding these nominal stresses as boundary traction fields,
we formulate the notion of a stress concentration factor for a
stress field � in equilibrium with the traction t mathematically
as the ratio between the maximal stress and the maximum
traction. Specifically, we set

Kt,� = ess supx∈� |�(x)|
ess supy∈�t

|t (y)| . (1.7)

In particular, the optimal stress concentration factor for the
given traction t is

Kt = inf
�∈�t

{Kt,�} = �opt
t

ess supy∈�t
|t (y)| . (1.8)

Finally, realizing that engineers may be uncertain as to the
nature of the external loading, we let the external loading vary
and define the generalized stress concentration factor, a purely
geometric property of the body �, as

K = sup
t
{Kt }, (1.9)

where t varies over all essentially bounded traction fields. In
other words, K is the worst possible optimal stress concen-
tration factor. Using the result on optimal stresses, we prove
straightforwardly the following:

Theorem 1.2. The generalized stress concentration factor sat-
isfies

K = sup
w∈C∞(�,R3)

∫
�t
|w| dA∫

� |�(w)| dV
= ‖�0‖, (1.10)
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where �0 is the trace mapping for vector fields satisfying the
boundary conditions on �0.1

To prove the theorems we use standard tools of analysis and
the theory of LD spaces given by [6–8]. Results analogous to
Theorems 1.1 and 1.2 were presented in our earlier work cited
above. In [4], a weaker form of equilibrium is assumed, and in
all earlier work we did not consider boundary conditions for
the displacements on �0.

The following adaptations are made in order to consider body
force fields in addition to the surface tractions. When, in addi-
tion, an essentially bounded body force field b is considered,
we denote the external loading vector by F = (t, b) and the
stress concentration factor is redefined as

KF,� = ess supx∈� |�(x)|
max{ess supy∈�t

|t (y)|, ess supx∈� |b(x)|} . (1.11)

With �F denoting the class of all stress fields in equilibrium
with the pair F = (t, b), one sets naturally

KF = sup
�∈�F

KF,�. (1.12)

The analog of Theorem 1.2, in particular Eq. (1.10), is now

K = ‖�‖ = sup
w∈LD(�)0

∫
� |w| dV + ∫

�t
|�0(w)| dA∫

� |�(w)| dV
, (1.13)

where LD(�)0 is the space of vector fields that vanish on �0
and whose associated strains are integrable and � is the mapping
defined on LD(�) by �(w)=(�0(w), w) (see [3] for additional
details).

Next we turn to the adaptation needed for the application to
plasticity. It is assumed that the yield function is a norm on
the space of matrices applied to the deviatoric component of
the stress matrix. Thus, it turns out that the same mathematical
structure applies if we consider incompressible vector fields in
the suprema of Eqs. (1.6) and (1.10). For example, the analog
of Eq. (1.6) is

�opt
t = sup

w∈LD(�)D

| ∫�t
t · w dA|∫

� |�(w)| dV
, (1.14)

where LD(�)D is the collection of incompressible vector
fields satisfying the boundary conditions and having integrable
strains.

It turns out that optimal stresses are related to limit analysis
of plasticity. In fact, the limit analysis factor 	∗ (see Remark
5.2 and [1,2,9]) is simply given by

	∗ = Y0

�opt
t

. (1.15)

Furthermore, the expression for the optimal stress of Eq. (1.14)
is implied mathematically by the results of Christiansen [1,2]
and Temam and Strang [9]. This implies that the optimal stress
fields do not require special designs of non-homogeneous

1 Further details on �0 are described in Section 3.

material properties but occur for the frequently used models
of elastic–plastic bodies. In particular, elastic–plastic material
with Y0=�opt

t will attain the optimal stress field independently
of the distribution of the external load.

We take advantage of these observations and introduce here
the notion of load capacity ratio—a purely geometric property
of the body. As described above, the load capacity ratio may be
conceived as a universal limit design factor, which is indepen-
dent of the distribution of the external loading. It immediately
follows from its definition that

C = 1

K
. (1.16)

Section 2 introduces the notation, assumptions and some
background material. In particular, the space LD(�) of vec-
tor fields of integrable linear strains (see [6–8]) is described.
Following some preliminary material concerning the boundary
conditions in Section 3, the proof of the theorems is given in
Section 4. The adaptation to plasticity theory, including the
introduction of the load capacity ratio, is presented in Section 5.

It is noted that for structures, in particular, the finite dimen-
sional models obtained by finite element approximation, the
expression for C may be set as a convex optimization problem.

2. Notation and preliminaries

2.1. Basic variables

We consider a body under a given configuration in space.
The space is modelled simply by R3 and the image of the
body under the given configuration is the subset � ⊂ R3. It is
assumed that � is open and bounded and that it has a C

1
bound-

ary ��. Furthermore, there are two open subsets �0 ⊂ �� and
�t ⊂ �� such that �0 is the region where the body is supported
and �t is the region where the body is not supported so that
a surface traction field t may be exerted on the body on �t .
Thus, it is natural to assume that �0 and �t are non-empty and
disjoint, �0 ∪ �t = ��, and 
= ��0 = ��t is a differentiable
one-dimensional submanifold of ��. (The regularity assump-
tions may be generalized without affecting the validity of the
constructions below.)

Basic objects in the construction are spaces of generalized
velocity fields. A generic generalized velocity field (alterna-
tively, virtual velocity or virtual displacement) will be denoted
by w. In the sequel we consider a number of Banach spaces
containing generalized velocities and a generic space of gen-
eralized velocities will be a denoted by W. Generalized forces
will be elements of the dual space W∗. Thus, a generalized
force F is a bounded linear functional F : W −→ R such that
F(w) is interpreted as the virtual power (virtual work) per-
formed by the force for the generalized velocity w. We recall
that the dual norm of a linear functional F is defined as

‖F‖ = sup
w∈W

|F(w)|
‖w‖ . (2.1)
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2.2. Virtual linear strains and stresses

As an example for the preceding paragraph, consider the
space L1(�, R6) of L1-symmetric tensor fields on �. A typical
element � ∈ L1(�, R6) is interpreted as a virtual linear strain
field. We will use |�(x)| to denote the norm of the matrix �(x).
Various such norms are described in [5]. Thus,

‖�‖1 =
∫
�
|�(x)| dV . (2.2)

The dual space L1(�, R6)∗ = L∞(�, R6) contains symmetric
essentially bounded tensor fields � that act on the linear strain
fields by

�(�)=
∫
�

�(x)(�(x)) dV . (2.3)

Here, we use the same notation for the functional � and the
essentially bounded tensor field representing it and we regard
the matrix �(x) as a linear form on the space of matrices
so that �(x)(�(x)) = �(x)ij �(x)ji . Naturally, an element � ∈
L∞(�, R6) is interpreted as a stress field. The dual norm of a
stress field is given as

‖�‖ = ‖�‖∞ = ess sup
x∈�
|�(x)|. (2.4)

Here, |�(x)| is calculated using the norm on the space of ma-
trices which is dual to the one used for the evaluation of |�(x)|
(see [5] for details). Thus, the choice of the space L1(�, R6)

for linear strains is natural when one is looking for the maxi-
mum of the stress tensor.

2.3. The space of boundary velocity fields and boundary
tractions

As another example to be used later, consider the space
L1(�t , R3) of integrable vector fields on the “free” part of the
boundary. Its dual space is

L1(�t , R3)∗ = L∞(�t , R3) (2.5)

so that a generalized force in this case will be represented by
an essentially bounded vector field t on �t . Using the same
notation for the functional and the vector field representing it,
we have

t (u)=
∫
�t

t (y) · u(y) dA (2.6)

so that t may be interpreted as a traction field on �t as expected.
The dual norm of the traction field t is

‖t‖ = ‖t‖∞ = ess sup
y∈�t

|t (y)| (2.7)

again the relevant maximum.

2.4. The space LD(�) and its elementary properties

A central role in the subsequent analysis is played by the
space LD(�) containing vector fields of integrable strains

(see [6–8]). We summarize below its definition and basic
relevant properties (see [7] for proofs and details).

2.4.1. Definition
For an integrable vector field w ∈ L1(�, R3), let ∇w denote

its distributional gradient and consider the corresponding linear
strain (a tensor distribution)

�(w)= 1
2 (∇w + ∇wT). (2.8)

The vector field w has an integrable strain if the distribution
�(w) is an integrable symmetric tensor field, i.e., it belongs to
L1(�, R6). For the sake of simplifying the notation, we use �
for both the strain mapping here and its value in the example
above. The space LD(�) is defined by

LD(�)= {w: �→ R3;w ∈ L1(�, R3), �(w) ∈ L1(�, R6)}.
(2.9)

A natural norm is provided by

‖w‖ = ‖w‖LD = ‖w‖1 + ‖�(w)‖1 (2.10)

and it induces on LD(�) a Banach space structure. Clearly, the
linear strain mapping

�: LD(�) −→ L1(�, R6) (2.11)

is linear and continuous.

2.4.2. Approximations
With the regularity assumption for ��, the space of restric-

tions to � of smooth mappings in C∞(�, R3) is dense in
LD(�), so that any LD-vector field may be approximated by
restrictions of smooth vector fields defined on the closure �.

2.4.3. Trace mapping
There is a unique continuous and linear trace mapping

�: LD(�) −→ L1(��, R3) (2.12)

satisfying the consistency condition

�(u|�)= u|�� (2.13)

for any continuous mapping u ∈ C0(�, R3). Furthermore, the
trace mapping is surjective. Thus, although LD mappings are
defined on the open set �, they have meaningful L1 bound-
ary values. (This property follows from the regularity of the
boundary too.)

2.4.4. Equivalent norm
Let � be an open subset of �� and for w ∈ LD(�) let

‖w‖� =
∫
�
|�(w)| dA+ ‖�(w)‖1, (2.14)

then ‖w‖� is a norm on LD(�) which is equivalent to the
original norm defined in Eq. (2.10).
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3. Constructions associated with the boundary conditions

3.1. The space L1(��, R3)0

Let L1(��, R3)0 ⊂ L1(��, R3) be the vector space of vector
fields on �� such that for each u ∈ L1(��, R3)0, u(y)= 0 for
almost all y ∈ �0. It is noted that the restriction mapping

�0: L1(��, R3) −→ L1(�0, R3), �0(u)= u|�0 , (3.1)

is linear and continuous. Thus, since

L1(��, R3)0 = �−1
0 {0}, (3.2)

L1(��, R3)0 is a closed subspace of L1(��, R3).
The restriction mapping

�t : L
1(��, R3)0 −→ L1(�t , R3), �t (u)= u|�t

, (3.3)

is also linear and continuous. In addition, as ��0 = ��t = 

have zero area measure,∫
��
|u| dA=

∫
�t

|�t (u)| dA, u ∈ L1(��, R3)0 (3.4)

so that �t is a norm-preserving injection.
Consider the zero extension mapping

e0: L1(�t , R3) −→ L1(��, R3)0 (3.5)

defined by

e0(u)(y)=
{

u(y) for y ∈ �t ,

0 for y /∈�t .
(3.6)

Clearly, �t ◦ e0 is the identity on the space L1(�t , R3). More-
over, for any u ∈ L1(��, R3)0, e0(�t (u))(y) = u(y) almost
everywhere (except for y ∈ 
), so e0 ◦ �t is the identity on
L1(��, R3)0. We conclude:

Lemma 3.1. The mappings �t and e0 induce an isometric
isomorphism of the spaces L1(��, R3)0 and L1(�t , R3). The
dual mappings e∗0 and �∗t induce an isometric isomorphism of
the spaces L1(�t , R3)∗ and L1(��, R3)∗0. Every element t0 ∈
L1(��, R3)∗0 is represented uniquely by an essentially bounded
t ∈ L∞(�t , R3) in the form

t0(u)=
∫
�t

t · u dA. (3.7)

3.2. The space LD(�)0 of velocity fields satisfying the
boundary conditions

Recalling the definition of the equivalent norm on LD(�) in
Eq. (2.14), we set �=�0 in that equation. Henceforth, we will
use on LD(�) the equivalent norm

‖w‖ = ‖w‖�0 =
∫
�0

|�(w)| dA+ ‖�(w)‖1. (3.8)

Consider the vector subspace LD(�)0 defined by

LD(�)0 = �−1{L1(��, R3)0} ⊂ LD(�). (3.9)

Thus, LD(�)0 is the subspace containing vector fields on
� whose boundary values vanish on �0 almost everywhere.
Since � is continuous and L1(��, R3)0 is a closed subspace
of L1(��, R3), LD(�)0 is a closed subspace of LD(�).
Combining this with Lemma 3.1 we obtain immediately:

Lemma 3.2. The mapping

�0 = �t ◦ �|LD(�)0
: LD(�)0 −→ L1(�t , R3) (3.10)

is a linear and continuous surjection. Dually,

�∗0 = (�|LD(�)0
)∗ ◦ �∗t : L∞(�t , R3) −→ LD(�)∗0 (3.11)

is a continuous injection.

Observing Eq. (3.8), for each w ∈ LD(�)0,

‖w‖ = ‖�(w)‖1. (3.12)

Lemma 3.3. The mapping

�0 = �|LD(�)0
: LD(�)0 → L1(�, R6) (3.13)

is an isometric injection.

Proof. Eq. (3.12) implies immediately that ‖w‖=‖�(w)‖1 for
all w ∈ LD(�)0. Being a linear isometry, the zero element
is the only element that is mapped to zero, so �0 is injective.
In addition to relying on the technical property (Section 2.4.4)
of LD(�) to show that �0 is injective, it should be mentioned
that this follows from the fact that for any vector field w on �,
�(w)=0 only if w is a rigid vector field, i.e., if w is of the form
w(x)= a + b × x, a, b ∈ R3. Now, the only rigid vector field
that vanishes on the open set �0 is the zero vector field. �

4. The mathematical constructions

Let t ∈ L∞(�t , R3) be a traction field on the free part of the
boundary. Then, �∗0(t) is an element of LD(�)∗0 representing t .
The basic properties of elements of LD(�)∗0 are as follows.

Lemma 4.1. Each S ∈ LD(�)∗0 may be represented by some
non-unique tensor field � ∈ L∞(�, R6) in the form

S = �∗0(�) or S(w)=
∫
�

�(x)(�0(w)(x)) dV . (4.1)

The dual norm of S satisfies

‖S‖ = inf
�
‖�‖∞ = inf

�

{
ess sup

x∈�
|�(x)|

}
, (4.2)

where the infimum is taken over all tensor fields � satisfying
S = �∗0(�), i.e., tensor fields representing S. There is a �̂ ∈
L∞(�, R6) for which the infimum is attained.

Proof. By applying the Hahn–Banach theorem, the assertion
follows from the fact that �0 is a linear and isometric injection
as in Lemma 3.3 (see also [3]). �
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Applying this lemma to S=�∗0(t) one may draw the following
conclusions.

Conclusion 4.2. Forces on the body given by essentially
bounded surface tractions are represented by tensor fields on
the body. These tensor fields are naturally interpreted as stress
fields. The condition that a stress tensor field � represents the
surface traction t is

�∗0(t)= �∗0(�), (4.3)

and explicitly,∫
�t

t · �0(w) dA=
∫
�

�(�0(w)) dV (4.4)

for each vector field w ∈ LD(�)0, i.e., a vector field of inte-
grable strain satisfying the boundary condition on �0. This con-
dition is just the principle of virtual work which is a weak form
of the equation of equilibrium and the corresponding bound-
ary conditions. Thus, we have derived both the existence of
stresses and the equilibrium conditions analytically under mild
assumptions.

It is noted that the subscript 0, only indicating the restric-
tion of the various operations to fields satisfying the boundary
conditions, may be omitted above. Also, as the restrictions of
smooth vector fields on � are dense in LD(�), it is sufficient
to verify that the condition holds for smooth fields on �. For
such fields, the integrand on the left may be replaced simply
by t · w.

Conclusion 4.3. There is an optimal stress field �̂ representing
t and

‖�∗0(t)‖ = ‖̂�‖∞ = inf
�

{
ess sup

x∈�
|�(x)|

}
, (4.5)

where the infimum is taken over all stress fields � satisfying
�∗0(t)= �∗0(�), i.e., all stress fields in equilibrium with t . Thus,

the infimum on the right is the optimal maximal stress �opt
t . In

addition, by the definition of the dual norm we have

‖�∗0(t)‖ = sup
w∈LD(�)0

|�∗0(t)(w)|
‖w‖ (4.6)

= sup
w∈LD(�)0

|t (�0(w))|
‖�(w)‖1 , (4.7)

where in the last line we used Eq. (3.12). We conclude that

�opt
t = sup

w∈LD(�)0

| ∫�t
t · �0(w) dA|∫

� |�(w)| dV
. (4.8)

Recalling that the restrictions of smooth mappings on � are
dense in LD(�) and that for such mappings the trace mapping
is just the restriction, the optimal stress may be evaluated as

�opt
t = sup

w

| ∫�t
t · w dA|∫

� |�(w)| dV
, (4.9)

where the supremum is taken over all smooth mappings in
C∞(�, R3) that vanish on �0.

It is noted that the value of �opt
t depends on the norm used

for strain matrices.

We now turn to the simple proof of Theorem 1.2.

Proof. We had

�opt
t = sup

w∈LD(�)0

|t (�0(w))|
‖�(w)‖1 = ‖�

∗
0(t)‖

so that

K = sup
t∈L∞(�t ,R

3)

�opt
t

‖t‖ = sup
t∈L∞(�t ,R

3)

{‖�∗0(t)‖
‖t‖

}
= ‖�∗0‖ = ‖�0‖, (4.10)

where the last equality is the standard equality between the
norm of a mapping and the norm of its dual (e.g., [10,
pp. 191–192]). �

5. Load capacity for plastic bodies

The analysis we presented in the previous sections may be
applied to the limit analysis of plastic bodies. While in the
preceding analysis the magnitude of the stress at a point was
represented by the norm of the stress matrix, for the analysis of
plasticity, the relevant quantity is the value of the yield function.
The yield function is usually taken as a seminorm on the space
of matrices—a norm on the deviatoric component of the stress.
The necessary adaptation is as follows.

5.1. Notation and preliminaries

We denote by �P the usual projection of the space of matrices
on the subspace P = {aI | a ∈ R}, i.e.,

�P (m)= 1
3miiI , (5.1)

and by �D the projection on the subspace of deviatoric (trace-
less) matrices D so that

�D(m)=mD =m− �P (m). (5.2)

Thus, the pair (�D, �P ) makes an isomorphism of the space of
matrices with D⊕P . We will therefore make the identification
R6=D⊕P and R6∗=D∗⊕P ∗. We will use the same notation
| · | for both the norm on R6, whose elements are interpreted
as strain values, and the dual norm on R6∗, whose elements
are interpreted as stress values (although the norms may be
different in general). Thus, we assume that the yield function
is of the form

Y (m)= |�D(m)|. (5.3)

For example, if we take | · | to be the Frobenius norm on R6∗ we
get the von-Mises yield criterion. In practical terms this means
that the material will not yield at a point x if Y (�(x)) < Y0 for
some limiting yield stress value Y0 ∈ R+.
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Thus, we will extend the foregoing discussion to the case
where Y , evidently a seminorm, replaces the norm on the space
of stress matrices. For the space of stress fields we will therefore
have the seminorm ‖ · ‖Y defined by

‖�‖Y = ‖�D ◦ �‖∞ = ess sup
x∈�

Y (�(x))= ess sup
x∈�
|�D(x)|.

(5.4)

The expression defining the optimal stress becomes

�opt
t = inf

�∗(t)=�∗(�)
‖�‖Y = inf

�∗(t)=�∗(�)
{‖�D ◦ �‖∞}. (5.5)

The condition for collapse is �opt
t �Y0 and we use 
 to denote

the collapse manifold, i.e.,


= {t | �opt
t = Y0}. (5.6)

Remark 5.1. The expression

�opt
t = inf

�∗(�)=�∗(t)
‖�‖Y

for the optimal stress may be reformulated as follows. Recalling
that Y0 denotes the yield stress, we write �=�1/	, ‖�1‖Y =Y0
and noting that ‖�/‖�‖Y ‖Y = 1, we are looking for

�opt
t = inf

�∗(�1/	)=�∗(t),
	∈R+,�1∈�B

‖�1/	‖Y , (5.7)

where B is the ball in L∞(�, D) of radius Y0. Thus,

�opt
t = inf

�∗(�1/	)=�∗(t),
	∈R+,�1∈�B

Y0

	
, (5.8)

Y0

�opt
t

= sup{	 | ∃�1 ∈ �B, �∗(�1)= �∗(	t)}. (5.9)

Clearly, in the last equation �B may be replaced by B because
if we consider � with ‖�‖Y < 1, then �1 = �/‖�‖Y is in �B

and the corresponding 	 will be multiplied by ‖�‖Y < 1. The
unit ball B contains the stress fields essentially bounded by the
yield stress and we are looking for the largest multiplication of
the force for which there is an equilibrating stress field that is
essentially bounded by Y0. Thus, we are looking for

Y0

�opt
t

= 	∗ = sup{	 | ∃� ∈ B, �∗(�)= �∗(	t)} (5.10)

which is the limit analysis factor (e.g., [1,2,9]).

The expression defining the generalized stress concentration
factor assumes the form

K = sup
t

�opt
t

‖t‖∞ = sup
t

inf
�∗(t)=�∗(�)

‖�‖Y
‖t‖∞

= sup
t

inf
�∗(t)=�∗(�)

‖�D ◦ �‖∞
‖t‖∞ . (5.11)

For the application to plasticity, we use the term load capacity
for C = 1/K . Hence,

C = 1

supt (�opt
t /‖t‖∞)

= inf
t

‖t‖∞
�opt

t

. (5.12)

For every loading t we set

t
 = t

�opt
t /Y0

(5.13)

so that using �opt
	t
= ‖�∗(	t)‖ = 	�opt

t for any 	 > 0 one has

�opt
t

= Y0,

‖t‖∞
�opt

t

= ‖t
�opt
t /Y0‖∞
�opt

t

= ‖t
‖∞/Y0. (5.14)

It follows that for any t , t
 belongs to the collapse manifold

 and the operation above is a projection onto the collapse
manifold. Thus,

C = inf
t

‖t‖∞
�opt

t

= inf
t
∈

‖t
‖∞/Y0, (5.15)

and indeed, CY 0 = inf t
∈
 ‖t
‖∞ is the largest radius of a
ball containing only surface forces for which collapse does not
occur.

5.2. Constructions associated with the extension to plasticity

The top row of the following commutative diagram describes
the various kinematic mappings we used in the case of a norm
on the space of stresses as considered in the previous sections.
The subspace L1(�, D) of L1(�, R6) contains incompressible
strain fields and there is a natural projection �◦D: L1(�, R6)→
L1(�, D) given by �◦D(�)=�D ◦�. The inclusion of a subspace
in a vector space will be generally denoted as �. We will also
use the notation

LD(�)D = �−1
0 {L1(�, D)} (5.16)

for the subspace of incompressible LD-vector fields. Thus, us-
ing �D and �D for the restrictions �0|LD(�)D

and �0|LD(�)D
,

respectively, we have the following commutative diagram:

L1(�t , R3)
�0←−− LD(�)0

�0−−→ L1(�, R6)∥∥ 
⏐� �

⏐⏐��◦D

L1(�t , R3)
�D←−− LD(�)D

�D−−→ L1(�, D).

(5.17)

The dual diagram is

L∞(�t , R3)
�∗0−−→ LD(�)∗0

�∗0←−− L∞(�, R6)∥∥ ⏐��∗ �∗
⏐�
⏐�◦∗D

L∞(�t , R3)
�∗D−−→ LD(�)∗D

�∗D←−− L∞(�, D).

(5.18)

Since �D is just a restriction of �0, it is still a linear, norm-
preserving injection. Thus, the assertion of Lemma 4.1 and
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the subsequent conclusions hold where LD(�)D , �D and �D

replace LD(�)0, �0 and �0, respectively. The expression for the
optimal stress for the plasticity analysis is therefore

�opt
t = inf

�∗(t)=�∗(�)
‖�‖Y = sup

w∈LD(�)D

| ∫�t
t · w dA|∫

� |�(w)| dV
.

(5.19)

Finally, the load capacity ratio is given by

1

C
=K = sup

t∈L∞(�t ,R
3)

�opt
t

‖t‖∞

= sup
w∈LD(�)D

∫
�t
|w| dA∫

� |�(w)| dV
= ‖�D‖. (5.20)

Remark 5.2. Our result (5.2) for the optimal stress associated
with S = �∗D(t) is

�opt
S = sup

w∈LD(�)D

|S(w)|
‖�(w)‖Y . (5.21)

For limit analysis in plasticity it is shown by Christiansen [1,2]
and Temam and Strang [9] that the kinematic version of the limit
load is equivalent to the statical version above, specifically,

	∗ = inf
S(w)=1

{
sup
�∈B

{
�∗(�)(w)

}}
. (5.22)

We will show that the two expressions are equivalent for the
setting of stress optimization.

Eq. (5.21) may be rewritten as

�opt
S = sup

w∈LD(�)D,S(w)=1

1

‖�(w)‖Y (5.23)

= 1

infS(w)=1‖�(w)‖Y , (5.24)

where we used supx (1/x)= 1/ inf x. We conclude that

1

�opt
S

= inf
S(w)=1

‖�(w)‖Y . (5.25)

On the other hand, if we replace in the kinematic version of the
limit load the requirement � ∈ B by the requirement ‖�‖Y �Y0

which is the analog in our setting, we obtain

	∗ = inf
S(w)=1

{
sup

‖�‖Y �Y0

{�∗(�)(w)}
}

(5.26)

= inf
S(w)=1

{
sup

‖�‖Y �Y0

{�(�(w))}
}

. (5.27)

Using ‖�(w)‖ = sup‖�‖�1 |�(�(w))|, we have

	∗ = Y0 inf
S(w)=1

‖�(w)‖Y (5.28)

so that indeed 	∗ = Y0/�
opt
S .
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