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IMPROVED FINITE DIFFERENCE METHOD FOR
EQUILIBRIUM PROBLEMS BASED ON DIFFERENTIATION
OF THE PARTIAL DIFFERENTIAL EQUATIONS AND

- THE BOUNDARY CONDITIONS

M. ARAD, R. SEGEV AND G. BEN-DOR

Pearlstone Center for Aeronautical Engineering Studies, Department of Mechanical Engineering,
Ben-Gurion University of the Negev, Beer Sheva, Israel

SUMMARY

A ‘numerical algorithm for producing high-order solutions for equxhbnum problems is presented. The

approximated solutions are improved by differentiating both the governing partial differential equations
and their boundary conditions.;, . ... ..

The advantages of the proposed method over standard finite difference methods are: the possibility of
using arbitrary meshes; the pOSSlblllly ‘of using simultaneously appr0x1mat10ns with different (distinct)
orders of accuracy at different locations in the problem domain; an improvement in approxlmatmg the

boundary conditions; the ehmmatlon of the need for ‘fictitious’ or ‘external’ nodal points in treating the
boundary conditions.

Furthermore, the proposed melhod is capable of reaching approximate solutions which are more accurate
than other finite difference methods, when the same number of nodal points parucnpate in the local scheme.

A computer program was written for solving two- -dimensional problems in elasticity. The solutions of
a few examples clearly lllustrate these advantages.

KEY WORDS: numerical methods; finite differences; plane elasticity

1. INTRODUCTION

The rapid growth in the use of computers in the past decade gave rise to the development of
advanced numerical methods. The two basic ones are the finite element and the finite difference
methods. The advantages of the. finite element method over the finite diflerence method were
presented by Zienkiewicz.! They, are:

. (a) the ease of arbitrary positioning of nodal points;
(b) the infinite possibilities of generation of ‘improved’ elements by simply increasing the
number of element parameters; -,
- (c) the improvement in the boundary value approx1malnon due to its integral form; and
(d) the ease with which different types and sizes of elements can be adopted.

 Since the pioneering work of Southwell** in which the finite diflerence method was compre-
hensively formulated, many works; attempting to improve the method, have been published. For
example, Forsyth and Wasow*isuggested to treat curved boundaries by the use of interpolations
between points on the boundariesi and nodal points adjacent to them. Wang® and Collatz®




treated curved boundaries having Dirichlet conditions by using Taylor series expansions. A dif-
ferent approach for treating curved boundaries, still using a square or rectangular mesh, was
forwarded by Varga.” In this approach, sometimes referred to as the control volume approach, an
integration is performed over the mesh areas using Green's theorem. This approach has been
improved and applled in many areas e.g, by Griffin and Kellogg,? Utka,” Havner and Stanton,'°
Havner,!! Johnson!? and others.

As shown by Jensen'® one of the difficulties arising from the use of a square or reclangular
mesh with curved boundaries is the need to increase the number of the nodes over the number
actually necessary to achieve a particular accuracy in the solution. One way of overcoming this
shortcoming is the use of a triangle mesh. Triangle mesh was probably first proposed by
MacNeal'* who investigated current flows through thin sheets. Application of triangle mesh
which uses finite differences derived from the variational approach and Ritz method appeared in
the works of Kellogg and his coworkers.'>~*® A different approach for using triangular mesh
originally proposed by Winslow!® was generalized by Chu.2®?! The idea was to replace the
rectangular (or square) mesh with an equilateral triangle mesh plane. The replacement involved
an ‘oblique transformation’ of the entire domain. A somewhat different approach, which in fact is
an improvement, was presented by Frey?? who used the concept of isoparametric elements. He
introduced flexible finite difference stencils of arbitrary shape mapped into a regular square mesh.

Jensen'? proposed a different approach for generating finite difference approximations in an
arbitrary mesh by using two-dimensional Taylor series expansions. He showed that by using this
approach, the error. in the approximated Taylor series expansions converges to zero when the
nodes density is increased. Second-order expansions were used by him on a six-point control
scheme (template). The main disadvantage of his approach was frequent singularity or ill-
conditioning of the six-point control scheme. More details regarding this singularity are given
subsequently. Several authors tried to develop an automatic procedure which avoids incorrect
schemes and thus improves the accuracy of the finite difference formula. Perrone and Kao??
suggested that additional nodes in the six-point scheme should be considered and an averaging
process for the generation of finite difference coefficients applied. Liszka and Orkisz?* proposed
to increase the number of the neighbouring nodes in the scheme forming an over-determined set
of linear equations. Their solution was obtained by a minimization of a norm that they derived. In
this way a set of five equations with five unknowns was obtained. Noye and Arnold?® developed
a more accufate finite difference scheme for approximating the derivatives at points that are near
a curved boundary‘along which a Neumann boundary condition applies. There is no need to
reshape the curved boundary, and the approximations at adjacent grid points have the same
accuracy as schemes commonly used for Dirichlet boundary conditions. Dow et al.? improved
the boundary modelling for finite difference applications in solid mechanics. The improvement
was expressed by introducing the physical nature of the deformations into the equations by which
the solution is approximated. This is achieved by expressing the coefficients of the Taylor series
expansions which’ approximate the displacements in terms of rigid body motions, strains and
derivatives of strains. Asa result the fictitious nodal points were rationally incorporated into the
mesh. This approach enabled one to use an arbitrary mesh provided the problem domain was
rectangular. In their example they used Taylor series expansions with nine coefficients using
Pascal’s triangle, i.e. second-order Taylor expansions with three additional coeflicients (note that
this is identical to the regular nine-point finite element approximation). In a subsequent modifica-
tion Dow and Hardaway?? applied the approach to curved boundaries and concave corners.
More details regarding the derivation of the displacement expansions can be found in Relerences
28-31. Kochavi et.al.*? used non-conforming Taylor discretization that allowed discrepancy
between values resulting from the Taylor series expansions about distinct nodes if the discrepancy



is in the same order of magnitude as the estimated error resulting from the discretization. This
method was capable of producing results that were more accurate than those obtained by
traditional conforming discretizations. In addition, unnecessary computations might be avoided
by adjusting the accuracy of the solution of the algebraic equations to the truncation error in the
Taylor series expansions.

The main disadvantage of all these studies is that they approximate the solutions by sec-
ond-order Taylor series expansions in which the error is of the third order, i.e. O(h?) where h is the
grid size. Thus, the errors associated with the approximations of the second-order derivatives in
an arbitrary mesh (whlch usually appear m the conservation equations) are very large, as they are
of the order of O(h).

In general ‘Jensen'® showed that with this formulation the derivatives of order i can be
calculated with an accuracy O(h™* ' ~%), by using N, = 4(m + 1)(m + 2) neighbouring values (m is
the order of the Taylor series expansions). For example the difference expressions for all
derivatives up to the fourth order requ1re at least N, = 15 neighbouring values and consequently
the inversion of a 15x 15 nodal matrix for each point! In view of the computational effort
required to invert a 15 x 15 matrix it is appropriate to look for ways of alleviating this problem.

The new method which will be presented in the next section has all the advantages associated
with the finite element method as introduced by Zienkiewicz.! Furthermore, in the proposed
method, approximations using Taylor series expansions of the mth order require at most
N,=2m+ 2 neighbouring values, instead of the above-mentioned requirement of
N, = (m + 1)(m + 2) neighbouring values.

3

THE PROPOSED METHOD

The proposed method which is applicable to equilibrium problems is an improved Differentiation
Based Finite Diflerence Method (DFD-method). In the DFD-method both the governing
equations and their boundary conditions are differentiated. The model is a mathematical one and
independent of a specific physical problem. In order to simplify its introduction, it will be applied
to problems in elasticity. However, it should be emphasized here that it could be applied to
equilibrium problems from other fields e.g. steady viscous flows, elc.

INTRODUCTION OF THE PROBLEM TO BE SOLVED

In the following, the DFD-method will be illustrated by applying it to the solution of the
equilibrium equations in terms of displacements (1 and v) in plane elasticity (for details see p. 265
of Reference 33). The equilibrium equations are

a9 du N dv 0 6u ov y (1a)
x\ugteng Tl ) T
DR in Q
d {du Ov 0 Ou ov
—C33a<6_};+a> ay(C12 + €22 ) f_‘ (lb)
the boundary conditions can be either primary (displacements)
u= ﬁ} (2a)
on I
P v=7 (2b)



or natural (traction)

du ov du Ov N )
CnaﬁLClz@ iy + ¢33 $+;}; Hy, = {, (3a)
on I,
ou v du v -
Ca3 <a'y+a—x)llx+<0125;+czza—y>lly=ty (3b)

where u and v, the displacements in the x and y directions, respectively, are the unknown
variables; f. and f, denote the body forces in the x and y directions, respectively; n, and n, are the
x and y components of a unit vector fi normal to the boundary I'; I'| and I', are (disjoints)
portions of the boundary (I'; and I', do not overlap except for a small number of discrete
points—singular points); f, and .i, denote specified boundary (traction) forces in the x and
y directions, respectively; # and i are specified displacements in the x and y direction, respectively;
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Figure 1. Schematic illustrdtion of two-dimensional plane elasticity problems. (a) plane stress; (b) plane strain



ciy are the elasticity (material) constants. For an isotropic elastic body they are given in terms of
the modulus of elasticity E and the Poisson’s ratio v as follows:
Jor plane stress

e = —w E o VE o E
11 =W le—wl—_'—;j’ C33—ij) (4a)
for plane strain
e mey, =m0 Ev —w B ab
TN A gt —20) T ax ot =200 T 2110 ()

where w is the thickness of the plate. For the reader’s convenience the above definitions are shown
in Figure 1.

For an isotropic elastic body without body forces, the above equations can be simplified to the
following form:

Crithx: + Caatty2 + (€15 + €33)05, =0 (5a)
C330xz + Cpiy2 + (€12 + Ca3)y, =0 (5b)
where
o = 0*u 0*u *u ote.

A3y W=, Uy =,
ax2 T oy T axdy
These derivatives are written in the following condensed form:

aa+b
Uyayp = *_*(’)x“ayb
In the following the solution of equations (5a) and (5b) will be approximated for the boundary
conditions given by equations (2) or (3).

METHOD OF SOLUTION

The first step of the solution method is to scatter N nodal points in the computation domain and
along the boundary as shown in Figure 2. The way of positioning the nodal points in order to
avoid singularity and ill-conditioning will be described subsequently. The ith nodal point will be
defined by its x and y co-ordinates (x;, y;). Around any nodal point one can derive Taylor series
expansions of any order (e.g. m) which will'approximate the unknown variable (i.e. the displace-
ments u and v in the present example). A similar approach was adopted, for example, by Dow
et al.?® These expansions can be written in the following condensed form:

Z [Un-j, i X" ’Y’

i=1,...,N 6
. nz() JZO (n —Jj)! ¢ ) (62)
Vi(x, ) Z Z w (i=1,...,N) (6b)

n=0j=0 (n—jNj!

where U }(x, y) and Vi(x, y) appro;umatc the displacements u and v, respectively, in the vicinity of
the ith nodal point. [U,-; ;];and [V, _; ;1; are the coefficients of the Taylor series expansions and
mis its order. N is the number of the nodal points. X and Y are the local co-ordinates with respect



nodal points
~__ -

\

Figure 2. Schematic illustration of a general computation domain with definitions related to the nodal and neighbouring
points

to the ith nodal point, i.e.
X=x—x; and Y=y —y

where x and y are the global co-ordinates.
Note that the number.of each of the coeflicients [U,,-; ;1;and [V, ; ;Tiis N = (m + U)(m + 2).
The error of the-above approximations is of the order O(h™* ') where, as mentioned earlier, h is
the grid size. For example, for a fourth-order Taylor series expansion (i.e. m = 4) equation (6a)
would explicitly read: ;..

Ui, ) = [Uo,odi + U 163X + LU0 1Y
+ 3[U30i X2+ [V i XY + 3[Uq2)i Y2
+ U530l X2 +4[U, XY 4+ 5[U, 0 X Y2 + E[Ug 1 Y
+ F3[UaodiX* + U 1 XPY + AU X2 Y + 4[U T XY + 55 [U i Y

1t should also be noted here that the above-mentioned coeflicients are indeed approximations of
the unknown variables and their derivatives at the nodal points, i.e.

[Uo.0)i approximates u if (x; p;), i.e. at X =0and ¥ = 0.



U/‘)'.O]" approximates v at (x;, y;), ie. at X =0 and ¥ = 0.
Similarly, (U, _; ;]; approximates the derivative O"ufOx" Iyl at-(x;, y)), ie.at X = Qand ¥ = 0,
when n # 0, and

[¥.- ;)i approximates the derivative 3"v/0x" 1y at (x, y,), ie.at X =0 and ¥ = 0.

In the present illustration we adopt sixth-order Taylor series expansions (i.e. m = 6) thercfore,
N¢=4(m + 1)(m + 2) = 28. Thus we have 28 U-coeflicients are 28 V-coeflicients for each one of
the N nodal points. Finding these 56 coeflicients for each nodal point will provide the approxim-
ated solution of the unknown variables. Note that the selection of a sixth-order Taylor series
expansions ensures that the errors associated with them will be of the order O(1"). For small
values of h these are obviously very small errors.

Using ordinary finite difference methods implies that one has to use localized schemes of at
least twenty-eight neighbouring values for each nodal point (see References 13, 23-26). By using
our proposed DFD-method the number of the neighbouring values is reduced. This is illustrated
in the following.

Local governing equations

The most common method for obtaining the values of the above-mentioned 56 unknown

variables (i.e. the coefficient of the Taylor series expansions which approximate the solution,
[Un—j,j]l' and [Vn—j.j]l') is to:

(1) substitute the approximating Taylor series expansions [equations (6a) and (6b)] into the
governing equations [equations (5a) and (5b)] for each nodal point while setting the local
co-ordinates, X and Y, to be equal to zero, and

(2) require that the Taylor series expansions from the neighbouring points of a given nodal
point will have the same value at that point.

As mentioned earlier, based on Jensen'? this requires the use of localized schemes (templates)
having 28 neighbouring points. (Recall that sixth-order Taylor series expansions are used in this

example.) ;
In order to obtain the 56 values of the unknown variables by using templates with less than 28
neighbouring points, we proposed to:

(1) successively differentiate the governing equations [equations (5a) and (5b)] and
" (2) substitute the approximating Taylor series expansions [equations (6a) and (6b)] into both
the governing equations and their differentiated equations, while setting the local coordi-
nates, X and Y, to be equal to zero.

The governing equations should be successively differentiated until the order of the derivatives
equals the order of the Taylor series expansions. (e.g. six in the present exarpple). Fu;ther
differentiation will result in, after the substitution of the approximating Taylor series expansions,
trivial equations. ‘

Following the above description, the governing equations [equations (S5a) and (5b)] were
successively differentiated to generate the following set of 28 equations.

differentiation by d/0x yields

Criles + C33ligyr +(Cp2 + €33)02, =0

CaalUs + Clnvxyl + (('12 + (‘3‘3)ux2y =90 (73)



differentiation by /0y yields
o ' Ciitezy + C33Uys + (€12 + €33) 0,2 =0
C330x2y + C11Uys + (€52 + €33)Ug2 = 0
differentiation by 02/0x? yields
. Cpilxs + Ca3liyzye + (Cra + €33)040, =0
C33Uya + €y Us2y2 + (€12 + Ca33)thys, =0
differentiation by 3%/dx dy yields
Cyilxsy + C33lyys + (€12 + €33) 05,2 =0
‘ ‘ C33Ux3, + CryUyys + (€12 + C33)e2y = 0
differentiation by 9%/0y? yields
Critiga,2 + Ca3Uys + (€12 + C33) 00 =0
C330x2y2 + €1 Uypa + (Cr2 + C33)Uxys = 0
differentiation by 'd%/0x? yields
- - Criles + Caalieny2 + (Cia + €33)0,1, =0
‘ . €330xs + C110xy2 + (Cry + Caa)ttyr, =0
differentiation v‘tiy‘v63‘/6x2 dy yields | ,
Cy1lixsy + Calixays + (Crp + €33) U532 =0

C33Uxsy + C1ylx2ys + (€ + Ca33)Upy2 = 0

differentiation by 8°/0x dy? yields

L Cpplysye + Caadxyﬂ +(c12 + €33) 0523 =0
; €330x3y2 + CppUxye + (€12 + C33)Ue2yy =0
differentiation by 9%/dy* yiélds
Crilixzys + Cazthys + (€12 + €33)Uye =0
©Ca3Ueys F Cpilys +(Crp t Ca3)Uge =0
differentiation by 6“/6x“: ‘y‘ields
Criliys + Ca3teayr +{Cia F €33)0es, =0
, ‘.! (';331)x5 + Criteny2 + (€12 + Ca3)ttys, =0
differentiation by 9*/0x?dy yields
v Crilesy F Caglheays + (Cry + €33)0x02 =0
C33Uxsy + €y Ue3ys + (€12 + €33)Upaye = 0
differentiation by 0*/0x? dy? yields
Cyilixay + Cazlixays + (Cpp + C33)053,3 =0

C33Uxay2 + CpyUezye + (C1z + C33)Uyy =0

(7o)

(7¢)

(7d)

(7e)

(71)

(7g)

(7h)

(1)

()

(7k)

(7



differentiation by 9*/dx dy? yields
" Crilleays + Cazleys + (Crz + C33)050,0 = 0
' C330x3y3 + Cp1lxys + (c12 + c33)Up2pe =0 (7m)
dlﬂerenuatlon by o*/dy* ylelds
‘ c“u,zya + Casthye + (clz + C33)0zs =0
1 €33Ux2ya + €1 0p6 + (€12 + Caz)lieys = 0 (7n)

It can be seen that the number of the equations which results from the performance of the
above illustrated differentiation procedure together with the appropriate governing equations is:

SR oy R e -6+ 2]
o A 2

for each one of the governing equations [equations (5a) and (5b)]. Here m is the order of the
Taylor series expansions and k is the order of the lowest derivative of the unknown variables in
the governing equations. For.example, it is evident from equations (Sa) and (5b) that in the
present example k = 2, in addition since we chose m = 6, the above expression implies that
N, = 15 as is the case in equations (5) and (7). 1t is interesting to note that development of the
Modified Equivalent Partial Diflerential Equations (MEPDE) involved successive differentiation
of the kind used to develop equations (7a)-(7n).

Recall that as shown in the foregoing discussion [U, -, ;J;and [V,_; ;]; approximate the values
of u and v, respectively, at (x;, y;) i.e. at X = Oand ¥ = 0. Therefore, if the approximations given by
equations [(6a) and (6b)] are substituted into the governing equations [(5a) and (5b)] and their
differentiated equations [(7a)~(7n)]'and X and Y are set to zero for the ith nodal point (i.e. the
Taylor series approximations satisfy the differential equations at the nodal points) one obtains
a set of algebraic equations'identical to equations (5) and (7) in which the coefficients [U,_; ;]
and [V,_; ;]; replace, the derivatives Un-i,; and V,n-, s, respectively. These set of equations will
be referred to in the following as the local governing equations.

For example, the governing equations (5a) and (5b) will become

< e [Uze)i + 33U )i + (cr2 + can)lViudli=0
Csa[Vzo]» + Cn[Vo,‘z]i +(cya + C33)[Ul.l]i =0
Similarly, the differentiated equations given by (7n) will read

11 [Uz4di + c33[Ug6li + (12 + c33)[Vi5)i =0
¢33l Vaadi + ciilVosdi + (12 + c33)fU 51 =0

At this stage one has N coeficients and N, local governing equations [e.g. 28 coeflicients and

15 equations for each variable (4 or v) in the present example]. Consequently, in order to have
a solvable set of equations one must generate (N, — N,) additional equations (e.g. 13 equations in
the present example) for each variable.
- The procedure for generatlng lhe additional 13 equations for each unknown is to use {4-point
templates (i.e. one central nodal point_ and 13 neighbouring points). This approach is common
when [inite difference methods are apphed to an arbitrary mesh. For example see References 13,
23 and 26. For the reader’s clarlty this is shown in the following section.



The fitting equations

The procedure for generating these additional equations is illustrated in Figure 2. At the first
step (N. — N) neighbouring points indicated by J, are selected for each central point I. A way of
selection ensuring no singularity or ill-conditioning is described subsequently. Let us denote the
horizontal and vertical distances from the central point, I, to each neighbouring point, J, by
h,,, and h,, , respectively. Since the values of u and v at point J, as calculated by the Taylor series
expansions from points I or J, should be equal (within the error associated with the Taylor series
expansions), one can write, in general, for each one of the neighbouring points

Uilxjy)) = Uj(x;y;) =0 t ¢ (8a)
Vilxj, ;) — Vi(x;,y;) =0+t ¢ (8b)

where Ui(x;, y;) and Vi(x;, y;) can be simply obtained from equations (6a) and (6b), respectively,
by inserting into them X =h, and Y= hy,,. Similarly, U;(x;,y;) =[Ugo]; and
Vi(x5,¥j) = [Vo.,0]; since for the neighbouring point j, X = 0 and Y = 0. These will result in the
following set of 13 fitting equations for each variable.

o e Un—iadi h';fkh’;

Eo L s Woali=0xe Oa)
LN R WY
sy Mookl T py g0 (9b)

Lol = kR

where, for simplicity, h,,, and h,,, as denoted in Figure 2, are replaced by h, and h,, respectively.
The error, ¢, is of the order O(hf;*') where hY; = h%, + h, .

The foregoing procedure of generating the fitting equations [(9a) and (9b)] should be applied to
any internal nodal point (e.g. point I in Figure 2). For nodal points which are located on the
boundary, a different procedure which eventually results in a further reduction in the total

number of the required neighbouring points is suggested in the following.

The use of the boundary conditions

Primary (displacement) boundary conditions. Let us first consider a nodal point located on the
boundary whose boundary conditions are given by equation (2). Point A in Figure 2 is such
a nodal point. Since the displacements u and v (which are the unknown variables) are given at this
point as # and 0, respectively, we simply write

[Uo,o]A =1
[Vo,o]A =10

Hence, if point A is selected to be the neighbouring point to an internal point, [U, 0];and [Vo.0];
in equations (9a) and (9b) are, respectively, replaced by [Us o] and [Vo.0]a-

Natural (traction) boundary conditions. The case is different when the boundary conditions of
a nodal point which is;lﬁocaled on the boundary are given by equation (3). In this case we
distinguish between a point at a regular boundary and a point at a corner (e.g. points By and B,
respectively, in Figure 2): A similar distinction was noted by Dow et al.>®



Regular boundary
For a nodal point such as B, we have the following traction boundary conditions:

(Cyyty + Cpav)ny + a3, + v, =1, {10a)
C3a3(Uy + v N, 4 (Cu, + cpon, =1, {10b)

Since the distributions of the boundary conditions along the boundary are also given and since
the boundary conditions are differential equations having an order k,, where k, < k [here k is the
order of the governing equations e.g. k = 2 in equations (5a) and (5b) and k, = I in equations
(10a) and (10b)], we can successively differentiate the boundary conditions (m — k;) times along
the boundary. This yields the following set of (1 — k,) equations for each one of the boundary

conditions given by equations (10a) and (10b). Here, s is the tangential direction of the boundary
at the point B, as shown in Figure 2.

0" " .

< flerius + crpvdn, + 33, +v)n] = (—(l,x), n=1,2,...,(m—ky (11a)
as" : os"

o" ;oL

59; [C33(uy + Ux)nx + (C12ux + clluy)n_v] = ;7‘? ((y) (l lb)

Inserting the approximations given by equations (6a) and (6b) into equations (10) and (11) and
setting X =0 and Y =0 results in a set of N, =[(m — k) + 1] equations for each of the
unknown variables. These equations will be referred to in the following as the local houndary
condition equations. Thus, for a nodal point on the boundary such as B, (see Figure 2), one has
N, local governing equations and N, local boundary condition equations. Consequently
[N, — (N, + N)] neighbouring points should be selected in order to generate the appropriate
fitting equations [e.g. N, =28, N, =15 Ny =6 and hence seven neighbouring points are
required in the present example]. This results in local schemes (templates) of eight points.

The foregoing description of generating the local boundary condition equations is illustrated,
for the reader’s convenience, in the following example.

Let us consider a straight oblique boundary as the one shown in Figure 3. It could be shown
that for any differentiable and continuous function f one can write

df_0f0x+6f6y
ds dxds Oy ds

It is clear from Figure 3 that

J 0
%: —sinf= —n, and %=c050=nx
thus
g_ Y, o,
ds dx 7 dy

Let us assume that the boundary conditions are given by

i, =3x+siny+ y? + 2x%y
f,=5x% + cosx + 4x?y* + 6y + 12



Figure 3. Definition of the various parameters associated with a straight oblique boundary

Equations (11a) and (11b) imply for n = 1:

d
- ax' [(Cllux + ClZUy)"x + C33(uy + vx)ny]ny

+ —'.‘[(cllux + Clluy)nx + C33(uy + vx)"y]nx

dy

0 . a .
= “‘a—x(tx)ny_"é;([x)nx

Similarly

- a [633(uy + Ux)nx + (Cllux + Cl\vy)"y]ny

0
+ @[633(1‘): + vx)nx + (Cllux + Cllvy)”)‘]”x

0

a .
= ——(f)n, + 3

ax (fy)nx
Inserting the boundary conditions given in the above example into these two expressions results in
4 — Cyy MMyl + (¢ N — C33n)uy, + Cazn nyuy,
— €33N Usy + (C33 = C1 2NN, UL, + Cyanty,,

= — (3 + 4xy)n, + (cosy + 2y + 2x?)n,

and
2 . . , 2
- Cllny Uxx + ((*12 - (’33)nx”yuxy + C33Nyx u_vy

N 2 2 .
- (‘33"xnyvxx + (033".\: - Cllny)vxy + (’llnxnyvyy

= =~ (10x —sinx + 8xy*)n, + (8x2y + 6)n,



Inserting the approximating Taylor series expansion given by equations (6a) and {6b) while
setting X =0 and Y =0 (i.e. x = x; and y =y, since as mentioned earlier X = x — x; and
Y =y~ y) yields

— ey, [U )i + (ering — 3LV (i + e33men, [Uo 5 );
- (333”3[V2,0]i + (c33 — e, [V i + (712i1:2c[V0.2].'

= — (3 + dx;y)n, + (cos y; + 2y; + 2x?)n,
and

- ClZ"yz'[UZ,O]i +(c1a = caa)men)[U i + c33n2[Uo 5]
— caznen, [V 0l + (3302 — ¢y )Vl + crpneiy[ Voo li
= — (10x; — sinx; + 8x;y})n, + (Bx?y; + 6)n,

Recall that in order to generate the full set of the local boundary condition equations,
equations (!1a) and (11b) should be executed also for n =2, . . ., 5, since in the above example
m==6and k, = 1

Corner

For a corner nodal point such as B, we have two sets of traction boundary conditions. One set
to its lelt, 1, and the other to its right, r. Each set is identical to equations (10a) and (10b) with its
appropriate n, and n, (recall that B, is located at a corner).

Carelul inspection of equations (10a) and (10b) indicates that they contain the following three
unknowns: the normal stresses 0., = ¢, u, + ¢;,0, and a,, = ¢;,u, + ¢;,v, and the shear stress
T.y = C33(u, + v,). Thus, using the two sets (left and right) for a corner nodal point will result in
four equations with only three unknowns. In fact these four equations are linearly dependent.
Furthermore, it can be shown that any three of them are linearly independent. Therefore, one of
them should be arbitrarily droppéd. Thus differentiating each set with respect 1o s, or s,
respectively, (sce Figure 2) resultsiin (4N, — 1) local boundary condition equations [4N, as
a result of differentiating equations (10a) and (10b) to the left and to the right of the corner nodal
point and — 1 due to the arbitrary drop of redundant boundary conditions]. Hence, for a corner
nodal point such as B,, one has 2N, local governing equations and (4N, — 1} local boundary
condition equations. Consequently, [2N. — (2N, + 4N, — 1)] fitting equations should be added
[eg. N.=28 N.=15 N,=6 and only three fitting equations are required in the present
example]. This is done by selecting two neighbouring points and fitting to one of them only one of
the two equations given by equatlons (9a) and (9b). This nodal point acts in fact like a ‘half
neighbouring point.

In summary, for the iltustrated case, i.e. the equilibrium equations in terms of displacements in
plane elasticity, as given by (5a) and (5b), and the appropriate boundary conditions, there is
a need for 13 neighbouring points (14-point templates) for each internal nodal point (such as
point [ in Figure 2), 7 neighbouring points (8-poinl templates) for a nodal point along a regular
boundary (such as point By in Figure 2) and 1} neighbouring points (24-point templates) for
a corner nodal point (such as pomt B, in Figure 2). This is summarized for the reader’s
convenience in Table 1. i

It should be emphasized that for nodal points located on a boundary with natural (traction)
boundary conditions, the proposed method requires to fit the approximating Taylor series
expansions (6a) and (6b) to the governing equations (5a) and (5b), their differentiated equations
(7a) and (7n), the boundary conditions (10a) and (10b) and their differentiated equations (11a) and
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(11b). In addition, there is a requirement to fit the various Taylor series expansions which are
developed from its neighbouring points and the one developed from it (i.e., the fitting equations).
The above is accomplished without the need to use fictitious nodal points. Note that the use of
fictitious nodal points increases the order of the error in addition to the redundant computations
associated with them. This was clearly described by Noye and Arnold (1990). The above-
mentioned requirements together with the fact that the proposed method does not require the use
of fictitious nodal points results in an improvement in the boundary value approximation with
respect to ordinary finite difference methods.

SOLUTION METHOD

The foregoing described procedure enables one to generate 56 equations for cach one of the
N nodal points. Thus, the 56N unknown coefficients (2N ) can in principal be solved, e.g. by
inverting a 56N x 56N matrix. For any reasonable value of N this would be a very inefficient and
ineffective way. Due to this complexity it is common to define a local matrix for each nodal point
(56 x 56 in the present illustration) and then to further reduce it.

Kochavi et al.*? gave a procedure by which the solution can be reduced to the inversion of
a 54 x 54 local matrix for each one of the N nodal points, and eventually obtain 2N equations
‘with 2N unknowns, i.e. [Ug o]; and [V o] for each one of the N nodal points. Similar approaches
can be:seen in References 23 and 26.

In the following we present and formulate the method by which the solution is further reduced
to the inversion of a 26 x 26 matrix for a type I nodal point, 14 x 14 matrix for a type B, nodal
point and 3 x3 matrix for a type B, nodal point. (Recall that the nodal types are defined in
Figure 2.) Note that the matrix size is identical to the number of the fitting equations which are
required. This formulation should not be regarded as a conditional part of our proposed method.
In the authors’ view it reduces the computation volume. However, in principle, any other way of
solving the equations can be adopted.

Proposed solution method

The set of equations at each nodal point which is composed of local governing equations, local
boundary condition equations and fitting equations can in general be written as

[K]{A} = {F} (12)

where [K7] is a matrix of order 56 x (56 + Ny), here N; is the number of the fitting equations (for
details, see Table 1), {4} is a column vector of dimension (56 + Ny) containing the 56 unknowns
-of the nodal point and the N; unknowns of the neighbouring points, i.e. [Uool; and [V 0]; for
j=1,..., N, where N, the number of the neighbouring points is equal to iN;.

We now divide the vector {4} into three subvectors: {4} contains all the [U; o] and [V 0]
values (both of the ith nodal points and its N, neighbouring points), hence its dimension is
2(N, + 1) or alternatively (N; + 2). The rest of the unknowns (i.e. [U, ,]; and [V, ,]; for which
p + q #0) are divided in the following way: the first 1N unknowns of each of two Taylor series
expansions given by equations (6a) and (6b) form the vector {A,} which therefore has a dimension
Ny, and the rest of them form the vector {4;} whose dimension is (54 — Ny).




As a result of this division, equation (12) breaks into the following form:

. N;+2 Ny S4—N,

I Ay y ! '

2{ Ky, » Ky, Ki; Ay Fy

Nl | Kz Ky Ky [{Az)=({F; (13)
54—~ N{ | K K, Kss As Fi

Alternatively, this can be split into the following three matrix equations:

(K. {4, }+[K12]{A }+ [Kl{ds) = {Fy) (14a)
Wthh are the two approx1mat|ons of the governing equations (5a) and (5b),
[Kzl]{A b+ [K22]{A2} + [K231{43) = {Fa) (14b)
which are the fitting equations (9a) and (9b), and
KA+ [Ks2] {A2) + [KasT{4s) = () (140

which are the remaining local governing, equations (7a) and (7b), and the local boundary
condition, equations (10a}, (10b), (11a) and (11b), when the nodal point is on the boundary.

Prior-to proceeding with the solution of equations (14a) and (14b) it should be noted that both
[K 3] and [K3,] are in general zero matrices. This is due to the fact that based on the procedure
by which [K3,] is'generated, it contains only derivatives of the unknowns. Equation (14a) which
contains only low-order derivatives,i.e. those appearing in the governing equations, implies that
in general [K ;] =0 (é.g:'second:order derivatives in the present example). In addition, it could
be seen from the fitting equations (9a) and (9b) that the vector {F,} = 0.

Inserlmg these facts into equath.ns (14a) and (14c) and solving the entire set for {A,} finally

‘results in} TR (AT

((K1] — [K1d[[K22] — [K231[K331 ' [Ka211 (K211 {4}
= {F} + [K2[([K22] — [K23][K33] '[K321] '[K231[Kas) " {Fs) (15)

The matrix equation (15) which applies to each one of the N nodal points consists of two

3equatlons which, as mentioned earlier, contain only [U,g 0] and [V o] unknowns. Thus, at this

stage we have 2N cquatlons w1th 2N unknowns. These equations can be written in the following
matrix form:

(G1l¢] = [S] (16)

where [¢] is the unknown vector (it contains [U, ] and [V 0]) and [G] and [S] are simply
obtained from’ equatlon (15). These equatlons can be solved by standard solution methods (e.g.
iterative or direct methods)

"Once'the: values ofi:[Ug )i and [V 0]; are obtained (i.e. {4,} is known) for alt the N nodal
points, the approprlate approximations of the derivatives [U,,]; and [V, ,]; where p + q # 0
could be obtained:from equations (14a), (14b) and (14¢) by solving for {4,} and {4,}.

It should be pointed out here that the coefficient matrices [K;,], [K,.] and [K,;] which arise

from the approximitions of the governing equations are the same for all the nodal points; the

coefficient matrices [K3,], [K3,] and [K;] are the same for all the I-type, points (see Figure 2);
and only the coefficient matrices [K,,], [K;,] and [K,3] which arise from the fitting equations
differ from point to point as they depend on the geometry of the investigated problem, or the



relative location of the neighbouring points. This minor complexity can be simplified by
arranging the nodal points in such a way that identical geometrical patterns of neighbouring
points (templates) are generated. Therefore, the coeflicient matrices [K,,1, [K,] and [K ;]
should be calculated only once, the coefficient matrices [K3,], [K3,] and [K;;] should be
calculated only once for all the I-type nodal points. Note that this implies that [K,;] which
appears in equation (15) should be inverted at most three times. The coeflicient matrices [K,, ],
[K;2] and [K;;] should be calculated once for each geometrical pattern {template). The above
discussion implies that [[K;,] — [K;3][K33] '[K32]] which also appears in equation (15)
should be calculated and inverted only once for each template.

Note, that as mentioned earller the size of this coefficient matrix is 26 x 26 for an I-type nodal
point, 14 x 14 for a B,-type nodal poml and 3 x 3 for a B,- type nodal point. It is the only matrix
which should be inverted for each one of the different geometrical patterns. As a consequence, the
coefficient matrices in equation (15) are identical for each of the different geometrical patterns.
The only change between the various geometrical patterns is in the vectors {A;} and {F}.

SINGULARITIES OR ILL-CONDITIONS IN MATRICES

In general, two problems related to singularities or ill-conditions in matrices exist in numerical
methods. Thefirst problem can appear in the local matrix while the second in the global one. In
the following they will be discussed separately.

Local matrix

The local matrix in the present solution method is the one marked by [K] in equation (12). As
seen in equation (15) the proposed solullon method involved the inversion of

[[Kzz] - [Kza][Kal]_l[Ku]]_l

Therefore one must assure that the above matrix is not singular or ill-conditioned. (Recall that as
mentloned earller (K35, which dées’ not depend on the local schemes, cannot be singular.)

Perrone and Kao?? treated thesingularity and ill-conditioning of their local matrix (which was
sllghtly different from the’ presem one) and suggested a technique (criterion) to avoid the
singularity. Liszka and Orkisz?* proposed a different technique which they claimed was simpler
and quicker in addition to being more accurate.

Unfortunately, Perrone and Kao’s?? criterion is limited to maximum eight neighbouring points
(ie. templates of nine nodal points), and Liszka and Orkisz’s 24 criterion does not always
guarantee non-singularity.

Perrone and Kao’s?? criterion is illustrated in Figure 4. The area around the central nodal
point, C, is divided into eight different zones each of which is a pie-shaped segment with a central
angle of 45°. Segments I and I1I are bisected by the X-axis and segments If and TV are bisected by
the Y-axis. Segments V-VIII are bisected by 45° lines through the nodal point, C. For an N-point
template (in which 5 < N < 9) the criterion suggests to locate the first four neighbouring points in
segments I-IV and the rest of them in’the other segments (at most one point per segment).

Since our method allows templates having more than nine points we propose to distribute the
neighbouring points in the following way. They should occupy all the eight segments and should
be located as far as possible from each other while being close enough to the central nodal point.



Figure 4. Perrone and Kao’s?? eight-segment configuration for selecting the local schemes (templates)

Global matrix

The global matrix, ie. [G] in equation (16), cannot be singular. It can, however, be ill-
conditioned. The ill-conditioning can be weakened by ensuring that

1gil = |gi;l

for all the rows — i. (g;; and g;; are the terms of [G]). Note that the above requirement is not
necessary. However, the more rows fulfilting it, the further away is the matrix from ill-condition-
ing. By redistributing the neighbouring points, problematic rows which do not fulfill the
above-mentioned requirement can be improved.

EXAMPLES, VERIFICATION AND DISCUSSION

In the following, two examples for which the analytical solution is known will be solved using the
proposed method.:

The first example is shown in Figure 5. A thin rectangular plate, having a dimension of { x b, is
fixed at its left edge. The boundary conditions along its four edges are given by

atx=0,0<y§b
| i=0 and §=0
at0<x<l,y=0"
2243y

- 2(4 + 3v)
- 5 and 5
a v s b (3 +2v) ¢
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Figure 5. Schematic illustration of the computation domain of example 1

at0<x<Ly=5b
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where [ and b are shown in Figure §, ¢ and fcan be arbitrarily chosen.
* The analytical solutions of this problem for the displacements u(x, y) and v(x, y) could be
obtained using the polynomials method as described in Chapter 3 of Reference 34. Following



their method, we derived the following analytical solution:

u(x, f) GRS ])2 o 2Qv+ v + 1) o 10(v + 1)? ety
(3 ¥ 20E vE Y G E T
40v(v + 1) y o S+ D 2( =Y
30E EEARARS G+ 2 2 VECV Y TR “xy
and
4v+ Ho+2) | 10(v + 1)? 20(v + (v +3)
v(x,y) = — - X I A SV ;2 S S 3 ;J
() GragE ~ Yt o 3G + 200
SU+v)? 5, 4w+l o (e,
oE PV (3+mﬂ“wm”7fﬁh (18)

The analytical solutions for the stress components are

o, =2¢cx" — fod TLEZ)/ s, 20Q2+Y) ex 32
3+ 2v)
F20fx2 0 +,,,
Y a0 y* )
L —2¢4+30 102 +3y) ',
T 3+ 2v) o v Sy + 20ex7y
2000420, , 4 102+
A A (3—?)- * 420
2243 20(1 + 2
Ty, = __(_i__v‘)f'XS — 10ex*y + I+ U)fx“yz
' . v : v
00 4+0) )
ST €X — 10fxy* — ——e- Cy ) 19
3+ 2v) : : f)c\ (?+20) (19)

Note that the above solutions are for a case in whigh the body forces are assumed (o be negligibly
small.

The second example is shown in Frgure 6. As a matter of fact it is a part cut out from the plate of
the first example (see.dashed line in Figure 5). Its boundary conditions were it = 0 and # at (x = 0
0 < y < b). Along the other boundaries, the natural (traction) boundary conditions were cal-
culated from the analytical solution given by equation (19).

This choice of the second example implies that its analytICdl solution is identical to that of the
first example, i.e. equation (18). The second example was chosen in order to verily the applicability
of the proposed method to inclined boundaries.

Both examples were solved numerlcally using the proposed method for ¢ = 1 and /= I. Sixty
six nodal points were used in the first example and 52 in the second one. Their distributions in the
appropriate computatlonal domains are shown in Figures 5 and 6, respectively. Sixth-order
Taylor series expansions were used in both solutions.

The numerical solutions of both examples were practically identical to the analytical ones. The
only noticeable errors.were .due .{o- the computer’s round-off errors. These should not be
surprising since the analytical solution [see equatlon (18)] is a s1xth order polynomial as are the

Taylor series expangion approximations.:
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‘The use of standard finite difference’methods or ‘{inite: element methods (with eight-point
elements) would inherently léad ito’ much’ larger errors sincé their order of approximations are
lower (usually 2 or 3). The use: of ‘sixthtorder Taylor' series: expansion approximations with
standard finite element or finite difference methods would result in very complex local schemes
(28 neighbouring points for ‘every element ‘or nodal: pomt) G

The above-described two problems were solved  using MATLAB: which very conveniently
treats" algebralc mampulatlons With 'métrices. For’ this reason the CPU 'time required for
a.complete calculation' was 1ot checked."The aim-of the présent paper is to present an idea for
a possible 1mprovement of the finite dlﬂerence method and not to compete with computational
timeé''of 'other methods:or ‘compliter ' programs ‘A good programmer may adopt the proposed
method to generate a very efficient'code:

Consequently, it is probable that in spite of the lmprovements of our proposed method over
other standard methods, there might be cases in which similar results can be achieved using the
same computer time but less programming effort, by increasing the number of nodal points with
standard methods. However}lt is clear that there will be situations when the new proposed
method will provide, the only fea51ble ‘method when computing power is limited. In addition to
solving engineering problems, the proposed method can be used as a tool for comparison between
othér numerical methods: b it ot

it should be noted here that although straight and obllque boundaries were used in the
presented two examples the method can be used with curved boundaries as well. Owing to the
difficulty in differentiating the' natural’(traction) boundary condition equatlons along curved
boundaries such an examplc was not demonstrated here.

triy b

CONCLUSIONS

ey e A e v s

A new idea for the numerical: solutlon of partlal dllferentml equatlons of equilibrium problems
was forwarded ‘and presented. The'idea is based on differentiation of both the governing and the



boundary condition equations. The proposed method was verified by comparing its results to the
analytical results of two problems in elasticity. Since only two examples were cheeked and since
the idea, to the best of our knowledge, is new, it is difficult to determine at this stage the full
applicability of the proposed method.

The method would be most useful in equilibrium problems where the geometrical boundaries
are curved and the boundary conditions along them have large gradients. This is because in the
proposed method both the boundary conditions and their derivatives are approximated.

The advantages of the proposed method over others are: The order of approximations of the
solution at nodal points located on the boundaries are the same as those of internal nodal points
(in contrast to other finite difference methods in which the approximation of boundary nodal
points are one order of magnitude lower than internal nodal points); Fictitious nodal points are
not required; The numerical algorthm ferthe approximation of the derivatives depends on the
entire differential equation and therefore provides better approximations than those obtained
from the fix numerical algorithms of finite difference methods; The method uses more local
equations and hence the solution depends less on the size of the mesh; The solution procedure

-requires the inversion of smaller matrices than those inverted in other numerical methods when

the same order of approximations are used and the grid is not regular; The size of the band width
of the finally generated global matrix is smaller than that of other numerical methods (this is due
to the use of less neighbouring points, i.e. smaller local schemes). Consequently, the improvement
of the proposed solution procedure over other procedures becomes more and more pronounced
as the number of the nodal points increases.

The disadvantages of the proposed method in relation to others are: It is relatively a cumber-
some method in its implementation. Prior to its application it requres a large volume of analytical
calculations, i.e. successive differentiation of both the governing and boundary condition equa-
tions. It requires a.manual selection of the local schemes (i.e. templates) for each nodal point.
(Note that this can be overcome by appropriate programming which will account for the criterion
suggested to avoid singularities and ill-conditioning).

Because the new method describes a method for solving equilibrium problems when the spatial
region is irregular in shape, and provides consistent accuracy everywhere, it will be useful to many
researchers and engineers.

" Finally, it should be noted that the present method (idea) has not been applied yet to non-lincar
differential equations where convergence must be guaranteed.
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