
Eric DELABAERE

Resurgent Methods and the First
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Preface

These lecture notes are an extended form of a course given at a CIMPA master
class held in LIMA, Peru, in the summer of 2008. The students who attended these
lectures were already introduced to linear differential equations, Gevrey asymp-
totics, k-summability and resurgence by my colleagues Michèle Loday, Claude
Mitschi and David Sauzin. The aim was merely to show the resurgent methods act-
ing on an example and along that line, to extend the presentation of the resurgence
theory of Jean Ecalle provided that the need.

The present lecture notes reflect this plan and this pedagogical point of view. The
example that we follow along this course is the First Painlevé differential equation,
or Painlevé I for short. Besides its simplicity, various reasons justify this choice.
One of them is the non-linearity, which is the field where the resurgence theory
reveals its power. Another reason lies on the fact that resonances occur, a case which
is scarcely found in the literature. Last but not least, the Painlevé equations and
their transcendents appear today to be an inescapable knowledge in analysis for
young mathematicians. It was thus certainly worthy to detail the complete resurgent
structure for Painlevé I.

We have tried to be as self-contained as possible. Nevertheless, the reader is
assumed to have a previous acquaintance with the theories of summability, espe-
cially with Borel-Laplace summation and a little background with resurgence the-
ory. Since this volume deals with ordinary non-linear differential equations, we be-
gin with definitions and phenomena linked to the non-linearity. Special attention is
then brought to Painlevé I and to its so-called tritruncated and truncated solutions
that are constructed by proving the summability of the transseries solutions. We an-
alyze the formal integral for Painlevé I and, equivalently, the formal transform that
brings Painlevé I to its normal form. We detail the resurgent structure for Painlevé I
via additional material in resurgence theory. As a rule, each chapter ends with some
comments on possible extensions for which we provide references to the existing
literature.

Angers, November 2015 Delabaere Eric
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3.4 First Painlevé equation and tritruncated solutions . . . . . . . . . . . . . . . . 47
3.4.1 Reminder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Formal series solution and Borel-Laplace summation . . . . . . 49
3.4.3 Tritruncated solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 A step beyond Borel-Laplace summability . . . . . . . . . . . . . . . . . . . . . . . . 61
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Resurgent functions and Riemann surface . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.2 The Riemann surface of Z-resurgent functions . . . . . . . . . . . . 63
4.2.3 Riemann surface RZ and sheets . . . . . . . . . . . . . . . . . . . . . . . . 66
4.2.4 R

(0)
ρ -nearby domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.5 Geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3 Shortest symmetric (Z,ρ)-homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Symmetric Z-homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.3.2 Shortest symmetric (Z,ρ)-homotopy . . . . . . . . . . . . . . . . . . . . 72

4.4 Convolution product and related properties . . . . . . . . . . . . . . . . . . . . . 75
4.4.1 A new convolution algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.4.2 Convolution space and uniform norm . . . . . . . . . . . . . . . . . . . 76
4.4.3 An extended Grönwall-like lemma . . . . . . . . . . . . . . . . . . . . . . 78
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6 Truncated solutions for the first Painlevé equation . . . . . . . . . . . . . . . . . 113
6.1 Borel-Laplace summability of the k-th series and beyond . . . . . . . . . 113

6.1.1 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.1.2 The ei-th series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.1.3 The kei-th series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



Contents ix

6.1.4 The other k-th series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2 Borel-Laplace summability of the transseries . . . . . . . . . . . . . . . . . . . 119

6.2.1 A useful supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.2.2 Borel-Laplace summability of the transseries . . . . . . . . . . . . . 121
6.2.3 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.2.4 Considerations on the domain . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.3 Summability of the formal integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.4 Truncated solutions for the first Painlevé equation . . . . . . . . . . . . . . . 126
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Chapter 1
Some elements about ordinary differential
equations

Abstract This chapter is merely devoted to recalling usual notations and elemen-
tary results on ordinary differential equations (ODEs) in the complex domain. We
give the fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail
the main differences between solutions of linear versus nonlinear ODEs, when the
question of their analytic continuation is considered (Sect. 1.2). Finally we provide
a short introduction to Painlevé equations (Sect. 1.3).

1.1 Ordinary differential equations in the complex domain

An ordinary differential equation (ODE) is a functional relation of the type

F
(
x,u(x),u′(x), · · · ,u(N)(x)

)
= 0, u(k)(x) =

dku
dxk (x) ∈ Cm. (1.1)

We refer to m as the dimension of the ODE. The order N of the ODE refers to the
highest derivative considered in the equation. This ODE of order N is said to be
solved in his highest derivative if it is written as

u(N) = F(x,u, · · · ,u(N−1)). (1.2)

1.1.1 The fundamental existence theorem

We recall the fundamental existence theorem for the Cauchy problem, for analytic
ODEs (see, e.g. [20, 18, 25, 19]). We denote by D(z,r) ⊂ C the open disc centred
on z and of radius r. For a given domain U ⊂ Cm (i.e., U is a connected open set)
we denote by O(U) the complex linear space of functions holomorphic on U .

Let U ⊂ Cn be an open set and let f : U → C be a function. The following statements are
equivalent (this is the Osgood lemma):

• f is analytic on U , that is f can be represented by a convergent power series in a neigh-
bourdhood of each x ∈U ;

• f is complex differentiable on U ;
• f is weakly holomorphic, that is f is continuous on U and partially differentiable on U

with respect to each variable xi (x = (x1, · · · ,xn)).

As a matter of fact, it is enough to assume only the holomorphy in each complex variable
without the continuity hypothesis (Hartogs theorem).

1



2 1 Some elements about ordinary differential equations

Theorem 1.1 (Cauchy problem). Let U ⊂ C×Cm be a domain and F : U → Cm

be a holomorphic vector function. For every (x0,u0) ∈ U, there exist a polydisc
D(x0,ε0)∏1≤i≤m D(u0i,εi)⊂U and a solution u : D(x0,ε0)→∏1≤i≤m D(u0i,εi) of

the analytic ODE of order 1 and dimension m,
du
dx

= F(x,u), which satisfies the

initial value condition u(x0) = u0. Moreover this solution is unique, u belongs to
O(D(x0,ε0)) and also depends holomorphically on the initial value u0.

In what follows we shall consider essentially scalar ODEs, that it ODEs of di-
mension 1 and of order N. The theorem 1.1 translates to this case as well, since
every ODE of order N and of dimension 1, once solved in his highest derivative,
is equivalent to an ODE of order 1 and of dimension N : if u = v0, u′ = v1, · · · ,
u(N−1) = vN−1, the following Cauchy problem,{

u(N) = F(x,u, · · · ,u(N−1))(
u(x0), · · · ,u(N−1)(x0)

)
=
(

u0, · · · ,u(N−1)
0

)
,

is equivalent to that one:

d
dx


v0
...

vN−2
vN−1

=


v1
...

vN−1
F(x,v0, · · · ,vN−1)

 and

 v0
...

vN−1

(x0) =

 u0
...

u(N−1)
0

 .

1.1.2 Some usual terminologies

The following terminologies are commonly used (see, e.g. [6]):

• The general solution of an ODE of order N and of dimension 1 is the set of all
solutions determined in application of the Cauchy theorem 1.1. It depends on N
arbitrary complex constants.

• A particular or special solution is a solution derived from the general solution
when fixing a particular initial data.

• A singular solution is a solution which is not particular.

1.1.3 Algebraic differential equations

In a moment we shall concentrate on algebraic differential equations, these we de-
fine now.

Let U ⊂C be a domain. We denote by M (U) the field of meromorphic functions
on U . The ODE (1.1) of order N and of dimension 1 is said to be algebraic on a
domain U if F ∈M (U)[u,u′, · · · ,u(N)] that is, F is polynomial in (u,u′, · · · ,u(N))
with meromorphic coefficients in x. An algebraic ODE is rational if it is of degree
one in the highest derivative u(N), and linear (homogeneous) if F is a linear form
in (u,u′, · · · ,u(N)).



1.2 On singularities of solutions of ordinary differential equations 3

1.2 On singularities of solutions of ordinary differential
equations

1.2.1 Notations

We fix some notations that will be used in a moment.

Definition 1.1. Let λ : [a,b]⊂ R→ C be a path starting at x1 = λ (a) and ending at
x2 = λ (b). If u is a (germ of) holomorphic function(s) at x1 which can be analyti-
cally continued along λ , we denote by contλ u the resulting (germ of) holomorphic
function(s) at x2.

Remark 1.1. Let O =
⊔
x∈C

Ox be the set of all germs of holomorphic functions. We

equip O with its usual Hausdorff topology, a basis B = {U (U,Φ)} of open sets
being defined as follows: U (U,Φ) = {ϕx ∈ Ox | ϕx germ of Φ at x ∈U}, where

U ⊂C is a domain and Φ ∈O(U). With the projection q :
O → C

ϕx ∈ Ox 7→ x ∈ C which

associates to a germ its support [12, 9], the (non-connected) topological space O be-
comes an étalé space, that is q is a local homeomorphism. The analytic continuation
of the germ u∈Ox1 along λ , if exists, is the image of the unique path Λ : [a,b]→ O

such that Λ(a) = u and whose projection by q is λ ,

O
Λ ↗ ↘ q
[a,b]−→ C

λ

. With this notation,

contλ u = Λ(b). See [32] for more details.

1.2.2 Problem

We consider an ODE of order N and dimension 1, F
(
x,u(x),u′(x), · · · ,u(N)(x)

)
= 0

with F : U → C a holomorphic function on the open domain U ⊂ C×CN+1. As-

sume that
(

x0,u0, · · · ,u(N)
0

)
∈U and that

{
F
(
x0,u0, · · · ,u(N)

0

)
= 0

∂N+2F
(
x0,u0, · · · ,u(N)

0

)
6= 0

. By the

implicit function theorem, the Cauchy problem{
F
(
x,u(x),u′(x), · · · ,u(N)(x)

)
= 0(

u(x0), · · · ,u(N)(x0)
)
=
(

u0, · · · ,u(N)
0

)
is locally equivalent to a Cauchy problem where the ODE is solved in its highest
derivative. Theorem 1.1 thus provides a holomorphic solution u near x = x0. We
consider a path γ : [a,b]→ C from x0 to x1 in C and for s ∈ [a,b] we denote by
γs : [a,s]→ C the restriction to [a,s] of γ . Assume that u can be analytically contin-
ued along the path γ and that for every s ∈ [a,b], the value at γ(s) of the analytic
continuation contγs

(
x,u,u′, · · · ,u(N)

)
along γs belongs to U . Then the analytic con-

tinuation contγ u along γ of the solution u still satisfies the differential equation,
thanks to the uniqueness of the analytic continuation.

This property raises the question of describing the singularities of the analytic
continuations of solutions of analytic ODEs, for instance for an algebraic differential
equation defined on an open domain. As we shall see, appearance of singularities is
quite different whether one considers linear or nonlinear ODEs.
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1.2.3 Linear differential equations

Linear differential equations are studied in [32, 30], see also, e.g. [39, 25, 19, 22].
For linear (homogeneous) ordinary differential equations it results from the Cauchy
existence theorem and the Grönwall lemma that the general solution has no other
singularities than the so-called fixed singularities which arise from the coefficients
of the ODE once solved for the highest derivative.

1.2.3.1 Example 1

We start with an equation where x = 0 is an irregular singular point of Poincaré
rank 1,

x2u′+u = 0, u(x) =Ce1/x, C ∈ C.

Here x = 0 is a fixed essential singularity for the general solution (but not for the
particular solution u(x) = 0), which arises from the equation itself.

If u ∈ O(D?(0,r)) is holomorphic on the punctured disc D?(0,r) = D(0,r) \ {0}, then u
can be represented by its Laurent series expansion ∑

n∈Z
anxn which converges in 0 < |x|< r.

One says that 0 is an essential singularity if and only if the Laurent series expansion has an
infinite number of n < 0 such that an 6= 0 or, equivalently, if u has no limit (finite or infinite)
when x→ 0. A typical example is provided by the function e1/x.

1.2.3.2 Example 2

We consider the Airy equation,

u′′− xu = 0, u(x) =C1Ai(x)+C2Bi(x), C1,C2 ∈ C.

Here Ai and Bi are the Airy’s special functions of the first and second kind respec-
tively. These are entire functions. When considered on the Riemann sphere C (see
[32]), x =∞ appears as a fixed (essential) singularity for the general solution (except
again for the particular solution u(x) = 0) which arises from the equation : x = ∞ is
an irregular singular point of Poincaré rank 3/2.

More generally, for a linear ordinary differential equation

N

∑
k=0

ak(x)u(k) = 0, ak(x) ∈ O(U), (1.3)

the general solution can be analytically continued as a multivalued function on U \S,
S = {the zeros of aN}, or more precisely as a single valued holomorphic function
once it is considered on a Riemann surface [12, 9] defined as a covering space,

R
π ↓

U \S
. In other words, the general solution is uniformisable (or also stable) [6] in

the following sense : for any Cauchy data at x0 ∈U \S that determined a unique local
solution u of (1.3) on a domain U0 ⊂U \S, one can find a domain U0 ⊂R such that
π|U0 : U0 →U0 is a homeomorphism, and a holomorphic function φ : R → C so
that φ |U0 = u◦π|U0 .

Then, for any domain U ′ ⊂R so that π|U ′ : U ′→U ′ is a homeomorphism, the function
φ ◦ (π|U ′ )−1 is still a holomorphic solution of (1.3) on U ′.
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1.2.4 Nonlinear differential equations

When nonlinear ODEs are concerned, beside the possibly fixed singularities arising
from the equation, the general solution has as a rule other singularities which depend
on the arbitrary coefficients : these are movable singularities.

1.2.4.1 Example 1

We consider the following nonlinear ODE,

xu′−u2 = 0,
general solution : u(x) =

1
C− log(x)

, C ∈ C.

singular solution : u(x) = 0

For the general solution, x = 0 is a fixed branch point singularity which comes from
the equation. The general solution u is uniformisable : considered as a function
on the Riemann surface (C̃,π) of the logarithm, C̃ = {x = reiθ | r > 0, θ ∈ R},
π : x ∈ C̃ 7→•x= reiθ ∈ C\{0}, one sees that the general solution u is meromorphic
with poles at π−1(eC) : these are movable singularities, depending on the chosen
coefficient C.

1.2.4.2 Example 2

The above example is just a special case of a more general rational ODE of order 1,
the Riccati equation,

u′ = a0(x)+a1(x)u+a2(x)u2 ai ∈M (U), (1.4)

where U ⊂C is a domain. By the change of unknown function u =− 1
a2(x)

d
dx

logv,

equation (1.4) is linearizable into the following linear ODE,

v′′+
(

a′2(x)
a2(x)

−a1(x)
)

v′+a2(x)a0(x)v = 0.

The general solution for this linear equation has (fixed) singularities located at the

poles of
a′2(x)
a2(x)

− a1(x) and a2(x)a0(x). We denote by S ⊂U this set of poles. The

general solution of the Riccati equation (1.4) is then uniformisable since it can be
analytically continued as a meromorphic function on a Riemann surface defined as
a covering over U \S.
When the ai belong to O(U), then the general solution of (1.4) is a meromorphic
function on U [26].

1.2.4.3 Example 3

Another well known equation is the following algebraic nonlinear ODE of order 1,
of degree 2 in its highest derivative, namely the elliptic equation:

u′2 = 4u3−g2u−g3, (g2,g3) ∈ C. (1.5)
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Fig. 1.1 The elliptic
curve L viewed as
the Riemann surface of
p = (4u3−g2u−g3)

1/2. The
homology classes of the cy-
cles γ1 and γ2 drawn generate
H1(L ;Z) γ

2

γ
1

A particular solution is provided by the Weierstrass p-function ℘(x;g2,g3) which
can be obtained as the inverse function of the elliptic integral of the first kind

x =
∫ u

∞

dq√
4q3−g2q−g3

,

(
dx
du

)2

=
1

4u3−g2u−g3
.

(Just apply the inverse function theorem).
When the discriminant D = g3

2− 27g2
3 satisfies the condition D 6= 0, the polyno-

mial function 4u3−g2u−g3 = 4(u− e1)(u− e2)(u− e3) has 3 distinct simple roots
e1,e2,e3. In that case the elliptic function ℘(x;g2,g3) is a doubly periodic mero-
morphic function with double poles at the period lattice mω1 + nω2, (n,m) ∈ Z2,
ω1

ω2
/∈ R.

The period lattice can be described as follows : consider the elliptic curve
L = {(q, p) ∈ C2, p2 = 4q3−g2q−g3} for D 6= 0. The homology group H1(L ;Z)
is a free Z-module of rank 2 and we denote by γ1 and γ2 two cycles which generate

H1(L ;Z). Then the period lattice is generated by the period integrals ω1 =
∫

γ1

dq
p

,

ω2 =
∫

γ2

dq
p

(equivalently ω1 = 2
∫ e2

e1

dq√
4q3−g2q−g3

, ω2 = 2
∫ e3

e1

dq√
4q3−g2q−g3

).

The homology group H1(L ;Z) can be seen as a local system on C2 \N(D) (that is a
locally constant sheaf of Z-modules on C2 \N(D)), where N(D) is the zero set of D.
Viewed as functions of (g2,g3), ω1,2 can be analytically continued as “multivalued”
analytic functions on C2 \N(D). On the discriminant locus N(D), the solutions de-
generate into simply periodic solutions, with a string of poles instead of a double
array.

Conversely, starting from the period lattice with
ω1

ω2
/∈ R, the Weierstrass ℘-

function can be obtained by a series,

℘(x;g2,g3) = x−2 + ∑
ω 6=0
{(x−ω)−2−ω

−2}= x−2 +g2
x2

20
+g3

x4

28
+ · · ·

where the first summation extends over all ω = mω1 +nω2 6= 0, (n,m) ∈ Z2 while
g2 = 60 ∑

ω 6=0
ω
−4, g3 = 140 ∑

ω 6=0
ω
−6.

The general solution of (1.5) is given by ℘(x− x0;g2,g3), since (1.5) is an au-
tonomous ODE.
To go further on the nice properties of elliptic functions see, e.g. [37].
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1.2.4.4 Example 4

The singularities of differential equations may be isolated singularities such as
poles, branch points of finite or infinite determinations, or essential singularities.
They may be also essential singular lines, or even perfect sets of singular points. For
instance, the general solution of the following Chazy equation of class III,

u(3)−2uu(2)+3u′2 = 0, (1.6)

is defined only inside or outside an open disc whose boundary is a natural movable
boundary determined by the initial data [3, 4].

1.3 The Painlevé program, Painlevé property and Painlevé
equations

At the end of the 19th century a list of special transcendental functions was known,
most of them being obtained as solutions of linear algebraic differential equations.

An algebraic function u in one complex variable x is a solution of a polynomial equation
P(x,u) = 0, P ∈ C[x,u]. A transcendental function u is a function which is not algebraic.

A challenging problem in analysis was thus to discover new transcendental func-
tions defined by algebraic ODEs which cannot be expressed in term of solutions of
linear algebraic ODEs : these new functions should thus be defined by non-linear
algebraic differential equations [6, 8, 22].

For that purpose a systematic approach needs first to classify the ODEs under
convenient criters. This is the goal of the so-called Painlevé program (see [6] and
references therein) which consists in classifying all algebraic ODEs of first order,
then second order, etc ..., whose general solution can be analytically continued as a
single valued function1. In other words, no branch point is allowed. For instance the
elliptic equation (1.5) or the Chazy equation (1.6) are such equations.

According to what we have seen, the Painlevé program splits into two problems:

• absence of fixed branch point for the general solution;
• absence of movable branch point for the general solution : this condition is the

so-called Painlevé property.

In the literature, the term “Painlevé property” is sometimes used for the stronger property
for the general solution of an ODE to be meromorphic, see [6]

Notice that the Painlevé property for an algebraic ODE F (x,u,u′, · · · ,u(p)) = 0
defined on a domain U ⊂ C is preserved by:

• a holomorphic change of variable x ∈U 7→ X = h(x), h ∈ O(U);
• a linear fractional change of the unknown with coefficient holomorphic in U

(action of the homographic group),

u 7→ v =
a(x)u+b(x)
c(x)u+d(x)

, v 7→ u =
d(x)v−b(x)
−c(x)v+a(x)

,

a,b,c,d ∈O(U), ad−bc 6= 0. Therefore, the classification in the Painlevé program
is made up to these transformations.

1 This condition can be weakened by asking the general solution to be only uniformisable.
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Notice however that other actions preserving the Painlevé property can be considered, see
[6, 7, 22].

1.3.1 ODEs of order one

We consider (nonlinear) ODEs of the form

F
(
x,u,u′

)
= 0, (1.7)

with F ∈M (U)[u,u′]. For that class of ODEs, the Painlevé program can be consid-
ered as being achieved and we mainly refer to [20, 18, 6, 22] for the classification.

In that case no essential movable singular point can appear ([20], Sect. 13.6).
Therefore looking for ODEs of type (1.7) with the Painlevé property reduces in
asking that the movable singular points are just poles.

When (1.7) is a rational ODE, then the class of ODEs we are looking for is
represented only by the Riccati equation (1.4). See [26], in particular the Malmquist-
Yosida-Steinmetz type theorems.

The ODEs of type (1.7) of degree ≥ 2 in the highest derivative and satisfying the
Painlevé property essentially reduce (up to the transformations mentioned above) to
the elliptic equation (1.5). See [6, 20] for more precise statements.

1.3.2 ODEs of order two and Painlevé equations

In contrast to what happens for algebraic ODEs of order one, essential movable
singular points may exist when the order is ≥ 2, making the analysis more difficult.
Nevertheless, the classification is known for at least algebraic equations of order
two

F
(
x,u,u′,u′′

)
= 0, F ∈M (U)[u,u′,u′′] (1.8)

which are rational, that is of degree one in u′′. Such equations enjoying the Painlevé
property reduce (up to transformation) to:

• equations which can be integrated by quadrature,
• or linear equations,
• or one of six ODEs known as the Painlevé equations, the first 3 being:

(PI) u′′ = 6u2 + x
(PII) u′′ = 2u3 + xu+α

(PIII) u′′ =
u′2

u
− u′

x
+

αu2 +β

x
+ γu3 +

δ

u

(1.9)

For the complete list see, e.g. [20, 18, 6, 22]. In (1.9), α,β ,γ,δ are arbitrary com-
plex constants. Each Painlevé equation can be derived from the “master equation”
PV I by some limit processes [22].

Painlevé equations have beautiful properties, see e.g. [5, 22, 16]. One of them is
the following one:

Theorem 1.2. The general solution of the Painlevé equation PJ , J = I, · · · ,V I admits
no singular points except poles outside the set of fixed singularities.
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Therefore, the Painlevé equations have the Painlevé property but moreover, the
general solution is free of movable essential singularities.
Notice that the Painlevé equation should be seen as defined on the Riemann sphere
C. The set of fixed singular points SJ of PJ is a subset of {0,1,∞}. For instance SI
and SII are just {∞}, while SIII = {0,∞}. Theorem 1.2 thus translates as follows :
the general solution of PJ can be analytically continued as a meromorphic function
on the universal covering of C\SJ .

Theorem 1.2 can be proved in various ways. An efficient one uses the relation-
ship between Painlevé equations and monodromy-preserving deformation of some
Fuchsian differential equations [24, 23, 31, 22, 11].

The general (global) solutions of the Painlevé equations are called the Painlevé
transcendents. This refers to the fact that, for generic values of the integration con-
stants and of the parameters of the equations, these solutions cannot be written with
elementary or classical transcendental functions, a question which has been com-
pletely solved only recently with the development of the modern nonlinear differen-
tial Galois theory (see [38] and references therein. For an introduction to differential
Galois theory, see [32]).

1.3.3 Painlevé equations and related topics

The renewed interest in Painlevé equations mainly came from theoretical physics
in the seventies, with the study of PDEs of the soliton type (Boussinesq equa-
tion, Korteweg-de Vries KdV and modified Korteweg-de Vries equation mKdV,
etc..): when linearized by inverse scattering transform [1], these PDEs give rise to
ODEs with the Painlevé property. For instance, the Boussinesq equation utt −uxx−
6(u2)xx + uxxxx = 0 has a self-similar solution of the form u(x, t) = w(x− t) where
w is either an elliptic function or satisfies the first Painlevé equation. In the same
lines, the (m)KdV hierarchy introduced by Lax in [29] (and already in substance
in [28] after the work of Gardner et al [13] on the KdV equation), will later give
rise to various Painlevé hierarchies which are thought of as higher-order Painlevé
equations and much studied since. For instance, the first Painlevé hierarchy is of the
form

(P(n)
I ) d[n+1][u]+4x = 0, n = 1,2, · · · (1.10)

where d[n][u] are differential polynomials recursively determined as follows (see
[36] and references therein):{

d[0][u] = 1
∂d[n+1][u] =

(
∂ 3−8u∂ −4u′

)
d[n][u], ∂ = d

dx , n ∈ N. (1.11)

(The first Painlevé equation is (P(1)
I ).) See also [33] and references therein, for

an asymptotic study of the Jimbo-Miwa [23] and Flaschka-Newell [10] second
Painlevé hierarchies [15].

For the first and second Painlevé hierarchies, one conjectures that the solutions of each
equation are meromorphic, thus satisfy the Painlevé property, but there is no proof up to our
knowledge [27].

Discrete (analogues of) Painlevé equations are today the matter of an intensive
research, after the pioneering work of Bessis et al [2] on the study of partition
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functions in 2D quantum gravity, yielding what is now known as the first discrete
Painlevé equation (dPI) when the quartic matrix model is considered:

(dPI) wn
[
wn+1 +wn +wn−1

]
= an+b+ cwn, a,b,c ∈ C. (1.12)

The first discrete Painlevé equation naturally arises in the context of orthogonal poly-

nomials. Consider the inner product ( f | g) =
∫ +∞

−∞

f (x)g(x)w(x)dx with the exponential

weight w(x) = e−NV (x), V (x) = µ

2 x2+ λ

4 x4, and look for an orthogonal polynomial sequence
(pn)n≥0, each pn being a monic polynomial of degree n. It can be shown that the polynomi-
als pn are governed by a three-term recurrence equation of the form{

xpn(x) = pn+1(x)+ rn pn−1(x)
p0(x) = 1, p1(x) = x (1.13)

where rn =
hn

hn−1
with (pn | pm) = hnδnm (δnm is the Kronecker index). This motivates the

calculations of the coefficients rn which themselves satisfy a recurrence relation of the form

λ rn
[
rn+1 + rn + rn−1

]
+µrn =

n
N

(1.14)

and we recognize (dPI). Among remarkable properties, (1.14) has a continuum limit to the
first Painlevé equation when the double-scaling limit n,N → ∞,

n
N
→ t is considered. See

for instance [21, 14, 17] and references therein.

Non commutative extensions of integrable systems have recently attracted the atten-
tion of the specialists, with non commutative (analogues of) Painlevé equations and
their hierarchies as main examples, see e.g. [35].

Finally, we could hardly leave untold the important group-theoretic interpretation
of Painlevé equations in the line of the work of Okamoto [34], see for instance [8]
and references therein.

It is not our aim to say more about Painlevé equations in general except for
the first Painlevé equation which is used in this course as field of experiments in
asymptotic and resurgent analysis, and which is the matter for the next chapter.
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5. R. Conte (ed), The Painlevé property. One century later. CRM Series in Mathematical
Physics. Springer-Verlag, New York, 1999.
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Hilbert approach. Mathematical Surveys and Monographs, 128. American Mathematical So-
ciety, Providence, RI, 2006.

12. O. Forster, Lectures on Riemann Surfaces, Graduate texts in mathematics; 81, Springer, New
York (1981).

13. C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Methods for solving the Korteweg-
de Vries equation. Phys. Rev. Letters 19 (1967), 1095–1097.

14. B. Grammaticos, Y. Kosmann-Schwarzbach, T. Tamizhmani (eds), Discrete integrable sys-
tems. Lecture Notes in Physics, 644. Springer-Verlag, Berlin, 2004.

15. P. Gordoa, N. Joshi, A. Pickering, Second and fourth Painlevé hierarchies and Jimbo-Miwa
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21. A. Its, Discrete Painlevé equations and orthogonal polynomials. In “Symmetries and inte-

grability of difference equations.” Lectures from the Summer School held at the Universit de
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Chapter 2
The first Painlevé equation

Abstract This chapter aims at introducing the reader to properties of the first
Painlevé equation and its general solution. The definition of the first Painlevé equa-
tion is recalled (Sect. 2.1). We precise how the Painlevé property translates for the
first Painlevé equation (Sect. 2.2), a proof of which being postponed to an appendix.
We explain how the first Painlevé equation also arises as a condition of isomon-
odromic deformations for a linear ODE (Sect. 2.3 and Sect. 2.4). Some symmetry
properties are mentioned (Sect. 2.5). We spend some times to describe the asymp-
totic behaviour at infinity of the solutions of the first Painlevé equation and, in
particular, we introduce the truncated solutions (Sect. 2.6). We eventually briefly
comment the importance of the first Painlevé transcendents for models in physics
(Sect. 2.7).

2.1 The first Painlevé equation

We concentrate on the first Painlevé equation,

(PI) u′′ = 6u2 + x. (2.1)

We notice that for every x0 ∈ C and every (u0,u′0) ∈ C2, theorem 1.1 ensures the
existence of a unique solution of (2.1), holomorphic near x0, satisfying the initial
data

(
u(x0),u′(x0)

)
= (u0,u′0).

2.2 Painlevé property for the first Painlevé equation

As already mentioned, the first Painlevé equation satisfies the Painlevé property. The
following more precise result holds.

Theorem 2.1. Every solution of the Painlevé equation PI can be analytically con-
tinued as a meromorphic function on C with only double poles.

This theorem will be shown in appendix. We add the following result for com-
pleteness:

Theorem 2.2. Every solution of (2.1) is a transcendental meromorphic function on
C with infinitely many poles.

13
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Proof. We just give an idea of the proof. It is easy to see that every solution u of
the first Painlevé equation (2.1) is a transcendental function. Otherwise, since u is

meromorphic with double poles, u should be a rational function, u(x) =
P(x)

Q(x)2 .

Reasoning on the degrees of P and Q, one shows that this is impossible. So every
solution u is a transcendental meromorphic function. It can be then derived from
the Clunie lemma in Nevanlinna theory of meromorphic functions that necessarily
u has an infinite set of poles [29, 14]. ut

The above properties were well-known since Painlevé [41]. The following one
was also known by Painlevé, however its complete proof has been given only re-
cently [38], see also [5].

Theorem 2.3. A solution of PI cannot be described as any combination of solutions
of first order algebraic differential equations and those of linear differential equa-
tions on C.

2.3 First Painlevé equation and isomonodromic deformations
condition

Each Painlevé equation PJ is equivalent to a nonautonomous Hamiltonian system
[39]. Concerning the first Painlevé equation this Hamiltonian system is given by the
following first Painlevé system:

(HI)


du
dx

=
∂HI

∂ µ
= µ

dµ

dx
=−∂HI

∂u
= 6u2 + x

, HI(u,µ,x) =
1
2

µ
2−2u3− xu. (2.2)

It is known [12, 40] that this Hamiltonian system arises as a condition of isomon-
odromic deformations of the following (Schlesinger type) second order linear ODE,

(S L I)


∂ 2Ψ

∂ z2 = QI(z;u,µ,x)Ψ

QI(z;u,µ,x) = 4z3 +2xz+2HI(u,µ,x)−
µ

z−u
+

3
4(z−u)2 .

(2.3)

In other words, u is solution of the first Painlevé equation (2.1) if and only if the
monodromy data of (2.3) do not depend on x. We explain this point. Equation (2.3)
has two fixed singularities z = u,∞, so that any (local) solution of (2.3) can be ana-
lytically continued to a Riemann surface which covers C \ {u,∞}. The point z = u
is a regular singular point, and a local analysis easily shows that the monodromy
at this point (see [37]) of any fundamental system of solutions of (2.3) does not
depend on x. The other singular point z = ∞ is an irregular singular point. Thus
the only nontrivial monodromy data of (2.3) are given by the Stokes coefficients at
z = ∞.

The second order linear ODE (2.3) is equivalent to a first order linear ODE in dimension
two. Each Stokes matrix is a two by two unipotent matrix (see [31, 37]), and thus depends
on a single complex coefficient called a Stokes coefficient.
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In general these Stokes coefficients depend on x, except when Ψ satisfies the fol-
lowing isomonodromic deformation condition:

(DI)
∂Ψ

∂x
= AI

∂Ψ

∂ z
− 1

2
∂AI

∂ z
Ψ , AI =

1
2(z−u)

(2.4)

The first Painlevé system (2.2) ensures the compatibility between equations (2.3)
and (2.4) : solving a Painlevé equation is thus equivalent to solving an inverse mon-
odromy problem (Riemann-Hilbert problem) [37, 18, 17, 25, 26, 42, 24, 21, 11].

We add another property : we mentioned that the asymptotics of (2.3) at z = ∞

are governed by some Stokes coefficients si = si(u,µ,x). It can be shown that the
space of Stokes coefficients makes a complex manifold MI of dimension 2. Also,
for any point of MI there exists a unique solution of the first Painlevé equation (2.1)
for which the monodromy data of equation (2.3) are equal to the corresponding
coordinates of this point [25].

2.4 Lax formalism

There is another fruitful alternative to get the Painlevé equations, however related to
the previous one, based on the linear representations of integrable systems through
the Lax formalism [30]. We exemplify this theory for Painlevé I, for which the so-
called Lax pair A and B are the matrix operators given as follows [17]:

A =

(
v(x) 4

(
z−u(x)

)
z2 +u(x)z+u(x)2 + x/2 −v(x)

)
, B =

(
0 2

z/2+u(x) 0

)
.

To the matrix operator A one associates a first order ODE in the z variable, whose
time evolution (the x variable) is governed by another first order ODE determined
by the matrix operator B, 

∂Ψ

∂ z
= AΨ

∂Ψ

∂x
= BΨ

(2.5)

The compatibility condition
∂ 2Ψ

∂ z∂x
=

∂ 2Ψ

∂x∂ z
provides what is known as the zero cur-

vature condition (or Lax equation), namely ∂A
∂x −

∂B
∂ z = [B,A] where [B,A] = BA−AB

stands for the commutator. Expliciting this condition, one recovers the first Painlevé

equation under the form


du
dx

= v
dv
dx

= 6u2 + x
. From what have been previously seen, the

zero curvature condition allows to think of (2.5) as an isomonodromic deformations
condition for its first equation.

2.5 Symmetries

We would like to notice here that the cyclic symmetry group of order five acts on the
set of solutions (2.1). Indeed, introducing ωk = e

2iπ
5 k, k = 0, · · · ,4, then any solution

u of (2.1) is mapped to another solution uk through the transformation
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uk(x) = ω
2
k u
(
ωkx
)
, k = 0, · · · ,4.

In general u and uk will be different solutions, an obvious exception being when u
satisfies the initial data u(0) = u′(0) = 0.

2.6 Asymptotics at infinity

Our aim in this section is to describe all the possible behaviors at infinity of the
solutions of the first Painlevé equation (2.1).
We first notice that x = ∞ is indeed a fixed singularity for PI : making the change of

variable u(x) = u(t), t =
1
x

, equation (2.1) translates into t5u′′+2t4u′ = 1+6tu2,
where t = 0 appears as a (irregular) singular point.

We mention that, when analysing the asymptotics of solutions of differential
equations at singular points, there is a great difference between linear and nonlinear
ODEs. When a linear ODE is concerned, the asymptotics of every solution can be
derived from the asymptotics of a fundamental system of solutions. For non linear
ODEs some care has to be taken, since as a rule singular solutions may exist, which
cannot be deduced from the general solution.

The study of all possible behaviors at infinity was first made by Boutroux [3,
4]. Various approaches can be used: a direct asymptotic approach in the line of
Boutroux as in [15, 19, 22], or another one based on the relationship between the
first Painlevé equation and a convenient Schlesinger type linear ODE as described
in Sect. 2.3, see [25] (see also [26, 28, 27, 42] for an exact semiclassical variant).

2.6.1 Dominant balance principle

We only want to give a rough idea of how to get the whole possible asymptotic be-
haviors and, in the spirit of this course, we follow the viewpoint of asymptotic as
in [15, 22, 19]. In this approach, for a given ODE, the first task is to determine the
terms in the equation which are dominant and of comparable size when x→∞ along
a path or a inside a sector. The reduced equation obtained by keeping the dominant
terms only in the ODE gives the leading behavior.
One usual trick to guess the asymptotics of solutions of ODEs is the dominant bal-
ance principle [2]. A maximal dominant balance corresponds to the case where there
is a maximal set of dominant terms of comparable size in the equation. As a rule,
this gives rise to the general behavior. The remaining cases are called subdominant
balances.

It is useful to introduce the following notations:

• f ' g when x→ ∞ along a path if lim
x→∞

f (x)
g(x)

=Cte, Cte ∈ C?.

• f � g when x→ ∞ along a path if lim
x→∞

f (x)
g(x)

= 0.

The unique maximal balance for PI consists in assuming all the three terms in (2.1)
of comparable size when x→∞. In particular u2 and x have comparable size, so that
u(x) = x

1
2 O(1) when x→ ∞. We therefore write u(x) = x

1
2 v
(
z(x)

)
with z(x)→ ∞

and v
(
z(x)

)
= O(1) when x→ ∞. If z(x) behaves like a fractional power of x at
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infinity, then
z′(x)
z(x)

' z′′(x)
z′(x)

' 1
x

and this is what will be assumed. We also make

the following remark : if v
(
z
)

is an analytic function whose asymptotics at infinity

is governed by a (formal, possibly Laurent) series, then
v′′(z)

z2 � v′(z)
z
� v(z) at

infinity, that is
v′′
(
z(x)

)
z2(x)

�
v′
(
z(x)

)
z(x)

� v
(
z(x)

)
when x→ ∞.

Here we will adjust the choice of z(x) by adding the demand:

v
(
z(x)

)
� z(x)v′

(
z(x)

)
� z(x)2v′′

(
z(x)

)
when x→ ∞.

These assumptions on v and z(x) provide the identities:

u′(x) = x−
1
2 z(x)v′

(
z(x)

)
O(1)+o(1), u′′(x) = x−

3
2 z2(x)v′′

(
z(x)

)
O(1)+o(1).

Thus, if v
(
z(x)

)
= v′

(
z(x)

)
= v′′

(
z(x)

)
= O(1) and demanding that u′′ and x have

comparable size, one gets z(x) = x
5
4 O(1) as a necessary condition. This suggests

with Boutroux [3, 4] to make the following transformation,

u(x) = αx
1
2 v(z), z = βx

5
4 , (2.6)

with α,β 6= 0 some constants, under which equation (2.1) becomes:

v′′+
v′

z
− 4

25
v
z2 −

96α

25β 2 v2− 16
25αβ 2 = 0.

With the following choice for α and β ,

α =
e

iπ
2
√

6
, β = e

5iπ
4

24
5
4

30
, (2.7)

one finally gets:

v′′ =
1
2

v2− 1
2
− v′

z
+

4
25

v
z2 . (2.8)

We now concentrate on this equation (2.8) and we examine the possible balances.

2.6.2 Maximal balance, elliptic function-type behavior

We consider the maximal balance case, that is we assume that v and its derivatives
can be compared to unity. This means that equation (2.8) is asymptotic to the equa-

tion v′′ =
1
2

v2− 1
2

whose solutions1 are the functions v(z) = 12℘(z− z0;
1
12

,g3)

where ℘ is the Weierstrass p-function (cf. Sect. 1.2.4), while z0 and g3 are two free
complex parameters. This indeed provides the general behaviour of the Painlevé
transcendents near infinity [3, 4, 22] : for |z| large enough in each open quadrants

Qk = {z ∈ C, k
π

2
< argz < (k+1)

π

2
}, k = 0,1,2,3 mod 4,

1 Just multiply both sides of the equality by v′, then integrate.
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Fig. 2.1 Left hand side : approximate period lattices in each quadrants Qi of z-plane. Right hand
side, their images in the x-plane through the transformation x 7→ z defined by (2.6)-(2.7)

the generic solution v of (2.8) has an approximate period lattice of poles, Fig. 2.1.
In this domain, excluding small neighbourdhoods of poles, the asymptotics of such
a generic solution v of (2.8) is governed by Weierstrassian elliptic functions. With
Kruskal & Joshi [22] one refers to this behavior as an elliptic function-type behavior.
Through the transformation (2.6)-(2.7), this translates for the Painlevé I transcen-
dents into an asymptotic regime on the sectors:

Sk = {x∈C,−π+k
2π

5
< argx<−π+(k+1)

2π

5
}, k = 0,1,2,3,4 mod 5. (2.9)

When z approaches the real axis (resp. the imaginary axis), |z| large enough and
in a small angular strip of width O

(
(log |z|)/|z|

)
, then the solution v displays a near

oscillatory-type behaviour with no poles, and v(z)→−1 (resp. v(z)→ +1) when
|z| → ∞, see [22]. The five special rays argx =−π + k 2π

5 , k = 0, · · · ,4 thus play an
important role in the asymptotics of the solutions of Painlevé I, the general solutions
having lines of poles asymptotic to these rays.

2.6.3 Submaximal dominant balances, truncated solutions

We now consider submaximal dominant balances, that is when v or one of its deriva-
tives differ from order unity. As shown in [22], the single consistent case occurs
when v ' 1 and v′′ � 1. This implies that equation (2.8) is now asymptotic to the

equation
1
2

v2− 1
2
= 0, that is v(z) = ±1+ o(1). Examining this case leads to the

following result:

Theorem 2.4. The first Painlevé equation (2.1) has:

• five complex parameter families of solutions u, the so-called intégrales tronquées
(truncated solutions) after Boutroux, such that u is free of poles in two adjacent

sectors Sk and Sk+1 for |x| large enough, and u(x) =
(
− x

6

) 1
2
(

1+O(x−
5
2 )
)

at
infinity in these sectors (for a convenient determination of the square root).

• among these truncated solutions, five special solutions, each of them being free
of poles in four adjacent sectors Sk,Sk+1,Sk+2,Sk+3 for |x| large enough, with the
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above asymptotics at infinity in these sectors. These are the so-called intégrales
tri-tronquées (tritruncated solutions).

This theorem has various proofs, see for instance [20, 35, 36] for “nonconven-
tional” approaches. We will see in this course how the resurgent analysis can be
used to show theorem 2.4.

There are analogues of truncated solutions for each member (P(n)
I ), n = 1,2, · · · in the first

Painlevé hierarchy (1.10), with asymptotics at infinity of the form [8]:

u(x) =
(
(−1)n x

cn

) 1
n+1 (

1+O(x−
2n+3
2n+2 )

)
, cn =

23n+1Γ (n+3/2)
Γ (n+2)Γ (1/2)

. (2.10)

Similar results occur for the first discrete Painlevé equation (1.12), see [23].

2.7 First Painlevé equation and physical models

As already said (Sect. 1.3.3), the Painlevé equations in general and the first Painlevé
equation in particular, appear by similarity reductions of integrable PDEs. They play
a significant role in others physical models, see e.g. [24] and references therein for
the first Painlevé equation. This includes the description of asymptotic regime in
transition layers and caustic-type domain. We exemplify this fact with the focus-
ing nonlinear Schrödinger equation iεΨt +

ε2

2 Ψxx + |Ψ |2Ψ = 0 (fNLS). It is shown
in [10] that when considering the (so-called) dispersionless limit ε → 0, the solu-
tions (of convenient Cauchy problems) of (fNLS) are asymptotically governed by
a tritruncated solution of the first Painlevé equation. In the same work, theoretical
and numerical evidences led the authors to conjecture that the tritruncated solutions
of the first Painlevé equation have the following property, shown in [7] under the
naming “the Dubrovin conjecture”:

Proposition 2.1. Each tritruncated solution of the first Painlevé equation is holo-
morphic on a full sector of the form {x ∈ C | argx ∈ I, |x| ≥ 0}, where I stands
for the closure of an open arc I of length |I| = 8π/5. Moreover, each tritruncated
solution can be analytically continued to a disc |x|< r0 with r0 > 0 small enough.

Recently, resurgence theory spectacularly enters the realm of string theory and
related models, as an efficient tool for making the connection between perturbative
and non-perturbative effects (see, e.g. [32] and references therin). In particular, the
first Painlevé equation was particularly adressed in [1] thanks of its physical inter-
pretation in the context of 2D quantum gravity [9, 33, 34, 13].

Appendix

The reader only interested in learning applications of resurgence theory may skip
this appendix, where we show theorem 2.1 for completeness. We follow the proof
given in [6]. See also [15, 16] and specially [14] with comments and references
therein. We start with two lemmas.

Lemma 2.1. Let u be any solution of (2.1), holomorphic on a neighbourhood of
x0 ∈ C. Then the radius R of analyticity at x0 satisfies R≥ 1/ρ with
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ρ =max
(∣∣∣u(x0)

∣∣∣1/2
,
∣∣∣u′(x0)

2

∣∣∣1/3
,
∣∣∣u2(x0)+

x0

6

∣∣∣1/4
,
∣∣∣u(x0)u′(x0)

2
+

1
24

∣∣∣1/5)
. (2.11)

Proof. If u(x) =
∞

∑
k=0

ck(x− x0)
k ∈ C{x− x0} solves (2.1), then


c0 = u(x0), c1 = u′(x0)

c2 = 3c2
0 +

x0

2
, c3 = 2c0c1 +

1
6

(k+1)(k+2)ck+2 = 6∑
k
m=0 cmck−m, k ≥ 2

(2.12)

Let be ρ > 0 given by (2.11) so that for any integer l ∈ [0,3],

|cl | ≤ (l +1)ρ l+2. (2.13)

Assume that (2.13) is satisfied for every 0 ≤ l ≤ k + 1 for a given k ≥ 2. Then
by (2.12),

(k+1)(k+2)|ck+2| ≤ 6
k

∑
m=0

(m+1)(k−m+1)ρk+4 ≤ (k+1)(k+2)(k+3)ρk+4.

The coefficients
k

∑
m=0

(m+ 1)(k−m+ 1) are those of the taylor expansions of (1− x)−4 at

the origin. Indeed, for |x| < 1,
1

1− x
= ∑

k≥0
xk so that

1
(1− x)2 = ∑

k≥0
(k + 1)xk. Therefore(

1
(1− x)2

)2

= ∑
k≥0

(
k

∑
m=0

(m+1)(k−m+1)

)
xk.

We conclude that (2.13) is satisfied for every l ≥ 0 and this implies that R ≥ 1
ρ

,

where R is the radius of convergence of the series expansion u. ut

Lemma 2.2. In a neighbourhood of any given point x̃ ∈ C, there exists a one-
parameter family of meromorphic solutions u of (2.1) having a pole at x̃. Necessarily
x̃ is a double pole and u is given by the Laurent-series expansions

u(x) =
1

(x− x̃)2 −
x̃

10
(x− x̃)2− 1

6
(x− x̃)3 + c4(x− x̃)4 + ∑

k≥6
ck(x− x̃)k

where c4 ∈ C is a free parameter.

Proof. We are looking for a Laurent-series u(x) =
∞

∑
k=p

ck(x− x̃)k ∈ C{x− x̃}
[ 1

x− x̃

]
satisfying (2.1). Necessarily p≥−2, c−2 = 1 or 0, c−1 = 0. Therefore, either x̃ is a
regular point, or otherwise

u(x) =
1

(x− x̃)2 −
x̃

10
(x− x̃)2− 1

6
(x− x̃)3 + c4(x− x̃)4 + ∑

k≥6
ck(x− x̃)k

where c4 ∈ C is a free parameter, while for k ≥ 6 the coefficients are polynomial
functions of (x̃,α). Indeed, one has (k−2)(k+5)ck+2 = 6∑

k
m=0 cmck−m, k≥ 2. We

can define ρ > 0 (depending on (x̃,α)) such that, for 0≤ l ≤ 5,

|cl | ≤
1
3
(l +1)ρ l+2. (2.14)
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Assume that this property is satisfied for every cl , 0 ≤ l ≤ k+1, for a given k ≥ 4.
Then

(k−2)(k+5)|ck+2| ≤
2
3

k

∑
m=0

(m+1)(k−m+1)ρk+4 ≤ 1
9
(k+1)(k+2)(k+3)ρk+4

and we conclude that |ck+2| ≤
1
3
(k+3)ρk+4. Therefore (2.14) is true for every l ≥ 0

and the Laurent series converges in the punctured dics D(x̃,1/ρ)?. ut

The following notations will now be used:

• Dx0 ⊂ C is an open disc, Ω is a discrete subset of Dx0 and x0 ∈ Dx0 \Ω .
• u is a solution of (2.1) defines by some initial data at x0 ∈ Dx0 \Ω and u is

meromorphic in Dx0 \Ω .
• λ (a,b) : [0,1]→ Dx0 \Ω denotes a C ∞-smooth path in Dx0 \Ω with endpoints

λ (a,b)(0) = a and λ (a,b)(1) = b. When b ∈ ∂Dx0 it is assumed that λ (a,b) is a
path where b is removed (that is one considers the restriction to [0,1[ of λ (a,b)).
Moreover we assume that the length of any subsegment λ (c,d) of λ (a,b) is less
that 2|c−d|.
We mention that we use the same notation λ (a,b) for the path and its image.

• x̃ ∈ ∂Dx0 is a singular point for u.

Lemma 2.3. Assume that u(x) =
4

∑
k=−2

ak(x− x̃)k +O(|x− x̃|5) when x→ x̃ along

λ (x0, x̃), with a−2 6= 0. Then u is meromorphic at x̃ and u is uniquely determined by
(x̃,a4).

Proof. Since u is solution of (2.1) which is analytic at each point of the smooth path
λ (x0, x̃), one has u′′(x) = 6u2(x)+x= 6

(
∑

4
k=−2 ak(x− x̃)k +O(|x− x̃|5)

)2
+x when

x→ x̃ along λ (x0, x̃). This implies that the asymptotic expansion is differentiable.

This is a consequence of the mean value theorem, u(x) = u(x0)+
∫ x

x0

u′(s)ds along λ (x0, x̃)

which is C ∞-smooth, and the uniqueness of the asymptotic expansion.

With the same calculus made in the proof of lemma 2.2, we show that

u(x) =
1

(x− x̃)2 −
x̃

10
(x− x̃)2− 1

6
(x− x̃)3 +a4(x− x̃)4 +O(|x− x̃|5).

We denote by v the meromorphic solution of (2.1) obtained in lemma 2.2 with
c4 = a4. We set

w(x) = v(x)− (x− x̃)−2 = O(|x− x̃|2)
f (x) = u(x)− v(x) = O(|x− x̃|5)

and we want to show that f = 0. We have f ′′− 12
(x−x̃)2 f = g with g = 12w f + 6 f 2,

g = O(|x− x̃|7). Integrating this linear ODE yields:

f (x) = C1(x− x̃)−3 +C2(x− x̃)4

− 7(x− x̃)−3
∫ x

x̃
(s− x̃)4g(s)ds+

(x− x̃)4

7

∫ x

x̃
(s− x̃)−3g(s)ds.

Since f (x) = O(|x− x̃|5), f is solution of the fixed-point problem f = N( f ) with
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N( f )(x) =−7(x− x̃)−3
∫ x

x̃
(s− x̃)4g(s)ds+

(x− x̃)4

7

∫ x

x̃
(s− x̃)−3g(s)ds.

For x1 ∈ λ (x0, x̃) we consider the normed vector space (B,‖.‖),

B= { f ∈ C 0(λ (x1, x̃)), f = O(|x− x̃|5}, ‖ f‖= sup
x∈λ (x1,x̃)

|(x− x̃)−5 f (x)|.

We show later that (B,‖.‖) is a Banach space (lemma 2.4). Now for x1 close enough
from x̃ (see lemma 2.4):

• the mapping N send the unit ball B of B into itself,
• the mapping N : B→ B is contractive.

Therefore the fixed-point problem f = N( f ) has a unique solution in B by the con-
traction mapping theorem. Obviously this solution is f = 0 and therefore u = v. ut

Lemma 2.4. With notations of the proof of lemma 2.3: (B,‖.‖) is a Banach space
and the mapping N : B→ B is contractive.

Proof.

(B,‖.‖) is a Banach space. Assume that ( fp) is a Cauchy sequence in (B,‖.‖),

∀ε, ∃p0 : ∀p,q > p0, ∀x ∈ λ (x1, x̃), |(x− x̃)−5( fp(x)− fq(x))|< ε . (2.15)

Writing gp(x) = (x− x̃)−5 fp(x), condition (2.15) implies that for every x ∈ λ (x1, x̃)
the sequence (gp(x)) is a Cauchy sequence, hence gp(x)→ g(x) in C. Now making
q→+∞ in (2.15) one sees that gp→ g uniformaly. Therefore g ∈ C 0(λ (x1, x̃)) and
is bounded on λ (x1, x̃). Thus g = (x− x̃)−5 f with f ∈ B.

The mapping N is contractive for x1 close enough from x̃. We set
N1( f )(x) =−7(x− x̃)−3 ∫ x

x̃ (s− x̃)4g(s)ds, N2( f )(x) = (x−x̃)4

7
∫ x

x̃ (s− x̃)−3g(s)ds so
that N( f ) = N1( f )+N1( f ). One can assume that |s− x̃| ≤ |x− x̃| for s ∈ λ (x, x̃)).
Also, there exist r > 0 and a > 0 such that |w(x)| ≤ a|x− x̃|2 when |x− x̃| ≤ r. We
now assume that |x1− x̃| ≤ r. For any f1, f2 ∈ B and x ∈ λ (x1, x̃):∣∣∣(x− x̃)−5

(
N1( f1)−N2( f2)

)∣∣∣
≤
∣∣∣∣−7(x− x̃)−8

∫ x

x̃
(s− x̃)4

(
12w(s)( f1(s)− f2(s))+6( f 2

1 (s)− f 2
2 (s))

)
ds
∣∣∣∣ ,

thus∣∣∣(x− x̃)−5
(
N1( f1)−N2( f2)

)∣∣∣ ≤ 7|x− x̃|−8
(

12a|x− x̃|11‖ f1− f2‖

+ 6|x− x̃|14‖ f1− f2‖‖ f1 + f2‖
)

Length(λ (x, x̃))

≤ 14|x− x̃|4
(

12a+12|x− x̃|3
)
‖ f1− f2‖.

The other term of (x− x̃)−5
(
N2( f1)−N2( f2)

)
is worked out in a similar way.

Choosing x1 close enough from x̃, one obtains the existence of a constant Cte∈]0,1[
such that for any f1, f2 ∈ B, ‖N( f1)−N( f2)‖ ≤Cte‖ f1− f2‖. ut

Lemma 2.5. When x→ x̃ along λ (x0, x̃) with x̃ ∈ ∂Dx0 a singular point for u:

1. |u(x)|+ |u′(x)| →+∞,
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2. u is unbounded.

Proof. 1. Lemma 2.1 implies that |u(x)| or |u′(x)| has to be large for x near x̃ which
is a singular point.

2. Multiplying (2.1) by u′ and then integrating yields

(u′)2 = 4u3 +2xu−2
∫ x

x0

u(s)ds+C (2.16)

where C ∈ C is a constant. Therefore if u is bounded x→ x̃ along λ (x0, x̃) then
u′ is bounded as well, which contradicts the first property. ut

Lemma 2.6. When x→ x̃ along λ (x0, x̃), with x̃ ∈ ∂Dx0 a singular point for u, then:

u−3(x)
∫ x

x0

u(s)ds→ 0, |u(x)| →+∞, |u′(x)| →+∞.

Proof. By lemma 2.5, we know that u is unbounded when x→ x̃ along λ (x0, x̃), so
that limsup

x→x̃
|u(x)|=+∞, liminf

x→x̃
|u−1(x)|= 0.

Reminder: limsup
x→x̃

f (x) = lim
ε→0

(
sup
{

f (x) | x ∈ λ (x0, x̃)∩D(x̃,ε)
})

,

liminf
x→x̃

f (x) = lim
ε→0

(
inf
{

f (x) | x ∈ λ (x0, x̃)∩D(x̃,ε)
})

.

Since
∣∣∣∣u−3(x)

∫ x

x0

u(s)ds
∣∣∣∣ ≤ |u−3(x)|. max

λ (x0,x)
|u|. Length(λ (x0,x)) for x ∈ λ (x0, x̃), it

turns out that

liminf
x→x̃

{∣∣∣∣u−3(x)
∫ x

x0

u(s)ds
∣∣∣∣}≤ liminf

x→x̃

{
|u−3(x)|. max

λ (x0,x)
|u|. Length(λ (x0,x))

}
.

The right hand side term vanishes because u is unbounded when x→ x̃, thus

liminf
x→x̃

{∣∣∣∣u−3(x)
∫ x

x0

u(s)ds
∣∣∣∣}= 0. (2.17)

In particular, for every γ > 0, for every D(x̃,ε), there exists x ∈ λ (x0, x̃)∩D(x̃,ε) so

that
∣∣∣∣u−3(x)

∫ x

x0

u(s)ds
∣∣∣∣≤ γ .

We make the following Assumption : u−3(x)
∫ x

x0

u(s)ds→ 0 is a false premise.

This assumption translates into the condition : there exists γ > 0 such that, for every

D(x̃,ε), there exists x ∈ λ (x0, x̃)∩D(x̃,ε) so that
∣∣∣∣u−3(x)

∫ x

x0

u(s)ds
∣∣∣∣≥ γ .

By continuity, we see that for any γ > 0 small enough, there exists a sequence
xn→ x̃, xn ∈ λ (x0, x̃), such that∣∣∣∣∫ xn

x0

u(s)ds
∣∣∣∣= γ

∣∣u3(xn)
∣∣ . (2.18)

The arguments used in the proof of lemma 2.5 show that limsup
n
|u(xn)|=+∞.

This means that there exists a subsequence (xnk) of (xn) such that |u(xnk)| →+∞.
Therefore we can assume that lim

n
|u(xn)| = +∞. with the following consequences:

from (2.18) we see that
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lim
n

∣∣∣∣∫ xn

x0

u(s)ds
∣∣∣∣=+∞ (2.19)

while (2.18) with γ > 0 chosen small enough and (2.16) imply lim
n
|u′(xn)|=+∞.

We are going to prove in several steps that the above assumption leads to a con-
tradiction.

First step We consider the solution hn of the Cauchy problem (h′)2 = 4h3 +2xnh+C̃n with C̃n =C−2
∫ xn

x0

u(s)ds

h(0) = u(xn), h′(0) = u′(xn)
(2.20)

where C is the constant given in (2.16). Notice by (2.19) that lim
n
|C̃n|=+∞ and by

(2.18) then (2.16):
|hn(0)|= (2γ)−1/3∣∣C̃n

∣∣1/3(1+o(1)
)

|h′n(0)|=
∣∣2γ
−1eiφn +1

∣∣1/2∣∣C̃n
∣∣1/2(1+o(1)

)
, φn ∈ R.

(2.21)

Writing
hn(t) = C̃1/3

n Hn(X), X = C̃1/6
n t, (2.22)

the function Hn is solution of the following elliptic differential equation (see (1.5))
with a given initial data:

(H ′)2 = 4H3 +2θnH +1, with θn = xnC̃−2/3
n

Hn(0) = C̃−1/3
n u(xn), |Hn(0)|= (2γ)−1/3(1+o(1)

)
,

H ′n(0) = C̃−1/2
n u′(xn), |H ′n(0)|=

∣∣2γ
−1eiφn +1

∣∣1/2(1+o(1)
)
.

(2.23)

From the properties of elliptic functions, Hn can be analytically continued as
a doubly periodic meromorphic function with double poles at the period lattice
an +mω1(θn)+nω2(θn), (n,m)∈Z2, for some an ∈C and ω1,2(θn) =Cte1,2 +O(θn).

Second step Next we consider the function Un satisfying to the condition:

u(x) = C̃1/3
n Un(X), X = C̃1/6

n (x− xn). (2.24)

From (2.1), Un is solution of the ODE

U ′′ = 6U2 +θn + εnX , with εn = C̃−5/6
n , (2.25)

and, more precisely from (2.16): (U ′)2 = 4U3 +2θnU +1+2εn

(
XU−

∫ X

0
U(S)dS

)
Un(0) = C̃−1/3

n u(xn), U ′n(0) = C̃−1/2
n u′(xn)

(2.26)

Third step We want to show that Un and Hn are locally holomorphically equivalent:
we look for a function Gn holomorphic near 0 such that

Un = Hn ◦Gn with Gn(X) = X +gn(X), gn(0) = 0, g′n(0) = 0. (2.27)
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We know from (2.23) that H ′′n = 6H2
n +θn, hence from (2.25) we deduce that

2g′nH ′′n ◦Gn +(g′n)
2H ′′n ◦Gn +g′′nH ′n ◦Gn = εnX

or else:
2g′n(H

′
n ◦Gn)

′+g′′nH ′n ◦Gn = εnX +(g′n)
2H ′′n ◦Gn.

Multiplying both parts of this equality by H ′n ◦Gn and integrating, one gets:
wn = (H ′n ◦Gn)

−2
∫ X

0
H ′n ◦Gn(S)

[
εnS+w2

n(S).H
′′
n ◦Gn(S)

]
dS = N(wn)

gn(X) =
∫ X

0
wn(S)dS, wn(0) = 0, Gn(X) = X +gn(X).

(2.28)
Let D(0, |εn|−1/4

2 ) be the disc centred at 0 of diameter |εn|−1/4. We denote by

D̃(0, |εn|−1/4

2 ) the disc D(0, |εn|−1/4

2 ) deprived from the discs of diameter d(γ) around

the poles and the zeros of H ′n. We consider a path λ (0,X0) in D̃(0, |εn|−1/4

2 ). In (2.28),

the integrals
∫ X

0
are considered along λ (0,X) ⊂ λ (0,X0). We can assume that the

length of any subsegment λ (0,X) of λ (0,X0) is less that 2|X |.
Let be a ∈]1/4,1/2[ and (B,‖.‖) be the Banach space B = { f ∈ C 0(λ (0,X0))},
‖ f‖= supx∈λ (0,X0)

| f (x)|. Let B be the ball B = { f ∈ B, ‖ f‖ ≤ |εn|a}. If w ∈ B and
g(X) =

∫ X
0 w(S)dS,

‖g‖ ≤ sup
X∈λ (0,X0)

∣∣∣∣∫ X

0
w(S)dS

∣∣∣∣≤ ‖w‖.Length(λ (0,X0))≤ |εn|a−1/4.

One can assume that d(γ)≥ 3|εn|a−1/4 so that

‖N(w)‖ ≤ |εn|Cte1(γ)|εn|−1/2 +Cte2(γ)|εn|2a−1/4.

Therefore ‖N(w)‖ ≤ |εn|a for |εn| small enough. Quite similarly, for w1,w2 ∈ B,

‖N(w1)−N(w2)‖= O(|εn|a−1/4)‖w1−w2‖.

We conclude by the contraction mapping theorem: N has a unique fixed point in B,
for |εn| small enough.

Final step We have seen that for |εn| small enough and a ∈]1/4,1/2[,

Un(X) = Hn
(
X +gn(X)

)
, |g(X)| ≤ |εn|a−1/4, X ∈ D̃(0,

|εn|−1/4

2
).

Therefore,

sup
X∈D̃(0, |εn |−1/4

2 )

∣∣C̃−1/3
n u(xn +C̃−1/6

n X)−Hn(X)
∣∣= O(|εn|a−1/4). (2.29)

Remember that |C̃n|→+∞ and |εn|= |C̃−5/6
n |→ 0 when xn→ x̃. If X ∈ D̃(0, |εn|−1/4

2 ),

then C̃−1/6
n X belongs to a disc of radius |C̃n|1/24 deprived of some discs of radius

d(γ)|C̃n|−1/6. Consequently, for n large enough,
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∀x ∈ Dx0 , ∃X ∈ D̃(0,
|εn|−1/4

2
),
∣∣∣x− (xn +C̃−1/6

n X)
∣∣∣≤ d(γ)

2
|C̃n|−1/6.

Choosing x = x0, we see from (2.29) that u is unbounded near x0 which is a regular
point for u: contradiction.

Therefore, u−3(x)
∫ x

x0

u(s)ds→ 0 when x→ x̃ along λ (x0, x̃). It is now an easy

exercice by lemma 2.5 and (2.16) to see that min{|u|, |u′|} →+∞ necessarily when
x→ x̃. (Just assume that u−1(x)→ 0 is false and see that there is a contradiction.)
ut

End of the Proof of theorem 2.1. What remains to show is that x̃ is a second order
pole. The substitution u = 1/v2 transforms (2.16) into

(v′)2 = 1+
x
2

v4− v6

2

∫ x

x0

ds
v2(s)

+
C
4

v6. (2.30)

We know from lemma 2.6 that
v6

2

∫ x

x0

ds
v2(s)

ds→ 0 and v→ 0 along a path λ (x0, x̃)

which avoids the poles of u in Dx0 . Therefore (v′)2 = 1 + o(1), then
v2(x) = (x− x̃)2

(
1+o(1)

)
. Plugging this last equality in (2.30) yields

(v′)2(x) = 1+ x̃
2 (x− x̃)4 +o((x− x̃)4), thus v2(x) = (x− x̃)2 + x̃

10 (x− x̃)6 +o((x− x̃)6).
One uses (2.30) again and eventually concludes with lemma 2.3.
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équations différentielles du second ordre (suite). Annales scientifiques de l’Ecole Normale
Supérieure Sér. 3, 31 (1914), 99-159.

5. G. Casale, Une preuve galoisienne de l’irréductibilité au sens de Nishioka-Umemura de la
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Chapter 3
Tritruncated solutions for the first Painlevé
equation

Abstract This chapter is devoted to the construction of the tritruncated solutions for
the first Painlevé equation, the existence of which being announced in Sect. 2.6. This
example will introduce the reader to common reasonings in resurgence theory. We
construct a prepared form associated with the first Painlevé equation (Sec 3.1). This
prepared ODE has a unique formal solution from which we deduce the existence
of truncated solutions by application of the “‘main asymptotic existence theorem”.
We then study the Borel-Laplace summability property of the formal solution by
various methods (Sect. 3.3). One deduces the existence of the tritruncated solutions
for the first Painlevé equation, by Borel-Laplace summation (Sect. 3.4).

3.1 Normalization and formal series solution

Throughout this course, C[[z−1]] stands for the differential algebra of formal power
series of the form g̃(z) = ∑

n≥0
anz−n, while C((z−1)) is the space of formal Laurent

series. The space of formal Laurent series is a valuation field with the natural valu-
ation

val :
C((z−1)) → Z∪∞

∑
n∈Z

anz−n 7→ val w̃ = min{n ∈ Z/an 6= 0}. (3.1)

3.1.1 Normalization, prepared form

We saw in Sect. 2.6 that the first Painlevé equation is equivalent to the following
differential equation,

v′′+
v′

z
=−1

2
+

4
25

v
z2 +

1
2

v2, (3.2)

under the Boutroux’s transformation: u(x) = e
iπ
2√
6

x
1
2 v(z), z = e

5iπ
4 24

5
4

30 x
5
4 .

The variable z is most often called critical time [7].

It is worth mentioning that the symmetries detailed in Sect. 2.5 translate into the fact
that any solution v of (3.2) is mapped into another solution vk through the transfor-
mation:

vk(z) = eiπkv
(
eiπk/2z

)
, k = 0, · · · ,3. (3.3)

29
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We look for a formal solution of (2.8) of the form ṽ(z) =
∞

∑
l=0

blz−l ∈C[[z−1]]. When

plugging this formal series in (3.2), one gets the necessary conditions: b2
0 = 1, b1 = 0

and b2 = − 4
25 . Thanks to the symmetries (3.3), there is no restriction in assum-

ing b0 = 1. Also, it will be convenient in the sequel to make a new transformation,

v(z) = 1− 4
25

1
z2 +

1
z2 w(z), (3.4)

which has the virtue of bringing (3.2) into the following differential equation :

w′′− 3
z

w′−w =
392
625

1
z2 −

4
z2 w+

1
2z2 w2. (3.5)

Definition 3.1. The differential equation (3.5), which reads

P(∂ )w+
1
z

Q(∂ )w = F(z,w), with P(∂ ) = ∂
2−1, Q(∂ ) =−3∂ , ∂ =

d
dz

(3.6)

and F(z,w) =
392
625

1
z2 −

4
z2 w+

1
2z2 w2 = f0(z)+ f1(z)w+ f2(z)w2, is called the pre-

pared form equation associated with the first Painlevé equation.

Remark 3.1. For general comments on normalization procedures see, e.g. [7] and
exercise 3.1. Notice that the prepared form is not uniquely defined.

3.1.2 Formal series solution

Substituting the formal series expansion
∞

∑
l=0

alz−l into equation (3.6) and identifying

the powers, yields a quadratic recursion relation, namely:
a0 = a1 = 0, a2 =−

392
625

al = l2al−2−
1
2

l−2

∑
p=0

a(p)a(l−2−p), l = 3,4, · · ·
(3.7)

The following proposition is a simple exercise.

Proposition 3.1. There exists a unique formal series solution of (3.6) denoted by:

w̃(z) =
∞

∑
l=0

alz−l ∈ C[[z−1]]. (3.8)

Moreover the series w̃ is even, val w̃ = 2 and the coefficients al are all real negative.

Remark 3.2. 1. One infers from (3.7) that the series w̃ diverges since obviously
|a2m| ≥ (m!)2|a2| for m≥ 1.

2. The differential equation (3.6) can be written as a fixed point problem, w=N(w),

N(w) = −F(z,w)− 3
z

w′ +w′′. On can consider the differential operator N as

acting on the ring C[[z−1]], N : C[[z−1]]→ C[[z−1]]. When C[[z−1]] is seen as a
complete metric space (for the so-called Krull topology, see [19]), N appears as
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a contractive map and the formal solution w̃ given by lemma 3.1 is the unique
solution of the fixed point problem. This way of showing the existence of the
formal solution w̃ is also useful for numerical calculations,

w̃(z) =−392
625

z−2− 6272
625

z−4− 141196832
390625

z−6 + · · ·

In this course, all calculations have been produced that way under Maple 12.0
(released: 2008).

3.1.3 Towards truncated solutions

3.1.3.1 Notations

We fix notations (essentially common with [19, 16]) which will be used in this
chapter and throughout the course.

Definition 3.2. We denote by S1 the circle of directions about 0 of half-lines on C.
We usually identify S1 with R/2πZ. Let I =]α,β [⊂ S1 be an open arc. Its length is
denoted and defined by |I|= β −α .

Definition 3.3. Let I⊂ S1 be an open arc. For 0≤ r <R≤∞, we denote by
•R

r (I) the

domain defined by
•R

r (I) = {ζ = ξ eiθ ∈ C | θ ∈ I, r < ξ < R}. In particular
•R

0 (I)

(resp.
•

∞
r (I)) is an open sector with vertex 0 (resp. ∞) and aperture I.

One denotes by
•
¯ R

0 (I) (resp.
•
¯ ∞

r (I)) the closure of
•R

0 (I) (resp.
•

∞
r (I)) in C? = C\{0}.

We use abridged notations
•

0(I),
•
¯ 0(I),

•
∞(I) and

•
¯ ∞(I) for sectors, when R or r is

unspecified.

A sector
•

0(I′) (resp.
•

∞(I)) is said to be a proper subsector of
•

0(I) (resp.
•

∞(I))

and one denotes
•

0(I′) b
•

0(I) (resp.
•

∞(I′) b
•

∞(I)) if the closure
•
¯ 0(I′) (resp.

•
¯ ∞(I′)) is included in

•
0(I) (resp.

•
∞(I)).

3.1.3.2 Main asymptotic existence theorem

We have previously seen that the ODE (3.6) is formally solved by a unique formal
series w̃(z) ∈ C[[z−1]].

Question 3.1. Can we associate to w̃ a holomorphic solution whose Poincaré asymp-
totics1 are governed by this formal series ?

This question is the matter of the “main asymptotic existence theorem”. This theo-
rem is detailed in [16] for linear ODEs. It can be formulated to nonlinear equations,
see [27], theorems 12.1 and 14.1, and [24] for extension to Gevrey asymptotics.

Theorem 3.1 (Main asymptotic existence theorem M.A.E.T.). Let I ⊂ S1 be an
open arc of length |I| ≤ π/(q+1) where q is a nonnegative integer. Let F(z,w) be
a m-dimensional vector function subject to the following conditions:

1 The reader is referred to [16, 19] for details on asymptotic expansions.
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1. F(z,w) is holomorphic in (z,w) on the domain of
•

∞(I) × B(0,r) with
B(0,r) = {w ∈ Cm, ‖w‖ ≤ r} for some r > 0;

2. F(z,w) admits an asymptotic expansion in powers of z−1 at infinity in
•

∞(I),
uniformaly valid in w ∈ B(0,r);

3. the equation z−qw′ = F(z,w) is formally satisfied by a formal power series solu-
tion w̃(z) ∈ (C[[z−1]])m;

4. if Fj(z,w) denotes the components of F(z,w), the Jacobian matrix

lim
z→∞,z∈

•
∞(I)


∂F1
∂w1

(z,0) · · · ∂F1
∂wm

(z,0)
· · · · · · · · ·

∂Fm
∂w1

(z,0) · · · ∂Fm
∂wm

(z,0)

 has non zero eigenvalues.

Then there exists a solution w of the equation z−qw′ = F(z,w), holomorphic in a

domain of the form
•

∞(I), whose asymptotics at infinity in every proper subsector

of
•

∞(I) is given by the formal solution w̃.

3.1.3.3 Application

Let us transform (3.6) into a one order ODE of dimension 2. We introduce

w =

(
w1
w2

)
=

(
w
w′

)
and we obtain the companion system:

∂w =

(
0 1
1 3

z

)
w+

(
0

F(z,w1)

)
=

(
F1(z,w)
F2(z,w)

)
= F(z,w) ∈ (C[z−1,w])2. (3.9)

We fix an open arc I ⊂ S1, arbitrary but of length |I| ≤ π . We also consider a domain

of the form
•

∞(I) and we make the following observations:

1. F(z,w) is polynomial with respect to w, with coefficients belonging to C[z−1].

Therefore F(z,w) is holomorphic in (z,w) on the domain
•

∞(I)×B(0,r) with
B(0,r) = {w ∈ C2, ‖w‖ ≤ r} for some r > 0;

2. again because F(z,w) ∈ (C[z−1,w])2, F(z,w) admits an asymptotic expansion in

powers of z−1 at infinity in
•

∞(I), uniformaly valid in w ∈ B(0,r);
3. the equation (3.9) is formally satisfied by a formal power series solution

w̃(z) =
(

w̃
w̃′

)
∈ (C[[z−1]])2;

4. the Jacobian matrix
(

0 1
1 0

)
=

(
∂F1
∂w1

(∞,0) ∂F1
∂w2

(∞,0)
∂F2
∂w1

(∞,0) ∂F2
∂w2

(∞,0)

)
has non zero eigenvalues

µ1 =−1 and µ2 = 1.

These properties allow to apply the (M.A.E.T.) and this shows the following propo-
sition (see also [15]):

Proposition 3.2. For any open arc I ⊂ S1 of length |I| ≤ π , there exists a solution w

of (3.6), holomorphic in a domain of the form
•

∞(I), whose Poincaré asymptotics at

infinity in every proper subsector of
•

∞(I), is given by the formal solution w̃ given
by proposition 3.1.

Proposition 3.2 thus describes the minimal opening of sectors on which holo-
morphic solutions w asymptotic to w̃ exist. Through the transformations (3.4), (2.6)
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and (2.7), these solutions w corresponds to holomorphic functions u solutions of the
first Painlevé equation, defined on open sectors of aperture 4π/5 : we thus get a first
insight towards the truncated solutions for the first Painlevé equation (theorem 2.4).

As a matter of fact, from the above informations and the property for any solution
of the first Painlevé equation to be a meromorphic function, one can even show the
existence of tritruncated solutions [15]. However, to get more precise informations,
we decide in what follows to turn to the question of the Borel-Laplace summability
of w̃.

3.2 A reminder

We assume that the reader has a previous acquaintance with Borel-Laplace summa-
tion and a little background with resurgence theory, amply elaborated in [19, 16]
to which we refer. For the convenience of the reader, we offer a brief reminder of
definitions and results used in this chapter.

Formal Borel transform and convolution product

Definition 3.4. The formal Borel transform B(z→ ζ ) is the linear isomorphism
B : C[[z−1]]→ Cδ ⊕C[[ζ ]] defined by

g̃(z) =
∞

∑
l=0

blz−l 7→ b0δ + ĝ(ζ ), ĝ(ζ ) =
∞

∑
l=1

bl
ζ l−1

Γ (l)
.

The formal series ĝ is the minor of g̃. The inverse map L = B−1 is the formal
Laplace transform.

Definition 3.5. Let b0δ + ĝ(ζ ) and c0δ + ĥ(ζ ) be two elements of Cδ ⊕C[[ζ ]].
Their convolution product (b0δ + ĝ)∗ (c0δ + ĥ) is defined by

(b0δ + ĝ)∗ (c0δ + ĥ) = B(g̃h̃), where g̃ = L (b0δ + ĝ), h̃ = L (c0δ + ĥ).

When ĝ(ζ ) = ∑
n≥0

bnζ
n and ĥ(ζ ) = ∑

n≥0
cnζ

n are two formal series, their convo-

lution product ĝ ∗ ĥ is given by the Hurwitz product, ĝ ∗ ĥ(ζ ) = ∑
k≥1

dkζ
k with

dk = ∑
n+m+1=k

n!m!
(n+m+1)!

bncm.

Proposition 3.3. The linear map ∂̂ : b0δ + ĝ 7→ −ζ ĝ provides a derivation of
Cδ ⊕C[[ζ ]] and B :

(
C[[z−1]],∂

)
→
(
Cδ ⊕C[[ζ ]], ∂̂

)
is an isomorphism of dif-

ferential algebras.

Gevrey series of order 1

Definition 3.6. A formal series g̃(z) = ∑
n≥0

anz−n ∈ C[[z−1]] is 1-Gevrey when there

exist constants C > 0, A > 0 so that |an| ≤C(n!)An for all n. The space of 1-Gevrey
series is denoted by C[[z−1]]1.

We recall from [16, 19] that the space C[[z−1]]1 of 1-Gevrey series is a differential
algebra.
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Notice that a formal series g̃ is 1-Gevrey if and only if its minor ĝ is a convergent
power series, thus defines a germ of holomorphic functions (still denoted by ĝ).
More precisely:

Proposition 3.4. The restricted linear map B| : C[[z−1]]1→Cδ ⊕O0 is an isomor-
phism of differential algebras. Also, for any two germs of holomorphic functions
ĝ, ĥ ∈ O0, their convolution product ĝ∗ ĥ ∈ O0 has the following integral represen-

tation: ĝ∗ ĥ(ζ ) =
∫

ζ

0
ĝ(η)ĥ(ζ −η)dη .

A flavor of resurgence

Definition 3.7. Let Ω be a non-empty closed discrete subset of C and ϕ̂ ∈ O0 be
a germ of holomorphic functions at 0. This germ is said to be Ω -continuable if
there exists r > 0 such that D?(0,r)∩Ω = /0 and ϕ̂ can be represented by a function
holomorphic on D(0,r) which can be analytically continued along any path of C\Ω

originating from any point of D?(0,r).
The space of all Ω -continuable germs is denoted by R̂Ω . The space Cδ ⊕ R̂Ω is
called the space of Ω -resurgent functions. The space of Ω -resurgent formal series
is denoted by R̃Ω and defined by R̃Ω = L

(
Cδ ⊕ R̂Ω ).

Theorem 3.2. Let Ω1, Ω2 be non-empty closed discrete subsets of C. Let Ω ⊂C be
the subset defined by Ω = Ω1∪Ω2∪ (Ω1 +Ω2) where

Ω1 +Ω2 = {ω1 +ω2 | ω1 ∈Ω1,ω2 ∈Ω1}.

If Ω is closed and discrete, then ϕ̂1 ∈ R̂Ω1 and ϕ̂2 ∈ R̂Ω2 imply ϕ̂1 ∗ ϕ̂2 ∈ R̂Ω .

In particular, the space Cδ ⊕ R̂Z of Z-resurgent functions is stable under convo-
lution product, thus is an algebra with unit δ .

Borel-Laplace summability

Definition 3.8. A formal series g̃(z) = ∑
n≥0

bn

zn ∈C[[z
−1]] is said to be Borel-Laplace

summable in direction θ ∈ S1 if the following conditions are satisfied:

• the series g̃ is 1-Gevrey or, equivalently, its minor ĝ is a convergent series whose
sum defines a holomorphic function (still denoted by ĝ) near the origin ;

• ĝ can be analytically continued to an open sector of the form
•

∞
0 (I) where I ⊂ S1

is an open neighbourdhood of θ , with exponential growth of order 1 at infinity.

Under the above conditions, the Borel-Laplace sum of g̃ in direction θ is denoted
by S θ g̃ and defined by S θ g̃(z) = L θ ◦B g̃(z) where L θ stands for the Laplace

transform in direction θ , L θ (b0δ + ĝ)(z) = b0 +
∫

∞eiθ

0
e−zζ ĝ(ζ )dζ .

In addition to this definition, we recall that the Borel-Laplace sum S θ w̃ is holo-
morphic on a half-plane where its asymptotic behavior is governed by the formal
series g̃. This will be made more precise in a moment.

3.3 Formal series solution and Borel-Laplace summability

We go back to the formal series w̃ given by proposition 3.1. Since val w̃ > 0, the
formal Borel transform of w̃ just reduces to its minor ŵ. Also, w̃(z) is the unique
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solution in C[[z−1]] of the differential equation (3.6). One easily infers the following
result from the general properties of the formal Borel transform.

Proposition 3.5. The formal series w̃(z) ∈ C[[z−1]] is solution of (3.6) if and only if
its minor ŵ(ζ ) ∈ C[[ζ ]] is solution of the following convolution equation:

P(∂̂ )ŵ+1∗
[
Q(∂̂ )ŵ

]
= f̂0 + f̂1 ∗ ŵ+ f̂2 ∗ ŵ∗ ŵ,

P(∂̂ ) = ∂̂
2−1, Q(∂̂ ) =−3∂̂ ,

f̂0(ζ ) =
392
625

ζ , f̂1(ζ ) =−4ζ , f̂2(ζ ) =
1
2

ζ .

(3.10)

We will see in a moment that w̃ is 1-Gevrey and even Borel-Laplace summable.
In the rest of this chapter, we analyse this Borel-Laplace summability and we offer
various approaches.

3.3.1 Formal series solution and Borel-Laplace summability: a
perturbative approach

We start with a perturbative approach which has the advantage of giving a first
insight into the resurgent structure. In practice, we consider (3.10) as a perturbation
of the equation P(∂̂ )ŵ = f̂0 which is quite easy to solve:

• either formally since the map P(∂̂ ) : ĝ∈C[[ζ ]] 7→ (ζ 2−1)ĝ∈C[[ζ ]] is invertible;
• or analytically, in a space of analyic functions, say O0, because

P(∂̂ ) : ĝ ∈ O0 7→ (ζ 2−1)ĝ ∈ O0 is once again invertible.

To keep one, it is convenient to transform equation (3.10) into the following one
parameter family of convolution equations,

P(∂̂ )ĥ = f̂0 + ε

(
−1∗

[
Q(∂̂ )ĥ

]
+ f̂1 ∗ ĥ+ f̂2 ∗ ĥ∗ ĥ

)
, (3.11)

and to look for a solution under the form

ĥ(ζ ,ε) = ∑
l≥0

ĥl(ζ )ε
l . (3.12)

When plugging (3.12) into (3.11) and identifying the same powers in ε , one obtains
a recursive system of convolution equations, namely:

P(∂̂ )ĥ0 = f̂0,

P(∂̂ )ĥ1 =−1∗
[
Q(∂̂ )ĥ0

]
+ f̂1 ∗ ĥ0 + f̂2 ∗ ĥ0 ∗ ĥ0,

P(∂̂ )ĥn =−1∗
[
Q(∂̂ )ĥn−1

]
+ f̂1 ∗ ĥn−1 + ∑

n1+n2=n−1
f̂2 ∗ ĥn1 ∗ ĥn2 , n≥ 1.

(3.13)
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3.3.1.1 Formal analysis

Lemma 3.1. The system (3.13) provides a uniquely determined sequence (ĥl)l≥0 of
formal series. Furthermore ĥl(ζ ) ∈ ζ 2l+1C[[ζ ]] for every l ≥ 0.

Proof. Use the fact that the map P(∂̂ ) : C[[ζ ]]→C[[ζ ]] is invertible and the general
properties of the convolution product. ut

The above lemma has the following consequence:

Proposition 3.6. The series ∑
l≥0

ĥl(ζ ) is well defined in C[[ζ ]] and is formally con-

vergent to the unique formal solution ŵ(ζ ) ∈ C[[ζ ]] of the convolution equa-
tion (3.10).

We mention that proposition 3.6 has a counterpart by formal Laplace trans-
form L (ζ → z). Introducing h̃l = L ĥl , one gets from lemma 3.1 that the sequence
(h̃l)l≥0 solves in C[[z−1]] the following recursive system of linear nonhomogeneous
ODEs:

P(∂ )h̃0 = f0(z)

P(∂ )h̃1 =−
1
z

Q(∂ )h̃0 + f1(z)h̃0 + f2(z)h̃2
0

P(∂ )h̃n =−
1
z

Q(∂ )h̃n−1 + f1(z)h̃n−1 + f2(z) ∑
n1+n2=n−1

h̃n1 h̃n2 , n≥ 1.

(3.14)

From lemma 3.1 again, one deduces that h̃l ∈ z−2l−2C[[z−1]] for every l≥ 0, thus:

Proposition 3.7. The series ∑
l≥0

h̃l(z) is well defined in C[[z−1]] and is formally

convergent to the unique formal solution w̃(z) ∈ C[[z−1]] of the differential equa-
tion (3.6).

3.3.1.2 Analytic properties and a flavor of resurgence

Instead of working in the space of formal series, one can rather work in a space of
analytic functions. The next proposition uses definition 3.7.

Proposition 3.8. For every l ∈ N, the formal series ĥl given by (3.13) defines a
germ (still denoted by ĥl) of holomorphic functions at 0, which can be represented
by a function holomorphic on the open disc D(0,1). Moreover, ĥl belongs to the
space R̂Ωl of Ωl-resurgent functions, where Ωl = {0,±1, · · · ,±l,±(l +1)}. As a
consequence, the germ ĥl is a Z-resurgent function.

Proof. The proposition is easily shown by induction from (3.13), theorem 3.2
and the following remark : for every l ∈ N, R̂Ωl ⊂ R̂Ωl+1 and the linear map

P(∂̂ ) : ĝ ∈ R̂Ωl 7→ (ζ 2−1)ĝ ∈ R̂Ωl is invertible. ut
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3.3.1.3 Further preparations

We have previously seen (proposition 3.6) that the minor ŵ of the formal series w̃
solution of the prepared form equation (3.6), can be written as ŵ(ζ ) = ∑

l≥0
ĥl(ζ ) in

the space C[[ζ ]], where the sequence (ĥl)l≥0 solves the recursive system of equa-
tions (3.13). To show the Borel-Laplace summability of w̃, it is thus enough to check
the following properties:

• the series of functions ∑
l≥0

ĥl(ζ ) converges to a holomorphic function near the

origin and can be analytically continued in a convenient sector;
• this function has at most exponential growth of order 1 at infinity in this sector.

We also know by proposition 3.8 that each ĥl(ζ ) is a Z-resurgent function. This mo-
tivates the following definition, with the notations : D(a,r) is the open disc centred
in a with radius r and D(a,r) is its closure.

Definition 3.9. One sets D
(0)
ρ =

⋃
λ=±1

D(λ ,ρ) for any ρ ∈]0,1[. We denote by
•
R

(0)
ρ

the star-shaped domain defined by:

•
R

(0)
ρ = C\

{
tζ | t ∈ [1,+∞[, ζ ∈ D(±1,ρ)

}
⊂ C\D (0)

ρ ,

and
•
R(0) =

⋃
0<ρ<1

•
R

(0)
ρ = C\{±[1,+∞[}. (See Fig. 3.1).

Definition 3.10. Let f (ζ ) = ∑
l≥0

alζ
l be an analytic function on the open disc

D(0,r). One denote by | f | the function defines by | f |(ξ ) = ∑
l≥0
|al |ξ l .

Notice that | f | is also analytic on D(0,r).

Lemma 3.2. Let be ρ ∈]0,1[. There exists a constant Mρ,(0) > 0 such that for every

polynomial q ∈ C[ζ ] of degree ≤ 1 and every ζ ∈ C\D (0)
ρ , one has∣∣∣ q(ζ )

P(−ζ )

∣∣∣≤Mρ,(0)|q|(1). Moreover, on can choose Mρ,(0) =
1
ρ

.

Proof. By definition of D
(0)
ρ ,

1
|ζ ±1|

≤ 1
ρ

and
∣∣∣∣ ζ

ζ ±1

∣∣∣∣≤ 1+
1
ρ

for every ζ ∈ C\D (0)
ρ .

Therefore,
∣∣∣ ζ p

P(−ζ )

∣∣∣ ≤ 1
ρ2−p

(
1+

1
ρ

)p

≤ 1
ρ2 (ρ +1)p ≤ 2p

ρ2 for p = 0,1,2. This

means that one can choose Mρ,(0) =
2

ρ2 in the lemma. It is possible to be more

Fig. 3.1 The domain
•
R

(0)
ρ .

0

ζ

−1−2−3−4 ρ
ρ

1 2 3
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precise. Suppose for instance that ℜ(ζ ) ≥ 0. Then |ζ +1| ≥max{1, |ζ |}, thus
max{1,|ζ |}
|P(−ζ )| ≤

1
ρ

. In a nutshell, one can choose Mρ,(0) =
1
ρ

in the lemma. ut

As a rule, we will combined lemma 3.2 with the following lemma whose proof
is left as an exercise (see [19, 16]):

Lemma 3.3. Let U be a domain star-shaped from 0. Suppose that f̂ and ĝ are
two holomorphic functions on U and satisfy the conditions: for every ζ ∈ U,∣∣ f̂ (ζ )∣∣≤ F

(
|ζ |
)

and
∣∣ĝ(ζ )∣∣ ≤ G

(
|ζ |
)

with F,G positive continuous functions on
R+. Then f̂ ∗ ĝ is holomorphic on U and for every ζ ∈U,

∣∣ f̂ ∗ ĝ(ζ )
∣∣ ≤ F ∗G

(
|ζ |
)

and
∣∣∣(ζ f̂

)
∗ ĝ(ζ )

∣∣∣≤ |ζ |(F ∗G
(
|ζ |
))

.

3.3.1.4 Majorant functions

We have in mind to show that the series of functions ∑
l≥0

ĥl(ζ ), discussed in proposi-

tions 3.6 and 3.8, is uniformaly convergent on any compact subset of
•
R(0). We will

use majorant functions which we now define.

Definition of the majorant functions We consider, for any ρ ∈]0,1[, the sequence
of functions (Ĥl)l≥0 recursively defined by:

1
Mρ,(0)

Ĥ0 = | f̂0|(ξ ),

1
Mρ,(0)

Ĥ1 =
(
3+ | f̂1|

)
∗ Ĥ0 + | f̂2| ∗ Ĥ0 ∗ Ĥ0,

1
Mρ,(0)

Ĥn =
(
3+ | f̂1|

)
∗ Ĥn−1 + ∑

n1+n2=n−1
| f̂2| ∗ Ĥn1 ∗ Ĥn2 , n≥ 1.

(3.15)

where Mρ,(0) is given by lemma 3.2 and | f̂0|(ξ ) = 392
625 ξ , | f̂1|(ξ ) = 4ξ , | f̂2|(ξ ) = 1

2 ξ .
(Compare (3.15) with (3.13).) We claim that for every l ∈ N, Ĥl is a majorant func-
tion for ĥl . Precisely:

Lemma 3.4. For every ρ ∈]0,1[ and every l ∈N, the following properties are satis-
fied: Ĥl(ξ ) is a polynomial which belongs to ξ l+1C[ξ ]; furthermore,

for every ζ ∈
•
R

(0)
ρ ,

∣∣ĥl(ζ )
∣∣≤ Ĥl(ξ ) with ξ = |ζ |, (3.16)

where (ĥl)l≥0 is defined by (3.13).

Proof. The fact that Ĥl(ξ ) ∈ ξ l+1C[ξ ] is proved by induction from (3.15) and the

properties of the convolution product. By (3.13) and lemma 3.2, for every ζ ∈
•
R

(0)
ρ ,∣∣ĥ0(ζ )

∣∣ ≤ ∣∣∣∣ 1
P(−ζ )

∣∣∣∣ ∣∣ f̂0(ζ )
∣∣ ≤ Mρ,(0)| f̂0|(ξ ) with ξ = |ζ |, so that (3.16) is true for

l = 0. We now assume that (3.16) is true for l = 0, · · · ,(n−1), for some n ∈N?. By

lemma 3.3 and the induction hypothesis, for every ζ ∈
•
R

(0)
ρ ,∣∣∣∣ 1

P(−ζ )

∣∣∣∣ .∣∣∣1∗ [Q(∂̂ )ĥn−1
]
(ζ )
∣∣∣≤ ∣∣∣∣ 1

P(−ζ )

∣∣∣∣ |Q|(|ζ |)(1∗ Ĥn−1(|ζ |)
)
,
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where |Q|(ξ ) = 3ξ . Therefore, by lemma 3.2,∣∣∣∣ 1
P(−ζ )

∣∣∣∣ .∣∣∣1∗ [Q(∂̂ )ĥn−1
]
(ζ )
∣∣∣≤Mρ,(0) |Q|(1)

(
1∗ Ĥn−1(ξ )

)
with ξ = |ζ |. More generally, for similar reasons,

1
Mρ,(0)

∣∣ĥn(ζ )
∣∣≤ (3∗ Ĥn−1(ξ )

)
+ | f̂1| ∗ Ĥn−1(ξ )+ ∑

n1+n2=n−1
| f̂2| ∗ Ĥn1 ∗ Ĥn2(ξ ).

Thus, for every ζ ∈
•
R

(0)
ρ ,
∣∣ĥn(ζ )

∣∣≤ Ĥn(ξ ). This ends the proof. ut
Upper bounds for the majorant functions Before keeping on studying the above
majorant functions, we state a property which will be useful in the sequel. We first
recall two notations.

Definition 3.11. Let U ⊂ C be an open set. We denote by O(U) the space of func-
tions holomorphic in U and continuous on the closure U .

For R0 > 0, we set D(∞,R0) =

{
z ∈ C, |z|> 1

R0

}
.

Lemma 3.5. Let be R0 > 0. We suppose f ∈ O
(
D(∞,R0)

)
with f (z) = O(z−m) at

infinity for a certain m ∈ N, and let be M = sup
z∈D(∞,R0)

| f (z)|. Then the formal Borel

transform B f = f0δ + f̂ of f satisfies the following properties:

1. f̂ ∈ O(C) and | f0| ≤
M
R0

.

2. for every ζ ∈ C, | f̂ (ζ )| ≤
∣∣ f̂ ∣∣(ξ )≤ M

R0
e

ξ

R0 with ξ = |ζ | and, when m≥ 2,

| f̂ (ζ )| ≤ M
Rm

0

ξ m−2

(m−2)!
∗ e

ξ

R0 , ξ = |ζ |.

Proof. The Taylor series expansion of f , ∑
k≥m

fkz−k = z−(m−1)
∑
l≥1

fm+l−1z−l , con-

verges to f in D(∞,R0). By the Cauchy inequalities, | fk| ≤
M
Rk

0
for any k ∈ N. The

formal Borel transform of f reads B f = f0δ + f̂ with :

1. f̂ (ζ ) = ∑
l≥1

fl
ζ l−1

(l−1)!
as rule,

2. f̂ (ζ ) =
ζ m−2

(m−2)!
∗

(
∑
l≥1

fm+l−1
ζ l−1

(l−1)!

)
when m≥ 2.

Also, for every ζ ∈ C, ∑
l≥1
| fm+l−1|

|ζ |l−1

(l−1)!
≤ ∑

l≥1

M
Rm+l−1

0

ξ l−1

(l−1)!
≤ M

Rm
0

e
ξ

R0 with

ξ = |ζ |. This ensures the uniform convergence on any compact set of C, thus
f̂ ∈ O(C), and provides the upper bounds. ut

We return to the majorant functions defined by (3.15).

Lemma 3.6. For every l ∈N, the majorant function Ĥl(ξ ) is the formal Borel trans-
form of H̃l(z) which has the following properties: H̃l(z) belongs to C[z−1] and, for

every ρ ∈]0,1[, H̃l(z) is bounded on the domain |z|> 8
ρ

, precisely sup
|z|> 8

ρ

|H̃l(z)| ≤
1
2l .
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Proof. We introduce the generating function: Ĥ(ξ )=
∞

∑
l=0

Ĥl(ξ )ε
l ∈C[ξ ][[ε]]. From

(3.15), we observe that this generating function formally solves the convolution
equation

1
Mρ,(0)

Ĥ = | f̂0|+ ε

[(
3+ | f̂1|

)
∗ Ĥ + | f̂2| ∗ Ĥ ∗ Ĥ

]
. (3.17)

Therefore, Ĥ can be seen as the formal Borel transform of the solution

H̃(z,ε) =
∞

∑
l=0

H̃l(z)ε
l ∈ C[z−1][[ε]] of the following second order algebraic equa-

tion:
1

Mρ,(0)
H̃ = | f0|(z)+ ε

[(3
z
+ | f1|

)
H̃ + | f2|H̃2

]

with | f0|(z) =
392
625

1
z2 , | f1|(z) =

4
z2 , | f2|(z) =

1
2z2 .

(3.18)

This equation has two branch solutions and one of them is asymptotic to the equa-

tion
1

Mρ,(0)
H̃ = | f0| when ε goes to zero. We are interested in that solution. Instead

of using an explicit calculation, we rather use another method which can be gener-

alized. In (3.18) we make the change of variable t =
1
z

and set H̃(z,ε) = H(t,ε).

The equation (3.18) becomes:

F (t,ε,H) = 0, with (3.19)

F (t,ε,H) =
1

Mρ,(0)
H−| f0|(t−1)− ε

[(
3t + | f1|(t−1)

)
H + | f2|(t−1)H2

]
.

Since F (0,0,0) = 0 and
∂F

∂H
(0,0,0) =

1
Mρ,(0)

6= 0, the implicit function the-

orem provides a unique holomorphic solution H(t,ε) to (3.19), for |t| and |ε|
small enough : there exist r1 > 0, r2 > 0, r3 > 0 and a holomorphic function
H : (t,ε) ∈ D(0,r1)×D(0,r2) 7→ H(t,ε) ∈ D(0,r3) such that for every
(t,ε,H) ∈ D(0,r1)×D(0,r2)×D(0,r3),

[
F (t,ε,H) = 0⇔ H = H(t,ε)

]
.

To get more precise informations, we view the implicit problem (3.19) as a fixed-
point problem:

H = N(H), (3.20)

N(H) = Mρ,(0)

(
| f0|(t−1)+ ε

[(
3t + | f1|(t−1)

)
H + | f2|(t−1)H2

])
= Mρ,(0)

(
392
625

t2 + ε

[(
3t +4t2)H +

1
2

t2H2
])

.

We choose Mρ,(0) =
1
ρ

(see lemma 3.2) and we introduce the space O(U) of func-
tions in (t,ε) which are holomorphic on the polydisc U = D(0, ρ

8 )×D(0,2) and
continuous on the closure U . The space

(
O(U),‖‖

)
is a Banach algebra where ‖‖

stands for the maximum norm.

We recall the following theorem [26]: let U be a bounded open subset of Cn, n≥ 1, E be a
Banach space and O(U) be the space of functions f : x 7→ f (x) ∈ E which are continuous
on U and holomorphic on U . With the the maximum norm ‖ f‖= sup

z∈U
| f (z)|, (O(U),‖.‖) is

a Banach algebra.
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For a reason of homogeneity, we introduce the ball Bρ = {H ∈ O(U), ‖H‖ ≤ ρ}.
For any H,H1,H2 ∈ Bρ , ‖N(H)‖ ≤ 1

ρ

(
392
625

ρ2

64 +2
[

7ρ

16 ‖H‖+
ρ2

128‖H‖
2
])
≤ ρ (re-

member that ρ < 1), while

‖N(H1)−N(H2)‖ ≤
2
ρ

(
7ρ

16
‖H1−H2‖+

ρ2

128
‖H1−H2‖

(
‖H1‖+‖H2‖

))
≤ 29

32
‖H1−H2‖.

The mapping N|Bρ
: H ∈ Bρ 7→ N(H) ∈ Bρ is thus contractive. Since Bρ is a closed

subset of a complete space, (Bρ ,‖.‖) is complete and the contraction mapping the-
orem can be applied. We deduce the existence of a unique solution H in Bρ of the
fixed-point problem (3.20).
This solution H(t,ε), thus holomorphic in U = D(0, ρ

8 )×D(0,2), has a Taylor ex-

pansion with respect to ε at 0 of the form H(t,ε) =
∞

∑
l=0

Hl(t)ε
l , where (Hl)l≥0 is a

sequence of holomorphic functions on the disc D(0, ρ

8 ). Moreover, by the Cauchy
inequalities and using the fact that sup

(t,ε)∈U
|H(t,ε)| ≤ ρ , one gets: for every l ∈ N,

sup
t∈D(0, ρ

8 )

|Hl(t)| ≤
ρ

2l . This ends the proof of lemma 3.6. ut

Lemma 3.7. For every ρ ∈]0,1[ and every l ∈ N, the majorant function Ĥl(ξ ) is a

polynomial which satisfies: for every ξ ∈ C, |Ĥl(ξ )| ≤
8
2l e

8
ρ
|ξ |.

Proof. This is due to lemmas 3.5 and 3.6. ut

3.3.1.5 Formal series solution and Borel-Laplace summability

We are ready to show the following theorem.

Theorem 3.3. The formal solution w̃ of the prepared equation (3.6) associated with
the first Painlevé equation, is a 1-Gevrey series and satisfies the following proper-
ties:

1. its minor ŵ is an odd series, convergent to a holomorphic function which can be
analytically continued to a function (still denoted by ŵ) holomorphic on the cut

plane
•
R(0);

2. ŵ has at most exponential growth of order 1 at infinity along non-horizontal
directions. More precisely, for every ρ ∈]0,1[, there exist A > 0 and τ > 0 such

that, for every ζ ∈
•
R

(0)
ρ , |ŵ(ζ )| ≤ Aeτ|ζ |;

3. moreover in the above upper bounds one can choose A = 16 and τ = 8
ρ

.

Proof. Combining lemmas 3.4 and 3.7, we know that, for every ρ ∈]0,1[ and l ≥ 0,

the function ĥl(ζ ), is holomorphic on
•
R

(0)
ρ . Moreover, for every R > 0, setting

UR = D(0,R)∩
•
R

(0)
ρ , ∑

l≥0
sup
UR

|ĥl(ζ )| ≤∑
l≥0

Ĥl(R)≤∑
l≥0

8
2l e

8
ρ

R ≤ 16e
8
ρ

R. This normal

convergence ensures the uniform convergence on any compact subset of
•
R(0) of

the series ∑
l≥0

ĥl(ζ ), which thus defines a function holomorphic on
•
R(0). However,
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proposition 3.6 tells use that the series ∑
l≥0

ĥl converges to the formal Borel transform

ŵ of the formal solution w̃ of the ODE (3.6). ut

Remark 3.3. Better estimates can easily be obtained, see corollary 3.1 and exer-
cise 3.3.

3.3.2 Formal series solution and Borel-Laplace summability:
second approach

In this second approach, however related to the first one, we introduce a Banach
space (following [6, 7]), convenient to analyse the analyticity of the formal Borel
transform of the formal series w̃ solution of the ODE (3.6). We then introduce the
reader to a “Grönwall-like lemma” which will give the upper bounds we are looking
for.

3.3.2.1 Convolution algebra and uniform norm

Definition 3.12. Let U =UR⊂C be an open neighbourdhood of the origin, bounded
and star-shaped, R = sup

ζ∈U
|ζ | the “radius” of U . We denote by

(
O(U),+, .,∗

)
the convolution C-algebra (without unit) of functions continuous on U and holo-
morphic on U . We denote by MO(U) the maximal ideal of O(U) defined by
MO(U) = { f ∈ O(U), f (0) = 0}. We set

∂̂ : f ∈ O(U) 7→ ∂̂ f (ζ ) =−ζ f (ζ ) ∈MO(U).

Let be ν ≥ 0. The norm ‖.‖ν is defined as follows: for every f ∈ O(U),

‖ f‖ν = R sup
ζ∈U

∣∣e−ν |ζ | f (ζ )
∣∣.

This norm is extended to Cδ ⊕ O(U) by setting: ‖cδ + f‖ν = |c| + ‖ f‖ν ,
while ∂̂ δ = 0.

Proposition 3.9. The space
(
Cδ ⊕O(U),‖.‖ν

)
is a Banach algebra. In particular,

for every f ,g ∈Cδ ⊕O(U), ‖ f ∗g‖ν ≤ ‖ f‖ν‖g‖ν . The space MO(U) is closed in
the normed space

(
O(U),‖.‖ν

)
. Moreover, for ν > 0:

1. for every n ∈ N, for every g ∈ O(U), ‖ζ n ∗ g‖ν ≤
n!

νn+1 ‖g‖ν ,

‖(ζ 7→ ζ
n+1)‖ν ≤

n!
νn+1 R and ‖(ζ 7→ 1)‖ν = R.

2. for every f ,g ∈ O(U), ‖ f g‖ν ≤
1
R
‖ f‖ν‖g‖0.

3. for every f ∈ O(U), ν ≥ ν0 ≥ 0⇒‖ f‖ν ≤ ‖ f‖ν0 .
4. for every f ∈MO(U), lim

ν→∞
‖ f‖ν = 0.

5. the derivation ∂̂ |O(U) : f ∈O(U) 7→ ∂̂ f ∈MO(U) is invertible. Its inverse map

∂̂−1 satisfies: for every f ∈O(U), for every g ∈MO(U), ∂̂−1( f ∗g)∈MO(U)



3.3 Formal series solution and Borel-Laplace summability 43

and ‖∂̂−1( f ∗g)‖ν ≤
1

νR
‖ f‖ν‖∂̂−1g‖0. Also, for every f ∈Cδ⊕O(U), for every

g ∈MO(U), ∂̂−1( f ∗g) ∈ O(U) and ‖∂̂−1( f ∗g)‖‖ν ≤ ‖ f‖ν‖∂̂−1g‖ν .

Proof. Since Re−νR sup
ζ∈U

∣∣ f (ζ )∣∣ ≤ R sup
ζ∈U

∣∣e−ν |ζ | f (ζ )
∣∣ ≤ R sup

ζ∈U

∣∣ f (ζ )∣∣, we see that

‖.‖ν is equivalent to the usual maximum norm on the vector space O(U) and this
normed vector space is complete. This shows the completeness of

((
O(U),+, .

)
,‖.‖ν

)
and of

(
Cδ ⊕O(U),‖.‖ν

)
as well.

For f ,g ∈ O(U) we have, writing ζ = |ζ |eiθ ∈U ,

Re−ν |ζ | f ∗g(ζ ) = Re−ν |ζ |
∫ |ζ |

0
f (seiθ )g

(
(|ζ |− s)eiθ)eiθ ds

= R
∫ |ζ |

0
f (seiθ )e−νsg

(
(|ζ |− s)eiθ)e−ν(|ζ |−s) eiθ ds.

Therefore R|e−ν |ζ | f ∗ g(ζ )| ≤ ‖ f‖ν‖g‖ν

∫ |ζ |
0

1
R

ds ≤ ‖ f‖ν‖g‖ν . We conclude that

for every f ,g ∈ O(U), ‖ f ∗ g‖ν ≤ ‖ f‖ν‖g‖ν , hence
(
O(U),‖.‖ν

)
is a Banach al-

gebra and
(
Cδ ⊕O(U),‖.‖ν

)
as well.

We now suppose ν > 0.

1. For the particular case f : ζ 7→ ζ n and g ∈ O(U):

Re−ν |ζ |∣∣(ζ n ∗g)(ζ )
∣∣ ≤ R

∫ |ζ |
0

e−νssn
∣∣∣g((|ζ |− s)eiθ)∣∣∣e−ν(|ζ |−s) ds

≤ ‖g‖ν

∫ |ζ |
0

e−νssn ds

≤ ‖g‖ν

∫
∞

0
e−νssn ds.

This shows that ‖ζ n ∗g‖ν ≤
n!

νn+1 ‖g‖ν . The other properties follow.

2. Obviously, ‖ f g‖ν ≤ ‖ f‖ν sup
U
|g| ≤ 1

R
‖ f‖ν‖g‖0, for every f ,g ∈ O(U).

3. It is straightforward to see that ν ≥ ν0≥ 0 implies ‖ f‖ν ≤‖ f‖ν0 when f ∈O(U).
4. If f ∈ MO(U), then f = ζ g with g ∈ O(U). From the previous property,

‖ f‖ν ≤
1
R
‖ζ‖ν‖g‖0 ≤

1
ν
‖g‖0. Thus limν→∞ ‖ f‖ν = 0.

5. If f ∈ Cδ ⊕O(U) and g ∈MO(U) then f ∗ g ∈MO(U). Assume now that
f ∈O(U) and g∈MO(U). Then ∂̂−1( f ∗g)(0) = 0 and writing ζ = |ζ |eiθ ∈U ,

Re−ν |ζ | f ∗g(ζ ) = Re−ν |ζ |
∫ |ζ |

0
g(seiθ ) f

(
(|ζ |− s)eiθ ds (3.21)

= R
∫ |ζ |

0
seiθ (∂̂−1g)(seiθ )e−νs f

(
(|ζ |− s)eiθ)e−ν(|ζ |−s) eiθ ds.

On the one hand, from (3.21),

R|e−ν |ζ | f ∗g(ζ )| ≤ 1
R
‖ f‖ν‖∂̂−1g‖ν

∫ |ζ |
0

sds≤ |ζ |
2

2R
‖ f‖ν‖∂̂−1g‖ν ,
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so that R|e−ν |ζ |
∂̂
−1( f ∗ g)(ζ )| ≤ |ζ |

2R
‖ f‖ν‖∂̂−1g‖ν ≤ ‖ f‖ν‖∂̂−1g‖ν . Thus

‖∂̂−1( f ∗g)‖ν ≤ ‖ f‖ν‖∂̂−1g‖ν . One easily extends this formula to the case
f ∈ Cδ ⊕O(U).
On the other hand, from (3.21),

R|e−ν |ζ | f ∗g(ζ )| ≤ ‖ f‖ν sup
U
|∂̂−1g|

∫ |ζ |
0

se−νs ds≤ |ζ |
νR
‖ f‖ν‖∂̂−1g‖0,

hence R|e−ν |ζ |
∂̂
−1( f ∗g)(ζ )| ≤ 1

νR
‖ f‖ν‖∂̂−1g‖0, . Therefore:

‖∂̂−1( f ∗g)‖ν ≤
1

νR
‖ f‖ν‖∂̂−1g‖0.

This ends the proof. ut

3.3.2.2 A Grönwall-like lemma

We start with the following observation.

Lemma 3.8. Let be a,b,c,d ≥ 0, N ∈ N? and (F̂n)0≤n≤N be a sequence of entire
functions, real and positive on R+, with at most exponential growth of order 1 at
infinity. Then, the convolution equation

ŵ = d +[a+bξ ]∗ŵ+ c

(
F̂0 +

N

∑
n=1

F̂n ∗ŵ∗n
)

(3.22)

has a unique solution in C[[ξ ]], whose sum converges to an entire function ŵd(ξ )
with at most exponential growth of order 1 at infinity. The function ŵd(ξ ) is real,
positive and non-decreasing on R+ and, for every ξ ∈ C, the mapping d 7→ ŵd(ξ )
is continuous on R+.

Proof. Obviously, (3.22) has a unique solution ŵd ∈ R+[[ξ ]]. Its formal Laplace
transform, w̃d = L (ŵd) ∈ R+[[z−1]], solves the algebraic equation

w̃(z) =
d
z
+

[
a
z
+

b
z2

]
w̃(z)+ c

N

∑
n=0

Fn(z)w̃n
(z), (3.23)

where the (Fn)0≤n≤N is a (N + 1)-tuple of holomorphic functions on a neighbour-
hood of infinity with Fn(z) = O(z−1). This shows (by a reasoning already done) that
w̃d =O(z−1) is a holomorphic function in (z,d) for d ∈C and z on a neighbourhood
of infinity (independent on d). Therefore, ŵd determines a function holomorphic in
(ξ ,d) ∈ C2, with at most exponential growth of order 1 at infinity in ξ . The fact
that, for d ≥ 0, ŵd is real, positive and non-decreasing on R+, is evident. ut

Lemma 3.9 (Grönwall lemma). Let U be a domain star-shaped from 0 and N ∈ N?.
Let ( f̂n)0≤n≤N , resp. (F̂n)0≤n≤N , be a (N + 1)-tuple of functions in O(U), resp. of
entire functions, real and positive on R+. We suppose that for every 0≤ n≤ N and
every ζ ∈U, | f̂n(ζ )| ≤ F̂n(ξ ) with ξ = |ζ |. Let p,q,r ∈ C[ζ ] be polynomials such
that the function ζ 7→ p(−ζ ) is non vanishing on U and the following upper bounds

are satisfied: a = sup
ζ∈U

|q|(|ζ |)
|p(−ζ )|

< ∞, b = sup
ζ∈U

|r|(|ζ |)
|p(−ζ )|

< ∞, c = sup
ζ∈U

1
|p(−ζ )|

< ∞.
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We finally assume that ŵ ∈ O(U) solves the following convolution equation:

p(∂̂ )ŵ+1∗ [q(∂̂ )ŵ] = ζ ∗ [r(∂̂ )ŵ]+ f̂0 +
N

∑
n=1

f̂n ∗ ŵ∗n. (3.24)

Then for every d ≥ 0, for every ζ ∈ U, |ŵ(ζ )| ≤ ŵd(ξ ) with ξ = |ζ |, where
ŵd ∈ O(C) is the holomorphic solution of the convolution equation (3.22).

Proof. (Adapted from [17]). We assume that ŵ ∈ O(U) is a solution of the convo-
lution equation (3.22). We thus have, for every ζ ∈U ,

p(∂̂ )ŵ(ζ ) = f̂0(ζ )−
∫

ζ

0
[q(∂̂ )ŵ](η)dη +

∫
ζ

0
(ζ −η)[r(∂̂ )ŵ](η)dη

+
N

∑
n=1

∫
ζ

0
f̂n(ζ −η)ŵ∗n(η)dη

Thus, writing ξ = |ζ | and ζ = ξ eiθ ,

|ŵ(ζ )| ≤ 1
|p(−ζ )|

F̂0(ξ )+
∫

ξ

0

[
|q|(ξ )
|p(−ζ )|

+
|r|(ξ )
|p(−ζ )|

(ξ − r)
]
|ŵ(reiθ )|dr

+
N

∑
n=1

∫
ξ

0

1
|p(−ζ )|

F̂n(ξ − r)|ŵ∗n(reiθ )|dr.

Therefore,

|ŵ(ζ )| ≤ cF̂0(ξ )+
∫

ξ

0
[a+b(ξ − r)] |ŵ(reiθ )|dr+c

N

∑
n=1

∫
ξ

0
F̂n(ξ − r)|ŵ∗n(reiθ )|dr.

We notice from (3.24) that |ŵ(0)| =
∣∣∣ f̂0(0)

p(0)

∣∣∣, while ŵd(0) = cF̂0(0)+ d, where ŵd

solves (3.22). Remark that |ŵ(0)| ≤ cF̂0(0) by definition of c and by hypothesis
on F̂0.

First case. We assume ŵd(0)> |ŵ(0)|. We want to show that |ŵ(ζ )|< ŵd(ξ ) for
ζ on the ray ζ = ξ eiθ ∈U .
Assume on the contrary that there exists ζ1 = ξ1eiθ ∈U such that |ŵ(ζ1)| ≥ ŵd(ξ1).
Define χ = {ζ ∈ [0,ζ1] | |ŵ(ζ )| ≥ ŵd(|ζ |)}. This is a non-empty closed set,
bounded from below, and we note ζ2 its infimum.

• If |ŵ(ζ )| ≥ ŵd(|ζ |) for some ζ ∈]0,ζ2[, then ζ ∈ χ and this contradicts the
definition of ζ2. Thus, for every ζ ∈ [0,ζ2[, |ŵ(ζ )|< ŵd(|ζ |).

• If |ŵ(ζ2)|> ŵd(|ζ2|) then, by continuity of ŵ and ŵd , one can find α > 0 such
that |ŵ

(
(|ζ2|−α)eiθ

)
|> ŵd(|ζ2|−α), but this this contradicts again the defini-

tion of ζ2. Therefore |ŵ(ζ2)|= ŵd(|ζ2|).
Putting things together, one gets with ξ2 = |ζ2|:

|ŵ(ζ2)| ≤ cF̂0(ξ2)+
∫

ξ2

0
[a+b(ξ2− r)] |ŵ(reiθ )|dr

+ c
N

∑
n=1

∫
ξ2

0
F̂n(ξ2− r)|ŵ∗n(reiθ )|dr

≤ cF̂0(ξ2)+
∫

ξ2

0
[a+b(ξ2− r)]ŵd(r)dr+ c

N

∑
n=1

∫
ξ2

0
F̂n(ξ2− r)ŵ∗nd (r)dr.
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Therefore |ŵ(ζ2)| ≤ ŵd(ξ2)− d and we get a contradiction. As a conclusion, for
every d > 0, for every ζ ∈U , |ŵ(ζ )| ≤ ŵd(ξ ) with ξ = |ζ |.

Second case. The case ŵd(0) = |ŵ(0)| (thus, in particular, d = 0) is deduced from
the above result. Indeed, for a given ζ ∈U , one has by |ŵ(ζ )| ≤ ŵd(ξ ) for every
d > 0. Since the mapping d 7→ ŵd(ξ ) is continuous on R+ (cf. lemma 3.8), one gets
the result by letting d→ 0. ut

3.3.2.3 Applications

We prove theorem 3.3 with the tools introduced in this section. For R > 0 and ρ > 0,

we introduce the star-shaped domain UR = D(0,R)∩
•
R

(0)
ρ . We set

Br = {v̂ ∈ O(UR),‖v̂‖ν ≤ r}, r > 0 and ν > 0.
We consider the convolution equation (3.10), viewed as a fixed-point problem. Pre-
cisely, we consider the mapping

N : v̂ ∈ Br 7→ P(∂̂ )−1
[
−1∗

[
Q(∂̂ )v̂

]
+ f̂0 + f̂1 ∗ v̂+ f̂2 ∗ v̂∗ v̂

]
.

By lemmas 3.2 and proposition 3.9, one first gets:

‖N(v̂)‖ν ≤Mρ,(0)‖−1∗
[
Q(∂̂ )v̂

]
+ f̂0 + f̂1 ∗ v̂+ f̂2 ∗ v̂∗ v̂‖ν .

By proposition 3.9 again, since Q(∂̂ ) =−3∂̂ , one easily obtains:

‖1∗
[
Q(∂̂ )v̂

]
‖ν ≤

1
ν
‖Q(∂̂ )v̂‖ν ≤

1
Rν
‖Q(−ζ )‖0‖v̂‖ν ≤

3
ν
‖v̂‖ν .

The functions f̂0, f̂1, f̂2 belong to MO(UR). By proposition 3.9, this implies
lim

ν→∞
‖ f̂i‖ν = 0, i = 0,1,2. We then deduce ‖N(v̂)‖ν ≤ r by choosing ν > 0 large

enough.
By the same arguments, one easily sees that ‖N(v̂1)−N(v̂2)‖ν ≤ k‖v̂1− v̂2‖ν with
k < 1, for v̂1, v̂2 ∈ Br and for ν > 0 large enough.
This means that N is contractive in the closed set Br of the Banach space(
O(UR),‖.‖ν

)
, for ν > 0 large enough. The contraction mapping theorem provides

a unique solution ŵ ∈ Br for the fixed-point problem v̂ = N(v̂). Since R and ρ can
be arbitrarily chosen, we deduce (by uniqueness) that the formal Borel transform ŵ

of the unique formal series w̃ solution of (3.6), defines a holomorphic in
•
R(0).

One turns to the Grönwall lemma to get upper bounds. Working in the star-shaped

domain
•
R

(0)
ρ , ρ ∈]0,1[, one sees by lemma 3.2, lemma 3.3 and the Grönwall lemma

3.9, that for every ζ ∈
•
R

(0)
ρ , |ŵ(ζ )| ≤ ŵ(ξ ), ξ = |ζ |, where ŵ(ξ ) solves the fol-

lowing convolution equation:

1
Mρ,(0)

ŵ = | f̂0|+
(
3+ | f̂1|

)
∗ŵ+ | f̂2| ∗ŵ∗ŵ.

This is nothing but (3.17) with ε = 1. We adopt the notations and reasoning made
for the proof of lemma 3.6. Let w̃(z) be the inverse Borel transform of ŵ and
w̃(z) = H(t), t = z−1. The function H solves the fixed-point problem H = N(H)
with
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N(H) = Mρ,(0)

(
392
625

t2 +
(
3t +4t2)H +

1
2

t2H2
)
. (3.25)

We set Mρ,(0) =
1
ρ

, U = D(0, ρ

4.22 ), and Bρ = {H ∈ O(U), ‖H‖ ≤ ρ}. One easily
shows that for any H,H1,H2 ∈ B1,

N(H) ∈ Bρ and ‖N(H1)−N(H2)‖ ≤
44150
44521

‖H1−H2‖.

We conclude with the contraction mapping theorem: w̃(z) is holomorphic on the

domain |z| > 4.22
ρ

and is bounded by ρ there. Therefore, by lemma 3.5, ŵ is an

entire function and satisfies: for every ξ ∈ C, |ŵ(ξ )| ≤ 4.22e
4.22

ρ
|ξ |. To sum up:

Corollary 3.1. In theorem 3.3, one can choose A = 4.22 and τ = 4.22
ρ

.

3.4 First Painlevé equation and tritruncated solutions

Theorem 3.3 shows that one can apply the Borel-Laplace summation scheme to the
unique formal series expansion w̃ ∈C[[z−1]] solving equation (3.6). This is what we
do in this section which starts with a brief reminder.

3.4.1 Reminder

We complete definitions 3.3 and definition 3.8 with notations essentially common
with [19, 16]. For the convenience of the reader we also recall some results about
Borel-Laplace summability and we refer to [19, 16] for more details.

Definition 3.13. Let θ ∈ S1 be a direction and I =]α,β [⊂ S1 be an open arc. We de-
note by

(

θ ⊂ S1 the open arc defined by

(

θ =]− π

2 −θ ,−θ + π

2 [, and

(

I =
⋃

θ∈I

(

θ . We
denote by Ī = [α,β ] the closure of I and by I? =]−β ,−α[ the complex conjugate
open arc.

Definition 3.14. For a direction θ and τ ∈ R, we denote by
•

Π
θ
τ the following open

half-plane, bisected by the half-line e−iθR+ :
•

Π
θ
τ = {z ∈ C, ℜ(zeiθ )> τ}, of aper-

ture

(

θ .
Let I ⊂ S1 be an open arc of length |I| ≤ π and γ : I→R be a locally bounded func-

tion. The domain
•
D(I,γ) is defined by

•
D(I,γ) =

⋃
θ∈I

•
Π

θ

γ(θ) and is called a sectorial

neighbourhood of infinity, of aperture

(

I .

Let g̃ = ∑
n≥0

bn

zn ∈ C[[z−1]]1 be a 1-Gevrey series: the minor ĝ thus determines

a holomorphic function near the origin (still denoted by ĝ). We add the following
conditions:

• one can find an open arc I ⊂ S1 such that ĝ can be analytically continued to an

open sector of the form
•

∞
0 (I);
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• this function (still denoted by) ĝ is of exponential growth of order 1 at infinity:

for every proper-subsector
•

∞(I′)b
•

∞
0 (I), there exist A > 0 and τ > 0 such that

for every ζ ∈
•

∞(I′), |ĝ| ≤ Aeτ|ζ |.

Under these conditions, for every direction θ ∈ I′, the Borel-Laplace sum S θ g̃ is

well-defined and holomorphic on the half-plane
•

Π
θ
τ . Moreover, for two close direc-

tions θ1,θ2 ∈ I′, the Borel-Laplace sums S θ1 g̃ and S θ2 g̃ coincide on their common

domain
•

Π
θ1
τ ∩

•
Π

θ2
τ , thus can be glued together to give a holomorphic function on

•
Π

θ1
τ ∪

•
Π

θ2
τ . More generally:

Proposition 3.10. Let g̃(z) = ∑
n≥0

bn

zn ∈ C[[z−1]]1 be a 1-Gevrey series subject to the

following conditions:

• there exists an open arc I ⊂ S1 of length |I| ≤ π so that the minor ĝ can be

analytically continued to the open sector
•

∞
0 (I);

• for every direction θ ∈ I, |ĝ(ξ eiθ )| ≤ A(θ)eγ(θ)ξ , ξ > 0, where A : I→ R+ and
γ : I→ R are locally bounded functions.

Then the family (S θ g̃)θ∈I of Borel-Laplace sums determines a holomorphic func-

tion on the domain
•
D(I,γ), denoted by S I g̃.

Definition 3.15. Under the conditions of proposition 3.10, g̃ is said to be Borel-

Laplace summable in the directions of I. The function S I g̃ ∈ O
( •
D(I,γ)

)
is called

the Borel-Laplace sum of g̃ in direction I.

Proposition 3.11. Let g̃(z) = ∑
n≥0

bn

zn ∈ C[[z−1]] be a formal series, Borel-Laplace

summable in the directions of I ⊂ S1, an open arc of length |I| ≤ π . Then its Borel-

Laplace sum S I g̃ ∈ O
( •
D(I,γ)

)
is 1-Gevrey asymptotic to g̃ on

•
D(I,γ) : for any

proper-subsector
•

∞ b
•
D(I,γ), there exist constants C > 0 and A > 0 such that for

every N ∈ N and every z ∈
•

∞,∣∣∣∣∣S I g̃(z)−
N−1

∑
l=0

bl

zl

∣∣∣∣∣≤CN!AN |z|−N . (3.26)

In this proposition, the property 3.26 essentially characterizes the Borel-Laplace

sum. Indeed, notice that the sectorial neighbourhood of infinity
•
D(I,γ) is of aperture

(

I which satisfies π < |

(

I | ≤ 2π , and one can draw the following consequence from

the Watson lemma (see [16]): let
•

∞(I′) be any sector such that |I′|> π and I′ ⊂

(

I .

Let f ∈O(
•

∞(I′)) be a holomorphic function which is 1-Gevrey asymptotic to g̃ on
•

∞(I′). Then f and S I g̃ coincide on
•

∞(I′)∩
•
D(I,γ).

We eventually ends this reminder with the following statement:

Proposition 3.12. Let I⊂S1 be an open arc of length |I| ≤ π and f̃ (z), g̃(z) ∈ C[[z−1]]

be Borel-Laplace summable formal series in the directions of I. Then f̃ g̃ and ∂ f̃ are
Borel-Laplace summable formal series in the directions of I and
S I( f̃ g̃) = (S I f̃ )(S I g̃), S I(∂ f̃ ) = ∂ (S I f̃ ).
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3.4.2 Formal series solution and Borel-Laplace summation

3.4.2.1 Borel-Laplace summation

We go back to the formal solution w̃ of equation (3.6). Theorem 3.3 and corollary
3.1 have the following consequences:

Corollary 3.2. The Borel transform ŵ ∈ O(
•
R(0)) of the formal solution w̃ of equa-

tion (3.6) satisfies the following property.
For every δ ∈]0, π

2
[, there exist Aδ > 0 and τδ > 0 so that

for every ζ ∈
•

∞
0 (]δ ,π−δ [), |ŵ(ζ )| ≤ Aδ eτδ |ζ |. (3.27)

Moreover one can choose Aδ = 4.22, τδ =
4.22

sin(δ )
.

Proof. One can define δ = sin−1(ρ) = arcsin(ρ) ∈]0, π

2
[, for any ρ ∈]0,1[. ut

From corollary 3.2 and the properties of the Borel-Laplace summation, we
see that for every δ ∈]0, π

2
[, the Borel-Laplace sum S θ w̃ of w̃ in any direc-

tion θ ∈]δ ,π − δ [, is well-defined and holomorphic in the half-plane
•

Π
θ
τδ

with

τδ =
4.22

sin(δ )
. These holomorphic functions glue together to give the Borel-Laplace

sum S ]δ ,π−δ [w̃, holomorphic in the domain
•
D(]0,π[,τ) with

τ : θ ∈]0,π[7→ τ(θ) =
4.22

sin(θ)
. (See Fig. 3.2 and exercise 3.4).

Moreover, since w̃ formally solves (3.6), its Borel-Laplace sum S ]0,π[w̃ is a solution

of this equation which is 1-Gevrey asymptotic at infinity to w̃ on
•
D(]0,π[,τ).

Similarly, the formal series w̃ is Borel-Laplace-summable in the directions of the
interval ]π,2π[. This provides the Borel-Laplace sum S ]π,2π[w̃ which belongs to

O
( •
D(]π,2π[,τ)

)
and is 1-Gevrey asymptotic to w̃ on

•
D(]π,2π[,τ).

Fig. 3.2 The (shaded)

domain
•
D(]0,π[,τ) for

τ(θ) =
4.22

sin(θ)
.
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Fine Borel-Laplace summations It is possible to get more precise estimates than
those given by (3.26), by appealing to fine Borel-Laplace summations, discussed
with much attention in [16, 19] to whom we refer.

Definition 3.16. We denote by Sr(θ) the open half-strip Sr(θ) =
⋃

s∈R+

D(seiθ ,r), for

r > 0 and θ a direction.

The following proposition is the easy part of a theorem due to Nevanlinna [19, 16,
18, 12, 25].

Proposition 3.13. Let ϕ̃(z) =
+∞

∑
n=0

an

zn ∈C[[z
−1]]1 be a 1-Gevrey series, r > 0, A > 0,

τ > 0 and θ a direction. Then property (1) implies property (2) in what follows.

1. The minor ϕ̂ is analytically continuable on Sr(θ) and for every ζ ∈ Sr(θ),
|ϕ̂(ζ )| ≤ Aeτ|ζ |.

2. The Borel-Laplace sum S θ ϕ̃(z) is holomorphic in
•

Π
θ
τ and for every p ≥ 0,

N ≥ 0 and z ∈
•

Π
θ
τ :∣∣∣dpS θ ϕ̃

dzp (z)−
N

∑
k=p

(−1)pak−p
(k− p) · · ·(k−1)

zk

∣∣∣≤ Ras(r,A,τ,N,zeiθ ; p)

(3.28)
where

Ras(r,A,τ,N,z; p) = A
N!eτr

rN |z|N
p!

(ℜ(z)− τ)p+1

p

∑
l=0

(
r(ℜ(z)− τ)

)l

l!
(3.29)

Applications We return to theorem 3.3 and corollary 3.1. We consider a direction
θ ∈]0,π[ and we choose r > 0 and 0 < ρ < 1 such that sin(θ) = r+ρ . This en-

sures that the half-strip Sr(θ) is a subset of the domain
•
R

(0)
ρ and, by theorem 3.3,

there exist A > 0 and τ > 0 such that for every ζ ∈ Sr(θ), |ŵ(ζ )| ≤ Aeτ|ζ | with

sin(θ) = r+ρ . Also, from corollary 3.1, one can choose A = 4.22, τ =
4.22

ρ
. As a

consequence, proposition 3.13 can be applied. The reader will easily adapt the pre-
vious considerations when the directions θ ∈]π,2π[ are considered.
We summarize what have been obtained.

Proposition 3.14. The 1-Gevrey series w̃∈C[[z−1]]1, solution of the prepared equa-
tion (3.6) associated with the first Painlevé equation, is Borel-Laplace summable
in the directions of the arc I0 =]0,π[, resp. I1 =]π,2π[. The Borel-Laplace sum
wtri,0 = S ]0,π[w̃, resp wtri,1 = S ]π,2π[w̃. is a holomorphic solution of the differen-
tial equation (3.6) and wtri,0,wtri,1 satisfy the following properties. For every θ ∈ I0,
resp. θ ∈ I1, for every r > 0 and ρ > 0 so that |sin(θ)|= r+ρ , there exist τ > 0
and A > 0 such that :

• wtri, j ∈ O(
•

Π
θ
τ ), j = 0 resp. j = 1;

• for every z ∈
•

Π
θ
τ , for every N ∈ N, for j = 0 resp. j = 1,∣∣∣wtri, j(z)−

N

∑
k=0

ak

zk

∣∣∣≤ A
N!eτr

rN |z|N
1

ℜ(zeiθ )− τ
; (3.30)
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dz
(z)+

N

∑
k=1

(k−1)a(k−1)

zk

∣∣∣≤ A
N!eτr

rN |z|N
1+ r(ℜ(zeiθ )− τ)(

ℜ(zeiθ )− τ
)2 (3.31)

where the coefficients ak are given by (3.7);

• morover one can choose A = 4.22, τ =
4.22

ρ
. In particular wtri,0, resp. wtri,1, is

holomorphic in
•
D(I0,τ), resp. in

•
D(I1,τ), with τ(θ) =

4.22
|sin(θ)|

.

3.4.2.2 A link with 1-summability theory

We assume that the reader has a previous acquaintance with 1-summability theory,
introduced and much discussed in [16], to which we refer. We only fix some no-
tations, these are classical [16, 18] but for the fact that we consider asymptotics at
infinity, and we recall some properties.

Definition 3.17. Let I ⊂ S1 be an open arc and
•

∞ =
•

∞(I) a sector.

1. A (
•

∞), resp. A (I), is the differential algebra of holomorphic functions on the

sector
•

∞ admitting Poincaré asymptotics at infinity in this sector, resp. asymp-
totics germs at infinity over I.

The linear map T : A (
•

∞)→C[[z−1]], resp. T : A (I)→C[[z−1]], which assigns

to each f ∈A (
•

∞), resp. f ∈A (I), its asymptotic expansion at infinity, is called
the Taylor map.

The Taylor map T is a morphism of differential algebras and this map is onto (Borel-Ritt
theorem).

2. A 1(
•

∞), resp. A 1(I), is the differential algebra of holomorphic functions on

the sector
•

∞ with 1-Gevrey asymptotics at infinity in this sector, resp. 1-Gevrey
asymptotics germs at infinity over I.

On denotes by T1 : A 1(
•

∞)→C[[z−1]]1, resp. T1 : A 1(I)→C[[z−1]]1, the Taylor

map restricted A 1(
•

∞), resp. A 1(I), called the 1-Gevrey Taylor map.

The 1-Gevrey Taylor map T1 is morphism of differential algebras. This map is onto
when |I| ≤ π (Borel-Ritt theorem). This map is injective when |I|> π (Watson lemma).

3. A <0(
•

∞), resp. A <0(I), is the space of flat functions on
•

∞, resp. flat germs at
infinity over I.

A <0(
•

∞) is thus the kernel of the Taylor map T : A (
•

∞)→ C[[z−1]]

4. A ≤−1(
•

∞), resp. A ≤−1(I), is the space of 1-exponentially flat functions on
•

∞,
resp. 1-exponentially flat germs at infinity over I.

A ≤−1(
•

∞) is the kernel of the 1-Gevrey Taylor map T1 : A 1(
•

∞)→ C[[z−1]]1.

5. A is the sheaf over S1 of asymptotic functions at infinity associated with the
presheaf A . We denote by A1 the sheaf over S1 of 1-Gevrey asymptotic functions
at infinity associated with the presheaf A 1. We denote by A <0 the sheaf over
S1 of flat germs at infinity associated with the presheaf A <0. Finally A ≤−1

stands for the sheaf over S1 of 1-Gevrey flat germs at infinity associated with the
presheaf A ≤−1.
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Theorem 3.4 (Borel-Ritt). The quotient sheaf A /A <0, resp. A1/A
≤−1, is iso-

morphic via the Taylor map T , resp. the 1-Gevrey Taylor map T1, to the constant
sheaf, C[[z−1]] resp. C[[z−1]]1

We now go back to proposition 3.14. On the one hand, The domain
•
D(I0,τ)

is a sectorial neighbourhood of ∞ with aperture

(

I 0 =]− 3
2

π,+
1
2

π[. On the other

hand, while
•
D(I1,τ) = e−iπ •D(I0,τ) is a sectorial neighbourhood of ∞ with aper-

ture

(

I 1 =]− 5
2

π,−1
2

π[. These two open arcs provide a good covering {

(

I 0,

(

I 1} of

the circle of directions S1. Let J0 =]− 1
2

π,
1
2

π[ and J1 =]− 3
2

π,−1
2

π[ be the two
intersection arcs. Both wtri,0 and wtri,1 can be considered as defining sections of A1,
namely wtri,0 ∈ Γ (

(

I 0,A1) and wtri,1 ∈ Γ (

(

I 1,A1), and are asymptotic to the same
1-Gevrey formal series w̃. The pair (wtri,0,wtri,1) defines a 0-cochain in the sense
of Čech cohomology, and the 1-coboundary (wtri,0−wtri,1,wtri,1−wtri,0) belongs to
Γ (J0,A

≤−1)×Γ (J1,A
≤−1).

3.4.2.3 Miscellaneous properties

We discuss various properties for the Borel-Laplace sums wtri, j.

For any j ∈ Z and I j = I0 + jπ =]0,π|+ jπ , one can of course consider the
Borel-Laplace sum wtri, j = S I j w̃, which defines a holomorphic function on the

domain
•
D(I j,τ), a sectorial neighbourhood of ∞ with aperture

(

I j =

(

I 0− jπ ,

(

I j =]− 3
2

π,+
1
2

π[− jπ . Morever, for every j ∈ Z,

wtri, j+2(z) = wtri, j(z) for z ∈
•
D(I j,τ) (3.32)

because w̃ ∈ C[[z−1]]1.
We mentioned in proposition 3.1 that the formal series w̃(z) is even. One deduces

that for any θ ∈]0,π[, for every z ∈
•

Π
π−θ
τ

S π−θ w̃(z) = S −θ w̃(−z).

Therefore, for every j ∈ Z,

for every z ∈
•
D(I j,τ), wtri, j(z) = wtri, j+1(−z). (3.33)

We know by proposition 3.1 that w̃(z) belongs to R[[z−1]]. This has the following

consequence : for any θ ∈]0,π[, for z ∈
•

Π
θ
τ , S θ w̃(z) = S −θ w̃(z) (where a

stands for the complex conjugate of a ∈ C). In other words, for any j ∈ Z, the
two functions wtri, j and wtri, j+1 are complex conjugate,

for every z ∈
•
D(I j,τ), wtri, j(z) = wtri, j+1(z). (3.34)

However, neither wtri,0 nor wtri,1 are real analytic functions, since this would
mean that the 1-coboundary wtri,0−wtri,1 is zero which is not as we shall see
later on.
The properties (3.33) and (3.34) have the following consequences: for every
j ∈ Z, wtri, j is “ PT -symmetric” [10, 11, 13], in the sense that for every
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z ∈
•
D(I j,τ),

wtri, j(z) = wtri, j(−z). (3.35)

In particular, for r > 0 large enough,

wtri,0(re−iπ/2) ∈ R, w′tri,0(re−iπ/2) ∈ iR. (3.36)

3.4.2.4 Asymptotics and approximations

By Stirling formula one has N!∼
√

2πNN+ 1
2 e−N for large N. Since for a given z 6= 0

the function N 7→ NNe−N

(r|z|)N reaches its minimal value at n = r|z|, it turns out from

formula (3.30) that one can estimate the value of wtri,0 or wtri,1 from the truncated

series expansion
N

∑
k=0

ak

zk with N =
[
r|z|
]

where
[
.
]

is the entire part. This gives rise

to the summation to the least term.
Along this state of mind, there are many ways of computing Borel-Laplace sums

approximately in practice (see, e.g., [14, 3]). Among them, one may quote the so-
called hyperasymptotic methods [1] which have strong links with resurgence theory.
These methods, originally arising from (and extending to) geometrical considera-
tions on (multiple) singular integrals [23, 9, 8], can be applied to a wide class of
problems stemming from applied mathematics and physics, see [20, 21, 22] and
references therein. Other ways are available, for instance those based on the use of
conformal mappings [2] with realistic upper bounds. It is also theoretically possible
to calculate a 1-sum exactly by means of factorial series expansions [18, 12].

3.4.3 Tritruncated solutions

3.4.3.1 Tritruncated solutions

One can easily translate proposition 3.14 into properties for the first Painlevé equa-
tion (2.1). However, to use the Boutroux’s transformations (2.6), (2.7) properly, it
is worth to work on the Riemann surface of the logarithm and we thus fix some
notations.

Definition 3.18. We denote by C̃ the Riemann surface of the logarithm,

C̃= {z = reiθ | r > 0, θ ∈ R}, π : z ∈ C̃ 7→
•
z = reiθ ∈ C?.

For any z = reiθ ∈ C̃, we refer to θ as to its argument, denoted by θ = argz.
We denote by S̃1 (usually identified with R) the set of directions of half-lines about
0 on C̃. We (still) denote by π : S̃1→ S1 the natural projection which makes S̃1 an
étalé space on S1 (and even a universal covering).

Definition 3.19. Let θ ∈ S̃1 be a direction and τ ∈ R. We set

Π
θ
τ = {z = reiα ∈ C̃ | α ∈

(

θ and π(z) ∈
•

Π
θ
τ }.
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Let I ⊂ S̃1 be an open arc and γ : I → R be a locally bounded function. We set
D(I,γ) =

⋃
θ∈I

Π
θ

γ(θ) ⊂ C̃. One calls D(I,γ) a sectorial neighbourhood of infinity

on C̃.

In order to define the transformations (2.6) and (2.7) safely, we introduce a bi-
holomorphic mapping.

Definition 3.20. The biholomorphic mapping T is defined by:

C̃ T→ C̃, z 7→ x = T (z) =
304/5

24
e−iπ z4/5. (3.37)

For I ⊂ S̃1 an open arc and γ : I → R locally bounded, the domain D(I,γ) is sent
onto T

(
D(I j,τ)

)
⊂ C̃ through the mapping T , and we set

(I,γ) = T
(
D(I,γ)

)
,

•
(I,γ) = π

(
S (I,γ)

)
. (3.38)

We will consider the domains D(I j,τ), j ∈ Z, for I j = I0 + jπ =]0,π|+ jπ and

τ(θ) =
4.22
|sin(θ)|

. Notice that D(I j+1,τ) = e−iπD(I j,τ) for any j ∈ Z.

The domain (I j,τ) (see Fig. 3.3 and Fig. 3.4) is a sectorial neighbourhood of in-

finity of aperture K j =]− 11
5

π,−3
5

π[−4
5

jπ and we may notice that, for any j ∈ Z,

(I j+1,τ) = e−4iπ/5S (I j,τ). In particular,
•
(I j+5,τ) =

•
(I j,τ).

We now think of wtri, j = S I j w̃ as a holomorphic function on D(I j,τ). By (3.33)
and (3.35), these functions satisfy some relationships: for any j ∈ Z, for every
z ∈D(I j,τ),

wtri, j(z) = wtri, j+1(ze−iπ), (3.39)

wtri, j(z) = wtri, j(ze−(2 j+1)iπ),

with the convention z = re−iα ∈ C̃ for z = reiα ∈ C̃.
This gives sense without ambiguity to (3.4), (2.6) and (2.7), with the transform

Fig. 3.3 The shaded domain
is the projection of (I0,τ),
image by the transforma-
tion (3.37), of the domain
D(I0,τ) drawn on Fig. 3.2 for

τ(θ) =
4.22
|sin(θ)|

. The dash

lines recall the sectors (2.9).
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z ∈D(I j,τ)↔ x ∈ (I j,τ) (3.40)

wtri, j(z)↔ utri, j(x) =
eiπ/2
√

6
x1/2

(
1− 4

25
(
T −1(x)

)2 +
wtri, j

(
T −1(x)

)(
T −1(x)

)2

)
.

The functions utri, j are solutions of the first Painlevé equation (2.1) and by (3.39) and
(3.40), they satisfy the following relationships: for any j ∈ Z, for every x ∈ (I j,τ),

utri, j(x) = e2iπ/5utri, j+1(xe−4iπ/5), (3.41)

utri, j(x) = e
2
5 (2 j+1)iπ utri, j(xe−

2
5 (4 j+7)iπ),

We recover here the symmetries discussed in Sect. 2.5.

By projection, utri, j becomes a function holomorphic on the domain
•
(I j,τ). This

provides five distinct functions utri, j(x), j = 0, · · · ,4, the so-called tri-truncated so-
lutions.
We now use notions developed in [16] to which the reader is referred. Since wtri, j

is a section on

(

I j of A1, we deduce that the tritruncated solution utri, j(x) belongs
to the space of holomorphic functions with Gevrey asymptotic expansion of order

4/5 at infinity in
•
(I j,τ). One can thus recover utri, j(x) by its asymptotics through

5/4-summability.
It is also worth mentioning that utri,2(x) is a real analytic function, as a consequence
of property (3.41).

Proposition 3.15. Let be
•
(I0,τ) = π

(
T
(
D(I0,τ)

))
with τ(θ) =

4.22
|sin(θ)|

and,

for j = 0, · · · ,4,
•
(I j,τ) = ω

2
j

•
(I0,τ), ω j = e−

2iπ
5 j. The first Painlevé equation

(2.1) has 5 tri-truncated solutions utri, j(x), j = 0, · · ·4. The tri-truncated solution

utri, j(x) is holomorphic in
•
(I j,τ), a sectorial neighbourhood of infinity of aper-

ture K j =]− 11
5 π,− 3

5 π[− 4
5 jπ , and has in

•
(I j,τ) a Gevrey asymptotic expansion

of order 4/5 which determined utri, j(x) uniquely. Moreover, for every x ∈
•
(I j,τ),

utri, j(x) = ω jutri,0
(
ω
−2
j x
)
, ω j = e−

2iπ
5 j, j = 0, · · · ,4, and utri,2 is a real analytic

function.

Remark 3.4. It is shown in exercise 3.3 that for any j = 0, · · · ,4, the tri-truncated so-

lution utri, j can be analytically continued to the domain
•
(I j,τ) with τ(θ) = 1.4

|sin(θ)| .
We will see later on that each tri-truncated solution utri, j can be analytically contin-

ued to a wider domain than
•
(I j,τ).

Exercices

3.1. We consider an ordinary differential equation of the form

P(∂ )w = G(z,w,w′, ...,w(n−1)) (3.42)

P(∂ ) =
n

∑
m=0

αn−m∂
m ∈ C[∂ ], α0 6= 0, αn 6= 0
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where G(z,y) is holomorphic in a neighbourhood of (z,y) = (∞,0) ∈ C×Cn,

n ∈ N?. We furthermore suppose that G(z,0) = O(z−1) and
∂ |l|G(z,0)

∂yl = O(z−1)

when |l|= 1.

1. Show that for every M ∈ N and up to making transformations of the type

w =
M

∑
k=1

akz−k + v, (3.43)

one can instead assume that G(z,0) = O(z−M−1).
2. We suppose that for some M ∈ N?, G(z,y) satisfies G(z,0) = O(z−M−1). Show

that, up to making a (so called) shearing transformation of the form

w = z−Mv, (3.44)

one can rather assume that G(z,0) = O(z−1),
∂ |l|G(z,0)

∂yl = O(z−1) when |l|= 1

and
∂ |l|G(z,0)

∂yl = O(z−M(|l|−1)) when |l| ≥ 2.

3. Deduce that, through transformations of the type (3.43) and (3.44), one can bring
equation (3.42) under the prepared form:

P(∂ )w+
1
z

Q(∂ )w = F(z,w,w′, ...,w(n−1)) (3.45)

P(∂ ) =
n

∑
m=0

αn−m∂
m ∈ C[∂ ] , Q(∂ ) =

n−1

∑
m=0

βn−m∂
m ∈ C[∂ ]

where F(z,y) is holomorphic in a neighbourhood of (z,y) = (∞,0) ∈ C×Cn

such that F(z,0) = O(z−2−M0), M0 ∈ N,
∂ |l|F(z,0)

∂yl = O(z−2) when |l| = 1 and

∂ |l|F(z,0)
∂yl = O(z−2−M|l|), M|l| ∈ N, when |l| ≥ 2.

4. Show that the shearing transform w = z−Mv, M ∈N?, brings equation (3.45) into
an equation of the form P(∂ )v+ 1

z (Q(∂ )−MP′(∂ ))v = g(z,v,v′, · · · ,v(n−1)).

3.2. We consider the ODE (3.10) and its unique solution ŵ ∈ O(
•
R(0)).

1. Show that, for any ρ ∈]0,1[, for any ζ = ξ eiθ ∈
•
R

(0)
ρ , ξ = |ζ |,

ρ|ŵ(ζ )| ≤ 392
625

+7
∫

ξ

0
|ŵ(reiθ )|dr+

1
2

∫
ξ

0
|ŵ∗2(reiθ )|dr.

2. Let be ρ ∈]0,1[. We consider the (unique) entire function ŵ solution of the con-
volution equation ρŵ(ξ ) = 392

625 +7∗ŵ(ξ )+ 1
2 ∗ŵ∗ŵ(ξ ). We denote by w̃(z)

the inverse Borel transform of ŵ.

Show that w̃(z) ∈ O

({
|z|> 203

25ρ

})
(consider the discriminant locus). Show

that for |z|> 203
25ρ

, w̃(z)= 784
625

(
(ρz−7)+

(
(ρz−7)2− 784

625

)1/2
)−1

, w̃(z) = O(z−1)

at infinity, and |w̃(z)| ≤ 784
625

1
|ρz−7| ≤

28
25 .

3. Show that |ŵ(ξ )| ≤ 5684
625ρ

e
203
25ρ
|ξ | for every ξ ∈ C.
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4. Deduce that for every ρ ∈]0,1[ and every ζ ∈
•
R

(0)
ρ , |ŵ(ζ )| ≤ 5684

625ρ
e

203
25ρ
|ζ |.

3.3. We consider the ODE

y′′+
y′

z
− y =

392
625

z−4 +
1
2

y2. (3.46)

deduced from (3.2) by the transformation v(z) = 1− 4
25z2 + y(z) or, from (3.6)

through the transformation y(z) = z−2w(z). In particular there exists a unique for-
mal series ỹ(z) = z−2w̃(z) ∈ C[[z−1]] solution of (3.46). We thus know that the for-

mal Borel transform ŷ belongs to MO(
•
R(0)) and satisfies the convolution equation

associated with (3.46) by formal Borel transformation:

(ζ 2−1)ŷ−1∗ (ζ ŷ) =
392
625

ζ 3

Γ (4)
+

1
2

ŷ∗ ŷ. (3.47)

1. Let f ∈ O0 be a germ such that f (0) = 0. Show that the solutions g ∈ O0 of the
convolution equation (ζ 2−1)g−1∗ (ζ g) = f are given by

g(ζ ) =
C

(1−ζ 2)1/2 −
f (ζ )

1−ζ 2 +
1

(1−ζ 2)1/2

∫
ζ

0

η

(1−η2)3/2 f (η)dη , C ∈ C.

(Hint : set g(ζ ) = G(ζ )
1−ζ 2 , differentiate the convolution equation to obtain a non-

homogeneous linear differential equation of order 1, and solve this equation).

2. Show that ŷ satisfies the convolution equation (3.47) in MO(
•
R(0)) if and only

if ŷ satisfies the following fixed-point problem:

ŷ = P

(
392
625

ζ 3

Γ (4)

)
+

1
2
P
(
ŷ∗ ŷ

)
with

(
Pg

)
(ζ ) =− g(ζ )

1−ζ 2 +
1

(1−ζ 2)1/2

∫
ζ

0

η

(1−η2)3/2 g(η)dη ,

(3.48)

3. Show that for any ρ ∈]0,1[ and any ζ ∈
•
R

(0)
ρ , and

∣∣∣ ζ

(1−ζ 2)3/2

∣∣∣≤ 1
ρ3/2 .

4. Show that for any ρ ∈]0,1[ and any ζ ∈
•
R

(0)
ρ , |ŷ(ζ )| ≤ Ŷ (ξ ) with ξ = |ζ |, where

Ŷ is an entire function which solves the fixed-point problem:

Ŷ = Q

(
392
625

ξ 3

Γ (4)

)
+

1
2
Q
(
Ŷ ∗ Ŷ

)
(3.49)

(
QG

)
(ξ ) =

G(ξ )

ρ
+

1
ρ2

(
1∗G

)
(ξ )

5. For any ρ ∈]0,1[ we denote by Ỹ (z) the inverse Borel transform of Ŷ . Show that
Ỹ (z) satisfies the algebraic equation

ρỸ =

(
392
625

1
z4 +

1
2

Ỹ 2
)(

1+
1

ρz

)
, Ỹ (z) =

392
625

1
ρz4 +O(z−5). (3.50)

6. We set U = D(∞, ρ

1.4 ). Show that the fixed-point problem (3.50) has a unique

solution in Bρ3/2 = {H ∈ O(U), ‖H‖ ≤ ρ3

2 }, for
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Fig. 3.4 The shaded domain
is the projection of 2(I2,τ),
image of the domain D(I2,τ)
by the conformal mapping

(3.37), for τ(θ) =
1.4
|sin(θ)|

.

The dash lines recall the
sectors (2.9).

7. Deduce that the minor ŷ of the formal series ỹ solution of equation (3.46) can be

analytically continued is on
•
R(0) and that, for any ρ ∈]0,1[ and any ζ ∈

•
R

(0)
ρ :

|ŷ(ζ )| ≤ 0.7ρ
2e

1.4
ρ
|ζ |
. (3.51)

8. We set I j = I0 + jπ =]0,π|+ jπ , j ∈ Z. Show that the Borel-Laplace sum

ytri, j = S I j ỹ defines a function holomorphic on
•
D(I j,τ) with τ(θ) = 1.4

|sin(θ)| .
9. Deduce that the tri-truncated solution utri, j, j ∈ Z, is holomorphic on the domain

(I j,τ) = T
(
D(I j,τ)

)
with τ(θ) = 1.4

|sin(θ)| . See Fig. 3.4.

3.4. We consider the domain
•
D(]0,π[,τ) for τ(θ) = λ

sin(θ) , λ > 0. We want to de-

scribe the boundary ∂
•
D(]0,π[,τ) of this domain.

1. show that ∂
•
D(]0,π[,τ) is the envelope of the following family of line curves:

z = x+ iy, xcos(θ)− ysin(θ) = λ

sin(θ) , θ ∈]0,π[.

2. Deduce that ∂
•
D(]0,π[,τ) is the parabolic curve of equation y = x2

4λ
−λ .

References

1. M.V. Berry, C.J. Howls, Hyperasymptotics for integrals with saddles. Proc. Roy. Soc. Lond.
A 434 (1991), 657-675.
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Chapter 4
A step beyond Borel-Laplace summability

Abstract We previously showed that the minor ŵ of the unique formal series so-
lution w̃ of the prepared ODE associated with the first Painlevé equation, defines
a function holomorphic on a cut plane. We further analyze the analytic properties
of ŵ. We show in Sect. 4.5 how ŵ can be analytically continued to a domain of a
Riemann surface, defined in Sect. 4.2, and we draw some consequences. This ques-
tion is related to the problem of mastering the analytic continuations of convolution
products and, as a byproduct, of getting qualitative estimates on any compact set.
This is what we will partly do in Sect. 4.3 and Sect. 4.4, using only elementary
geometrical arguments. We end with some supplements in Sect. 4.6.

4.1 Introduction

We previously analyzed the Borel-Laplace summability of w̃(z) ∈ C[[z−1]], the
unique formal solution of the prepared ODE (3.6) associated with the first Painlevé
equation. This was done by two approaches. In one of them, we defined a sequence
(ĥl)l∈N of Z-resurgent functions (proposition 3.8) and we showed that the minor ŵ
of w̃ can be represented as the sum of the series ∑

l≥0
ĥl which converges to a holo-

morphic function on the cut plane
•
R(0) = C\{±[1,+∞[}. The key issue is:

Question 4.1. Does ŵ belong to the space of Z-resurgent functions or, in other
words, is w̃ a Z-resurgent formal series ?

The answer is “yes” and this will allow an in-depth examination of the (so-called)
non-linear Stokes phenomenon for the first Painlevé equation, in the spirit of the
various examples handled in [10]. However, this question requires further tools and
we postpone the complete answer to the last chapter of this course. One of these
tools consists in sharpening our understanding of Ω -resurgent functions, at least
when Ω = Z. This is our aim in this chapter.

The Ω -resurgent functions have been recalled in definition 3.7. This can be
rephrased as follows for Ω = Z:

the germ ϕ̂ ∈ O0 is a Z-resurgent function if and only if ϕ̂ can be represented
by a function Φ holomorphic on U0 = D(0,r), 0 < r ≤ 1, and for any given
ζ0 ∈U?

0 =U \{0}, this function can be analytically continued along any path γ

of C\Z originating from ζ0.

61
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Notice in this rephrasing that U0 could have been replaced by any connected

and simply connected neighbourdhood of the origin, for instance
•
R(0). (Exer-

cise : why ?)
We would like to characterize Z-resurgent functions by means of Riemann sur-

faces. Let ϕ̂ ∈ O0 be a germ of holomorphic functions at 0 and (O,q) be the
étalé space associated with the sheaf O (cf. remark 1.1). We denote by R(ϕ̂) the
connected component of O containing ϕ̂ . Endowed with the restricted projection
q′ = q|R(ϕ̂), R(ϕ̂) is the Riemann surface of ϕ̂ .

We recall that a Riemann surface is a connected one-dimensional complex manifold [10, 7,
3]. Notice that R(ϕ̂) is not necessarily simply connected. (Exercise : why ?)

We now assume that ϕ̂ is a Z-resurgent, determined by a function Φ holomorphic
on U0 ⊂ C, a connected and simply connected neighbourdhood of the origin. Let us
draw some conclusions about R(ϕ̂) from this hypothesis.
In the first place by the very construction of R(ϕ̂), one can find a neighbourhood
U0 ⊂R(ϕ̂) of ϕ̂ such that q′(U0) =U and the mapping q′|U0 : U0→U0 is a home-
omorphism. In particular, U0 is connected and simply connected.
In addition, let be ζ0 ∈U and denote by ϕ̂0 = q′|−1

U0
(ζ0) ∈U0 the germ of holomor-

phic functions at ζ0 determined by Φ . Since ϕ̂ is Z-resurgent, ϕ̂0 can be analytically
continued along any path γ of C\Z originating from ζ0. In other words, any such
path γ can be lifted to R(ϕ̂) from ϕ̂0 with respect to q′, and this lifting is unique by
uniqueness of lifting [7]. We denote by Γ this lifting, γ = q′ ◦Γ . Now assume that
γ is a loop homotopic in C\Z to a loop γ ′ in U?

0 . Then contγ ϕ̂0 = ϕ̂0 because contγ
only depends on the homotopy class of γ in C\Z, meanwhile ϕ̂0 is represented by
Φ ∈ O(U0) on U0. In regard, lifting the homotopy, Γ is homotopic to a loop in U0,
thus null-homotopic since U0 is simply connected.

This being said, we raise the following question:

Question 4.2. Can we determine a simply connected Riemann surface RZ on which
any Z-resurgent function can be analytically continued ?

We answer to this question in Sect. 4.2, through an explicit construction of RZ.
We also describe there various sheets of this Riemann surface which will be usefull
for later purposes.

Next we turn to the convolution product. We already know by theorem 3.2 that the
space of Z-resurgent functions is stable under convolution product. In other words,
if the germs ϕ̂, ψ̂ ∈ O0 can be analytically continued to the Riemann surface RZ,
then it is the same for their convolution product ϕ̂ ∗ ψ̂ . But what about the question
of upper bounds ? In the previous chapter, the answer was essentially the matter of
lemma 3.3 and the new issue is:

Question 4.3. Can we formulate an analogue of lemma 3.3 for holomorphic func-
tions defined on the Riemann surface RZ ?

The main result of this chapter, namely theorem 4.1 and its corollaries detailed
in Sect. 4.4, gives a partial to this question. Its proof relies on the use of shortest
symmetrically contractile paths which we describe in Sect. 4.3. We then apply our
results to the first Painlevé equation in Sect. 4.5, to get theorem 4.2. A theoretical
supplement ends this chapter.
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4.2 Resurgent functions and Riemann surface

This section is devoted to defining the Riemann surface R = RZ and some of its
sheets. We first recall usual notations.

4.2.1 Notations

In this course, a path (or a parametrized curve) λ in a topological space X is any
continuous function λ : [a,a+ l]→ X , where [a,a+ l] ⊂ R is a (compact) interval
possibly reduced to {a}.
One denotes by λ−1 the inverse path, that is λ−1 : t ∈ [a,a+ l] 7→ λ (2a+ l− t)
We often work with standard paths, that is paths defined on [0,1]. The path
λ : t ∈ [0,1] 7→ λ (a+ tl) is the standardized path of λ .
For two paths λ1 : [a,a+ l]→ X , λ2 : [b,b+ k]→ X so that λ1(a+ l) = λ2(b), one
denotes by λ1λ2 their product (or also concatenation),

λ1λ2 : t ∈ [a,a+ l + k] 7→
{

λ1(t), t ∈ [a,a+ l]
λ2(t−a− l +b), t ∈ [a+ l,a+ l + k]

We denote by ∼X the equivalence relation of homotopy of paths with fixed extrem-
ities in X : λ1 ∼X λ2 if the two paths λ1, λ2 in X have same extremities and there
exists a continuous map H : [0,1]× [0,1]→ X that realizes a homotopy between the
standardized paths λ 1 and λ 2.
When X has a (finite R-dimensional and C ∞) differential structure, one can de-
fine smooth paths. We recall that any path can be uniformaly approached by C ∞-
paths. Typically in this course, X = C with its 2-dimensional real differential struc-
ture. For a piecewise C 1-path λ : I→ C, its length is denoted by length(λ ) where

length(λ ) =
n

∑
k=1

∫ tk

tk−1

|λ ′(t)|dt, for any partition 0 = t0 < t1 < · · · < tn = 1 of [0,1]

for which λ has a continuous derivative on each interval [tk−1, tk].

4.2.2 The Riemann surface of Z-resurgent functions

4.2.2.1 The space RZ,ζ0

Definition 4.1. Let U0 be a connected and simply connected neighbourdhood of the
origin in C and ζ0 ∈U?

0 =U0 \{0}. We denote by Aζ0
(resp. Bζ0

) the set of paths
in U0 (resp. C\Z) originating from ζ0, endowed with the equivalence relation ∼U0
(resp. ∼C\Z) of homotopy of paths with fixed extremities.

We set Rζ0
= Aζ0

∪Bζ0
and denote by

ζ0∼ the relation on Rζ0
defined as follows.

For any two γ1,γ2 ∈Rζ0
, γ1

ζ0∼ γ2 when one of the following conditions is satisfied:

• either γ1 ∼U0 γ2 or γ1 ∼C\Z γ2

• or else there exists γ3 ∈ Aζ0
∩Bζ0

such that
{

γ1 ∼U0 γ3
γ2 ∼C\Z γ3

or
{

γ1 ∼C\Z γ3
γ2 ∼U0 γ3

.

Exercise 4.1. Show that
ζ0∼ is an equivalence relation on Rζ0

.
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Definition 4.2. Let γ be an element of Rζ0
. We denote by clζ0

(γ) its equivalence

class for the relation
ζ0∼. We set

•
R = C\Z? and we define:

RZ,ζ0
= {clζ0

(γ) | γ ∈Rζ0
} and pζ0

: clζ0
(γ) 7→ γ(1) ∈

•
R. (4.1)

Notice that p−1
ζ0
(0) is reduced to a single distinguished point, the equivalence

class of any γ ∈ Aζ0
ending at the origin, because U0 is simply connected.

Definition 4.3. One denotes by 0 ∈RZ,ζ0
the unique pre-image of 0 by pζ0

. Let be

ζ ∈
•
R, one denotes by ζ ∈RZ,ζ0

one of its pre-image if exists. For any ζ ∈RZ,ζ0
,

one denotes by
•
ζ = pζ0

(ζ ) its projection by pζ0
.

4.2.2.2 The Riemann surface RZ,ζ0

The topological space RZ,ζ0
We endow RZ,ζ0

with a topology, a basis B = {U }
of open sets being given as follows. Let ζ be an element of RZ,ζ0

and set ζ = pζ0
(ζ ).

• Assume that ζ = clζ0
(γ) with γ ∈Aζ0

(thus ζ ∈U0). Let U ⊂U0 be any connected
and simply connected open neighbourhood of ζ . To (U,ζ ) we associate the set
U ⊂RZ,ζ0

made of all ξ = clζ0
(γ1γ2) where γ1 satisfies γ1 ∼U0 γ while γ2 is any

path in U originating from ζ .
• Assume that ζ = clζ0

(γ) with γ ∈ Bζ0
(in particular ζ 6= 0). Let U ⊂ C \Z

be any connected and simply connected open neighbourhood of ζ . To (U,ζ )
we associate the set U ⊂ RZ,ζ0

made of all ξ = clζ0
(γ1γ2) where γ1 satisfies

γ1 ∼C\Z γ and γ2 is any path in U originating from ζ .

Exercise 4.2. Show the following properties (hint : see the classical construction of
the universal covering of C\Z [7, 3] and adapt the arguments):

1. B = {U } provides a Hausdorff topology on RZ,ζ0
;

2. the projection pζ0
is a continuous mapping and even, a local homeomorphism :

for every U ∈B, the mapping pζ0
|U →U = pζ0

(U ) is a homeomorphism.
3. RZ,ζ0

is arc-connected and simply connected.

The Riemann surface RZ,ζ0
The following proposition is a direct consequence of

the properties detailed in exercise 4.2.

Proposition 4.1. The space RZ,ζ0
is a topologically separated space, arc-connected

and simply connected The projection pζ0
makes RZ,ζ0

an étalé space on
•
R. By

pulling back by pζ0
the complex structure of C, the space RZ,ζ0

becomes a Riemann
surface with a uniquely defined distinguished point 0 = p−1

ζ0
(0).

Notice that pζ0
is not a covering map since the curve lifting property [7, 3] is not

satisfied. For instance, as a rule, a path starting from and ending at 0 cannot be lifted
from 0 on RZ,ζ0

with respect to pζ0
.

We precise the “pull back” of the complex structure. If U1,U2, U1∩U2 6= /0
are two open sets of RZ,ζ0

such that the mappings pζ0
|U1 : U1 → pζ0

(U1) and
pζ0
|U2 : U2→ pζ0

(U2) are two homeomorphisms, then the chart transition
pζ0
|U2 ◦pζ0

|−1
U1

: pζ0
(U1∩U2)→ pζ0

(U1∩U2) is nothing but the identity map, thus
is biholomorphic. This makes RZ,ζ0

a Riemann surface.
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Exercise 4.3. Let U0,ζ0 be as in definition 4.1. Let U1 ⊂ C\Z be a connected and
simply connected open neighbourhood of ζ0 such that U0 ∩U1 is connected. We
denote by U0 ⊂ RZ,ζ0

the uniquely defined open set such that pζ0
|U0 : U0 → U0

is a homeomorphism and we set ζ
0
= pζ0

|−1
U0

(ζ0). We denote by U1 ⊂ RZ,ζ0
the

uniquely defined neighbourdhood of ζ
0

such that pζ0
|U1 : U1→U1 is a homeomor-

phism.

1. Show that U =U0∪U1 is simply connected.
2. We set U = U0∪U1. Show that pζ0

|U is a homeomorphism between U and U .

4.2.2.3 The Riemann surface RZ

Up to now, the Riemann surface (RZ,ζ0
,pζ0

) depends on the given of U0, a con-
nected and simply connected neighbourdhood of the origin, and of ζ0 ∈U0.

Lemma 4.1. Let U0 (resp. U1) be a connected and simply connected neighbourd-
hood of the origin in C and ζ0 ∈U?

0 (resp. ζ1 ∈U?
1 ). Then there exists a fiber preserv-

ing homeomorphism τ : RZ,ζ0
→RZ,ζ1

between the Riemann surfaces (RZ,ζ0
,pζ0

,0)
and (RZ,ζ1

,pζ1
,0).

Proof. Left as an exercise to the reader.

Definition 4.4. The class of isomorphisms of the Riemann surfaces (RZ,ζ0
,pζ0

,0)
is denoted by (RZ,p,0). In this course we often use abridged notation R.

Proposition 4.2. Let ϕ̂0 ∈ O0 be a germ of holomorphic functions at the origin and
let (R(ϕ̂0),q, ϕ̂0) be its Riemann surface. Then ϕ̂0 is a Z-resurgent function if and
only if (R,p,0) is contained in (R(ϕ̂0),q, ϕ̂0), that is there exists a fiber preserving
continuous map τ : R→R(ϕ̂0), q◦ τ = p and τ(0) = ϕ̂0.

Proof. Assume that ϕ̂0 is a Z-resurgent function. We set U0 = D(0,1) and we pick
a point ζ0 ∈U?

0 . On the one hand, there is a uniquely determined domain U0 ⊂R

homeomorphic to U0 by p|U0 and we set ζ
0
= p|−1

U0
(ζ0). On the other hand, there

is a uniquely determined domain U ′
0 ⊂R(ϕ̂0) homeomorphic to U0 by q|U ′

0
and

we set ζ
′
0
= q|−1

U ′
0
(ζ0). We get this way a natural fiber preserving homeomorphism

τ|U0 : ζ ∈U0 7→ ζ
′ ∈U ′

0 . We now extend τ|U0 as follows: pick any path γ in C\Z,
originating from ζ0, let Γ be its lifting from ζ

0
on R with respect to p and set

ζ = Γ (1) ∈R. The path γ can be lifted as well on R(ϕ̂0) with respect to q from ζ
′
0

into a path Γ ′, because ϕ̂0 is Z-resurgent. We set Γ
′(1) = ζ ′. The extended mapping

τ : ζ ∈ R 7→ R(ϕ̂0) thus (well)-defined is injective by uniqueness of lifting [7],
continuous because we work with étalé spaces, and preserves fibers.
The converse of the proposition is left to the reader as an exercise. ut

In other words, ϕ̂0 ∈ O0 is a Z-resurgent function if and only ϕ̂0 can be analyt-
ically continued to the Riemann surface RZ. This means that one can identify the
space R̂ with the space O(R) of functions holomorphic on the Riemann surface R.

Definition 4.5. The Riemann surface (RZ,p,0) is called the Riemann surface of
Z-resurgent functions.
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4.2.3 Riemann surface RZ and sheets

We introduce various sheets and domains on RZ. At first sight artificially compli-
cated, these constructions will be needed to state one of main results of this chapter,
namely theorem 4.1 and its consequences.

4.2.3.1 Principal sheet

By the very construction of the Riemann surface R, there exists a unique domain
R(0) of R so that p|R(0) realizes a homeomorphism between R(0) and the simply

connected domain
•
R(0). The domain R(0) is made of endpoints ζ of paths deduced

from any segment [0,ζ ]⊂
•
R(0), by lifting from 0 with respect to p.

Definition 4.6. One refers to R(0) as to the principal sheet of the pointed Riemann
surface (R,0). For every ρ ∈]0,1[, one denotes by R

(0)
ρ the unique open subset of

R(0) such that p(R(0)
ρ ) =

•
R

(0)
ρ . (See Fig. 4.1).

4.2.3.2 Other sheets

Definition 4.7. Let be m ∈ N?, ε = (ε1, · · · ,εm−1) ∈ {+,−}m−1 a (m− 1)-tuple of
signs and n = (n1, · · · ,nm−1) ∈ (N?)m−1 a (m− 1)-tuple of positive integers. Let
θ1 ∈ {0,π} ⊂ S1 be a direction. Let γ be a path in C originating from 0.
When m = 1, one says that the path γ is of type γ

θ1
()

when γ closely follows the

segment eiθ1 ]0,1[=]0,ω1[ toward ω1 = eiθ1 .
Otherwise, for m≥ 2, on says that the γ is of type type γ

θ1
εn if γ connects the segment

]0,ω1[ to the segment ]ωm−1,ωm[, ωm−ωm−1 = eiθm , through the following steps:

• γ closely follows the segment ]0,ω1[ toward the direction θ1, makes n1 half-turns
around the point ω1, anti clockwise when ε1 =+, clockwise when ε1 =−1, and
finally closely follows the segment ]ω1,ω2[, ω2−ω1 = eiθ2 , toward the direction
θ2 = θ1 + ε1(n1−1)π;

• then, successively for k = 2, · · · ,m−1, γ makes nk half-turns around the point
ωk, anti clockwise when εk = +, clockwise when εk = −1, and eventually
closely follows the segment ]ωk,ωk+1[, ωk+1−ωk = eiθk+1 , toward the direction
θk+1 = θk + εk(nk−1)π .

−1−2−3 10 2

0−1−2
−3

1 2

Fig. 4.1 Above, the domain
•
R(0). Below, the domain

•
R

(0)
ρ .
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Fig. 4.2 A path of type γθ
ε for

ε = (+,−,+) and θ = 0.
0 1 2 3 4

Fig. 4.3 A path of type γθ
εn

for θ = 0, ε = (−,+,+,+,−)
and n = (1,2,1,1,1). 0 1 2−1−2

When n = (1, · · · ,1) ∈ {1}m−1, we simply say that γ is of type γ
θ1
ε . (See Fig. 4.2

and Fig. 4.3).

For instance, if γ is of type γθ
ε , then someone standing at 0 ∈C and looking in the direction

of the half-line ]0,eiθ ∞[ will see the path γ avoiding the point ωn = neiθ ∈ C? by swerving
in the direction of his right hand when εn =+, of his left hand when εn =−.

Definition 4.8. Let be m ∈ N?, ε ∈ {+,−}m, n ∈ (N?)m and θ ∈ {0,π}. We denote
by Rεn,θ ⊂R the domain made of endpoints ζ = Γ (1) where Γ is the lift from 0
with respect to p of any path γ of the form γ = γ1γ2 with the conditions : γ1 is a path

of type γθ
εn ending at

•
ξ∈]p,(p+1)[=]ωm,ωm+1[, γ2 is a path starting from

•
ξ , and

contained in the simply connected domain C\{]−∞, p]∪ [p+1,+∞[}, star-shaped

from
•
ξ . When n = (1, · · · ,1) ∈ {1}m, we simply write Rε,θ = Rεn,θ .

The collection of sheets {R(0),Rεn,θ} provides an open covering of R, with the
following property: the restriction p|Rεn ,θ is a homeomorphism between Rεn,θ and
the simply connected domain C\{]−∞, p]∪ [p+1,+∞[} where
]p,(p+1)[=]ωm,ωm+1[, with ωm,ωm+1 as given by definition 4.7.

Remark that for every θ ∈ {0,π}, for every m ∈ N? and for every ε either in
{+}m or in {−}m, R(0) and Rε,θ have a non-empty intersection (a half-plane on
projection). This justifies the following definitions.

Definition 4.9. Let be m ∈ N?. We set (+)m−1 = (+, · · · ,+) ∈ {+}m−1 and
(−)m−1 = (−, · · · ,−) ∈ {−}m−1. We denote by (±)m−1 any (m− 1)-tuple of the
form (±, · · · ,±) ∈ {+,−}m−1. Also, (+)0 = (−)0 = (±)0 = () is the 0-tuple.

Thus the set of all (±)m is made of 2m elements.

Definition 4.10. The domain Rε,θ is called a R(0)-nearby sheet if
ε ∈

⋃
m∈N?

{(+)m,(−)m}. One denotes by R(1) ⊂R the union of the principal sheet

and of all nearby sheets: R(1) = R(0)
⋃

θ∈{0,π},m∈N?

R(+)m,θ ∪R(−)m,θ .

More generally, for any k ∈ N?, one defines:

R(k+1) = R(k)
⋃

θ∈{0,π},m∈N?

n∈(N?)k

R((±)n
k ,(+)m−1),θ ∪R((±)n

k ,(−)m−1),θ .

Remark 4.1. Notice that p(R(+)m,θ ) = p(R(−)m,θ ) = C\ eiθ{]−∞,m]∪ [m+1,+∞[}
and

⋃
k

R(k) = R.

For every integer k ∈ N, the domain R(k) inherits from R the structure of complex
manifold, thus is is a Riemann surface.



68 4 A step beyond Borel-Laplace summability

0 1 2−1−2
−3

Fig. 4.4 The domain
•

Rρ when
1
9
< ρ ≤ 1

7
(the scale is not correct).

4.2.4 R
(0)
ρ -nearby domains

Our aim is to introduce various of the Riemann surface R which will be convenient
for later purposes.

We start with the following remark: for ρ ∈]0,1[ and m ∈ N?, the closed discs
D(m,mρ) and D(m+ 1,(m+ 1)ρ) are disjoint as soon as m < ρ−1−1

2 . Thus, now

assuming that ρ ∈]0, 1
5 [ and introducing the integer part M (ρ)+1 = bρ−1−1

2 c ≥ 2
(b.c] is the floor function), one observes that the discs D(m, |m|ρ) do not overlap
when |m| ≤M (ρ)+1.

Definition 4.11. Let be ρ ∈]0, 1
5 [. We denote by M (ρ)∈N? the positive integer de-

fined by M (ρ) = bρ−1−1
2 c−1. For any integer m ∈ Z? such that |m| ≤M (ρ)+1,

we denote by Dm = D(m, |m|ρ) the closed disc centered at m with radius |m|ρ , and
D0 = {0}. For any θ ∈ {0,π}, we denote by Dθ

ρ ⊂ C the closed subset defined by

Dθ
ρ =

{
tζ | t ∈ [1,+∞[, ζ ∈ Deiθ (M+1)

} ⋃
0≤m≤M (ρ)

Deiθ m.

We set
•

Pθ
ρ = C \ Dθ

ρ . We denote by
•
Rρ the domain defined by

•
Rρ =

( •
P0

ρ ∩
•

Pπ
ρ

)
∪{0} and by

•
Rρ its closure. (See Fig. 4.4).

Notice that
•
R =

⋃
0<ρ<1/5

•
Rρ . The domains

•
Pθ

ρ satisfy the following property,

the proof of which being left as an exercise :

Lemma 4.2. Let be ζ be an element of
•

Pθ
ρ . For every n ∈ [1,M (ρ)], the closed set

ζ −Deiθ n = {ζ −ξ | ξ ∈ Deiθ n} is a subset of
•

Pθ
ρ .

Definition 4.12. Under the hypotheses of definition 4.11, for any integer m∈ [0,M (ρ)]
and θ ∈ {0,π}, we define:

E m,θ
ρ =

⋃
(ζ ,ξ )∈Deiθ m×Deiθ (m+1)

{
ξ + t(ξ −ζ ),ζ + t(ζ −ξ ) | t ∈ [0,+∞[

}

and
•
Q

m,θ
ρ =C\E θ

ρ,m. for any integer m>M (ρ), we set
•
Q

m,θ
ρ = /0 . For any positive

integer m≥ 1 and ε =±, we set
•
Q

(ε)m,θ
ρ =

•
Q

m,θ
ρ ∩{ζ | εeiθ (ℑζ )≤ 0}. See Fig. 4.5.

The domains
•
Q

m,θ
ρ have been defined so as to enjoy the following property :

Lemma 4.3. Let be ζ ∈
•
Q

m,θ
ρ for some integer m ∈ [1,M (ρ)] and some θ ∈ {0,π}.

Then, for every integer n ∈ [1,m], ζ −Deiθ n is a subset of
•
Q

m−n,θ
ρ .
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−3
2−2 −1 0 1

Fig. 4.5 The domain
•
Q

2,π
ρ . The set

•
Q

(−)2,π
ρ lies below the real axis,

•
Q

(+)2,π
ρ lies above the real

axis.

Proof. We only consider the case θ = 0 and we suppose ζ ∈
•
Q

m,0
ρ . Le be n∈ [1,m].

Assume the existence of ζn ∈Dn such that ζ −ζn /∈
•
Q

m−n,0
ρ , thus ζ −ζn ∈ E m−n,0

ρ

(see definition 4.12). Therefore, there exist ζm−n ∈ Dm−n, ζm−n+1 ∈ Dm−n+1 and
t ∈ [0,+∞[ such that

ζ −ζn = ζm−n + t(ζm−n−ζm−n+1) or ζ −ζn = ζm−n+1 + t(ζm−n+1−ζm−n).

We look only at the first case, which we write as follows:

ζ = (ζm−n +ζn)+ t
(
(ζm−n +ζn)− (ζm−n+1 +ζn)

)
.

We observe that ζm−n + ζn ∈ Dm while ζm−n+1 + ζn ∈ Dm+1. Therefore ζ ∈ E m,0
ρ

and this contradicts the assumption ζ ∈
•
Q

m,0
ρ . ut

Definition 4.13. Under the hypotheses of definition 4.11, for any integer m ∈ [1,M (ρ)]

and any θ ∈ {0,π}, we denote by Dm,θ
ρ ⊂ C the closed subset defined by

Dm,θ
ρ =

{
tζ | t ∈]−∞,1], ζ ∈ Deiθ m

}
∪
{

tζ | t ∈ [1,+∞[, ζ ∈ Deiθ (m+1)

}
.

We set
•

P
m,θ
ρ = C \Dm,θ

ρ and
•

P
0,θ
ρ =

•
Q

0,0
ρ . For any integer m > M (ρ), we set

•
P

m,θ
ρ = /0.

For ε =±we denote by
•

P
(ε)m,θ
ρ the domain

•
P

(ε)m,θ
ρ =

•
P

m,θ
ρ ∩{ζ | εeiθ (ℑζ )≤ 0}.

(See Fig. 4.6).

Definition 4.14. Under the hypotheses of definition 4.11, for any θ ∈ {0,π}, ε =±
and m ∈ N, we denote by

•
R

(ε)m,θ
ρ the domain

•
R

(ε)m,θ
ρ =

•
P

(ε)m,θ
ρ ∪

•
Q

(−ε)m,θ
ρ (see

Fig. 4.7), and we set:

•
Rm,θ =

⋃
0<ρ≤1/5

•
R

(+)m,θ
ρ =

⋃
0<ρ≤1/5

•
R

(−)m,θ
ρ = C\ eiθ{]−∞,m]∪ [m+1,+∞[

}
.

−3
2−2 −1 0 1

Fig. 4.6 The domain
•

P
2,π
ρ . The set

•
P

(−)2,π
ρ lies below the real axis, the set

•
P

(+)2,π
ρ lies above the

real axis.
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λ+

λ−

−1−2−3 10 2

−3
2−1 0 1−2

Fig. 4.7 Figure above, the domain
•
R

(+)2,π
ρ . Figure below, the domain

•
R2,π .

We have already noticed that for θ ∈ {0,π} and m ∈N?, the restriction p|R(+)m,θ

and p|R(−)m,θ respectively, realises a homeomorphism between the nearby sheet
R(+)m,θ and R(−)m,θ respectively, and the simply connected domain

p(R(+)m,θ ) = p(R(−)m,θ ) =
•
Rm,θ .

This justifies the following definition.

Definition 4.15. With the above notations, with ε = ± and m ∈ [1,M (ρ)] an inte-

ger, one sets R
(ε)m,θ
ρ = p|−1

R(ε)m,θ

( •
R

(ε)m,θ
ρ

)
. The domain R

(ε)m,θ
ρ is called a R

(0)
ρ -

nearby domains .The connected and simply connected domain R
(1)
ρ ⊂R(1) is de-

fined by R
(1)
ρ = R

(0)
ρ

⋃
1≤m≤M (ρ)

θ∈{0,π},ε=±

R
(ε)m,θ
ρ . We denote by R

(1)
ρ the closure of R

(1)
ρ

in R(1).

Observe that p
(
R

(1)
ρ

)
=
•

Rρ . In the same line, the following lemma is a conse-
quence of lemmas 4.2 and 4.3.

Lemma 4.4. Let be m ∈ [1,M (ρ)], θ ∈ {0,π}, ε = ± and let V be the closure of

R
(ε)m,θ
ρ \R(0)

ρ . For every ζ ∈ V , and every integer n ∈ [1,m],
•
ζ −Deiθ n is a subset

of
•

Rρ and there exists an open set U ⊂R
(ε)m−n,θ
ρ such that U and

•
ζ −Deiθ n are

p-homeomorphic.

4.2.5 Geodesics

The closed space
•

Rρ⊂
•
R (definition 4.11) can be thought of as a complete real

2-dimensional Riemannian manifold with smooth (C 1) boundary embedded in the
2-dimensional euclidean space. The following lemma thus makes sense.

Lemma 4.5. Let X ⊆
•

Rρ be any closed space with smooth(C 1) boundary. For every
two points ζ1,ζ2 ∈ X, there exists a geodesic in every homotopy class of curves from
ζ1 to ζ2 in X, and this geodesic may be chosen as a shortest path in the homotopy
class.
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Fig. 4.8 Shortest curve for ζ

in R
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ρ \R(0)
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In this lemma, a geodesic means a locally shortest path for the euclidean metric.
Lemma 4.5 can be seen as a corollary of the Hopf-Rinow theorem [9]. As a mat-
ter of fact, the situation is quite simple here : inside X , a geodesic is nothing but
a straight line, otherwise one just follows the smooth boundary ∂X . (See [1] and
references therein for more general cases.)

The Riemann surface (R,p,0) of Z-resurgent functions can also be thought of
as a real 2-dimensional Riemannian manifold, by pulling-back by p the standard
euclidean metric on the complex plane. It follows from its very construction that
R

(1)
ρ (definition 4.15) meets the requirement:

Lemma 4.6. The closed, connected and simply connected space with smooth C 1-
boundary R

(1)
ρ ⊂R is a complete real 2-dimensional Riemannian manifold.

Pick a point ζ ∈R
(1)
ρ . Up to homotopy, there exists a unique path Λ joining 0 to

ζ in R
(1)
ρ , because R

(1)
ρ is (path)connected and simply connected. Moreover, from

the Hopf-Rinow theorem, Λ can be chosen as a shortest (C 1-)path in this homotopy
class, and is uniquely determined when parametrized by arc-length. To sum up:

Lemma 4.7. For every ζ ∈R
(1)
ρ , there exists a unique path Λ in R

(1)
ρ , originating

from 0 and ending at ζ , such that Λ is a shortest path in its homotopy class and is
parametrized by arc-length.

Remark 4.2. It is easy to construct Λ by hand.

First case: ζ belongs to R
(0)
ρ . Consider the curve λ , with its arc-length parametriza-

tion, starting from 0 which follows the segment [0,
•
ζ ]⊂

•
R

(0)
ρ . The path Λ is obtained

by lifting λ from 0 with respect to p on R
(1)
ρ .

Second case: ζ belongs to R
(ε)m,θ
ρ \R(0)

ρ for some θ ∈ {0,π}, ε =± and some m∈
[1,M (ρ)]. Consider the path λ = γ0δ0δ1 where γ0,δ0,δ1 stands for the following
geodesics with their arc-length parametrizations (see Fig. 4.8) :

• γ0 follows the segment [0,
•
ζ 0]⊂ ∂

( •
P

(ε)m,θ
ρ ∩

•
R

(0)
ρ

)
that circumvents the segment

eiθ [1,m] to the right when ε =+ and to the left when ε =−;

• δ0 is the arc-curve from
•
ζ 0 to

•
ζ 1 that follows in

•
R

(ε)m,θ
ρ the boundary ∂Deiθ m;

• δ1 follows the segment [
•
ζ 1,

•
ζ ] in

•
R

(ε)m,θ
ρ (possibly reduced to the point

•
ζ ).

Once again, one deduces Λ from λ by lifting.

Definition 4.16. Let ζ be an element of ζ ∈R
(1)
ρ . The unique C 1-path Λ in R

(1)
ρ

given by lemma 4.7 is called the shortest path from 0 to ζ .
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4.3 Shortest symmetric (Z,ρ)-homotopy

4.3.1 Symmetric Z-homotopy

The notion of symmetric Ω -homotopy is introduced in [10] and used there for ana-
lyzing the convolution product of resurgent functions, see also [4, 12, 13, 14]. For
the convenience of the reader, we recall it here for Ω = Z.

Definition 4.17. A continuous map H : I× I→ C, I = [0,1], is called a symmetric
Z-homotopy if, for each t ∈ I, the path Ht : s ∈ I 7→ H(s, t) satisfies:

1. Ht(0) = 0 and Ht can be lifted on the Riemann surface RZ with respect to p
from 0;

2. Ht(1)−Ht(s) = H−1
t (s) for every s ∈ I.

The path H0 (resp. H1) is called the initial path of H (resp. final path) and the path
t ∈ I 7→ Ht(1) is called the endpoint path of H.
A path λ in C is called a symmetrically Z-contractile path if its standardized path
λ is the final path of a symmetric Z-homotopy whose initial path follows a segment

[0,ζ ] of
•
R in the forward direction.

Let ζ be any point of the Riemann surface RZ and pick a path joining 0 to
ζ , thus uniquely defined up to homotopy. It is known that one can find a path Λ

in this homotopy class with the further condition : its projection λ = p ◦Λ is a
symmetrically Z-contractile path. This is a key result to analyze the convolution
product, as detailed in [10].

However, there are plenty of paths with the above properties and we raise the
question:

Question 4.4. In the homotopy class of these paths, is it possible to find a shortest
curve ?

This question is meaningless because RZ is not a complete Riemannian mani-
fold, but makes sense on R

(1)
ρ which is our frame in what follows.

4.3.2 Shortest symmetric (Z,ρ)-homotopy

Definition 4.18. Let Λ be a path in R
(1)
ρ originating from 0 and let λ = p ◦Λ

be its projection. The path Λ is said to be symmetric if λ satisfies the condition:
λ (1)−λ (s) = λ

−1(s)for every s ∈ [0,1]. A symmetric path Λ in R
(1)
ρ is said to

be shortest-symmetric when Λ is a shortest (C 1-)path among the symmetric paths
belonging to the same homotopy class in R

(1)
ρ .

For instance, pick a point ζ in R
(0)
ρ and let λ be the smooth path which follows

the segment [0,
•
ζ ]⊂

•
R

(0)
ρ in the forward direction with a constant velocity. The path

Λ in R
(0)
ρ deduced from λ by lifting from 0 with respect to p, is shortest-symmetric.

Proposition 4.3. Let ζ be any given point in R
(1)
ρ . There exists a unique continu-

ous map H : (s, t) ∈ I× I 7→H (s, t) ∈R
(1)
ρ , I = [0,1], which satisfies the follow-

ing conditions:
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1. for each t ∈ I, the path Ht : s ∈ I 7→H (s, t) is shortest symmetric;

2. the projection H0 = p◦H0 of the initial path H0 follows a segment in
•
R

(0)
ρ ;

3. denoting by Γ the endpoint path t ∈ I 7→ Ht(1), the product H0Γ , when
reparametrized by arc-length parametrization, coincides with the shortest path
from 0 to ζ .

Proof. Let ζ be a point in R
(1)
ρ and Λ be the shortest path from 0 to ζ . We denote

by λ = p◦Λ its projection.

First case: Either ζ belongs to R
(0)
ρ . Then λ follows the segment [0,

•
ζ ]⊂

•
R

(0)
ρ . We

set H : (s, t) ∈ I × I 7→ H(s, t) = s
•
ζ∈

•
R

(0)
ρ . For each t ∈ I, the path

Ht : s ∈ I 7→ H(s, t) can be lifted uniquely on R
(0)
ρ from 0 with respect to p into

a path Ht : I→R
(0)
ρ . From the lifting theorem for homotopies [7, 3], the mapping

H : (s, t) ∈ I× I 7→Ht(s) is continuous and matches the other conditions.

second case: Or else ζ belongs to R
(ε)m,θ
ρ \R(0)

ρ for some θ ∈ {0,π}, ε = ± and
some m ∈ [1,M (ρ)]. For simplicity, we suppose θ = 0 and ε = +. The path λ ,
resp. Λ , can be written as a product λ = γ0λ1, resp. Λ =Γ0Λ1, where γ0 = p◦Γ0 and
λ1 = δ0δ1 = p ◦Λ1 are the geodesics described in remark 4.2 with their arc-length
parametrizations.
We set H0 = γ0, resp. H0 = Γ 0 the standardized path deduced from γ0, resp. Γ0,

which follows a segment in
•
R

(0)
ρ , resp. R

(0)
ρ . This path can be lifted from 0 with re-

spect to p into a unique path H0 whose endpoint is denoted by ζ0 = H0(1). By
its very construction, the point ζ0 belongs to V , the closure of R

(+)m,0
ρ \R

(0)
ρ ,

and we can apply lemma 4.4. Therefore H0 can be thought of as a geodesic in

Xζ0
=
•
Rρ \

⋃
1≤n≤m

{
•
ζ 0−Dn} and is a shortest path in its homotopy class, by appli-

cation of lemma 4.5.

According to lemma 4.4 again, the space Xξ =
•

Rρ \
⋃

1≤n≤m

{
•
ξ −Dn} remains in

the field of application of lemma 4.5 for every ξ ∈ V . One gets this way a local
system

(
Xξ

)
ξ∈V

of Riemannian manifolds with smooth boundary.
Let `1 > 0 be the length of Λ1 and T : t ∈ [0,1] 7→ t`1 ∈ [0, `1]. For any t ∈ [0,1], the
point ζt =Λ1 ◦T (t) belongs to V by construction. To the path Λ1 ◦T is associated a
section t ∈ [0,1] 7→ Xζt , thus a map t ∈ [0,1] 7→ [γt ] which allows to follow the con-
tinuous deformation of the homotopy class [γ0] of γ0, the extremities 0 and ζ0 being
kept fixed. In the homotopy class [γt ] we choose, for any t ∈ [0,1], a shortest path γt
in Xζt with its arc-length parametrization. Let Kt = γtλ1|[0,T−1(t)] be the (minimal)

Fig. 4.9 The shortest sym-
metrically contractile path for
ζ in R

(+)3,0
ρ \R(0)

ρ

0

ζ
3D

2D
1D

1D
2D

3D

ζ− ζ− ζ−
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geodesic defined as the product of γt with the restriction of λ1 to [0,T−1(t)]. We
denote by Ht the path deduced from Kt by standardization and we eventually obtain
a continuous mapping H : (s, t) ∈ I× I 7→ H(s, t) = Ht(s), I = [0,1]. See Fig. 4.9.
For any t ∈ [0,1], the path Ht can be lifted to R

(1)
ρ from 0 with respect to p. This

gives a path, denoted by Ht , which is shortest symmetric by construction and the
mapping H : (s, t) ∈ I× I 7→H (s, t) = Ht(s) ∈R

(1)
ρ is continuous by the lifting

theorem for homotopies [7, 3]. The reader is encouraged to check the remaining
properties. ut

Definition 4.19. Let ζ be any given point in R
(1)
ρ . The uniquely determined con-

tinuous map H given by proposition 4.3 is called the shortest symmetric (Z,ρ)-
homotopy associated with ζ . The path H1 : s ∈ [0,1] 7→H (s,1) is called the short-
est symmetrically contractile path associated with ζ in R

(1)
ρ and its length is denoted

by lengρ(ζ )

Remark 4.3. Let H be a shortest symmetric (Z,ρ)-homotopy. Consider the path
Ht : s ∈ [0,1] 7→H (s, t) for any given t ∈ [0,1]. Then Ht is the shortest symmetri-
cally contractile path associated the endpoint Ht(1) in R

(1)
ρ .

The next two statements are left as exercises.

Lemma 4.8. The mapping ζ ∈R
(1)
ρ 7→ lengρ(ζ ) ∈ R+ is continuous.

Lemma 4.9. Let be ζ ∈R
(1)
ρ and H be its associated shortest symmetric (Z,ρ)-

homotopy. Then for every t ∈ [0,1] and every s ∈ [0,1]:

• lengρ

(
Ht(s)

)
≤ length

(
Ht |[0,s]

)
;

• lengρ

(
H −1

t (s)
)
≤ lengρ

(
Ht(1)

)
− length

(
Ht |[0,s]

)
.

We finally state a result drawn from [8], which gives an upper bound for the
length of the shortest symmetrically contractile path we work with.

Lemma 4.10. Let be ζ ∈ R
(1)
ρ . Either ζ ∈ R

(0)
ρ and then lengρ(ζ ) = |

•
ζ |, or

|
•
ζ | ≤ lengρ(ζ )≤ 1

ρ
|
•
ζ |+ 1

ρ

(
1
ρ
−2
)

.

Proof. The first case is obvious. The second case means that ζ ∈ R
(ε)m,θ
ρ \R

(0)
ρ

for some θ ∈ {0,π}, ε = ± and some m ∈ [1,M (ρ)]. Let us assume that θ = 0
and ε = + for simplicity. We return to the construction of the shortest symmetri-
cally contractile path H1 associated with ζ (see also Fig. 4.9) and we denote by
H1 = p◦H1 its projection. The path H1 is made of :

• m+ 1 segments between ∂Dn and ∂
( •

ζ −Dm−n
)
, n ∈ [0,m]. Each of these seg-

ments has length less than |
•
ζ −m|+mρ .

• m segments between ∂
( •

ζ −Dm−n
)

and ∂Dn+1, n∈ [1,m]. Each of these segments

has length less than |
•
ζ −(m+1)|+(m+1)ρ .

• 2m arcs of circle, the total length of which being less than 2(1+ · · ·+m)2πρ .

Putting things together:

lengρ(ζ )≤ (2m+1)|
•
ζ |+2m(m+1)(1+ρ)+2m(m+1)πρ.

Since ρ ≤ 1
5 , one has |

•
ζ | ≤ lengρ(ζ )≤ (2m+1)|

•
ζ |+4m(m+1). Remember that

M (ρ)+1 = bρ−1−1
2 c, thus m≤M (ρ)≤ 1

2ρ
−1 and one concludes. ut
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4.4 Convolution product and related properties

It has been recalled that the space R̂ = R̂Z of Z-resurgent germs is a convolution
algebra without unit (definition 3.7 and theorem 3.2).

Question 4.5. Is it possible to give quantitave estimates for the convolution product
of two Z-resurgent functions ?

The answer is “yes”, as detailed (without proof) in [10] (see also [2, 12]). Even,
quantitave estimates can be obtained for iterated convolutions and this allows non-
linear operations in the frame of resurgent functions [14].

Nevertheless, these results are difficult to use in our context. This is why we
follow another strategy in the sequel.

4.4.1 A new convolution algebra

Definition 4.20. Let k ∈ N? be a positive integer. We denote by R̂(k) the space of
germs of holomorphic functions at the origin which can be analytically continued to
the Riemann surface R(k).

In other words, the germ ϕ̂ ∈ O0 belongs to R̂(k) when there exists a function
Φ ∈ O(R(k)) holomorphic on R(k) whose germ φ0 ∈ O0 at 0 satisfies φ0 = ϕ̂ ◦ p.
Notice that the linear map ∂̂ : ĝ ∈ R̂(k) 7→ −ζ ĝ still provides a derivation of R̂(k).

Theorem 4.1. 1. The space R̂(1) is a convolution algebra (without unit).
2. Let ϕ̂, ψ̂ ∈ R̂(1) be two germs and let Φ ,Ψ ∈ O(R(1)) be their associated holo-

morphic functions on R(1). Assume that the following properties hold : for ev-
ery ζ ∈ R

(1)
ρ ,
∣∣Φ(ζ )

∣∣ ≤ F
(
lengρ(ζ )

)
and

∣∣Ψ(ζ )
∣∣ ≤ G

(
lengρ(ζ )

)
, where F,G

are two positive, non-decreasing and continuous functions on R+. Then the
convolution product ϕ̂ ∗ ψ̂ , resp. (∂̂ ϕ̂) ∗ ψ̂ , can be analytically continued to
R(1) and the corresponding function χ ∈ O(R(1)), resp. ϒ ∈ O(R(1)), satisfies
the following properties: for every ζ ∈ R

(1)
ρ ,
∣∣χ(ζ )∣∣ ≤ F ∗G

(
lengρ(ζ )

)
, resp.∣∣ϒ (ζ )

∣∣≤ lengρ(ζ )
(

F ∗G
(
lengρ(ζ )

))
.

Proof. The standard proof for proving that R̂ is a convolution algebra [10, 12] can
be copied as it stands for R̂(1). We sketch it here, essentially so as to fix notations
that will be used later on, more details can be found in [10].
Let be ϕ̂, ψ̂ ∈ R̂(1) and let Φ ,Ψ ∈ O(R(1)) be their associated holomorphic func-
tions on R(1).
The convolution product ϕ̂ ∗ ψ̂(

•
ζ ) is well-defined for every ζ ∈ R(0) and we set

χ(ζ ) = ϕ̂ ∗ ψ̂(
•
ζ ). For every

•
ζ 0 ∈

•
R

(0)
ρ and

•
ξ ∈ C such that |

•
ξ |< ρ

2 , the point
•
ζ 0 +

•
ξ belongs to

•
R(0), thus there exists a uniquely determined point denoted by

ζ0 +
•
ξ ∈ R(0) such that p(ζ0 +

•
ξ ) =

•
ζ 0 +

•
ξ . Therefore, the convolution product

χ(ζ0 +
•
ξ ) = ϕ̂ ∗ ψ̂(

•
ζ 0 +

•
ξ ) reads :
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χ(ζ0 +
•
ξ ) =

∫ •
ζ 0+

•
ξ

0
ϕ̂(η)ψ̂(

•
ζ 0 +

•
ξ −η)dη

=
∫ •

ζ 0

0
ϕ̂(η)ψ̂(

•
ζ 0 +

•
ξ −η)dη +

∫ •
ξ

0
ϕ̂(
•
ζ 0 +η)ψ̂(

•
ξ −η)dη .

Let now ζ be any given point in R
(1)
ρ . We denote by H the associated shortest sym-

metric (Z,ρ)-homotopy given by proposition 4.3. We want to construct the analytic
continuation of χ at ζ . We therefore assume that ζ0 is the endpoint H0(1) of the
intial path H0. The above equality yields :

χ
(
H0(1)+

•
ξ
)
=
∫ 1

0
Φ(H0(s))Ψ(H −1

0 (s)+
•
ξ )H ′0(s)ds

+
•
ξ

∫ 1

0
Φ(H0(1)+

•
ξ s)ψ

( •
ξ (1− s)

)
ds.

where H0 = p ◦H0 stands for the projection of H0. The analytic continuation of
χ from H0(1) along the path t ∈ [0,1] 7→Ht(1) ∈R

(1)
ρ is thus given by (see the

arguments in [10]):

χ
(
Ht(1)+

•
ξ
)
=
∫ 1

0
Φ(Ht(s))Ψ(H −1

t (s)+
•
ξ )H ′t (s)ds

+
•
ξ

∫ 1

0
Φ(Ht(1)+

•
ξ s)ψ

( •
ξ (1− s)

)
ds.

In particular when ζ = H1(1), χ(ζ ) =
∫ 1

0
Φ
(
H1(s)

)
Ψ
(
H −1

1 (s)
)

H ′1(s)ds where

H1 is the shortest symmetrically contractile path associated with ζ .

Notice that the germ χ(ζ +
•
ξ ) of holomorphic functions at ζ thus obtained does

not depend on the chosen path H1 since R(1) is simply connected.
We turn to estimates. Let T be the homothety s ∈ [0,1] 7→ s.lengρ(ζ ) so that

χ(ζ ) =
∫ lengρ (ζ )

0
Φ
(
H1 ◦T−1(`)

)
Ψ
(
H −1

1 ◦T−1(`)
)

d`. We then use lemma 4.9 to
get:

|χ(ζ )| ≤
∫ lengρ (ζ )

0
F
(
`
)
G
(
lengρ(ζ )− `

)
d`

≤ F ∗G
(
lengρ(ζ )

)
.

The proof for the last assertion is left as an exercise. ut

4.4.2 Convolution space and uniform norm

The following definition makes sense by lemma 4.8 and lemma 4.9.

Definition 4.21. Let L > 0 be a real positive number and ρ ∈]0, 1
5 ]. One denotes by

Uρ,L the open subset of R
(1)
ρ defined by: Uρ,L = {ζ ∈R

(1)
ρ | lengρ(ζ ) < L}. An

element of Uρ,L is called a L-point.
We denote by O(U ρ,L) the space of functions holomorphic on Uρ,L and continuous
on U ρ,L. For any two elements f ,g ∈ O(U ρ,L), one sets
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f ∗g(ζ ) =
∫ lengρ (ζ )

0
f
(
H1 ◦T−1

ζ
(`)
)
g
(
H −1

1 ◦T−1
ζ

(`)
)

d` (4.2)

where H1 stands for the shortest symmetrically contractile path associated with
ζ ∈U ρ,L, while Tζ is the homothety Tζ : s ∈ [0,1] 7→ s.lengρ(ζ ).
The function ζ ∈U ρ,L 7→ f ∗g(ζ ) is called the convolution product of f and g.

Proposition 4.4. For any two elements f ,g ∈ O(U ρ,L), their convolution product
belongs to O(U ρ,L). In other words, Cδ ⊕O(U ρ,L) is a convolution algebra.

Proof. Use lemma 4.9 and adapt the proof of theorem 4.1. ut

The following definition is similar to definition 3.12.

Definition 4.22. Let U = Uρ,L be an open set of L-points. We denote by MO(U )

the maximal ideal of O(U )) defined by MO(U ) = { f ∈ O(U ), f (0) = 0}.
Let ν ≥ 0 be a nonnegative real number. The norm ‖.‖ν on O(U )) is defined by
‖ f‖ν = L sup

ζ∈U

∣∣e−ν lengρ (ζ ) f (ζ )
∣∣. We extend this norm to Cδ ⊕O(U ρ,L) by setting

‖cδ + f‖ν = |c|+‖ f‖ν for every f ∈ O(U ) and every c ∈ C.

We now state an analogue of proposition 3.9.

Proposition 4.5. The normed space
(
Cδ ⊕O(U ),‖.‖ν

)
is a Banach algebra. In

particular, for every f ,g ∈ Cδ ⊕O(U , ‖ f ∗g‖ν ≤ ‖ f‖ν‖g‖ν . The space MO(U )
is closed in

(
O(U ),‖.‖ν

)
. Moreover, for ν > 0:

1. for every n ∈ N, for every g ∈ O(U ), ‖(ζ 7→
•
ζ

n) ∗ g‖ν ≤
n!

νn+1 ‖g‖ν ,

‖(ζ 7→
•
ζ

n)‖ν ≤
n!

νn+1 L and ‖(ζ 7→ 1)‖ν = L.

2. for every f ,g ∈ O(U ), ‖ f g‖ν ≤
1
L
‖ f‖ν‖g‖0.

3. for every f ∈ O(U ), ν ≥ ν0 ≥ 0⇒‖ f‖ν ≤ ‖ f‖ν0 .
4. for every f ∈MO(U ), lim

ν→∞
‖ f‖ν = 0.

5. the derivation ∂̂|O(U ) : f ∈ O(U ) 7→ −
•
ζ f ∈MO(U ) is invertible and the in-

verse map ∂̂−1 satisfies: for every f ∈O(U ), for every g∈MO(U ), ∂̂−1( f ∗g)

belongs to MO(U ) and ‖∂̂−1( f ∗g)‖ν ≤
1

νL
‖ f‖ν‖∂̂−1g‖0.

For every Cδ⊕O(U ), for every g∈MO(U ), ∂̂−1( f ∗g) belongs to O(U ) and
‖∂̂−1( f ∗g)‖‖ν ≤ ‖ f‖ν‖∂̂−1g‖ν .

Proof. The norm ‖.‖ν is obviously equivalent to the maximum norm on the vector
space O(U ). This shows the completeness of

(
O(U ),‖.‖ν

)
and of(

Cδ ⊕O(U ),‖.‖ν

)
as well.

Pick a point ζ ∈U . For any f ,g ∈ O(U ),

f ∗g(ζ ) =
∫ lengρ (ζ )

0
d` eν

[
lengρ

(
H1◦T−1

ζ
(l)
)
+lengρ

(
H −1

1 ◦T−1
ζ

(l)
)]

(4.3)

× f
(
H1 ◦T−1

ζ
(`)
)
e−ν lengρ

(
H1◦T−1

ζ
(l)
)

g
(
H −1

1 ◦T−1
ζ

(`)
)
e−ν lengρ

(
H −1

1 ◦T−1
ζ

(l)
)
.

We know from lemma 4.9 that lengρ(H1(s))+ lengρ(H
−1

1 (s))≤ lengρ(ζ ) for any

s ∈ [0,1]. Therefore Le−ν lengρ (ζ )| f ∗g(ζ )| ≤ ‖ f‖ν‖g‖ν

∫ lengρ (ζ )

0

1
L

d`≤ ‖ f‖ν‖g‖ν .
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This shows that for every f ,g∈O(U ), ‖ f ∗g‖ν ≤‖ f‖ν‖g‖ν , hence
(
O(U ),‖.‖ν

)
is a Banach algebra and

(
Cδ ⊕O(U ),‖.‖ν

)
as well. We encourage the reader to

show the other properties. ut
Remark 4.4. We have already noticed that the space R̂(1) can be identified with
the space O(R(1)) of holomorphic functions on the Riemann surface R(1). Since
O(R(1)) =

⋂
L>0

0<ρ≤1/5

O(Uρ,L), formula (4.2) provides the convolution product

on O(R(1)).

4.4.3 An extended Grönwall-like lemma

The following statement is similar to lemma 3.9.

Lemma 4.11 (Extended Grönwall lemma). Let N ∈ N? be a positive integer. Let
and ( f̂n)0≤n≤N , resp. (F̂n)0≤n≤N , be a (N + 1)-tuple of functions in O(R(1)), resp.
of entire functions, real, positive and non-decreasing on R+, with at most exponen-
tial growth of order 1 at infinity. We suppose that for every 0 ≤ n ≤ N and every
ζ ∈R

(1)
ρ , | f̂n(ζ )| ≤ F̂n

(
lengρ(ζ )

)
. Otherwise, let p,q,r be polynomial functions

such that the function ζ 7→ p(−
•
ζ ) does not vanish on R

(1)
ρ and we assume that the

following upper bounds are valid:

a= sup
ζ∈R

(1)
ρ

|q|(lengρ(ζ ))

|p(−
•
ζ )|

<∞, b= sup
ζ∈R

(1)
ρ

|r|(lengρ(ζ ))

|p(−
•
ζ )|

<∞, c= sup
ζ∈R

(1)
ρ

1

|p(−
•
ζ )|

<∞.

We furthermore assume that ŵ ∈ O(R
(1)
ρ ) solves the following convolution equa-

tion:

p(∂̂ )ŵ+1∗ [q(∂̂ )ŵ] = ζ ∗ [r(∂̂ )ŵ]+ f̂0 +
N

∑
n=1

f̂n ∗ ŵ∗n. (4.4)

Then, for every d≥ 0 and every ζ ∈R
(1)
ρ , |ŵ(ζ )| ≤ ŵd

(
lengρ(ζ )

)
, where ŵd ∈ O(C)

stands for the holomorphic solution of the following convolution equation:

ŵ = d +[a+bξ ]∗ŵ+ c

(
F̂0 +

N

∑
n=0

F̂n ∗ŵ∗n
)
. (4.5)

Proof. Let ŵ ∈ O(R
(1)
ρ ) be a solution of convolution equation (4.4). This means

that for every ζ ∈R
(1)
ρ :

p(∂̂ )ŵ(ζ ) = f̂0(ζ )−
∫ lengρ (ζ )

0
q
(
H1 ◦T−1

ζ
(`)
)
ŵ
(
H1 ◦T−1

ζ
(`)
)

d`

+
∫ lengρ (ζ )

0
H −1

1 ◦T−1
ζ

(`)r
(
H1 ◦T−1

ζ
(`)
)
ŵ
(
H1 ◦T−1

ζ
(`)
)

d`

+
N

∑
n=1

∫ lengρ (ζ )

0
f̂n
(
H −1

1 ◦T−1
ζ

(`)
)
ŵ∗n
(
H1 ◦T−1

ζ
(`)
)

d`.

where H1 stands for the shortest symmetrically contractile path associated with ζ .
From lemma 4.9 and the hypotheses, one obtains with ξ = lengρ(ζ ):
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|ŵ(ζ )| ≤ 1

|p(−
•
ζ )|

F̂0(ξ )+
∫

ξ

0

 |q|(`)
|p(−

•
ζ )|

+
|r|(`)

|p(−
•
ζ )|

(ξ − `)

 |ŵ(H1 ◦T−1
ζ

(`)
)
|d`

+
N

∑
n=1

∫
ξ

0

1

|p(−
•
ζ )|

F̂n(ξ − `)|ŵ∗n
(
H1 ◦T−1

ζ
(`)
)
|d`.

Therefore

|ŵ(ζ )| ≤ cF̂0(ξ )+
∫

ξ

0
[a+b(ξ − s)] |ŵ

(
H1 ◦T−1

ζ
(`)
)
|d` (4.6)

+ c
N

∑
n=1

∫
ξ

0
F̂n(ξ − `)|ŵ∗n

(
H1 ◦T−1

ζ
(`)
)
|d`.

The existence and the properties of ŵd , solution of (4.5), have been given in lemma
3.8. We adapt the proof of lemma 3.9. We first notice that |ŵ(0)| ≤ cF̂0(0) by defini-
tion of c and by hypothesis on F̂0. Since ŵ(0) = d+cF̂0(0), we have |ŵ(0)| ≤ ŵ(0).

First case. We first assume |ŵ(0)| < ŵ(0). One considers, for L > 0, the open set
Uρ,L of L-points. We remark that, once L0 > 0 is chosen small enough, then for every
0< L≤ L0, for very d > 0, for every ζ ∈U ρ,L, |ŵ(ζ )|< ŵd(ξ ) with ξ = lengρ(ζ ).
This is just a consequence of lemma 3.9. (For L > 0 small enough, lengρ(ζ ) = |ζ |).

We now assume that there exist L1 > 0 and ζ1 ∈U ρ,L1 such that |ŵ(ζ1)| ≥ ŵd(ξ1),
ξ1 = lengρ(ζ1). We recall that the mapping ζ ∈R

(1)
ρ 7→ lengρ(ζ ) is continuous and

we define χ = {L∈ [L0,L1] | there exists ζ ∈U ρ,L, |ŵ(ζ )| ≥ ŵd(lengρ(ζ ))}. This
is a closed set bounded from below and we denote by L2 ∈]L0,L1] its infimum. This
implies that:

• for every ζ ∈U ρ,L2 , |ŵ(ζ )| ≤ ŵd(lengρ(ζ ));
• there exists ζ2 ∈U ρ,L2 such that |ŵ(ζ2)|= ŵd(ξ2) and ξ2 = lengρ(ζ2) = L2.

We take such a ζ2 ∈U ρ,L2 . By (4.6),

|ŵ(ζ2)| ≤ cF̂0(ξ2)+
∫

ξ2

0
[a+b(ξ2− `)] |ŵ

(
H1 ◦T−1

ζ2
(`)
)
|d`

+ c
N

∑
n=1

∫
ξ2

0
F̂n(ξ2− `)|ŵ∗n

(
H1 ◦T−1

ζ2
(`)
)
|d`

where H1 is the shortest symmetrically contractile path associated with ζ2. We
know by lemma 4.9 that lengρ(H1 ◦ T−1

ζ2
(`)) ≤ ` for every ` ∈ [0,ξ2], while ŵd

is real, positive and non-decreasing on R+. Therefore,

|ŵ(ζ2)| ≤ cF̂0(ξ2)+
∫

ξ2

0
[a+b(ξ2− `)]ŵd(`)d`+ c

N

∑
n=1

∫
ξ2

0
F̂n(ξ2− `)ŵ∗nd (`)d`.

This shows that |ŵ(ζ2)| ≤ ŵd(ξ2)−d and we get a contradiction.

Second case The case |ŵ(0)|= ŵ(0) (thus d = 0) is done by an argument of con-
tinuity already used in the proof of lemma 3.9. ut
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4.5 Application to the first Painlevé equation

4.5.1 A step beyond Borel-Laplace summability

We come back to the minor ŵ of the formal series solution of the prepared equa-
tion (3.6). We already know that ŵ can be analytically continued to the star-shaped

domain
•
R(0) ⊂ C, with at most exponential growth of order 1 at infinity there (the-

orem 3.3). Said in other words, ŵ can be interpreted as a holomorphic function on
the principal sheet R(0) of the Riemann surface R. We claim that this function can
be analytically continued to every R(0)-nearby sheets: this is the matter of the next
theorem.

Theorem 4.2. The formal solution w̃ of the prepared equation (3.6) associated with
the first Painlevé equation satisfies the following properties:

1. its minor ŵ can be analytically continued to the Riemann surface R(1). This
provides a function in O(R(1)) still denoted by ŵ;

2. this function ŵ has at most exponential growth of order 1 at infinity on R(1). More
precisely, for every ρ ∈]0, 1

5 ], there exist real positive constants A=A(ρ)> 0 and

τ = τ(ρ)> 0 such that for every ζ ∈R
(1)
ρ , |ŵ(ζ )| ≤ Aeτξ with ξ = lengρ(ζ );

3. moreover lengρ(ζ ) ≤ 1
ρ
|
•
ζ |+ 1

ρ

(
1
ρ
−2
)

and one can choose A = 4 and τ = 4
ρ3

in the above estimates.

Proof. We begin this proof with a preliminary result which should be compared
with lemma 3.2.

Lemma 4.12. There exists a real positive number Mρ,(1) > 0 such that for every

polynomial q of degree ≤ 1, for every ζ ∈R
(1)
ρ ,

|q|(lengρ (ζ ))

|P(−
•
ζ )|
| ≤Mρ,(1)|q|(1). More-

over one can choose Mρ,(1) =
6

5ρ3

Proof. From lemma 3.2 and lemma 4.10, one sees that for every ζ ∈ R
(1)
ρ ,

lengρ (ζ )

|P(−
•
ζ )|
≤
[

1
ρ
+ 1

ρ

(
1
ρ
−2
)]

Mρ,(0) . Then use the fact that ρ ∈]0, 1
5 ]. ut

Holomorphy of ŵ on R(1) Let r > 0 and ν > 0 be positive real numbers,
U = Uρ,L ⊂R(1) be the open set of L-points, L> 0, and Br = {v̂ ∈ O(U ),‖v̂‖ν ≤ r}.
The convolution equation (3.10) can be viewed as a fixed-point problem on Br and
we set:

N : v̂ ∈ Br 7→ P−1(∂̂ )
[
−1∗

[
Q(∂̂ )v̂

]
+ f̂0 + f̂1 ∗ v̂+ f̂2 ∗ v̂∗ v̂

]
.

By lemmas 4.12 and proposition 4.5,

‖N(v̂)‖ν ≤Mρ,(1)‖−1∗
[
Q(∂̂ )v̂

]
+ f̂0 + f̂1 ∗ v̂+ f̂2 ∗ v̂∗ v̂‖ν .

By proposition 4.5, since Q(∂̂ ) =−3∂̂ :

‖1∗
[
Q(∂̂ )v̂

]
‖ν ≤

1
ν
‖Q(∂̂ )v̂‖ν ≤

1
Lν
‖(ζ 7→ Q(−

•
ζ ))‖0‖v̂‖ν ≤

3L
ν
‖ŵ‖ν .

The functions f̂0, f̂1, f̂2 belong to MO(U ), therefore by proposition 4.5:
lim

ν→∞
‖ f̂i‖ν = 0, i = 0,1,2. Hence, ‖N(v̂)‖ν ≤ r for ν > 0 large enough.
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The same arguments shows that ‖N(v̂1)−N(v̂2)‖ν ≤ k‖v̂1− v̂2‖ν with k < 1, for
v̂1, v̂2 ∈ Br and for ν > 0 large enough.
The mapping N is thus contractive on the closed subset Br of the Banach space(
O(U ),‖.‖ν

)
, for ν > 0 large enough. The contraction mapping theorem ensures

the existence of a unique solution ŵ ∈ Br for the fixed-point problem v̂ = N(v̂).
Since L and ρ can be arbitrarily chosen, we deduce (by uniqueness) that the minor
ŵ of the unique formal series w̃ solution of (3.6) is a germ of holomorphic functions
which can be analytically continued to R(1).

Upper bounds We use the Grönwall lemma 4.11 (with d = 0), which tells us that
for every ζ ∈ R

(1)
ρ , |ŵ(ζ )| ≤ ŵd(ξ ), ξ = lengρ(ζ ), where ŵ(ξ ) solves the fol-

lowing convolution equation 1
Mρ,(1)

ŵ= | f̂0|+
(
3+ | f̂1|

)
∗ŵ+ | f̂2| ∗ŵ∗ŵ (just use

lemma 4.12). Moreover, one can choose Mρ,(1) =
6

5ρ3 . We would like to get explicit

estimates. We consider ŵ as the Borel transform of the function w̃, solution of the
second order algebraic equation,

1
Mρ,(1)

w̃ = | f0|(z)+
(3

z
+ | f1|

)w̃+ | f2|w̃2
, (4.7)

holomorphic at infinity and asymptotic to | f0|(z) there. Remember that | f0|(z) = 392
625

1
z2 ,

| f1|(z) = 4
z2 , | f2|(z) = 1

2z2 . Setting w̃(z) = H(t), t = z−1, the above problem reads
as a fixed-point problem,

H = N(H), N(H) = Mρ,(1)

(
| f0|(t−1)+

(
3t + | f1|(t−1)

)
H + | f2|(t−1)H2

)
. (4.8)

From homogeneity reasons, we introduce U = D(0,ρ3/4), we consider the Ba-
nach algebra

(
O(U),‖‖

)
where ‖‖ stands for the maximum norm, and we set

Bρ3 = {H ∈ O(U), ‖H‖ ≤ ρ3}. It is easy to show that the mapping
N|B

ρ3 : H ∈ Bρ3 7→ N(H) ∈ Bρ3 is contractive (remember: ρ ∈]0,1/5]). Therefore,
from contraction mapping theorem, the fixed-point problem (4.8) has a unique solu-

tion H in Bρ3 . In return we deduce that ŵ is an entire function and |ŵ(ξ )| ≤ 4e
4

ρ3 |ξ |

for every ξ ∈ C (see lemma 3.5). One ends with lemma 4.10.

4.5.2 Concluding remarks

The following comments rely on notions introduced in [10] to which the reader is
referred.

It turns out from theorem 4.2 that the minor ŵ can be analytically continued along
any path of type γθ

(+)m−1
and γθ

(−)m−1
(definitions 4.7 and 4.9), for any m ∈ N? and

any direction θ ∈ {0,π} ⊂ S1.
To fix our mind, we consider a path γ of type γ0

(+)m−1
. The analytic continuation of

ŵ along γ gives a germ contγ ŵ which can be represented by a function holomor-
phic on the open disc D( 2m−1

2 , 1
2 ) adherent to m. Writing fm(ζ ) = contγ ŵ(m+ζ ),

we get a function fm holomorphic on D = D(− 1
2 ,

1
2 ). However, theorem 4.2 trans-

lates into the fact that fm can be analytically continued to a wider domain as a
“multi-valued function”. Precisely, pick a point ζ

0
= 1

2 eiθ0 ∈ π−1(− 1
2 ) above − 1

2

on the Riemann surface (C̃,π) of the logarithm. Let D̃ = D̃(ζ
0
, 1

2 ) ⊂ C̃ be the
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Fig. 4.10 Comparison of
right and left Borel-Laplace
summation for the direction
θ = 0.

0 1 2 3 4

λ−

λ+

γ 1 γ 2 C3

neighbourhood of ζ
0

which is π-homeomorphic to D. One obtains a function
∨
f m= fm ◦ π ,

∨
f∈ O(D̃). This function can be holomorphically extended to a func-

tion (still denoted by)
∨
f m∈ O(

1/2
0 ), where 1/2

0 ⊂ C̃ is the open sector defined by:
1/2
0 = {ζ = ξ eiθ ∈ C̃ | θ ∈]−π +θ0,θ0 +2π[,ξ ∈]0,1/2[}.

Question 4.6. Can we analytically continue each
∨
f m into an element of ANA ?

The answer is “yes” but requires further effort and supplements to resurgence

theory, given in chapter 7. Taking this for granted, to
∨
f m thus corresponds a singu-

larity
O
f m∈ SING deduced from ŵ through the action of the alien operator denoted

by A
γ,ζ 0

m in [10], or more precisely to ∆+
m .

Question 4.7. Can we describe more precisely the singularities
O
f m ?

This is of course the key-question for describing the Stokes phenomenon. Partly,
the reply relies on the formal integral associated with equation (3.6), which is the
matter of the next chapter 5. The final answer will be given in the last chapter 8 of
this course, with the use of the alien derivations. In the same spirit:

Question 4.8. At this stage, can we compare the sums S ]−π,0[w̃ ∈ O(
•
D(]−π,0[,τ))

and S ]0,π[w̃ ∈O(
•
D(]0,π[,τ)) ? (See proposition 3.14.) In other words, are we able

to analyze the Stokes phenomenon ?

Formulated another way, we would like to compare the right Borel-Laplace sum-
mation S 0+w̃ and the left one S 0−w̃. Look at Fig. 4.10 : we have chosen two
directions θ+ ∈]−π,0[ and θ− ∈]−π,0[ closed to zero, so that the Borel-Laplace

sums S θ+
w̃(z) =

∫
λ+

e−zζ ŵ(ζ )dζ and S θ−w̃(z) =
∫

λ−
e−zζ ŵ(ζ )dζ can be com-

pared on their nonempty common domain of definition
•

Π
θ+

τ(θ+)
∩
•

Π
θ−
τ(θ−). The curve

λ
−1
− λ+ can be seen as a chain on the Riemann sphere C = C∪{∞} running from

∞ to ∞ and avoiding the points Z? ⊂ C. In other words, λ
−1
− λ+ represents a cy-

cle for the 1-homology group H1(
•
R ∪ {∞},∞) which is homologous to the sum
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∑
m
k=1 γk +Cm+1 (with m = 2 on Fig. 4.10). Interpreting this result on R(1) where ŵ

is holomorphic with at most exponential growth of order 1 at infinity (theorem 4.2),

we get: for every z ∈
•

Π
θ+

τ(θ+)
∩
•

Π
θ−
τ(θ−) with |z| large enough,

S θ+
w̃(z) = S θ−w̃(z)+

m

∑
k=1

∫
γk

e−zζ ŵ(ζ )dζ +
∫

Cm+1

e−zζ ŵ(ζ )dζ . (4.9)

One recognizes in this equation the very construction of the Stokes automorphism,

detailed in [10]. The asymptotics at infinity of the integrals
∫

γk

e−zζ ŵ(ζ )dζ are of

the form e−kzW̃k(z) where W̃k stands for a formal series which only depends on the

still unknown singularity
O
f k. The remaining integral

∫
Cm+1

e−zζ ŵ(ζ )dζ provides an

exponentially smaller vanishing behaviour. It will be shown in this course that the
right-hand side of the equality (4.9) when letting m→ ∞, is nothing but the Borel-
Laplace sum of a “transseries” introduced and studied in chapters 5 and 6.

4.6 Some supplements

We end this chapter with some supplements to the that will be used later on.

Definition 4.23. Let be θ ∈ {0,π}, α ∈]0,π/2] and L > 0 be a real positive number.

we denote by R(θ ,α)(L) the set of paths λ in
•
R originating from 0, piecewise C 1,

with length(λ )< L+1, with the conditions:

• either λ stays in the open disc D(0,1);
• or else, for every t ∈ [0,1], the right and left derivatives λ

′(t) do not vanish and
argλ

′(t) ∈]−α +θ ,θ +α[.

We denote by R(θ ,α)(L) the subset of the Riemann surface R defined as follows:

R(θ ,α)(L) = {Λ(1) ∈R | λ = p◦Λ belongs to R(θ ,α)(L) and Λ(0) = 0}.

We should note in passing that every path λ ∈R(θ ,α)(L) can be lifted on R from
0 with respect to p.
The following assertion is left as an exercise.

0

2

3

α

1

Fig. 4.11 Two paths belonging to R(θ ,α)(L) for θ = 0 and L≥ 2.
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Lemma 4.13. The set R(θ ,α)(L) is an open and connected neighbourhood of 0 in
R and R(θ ,α)(L)⊂R(0)

⋃
1≤ j≤m

R(±) j ,θ with m = dLe. Also, for any m∈N?, for any

path γ of type γθ
ε with ε ∈ {+,−} j and 1 ≤ j ≤ m, the endpoint Γ (1) belongs to

R(θ ,α)(m), where Γ is the lift of γ from 0 with respect to p on R.

In the above lemma, d.e is the ceiling function.

Remark 4.5. Notice that R(θ ,α)(L1)⊂R(θ ,α)(L2) when L1 <L2. Also, since R(θ ,α)(L)
is open and connected in R, R(θ ,α)(L) inherits from R the structure of complex
manifold, thus is a Riemann surface.

Definition 4.24. We denote by R̂(θ ,α)(L) ⊃ R̂ the space of germs of holomorphic
functions at the origin which can be analytically continued to the Riemann surface
R(θ ,α)(L).

Example 4.1. The formal solution w̃ of the prepared equation (3.6) has a minor ŵ
which belongs to R̂(θ ,π/2)(L), for any direction θ ∈ {0,π} and any L ∈]0,1]: this is
a consequence of theorem 4.2.

Proposition 4.6. The space R̂(θ ,α)(L) is a (non unitary) convolution algebra.

Proof. We just have to prove the stability by convolution product. It is shown in [10]
that for any smooth path γ : I = [0,1]→ C\Z such that |γ(0)| < 1, one can find a
symmetric Z-homotopy H : (s, t) ∈ I× I 7→ H(s, t) = Ht(s) whose initial path H0 is
H0 : s ∈ [0,1] 7→ sγ(0) and whose endpoint path t ∈ [0,1] 7→Ht(1) coincides with γ .
Lifting every path Ht from 0 on R with respect to p, one gets the mapping
H : (s, t) ∈ I× I 7→H (s, t) = Ht(s) ∈R, which is continuous by the lifting theo-
rem for homotopies, and the following diagram commutes:

R
H ↗ ↓ p

I× I −→
•
R.

H

(4.10)

We recall from [10] how this symmetric Z-homotopy can be constructed. Pick a
C 1 function η : C→ [0,1] satisfying {ζ ∈ C | η(ζ ) = 0} = Z and consider the

non-autonomous vector field X(ζ , t) =
η(ζ )

η(ζ )+η
(
γ(t)−ζ

)γ
′(t). The path Ht is ob-

tained by deformation of the initial path H0 through the flow of the vector field
g : (t0, t,ζ ) ∈ [0,1]2×C 7→ gt0,t(ζ ) ∈ C of X , precisely Ht(s) = g0,t(H0(s)

)
.

Let ζ be any point in R(θ ,α)(L). This point is the endpoint of a path Λ in R
originating from 0 and whose projection λ = p◦Λ belongs to R(θ ,α)(L). We forget
the case where λ stays in D(0,1) and, without loss of generality, we can assume
that λ = λ0γ with λ0 : s ∈ [0,1] 7→ sγ(0). Let us analyze the above symmetric Z-
homotopy H constructed from γ and H0 = λ0, and the associated mapping H . We
would like to show that H (s, t)∈R(θ ,α)(L) for every (s, t)∈ I× I. For this purpose
we introduce the path Hs : t ∈ I 7→Hs(t) = H(s, t). We notice that H0 ≡ 0 while for
any s ∈]0,1] :

1. Hs(0) = H0(s),
2. dHs(t)

dt = X
(
Hs(t), t

)
, thus 0 <

∣∣∣ dHs(t)
dt

∣∣∣≤ |γ ′(t)| and arg dHs(t)
dt ∈]−α +θ ,θ +α[.
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Denoting by H0|[0,s] : s′ ∈ I 7→ H0(s′s) the restriction path, we see that the product
of paths Fs = H0|[0,s]Hs has the following properties, for any s ∈]0,1]:

1. Fs is a path in
•
R originating from 0 and is piecewise C 1;

2. length(Fs)≤ length(H0|[0,s])+ length(Hs)≤ length(λ )≤ L+1,
3. for every t ∈ [0,1], the right and left derivatives (Fs)′(t) do not vanish and

arg(Fs)′(t) ∈]−α +θ ,θ +α[.

Therefore Fs belongs to R(θ ,α)(L) and as a consequence, H (s, t) belongs to
R(θ ,α)(L) for every (s, t) ∈ I× I. We end the proof with the arguments used re-
called in the proof of theorem 4.1. ut

4.7 Comments

As a rule in resurgence theory, one has to deal with endlessly continuable functions.
This notion is defined in [2], a more general definition of which being given by
Ecalle in [5, 6]. The key point is the construction of endless Riemann surfaces [2,
12]). For such an endless Riemann surface, one can define “nearby sheets” in the
way we did in Sect. 4.2 and analogues of theorem 4.1 and proposition 4.6 can be
stated.
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Chapter 5
Transseries and formal integral for the first
Painlevé equation

Abstract This chapter has two purposes. Our first goal is to construct the so-
called “formal transseries solutions” for the prepared form associated with the first
Painlevé equation, which will be used later on to get the truncated solutions : this
is done in Sect. 5.3, after some preliminaries in Sect. 5.1 and Sect. 5.2. Our second
goal is to build the formal integral for the first Painlevé equation and, equivalently,
the canonical normal form equation to which the first Painlevé equation is formally
conjugated. This is what we do in Sect. 5.4. These informations will be used in a
next chapter to investigate the resurgent structure for the first Painlevé equation.

5.1 Introduction

We have seen in chapter 3 that the prepared equation (3.6) has a unique formal
solution, from now on denoted by w̃(0,0). This solution is 1-Gevrey and even Borel-
Laplace summable in every directions apart from the directions kπ , k ∈ Z (theo-
rem 3.3 and proposition 3.14). To each interval I j =]0,π[+ jπ , j ∈ Z, one associates

the Borel-Laplace sum wtri, j(z) = S I j w̃(0,0)(z) ∈ O
( •
D(I j,τ)

)
where

•
D(I j,τ) is a

sectorial neighbourhoods of ∞ with aperture

(

I j =]− 3
2

π,+
1
2

π[− jπ . As said in

Sect. 3.4.2.2, each wtri, j can be thought of as a section over

(

I j of the sheaf A1

of 1-Gevrey asymptotic functions, wtri, j ∈ Γ (

(

I j,A1). These sections are asymp-
totic to the same 1-Gevrey series w̃(0,0). Therefore the 1-coboundary wtri,1−wtri,0

belongs to Γ (

(

I 1 ∩

(

I 0,A
≤−1), while wtri,2−wtri,1 belongs to Γ (

(

I 2 ∩

(

I 1,A
≤−1),

where A ≤−1 is the sheaf of 1-Gevrey flat germs. In other words, the 1-coboundaries

W1,0(z) = wtri,1(z)−wtri,0(z), −
3
2

π < arg(z)<−1
2

π, |z| large enough,

W2,1(z) = wtri,2(z)−wtri,1(z), −
5
2

π < arg(z)<−3
2

π, |z| large enough,
(5.1)

are exponentially flat functions of order 1 at infinity, and we deduce from equation
(3.6) that W( j+1), j, j = 0,1, satisfies the linear ODE:

P(∂ )W( j+1), j +
1
z

Q(∂ )W( j+1), j = f1(z)W( j+1), j + f2(z)(wtri, j+1 +wtri, j)W( j+1), j.

(5.2)

87
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Question 5.1. Can we get more informations about W( j+1), j ? In other words, are we
able to analyze the Stokes phenomenon ?

We have already made some advances in reply to this query in Sect. 4.5.2, as
an application of theorem 4.2. Here we return to the asymptotics. Denoting by
T1 the 1-Gevrey Taylor map, we set W̃( j+1), j = T1(

(

I j+1 ∩

(

I j)W( j+1), j. We have

W̃( j+1), j = 0 by construction but, more interestingly for our purpose and since T1

is a morphism of differential algebras, we deduce from (5.2) that W̃( j+1), j solves the

problem P0W̃ = 0, where P0 stands for the second order linear differential operator

deduced from the operator P(∂ )+
1
z

Q(∂ )−F(z, ·) by linearisation at w̃(0,0):

P0 = P(∂ )+
1
z

Q(∂ )−
∂F(z, w̃(0,0))

∂w
(5.3)

= P(∂ )+
1
z

Q(∂ )− f1(z)−2w̃(0,0)(z) f2(z)

= (∂ 2−1)− 3
z

∂ +O(z−2).

For a moment, let us think of P0W̃ = 0 as a linear ODE with holomorphic coeffi-
cients (thus we think of w̃(0,0) as a convergent series at infinity). The formal invari-
ants for this this equation are governed by the Newton polygon at infinity N∞(P0),
drawn on Fig. 5.1.

The definition and properties of the Newton polygon are amply elaborated in [32], to which
the reader is referred. We only mention that the valuation v∞ defined there is the opposite of
our valuation val defined by (3.1).

The polygon N∞(P0) has a single non-vertical side of slope−1: this corresponds to
the fact that W( j+1), j, j = 0,1, are exponentially flat functions of order 1 at infinity.
The characteristic equation associated with this side is nothing but the equation

P(µ) = 0, P(µ) = µ
2−1.

The polynomial P(µ) has two simple roots, µ1 = −1 and µ2 = 1. Therefore, from
the theory of linear ODE [39, 32], we expect for W1,0 to behave like eµ2zz−τ2O(1)
at infinity, and for W2,1 to behave like eµ1zz−τ1O(1) at infinity.
Pursuing in that direction, the coefficients τ1,τ2 can be easily found :
W̃ = eµzz−τ w̃µ(z) solves the ODE (5.3) with P(µ) = 0 and w̃λ ∈ C[[z−1]], only
under the condition

τ =
Q(µ)

P′(µ)
=−3

2
.

Fig. 5.1 The Newton polygon
at infinity N∞(P0) associated
with the linear operator (5.3).

10 2 3

−1

−2
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As a matter of fact, these behaviours are direct consequences of the analytic proper-
ties of the minor ŵ(0,0) of w̃(0,0). In particular, λ1 =−µ1 and λ2 =−µ2 are precisely
the so-called seen singularities of ŵ(0,0), cf. theorem 4.2.

The differential equation P0W̃ = 0 has thus its general formal solution under
the form W̃ = U1eµ1zz−τ1w̃µ1 +U2eµ2zz−τ2w̃µ2 and, as we will see later on, both
w̃µ1 and w̃µ2 are 1-Gevery series whose minors have the same properties than ŵ(0,0).

However, the expectation that W1,0 could be obtained from U1eµ1zz−τ1w̃µ1 by
Borel-Laplace summation for some well-chosen U1 ∈ C is wrong. Indeed, this
would mean that wtri,1 =S I1

(
w̃(0,0)+U1eµ1zz−τ1w̃µ1

)
, thus w̃(0,0)+U1eµ1zz−τ1w̃µ1

is a formal solution of (3.6). This is not the case because of the nonlinearity of (3.6)
and to the very nature of the Riemann surface R(1) on which ŵ(0,0) can be analyti-
cally continued (theorem 4.2). This raises the question:

Question 5.2. can we define an analogue of the general formal solution for the non-
linear equation (3.6) ?

The answer is given by the notion of “formal integral” which we now introduce.

5.2 Formal integral : setting

5.2.1 Notations

It will be useful in the sequel to fix customary notations.

Definition 5.1. We suppose n ∈ N?, k,h ∈ Nn, a,b ∈ Cn.

• If k = (k1, · · · ,kn), then |k|= k1 + · · ·+ kn.
• If a = (a1, · · · ,an) or a = t(a1, · · · ,an), then ak = ak1

1 · · ·akn
n .

• If b = (b1, · · · ,bn), then a.b = a1b1 + · · ·+anbn.
• We denote by e j the j-th unit vector of Cn.

5.2.2 Setting

5.2.2.1 Single level 1 ODE

To introduce the reader to the notion of Ecalle’s formal integral [19], it will be useful
to skip a moment from the ODE (3.6) to a more general one1 with the same kind of
properties. Namely we introduce

P(∂ )w+
1
z

Q(∂ )w = F(z,w) (5.4)

P(∂ ) =
n

∑
m=0

αn−m∂
m ∈ C[∂ ] , Q(∂ ) =

n−1

∑
m=0

βn−m∂
m ∈ C[∂ ]

1 Though far from the more general. For instance in (5.4) one could replace F(z,w) by
F(z,w,∂w, · · · ,∂ n−1w), with F holomorphic in a neighbourhood of (∞,0) in C×Cn−1, see ex-
ercise 3.1. We refrain of doing that only for a matter of simplicity. See [19] for more general
results.
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with n ∈ N?. We assume that P is a polynomial of degree n, that is α0 6= 0, and
that F(z,w) is holomorphic in a neighbourhood of (∞,0) in C2 with the condition
∂ mF
∂wm (z,0) = O(z−2), m ∈ N. (See exercise 3.1). We will add other assumptions to
guarantee that the ODE (5.4) has a single level 1 at infinity.

When assuming furthermore that αn 6= 0, what have been said in Sect. 5.1
can be applied as well for (5.4). The equation (5.4) has a unique formal solution
w̃0 ∈ C[[z−1]] and val w̃0 ≥ 2. The Newton polygon at infinity N∞(P0) associated

with the linear differential operator P0 = P(∂ )+
1
z

Q(∂ )− ∂F
∂w

(z, w̃0) deduced from

the operator P(∂ )+
1
z

Q(∂ )−F(z, ·) by linearisation at w̃0, has still a single non-

vertical side of slope −1 and the characteristic equation associated with this single
side remains the equation P(µ) = 0.

Since αn 6= 0, the roots of the characteristic equation do not vanish. We will also
assume that the polynomial

µ 7→ P(µ) =
n

∑
m=0

αn−mµ
m = α0(µ−µ1) · · ·(µ−µn)

has only simple roots µ = µi, i = 1, · · · ,n. The following definitions are adapted
from [3, 19].

Definition 5.2. Let {µi} be the set of the roots of the polynomial P(µ), and we set
λi =−µi, i = 1, · · · ,n. The complex numbers λ1, · · · ,λn are called the multipliers of
the ODE (5.4).
The ODE (5.4) is said to have a single level 1 at infinity when the multipliers are all
nonzero.
One says that the multipliers are non-resonant when they are rationally indepen-
dent, that is linearly independent over Z. The multipliers are positively resonant
when there exists kreson = (k1, · · · ,kn) ∈ Nn \ {0} so that λλλ .kreson = 0, where
λλλ = (λ1, · · · ,λn) ∈ (C?)n The number |kreson|+ 1 is the order of the resonance,
since the positive resonance brings semi-positively resonances, that is relationships
of the type λλλ .(kreson + e j) = λ j for any j ∈ [1,n].

We mention that the following constants are properly defined, since P has only
simple roots:

τi =
Q(−λi)

P′(−λi)
, i = 1, · · · ,n. (5.5)

From the theory of linear differential equations (see [34, 32], see also [4, 39]), we
notice that the linear equation
P(∂ )w+ 1

z Q(∂ )w = 0 has a formal general solution under the form

w(z) =
n

∑
i=1

vi(z)yi(z). (5.6)

In (5.6), yi(z)=Uie−λizz−τi , Ui ∈C, stands for the general solution of the differential

equation y′i +
(

λi +
τi

z

)
yi = 0, while vi ∈ C[[z−1]] is invertible and is determined

uniquely up to normalization.
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5.2.2.2 Companion system, prepared form

Formal integrals have more natural foundations when differential equations of order
one are considered. We therefore translate the ODE (5.4) into a one order ODE

of dimension n by introducing w =


w1
w2
...

wn

 =


w
w′
...

w(n−1)

. We get the companion

system
∂w+Aw = f(z,w), (5.7)

with A =


0 −1 · · · 0
...

. . . . . .
...

... 0 −1
αn
α0

+ βn
zα0
· · · · · · α1

α0
+ β1

zα0

 and f(z,w) =


0
...
0

F(z,w1)/α0

.

Since (5.4) has a unique formal solution w̃0 ∈ C[[z−1]], val w̃0 ≥ 2, we may re-
mark that (5.7) has a unique formal solution w̃0 ∈ Cn[[z−1]] as well, and in fact
w̃0 ∈ z−2(C[[z−1]])n.

Lemma 5.1. There exists T0(z) ∈ GLn(C{z−1}[z]) so that the meromorphic gauge
transform w = T0(z)v brings (5.7) into the prepared form

∂v+B0v = g(z,v), B0 =

λ1 +
τ1
z · · · 0

...
. . .

...
0 · · · λn +

τn
z

 , (5.8)

with g a Cn-valued function, holomorphic in a neighbourhood of (∞,0) and
g(z,v) = O(z−2)+O(‖v‖2) when z→ ∞ and v→ 0.
The prepared form (5.8) has a unique formal solution ṽ0 ∈ (C[[z−1]])n and
ṽ0 ∈ z−2(C[[z−1]])n.

Proof. The proof is based on classical ideas for linear ODEs (see [34, 32], see also
[4, 39, 15]). Looking at (5.6), we compare (5.7) with the linear equation

∂u+B0u = 0, B0 =

λ1 +
τ1
z · · · 0

...
. . .

...
0 · · · λn +

τn
z

= Λ +
1
z

L, (5.9)

whose general solution (holomorphic on C̃) is given in term of the fundamental
matrix solution z−Le−zΛ ,

u(z) = z−Le−zΛ U =⊕n
i=1z−τie−zλiU, U ∈ Cn. (5.10)

We remark that (
e−λ zz−τ

)(m)
= e−λ zz−τ

m

∑
j=0

(
m
j

)
(−λ )m− j (−τ) j

z j (5.11)

for (λ ,τ) ∈C2 and m ∈N, where (−τ) j = j!
(
−τ

j

)
mimics the Pochhammer sym-

bol:
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(−τ)0 = 1 and (−τ) j = (−1) j
τ(τ +1) · · ·

(
τ + j−1

)
for j ≥ 1. (5.12)

We thus set the meromorphic gauge transform w=T0(z)v with T0(z) ∈ GLn(C{z−1}[z])
of the form:

T0(z)=


1 · · · 1

−λ1− τ1
z · · · −λn− τn

z
...

...

∑
n−1
j=0

(
n−1

j

)
(−λ1)

n−1− j (−τ1) j
z j · · · ∑

n−1
j=0

(
n−1

j

)
(−λn)

n−1− j (−τn) j
z j

 .

(5.13)
By its very definition, this gauge transform brings (5.7) into the differential equation:

∂v = −
[
T−1

0 (∂T0)+T−1
0 AT0

]
v+T−1

0 f(z,T0v) (5.14)
= −B0v+g(z,v)

where g has the properties described in the lemma. The fact that (5.8) has a unique
formal solution ṽ0 ∈ (C[[z−1]])n is obvious. ut

Example 5.1. We have already seen that the companion system associated with (3.6)

is (3.9). The gauge transform w = T0(z)v, T0(z) =
(

1 1
−1+ 3

2z 1+ 3
2z

)
, brings (3.9)

into the prepared form:

∂v+
(

1− 3
2z 0

0 −1− 3
2z

)
v =

15
8z2

(
−1 −1
1 1

)
v+

1
2

(
−F(z,v1 + v2)
F(z,v1 + v2)

)
. (5.15)

Remark 5.1. Let us consider the action of the gauge transform y = T0(z)u on the
differential equation ∂u+B0u= 0. This differential equation is transformed into the
system ∂y + A0y = 0 with A0 = T0B0T−1

0 − (∂T0)T−1
0 of the form

A0 =


0 −1 · · · 0
...

. . . . . .
...

... 0 −1
pn(z) · · · · · · p1(z)

with pn, · · · , p1 ∈ C{z−1}, pn(z) = αn
α0

+ βn
zα0

+O(z−2),

· · · , p1(z) =
α1
α0

+ β1
zα0

+O(z−2). The system ∂y+A0y = 0 is the companion system
for the one-dimensional homogeneous ODE of order n,

∂
ny+ p1(z)∂ n−1y+ · · ·+ pn(z)y = 0, (5.16)

whose general solution is y(z) = ∑
n
i=1 Uie−λizz−τi , (U1, · · · ,Un) ∈ Cn.

5.2.2.3 Normal form, formal reduction

We have previously reduced the companion system (5.7) to a prepared form through
a meromorphic gauge transform. Under some conditions, one can go further, but
through formal transformations, in the spirit of the Poincaré-Dulac theorem [3] and
the classification up to formal conjugation.

Proposition 5.1. We consider the ODE (5.8) and we assume that the multipliers
λ1, · · · ,λn are non-resonant. Then there exists a formal transformation v = T̃ (z,u),
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T̃ (z,u) = ∑
k∈Nn

ukṽk(z), ṽk(z) ∈ (C[[z−1]])n, (5.17)

which formally transforms (5.8) into the linear normal form equation ∂u+B0u = 0.
In (5.17), ṽ0 stands for the unique formal solution of (5.8); for j = 1, . . . ,n, ṽe j is
uniquely determined when one prescribes its constant term to be equal to e j; then
the formal series ṽk are unique for |k|> 1.

We will see in the sequel how this proposition can be shown. Here, we rather
concentrate on its consequences.

One can refer to, e.g., [31, 5] for a proof that extend to possibly nilpotent cases (but with no
resonances), and to [19] for a very general frame.

We know that the general solution of the normal form ∂u + B0u = 0 is
u(z) =⊕n

i=1z−τie−zλi(tU), U = (U1, · · · ,Un) ∈ Cn. Through the action of the for-
mal transformation v = T̃ (z,u), this provides the following general formal solution
for the ODE (5.8):

ṽ(z,U) = ∑
k=(k1,··· ,kn)∈Nn

n

∏
i=1

(Uiz−τie−zλi)ki ṽk(z) = ∑
k∈Nn

Uke−λλλ .kzz−τττ.kṽk(z) (5.18)

with λλλ = (λ1, · · · ,λn) ∈ (C?)n and τττ = (τ1, · · · ,τn) ∈ Cn.

Definition 5.3. The formal series (5.18) is called the formal integral of (5.8).

Of course, one can obtain the formal integral w̃(z,U) of (5.7) as well, by the
gauge transform w̃ = T0(z)ṽ, with T0(z) given by (5.13). When finally returning to
the n-th order ODE (5.4) of dimension 1 we started with, one gets its formal integral.

Definition 5.4. We assume that the multipliers are non-resonant. The formal inte-
gral w̃(z,U) of the ODE (5.4) is defined by:

w̃(z,U) = ∑
k∈Nn

Uke−λλλ .kzz−τττ.kw̃k(z), w̃k(z) = ṽk(z).(1, · · · ,1) ∈ C[[z−1]],

= Φ̃(z,U1e−λ1zz−τ1 , · · · ,Une−λnzz−τn) (5.19)

with Φ̃(z,u) = ∑k∈Nn ukw̃k(z)∈C[[z−1,u]]. The formal transformation w = Φ̃(z,u)
formally transforms (5.4) into the normal form equation ∂u+B0u = 0.

The formal integral (5.19), thus depending on the maximal n free parame-
ters U = (U1, · · · ,Un) ∈ Cn, plays the role of the general formal solution for the
ODE (5.4) of order n. Formal integrals can be defined as well for difference and
differential-difference equations, see, e.g. [19, 31]. This notion has been enlarged
for nonlinear partial differential equations in [35].

Remark 5.2. Although working at the formal level, one may wonder what is the
chosen branch when we write z−τττ.k. As a matter of fact, this is not relevant at this
stage since moving from a determination to another one just translates into rescaling
the free parameter U.

Remark 5.3. Introducing Vk = Uke−λλλ .kzz−τττ.k, we remark the identity:

∂z
(
Vkw̃k

)
=

[(
∂z−

n

∑
i=1

(λi +
τi

z
)ui∂ui

)(
ukw̃k

)]
|u=V.
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Looking at the equality

w̃(z,U) = Φ̃(z,U1e−λ1zz−τ1 , · · · ,Une−λnzz−τn) (5.20)

and since the formal integral (5.19) solves the differential equation (5.4), one de-
duces that Φ̃ satisfies:

P
(

∂z−
n

∑
i=1

(λi +
τi

z
)ui∂ui

)
Φ̃ +

1
z

Q
(

∂z−
n

∑
i=1

(λi +
τi

z
)ui∂ui

)
Φ̃ = F(z,Φ̃). (5.21)

5.2.3 Formal integral, general considerations

Under convenient hypotheses, we have previously introduced the formal integral for
the ODE (5.4), that is a n-parameters formal expansion of the form

w(z,U) = ∑
k∈Nn

Uke−λλλ .kzz−τττ.kwk(z), λλλ ,τττ ∈ Cn, (5.22)

Let us start with (5.22) and investigate the conditions to impose on the wk’s in
order for (5.22) to be formally solution of (5.4).

We could start with (5.21) as well.

Using the identity (5.11) for m ∈ N, one obtains from (5.22):

w(m) = ∑
|k|≥0

Uk
m

∑
p=0

(
m
p

)
(e−λλλ .kzz−τττ.k)(p)w(m−p)

k

= ∑
|k|≥0

Uke−λλλ .kzz−τττ.kTk,m+1(wk)

where T0,m+1(w0) = w(m)
0 and, more generally for k ∈ N2,

Tk,m+1(wk) =
m

∑
p=0

(
m
p

)[ p

∑
j=0

(
p
j

)
(−λλλ .k)p− j (−τττ.k) j

z j

]
w(m−p)

k

=
m

∑
j=0

(
m
j

)
(−τττ.k) j

z j

[m− j

∑
q=0

(
m− j

q

)
(−λλλ .k)m− j−qw(q)

k

]
,

that is also

Tk,m+1(wk) =
m

∑
j=0

(
m
j

)
(−τττ.k) j

z j

[
(−λλλ .k+∂ )m− jwk

]
. (5.23)

In what follows we will simply write Tk,m+1 instead of Tk,m+1(wk). We intro-
duce the notation Vk = Uke−λλλ .kzz−τττ.k and we notice that for every k1,k2 ∈ Nn,
Vk1Vk2 = Vk1+k1 . On the one hand,

P(∂ )w =
∞

∑
k=0

Vk
[ n

∑
m=0

αn−mTk,m+1

]
= ∑
|k|≥0

Vk pk(∂ )wk (5.24)

where for |k| ≥ 0,
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pk(∂ ) =
n

∑
m=0

αn−m(−λλλ .k+∂ )m

+
n

∑
m=1

αn−m

{ m

∑
j=1

(
m
j

)
(−τττ.k) j

z j (−λλλ .k+∂ )m− j
}
.

In other words, for |k| ≥ 0,

pk(∂ ) = P(−λλλ .k+∂ )+
n

∑
j=1

1
z j

(
−τττ.k

j

)
P( j)(−λλλ .k+∂ ). (5.25)

Similarly

Q(∂ )w = ∑
|k|≥0

Vkqk(∂ )wk (5.26)

with

qk(∂ ) = Q(−λλλ .k+∂ )+
n−1

∑
j=1

1
z j

(
−τττ.k

j

)
Q( j)(−λλλ .k+∂ ). (5.27)

On the other hand we consider the Taylor expansion of F(z,w(z,U)) at w0,
namely

F(z,w) = F(z,w0)+ ∑
`≥1

(
∑|k|≥1 Vkwk

)`
`!

∂ `F(z,w0)

∂w`
. (5.28)

We observe that for every ` ∈ N?,(
∑
|k|≥1

Vkwk

)`
= ∑
|p|≥`

Vp
∑

p1+···+p`=p
|pi|≥1,1≤i≤`

wp1 · · ·wp` . (5.29)

As a result, equation (5.28) reads

F(z,w) = F(z,w0)+ ∑
`≥1
|p|≥`

Vp
∑

p1+···+p`=p
|pi|≥1,1≤i≤`

wp1 · · ·wp`
`!

∂ `F(z,w0)

∂w`
. (5.30)

Finally, plugging the formal expansion (5.22) into the differential equation (5.4),
using the identities (5.24), (5.26), (5.30) and identifying the powers Vk, one gets
the next lemma 5.2 which justifies the following definition.

Definition 5.5. For k ∈ Nn, we define

Pk(∂ ) = P(−λλλ .k+∂ ), (5.31)
Qk(∂ ) = −τττ.kP′(−λλλ .k+∂ )+Q(−λλλ .k+∂ )

Rk(∂ ) =
n−2

∑
j=0

1
z j

[(
−τττ.k
j+2

)
P( j+2)(−λλλ .k+∂ )+

(
−τττ.k
j+1

)
Q( j+1)(−λλλ .k+∂ )

]
.

(5.32)

For k ∈ Nn, we denote by Dk =Dk(w0) the linear differential operator
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Dk = Pk(∂ )+
1
z

Qk(∂ )+
1
z2 Rk−

∂F(z,w0)

∂w

where w0 satisfies P(∂ )w0 +
1
z

Q(∂ )w0 = F(z,w0).

For k ∈ Nn, we denote by Pk =Pk(w0) the linear differential operator

Pk = P(−λλλ .k+∂ )+
1
z

Q(−λλλ .k+∂ )− ∂F(z,w0)

∂w
. (5.33)

Lemma 5.2. The n-parameters formal expansion

w(z,U) = ∑
k∈Nn

Uke−λλλ .kzz−τττ.kwk(z) (5.34)

solves (5.4) if and only if :

P(∂ )w0 +
1
z

Q(∂ )w0 = F(z,w0), (5.35)

Deiwei = 0 (5.36)

with ei the i-th vector of the canonical base of Cn, and for |k| ≥ 2,

Dkwk = ∑
k1+···+k`=k
|ki|≥1, `≥2

wk1 · · ·wk`
`!

∂ `F(z,w0)

∂w`
. (5.37)

Remark 5.4. Notice that in lemma 5.2 we have neither supposed that

λλλ = (λ1, · · · ,λn) are the multipliers, nor that τττ =(τ1, · · · ,τn) are such that τi =
Q(−λi)

P′(−λi)
,

i = 1, · · · ,n. However, these conditions will come in the next section.

Example 5.2. We consider equation (3.6) where n = 2, P(∂ )= ∂ 2−1, Q(∂ ) =−3∂ .
Then, for every k ∈ N2,

Pk(∂ ) = ∂
2−2λλλ .k∂ +(λλλ .k)2−1, (5.38)

Qk(∂ ) = (3+2τττ.k)(−∂ +λλλ .k),
Rk(∂ ) = τττ.k(τττ.k+4).

In particular, taking λλλ = (1,−1) (the zeros of ζ 7→ P(−ζ )) and τττ =

(
−3

2
,−3

2

)
(we take the values given by (5.5)), then writing k = (k1,k2):

Pk(∂ ) = ∂
2−2(k1− k2)∂ +(k1− k2)

2−1, (5.39)
Qk(∂ ) = 3(1− k1− k2)(−∂ + k1− k2),

Rk(∂ ) =
9
4
(k1 + k2)

(
k1 + k2−

8
3

)
.

We eventually mention some identities for later purposes, the proof of which
being left as an exercise.

Lemma 5.3. The operators Pk and Dk given by definition 5.5 satisfy the identities:
for any k,k1,k2 ∈ Nn, e−λλλ .k1zPk1eλλλ .k1z = e−λλλ .k2zPk2eλλλ .k2z, z−τττ.kDk = Pkz−τττ.k

and
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(e−λλλ .k1zz−τττ.k1)Dk1(e
−λλλ .k1zz−τττ.k1)−1 = (e−λλλ .k2zz−τττ.k2)Dk2(e

−λλλ .k2zz−τττ.k2)−1.

Setting Wk = z−τττ.kwk for k∈Nn and the wk given by lemma 5.2, one has PeiWei = 0,
i = 1,2 while and for |k| ≥ 2,

PkWk = ∑
k1+···+k`=k
|ki|≥1, `≥2

Wk1 · · ·Wk`
`!

∂ `F(z,w0)

∂w`
. (5.40)

5.3 First Painlevé equation and transseries solutions

We partly describe in this section the contains of lemma 5.2 for the prepared form
equation (3.6) associated with the first Painlevé equation. Thus n = 2, P(∂ ) = ∂ 2−1,
Q(∂ ) =−3∂ and F(z,w) = f0(z)+ f1(z)w+ f2(z)w2. Also, we will for the moment
specialise our study to only one-parameter formal expansions, that is we will as-
sume that either U1 = 0 or U2 = 0 in (5.34). This study will be enough to get the
truncated solutions. We will keep on our study of the formal integral associated with
(3.6) in Sect. 5.4 where will we see the effects of resonances.

5.3.1 Transseries solution - statement

This section will be devoted to proving the following proposition.

Proposition 5.2. We consider the prepared ODE (3.6). We set λλλ = (λ1,λ2) = (1,−1)
where the λi’s are the multipliers, that is the roots of the polynomial ζ 7→ P(−ζ ).

We set τττ = (τ1,τ2) =

(
−3

2
,−3

2

)
, where τi =

Q(−λi)

P′(−λi)
, i = 1,2.

Then for each i = 1,2, there exists a formal one-parameter solution of (3.6) in the
graded algebra

⊕
k∈N

z−τike−λikzC[[z−1]] of the form:

w̃(z,Uei) =
∞

∑
k=0

Uke−λikzz−τikw̃kei(z), w̃kei ∈ C[[z−1]]. (5.41)

We have val w̃kei = 2(k− 1) and the formal series (5.41) is unique once one fixes
the normalization of w̃ei to be w̃ei(z) = 1 + O(z−1). Then w̃kei ∈ R[[z−1]] and

w̃kei(z) =
k

12k−1 z−2(k−1)(1+O(z−1)) for every k ≥ 1. Furthermore changing the

normalization of w̃ei is equivalent in rescaling the parameter U ∈ C. Eventually,
w̃ke1(z) = w̃ke2(−z) for every k ≥ 0.

Definition 5.6. The series (5.41) is called a formal transseries. The terms e−λikzz−τik

are (log-free) transmonomials. The formal series w̃kei are called the kei-th series of
the transseries. We set W̃kei = z−τikw̃kei .

Remark 5.5. The term “transseries” is due to Ecalle [20]. These are objects that are
widely used in resurgence theory, see, e.g. [9, 36, 28, 29]. More details on transseries
can be founded in [19, 20, 7, 8]. Transseries are also common objects in theoretical
physics : these are the so-called “multi-instanton expansions”, see e.g. [40, 25, 26,
27, 33, 24, 1, 16, 17, 18].
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In quantum mechanics or quantum field theory, an instanton action (the terminology of
which is due to Gerard ’t Hooft) is a classical solution of the equations of motion, with a
finite and non-zero action. A well-known instanton effect in quantum mechanics is given by
a particle in a double well potential. The tunneling effect provides a non-zero probability
that the particle crosses the potential barrier. This gives rise to a tunneling amplitude pro-
portionnal to the instanton e−S/h̄ where S is the instanton action, h̄ being the Planck constant
or the coupling constant. For the bound states, this translates into the fact that they can be
described at a formal level by a multi-instanton expansion, that is a transseries of the form
∑k≥0 Ẽk(h̄)e−kS/h̄ where the perturbative fluctuations Ẽk(h̄) are formal expansions with re-
spect to h̄. The bound states are deduced from the multi-instanton expansion by (median)
Laplace-Borel summation, see [38, 10, 11, 12, 13, 14, 22, 23].

For later use, we mention a lemma that result from proposition 5.2 and lemma 5.3.

Lemma 5.4. Under the conditions of proposition 5.2 and for any k ∈ N2, the (so-
called) general formal solution of the linear differential equation Pk(w̃0)W̃ = 0
is W̃ = eλλλ .kz

(
C1e−λ1zW̃e1 +C2e−λ2zW̃e2

)
, C1,C2 ∈ C. For any k ∈ N2 the (so-

called) general formal solution of the linear differential equation Dk(w̃0)w̃ = 0 is
w̃(z) = eλλλ .kzzτττ.k(C1e−λ1zW̃e1 +C2e−λ2zW̃e2

)
, C1,C2 ∈ C.

5.3.2 Transseries solution - proof

5.3.2.1 A useful lemma

We start with the following lemma which will be useful in the sequel.

Lemma 5.5. We suppose n,N ∈ N?. We consider the ordinary differential equation

P(∂ )w+
1
z

R(∂ )w = f̃ (z), f̃ (z) = fNz−N(1+O(z−1)) ∈ z−NC[[z−1]], fN 6= 0

with P(∂ ) = ∑
n
m=0 αn−m∂ m ∈ C[∂ ], αn 6= 0, R(∂ ) = ∑

n−1
m=0 γn−m(z)∂ m ∈ C[[z−1]][∂ ].

This ODE has a unique solution w̃ in C[[z−1]], moreover val w̃ = val f̃ and
w̃(z) = fN

P(0) z−N(1+O(z−1)).

Proof. In the valuation ring C[[z−1]] we consider the following map :

N : C[[z−1]]→ C[[z−1]]

w → 1
P(0)

[
f̃ (z)−

(
P(∂ )−P(0)

)
w− 1

z
R(∂ )w

]
.

(Remember that P(0) = αn is nonzero). From the hypotheses made one easily ob-
serves that N(C[[z−1]])⊂ z−1C[[z−1]] while, for every p ∈ N?,

if u,v ∈ z−pC[[z−1]], then N(u)−N(v) ∈ z−p−1C[[z−1]].

This means that N is contractive in C[[z−1]], thus the fixed point problem w = N(w)
has a unique solution w̃ = lim

p→∞
Np(0) in C[[z−1]]. Since N(0) = f̃ (z)/P(0) one gets

w̃(z) = fN
P(0) z−N(1+O(z−1)). ut
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5.3.2.2 Proof of proposition 5.2

We precise as an introduction that the assertion w̃kei ∈R[[z−1]] is just a consequence
of the realness of equation (3.6). The relationships w̃(0,k)(z) = w̃(k,0)(−z) for every
k ≥ 0, come from the property of equation (3.6) to be invariant under the change of
variable z 7→ −z and to the chosen normalization of w̃ei , i = 1,2.

5.3.2.3 The return of the formal solution

We remark that w0 = w(0,0) has to solve (5.35) which is nothing but the equation
(3.6) one started with. In particular we know that this equation has a unique formal
solution w̃0 ∈ C[[z−1]] which has been investigated in the previous chapters.
In what follows, one will always replace w0 by this formal solution w̃0. We mention
the following obvious fact, essentially due to the property that val w̃0 ≥ 2 and that
for every `= 0,1,2, ∂ `F(z,0)

∂w` ∈ z−2C{z−1}. (This is one place where it is interesting
to work with a “well-prepared” equation, see what we have done in Sect. 3.1 to get
(3.6) and exercise 3.1):

Lemma 5.6. If w̃0(z) = ∑l≥2 a0,lz−l ∈ C[[z−1]] is the formal solution of (3.6), then

for every ` = 0,1,2, ∂ `F(z,w̃0)
∂w` ∈ C[[z−1]] has valuation 2, and vanishes identically

for every ` ≥ 3. Also, ∂F(z,w̃0)
∂w = −4z−2 + z−2w̃0 is even and its coefficients are all

real negative, and ∂ 2F(z,w̃0)
∂w2 = z−2.

5.3.2.4 The cases |kei|= 1

Formula (5.36) with k = e1 provides

De1we1 = 0 (5.42)

where De1 = Pe1(∂ )+
1
z

Qe1(∂ )+
1
z2 Re1 −

∂F(z, w̃0)

∂w
with

Pe1(∂ ) = P(−λ1 +∂ ) = P(−λ1)+P′(−λ1)∂ +
P′′(−λ1)

2!
∂

2

Qe1(∂ ) = −τ1P′(−λ1 +∂ )+Q(−λ1 +∂ )

Re1 = τ1(τ1 +4)

Assuming that we1 ∈ C[[z−1]], one observes that the right-hand side of (5.42) has
valuation less or equal to (val we1)−2, because of lemma 5.6. In order to get a non
identically vanishing solution, one thus has to impose the condition P(−λ1) = 0.
Following our conventions, we take λ1 = 1.
The same reasoning leads to impose furthermore that −τ1P′(−λ1)+Q(−λ1) = 0,
thus τ1 =− 3

2 . Therefore, Pe1(∂ ) = ∂ 2−2∂ , Qe1(∂ ) = 0, Re1(∂ ) =−
15
4 . Symmetri-

cally for k = e2, one gets λ2 =−1, τ2 =−
3
2

as a necessary condition and

De2we2 = 0 (5.43)

where De2 = Pe2(∂ ) +
1
z Qe2(∂ ) +

1
z2 Re2 −

∂F(z,w̃0)
∂w whereas Pe2(∂ ) = ∂ 2 + 2∂ ,

Qe2(∂ ) = 0, Re2(∂ ) =−
15
4 .
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Fig. 5.2 The Newton polygon
at infinity N∞(De1 ) associ-
ated with the linear operator
(5.45).

10 2 3

−1

−2

Lemma 5.7. The linear homogeneous equations (5.42), (5.43) have both a one-
parameter family of formal solutions we1 = U1w̃e1 and we2 =U2w̃e2 in C[[z−1]],
where w̃e1 and w̃e2 are uniquely determined by their given normalization
w̃ei = 1+O(z−1). Moreover w̃ei ∈ R[[z−1]] and w̃e2(z) = w̃e1(−z). Furthemore, if
w̃0(z) = ∑l≥0 a0,lz−l and w̃e1(z) = ∑l≥0 ae1,lz

−l , the following quadratic recursion
relation is valid:

ae1,0 = 1,

ae1,l =
1
8l

(
−(2l−1)2ae1,l−1 +4

l−1

∑
p=0

ae1,pa0,l−p−1

)
, l = 1,2, · · · (5.44)

Proof. We only examine (5.42). We look at this equation in the space of normalized
formal series C[[z−1]], namely (∂ −2)∂we1 =

(
15
4

1
z2 +

∂F(z, w̃0)

∂w

)
we1

we1 ∈ C[[z−1]], we1 = 1+O(z−1).
(5.45)

We remark that the restriction of the derivation operator ∂ to the maximal ideal
z−1C[[z−1]] is a bijective operator between z−1C[[z−1]] and z−2C[[z−1]]; we denote
by ∂−1 the inverse operator, ∂→

z−1C[[z−1]] z−2C[[z−1]].←
∂−1

We transform (5.45) into the equation −2∂we1 =
(
−∂ 2 + 15

4
1
z2 +

∂F(z,w̃0)
∂w

)
we1 and

we see that the right-hand side of this equation belongs to z−2C[[z−1]] once we1
belongs to C[[z−1]], because of lemma 5.6 and to the choice of the coefficient τ1.
This means that the map

N : C[[z−1]]→ C[[z−1]]

we1 → 1− 1
2

∂
−1
(
−∂

2 +
15
4

1
z2 +

∂F(z, w̃0)

∂w

)
we1

is well defined and the problem (5.45) is equivalent to the fixed-point problem
we1 = N(we1). One easily checks that the map N is contractive in C[[z−1]] so that
the fixed point problem we1 = N(we1) has a unique solution w̃e1 in C[[z−1]].
From the fact that (5.42) is a homogeneous equation, one immediately concludes
that U1w̃e1 , U1 ∈ C, provides a one-parameter family of formal solutions.
The proof for the quadratic recursion relation (5.44) is left to the reader (see
also [24, 1]). ut
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Remark 5.6. 1. The Newton polygon at infinity N∞(De1) drawn on Fig. 5.2, has
one horizontal side that corresponds to the operator −2∂ . General nonsense in
asymptotic theory (see [32], or [6, 30]) provides the existence of the formal (nor-
malized) series solution w̃e1 . The other (normalized) formal solution associated
with the side of slope−1 is e2zw̃e2 (see lemma 5.4) which, in our frame, is already
incorporated in the other transseries solution.

2. From lemma 5.6 or (5.44), one easily shows that

w̃e1(z) = 1− 1
8

z−1 +
9

128
z−2− 341329

1920000
z−3 + · · ·

is a real formal expansion, with coefficients that alternate in sign.

5.3.2.5 The cases |kei| ≥ 2

Lemma 5.8. For any k = kei, i = 1,2 and k ≥ 2, equation (5.37) has a unique for-
mal solution wkei = w̃kei in C[[z−1]]. Moreover val w̃kei = 2(k−1).
Furthermore, when considering Uw̃ei instead of w̃ei for the solution of (5.36), then
the unique solution of (5.37) at rank k = kei, k≥ 2, is Ukw̃kei . Also, w̃kei ∈ R[[z−1]],

w̃kei(z) =
k

12k−1 z−2(k−1)(1+O(z−1)) and w̃(0,k)(z) = w̃(k,0)(−z) for every k ≥ 2.

Eventually, writing w̃ke1(z) = ∑l≥0 ake1,lz
−l , the coefficients are governed the fol-

lowing quadratic recursion relations, for every k ≥ 2:

ake1,0 = ake1,1 = 0,

(k2−1)ake1,l = k(3k−2l−1)ake1,l−1− 1
4 (3k−2l)2ake1,l−2

+∑
l−2
p=0

ake1,pa0,l−p−2 +
1
2 ∑

k1+k2=k
k1≥1,k2≥1

ak1e1,pak2e1,l−p−2

 , l = 2,3, · · ·

(5.46)

Proof. We only examine the case k = ke1, k ≥ 2.
The proof is done by induction on k. We first consider equation (5.37) for k = 2:

D2e1w2e1 =
w̃2

e1

2!
∂ 2F(z, w̃0)

∂w2 , (5.47)

with D2e1 = P2e1(∂ )+
1
z Q2e1(∂ )+

1
z2 R2e1 −

∂F(z,w̃0)
∂w . We know that P2e1(0) = 3 is

nonzero since, by (5.31), P2e1(∂ ) = P(−2λ1 +∂ ) = ∂ 2−4∂ +3. Using lemma 5.6,
one sees that lemma 5.5 can be applied to (5.47) and this provides a unique solution
w̃2e1 ∈ C[[z−1]]. Its valuation is 2 and explicit calculation gives:

w̃2e1(z) =
1
6

z−2− 11
72

z−3 +
53

192
z−4 + · · · , w̃2e2(z) = w̃2e1(−z).

One easily checks that replacing w̃e1 by Uw̃e1 implies changing w̃2e1 into U2w̃2e1 .
We now assume that the properties of lemma 5.8 are true for every 2≤ k ≤ K−1.
When considering equation (5.37) for K one gets :

DKe1wKe1 = ∑
k1+k2=K

k1≥1,k2≥1

w̃k1e1w̃k2e1

2!
∂ 2F(z, w̃0)

∂w2 , (5.48)
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with DKe1 =PKe1(∂ )+
1
z QKe1(∂ )+

1
z2 RKe1−

∂F(z,w̃0)
∂w , PKe1(∂ ) = ∂ 2−2K∂ +(K2−1).

One deduces the conclusion of lemma 5.8 at the rank K by the arguments used pre-
viously. For the valuation, observe that val w̃k1e1w̃k2e1 ≥ 2(k1−1)+2(k2−1) when
k1 + k2 = K, thus val w̃k1e1 w̃k2e1 ≥ 2(K−2). As a matter of fact, for every k ≥ 2,
w̃(k,0)(z) = bkz−2(K−1)(1+O(z−1)) with{

b1 = 1,
bk =

1
2(k−1)(k+1) ∑

k−1
p=1 bpbk−p, k ≥ 2,

which easily provides bk =
k

12k−1 by induction. The reader will easily check that the
recursive relations (5.46) are true. (See also [24, 1]). ut
Remark 5.7. Here again, we are not interested in the whole formal fundamen-
tal solutions of equations (5.47), (5.48), which incorporate the general solution
(e−λ1kzz−τ1k)−1

(
C1e−λ1zz−τ1w̃e1 +C2e−λ2zz−τ2w̃e2

)
of the associated homogeneous

linear ODEs D(k,0)w = 0 (cf. lemma 5.4). Taking into account the term (· · ·)w̃e1
would imply a rescaling of U1. The other term (· · ·)w̃e2 concerns the other transseries.

5.4 Formal integral for the first Painlevé equation

We made general considerations on formal integrals in Sect. 5.2. We started the
study of the formal integral for the prepared equation (3.6) associated with the first
Painlevé equation in Sect. 5.3 : this gave us the transseries described by proposition
5.2. When no resonances occur, one gets with quite similar arguments the formal
integral. However, this is not that simple for the first Painlevé equation where we
have to cope with resonances.

5.4.1 Notations and preliminary results

5.4.1.1 Notations

It will be useful for our purpose to introduce the following notations:

Definition 5.7. For any n ∈ N?, we set n = n(1,1) and

Ξn,0 = {k = (k1,k2) ∈ N2 \{0} | k1 < n or k2 < n}∪{n}.

We also set Ξ0,0 = {(0,0)}.
Example 5.3. Ξ1,0 = (N?×{0})∪ ({0}×N?)∪{(1,1)},
Ξ2,0 = (N?×{0,1})∪ ({0,1}×N?)∪{(2,2)}.
Notice that for every n ∈ N, Ξn+1,0 \Ξn,0 = n+Ξ1,0.

5.4.1.2 Resonances : first consequences

Equation (3.6) has the feature to have positively resonant multipliers λ1 = 1,
λ2 = −1 because λλλ .n = 0, for every n ∈ N? (see definition 5.2). This brings semi-
positively resonances, the cases of semi-positive resonances being all described by
λ1 = λλλ .(n+ e1) and λ2 = λλλ .(n+ e2), for every n ∈ N?.
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We have already seen (proposition 5.2) that these properties have no consequence
for the transseries but, as we shall see, this produces new phenomena when the
formal integral is concerned, these being essentially consequences of the following
fact, derived from lemma 5.3.

Lemma 5.9. For every n ∈ N, k ∈ N2, the following identities are satisfied:

Pn+k =Pk, Dn+k = zτττ.nDkz−τττ.n, τττ.n =−3n.

5.4.1.3 Preliminary lemmas

In a moment, we will have to deal with formal expansions of the type
p

∑
l=0

logl(z) f̃l(z),

p ∈ N, with the f̃l’s in C[[z−1]].

Definition 5.8. We equip the graded algebra
⊕
l∈N

logl(z)C[[z−1]] with the valuation

val defined by: val

(
∑

l
logl(z) f̃l

)
= min

l
{val f̃l}.

Lemma 5.10. We suppose n,N ∈ N? and p ∈ N. We consider the ordinary differen-
tial equation

P(∂ )w+
1
z

R(∂ )w = f̃ (z), f̃ (z) ∈
p⊕

l=0

logl(z)C[[z−1]], (5.49)

P(∂ ) =
n

∑
m=0

αn−m∂
m ∈ C[∂ ], αn 6= 0, R(∂ ) =

n−1

∑
m=0

γn−m(z)∂ m ∈ C[[z−1]][∂ ]

Then (5.49) has a unique solution w̃ ∈
p⊕

l=0

logl(z)C[[z−1]] and val w̃ = val f̃ . More-

over, if f̃ = ∑
p
l=0 logl(z) f̃l and w̃ = ∑

p
l=0 logl(z)w̃l , then:

1. w̃p solves the ODE: P(∂ )w+
1
z

R(∂ )w = f̃p;

2. if val f̃p < val ∑
p−1
l=0 logl(z) f̃l then val w̃p < val ∑

p−1
l=0 logl(z)w̃l .

Proof. One easily sees that the arguments used for the proof of lemma 5.5 can be

extended, when observing that val ∂

(
∑

l
logl(z) f̃l

)
≤ val

(
∑

l
logl(z) f̃l

)
+1. ut

We have seen in lemma 5.7 that the operators Dei , i = 1,2, have specific be-
haviours. This is the purpose of the following lemma.

Lemma 5.11. We suppose p ∈ N and i ∈ {1,2}. We assume that
f̃ = ∑

p
l=0 logl(z) f̃l ∈

⊕p
l=0 logl(z)C[[z−1]] satisfies the conditions:

1. val f̃p = 1, f̃p = fp1z−1(1+0(z−1)), fp1 6= 0

2. val
(

∑
p−1
l=0 logl(z) f̃l

)
≥ 2.

Then the equation Deiw = f̃ has a unique solution w̃ = ∑
p+1
l=0 logl(z)w̃l in⊕p+1

l=0 logl(z)C[[z−1]] that satisfies the condition val
(
∑

p
l=0 logl(z)w̃l

)
≥ 1. Moreover
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w̃p+1 =
fp1

(p+1)P′(−λi)
w̃ei .

Otherwise, the general solution of the ODE Deiw = f̃ in
⊕p+1

l=0 logl(z)C[[z−1]] is of
the form w = w̃+Uw̃ei where U ∈ C.

Proof. We examine the case i = 1 only. The ODE De1w = f̃ is equivalent to the
equation :

P′(−λ1)∂w = f̃ +
(
−∂

2 +
15
4

1
z2 +

∂F(z, w̃0)

∂w

)
w, P′(−λ1) =−2.

By arguments already used in the proof of lemma 5.7, this problem amounts to
looking for a formal solution which satisfies the fixed-point problem

w =U(z)+
1

P′(−λ1)
∂
−1
(
−∂

2 +
15
4

1
z2 +

∂F(z, w̃0)

∂w

)
w

where U(z) = ∂
−1

(
f̃

P′(−λ1)

)
=

fp1
(p+1)P′(−λ1)

logp+1(z) +
p

∑
l=0

logl(z)O(z−1).

Notice that we take the primitive with no constant term. This fixed-point problem
has a unique formal solution under the form

w̃ =
fp1

(p+1)P′(−λ1)
w̃ei logp+1(z)+

p

∑
l=0

logl(z)w̃l

and val
(
∑

p
l=0 logl(z)w̃l

)
≥ 1. Eventually one can add to this particular solution any

solution of the homogeneous equation Deiw = 0, that is any term of the form Uw̃ei

with U ∈ C. ut

5.4.2 Painlevé I: formal integral

We are now in position to detail the formal integral associated with the first Painlevé
equation.

Theorem 5.1. We consider the ODE (3.6). Let be λλλ = (λ1,λ2) = (1,−1) where the

λi’s are the multipliers, and τττ = (τ1,τ2) =

(
−3

2
,−3

2

)
, τi =

Q(−λi)

P′(−λi)
, i = 1,2. We

set Vk = Uke−λλλ .kzz−τττ.k for any k ∈ N2 and any U = (U1,U2) ∈ C2. We write
n = n(1,1) for any n ∈ N.
There exists a two-parameter formal solution of (3.6), freely depending on U ∈ C2,
of the form

w̃(z,U) = w̃0(z)+
∞

∑
n=0

∑
k∈Ξn+1,0\Ξn,0

Vkw̃k(z), (5.50)

and uniquely determined by the following conditions:

1. w̃0 ∈ C[[z−1]];

2. w̃k =
n

∑
l=0

logl(z)w̃[l]
k ∈

n⊕
l=0

logl(z)C[[z−1]], for every k ∈ Ξn+1,0 \Ξn,0, n ∈ N;

3. for i = 1,2, w̃ei satisfies w̃ei(z) = 1+O(z−1);
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4. for every n ∈ N? and i = 1,2, w̃n+ei = ∑
n
l=0 logl(z)w̃[l]

n+ei
satisfies

val w̃[n]
n+e1

< val
(

∑
n−1
l=0 logl(z)w̃[l]

n+ei

)
.

Moreover, the following properties are satisfied:

5. changing the normalization of w̃ei , i = 1,2, is equivalent to rescaling the param-
eter U ∈ C2;

6. for every n ∈ N and every k ∈ Ξn+1,0 \Ξn,0, w̃k ∈
n⊕

l=0

logl(z)R[[z−1]]. Further-

more w̃[l]
(k1,k2)

(z) = w̃[l]
(k2,k1)

(−z) for every l ∈ [0,n];
7. for every n ∈ N? and every k ∈ Ξn+1,0 \Ξn,0,

w̃k =
n

∑
l=0

1
l!
(κκκ.k)l zτ.l logl(z)w̃[0]

k−l (5.51)

where κκκ = (κ1,κ2) = (
5

12
,− 5

12
) is defined by:

κi =
a2

P′(−λi)

(
1

P(0)
+

1
2!

1
P(−2λi)

)
=

5
12

λi, i = 1,2, (5.52)

whereas a is given by
∂ 2F(z,0)

∂w2 = az−2 + o(z−2). As a consequence, for every

n ∈ N?, w̃n ∈ R[[z−1]] ;
8. for every k ∈ N2 \{0}, val w̃[0]

k = 2(|k|−1).

Proof. Once for all:

• the property 5. is easily derived by an argument of homogeneity;
• the realness and eveness in property 6. are just consequences of the realness of

equation (3.6) and its property of being be invariant under the change of variable
z 7→ −z, and to the chosen normalizations.

In what follows, we investigate the terms under the form w̃k with k ∈ Ξn+1,0 \Ξn,0
and n ∈ N. We first look at what happens when n = 0 and n = 1, step by step so as
to draw some conclusions, then we complete the proof by induction on n.

Case n = 0 and k = 1 This is the first case where a resonance appears. However,
this case yields no surprise. Indeed, equation (5.37) for k = 1 reads

P1(∂ )w1 +
1
z

Q1(∂ )w1 =

(
− 1

z2 R1 +
∂F(z, w̃0)

∂w

)
w1

+ w̃e1w̃e2

∂ 2F(z, w̃0)

∂w2 (5.53)

with P1(∂ ) = P0(∂ ) = ∂
2− 1. Therefore lemma 5.5 can be applied and one gets a

unique solution w̃1 ∈C[[z−1]] with, moreover, val w̃1 = 2 and w̃1(z) =
a

P(0)
z−2 +o(z−2)

where a = 1 is given by: ∂ 2F(z,0)
∂w2 = az−2 +o(z−2).

Explicit calculation yields: w̃1(z) =−z−2− 9
8

z−4− 902139
80000

z−6−·· ·.

Cases n = 1 and k ∈ Ξ2,0 \Ξ1,0



106 5 Transseries and formal integral for the first Painlevé equation

Cases k = 1+ ei, i = 1,2 These are the first cases of semi-positive resonances and
are more serious.

Let us concentrate on the case k = 1+ e1 for which equation (5.37) is

D1+e1w1+e1 = (w̃1w̃e1 + w̃2e1w̃e2)
∂ 2F(z, w̃0)

∂w2 ,

that is also, from lemma 5.9 and proposition 5.2,

De1(z
3w1+e1) = g̃1+e1 , (5.54)

g̃1+e1 = z3 (w̃1w̃e1 + w̃2e1w̃e2)
∂ 2F(z, w̃0)

∂w2

=

(
1

P(0)
+

1
2!

1
P(−2λ1)

)
a2z−1 +O(z−2)

= −5
6

z−1 +O(z−2).

The conditions of application of lemma 5.11 are fulfilled: equation (5.54) has a one-
parameter family of formal solutions, depending on U[1],1 ∈ C, of the form

w1+e1 = w̃1+e1 +U[1],1z−3w̃e1 , w̃1+e1 = w̃[1]
1+e1

log(z)+ w̃[0]
1+e1

,

w̃[1]
1+e1

= κ1z−3w̃e1 , val w̃[0]
1+e1
≥ 4.

κ1 =
a2

P′(−λ1)

(
1

P(0) +
1
2!

1
P(−2λ1)

)
= 5

12 .

(5.55)

Explicitly,

w̃[0]
1+e1

(z) =
11
72

z−4− 197
576

z−5 +
23903
82944

z−6−·· ·

Also remark that the property val w̃[0]
1+e1
≥ 4 characterizes the particular solution

w̃1+e1 among the one-parameter family of solutions.
The case k = 1+ei is deduced from the above result from the invariance of (3.6)

under the change of variable z 7→ −z. One gets a one-parameter family of formal
solutions, depending on U[1],2 ∈ C, of the form

w1+e2 = w̃1+e2 +U[1],2w̃e2 , w̃1+e2 = w̃[1]
1+e2

log(z)+ w̃[0]
1+e2

,

w̃[1]
1+e2

(z) = w̃[1]
1+e1

(−z) = κ2z−3w̃e2(z), w̃[0]
1+e2

(z) = w̃[0]
1+e1

(−z)

κ2 =
a2

P′(−λ2)

(
1

P(0) +
1
2!

1
P(−2λ2)

)
=− 5

12 .

(5.56)

In the sequel, we fix U[1],1 = U[1],2 = 0, that is we only consider the (well and
uniquely defined) particular solutions w̃1+ei , i = 1,2.

We stress that adding terms of the form U[1],1w̃e1 and U[1],2w̃e2 has the effect to rescaling
the parameter (U1,U2). In particular, changing the branch of the log has non consequence
for the formal integral.

Cases k = 1+kei One step further, we consider the case k = 1+2ei. We take i = 1
only for simplicity. From (5.37) and lemma 5.9, we get:

(5.57)

D2e1(z
3w1+2e1) = z3 (w̃1+e1w̃e1 + w̃2e1w̃1 + w̃3e1w̃e2

) ∂ 2F(z, w̃0)

∂w2 .
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By proposition 5.2 and the above result, the right-hand side of equation (5.57) is
a formal series expansion of the type f̃ = f̃ [1] log(z) + f̃ [0] with val f̃ [1] = 2 and
val f̃ [0] = 3. Applying lemma 5.10, we get for (5.57) a unique formal solution of the
form w̃1+2e1 = w̃[1]

1+2e1
log(z)+ w̃[0]

1+2e1
∈
⊕1

l=0 logl(z)C[[z−1]] with val w̃[1]
1+2e1

= 5

and val w̃[0]
1+2e1

= 6. Moreover, w̃[1]
1+2e1

solves the ODE

D2e1(z
3w[1]

1+2e1
) = z3w̃[1]

1+e1
w̃e1

∂ 2F(z, w̃0)

∂w2

= κ1w̃2
e1

∂ 2F(z, w̃0)

∂w2 .

Comparing to (5.47), one concludes that

w̃1+2e1 = w̃[1]
1+2e1

log(z)+ w̃[0]
1+2e1

,

w̃[1]
1+2e1

= 2κ1z−3w̃2e1 , val w̃[0]
1+2e1

= 6.

We now reason by induction, assuming that for every k ∈ [2,K−1] with K ≥ 3, one
has

w̃1+ke1 = w̃[1]
1+ke1

log(z)+ w̃[0]
1+ke1

,

w̃[1]
1+ke1

= kκ1z−3w̃ke1 , val w̃[0]
1+ke1

= 2(k+1).

Then, by (5.37) and lemma 5.9,

DKe1(z
3w̃1+Ke1) = z3

∑
k1+k2=1+Ke1
|k1|≥1, |k2|≥1

w̃k1w̃k2

2
∂ 2F(z,w0)

∂w2 (5.58)

= z3
∑

k1+k2=K
k1≥1,k2≥1

w̃1+k1e1w̃k2e1

∂ 2F(z,w0)

∂w2

+ z3 (w̃1w̃Ke1 + w̃(1+K)e1 w̃e2

) ∂ 2F(z,w0)

∂w2

With the above reasoning, one gets a unique solution
w̃1+Ke1 = w̃[1]

1+Ke1
log(z)+ w̃[0]

1+Ke1
∈
⊕1

l=0 logl(z)C[[z−1]] where w̃[1]
1+Ke1

solves the
ODE

DKe1(z
3w̃[1]

1+Ke1
) = κ1 ∑

k1+k2=K
k1≥1,k2≥1

k1w̃k1e1w̃k2e1

∂ 2F(z,w0)

∂w2

= Kκ1 ∑
k1+k2=K

k1≥1,k2≥1

w̃k1e1w̃k2e1

2
∂ 2F(z,w0)

∂w2

Comparing to (5.48), one concludes that

w̃1+Ke1 = w̃[1]
1+Ke1

log(z)+ w̃[0]
1+Ke1

,

w̃[1]
1+Ke1

= Kκ1z−3w̃Ke1 , val w̃[0]
1+Ke1

= 2(K +1).

Case k = (2,2) What remains to do when k ∈ Ξ2,0 \Ξ1,0 is to examine the case
k = (2,2). By (5.37) and lemma 5.9,
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D1(z3w2) =

z3
(
w̃1+e1w̃e2 + w̃1+e2w̃e1 + w̃2e1w̃2e2 +

1
2 w̃1w̃1

)
∂ 2F(z,w̃0)

∂w2 .
(5.59)

We observe from (5.55) and (5.56) that

w̃[1]
1+e1

w̃e2 + w̃[1]
1+e2

w̃e1 = κ1z−3w̃e1w̃e2 +κ2z−3w̃e2w̃e1 = 0.

Therefore the log-term disappears in the right-hand side of (5.59) as a consequence
of the symmetries of the problem. Moreover

val(w̃[0]
1+e1

w̃e2 + w̃[0]
1+e2

w̃e1 + w̃2e1w̃2e2 +
1
2

w̃1w̃1)≥ 4.

By lemma 5.10, we get w̃2 ∈C[[z−1]] with val w̃2 = 6. Explicit calculation provides:

w̃2(z) =−
5
6

1
z6 −

2177
432

1
z8 −

5288521
54000

1
z10 + · · · .

Induction We assume that N is an integer ≥ 2 and we suppose that the prop-
erties announced in theorem 5.1 are true for any integer n ∈ [0,N − 1] and any
k ∈ Ξn+1,0 \Ξn,0.

We notice on the one hand that ΞN+1,0 \ΞN,0 = 1+ΞN,0 \ΞN−1,0. On the other
hand, for every k ∈ ΞN,0 \ΞN−1,0,

D1+k(w̃1+k) = ∑
k1+k2=1+k
|k1|≥1, |k2|≥1

w̃k1w̃k2

2
∂ 2F(z,w0)

∂w2 (5.60)

We set X = log(z) and we consider X as an indeterminate. The right-hand side of
(5.60) is of the form f̃ = ∑ f̃ [l]X l with

∂X f̃ = ∂X ∑
k1+k2=1+k
|k1|≥1, |k2|≥1

w̃k1w̃k2

2
∂ 2F(z,w0)

∂w2

= ∑
k1+k2=1+k
|k1|≥1, |k2|≥1

(∂X w̃k1)w̃k2 + w̃k1(∂X w̃k2)

2
∂ 2F(z,w0)

∂w2 .

Using the induction hypothesis, when 1+k1 ∈ Ξn+1,0 \Ξn,0, for any n ∈ [0,N−1],

∂X

(
n

∑
l=1

w̃[l]
1+k1

X l

)
= (κκκ.k1)z−3

n−1

∑
l=0

w̃[l]
k1

X l ,

that is ∂X w̃1+k1 = (κκκ.k1)z−3w̃k1 . Therefore:

∂X f̃ = z−3
∑

k1+k2=k
|k1|≥1, |k2|≥1

(κκκ.k1)w̃k1 w̃k2

∂ 2F(z,w0)

∂w2

= (κκκ.k)z−3
∑

k1+k2=k
|k1|≥1, |k2|≥1

w̃k1w̃k2

2
∂ 2F(z,w0)

∂w2 .

Thus ∂X f̃ = (κκκ.k)z−3Dk(w̃k) and (5.60) provides:

∂X

(
Dk(z3w̃1+k)

)
= (κκκ.k)Dk(w̃k).
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Observing that ∂XDk∂
−1
X = Dk, one easily gets w̃1+k either from lemma 5.11 or

lemma 5.10, with w̃1+k = (κκκ.k)z−3
∂
−1
X w̃k.

The property for w̃n+1 is easy and is left to the reader. This ends the proof of theorem
5.1. ut

Definition 5.9. The two-parameter formal solution defined by theorem 5.1 is the
formal integral of the prepared ODE (3.6) associated with the first Painlevé equa-
tion. The coefficients λi, τi and κi, i = 1,2, are the formal invariants.
The formal series w̃[0]

k are called the k-th series of the formal integral. We set
W̃ [0]

k = z−τττ.kw̃[0]
k and W̃k = z−τττ.kw̃k for any k ∈ N2.

Remark 5.8. Theorem 5.1 can be compared to [24] and specially to [1], where the
calculations made there translate into ours up to renormalization. We also mention
obvious links between Theorem 5.1 and the instanton-type solutions of Kawai et al
[28, 2].

Definition 5.10. For any k∈N2, one denotes by Ek and Fk the following operators:

Ek =
κκκ.k
z4 P′(∂ −λλλ .k)+

κκκ.k
z5

(
Q′(∂ −λλλ .k)− τ.(2k−1)+1

2!
P′′(∂ −λλλ .k)

)
= 2

κκκ.k
z4 (∂ −λλλ .k)− κκκ.k

z5 (τ.(2k−1)+4) ,

Fk =
1
2!

(κκκ.k)2

z8 P′′(∂ −λλλ .k) =
(κκκ.k)2

z8 .

We need hardly mention the analogue of lemma 5.9.

Lemma 5.12. For every n ∈ N, k ∈ N2,

En+k = zτττ.nEkz−τττ.n, Fn+k = zτττ.nFkz−τττ.n.

We finally give a corollary stemming from theorem 5.1.

Corollary 5.1. The formal integral (5.50) associated with the prepared ODE (3.6)
can be written under the form:

w̃(z,U) = ∑
k∈N2

Vkw̃[0]
k , Vk = Uke−(λλλ .k)z+(κκκ.k)U1 log(z)z−τττ.k. (5.61)

Equivalently, w̃(z,U)= Φ̃(z,U1e−λ1z−(τ1−κ1U1) log(z),U2e−λ2z−(τ2−κ2U1) log(z)) where
Φ̃(z,u) = ∑k∈N2 ukw̃[0]

k (z) ∈ C[[z−1,u]] is solution of the equation:

P
(

∂z−
2

∑
i=1

(λi+
τi−κiu1

z
)ui∂ui

)
Φ̃+

1
z

Q
(

∂z−
2

∑
i=1

(λi+
τi−κiu1

z
)ui∂ui

)
Φ̃ =F(z,Φ̃).

(5.62)
The formal series w̃[0]

k ∈ z−2|k|+2R[[z−1]] satisfy:

• for any k ∈ Ξ1,0 \Ξ0,0, Dkw̃[0]
k = ∑

k1+k2=k
|ki|≥1

w[0]
k1

w[0]
k2

2!
∂ 2F(z, w̃0)

∂w2 ;

• for any k ∈ Ξ2,0 \Ξ1,0, Dkw̃[0]
k +Ekw̃[0]

k−1 = ∑
k1+k2=k
|ki|≥1

w[0]
k1

w[0]
k2

2!
∂ 2F(z, w̃0)

∂w2 ;
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• otherwise, Dkw̃[0]
k +Ekw̃[0]

k−1 +Fkw̃[0]
k−2 = ∑

k1+k2=k
|ki|≥1

w[0]
k1

w[0]
k2

2!
∂ 2F(z, w̃0)

∂w2 ;

Proof. Let us examine (5.50) more closely. The formal integral can be written as
follows:

w̃(z,U) =
∞

∑
n=0

Vnw̃n(z)+ ∑
i=1,2

∞

∑
k=1

∞

∑
n=0

Vn+keiw̃n+kei(z), (5.63)

that is we consider the sums along the direction given by the vector (1,1) that de-
termines the resonance. We set Tk = Uke−(λλλ .k)z+(κκκ.k)U1 log(z)z−τττ.k.
For the first sum we know that each w̃n(z) belongs to C[[z−1]] and
∑

∞
n=0 Vnw̃n = ∑

∞
n=0 Tnw̃n because κ.n = 0.

We now look at the other sums and we use the relations given by (5.51). We get for
i = 1,2,

∞

∑
k=1

∞

∑
n=0

Vn+keiw̃n+kei =
∞

∑
k=1

Vkei
∞

∑
n=0

Vn
n

∑
l=0

1
l!
(
κikz−3 log(z)

)l
w̃[0]

n−l+kei

=
∞

∑
n=0

Vn
∞

∑
k=1

Vkeie(κikU1 log(z))w̃[0]
n+kei

.

=
∞

∑
n=0

∞

∑
k=1

Tn+keiw̃[0]
n+kei

.

The equation (5.62) is obtained by the arguments developed in remark 5.3. The
reader will check that equation (5.62) is equivalent to the given hierarchy of equa-
tions. ut

Let us write u1(z) =U1e−λ1z−(τ1−κ1U1) log(z), u2(z) =U2e−λ2z−(τ2−κ2U1) log(z) and
observe that t(u1,u2) provides the general analytic solution for a non linear differ-
ential equation that only depends on the formal invariants:

∂

(
u1
u2

)
+

(
λ1 +

τ1
z 0

0 λ2 +
τ2
z

)(
u1
u2

)
=

( κ1
z4 u1u2 0

0 κ2
z4 u1u2

)(
u1
u2

)
. (5.64)

This means that corollary 5.1 can be written in term of formal classification and of
(canonical) normal form:

Corollary 5.2. There exists a formal transformation w = Φ̃(z,u) of the form

Φ̃(z,u) = ∑
k∈N2

ukw̃[0]
k (z), w̃[0]

k ∈ C[[z−1]], (5.65)

that formally transforms the prepared ODE (3.6) into the normal form equation:

∂u+B0(z)u = B1
(
z,u
)
u (5.66)

B0 =

(
λ1 +

τ1
z 0

0 λ2 +
τ2
z

)
, B1(z,u) =

u1

z4

(
κ1 0
0 κ2

)
, u1 = u1u2.

5.5 Comments

Analogues of proposition 5.1 can be stated for differential equations, resp. differ-
ence equations, of order 1 and dimension n, with one level and no resonance, given
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in prepared form :

∂v+B0(z)v = g(z,v) (5.67)

with B0(z) =
⊕

j

(
λ jIn j + z−1M j

)
, ∑ j n j = n, resp.

v(z+1) = B0(z)v(z)+g(z,v) (5.68)

with B0(z) =
⊕

j

e−λ jz(1+z−1)M j . In each case, there exists a formal transformation

of the type v = T̃ (z,u), T̃ (z,u) = ∑k∈Nn ukṽk(z), ṽk(z) ∈ Cn[[z−1]] that brings the
equation to the linear normal form ∂u+B0(z)u = 0, resp. u(z+1) = B0(z)u(z).

To be correct, the upshot for difference equations is more subtle.

This property is still valid for differential equations with more than one level, see
[31, 5, 8] and references therein. In particular, the whole set of formal invariants is
already given by the linear part (in Jordan form) of the equation.

When resonances occur and as we saw with the first Painlevé equation, the nor-
mal form equation is nonlinear and incorporates new formal invariants. This is es-
sentially a consequence of the Poincaré-Dulac theorem [3]; for instance in (5.66),
one recognizes the effect of the positively resonance of order 3 with the resonances
monomials u2

1u2 and u1u2
2. The classification is detailed in [19], see also [21] where

the notion of (so-called) moulds and arborification are used (a good introduction of
which is [37]).

Acknowledgements I am indebted to my student Julie Belpaume for helping me to working out
this chapter. I thank Jean Ecalle for interesting discussions on phenomena induced by resonances.
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28. T. Kawai, Y. Takei, WKB analysis of Painlevé transcendents with a large parameter. I. Adv.
Math. 118 (1996), no. 1, 1-33.

29. T. Kawai, Y. Takei, WKB analysis of higher order Painlevé equations with a large parameter.
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Poincaré Sect. A (N.S.) 39 (1983), no. 3, 211-338.

39. W. Wasow, Asymptotic expansions for ODE. Reprint of the 1965 edition. Robert E. Krieger
Publishing Co., Huntington, N.Y., 1976.

40. J. Zinn-Justin, Quantum field theory and critical phenomena. Oxford Univ. Press (1989).



Chapter 6
Truncated solutions for the first Painlevé
equation

Abstract In the previous chapters, we studied the unique formal solution of the
first Painlevé equation then we introduced its formal integral. In this chapter, we
show that formal series components of the formal integral are 1-Gevrey and their
minors have analytic properties quite similar to those for the minor of the formal
series solution we started with (Sect. 6.1). We then make a focus on the transseries
solution and we show their Borel-Laplace summability (Sect. 6.2). This provides
the truncated solutions by Borel-Laplace summation (Sect. 6.4).

6.1 Borel-Laplace summability of the k-th series and beyond

We described with theorem 5.1 and its corollary 5.1 the formal integral
w̃(z,U) = ∑k∈N2 Vkw̃[0]

k associated with the first Painlevé equation. Our goal in this
section is mainly to show the following assertion.

Theorem 6.1. For every k ∈ N2, the k-th series w̃[0]
k is 1-Gevrey, its minor ŵ[0]

k de-

fines a holomorphic function on
•
R(0) with at most exponential growth of order 1 at

infinity. Moreover, ŵ[0]
k can be analytically continued to the Riemann surface R(1),

with at most exponential growth of order 1 at infinity on R(1).

We already know by theorem 3.3 and theorem 4.2 that ŵ0 = ŵ[0]
0 enjoyes the

above properties. Our task comes down to studying the other k-th series. This is
what we do in what follows and we start with some preliminaries.

6.1.1 Preliminary results

In what follows we use a notation introduced in definition 5.5.

Lemma 6.1. We set P(∂ ) = ∂ 2 − 1 and for every k ∈ N2, Pk(∂ ) = P(−λλλ .k+∂ )
with λλλ =(λ1,λ2)= (1,−1). For i= 1,2, we denote by P̃ei(∂ ) the operator defined by
Pei(∂ ) = P̃ei(∂ )∂ so that P̃ei(−λi) 6= 0. Then, for any ρ ∈]0,1[, there exists Mρ,(0) > 0
such that, for every ζ ∈ C\

⋃
m∈Z?

D(m,mρ) :

1. for i = 1,2,
∣∣∣ 1
P̃ei(−ζ )

∣∣∣≤Mρ,(0);

113
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2. for every k ∈ Ξ1,0 with |k| ≥ 2, for m = 0,1,
∣∣∣ (ζ +λλλ .k)m

Pk(−ζ )

∣∣∣ ≤ Mρ,(0)

|k|−1
and, for

k 6= (1,1),
∣∣∣ 1
Pk(−ζ )

∣∣∣≤ M2
ρ,(0)

|k|2−1
.

Moreover one can choose Mρ,(0) =
1
ρ

.

Proof. We only examine the case k ∈ Ξ1,0 \ {(1,1)} with |k| > 1. With no loss of
generality, we can assume that k = (k,0) with k ≥ 2. Thus
Pk(−ζ ) = (ζ + k−1)(ζ + k+1), ζ + λλλ .k = ζ + k and we notice that
|ζ + k−1| ≥ (k−1)ρ and |ζ + k + 1| ≥ (k + 1)ρ for ζ ∈ C \

⋃
m∈Z? D(m,mρ).

Therefore, 1
|Pk(−ζ )| ≤

1
(k2−1)ρ2 for ζ ∈C\

⋃
m∈Z? D(m,mρ). Now either ℜ(ζ + k)≥ 0,

thus |ζ + k + 1| ≥ max{1, |ζ + k|} and therefore max{1,|ζ+λλλ .k|}
|Pk(−ζ )| ≤ 1

(k−1)ρ ; or else
ℜ(ζ + k) ≤ 0, which implies |ζ + k − 1| ≥ max{1, |ζ + k|} and finally
max{1,|ζ+λλλ .k|}
|Pk(−ζ )| ≤ 1

(k+1)ρ . ut

Lemma 6.2. We follow the conditions of lemma 6.1. We set Q(∂ ) =−3∂ , while
Qk(∂ ), Rk(∂ ) are given by (5.31), (5.32) with τ =

(
− 3

2 ,−
3
2

)
. Then, for every

k ∈ Ξ1,0 \{(1,1)} with |k|> 1, for every ζ ∈
•
R

(0)
ρ ,

|Qk|(|ζ |)
|Pk(−ζ )|

≤ 3Mρ,(0),
|Rk|(|ζ |)
|Pk(−ζ )|

≤ 9
4

M2
ρ,(0).

Proof. We notice that lemma 6.1 can be applied for ζ ∈
•
R

(0)
ρ .

We have |Qk|(ξ ) = 3(|k| − 1)
∣∣ξ + λλλ .k

∣∣ (see (5.39)), Therefore, by lemma 6.1,
|Qk|(|ζ |)
|Pk(−ζ )| ≤ 3Mρ,(0). In the same way, one easily sees that |Rk(∂ )| ≤ 9

4 |k|(|k|−1)
(cf. (5.39)), thus the result by lemma 6.1. ut

We eventually introduce the following notation that complements definition 3.10.

Definition 6.1. Assume that G(ζ ,w) = ∑
|l|≥0

cl(ζ )wl is an analytic function on the

open polydisc ∆r = ∏
n
i=0 D(0,ri). One defines the function |G|, analytic on ∆r, by

|G|(ξ ,w) = ∑
l≥0
|cl |(ξ )wl.

6.1.2 The ei-th series

We start our proof of theorem 6.1 by paying special attention to w̃ei = w̃[0]
ei .

Lemma 6.3. The ei-st series w̃ei is 1-Gevrey. Its formal Borel transform reads

B(w̃ei) = δ + ŵei and ŵei is holomorphic on
•
R(0) with at most exponential growth

of order 1 at infinity. More precisely, for every ρ ∈]0,1[, there exist A > 0 and τ > 0

such that for every ζ ∈
•
R

(0)
ρ , |ŵei(ζ )| ≤ Aeτ|ζ |. In the above upper bounds one can

choose A = τ = 5.81
ρ

. Moreover, ŵei can be analytically continued to the Riemann

surface R(1), with at most exponential growth of order 1 at infinity on R(1).

Proof. It is enough to study w̃e1 since w̃e2(z) = w̃e1(−z). We know that w̃e1 solves
(5.45), namely:
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∂ P̃e1(∂ )w̃e1 =

(
15
4

1
z2 +

∂F(z, w̃0)

∂w

)
w̃e1 , P̃ei = ∂ −2. (6.1)

The formal Borel transform of w̃e1 reads B(w̃e1) = δ + ŵe1 where the minor
ŵe1(ζ ) ∈ C[[ζ ]] satisfies the following convolution equation, deduced from (6.1):

∂̂ P̃e1(∂̂ )ŵe1 =

(
15
4

ζ +
∂ F̂(ζ , ŵ0)

∂w

)
∗ (δ + ŵe1). (6.2)

In this equation, we use the notation:

∂ F̂(ζ , ŵ0)

∂w
= f̂1(ζ )+2 f̂2 ∗ ŵ0(ζ ) =−4ζ +ζ ∗ ŵ0(ζ ). (6.3)

Equation (6.2) can be thought of as a linear differential equation with a regular
singular point at 0.

Instead of (6.2), consider the convolution equation ∂̂ P̃e1 (∂̂ )ŵ =
(

a1ζ +a2
ζ 2

2!

)
∗ (δ + ŵ).

Set ĝ = ∂̂ P̃e1 (∂̂ )ŵ = ζ (ζ +2)ŵ. For ζ 6= 0, one gets ĝ =
(

a1ζ +a2
ζ 2

2!

)
∗
(

δ +
ĝ

ζ (ζ +2)

)
.

This implies by differentiation that ĝ(4) = a1

( ĝ
ζ (ζ +2)

)(2)
+a2

( ĝ
ζ (ζ +2)

)(1)
where

ĝ(i) =
diĝ
dζ i . The last ODE has a regular singular point at 0. One can apply the same trick to

(6.2) but for the fact of getting an infinite order differential operator.

Equation (6.2) can be analyzed with the tools developed in Sect. 3.3.2. We introduce

Ĝ(ζ ) =
15
4

ζ +
∂ F̂(ζ , ŵ0)

∂w
=−ζ

4
+ζ ∗ ŵ0(ζ ) and we remark that Ĝ belongs to the

maximal ideal MO(
•
R

(0)
ρ ) of O(

•
R

(0)
ρ ) for any ρ ∈]0,1[, thus ∂̂−1Ĝ ∈ O(

•
R

(0)
ρ ) is

well-defined. We set ŵe1 = P̃−1
e1

(∂̂ )∂̂−1Ĝ+ v̂e1 and (6.2) becomes

∂̂ P̃e1(∂̂ )v̂e1 = Ĝ∗
(

P̃−1
e1

(∂̂ )∂̂−1Ĝ
)
+ Ĝ∗ v̂e1 . (6.4)

Observe that Ĝ ∗
(

P̃−1
e1

(∂̂ )∂̂−1Ĝ
)

belongs to MO(
•
R

(0)
ρ ). Let R > 0 be any real

positive number, UR be the star-shaped domain UR = D(0,R)∩
•
R

(0)
ρ and we set

Br = {v̂ ∈ O(UR),‖v̂‖ν ≤ r}, for r > 0 and ν > 0. By proposition 3.9 and lemma
6.1, when ν → ∞,

‖P̃−1
e1

(∂̂ )∂̂−1
(

Ĝ∗
(

P̃−1
e1

(∂̂ )∂̂−1Ĝ
))
‖ν → 0.

Explicitly

‖P̃−1
e1

(∂̂ )∂̂−1
(

Ĝ∗
(

P̃−1
e1

(∂̂ )∂̂−1Ĝ
))
‖ν ≤

Mρ,(0)

R
‖∂̂−1

(
Ĝ∗
(

P̃−1
e1

(∂̂ )∂̂−1Ĝ
))
‖ν

≤
Mρ,(0)

νR2 ‖∂̂
−1Ĝ‖0‖P̃−1

e1
(∂̂ )∂̂−1Ĝ‖ν .

Also, ‖P̃−1
e1

(∂̂ )∂̂−1
(

Ĝ∗ v̂e1

)
‖ν ≤

Mρ,(0)
νR2 ‖∂̂−1Ĝ‖0‖v̂e1‖ν , Equation (6.4) thus trans-

lates into a fixed point problem v̂e1 =N(v̂e1) where N : Br→Br is a contractive map-

ping for ν large enough. This ensures the existence and uniquess of ŵe1 ∈O(
•
R(0)).
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The same reasoning can be applied for showing that ŵe1 can be analytically contin-
ued to R(1), in application of proposition 4.5 and theorem 4.2.

To get upper bounds, we notice by (6.3) and lemma 3.3 that for every ζ ∈
•
R

(0)
ρ ,∣∣∣∂̂−1Ĝ(ζ )

∣∣∣≤ 1
4 +1∗ŵ0(|ζ |) where ŵ0(ξ )=Aeτξ stands for the majorant function

of ŵ0 given by theorem 3.3 and corollary 3.1, thus with A= 4.22 and τ = 4.22
ρ

. View-

ing the Grönwall-like lemma 3.9, one sees that for every ζ ∈
•
R

(0)
ρ , |ŵe1(ζ )| ≤ ŵe1(|ζ |)

where ŵe1 solves the convolution equation:

1
Mρ,(0)

ŵe1 =

(
1
4
+1∗ŵ0

)
∗ (δ +ŵe1). (6.5)

This means that ŵe1 has an analytic Laplace transform under the form1:

w̃e1(z) = ∑
n≥1

1
ρn

(
1
4z

+
1
z

A
z− τ

)n

, A = 4.22, τ =
4.22

ρ
.

When assuming |z| ≥ 5.81
ρ

, for instance, one gets
∣∣∣∣ 1
ρ

(
1
4z

+
1
z

A
z− τ

)∣∣∣∣≤ 0.5 (since

ρ < 1), thus |w̃e1(z)| ≤ 1. Therefore by lemma 3.5, for any 0 < ρ < 1, for every

ζ ∈
•
R

(0)
ρ , |ŵe1(ζ )| ≤

5.81
ρ

e
5.81

ρ
|ξ |. One shows in the same way that ŵe1 has at most

exponential growth of order 1 at infinity on R(1), using lemma 4.11 and theorem 4.2.
ut

6.1.3 The kei-th series

We now turn to the kei-th series, that is the terms w̃kei = w̃[0]
kei

of the transseries,
for k ≥ 2.

Lemma 6.4. For every integer k ≥ 2, the k-th series w̃kei ∈ z−2(k−1)C[[z−1]] is 1-

Gevrey, its minor ŵkei defines a holomorphic function on
•
R(0) with at most expo-

nential growth of order 1 at infinity. Moreover, ŵkei can be analytically continued
to the Riemann surface R(1), with at most exponential growth of order 1 at infinity
on R(1).

Proof. Once again from the invariance of the equation (3.6) under the symmetry
z 7→ −z, there is no loss of generality in studying only the kei-th series ŵke1 .

We know that ŵ0, ŵe1 are holomorphic on
•
R(0) and can be analytically continued to

R(1). Moreover, for every ζ ∈
•
R

(0)
ρ , |ŵ0(ζ )| ≤ ŵ0(ξ ), |ŵe1(ζ )| ≤ ŵe1(ξ ), ξ = |ζ |

and for every ζ ∈R
(1)
ρ , |ŵ0(ζ )| ≤ ŵ0(ξ ), |ŵe1(ζ )| ≤ ŵe1(ξ ), ξ = leng(ζ ), where

ŵ0 and ŵe1 are entire functions, real positive and non-decreasing on R+, with at
most exponential growth of order 1 at infinity.
We know from lemma 5.8 and (5.48) that for every k ≥ 2,

w̃ke1(z) = ∑
l≥0

ake1,lz
−l ∈ z−2(k−1)C[[z−1]]

1 We recall that B

(
A

z− τ

)
= Aeτξ .
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solves the differential equation

Dke1w̃ke1 = ∑
k1+k2=k

k1≥1,k2≥1

w̃k1e1w̃k2e1

2!
∂ 2F(z, w̃0)

∂w2 . (6.6)

We deduce that the formal Borel transform B(w̃ke1) = ake1,0δ + ŵke1 has its minor
which satisfies the identity2:

Dke1ŵke1 = ∑
k1+k2=k

k1≥1,k2≥1

(ak1e1,0δ + ŵk1e1)∗ (ak2e1,0δ + ŵk2e1)

2!
∗ ∂ 2F̂(ζ , ŵ0)

∂w2

(6.7)

where
∂ 2F̂(ζ , ŵ0)

∂w2 = 2 f̂2(ζ ) = ζ , whereas

Dke1 ŵke1 = Pke1(∂̂ )ŵke1 +1∗Qke1(∂̂ )ŵke1 +

(
ζ Rke1 −

∂ F̂(ζ , ŵ0)

∂w

)
∗ ŵke1

(6.8)

with
∂ F̂(ζ , ŵ0)

∂w
given by (6.3).

These equations (6.7) can be seen as linear differential equations with a regular
point at 0. They are all of the type

p(∂̂ )ŵ+1∗ [q(∂̂ )ŵ] = ζ ∗ [r(∂̂ )ŵ]+
N

∑
n=0

f̂n ∗ ŵ∗n (6.9)

investigated in Sect. 3.3.2 and Sect. 4.5. We use the methods introduced there and
make a proof by induction on k, considering the operators Nk defined as follows:

Nkv̂ = P−1
(k,0)(∂̂ )

[
−1∗

[
Q(k,0)(∂̂ )v̂

]
+

(
−ζ R(k,0)+

∂ F̂(ζ , ŵ0)

∂w

)
∗ v̂

+ ∑
k1+k2=K

k1≥1,k2≥1

(ak1e1,0δ + ŵk1e1)∗ (ak2e1,0δ + ŵk2e1)

2!
∗ ∂ 2F̂(ζ , ŵ0)

∂w2

 .
Case k = 2 Let R > 0 be a real positive number, ρ ∈]0,1[ and UR be the star-shaped

domain UR = D(0,R)∩
•
R

(0)
ρ . We set Br = {v̂ ∈ O(UR),‖v̂‖ν ≤ r} for r > 0 and

ν > 0, and we look at the mapping N2 : v̂∈Br 7→N2v̂. We know that ŵ(1,0) ∈ O(
•
R(0))

while
∂ F̂(ζ , ŵ0)

∂w
and

∂ 2F̂(ζ , ŵ0)

∂w2 belong to MO(
•
R

(0)
ρ ). Using lemma 6.1 and ar-

guments already used in Sect. 3.3.2.3, one easily shows that N2 is a contractive map.
Thus equation (6.7), k = 2 has a unique solution in Br. This shows, by uniqueness,

that ŵ2e1 can be continued holomorphically on
•
R(0).

When replacing UR by the open set of L-points U = Uρ,L ⊂R(1) and arguing like
what have been done for the proof of theorem 4.2, one shows that ŵ2e1 can be holo-

2 Remember that ake1,0 = 0 as a rule, apart from the case k = 1 where ae1,0 = 1.
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morphically continued to the Riemann surface R(1).

To get upper bounds, we notice that for every ζ ∈
•
R

(0)
ρ ,
∣∣∣ ∂ F̂(ζ ,ŵ0)

∂w

∣∣∣≤ ∣∣∣ ∂ F̂
∂w

∣∣∣(ξ ,ŵ0)

and
∣∣∣ ∂ 2F̂(ζ ,ŵ0)

∂w2

∣∣∣ ≤ ∣∣∣ ∂ 2F̂
∂w2

∣∣∣(ξ ,ŵ0) with ξ = |ζ |,
∣∣∣ ∂ 2F̂

∂w2

∣∣∣(ξ ,ŵ0) = 2| f2|(ξ ) = ξ and∣∣∣ ∂ F̂
∂w

∣∣∣(ξ ,ŵ0) = | f̂1|(ξ )+2| f̂2|∗ŵ0(ξ ) = 4ξ +ξ ∗ŵ0(ξ ). Using lemma 6.2 and the

Grönwall lemma 3.9, we sees that for every ζ ∈
•
R

(0)
ρ , |ŵ2e1(ζ )| ≤ ŵ2e1(ξ ) where

ŵ2e1 is the entire function, real positive on R+, with at most exponential growth of
order 1 at infinity, satisfying the linear equation:

1
Mρ,(0)

ŵ2e1 =

(
3+

9
4

Mρ,(0)ξ +

∣∣∣∣∣∂ F̂
∂w

∣∣∣∣∣(ξ ,ŵ0)

)
∗ŵ2e1 (6.10)

+
(δ +ŵe1)

∗2

2!
∗

∣∣∣∣∣∂ 2F̂
∂w2

∣∣∣∣∣(ξ ,ŵ0).

When working on R(1), one rather argues with the Grönwall lemma 4.11, thus get-
ting |ŵ2e1(ζ )| ≤ ŵ2e1(ξ ) for every ζ ∈R

(1)
ρ . In these estimates, ξ = leng(ζ ), and

ŵ2e1 is the entire function, real positive and non-decreasing on R+, with at most
exponential growth of order 1 at infinity, satisfying the linear equation:

1
Mρ,(1)

ŵ2e1 =

(
3+

9
4

Mρ,(1)ξ +

∣∣∣∣∣∂ F̂
∂w

∣∣∣∣∣(ξ ,ŵ0)

)
∗ŵ2e1 (6.11)

+
(δ +ŵe1)

∗2

2!
∗

∣∣∣∣∣∂ 2F̂
∂w2

∣∣∣∣∣(ξ ,ŵ0).

Induction Let K ≥ 3 be an integer greater than 3. We assume that for every integer

k ∈ [0,K[, ŵke1 is holomorphic on
•
R(0) and can be analytically continued to R(1).

Furthermore,

for every ζ ∈
•
R

(0)
ρ , |ŵke1(ζ )| ≤ ŵke1(ξ ), ξ = |ζ |,

for every ζ ∈R
(1)
ρ , |ŵke1(ζ )| ≤ ŵke1(ξ ), ξ = leng(ζ ),

where, in each case, ŵke1 is an entire function, real positive and non-decreasing on
R+, with at most exponential growth of order 1 at infinity.

One easily shows that the mapping NK : v̂ ∈ Br 7→ NK v̂ is a contractive, either
working in (O(UR),‖.‖ν) or in (O(Uρ,L),‖.‖ν). Thus, by uniqueness, ŵKe1 is holo-

morphic on
•
R(0) and can by analytically continued to R(1).

We get upper bounds, either in
•
R

(0)
ρ with the Grönwall lemma 3.9, or in R

(1)
ρ

with the Grönwall lemma 4.11. We get that for every ζ ∈
•
R

(0)
ρ |ŵKe1(ζ )| ≤ ŵKe1(ξ )

with ξ = |ζ |, where ŵKe1 is the entire function, real positive on R+, with at most
exponential growth of order 1 at infinity, satisfying the linear equation:
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1
Mρ,(0)

ŵKe1 =

(
3+

9
4

Mρ,(0)ξ +

∣∣∣∣∣∂ F̂
∂w

∣∣∣∣∣(ξ ,ŵ0)

)
∗ŵKe1 (6.12)

+ ∑
k1+k2=K

k1≥1,k2≥1

(ak1e1,0δ +ŵk1e1)∗ (ak2e1,0δ +ŵk2e1)

2!
∗

∣∣∣∣∣∂ 2F̂
∂w2

∣∣∣∣∣(ξ ,ŵ0).

Also, for every ζ ∈R
(1)
ρ , |ŵKe1(ζ )| ≤ ŵKe1(ξ ) where ξ = leng(ζ ), with ŵKe1 an

entire function, real positive and nondecreasing on R+, with at most exponential
growth of order 1 at infinity, satisfying the linear equation:

1
Mρ,(1)

ŵKe1 =

(
3+

9
4

Mρ,(1)ξ +

∣∣∣∣∣∂ F̂
∂w

∣∣∣∣∣(ξ ,ŵ0)

)
∗ŵKe1

+ ∑
k1+k2=K

k1≥1,k2≥1

(ak1e1,0δ +ŵk1e1)∗ (ak2e1,0δ +ŵk2e1)

2!
∗

∣∣∣∣∣∂ 2F̂
∂w2

∣∣∣∣∣(ξ ,ŵ0).

This ends the proof of lemma 6.4. ut

6.1.4 The other k-th series

Looking at (5.53), one easily see that the above methods can be applied to study
the minor ŵ1 = ŵ[0]

1 of the (1,1)-series w̃1. Thus, theorem 6.1 is shown for k = 0
any k ∈ Ξn+1,0 \Ξn,0 and with n = 1. The rest of the proof is made by induction on
n, using the hierarchy of equations given in corollary 5.1 and the reasoning made
above. This part holds no surprise and is left to the reader. This ends the proof of
theorem 6.1.

6.2 Borel-Laplace summability of the transseries

We now restrict ourself to the transseries solution of the ODE (3.6), having in view
of analyzing their Borel-Laplace summability. From the invariance of the equation
(3.6) under the symmetry z 7→−z, it is enough to only focus on the transseries (5.41)
associated with the multiplier λ1 = 1, namely:

w̃(z,Ue1) =
∞

∑
k=0

V kw̃ke1(z), V k =Uke−λ1kzz−τ1k. (6.13)

6.2.1 A useful supplement

We complete lemma 6.4 with the following result.

Lemma 6.5. For every ρ ∈]0,1[, there exist A = A(ρ)> 0, τ = τ(ρ)> 0 and a se-
quence

(ŵke1

)
k≥2 of entire functions, real positive on R+, with the following prop-

erties:
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• for every integer k ≥ 2, ŵke1(ξ ) ∈ ξ 2k−3C{ξ};

• for every ξ ∈C, |ŵke1(ξ )| ≤
(

3
√

ρ

2

)k

Aeτ|ξ |, and for every integer m ∈ [1,2k−3],

|ŵke1(ξ )| ≤
(

3
√

ρ

2

)k
Am+1

(
ζ m−1

(m−1)! ∗ eτζ

)
(|ξ |).

• for every ζ ∈
•
R

(0)
ρ , |ŵke1(ζ )| ≤ ŵke1(ξ ) with ξ = |ζ |.

Moreover one can choose A = τ =
27
4ρ

in the above estimates.

Proof. We know by theorem 3.3, lemma 6.3 and lemma 6.4 that, for every integer

k ∈ N, ŵke1 is holomorphic on
•
R(0). Also, for every ρ ∈]0,1[, for every ζ ∈

•
R

(0)
ρ ,

|ŵke1(ζ )| ≤ ŵke1(ξ ) with ξ = |ζ | where ŵ0(ξ ) = A0eτ0ξ and ŵe1(ξ ) = Ae1 eτe1 ξ

are convenient majorant functions while, for any integer k≥ 2, ŵke1 solves the con-
volution equation (6.12). One first shows that for any integer k≥ 2, ŵke1(ξ ) belongs

to ξ 2k−3C{ξ} and we reason by induction: using the fact that
∣∣∣ ∂ 2F̂

∂w2

∣∣∣(ξ ,ŵ0) =O(ξ ),

one sees that (δ + ŵe1)
∗2 ∗

∣∣∣ ∂ 2F̂
∂w2

∣∣∣(ξ ,ŵ0) = O(ξ ), thus ŵ2e1(ζ ) = O(ζ ); then,
by an induction hypothesis, we check that integer k ≥ 3 of the form k = k1 + k2
with k1,k2 ∈ N?, (ak1e1,0δ +ŵk1e1)∗ (ak2e1,0δ +ŵk2e1) = O(ξ 2k−5) (we recall that
ake1,0 = 0 apart from ae1,0 = 1), thus ŵke1(ζ ) = O(ξ 2k−3) by (6.12).

We then introduce the generating function ŵ(ξ ,V ) =
∞

∑
k=2

V kŵke1(ξ ) and we de-

duce from (6.12) that ŵ satisfies the identity:

1
Mρ,(0)

ŵ =

(
3+

9
4

Mρ,(0)ξ +

∣∣∣∣∣∂ F̂
∂w

∣∣∣∣∣(ξ ,ŵ0)

)
∗ŵ

+
∞

∑
k=2

V k
∑

k1+k2=k
k1≥1,k2≥1

(ak1e1,0δ +ŵk1e1)∗ (ak2e1,0δ +ŵk2e1)

2!
∗

∣∣∣∣∣∂ 2F̂
∂w2

∣∣∣∣∣(ξ ,ŵ0).

This can be written also as follows (remember: ake1,0 = 0 apart from ae1,0 = 1):

1
Mρ,(0)

ŵ =(
3+

9
4

Mρ,(0)ξ +

∣∣∣∣∣∂ F̂
∂w

∣∣∣∣∣(ξ ,ŵ0)

)
∗ŵ+

(
V
(
δ +ŵe1

)
+ŵ)∗2

2!
∗

∣∣∣∣∣∂ 2F̂
∂w2

∣∣∣∣∣(ξ ,ŵ0).

Explicitly, one can choose Mρ,(0) =
1
ρ

(lemma 6.1), ŵ0(ξ ) = 4.22e
4.22

ρ
ξ (theorem

3.3), ŵe1(ξ ) =
5.81

ρ
e

5.81
ρ

ξ (lemma 6.3), and we recall that
∣∣∣ ∂ 2F̂

∂w2

∣∣∣(ξ ,ŵ0) = ξ while∣∣∣ ∂ F̂
∂w

∣∣∣(ξ ,ŵ0) = 4ξ +ξ ∗ŵ0(ξ ). Therefore, ŵ solves the convolution equation:

ρŵ =

(
3+
(

4+
9

4ρ

)
ξ +4.22ξ ∗ e

4.22
ρ

ξ

)
∗ŵ+

ξ

2!
∗
(

V
(
δ +

4.63
ρ

e
4.63

ρ
ξ
)
+ŵ

)∗2
.

The generating function ŵ(ξ ,V ) is thus the Borel transform of w̃(ζ ,V ), solution
of the algebraic equation
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ρw̃ =

(
3
z
+

(
4+

9
4ρ

)
1
z2 +

4.22
z2

1
z− 4.22

ρ

)
w̃

+
1

2z2

[
V

(
1+

5.81
ρ

1
z− 5.81

ρ

)
+w̃

]2 (6.14)

with w̃(z,V ) ' 1
2ρ

[
V
z

(
1+ 5.81

ρ

1
z− 5.81

ρ

)]2

when V → 0 with |z| large enough. We

view (6.14) as a fixed point problem w=N(w). We set U = D(∞, 4ρ

27 )×D(0, 2
3
√

ρ
),

we equip the space O(U) with the maximum norm and we consider the closed
ball B1 = {w ∈ O(U), ‖w‖ ≤ 1} of the Banach algebra

(
O(U),‖‖

)
. One easily

shows that N : B1 → B1 is a contractive map (remember that ρ < 1), hence the
fixed-point problem w=N(w) has a unique solution w̃= w̃(z,V ) in B1. Its Taylor

expansion with respect to V at 0 reads w̃(z,V ) =
∞

∑
k=2

V kw̃ke1(z), where (w̃ke1)k≥2

is a sequence of holomorphic functions on the disc D(∞, 4ρ

27 ) and, by the Cauchy

inequalities, for every integer k≥ 2, sup|z|> 27
4ρ

|w̃ke1(z)| ≤
(

3
√

ρ

2

)k
. Moreover, since

ŵke1(ξ ) = O(ξ 2k−3), w̃ke1(z) = O(z−2(k−1)). We end the proof with lemma 3.5:

w̃ke1 is an entire function, for every ξ ∈ C, |w̃ke1(ξ )| ≤
(

3
√

ρ

2

)k
27
4ρ

e
27
4ρ
|ξ | and for

every positive integer 1≤ m≤ 2k−3,

|w̃ke1(ξ )| ≤
(

3
√

ρ

2

)k( 27
4ρ

)m+1(
ζ m−1

(m−1)!
∗ e

27
4ρ

ζ

)
(|ξ |).

This ends the proof. ut

6.2.2 Borel-Laplace summability of the transseries

Before keeping on, we lay down a definition, see also [11].

Definition 6.2. Let (g̃k)k≥0 be a sequence of formal series g̃k(z)∈C[[z−1]]. One says

that the transseries g̃(z,V ) =
∞

∑
k=0

V kg̃k(z) is Borel-Laplace summable in a direction

θ ∈ S1 if each g̃k is Borel-Laplace summable in that direction and if the series of

functions
∞

∑
k=0

V kS θ g̃k(z) converges uniformaly on any compact subset of a domain

of the form
•

Π
θ
τ ×V . In that case, one denotes by S θ g̃(z,V ) ∈O(

•
Π

θ
τ ×V ) its sum,

called the Borel-Laplace sum of the transseries.

In the sequel, we have in mind to analyze the Borel-Laplace summability of
the transseries given by proposition 5.2. This means analyzing the Borel-Laplace
summability of the transseries ∑

∞
k=0 V kw̃ke1(z), resp. ∑

∞
k=0 V kw̃ke2(z), then substitut-

ing V = Ue−zz3/2, resp. V = Uezz3/2, in the Borel-Laplace sum. Notice however
that the mapping z 7→ e±zz3/2 is ill-defined on C but should be considered on the
Riemann surface of the square root or on its universal covering C̃. This justifies the
use of domains of the form Π θ

τ ∈ C̃, θ ∈ S̃1 (see definition 3.19) in what follows.
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Definition 6.3. Let g : C̃→C and κ : R→R+? be two continuous functions, θ ∈ S̃1

and τ ∈ R. We set fθ (g,τ,κ) =
⋃

c>τ{z ∈ Π θ
c , |g(z)| < κ(c)} ⊂ C̃. Let I ⊂ S̃1 be

an open arc, γ : I→ R a locally bounded function and K : I→ C 0(R,R+?) a con-
tinuous function. We denote by V (I,g,γ,K ) the domain of C̃ defined as follows:

V (I,g,γ,K ) =
⋃
θ∈I

fθ
(
g,γ(θ),K (θ)

)
⊂ C̃.

Theorem 6.2. The transseries solutions of the prepared equation (3.6) associated
with the first Painlevé equation,

w̃(z,Uei) =
∞

∑
k=0

[Vi(z,U)]kw̃kei(z), Vi(z,U) =Ue−λizz−τi , i = 1,2, (6.15)

are Borel-Laplace summable and their Borel-Laplace sums are holomorphic solu-
tions of (3.6). More precisely, for any R> 0, for any open arc I j =] jπ,( j+1)π[⊂ S̃1,
j ∈ Z, the sum

S I j w̃(z,Uei) :=
∞

∑
k=0

[Vi(z,U)]kS
•
I j w̃kei(

•
z), (6.16)

with
•
I j = π(I j) ⊂ S1 and

•
z = π(z) ∈ C?, converges to a function of (z,U) holo-

morphic on V (I j,Vi(R),τ,K )×D(0,R) where one can choose τ(θ) = 27
4|sin(θ)|

and K (θ) : c ∈ R 7→ 2c2

3τ(θ)2
√

sin(θ)
. Moreover, the sum S I j w̃ is solution of equa-

tion (3.6).

Proof. This theorem is a consequence of theorem 3.3, lemma 6.3, lemma 6.4 and
lemma 6.5. Let us precise the reasoning for i = 1 and the open arc I0 =]0,π[⊂ S̃1.
We know from lemmas 6.4 and 6.5 (applied with m = 2k−3) that for any δ ∈]0, π

2 [

and any integer k ≥ 2, for every ζ ∈
•

∞
0 (]δ ,π−δ [),

|ŵke1(ζ )| ≤

(
3
√

sin(δ )
2

)k

A2k−2
δ

(
ξ 2k−4

(2k−4)!
∗ eτδ ξ

)
(ξ ), ξ = |ζ |, (6.17)

with Aδ = τδ =
27

4sin(δ )
. We now fix a direction θ ∈ I0 and for k ≥ 2, we consider

the Borel-Laplace sum

S
•
θ w̃ke1(

•
z) =

∫
∞ei
•
θ

0
e−
•
zζ ŵke1(ζ )dζ =

∫ +∞

0
e−
•
zξ ei

•
θ

ŵke1(ξ ei
•
θ )ei

•
θ dξ .

For any c > τθ and any z ∈ Π
θ

c , |e−
•
zξ ei

•
θ | ≤ e−cξ , for ξ ≥ 0. Therefore, for z ∈ Π

θ

c
and ξ ≥ 0,∣∣∣∣e−•zξ ei

•
θ

ŵke1(ξ ei
•
θ )ei

•
θ

∣∣∣∣≤
(

3
√

sin(θ)
2

)k

A2k−2
θ

e−cξ

(
ξ 2k−4

(2k−4)!
∗ eτθ ξ

)
(ξ ).

The function S θ w̃ke1(z) := S
•
θ w̃ke1(

•
z) is thus holomorphic on Π θ

c and, for every

z ∈Π
θ

c ,
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Fig. 6.1 The (shaded) domain
V (I0,V1(0.5),τ,K ) on pro-
jection, for τ(θ) = 27

4|sin(θ)| ,(
K (θ)

)
(c) = 2c2

3τ(θ)2
√

sin(θ)

and V1(z,U) =Ue−zz3/2.

|S θ w̃ke1(z)| ≤

(
3
√

sin(θ)
2

)k(
Aθ

c

)2k−2 c
c− τθ

.

We turn to the series of function ∑
k≥2

(
Ue−zz3/2

)k
S θ w̃ke1(z). From what pre-

cedes, for any R > 0, for any c′ > c > τθ , for every (z,U) ∈ Π θ

c′ ×D(0,R), the

series is normally convergent when |Re−zz3/2| ≤ 2c2

3A2
θ

√
sin(θ)

. We end with theo-

rem 3.3 and lemma 6.3: for any direction θ ∈ I0, for any c > τθ , the series of

functions ∑
k≥0

(
Ue−zz3/2

)k
S θ w̃ke1(z) defines a holomorphic function on the do-

main fθ ×D(0,R) with fθ =
⋃

c>τθ
{z ∈Π θ

c , |Re−zz3/2|< 2c2

3A2
θ

√
sin(θ)

}. Making θ

varying on I0, these functions glue together to provide a holomorphic function
S I0w̃(z,Ue1) on the domain V (I0,V1(R),τ,K )×D(0,R) with τ(θ) = 27

4|sin(θ)| and

K (θ) : c ∈ R 7→ 2c2

3τ(θ)2
√

sin(θ)
(since Aθ = τθ ), see Fig. 6.1. Finally, we encourage

the reader to show that S I j w̃ solves the ODE (3.6). ut

Remark 6.1. The theorem 6.2 can be shown by other means, see the comments in
Sect. 6.5.

6.2.3 Remarks

In what follows we set wtru, j,i(z,U) = S I j w̃(z,Uei).

1. We know by proposition 5.2 that w̃ke2(z) = w̃ke1(−z) for every k ≥ 0. One de-
duces that for any j ∈ Z, for any θ ∈ I j, for every z ∈Π

π−θ

τ(π−θ)
, zeiπ ∈Π

−θ

τ(−θ)
and

S π−θ w̃ke2(z)=S −θ w̃ke1(zeiπ). Therefore, for any θ ∈ I j, for every z ∈Π
π−θ

τ(π−θ)
,

S π−θ w̃(z,Ue2) = S −θ w̃(zeiπ ,Ueiπ/2e1) and, as a consequence, for any j ∈ Z:

for every z ∈ V (I j,V2(U),τ,K ), wtru, j,2(z,U) = wtru, j−1,1(zeiπ ,Ueiπ/2),

for every z ∈ V (I j,V1(U),τ,K ), wtru, j,1(z,U) = wtru, j−1,2(zeiπ ,Ueiπ/2).

(6.18)
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2. Here we adopt the convention : for z = reiα ∈ C̃, we set z = r−iα ∈ C̃.
We know by proposition 5.2 that w̃kei(z) ∈R[[z−1]] for any k ∈N, i = 1,2. Thus,
for any j∈Z and any θ ∈ I j, for z∈Π θ

τ(θ), S
θ w̃kei(z)=S −θ w̃kei(z). Therefore,

for any j ∈ Z, for every z ∈ V (I j,Vi(U),τ,K ),

wtru, j,i(z,U) = wtru,(− j−1),i(z,U)

and with (6.18) we deduce that, for every z ∈ V (I j,V1(U),τ,K ) and
z ∈ V (I j,V2(U),τ,K ) respectively,

wtru, j,1(z,U) = wtru, j,2
(
ze−(2 j+1)iπ ,Ue−( j+1/2)iπ) (6.19)

wtru, j,2(z,U) = wtru, j,1
(
ze−(2 j+1)iπ ,Ue−( j+1/2)iπ).

6.2.4 Considerations on the domain

Viewing (6.18) and (6.19), it will be enough for our purpose to consider the
domain V (I0,V1,τ,K ) with I0 =]0,π[,

(
V1(U)

)
(z) = Ue−zz3/2 with |U | > 0,

τ(θ) = 27
4|sin(θ)| ,

(
K (θ)

)
(c) = 2c2

3τ(θ)2
√

sin(θ)
. We would like to describe the bound-

ary of this domain. As a matter of fact, we will restrict ourself to describing its
subdomain fθ

(
V1(U),τ(θ),K (θ)

)
with θ = π/2. Considered by projection on C,

this domain reads: z = x+ iy, (x,y) ∈ R2, belongs to f π
2
(
V1,τ(

π

2 ),K (π

2 )
)

if and
only if there exists λ > 1 so that

y <−27
4

λ

|U |e−x(x2 + y2)3/4 <
2
3

λ
2.

(We take c = 27
4 λ > τ(π/2)). We now fix y =− 27

4 λ with λ > 1 and we remark that
z = x+ iy belongs to f π

2
(
V1(U),τ(π

2 ),K (π

2 )
)

iff x > X with X such that

|U |e−X (X2 + y2)3/4 =
2
3

(
4

27
y
)2

. (6.20)

Indeed, just see that the real mapping x 7→ e−x(x2+y2)p is decreasing when |y| ≥ p,
and use an argument of continuity. With the implicit function theorem, these argu-
ments show the existence of a unique solution X : y ∈]−∞,− 3

4 [7→ X(y) of (6.20),
of class C ∞ and increasing with y, which can be described as follows. The above
equality is equivalent to writing(

1+
X2

y2

)3

= αy2e4X , α =

(
32

2187|U |

)4

. (6.21)

and we can remark that X(−α−1/2) = 0 if−α−1/2 <− 3
4 . When assuming y2� X2,

we get X =− ln(αy2)

4
+ε , ε = o(1) as a first approximation. Plugging this in (6.21),

one gets

X =− ln(αy2)

4
+3

ln2(αy2)

42y2 +o(y−2)
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and one can keep on this way to get an asymptotic expansion at any order of the
solution3. To put it in a nutshell:

Corollary 6.1. In theorem 6.2, the sum wtru,0,1(z,U) = S I0w̃(z,Ue1) defines, for
any U ∈ C?, a holomorphic function with respect to z on a domain which contains,

by projection on C, a subdomain of the form
{

z = x+ iy, y <−27
4
, x > X(y)

}
where X is an increasing C ∞ function on ]−∞,− 3

4 [, whose asymptotics when
y→−∞ is given by:

X(y) =− ln(αy2)

4
+3

ln2(αy2)

42y2 +o(y−2), α =

(
32

2187|U |

)4

(6.22)

and so that X(−α−1/2) = 0 if −α−1/2 <− 3
4 .

6.3 Summability of the formal integral

We saw with corollary 5.2 that the formal integral can be interpreted as a formal
transformation w = Φ̃(z,u),

Φ̃(z,u) = ∑
k∈N2

ukw̃[0]
k (z), (6.23)

that formally transforms the prepared ODE (3.6) into the normal form equation
(5.66). It is then natural to wonder whether this formal transformation gives rise to
an analytic transformations Φθ (z,u) by Borel-Laplace summation,

Φθ (z,u) = S θ
Φ̃(z,u) = ∑

k∈N2

ukS θ w̃[0]
k (z),

with a definition of the sum similar to that of definition 6.2. One could give a positive
answer to this question, for the price of some further effort.

One has to extend lemma 6.5 to the whole k-th series w̃[0]
k . It is worth for this matter to

complete the Banach spaces detailed by proposition 3.9 by other “focusing algebras” for
which we refer to [6], in particular those based on L1

ν -norms.

This does not mean that the formal integral is Borel-Laplace summable : this is
wrong, due to the effect of the exponentials. Only the restrictions of the formal inte-
gral to convenient submanifolds is 1-summable, which means here just considering
one of the two transseries. However, the sums of the two transseries share no com-
mon domain of convergence and a fortiori the formal integral cannot be summed by
Borel-Laplace summation.

We do not pursue toward this direction and we conclude this chapter with the
truncated solutions.

3 One can also describe the solution in term of the Lambert function, the compositional inverse of
the function xex.
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6.4 Truncated solutions for the first Painlevé equation

We know from theorem 6.2 that the sum wtru, j,i(z,U) = S I j w̃(z,Uei), j ∈ Z
and i = 1,2, is a holomorphic solution of (3.6), for z on a domain of the form
V (I j,Vi(U),τ,K ). From its very definition and from corollary 6.1, the domain
V (I j,Vi(U),τ,K ) contains a sectorial neighbourhood of infinity with aperture

(

I j,i
where (see Fig. 6.1):

• when i = 1,
(

I j,1 =]− 1
2 π,+ 1

2 π[− jπ for j even,

(

I j,1 =]− 3
2 π,− 1

2 π[− jπ for j
odd;

• when i = 2,

(

I j,2 =]− 1
2 π,+ 1

2 π[− jπ for j odd,

(

I j,2 =]− 3
2 π,− 1

2 π[− jπ for j
even.

To go back to the the first Painlevé equation (2.1), we use the transformation T of
definition 3.20.

Definition 6.4. The conformal mapping T sends the domain V (I,g,γ,K ) onto the
domain T

(
V (I,g,γ,K )

)
and we set

(I,g,γ,K ) =T
(
V (I,g,γ,K )

)
,

•
(I,g,γ,K ) = π

(
S (I,g,γ,K )

)
. (6.24)

The domain (I j,Vi(U),τ,K ) contains a sectorial neighbourhood of infinity with
aperture K j,i (see Fig. 6.2):

• when i = 1, K j,1 =]− 7
5 π,− 3

5 π[− 4
5 jπ for j even, K j,1 =]− 11

5 π,− 7
5 π[− 4

5 jπ for
j odd;

• when i = 2, K j,2 =]− 7
5 π,− 3

5 π[− 4
5 jπ for j odd, K j,2 =]− 11

5 π,− 7
5 π[− 4

5 jπ for
j even.

In any case, the domains (I j,Vi(U),τ,K ) are in connection: for every j ∈ Z,

(I j+1,V2(U),τ,K ) = e−4iπ/5 (I j,V1(U),τ,K ).

From (3.4), (2.6), (2.7), the transformation

z ∈ V (I j,Vi(U),τ,K )↔ x ∈ (I j,Vi(U),τ,K )

wtru, j,i(z,U)↔ utru, j,i(x,U) = ei π
2 x

1
2√

6

(
1− 4

25
(
T −1(x)

)2 +
wtri, j,i

(
T −1(x),U

)(
T −1(x)

)2

)

provides the solutions utru, j,i(x,U) for the first Painlevé equation. These are the trun-
cated solutions.
The property (6.18) translates into the following relationships between truncated so-
lutions: for any j∈Z, for every x∈ (I j,V1(U),τ,K ), resp. x ∈ (I j,V2(U),τ,K ),

utru, j,1(x,U) = e2iπ/5utru, j+1,2(xe−4iπ/5,Ue−iπ/2) (6.25)

utru, j,2(x,U) = e2iπ/5utru, j+1,1(xe−4iπ/5,Ue−iπ/2)

These are the symmetries discussed in Sect. 2.5. In the same way from (6.19), for
any j ∈ Z, for every x ∈ S(I j,V1(U),τ,K ), respectively x ∈ (I j,V2(U),τ,K ),

utru, j,1(x,U) = e
2
5 (2 j+1)iπ utru, j,2(xe−

2
5 (4 j+7)iπ ,Ue−( j+1/2)iπ), (6.26)

utru, j,2(x,U) = e
2
5 (2 j+1)iπ utru, j,1(xe−

2
5 (4 j+7)iπ ,Ue−( j+1/2)iπ).
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Fig. 6.2 The (shaded) do-

main
•
(I0,V1(U),τ,K )

for τ(θ) = 27
4|sin(θ)| ,(

K (θ)
)
(c) = 2c2

3τ(θ)2
√

sin(θ)

and V1(z,U) =Ue−zz3/2.

6.5 Comments

We mentioned in Sect. 5.5 the existence of formal transforms of the type v= T̃ (z,u),
T̃ (z,u) = ∑k∈Nn ukṽk(z), ṽk(z) ∈ Cn[[z−1]] that brings differential and difference
systems to their linear normal form, under some convenient hypotheses. For differ-
ential equations of type (5.67), the series ṽk are in general not 1-summable but mul-
tisummable [10]. The first results in that direction, concerning the multisummability
of the formal series solutions, have been obtained by Braaksma [1] then by Ramis &
Sibuya [12]. A resurgent approach for 1-level differential equations is undertaken by
Costin in [4], with the proof of the 1-summability of the formal integral on restric-
tion to convenient submanifolds. These results have been generalized to differential
and difference equations, see e.g. [2, 9, 7, 5] and references therein, at least for the
cases where no resonance occurs. The question of the (multi)summability of the
above formal transforms may be delicate, even for 1-level differential systems or
ODEs, when quasi-resonance occurs, giving rise to small divisors.

If λλλ = (λ1, · · · ,λn) stands for the multipliers and in absence of resonance, it may happen
that λλλ .k comes close to one multiplier, for some k∈Nn. Thus, the construction of the formal
integral gives rise to division by small factors. One has “quasi-resonance” when there exists
an increasing sequence (k j ∈ Nn) such that lim j→∞ λλλ .k j = 0 fast enough, a condition that
translates into diophantine relations on the sequence.

More details on this subject can be found in [8].
We finally mention a general upshot, that of the formation of singularities near the

anti-Stokes rays. Considering the Borel-Laplace sum of a transseries stemming from
(resurgent) 1-level differential or difference equations, it is possible, as shown in [7]
(see also [6]) to analyze its behavior on the boundary of its domain of convergence,
by a suitable use of a multi-scale analysis. This is detailed in [5] for the first Painlevé
equation.

Acknowledgements I warmly thank my student Julie Belpaume who helped me to work out this
chapter.
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9. G.R. Kuik, Transseries in Difference and Differential Equations. PhD thesis, Rijksuniversiteit
Groningen (2003).

10. M. Loday-Richaud, Divergent Series, Summability and Resurgence II. Simple and Multiple
Summability. Lecture Notes in Mathematics, 2154. Springer, Heidelberg, 2016.

11. C. Mitschi, D. Sauzin, Divergent Series, Summability and Resurgence I. Monodromy and
Resurgence. Lecture Notes in Mathematics, 2153. Springer, Heidelberg, 2016.

12. J.-P. Ramis, Y Sibuya, A new proof of multisummability of formal solutions of nonlinear
meromorphic differential equations. Ann. Inst. Fourier (Grenoble) 44 (1994), no. 3, 811-848.



Chapter 7
Supplements to resurgence theory

Abstract This chapter is devoted to some general nonsense in resurgence theory
which will be useful to study furthermore the first Painlevé equation from the resur-
gence viewpoint. We define sectorial germs of holomorphic functions (Sect. 7.2)
and we introduce the sheaf of microfunctions (Sect. 7.3). This provides an approach
to the notion of singularities which is the purpose of Sect. 7.4. We define the formal
Laplace transform for microfunctions and for singularities and conversely, the for-
mal Borel transform acting on asymptotic classes (Sect. 7.5). The main properties
of the Laplace transform needed in this course are developed to Sect. 7.6. We then
introduce some spaces of resurgent functions and define the alien operators (Sect.
7.7 to 7.9).

7.1 Introduction

In this introduction, we assume that the reader has a previous acquaintance with
1-summability theory, much discussed in [14] to which we refer.

At its very root, one can rely the Borel-Laplace summation scheme to the simple
formula

1
zn = L θ

(
ζ n−1

Γ (n)

)
=
∫

∞eiθ

0
e−zζ ζ n−1

Γ (n)
dζ , n ∈ N?, z ∈

•
Π

θ
0 .

Let ϕ̂ ∈ O(D(0,R)) be a holomorphic function and ∑
n≥1

an
ζ n−1

Γ (n)
be its Taylor se-

ries at the origin. We choose an open arc I =]− α + θ ,θ + α[, 0 < α ≤ π/2,
bisected by the direction θ , and we set I? =]− α − θ ,−θ + α[⊆ θ̆ . For some

r ≥ 0, we set
•

∞ =
•

∞
r (I

?). For any cut-off κ ∈]0,R[, the truncated Laplace inte-

gral ϕκ(z) =
∫

κeiθ

0
e−zζ

ϕ̂(ζ )dζ provides an element of A 1(
•

∞) whose 1-Gevrey

asymptotics T
1,
•

∞
ϕκ(z) in

•
∞ is given by the 1-Gevrey series ∑

n≥1

an

zn ∈ C[[z−1]]1.

This is essentially the Borel-Ritt theorem for 1-Gevrey asymptotics. For two cut-off

points κ1,κ2 ∈]0,R[, the difference ϕκ1−ϕκ2 belongs to A
≤−1

(
•

∞), the differential

ideal of A 1(
•

∞) made of 1-exponentially flat functions on
•

∞.
One gets this way a morphism L (I) : ϕ̂ ∈O0 7→ cl(ϕκ)∈A1(I?)/A ≤−1(I?), where
here O0 stands for the constant sheaf (of convolution algebras) over S1. By (obvi-

129
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ous) compatibility with the restriction maps, one obtains1 a morphism of sheaves
of differential algebras, L : O0→A1/A

≤−1, where the quotient sheaf A1/A
≤−1

over S1 is known to be isomorphic to the constant sheaf C[[z−1]]1 (Borel-Ritt the-
orem 3.4, see [14, 17]). The formal Laplace transfom L is an isomorphism, the
inverse morphism being the formal Borel transform B : C[[z−1]]1→ O0 (seen as a
morphism of sheaves).

One can extend the theory by considering Laplace integrals defined along Hankel
contours. For instance, standard formulae provide

Γ (σ) =
1

1− e−2iπσ

∫
γ[−2π,0],ε

e−ζ
ζ

σ−1dζ , σ ∈ C\N, (7.1)

where the integration contour γ[−2π,0],ε is the (endless) Hankel contour drawn on
Fig. 7.1, while ζ σ−1 = e(σ−1) logζ and logζ is the branch of the logarithm so that
arg(logζ ) ∈]−2π,0[. Performing a change of variable, one gets the identity

1
zσ

= L 0 ∨Iσ (z) =
∫

γ[−2π,0],ε

e−zζ
∨
Iσ (ζ )dζ , z ∈

•
Π

0
0, (7.2)

with zσ = eσ logz where this time logz is the branch of the logarithm so that
arg(logz) ∈]−π,π[, while

∨
Iσ (ζ ) =


ζ σ−1 log(ζ )

2iπΓ (σ)
for σ −1 ∈ N

ζ σ−1

(1− e−2iπσ )Γ (σ)
for σ −1 ∈ C\N.

The form of
∨
Iσ that we give for σ − 1 ∈ C \N is well-defined when −σ /∈ N. It can be

analytically continued to the case −σ ∈ N by the reflection formula.

This example provides another one that will be used later on : for any m ∈ N, any

σ ∈C\N?, for z ∈
•

Π
0
0, (−1)mz−σ (logz)m = L 0 ∨Jσ ,m,

∨
Jσ ,m=

(
∂

∂σ

)m ∨
Iσ with the

above convention for the logz. Remark however that L 0 ∨Iσ= L 0
( ∨

Iσ +hol
)

when
hol is any holomorphic function on a half-strip containing the origin, with at most
exponential growth of order 1 at infinity. This justifies the introduction of the spaces
of microfunctions and singularities that we do in the next sections.

This chapter can be seen as a sequel of the resurgence theory developed in [18].
For most of the materials presented here, we mainly refer to [7, 9, 10, 1, 18], see
also [4, 24, 21]. Another approach to resurgence theory is provided in [27].

Fig. 7.1 The Hankel contour
γ[θ−2π,θ ],ε for θ = 0.

γ
[θ−2π,θ],ε

0

1 Modulo the quite innocent complex conjugation I→ I?.
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7.2 Sectorial germs

7.2.1 Sectors

We precise our notations for sectors on (C̃,π), the Riemann surface of the logarithm
(Compare these notations with definition 3.3).

Definition 7.1. Let I ⊂ S̃1 be an open arc. For 0 ≤ r < R ≤ ∞, we denote by R
r (I)

the simply connected domain of C̃ of the form R
r (I) = {ζ = ξ eiθ | θ ∈ I,ξ ∈]r,R[}.

One denotes by ¯ R
r (I) the closure of R

r (I) in C̃ We use abridged notations 0(I),
¯ 0(I), ∞(I) and ¯ ∞(I) for sectors, when R or r is unspecified.
For any continuous function R : S̃1→]0,+∞[, we denote by R

0 the simply connected
domain defined by R

0 = {ζ = reiθ | θ ∈ S̃1, 0 < r < R(θ)} ⊂ C̃. We simply write
0 for such a domain, when there is no need to specify the function R.

7.2.2 Sectorial germs

Definition 7.2. Let I⊂S1 be an open arc. One says that two functions ϕ1 ∈ O(
•R1

0 (I)),

ϕ2 ∈ O(
•R2

0 (I)) define the same sectorial germ
∨
ϕ of direction I at 0, when ϕ1 and

ϕ2 coincide on a same domain of type
•

0(I). We denote by O0(I) = lim−→
R→0

O(
•R

0 (I))

the space of germs of direction I at 0, and by O0 the sheaf over S1 associated with
the presheaf O0.

As a rule in this paper for the (pre)sheafs one encounters, the restriction maps are the
usual restrictions of functions. We warn the reader that the presheaf O0 is not a sheaf
over S1 (see for instance a counter example given in [14]) : for an open arc I, a section
∨
ϕ∈ O0(I) = Γ (I,O0) is a collection of holomorphic functions ϕi ∈ O(

• Ri
0 (Ii)) that glue

together on their intersection domains, the set {Ii} being an open covering of I

Example 7.1. We denote by C{ζ ,ζ−1} the space of Laurent series ∑n∈Z anζ n which
converge on a punctured disc D(0,R)?. This space can also be seen as a constant
sheaf over S1 and the space O0(S1) of global sections of O0 on S1 coincides with
C{ζ ,ζ−1}.
For n ∈ N? and a given direction θ0 ∈ S1, let us consider the sectorial germ
∨
ϕ

θ0 (ζ ) =
ζ n−1 log(ζ )

2iπΓ (n) ∈ O0
θ0

, for any given determination of the log. Here O0
θ0

de-

notes the stalk at θ0 of the sheaf O0. When making θ varying from θ0 on

I =]−π +θ0,θ0 +π[⊂ S1, the sectorial germs
∨
ϕ

θ∈O0
θ

glue together and defined a

section
∨
ϕ∈ Γ (I,O0) which cannot be prolonged to a global section.

This last example illustrates the need for defining sectorial germs for functions
defined on sectors of C̃. The covering map π : S̃1→ S1 allows to consider the sheaf
π?O0 over S̃1, that is the inverse image by π of the sheaf O0 (see [1, 12, 3]). For

J an open arc of S̃1, an element
∨
ϕ of π?O0(J) appears as an element of the space

Γ (J,O0) of multivalued sections of O0 on J, that is
∨
ϕ= s(J) where s is a continuous
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map such that the following diagram commutes:

O0 =
⊔

θ∈S1 O0
θ

s↗ ↓
S̃1 −→ S1

π

. We say

that in another way in the following definition:

Definition 7.3. Let J ∈ S̃1 be an open arc. One says that two functions ϕ1 ∈ O( R1
0 (J)),

ϕ2 ∈ O( R2
0 (J)) define the same sectorial germ

∨
ϕ of direction J at 0 when ϕ1 and

ϕ2 coincide on a same domain of type 0(J). We denote by Γ (J,O0) the space of
multivalued sections of germs of direction J.

Remark 7.1. For any ω ∈ C and by translation, one can of course define Oω , the
sheaf over S1 of sectorial germs at ω , associated with the presheaf Oω .

7.3 Microfunctions

We introduce the sheaf of microfunctions Cω at ω ∈ C, in the spirit of [1] to whom
we refer. Since Cω is deduced from C = C0 by translation, we make the focus on
the case ω = 0.

7.3.1 Microfunctions, definitions

We complete definition 3.13.

Definition 7.4. Let θ be a direction and I =]α,β [ be an open arc (of S1 or S̃1). we
set:

1. θ ∗ =−θ and I? =]−β ,−α[ the complex conjugate arc;
2.

(

θ =]− π

2 −θ ,−θ + π

2 [ and

(

I =
⋃

θ∈I

(

θ ;
3. θ̌ =]θ −3π/2,θ −π/2[ the copolar of θ ;
4. Ǐ =]α−3π/2,β −π/2[=

⋃
θ∈I θ̌ the copolar of I;

5. when |I|> π , Î =]α+π/2,β−π/2[; when |I|< π , Î =]β−π/2,α+π/2[. When
|I|= π , we set Î = {β −π/2}.

We would like to define “microfunctions of codirection I at 0”. For any open arc
I ⊂ S1 of length ≤ π , we notice that its copolar Ǐ is of length ≤ π , thus can be seens
as an arc of S1. For such an arc, we set Ǒ0(I) = O0(Ǐ).
We now remark that for two arcs I2 ⊆ I1 of lengths≤ π , one has Ǐ2 ⊆ Ǐ1. The restric-
tion map ρǏ2,Ǐ1

: O0(Ǐ1)→ O0(Ǐ2) gives rise to a restriction map ρ̌I2,I1 = ρǏ2,Ǐ1
from

Ǒ0(I1) into Ǒ0(I2). This justifies the following definition.

Definition 7.5. Let I ⊂ S1 be any open arc of length ≤ π .
One sets Ǒ0(I) =O0(Ǐ) and Ǒ0(I) is called the space of germs of codirection I at 0.
We denote by Ǒ0 the corresponding sheaf over S1.
Viewing O0 as a constant sheaf over S1, we set C = Ǒ0/O0. This quotient sheaf over
S1 is the sheaf of microfunctions at 0 and C (I) = Γ (I,C ) is the space of sections
of microfunctions of codirection I at 0.

The sheaf of microfunctions C makes allusion to Sato’s microlocal analysis, see, e.g. [23,
13, 19]. We mention that microfunctions depending on parameters can be also defined, see
for instance [4] for a resurgent context.
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We mention that C (I) = Ǒ0(I)/O0, that is the quotient sheaf coincide with the
pre-quotient sheaf, because O0 is a constant sheaf.

In what follows, we transpose with some abuse the notations for singularities
introduced in [18] to that for microfunctions.

Definition 7.6. Let I ⊂ S1 be any open arc of length ≤ π . We denote by
O
ϕ= singI

0
∨
ϕ∈ C (I) the microfunction of codirection I at 0 defined by the sectorial

germ
∨
ϕ∈ Ǒ0(I) of codirection I.

When I is an arc of length > π , then Ǐ is of length larger than 2π and should be

seen as an arc of S̃1. In that case, a microfunction
O
ϕ of C (I) is represented by an

element
∨
ϕ of Γ (Ǐ,O0).

For any arc I ⊂ S1 of length > π , one can define the variation map var :

var :
O
ϕ∈ C (I) 7→ ϕ̂ ∈ Γ (Î,O0), ϕ̂(ζ ) =

∨
ϕ (ζ )−

∨
ϕ (ζ e−2iπ).

Example 7.2. 1. For any n ∈ N, the sectorial germ
∨
I−n (ζ ) =

(−1)n

2iπ
n!

ζ n+1 can be

seen as a global section of the sheaf O0. The associated microfunction is equally

denoted by
O
I−n, δ (n) or by sing0

∨
I−n.

Notice that for any holomorphic germ ϕ̂ ∈ O0, the sectorial germ ϕ̂
∨
I0 defines a

microfunction sing0(ϕ̂
∨
I0) equal to ϕ̂(0)δ (0) = ϕ̂(0)δ .

2. More generally, the constant sheaf C{ζ ,ζ−1} over S1 can be seen as a subsheaf

of C (of vector spaces). Any microfunction
O
ψ of C{ζ ,ζ−1} can be written as a

sum ∑n≥0 an
O
I−n=∑n≥0 anδ (n), where the Laurent series

∨
ψ (ζ ) = ∑n≥0 an

(−1)n

2iπ
n!

ζ n+1

converges for |ζ |> 0.
3. We assume that ϕ̂ ∈ O0 is a germ of holomorphic function. For any given

direction θ0 ∈ S1, we consider the microfunction
O
φ θ0

= singθ0
0

(
ϕ̂

log
2iπ

)
∈ Cθ0

(where Cθ0 is the stalk at θ0 of the sheaf C ), represented by the sectorial germ
∨
φ θ0

= ϕ̂
log
2iπ ∈ Ǒ0

θ0
, for any given determination of the log (remark that

O
φ θ0

does
not depend on the chosen determination). Making θ varying from θ0 up to

θ0 + 2π on S1, the microfunctions
O
φ θ= singθ

0

(
ϕ̂

log
2iπ

)
∈ Cθ glue together and

O
φ θ0

=
O
φ θ0+2π . This provides a global section

O
φ= sing0

(
ϕ̂

log
2iπ

)
∈ Γ (S1,C ) which

does not depend of the chosen determination of the log one started with.
It can be shown (through the variation map) that the space of global sections
Γ (S1,C ) of the sheaf of microfunctions, is composed of microfunctions of the

form
O
ψ +sing0

(
ϕ̂

log
2iπ

)
, with

O
ψ∈ C{ζ ,ζ−1} and ϕ̂ ∈ O0, see [1].

4. We suppose σ − 1 ∈ C \N and let θ ∈ S1 be a direction. The microfunction
O
φ θ= singθ

0

(
∨
Iσ

)
, represented by the sectorial germ

∨
Iσ (ζ )=

ζ σ−1

(1− e−2iπσ )Γ (σ)
,

is well-defined once the determination of the log has been chosen. Let us now
fix the arc I =]0,2π[, consider the arc Ǐ =]− 3π/2,3π/2[ as an arc of S̃1

and
∨
Iσ∈ Γ (Ǐ,O0) as a (uniquely well-defined) multivalued section of O0 on Ǐ.

One can apply to its associated microfunction
O
I σ∈ C (I) the variation map and

var(
O
I σ ) = Îσ ∈ Γ (Î,O0), Î =]π/2,3π/2[, is given by Îσ (ζ ) =

ζ σ−1

Γ (σ)
.
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7.3.2 Microfunctions and convolution product

This subsection is devoted to convolution products of microfunctions. We start with
some geometrical preliminaries.

7.3.2.1 Geometrical Preliminaries

Definition 7.7. Let ε > 0 be a real psoitive number and I ⊂ S1 be an open sec-
tor of length < π . We set Sε(Î) =

⋃
η∈
•

∞
0 (Î)

D(η ,ε), the “ε-neighbourhood” in C of

the sector
•

∞
0 (Î). When the open arc I is of length = π , then Î = {θ} and we set

Sε(Î) =
⋃

s∈R+

D(seiθ ,ε). We set
•
Sε(I) = C \ Sε(Î) and we denote by

−∂
•
Sε(I) = ∂Sε(Î) the oriented boundary. We denote by ΓI,ε,η1,η2 the curve that

follows the oriented boundary −∂
•
Sε(I) from η1 to η2. We denote by ΓI,ε the end-

less curve that follows the oriented boundary −∂
•
Sε(I).

Lemma 7.1. Let ζ − Sε(Î) be the convex domain deduced from Sε(Î) by the point

reflection centered on ζ/2 ∈ C. If dist(ζ ,Sε(Î)) ≥ 2ε , then ζ −Sε(Î)⊂
•
Sε(I). In

particular, for every ζ ∈
•
S2ε(I), for every η ∈ (−∂

•
Sε(I)), one has ζ −η ∈

•
Sε(I).

Proof. We only consider the case where I ⊂ S1 is an open arc of length < π . We

pick an open sector
•

∞
0 (Î) and ζ ∈ C \

•
∞
0 (Î). Then ζ/2 ∈ C \

•
∞
0 (Î) as well. We

denote by ζ −
•

∞
0 (Î) the convex domain deduced from

•
∞
0 (Î) by the point reflection

centered on ζ/2 ∈ C. One sees that for every ξ ∈ ζ −
•

∞
0 (Î), for every η ∈

•
∞
0 (Î),

dist(ζ ,
•

∞
0 (Î))≤ dist(ξ ,η) (dist is the euclidean distance). Indeed, by the projection

theorem for convex sets, there exist a unique point η0 on the closure of
•

∞
0 (Î) so that

dist(ζ ,η0) = dist
(
ζ ,
•

∞
0 (Î)

)
, see Fig. 7.2. One easily shows that the perpendicular

Fig. 7.2 The domain Sε (Î)
(left-hand side shaded do-
main), the domain ζ − Sε (Î)
(right-hand side shaded do-
main.
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ε
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Fig. 7.3 Picture associated
with the proof of lemma 7.2.
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η
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bisector of the segment [ζ ,η0] separates the two convex sets
•

∞
0 (Î) and ζ −

•
∞
0 (Î).

Therefore, if dist(ζ ,Sε(Î))≥ 2ε , then ζ −Sε(Î)⊂
•
Sε(I). ut

Lemma 7.2. Let I =]α,β [⊂ S1 be an open sector of length ≤ π and ε > 0. We

consider η1 ∈ (−∂
•
Sε(I)) and we set r = |η1|. We suppose that (ε/r)< 1 and we

set δ = arcsin(ε/r) ∈]0,π/2[.

1. if Ĵ =]β −π/2,α +π/2+δ [ is an open sector of length < π , we set h = r sin(Ĵ).

Then, for any ζ ∈ D(0,h), ζ −η1 ∈
•

∞
0 (Ǐ).

2. if Ĵ =]β − π/2,α + π/2+ δ [ is an open sector of length ≤ π/2, then, for any

ζ ∈ D(0,r), ζ −η1 ∈
•

∞
0 (Ǐ).

Proof. Left as an easy exercise. Just look at Fig. 7.3. ut

7.3.2.2 Convolution product of microfunctions

We pick two microfunctions
O
ϕ and

O
ψ of codirection I, where I is an open arc of

length < π . For any strict subarc I1 b I, these microfunctions can be represented by

functions
∨
ϕ and

∨
ψ belonging to O

(•
¯ R+r

0 (Ǐ1)
)

with R > r > 0 small enough.

In what follows, we choose ε ∈]0, r
2 sin(π−|Î|)[. We remark that both

•
S2ε(I)∩D(0,r)

and
•
Sε(I1)∩D(0,R) are non empty domains and

•
Sε(I1)∩D(0,R)⊂

•
¯ R+r

0 (Ǐ1).

We consider a path Γ = ΓI1,ε,η1,η2 that follows the oriented boundary −∂
•
Sε(I1)

from η1 to η2 with r < |η1|< R, r < |η2|< R, drawn on Fig. 7.4.

For any η ∈ΓI1,ε,η1,η2 and any ζ ∈
•
S2ε(I)∩D(0,r), |ζ−η |<R+r and we know

by lemma 7.1 that ζ −η ∈
•
Sε(I). Therefore, the function

∨
χ I1,ε,η1,η2 (ζ ) =

∫
ΓI1 ,ε,η1 ,η2

∨
ϕ
(
η
) ∨

ψ (ζ −η)dη (7.3)

is well-defined for all ζ ∈
•
S2ε(I) ∩D(0,r) and is holomorphic on this domain

(which is non empty since 2ε < r).
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Fig. 7.4 The path of integra-
tion ΓI1,ε,η1,η2 .
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Notice that
∨
χ I1,ε,η1,η2 can be analytically continued to

•
S2ε(I)∪D(0,r) when

∨
ψ

is holomorphic on D(0,R+r), because |ζ −η |< R+r for η on the integration con-

tour and ζ ∈ D(0,r). Thus, by linearity, adding to
∨
ψ an element of O

(
D(0,R+ r)

)
results in the addition of an element of O

(
D(0,r)

)
for

∨
χ I1,ε,η1,η2 . Similarly when

∨
ϕ is holomorphic on D(0,R+ r), then

∨
χ I1,ε,η1,η2 can be analytically continued to

•
S2ε(I)∪D(0,r) : through an homotopy in D(0,R), just deform the contour ΓI1,ε,η1,η2

into an arc Γ ′ running from η1 to η2 in {η = seiθ |s ∈]r,R[, θ ∈ ̂̄I} ⊂ Sε(Î); by

Cauchy, the two functions
∫

ΓI1 ,ε,η1 ,η2

∨
ϕ
(
η
) ∨

ψ (ζ−η)dη and
∫

Γ ′

∨
ϕ
(
η
) ∨

ψ (ζ−η)dη

coincide for ζ ∈
•
S2ε(I) ∩D(0,r), while the second integral is holomorphic on

D(0,r).

Replacing η1, η2 by η ′1, η ′2 on−∂
•
Sε(I1), with r < |η ′1|< R, r < |η ′2|< R, results

in modifying
∨
χ I1,ε,η1,η2 by an element of O

(
D(0,h)

)
for h > 0 small enough: the

difference

∨
χ I1,ε,η1,η2 (ζ )−

∨
χ I1,ε,η ′1,η

′
2
=

(∫
η ′1

η1

+
∫

η2

η ′2

)
∨
ϕ (η)

∨
ψ (ζ −η)dη (7.4)

can be analytically continued from
•
S2ε(I)∩D(0,r) to D(0,h). Indeed, using the

condition on ε and by lemma 7.2, we see that for η on the two segment contours

and for ζ ∈ D(0,h) with 0 < h ≤ r sin(Î), ζ −η remains in
•

∞
0 (Ǐ1)∩D(0,R+ r)

where
∨
ψ is holomorphic.

Finally replacing ε by a another ε ′ ∈]0, r
2 sin(π − |Î|)[ yields the same conclu-

sion : for ζ on the intersection domain
•
S2ε(I)∩

•
S2ε ′(I)∩D(0,r), one can compare

the two functions
∨
χ I1,ε,η1,η2 and

∨
χ I1,ε ′,η ′1,η

′
2
. By Cauchy, the difference reads like

(7.4) with the same conclusion.
In particular, we can let ε → 0 in the above construction: the family of functions

∨
χ I1,ε,η1,η2 glue together modulo the elements of O0, thus providing a microfunction
of codirection I1. Making the arcs I1 ⊂ I recovering I, one sees that these micro-
functions glue together to give a microfunction of codirection I.
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Definition 7.8. Let be I an open arc I of length < π . We consider two microfunc-

tions of codirection I,
O
ϕ and

O
ψ , represented by the sectorial germ of codirection I,

∨
ϕ

and
∨
ψ respectively. For a covering of I by open arcs I1 ⊂ I, the family of functions

∨
ϕ ∗Γ

∨
ψ (ζ ) =

∫
ΓI1 ,ε,η1 ,η2

∨
ϕ
(
η
) ∨

ψ (ζ −η)dη (7.5)

with Γ = ΓI1,ε,η1,η2 , glue together modulo O0 and provide a microfunction of codi-

rection I denoted by
O
ϕ ∗

O
ψ . It is called the convolution product of

O
ϕ and

O
ψ .

Proposition 7.1. The sheaf of microfunctions C is a sheaf of C-differential convo-

lution algebras, for the derivation
O
∂ : singI

0(
∨
ψ) 7→ singI

0(−ζ
∨
ψ). These algebras are

commutative, associative and with unit δ = sing0

(
1

2iπ
1
ζ

)
.

Proof. In what follows we use the previous notations :
O
ϕ and

O
ψ are two microfunc-

tions of codirection I, an open arc of length < π . One pick a subarc I1 b I and the

microfunctions can be represented by functions
∨
ϕ and

∨
ψ belonging to O

(•
¯ R+r

0 (Ǐ1)
)

with R > r > 0 small enough.

We consider the microfunction
O
ψ0= δ ∈ C (S1) that we represent by

∨
ψ0 (ζ ) = ϕ̂0(ζ )

∨
I0 (ζ ) =

ϕ̂0(ζ )
2iπζ

with ϕ̂0 ∈ O
(
D(0,R+ r)

)
and subject to the con-

dition ϕ̂0(0) = 1. Thus
∨
ϕ ∗Γ

∨
ψ0 reads:

∨
ϕ ∗Γ

∨
ψ0 (ζ ) =

1
2iπ

∫
ΓI1 ,ε,η1 ,η2

∨
ϕ (η)

ϕ̂0(ζ −η)

ζ −η
dη .

By Cauchy and the residue formula, one easily gets that for all ζ ∈
•
¯ R+r

0 (Ǐ1)∩D(0,r),
∨
ϕ ∗Γ

∨
ψ0=

∨
ϕ +hol, where hol can be analytically continued to D(0,r). This implies

that
O
ϕ ∗δ =

O
ϕ .

We then consider the integral:

∨
ϕ ∗Γ×Γ ′

∨
ψ (ζ ) =

1
2iπ

∫
Γ×Γ ′

ϕ̂0(ζ − (ξ1 +ξ2)

ζ − (ξ1 +ξ2)

∨
ϕ (ξ1)

∨
ψ (ξ2)dξ1dξ2, (7.6)

ϕ̂0 ∈ O
(
D(0,R+ r)

)
, ϕ̂0(0) = 1,

where Γ = ΓI1,ε,η1,η2 , Γ ′ = ΓI1,ε ′,η ′1,η
′
2
. We remark that for any (ξ1,ξ2) ∈ Γ ×Γ ′ one

has (ξ1 +ξ2) ∈ Sε+ε ′(Î1)∩D(0,2R). Thus
∨
ϕ ∗Γ×Γ ′

∨
ψ defines a holomorphic func-

tion on the simply connected domain
•
Sε+ε ′(I1) : just apply the Lebesgue dominated

convergence theorem for ζ on any connected compact subset of
•
Sε+ε ′(I1). This also

allows to use the Fubini theorem:

∨
ϕ ∗Γ×Γ ′

∨
ψ (ζ ) =

∫
Γ

(
1

2iπ

∫
Γ ′

ϕ̂0(ζ − (ξ1 +ξ2)

ζ − (ξ1 +ξ2)

∨
ψ (ξ2)dξ2

)
∨
ϕ (ξ1)dξ1

=
∫

Γ ′

(
1

2iπ

∫
Γ

ϕ̂0(ζ − (ξ1 +ξ2)

ζ − (ξ1 +ξ2)

∨
ϕ (ξ1)dξ1

)
∨
ψ (ξ2)dξ2.
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From the previous considerations, we recognize
∨
ϕ ∗Γ×Γ ′

∨
ψ=

∨
ϕ ∗Γ

∨
ψ +hol for the

first equality,
∨
ϕ ∗Γ×Γ ′

∨
ψ=

∨
ψ ∗Γ ′

∨
ϕ +hol for the second equality, where hol is a holo-

morphic function that can be analytically continued to a neighbourhood of 0. As a
consequence,

O
ϕ ∗

O
ψ=

O
ψ ∗

O
ϕ,

that is the convolution product of microfunctions is commutative. One easily shows
in the same way that the convolution product of microfunctions is associative. The

fact that
O
∂ is a derivation is obvious. ut

We have previously seen two kind of integral representations,
∨
ϕ ∗Γ

∨
ψ (equation

(7.5)) and
∨
ϕ ∗Γ×Γ ′

∨
ψ (equation (7.6)) for the convolution product

O
ϕ ∗

O
ψ of two

microfunctions. Other representations can be obtained under convenient hypotheses
as exemplified by the next proposition.

Proposition 7.2. Let
O
ψ be a microfunction of codirection I, an open arc of length

< π , represented by the sectorial germ
∨
ψ of codirection I. Let be

O
ϕ∈ Γ (S1,C ) a

microfunction of the form sing0

(
ϕ̂

log
2iπ

)
with ϕ̂ ∈O0. Then, the microfunction

O
ϕ ∗

O
ψ

of codirection I can be represented modulo O0 by a family of functions of the form∫
η1

0
ϕ̂(η)

∨
ψ (ζ −η)dη and

∫
η2

0
ϕ̂(η)

∨
ψ (ζ −η)dη (7.7)

with η1, η2 as for definition 7.8.

The proof is left as an exercise. (See [24]). Starting with the integral representa-
tion (7.5), the idea is to decompose the path ΓI1,ε,η1,η2 as on Fig. 7.5 and to use the
integrability of the log at the origin.

7.4 Space of singularities

The reader will recognize in what follows classical notions and notations in resur-
gence theory already encountered in [18], see also [9, 10, 24, 21].

Fig. 7.5 Decomposition of
the path ΓI1,ε,η1,η2 .
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7.4.1 Singularities

Definition 7.9. Let θ ∈R be a direction and α > 0. We denote by ANAθ ,α the space
of sections Γ (J̌,O0) where J̌ =]θ −α−2π,θ +α[⊂ S̃1, and by ANA = Γ (S̃1,O0)
the space of global sections.

Thus, ANA is the space of sectorial germs at 0 that are represented by functions
∨
ϕ holomorphic on a simply connected domain of the form 0.

Definition 7.10. One sets SINGθ ,α = ANAθ ,α/O0 and SING = ANA/O0. The el-
ements of these quotient spaces are called singularities at 0. One denotes by sing0
the canonical projection,

sing0 :

{
ANA→ SING
∨
ϕ 7→

O
ϕ

, sing0 :

{
ANAθ ,α → SINGθ ,α
∨
ϕ 7→

O
ϕ

.

If sing0(
∨
ϕ) =

O
ϕ , then

∨
ϕ is called a major of the singularity

O
ϕ .

In particular, with these notations:

Proposition 7.3. The space of singularities SINGθ ,α can be identified with the
space Γ (J,C ) of multivalued sections of C by π , with J =]− π

2 −α +θ ,θ +α + π

2 [.

Definition 7.11. One defines the spaces SINGω , resp. SINGω,θ ,α of singularities at
ω ∈ C, by translation from SING, resp. SINGθ ,α .

It is of course enough to study the spaces of singularities at 0 and this is what we
do in what follows.

Notice that SINGθ ,α and SING are naturally O0-modules.

Definition 7.12. Let f ∈O0 be a germ of holomorphic functions and let
O
ϕ= sing0

∨
ϕ

be a singularity in SING, resp. SINGθ ,α . One defines the product f
O
ϕ in SING, resp.

SINGθ ,α , by f
O
ϕ= sing0( f

∨
ϕ).

Definition 7.13. The so-called variation map is defined by:

var :

{
SING → ANA
O
ϕ= sing0(

∨
ϕ) 7→ ϕ̂, ϕ̂(ζ ) =

∨
ϕ (ζ )−

∨
ϕ (ζ e−2iπ),

and ϕ̂ = var(
O
ϕ) is called the minor of the singularity

O
ϕ .

The variation map var operates similarly on every element
O
ϕ∈ SINGθ ,α , with

ϕ̂ = var(
O
ϕ) in Γ (Ĵ,O0), where Ĵ =]θ −α,θ +α[⊂ S̃1.

A minor is said to be regular when it belongs to O0.

We illustrate the notion of singularities by the following examples. (The reader
will recognize sectorial germs used in the introduction of this chapter).

Definition 7.14. The singularities
O
I σ ,

O
Jσ ,m∈ SING, σ ∈ C, m ∈ N are defined as

follows.
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• For σ ∈ C\N?,
O
I σ= sing0(

∨
Iσ ) where

∨
Iσ (ζ ) = ζ σ−1

(1−e−2iπσ )Γ (σ)
.

In particular,
O
I−n= δ

(n) = sing0

(
(−1)n

2iπ
n!

ζ n+1

)
, n ∈ N.

• For n ∈ N?,
O
I n= sing0(

∨
In) with

∨
In (ζ ) =

ζ n−1 log(ζ )
2iπΓ (n) .

• For m ∈ N and σ ∈ C,
O
Jσ ,m=

(
∂

∂σ

)m O
I σ .

It is useful to define the following subspaces of “integrable singularities”,
SINGint ⊂ SING and SINGint

θ ,α ⊂ SINGθ ,α .

Definition 7.15. An integrable minor is a germ ϕ̂ ∈ ANA holomorphic in the do-
main 0 ⊂ C̃ which has a primitive φ̂ such that φ̂ → 0 uniformaly in any proper
subsector ¯ ′0 b 0. The space of integrable minors is denoted by ANAint.

An integrable singularity is a singularity
O
ϕ∈ SING which admits a major

∨
ϕ holo-

morphic in the domain 0 ⊂ C̃ such that lim
ζ→0

ζ
∨
ϕ (ζ ) = 0 uniformaly in any proper

subsector ¯ ′0 b 0. One denotes by SINGint the space of integrable singularities.

There is a natural injection O0 ↪→ ANAint from the space of germs of holomor-
phic functions to the space ANAint of integrable minors. The space ANAint can be
equipped with a convolution product, by extending the usual law convolution on O0.

It is not hard to show that integrable singularities satisfy the following property:

Proposition 7.4. By restriction, the variation map var induces a linear isomorphism
SINGint→ANAint. The inverse map is denoted by [ : ϕ̂ ∈ ANAint 7→ [ϕ̂ ∈ SINGint.

This allows to transports the convolution law from ANAint to SINGint by the
variation map.

Definition 7.16. The convolution product of ϕ̂1, ϕ̂2 ∈ ANAint is defined by

ϕ̂1 ∗ ϕ̂2(ζ ) =
∫

ζ

0
ϕ̂1(η)ϕ̂1(ζ −η)dη . The convolution of two integrable singular-

ities
O
ϕ1=

[ϕ̂1,
O
ϕ2=

[ϕ̂2 ∈ SINGint is given by :
O
ϕ1 ∗

O
ϕ2=

[
(
ϕ̂1 ∗ ϕ̂2

)
.

Quite similarly:

Definition 7.17. A minor ϕ̂ holomorphic on the domain 0(Î)⊂ C̃ is said to be in-
tegrable if ϕ̂ has a primitive φ̂ such that φ̂ → 0 uniformaly in any proper subsector
¯ ′0 b 0(Î). One denotes by ANAint

θ ,α the space of these integrable minors.

An integrable singularity is a singularity
O
ϕ∈ SINGθ ,α which has a major

∨
ϕ holo-

morphic in the domain 0(Ǐ)⊂ C̃ and such that lim
ζ→0

ζ
∨
ϕ (ζ ) = 0 uniformaly in any

proper subsector ¯ ′0 b 0(Ǐ). One denotes SINGint
θ ,α the space of these integrable

singularities.

Proposition 7.5. By restriction, the variation map var induces a linear isomorphism
SINGint

θ ,α→ANAint
θ ,α . The inverse map is denoted by [ : ϕ̂ ∈ ANAint

θ ,α 7→ [ϕ̂ ∈ SINGint
θ ,α .

We end with further definitions.

Definition 7.18. Any singularity
O
ϕ of the form

O
ϕ= aδ +[ϕ̂ with ϕ̂ ∈ O0 is said to

be simple. The space of simple singularities is denoted by SINGsimp.
The space SINGs.ram of simply ramified singularities is the vector space spanned by

SINGsimp and the set of singularities {
O
I−n, n ∈ N}.
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7.4.2 Convolution product of singularities

The resurgence theory asserts that the space of singularities SING can be equipped
with a convolution product [7, 8, 18], see also [1, 22]. Since SINGθ ,α can be identi-
fied with the space Γ (J,C ) of multivalued sections of C by π , with
J =]− π

2 −α +θ ,θ +α + π

2 [, the convolution product for microfunctions (propo-
sition 7.1) allows to transport this product to SINGθ ,α : for any two singularities
O
ϕ,

O
ψ∈ SINGθ ,α and any strict subarc I b J of length < π , one can find two ma-

jors
∨
ϕ,
∨
ψ∈ ANAθ ,α that can be represented by holomorphic functions on a sector

0(Ǐ). By projection on C, one can think of
∨
ϕ,
∨
ψ as belonging to O(

•
0(Ǐ)), that is

sectorial germs of codirection I. By restriction,
O
ϕ,

O
ψ are seen as microfunctions of

codirection I, whose convolution product
O
ϕ ∗

O
ψ∈ Γ (I,C ) can be represented either

by
∨
ϕ ∗Γ

∨
ψ (ζ ) =

∫
Γ

∨
ϕ
(
η
) ∨

ψ (ζ −η)dη (7.8)

or by

∨
ϕ ∗Γ×Γ

∨
ψ (ζ ) =

1
2iπ

∫
Γ×Γ

f (ζ − (ξ1 +ξ2))

ζ − (ξ1 +ξ2)

∨
ϕ (ξ1)

∨
ψ (ξ2)dξ1dξ2, (7.9)

with f ∈ O0 and f (0) = 1 (cf. (7.5) and (7.6)), where Γ = ΓI,ε,η1,η2 is as in def-
inition 7.7. When considering a covering of J by such arcs I, these sections glue

together to give the convolution product
O
ϕ ∗

O
ψ as a multivalued section of C over J.

Proposition 7.6. The space SING can be equipped with a convolution product de-
noted by ∗ that makes it a commutative convolution algebra, with unit

δ = sing0

(
1

2iπζ

)
=

O
I 0. Moreover:

1. the linear operator,
O
∂ :

O
ϕ= sing0(

∨
ϕ) ∈ SING 7→

O
∂
O
ϕ= sing0(−ζ

∨
ϕ) ∈ SING, is a

derivation.
2. if

O
ϕ and

O
ψ belong to SINGint, then

O
ϕ ∗

O
ψ belongs to SINGint and [ϕ̂ ∗ [ϕ̂ =[ (ϕ̂ ∗ ϕ̂).

In particular, the space of simple singularities SINGsimp is a convolution subal-
gebra.

Theses properties remain true when one considers SINGθ ,α instead of SING.

Proof. We have already shown that SINGθ ,α (thus SING) is a commutative convolu-
tion algebra for the convolution product with unit δ . The equality [ϕ̂ ∗ [ϕ̂ =[ (ϕ̂ ∗ ϕ̂)
for integrable singularities, emerges from considerations on integrals and is left as
an exercise. (Start with proposition 7.2. See [24]). ut

7.5 Formal Laplace transform, formal Borel transform

7.5.1 Formal Laplace transform for microfunctions

We start with the following definition.
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Definition 7.19. Let I ⊂ S1 be an open arc and r ≥ 0 be a nonegative real number.
we denote by:

1. A ≤0(
•

∞
r (I)) the C-differential algebra of holomorphic functions ϕ on

•
∞
r (I) that

satisfy the property : for any proper subdomain
•
¯ ∞ b

•
∞
r (I), for any ε > 0, there

exists C > 0 so that for all z ∈
•
¯ ∞, |ϕ(z)| ≤Ceε|z|;

2. A ≤0(I) = lim−→r→∞

A ≤0(
•

∞
r (I)). This defines a presheaf A ≤0;

3. A ≤0 the sheaf over S1 associated with the presheaf A ≤0.

Remark 7.2. The fact that A ≤0 is indeed a sheaf of differential algebras is an exer-
cise left to the reader. (We stress that the derivation considered is the usual one for
holomorphic functions).
The sheaf A ≤0 should not be confused with the sheaf A <0 of flat germs at infinity
(definition 3.17). As a matter of fact, A <0(I)⊂A (I)⊂A ≤0(I) where A stands
for the presheaf of asymptotic functions (see definition 3.17 and [14, 16, 17]).
We mention that our definition of A ≤0 differs from that of Malgrange in [16] where
A ≤0 is defined as the sheaf of sectorial germs that admit an asymptotics belong-
ing to the formal Nilsson class, that is of the form ∑ w̃(z) logm(z)

zσ , σ ∈ C, m ∈ N,
w̃ ∈ C[[z−1]]. Our sheaf A ≤0 contains this sheaf as a subsheaf. However, the con-
structions in the sequel resemble in much aspects to that of Malgrange [16].

The following Lemma is left to the reader as an exercise. This will allow us in a
moment to properly define the quotient sheaf A ≤0/A ≤−1 over S1.

Lemma 7.3. The space A ≤−1(
•

∞), resp. A ≤−1(I), of 1-exponentially flat functions

on
•

∞, resp. of 1-exponentially flat germs at infinity over I, is a differential ideal of

A ≤0(
•

∞(I)) –resp. of A ≤0.

Definition 7.20. Let θ be any direction (of S1 or S̃1). We denote by Rθ the ray
]0,eiθ ∞[. For κ > ε ≥ 0, we set Rθ ,ε =]εeiθ ,eiθ ∞[ and Rθ ,ε;κ =]εeiθ ,κeiθ [.
For any closed arc J̄ = [θ1,θ2], we denote by γJ̄,ε , resp. γJ̄,ε;κ , the Hankel contour,
resp. truncated Hankel contour, which consists in following:

1. Rθ1,ε , resp. Rθ1,ε;κ , backward,
2. then the circular arc δJ̄,ε = {εeiθ |θ ∈ J̄} oriented in the anti-clockwise way,
3. finally Rθ2,ε , resp. Rθ2,ε;κ , forward.

Let us pick an open arc I of S1 of length ≤ π , and a microfunction
O
ϕ∈ C (I) of

codirection I, represented by the germ
∨
ϕ∈ Ǒ0(I). For any open arc I1 =]α1,β1[ with

Ī1 b I, one can find R> 0 so that the restriction of
∨
ϕ to Ǐ1 =]α1−3π/2,β1−π/2[⊂ S1

is represented by a function (still denoted by
∨
ϕ) holomorphic in the sector R

0 (Ǐ1).
We consider another open arc I2 =]α2,β2[, Ī2 ⊂ I1, so that Ǐ1 \ ˇ̄I2 has two connected
components. We choose one arbitrary direction in each component,
θ1 ∈]α1−3π/2,α2−3π/2[, θ2 ∈]β2−π/2,β1−π/2[. For R > κ > ε > 0, we con-

sider the truncated Laplace integral ϕθ1,θ2,κ(z) =
∫

γ[θ1 ,θ2 ],ε;κ

e−zζ
∨
ϕ (ζ )dζ , see Fig. 7.6.

The function ϕθ1,θ2,κ satisfies the following properties:

• ϕθ1,θ2,κ is an entire function, since one integrates on a (relatively) compact path

of the domain of holomorphy of
∨
ϕ .
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Fig. 7.6 Formal Laplace
transform. The open arcs
I1, I2, Ǐ1, ˇ̄I2, and the path
γ = γ[θ1,θ2],ε;κ .

0

I1
I2

I2I1

γ

1θ

2θ

• for ε > 0 chosen as small as we want, we set M = sup ¯ κ
ε (]θ1,θ2[)

|
∨
ϕ |. then:

– for all z ∈ C,

∣∣∣∣∣
∫

δ[θ1 ,θ2 ],ε

e−zζ
∨
ϕ (ζ )dζ

∣∣∣∣∣≤ ε|Ǐ1|Meε|z| where |Ǐ1|= β1−α1 +π;

– for any r > 0, for every z∈
•

Π
θ1
r ,

∣∣∣∣∣
∫

Rθ1 ,ε;κ

e−zζ
∨
ϕ (ζ )dζ

∣∣∣∣∣≤ κMe−εr. Similarly,

for every z ∈
•

Π
θ2
r ,

∣∣∣∣∣
∫

Rθ2 ,ε;κ

e−zζ
∨
ϕ (ζ )dζ

∣∣∣∣∣≤ κMe−εr.

– the domain
•

Π
θ1
r contains any closed sector of the form

•
¯ ∞

r′(J1) with J1 an
open arc so that J̄1 ⊂]− π

2 − θ1,−θ1 +
π

2 [ and r′ > 0 large enough. Since

β2− π

2 < θ1 < α2 +
π

2 , one deduces that
•

Π
θ1
r contains any closed sector of

the form
•
¯ ∞

r′(I
?
2 ) with r′ > 0 large enough. Similarly,

•
Π

θ2
r contains any closed

sector of the form
•
¯ ∞

r′(I
?
2 ) with r′ > 0 large enough.

From this analysis, since ε > 0 can be chosen arbitrarily small, we retain that

ϕθ1,θ2,κ belongs to the space A ≤0(
•

∞
r (I

?
2 )), r > 0 large enough.

• Furthermore, looking at the above analysis and by Cauchy, we may observe that
for two cut-off points κ,κ ′ ∈]ε,R[, for two directions θ ′1 ∈]α1−3π/2,α2−3π/2[,

θ ′2 ∈]β2−π/2,β1−π/2[ the difference ϕθ1,θ2,κ −ϕθ ′1,θ
′
2,κ
′ belongs to A ≤−1(

•
∞
r (I

?
2 ))

with r > 0 large enough. We finally remark that adding to
∨
ϕ a function holo-

morphic on D(0,R) only affects ϕθ1,θ2,κ(z) by the addition of an element of

A ≤−1(
•

∞
r (I

?
2 )), r > 0 large enough.

In this way, one obtains a morphism, L (I, I2) :
O
ϕ∈ C (I) 7→

M
ϕ∈A ≤0(I?2 )/A

≤−1(I?2 ),
M
ϕ= cl(ϕθ1,θ2,κ), which is obviosuly compatible with the restriction maps.
This allows to move up to stalks, Lα : Cα →

(
A ≤0/A ≤−1)

α∗ and finally2 to a
morphism of sheaves L : C →A ≤0/A ≤−1.

Definition 7.21. One calls formal Laplace transform for microfunctions at 0, the
morphism of sheaves L : C →A ≤0/A ≤−1. The quotient sheaf A ≤0/A ≤−1 over

2 Modulo complex conjugation
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S1 is called the sheaf of asymptotic classes. An asymptotic class is usually denoted

by
M
ϕ .

The term “sheaf of asymptotic classes” is borrowed from [1] where the sheaf A ≤0 is de-

noted by E 0, and the sheaf A ≤−1 is denoted by E −. The notation
M
ϕ is own.

Example 7.3. For (σ ,m) ∈C×N and I =]−π/2,π/2[∈ S1, we consider the micro-

function
O
Jσ ,m= singI

0

(
∨
Jσ ,m

)
∈ C (I) represented by the sectorial germ

∨
Jσ ,m=

(
∂

∂σ

) ∨
Iσ∈ Ǒ0(I) and the branch of the log such that arg(logζ ) ∈ Ǐ =]−2π,0[.

By standard formulae recalled in Sect. 7.1, one readily gets that its formal Laplace

transform
M
Jσ ,m= L (I)

O
Jσ ,m is an asymptotic class that can be represented by the

(sectorial germ at infinity of) holomorphic function(s) (−1)m logm(z)
zσ ∈ A ≤0(I?),

I? =]−π/2,π/2[ with the determination of the log so that arg(logz) ∈ I?.

The following proposition is a straight consequence of the very construction of
the formal Laplace transform.

Proposition 7.7. The formal Laplace transform L : C →A ≤0/A ≤−1 satisfies the

identity : L ◦
M
∂= ∂ ◦L .

7.5.2 Formal Borel transform for asymptotic classes

Let I? ⊂ S1 be an open arc with length ≤ π and ϕ ∈A ≤0(I?) be a sectorial germ
at infinity. For any open arc I?1 b I?, one can find r > 0 so that the restriction of
ϕ to I?1 is (represented by) a holomorphic function (still denoted by ϕ) on the do-

main
•

∞
r (I

?
1 ). We set

∨
ϕz1,α (ζ ) =− 1

2iπ

∫
Rα,z1

ezζ
ϕ(z)dz for any z1 ∈

•
∞
r (I

?
1 ) and any

direction α ∈ I?1 , see Fig. 7.7. We can make the following observations about this

Laplace integral
∨
ϕz1,α :

• since ϕ belongs to A ≤0(
•

∞
r (I

?
1 )), we know that for any proper subsector

•
¯ ∞

r1
(J?)b

•
∞
r (I

?
1 ) and any ε > 0, there exists C > 0 so that, for all z ∈

•
¯ ∞

r1
(J?),

|ϕ(z)| ≤Ceε|z|. Therefore
∨
ϕz1,α belongs to O(

•
Π

α+π
ε ) when z1 ∈

•
¯ ∞

r1
(J?) and

α ∈ J̄?. Making α varying in J? and since ε > 0 can be chosen arbitrarily small,
these functions glue together by Cauchy, and provide a holomorphic function
∨
ϕz1,J? on

•
D(J?,0) =

•
∞
0 (J̌). Notice that for two points z1,z2 ∈

•
¯ ∞

r1
(J?), the differ-

ence
∨
ϕz2,J? −

∨
ϕz1,J? defines an entire function (with at most exponential growth

Fig. 7.7 Formal Borel trans-
form. The open arcs I?, and
the path Rα,z1 .

I*
1z

0

α
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of order 1 at infinity). Therefore, localising near the origin, we get a sectorial

germ
∨
ϕz1,I?∈ O(Ǐ) = Ǒ(I), defined modulo the elements of O0, that is a micro-

function of codirection I;

• when ϕ belongs to A ≤−1(I?), one easily sees from the above analysis that
∨
ϕz1,I?

is holomorphic on a domain containing a full neighbourhood of the origin, thus
by localisation, an element of O0.

To conclude, we have defined a morphism (of C-differential algebras),

B(I?) :
M
ϕ∈A ≤0(I?)/A ≤−1(I?) 7→

O
ϕ= cl(

∨
ϕz1,I?) ∈ C (I) whose compatibility with

the restriction maps is easy to check.

Definition 7.22. The morphism of sheaves B : A ≤0/A ≤−1→ C is called the for-
mal Borel transform

The formal Laplace transform for microfunctions and the formal Borel transform
for asymptotic classes are isomorphisms of sheaves, as shown in [1] to whom we
refer:

Proposition 7.8. The morphisms L : C →A ≤0/A ≤−1 and B : A ≤0/A ≤−1→ C
are isomorphisms of sheaves and L ◦B = Id, B ◦L = Id.

Remark 7.3. The morphism of sheaves ϕ̂ ∈ O0 7→
O
ϕ= singI

0

(
ϕ̂

log
2iπ

)
∈ C (I) is in-

jective as already mentioned. The following commutative diagram makes a link be-
tween the formal Laplace transform for regular minor, resp. formal Borel transform
for 1-Gevrey formal series, and the formal Laplace transform for microfunctions,

resp. formal Borel transform for asymptotic classes:
O0 ↪→ C

L ↓↑B B ↑↓L
A1/A

≤−1 ↪→A ≤0/A ≤−1.

7.5.3 Formal Laplace transform for singularities and back to
convolution product

In the sequel, we translate to singularities what have obtained so far for microfunc-
tions.

7.5.3.1 Formal Laplace transform for singularities

We start with two definitions.

Definition 7.23. Let θ ∈ S̃1 be a direction and α > 0. We denote by ASYMPθ ,α

the space of asymptotic classes defined as multivalued sections of A ≤0/A ≤−1 on
J? =]−π/2−α−θ ,−θ +α +π/2[. We denote by ASYMP the space of asymp-
totic classes given by global sections of A ≤0/A ≤−1 on S̃1.

Definition 7.24. Let σ ∈ C be a complex number and m ∈ N. We denote by
M
I σ∈ ASYMP the asymptotic class represented by 1/zσ . We denote by

M
Jσ ,m∈ ASYMP

the asymptotic class represented by (−1)m logm(z)
zσ . We often simply write 1/zσ in-

stead of
M
I σ and similarly for

M
Jσ ,m.
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We have already said that the space of singularities SINGθ ,α can be identified
with the space Γ (J,C ) of multivalued sections of C by π , with
J =]− π

2 −α +θ ,θ +α + π

2 [. The formal Laplace transform for microfunctions
thus extends to singularities, by inverse image:

L⊔
β̇∈S1 C

β̇
→
⊔

β̇ ?∈S1

(
A ≤0/A ≤−1

)
β̇ ?

s↗ ↓ ↓

S̃1 ⊃ J 3 β −→ S1 3
•
β → S1 3

•
β
?

π ?

When returning to the very construction of the formal Laplace transform (Sect.

7.5.1), one sees that for any singularity
O
ϕ∈ SINGθ ,α , for any direction

β ∈ Ĵ =]−α +θ ,θ +α[, setting
(

β ? =]− π

2 +β ,β + π

2 [, the formal Laplace trans-

form L (

(

β ?)
O
ϕ is given as the class

M
ϕ= cl(ϕβ−2π,β ,κ) ∈A ≤0(

(

β )/A ≤−1(

(

β ) where

(

β =]− π

2 −β ,−β + π

2 [ and ϕβ−2π,β ,κ(z) =
∫

γ[β−2π,β ],ε;κ

e−zζ
∨
ϕ (ζ )dζ , with

∨
ϕ any

major of
O
ϕ . This introduces the following definition. (Notice that

(

Ĵ = J?).

Definition 7.25. The morphism L β =L (

(

β ?) : SINGθ ,α →A ≤0(

(

β )/A ≤−1(

(

β ) is
called the formal Laplace transform in the direction β ∈ Ĵ =]−α +θ ,θ +α[.

For any singularity
O
ϕ∈ SINGθ ,α , one denotes by L Ĵ

O
ϕ∈ASYMPθ ,α the asymptotic

class given by the collection
(
L β

O
ϕ
)

β∈Ĵ .

Example 7.4. We continue the example 7.3 but for the fact that we now consider
O
Jσ ,m as a singularity in SING0,π . The formal Laplace transform L ]−π,π[

O
Jσ ,m

is the asymptotic class
M
Jσ ,m∈ ASYMP0,π seen by restriction as an element of

Γ (]−3π/2,3π/2[,A ≤0/A ≤−1).

We linger for a moment at the cases of singularities of the form
O
ϕ= [ϕ̂ ∈ SINGint

θ ,α .

For any direction β ∈]−α +θ ,θ +α[, the formal Laplace transform
M
ϕ= L β

O
ϕ ,

M
ϕ∈A ≤0(

(

β )/A ≤−1(

(

β ), can be represented by the function

ϕβ−2π,β ,κ(z) =
∫

γ[β−2π,β ],ε;κ

e−zζ
∨
ϕ (ζ )dζ =

∫
Rβ ,0;κ

e−zζ
ϕ̂(ζ )dζ , (7.10)

and we thus recover the “usual” formal Laplace transform (see Sect. 7.1). In par-
ticular, we recall that we have extended the convolution law to SINGint

θ ,α by the

variation map: for
O
ϕ1=

[ϕ̂1,
O
ϕ2=

[ϕ̂2 ∈ SINGint
θ ,α ,

O
ϕ1 ∗

O
ϕ2=

[
(
ϕ̂1 ∗ ϕ̂2

)
. The above

remark (7.10) shows that L β (
O
ϕ1 ∗

O
ϕ2) = (L β

O
ϕ1)(L

β
O
ϕ2), by the properties of

the “usual” formal Laplace transform.

We now assume that
O
ϕ is a simple singularity,

O
ϕ= aδ +[ϕ̂ ∈ SINGsimp with

ϕ̂ ∈ O0. For any open arc Ĵ =]− α + θ ,θ + α[, the formal Laplace transform
M
ϕ= L Ĵ(aδ+

O
ϕ) is an asymptotic class which belongs to Γ (J?,A1/A

≤−1). This
again comes from (an analogue of) the identity (7.10) and classical arguments re-
called in the introduction of this chapter.
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Definition 7.26. One denotes by ASYMPsimp the subspace of asymptotic classes
obtained by injection of the global sections Γ (S̃1,A1/A

≤−1) into ASYMP.

Proposition 7.9. The restriction of the formal Laplace transform L to SINGsimp

has ASYMPsimp for its range.

Remark 7.4. Consider a formal series ϕ̃ ∈ C[[z−1]] and an open arc of the form
J? =]−π/2−α−θ ,−θ +α +π/2[⊂ S̃1. By the Borel-Ritt theorem, there are in-
finitely many ϕ ∈A (J?) whose Poincaré asymptotics T (J?)ϕ is given by ϕ̃ on J?.
These various ϕ differ by flat germs, that is elements of A <0(J?). Therefore as a

rule, these germs ϕ represent different asymptotic classes
M
ϕ∈ ASYMPθ ,α .

Now suppose that ϕ̃ is 1-Gevrey and choose a (good) covering (Ii) of J? where each
Ii is an open arc of length less than π . By the Borel-Ritt theorem for 1-Gevrey
asymptotics and for each subscript i, there exists ϕi ∈ A 1(Ii) whose 1-Gevrey
asymptotics T1(Ii)ϕi is ϕ . Moreover, each ϕi is uniquely defined this way up to
1-exponentially flat germs, that is up to elements of A ≤−1(Ii). One thus gets a

uniquely defined section
M
ϕ∈ Γ (J?,A1/A

≤−1) that can be thought of as an asymp-

totic class. One can characterize another way this asymptotic class
M
ϕ∈ ASYMPsimp

by settling
M
ϕ= L (aδ+

O
ϕ) where

O
ϕ= [ϕ̂ with ϕ̂ the minor of ϕ̃ while a is its con-

stant term.

Definition 7.27. The mapping \ : ϕ̃ ∈ C[[z−1]]1 7→
M
ϕ= \ϕ̃ ∈ ASYMPsimp is defined

by
M
ϕ= L (aδ+

O
ϕ) where

O
ϕ= [ϕ̂ , whereas ϕ̂ stands for the minor of ϕ̃ and a its

constant term.

Obviously, the mapping \ is an isomorphism, the inverse map being the 1-Gevrey
Taylor map. This allows to merge \ϕ̃ with ϕ̃ in practice.

7.5.3.2 Back to convolution product

We have said without proof that L and B are morphisms of sheaves of algebras. It
is thus certainly worthy to prove the following proposition.

Proposition 7.10. For any two singularities
O
ϕ1,

O
ϕ2∈ SINGθ ,α and any direction

β ∈]−α +θ ,θ +α[, the following properties hold:

(L β
O
ϕ1)(L

β
O
ϕ1) = L β (

O
ϕ1 ∗

O
ϕ2) and L β (

O
∂
O
ϕ1) = ∂L β

O
ϕ1.

Proof. (Adapted from [1]). Let
O
ϕ1,

O
ϕ2∈ SINGθ ,α be two singularities with ma-

jors
∨
ϕ1,

∨
ϕ2. We pick a direction β ∈ Ĵ =]−α +θ ,θ +α[ and we consider the

formal Laplace transforms
M
ϕ1= L β

O
ϕ1 and

M
ϕ2= L β

O
ϕ2. These are elements of

A ≤0(

(

β )/A ≤−1(

(

β ) which can be represented respectively by

ϕ1(z)=
∫

γ1

e−zζ
∨
ϕ1 (ζ )dζ ∈A ≤0(

•
∞
r (

(

β )), ϕ2(z)=
∫

γ2

e−zζ
∨
ϕ2 (ζ )dζ ∈A ≤0(

•
∞
r (

(

β )),

with γ1 = γ[β−2π,β ],ε1;κ1 , γ2 = γ[β−2π,β ],ε2;κ2 and some r > 0 large enough. The prod-

uct
M
ϕ1

M
ϕ2∈A ≤0(

(

β )/A ≤−1(

(

β ) is thus represented by

ϕ1ϕ2(z) =
∫

γ1×γ2

e−z(ζ1+ζ2)
∨
ϕ1 (ζ1)

∨
ϕ2 (ζ2)dζ1dζ2 ∈A ≤0(

•
∞
r (

(

β )).
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Let us look at the formal Borel transform B(

(

β )(
M
ϕ1

M
ϕ2) ∈ C (

(

β ?). This Borel trans-

form can be represented by the integral
∨

(ϕ1ϕ2)z1,α1
(ζ ) =− 1

2iπ

∫
Rα1 ,z1

ezζ
ϕ1ϕ2(z)dz

with z1 ∈
•

∞
r1
(

?

(

β ), r1 > r, and for any direction α1 ∈

(

β ?. The function
∨

(ϕ1ϕ2)z1,α1
(ζ )

is holomorphic on
•

Π
α1+π

0 (go back to the construction of the formal Borel transform,

Sect. 7.5.2). Taking ζ ∈
•

Π
α1+π

2ε
with ε > ε1 + ε2, we can apply Fubini.

Remark that ζ1 + ζ2 (or rather
•
ζ 1 +

•
ζ 2) remains in the bounded strip

{ζ ∈ C | dist(ζ ,eiβ [0,κ]) ≤ ε1 + ε2}, for (ζ1,ζ2) ∈ γ1 × γ2. Thus ζ − (ζ1 + ζ2) remains

in the domain
•

Π
α1+π
ε for ζ ∈

•
Π

α1+π

2ε
and this ensures the integrability conditions.

This way, we get:

∨
(ϕ1ϕ2)z1,α1

(ζ ) = − 1
2iπ

∫
Rα1 ,z1

ezζ

(∫
γ1×γ2

e−z(ζ1+ζ2)
∨
ϕ1 (ζ1)

∨
ϕ2 (ζ2)dζ1dζ2

)
dz

=
∫

γ1×γ2

ez1(ζ−ζ1−ζ2)

2iπ(ζ −ζ1−ζ2)

∨
ϕ1 (ζ1)

∨
ϕ2 (ζ2)dζ1dζ2

=
∫

γ1

(∫
γ2

ez1(ζ−ζ1−ζ2)

2iπ(ζ −ζ1−ζ2)

∨
ϕ2 (ζ2)dζ2

)
∨
ϕ1 (ζ1)dζ1

Returning to the very construction of the convolution product for singularities, we

see that
∨

(ϕ1ϕ2)z1,α1
is nothing but a major of the singularity sing0

(
ez1ζ

2iπζ

)
∗

O
ϕ1 ∗

O
ϕ2.

But sing0

(
ez1ζ

2iπζ

)
= δ and therefore sing0

( ∨
(ϕ1ϕ2)z1,α1

)
=

O
ϕ1 ∗

O
ϕ2. From Proposi-

tion 7.8, we know that B ◦L = Id (when considering B and L as morphisms of
sheaves), thus the conclusion. The last statement as been already seen. ut

Example 7.5. We know by theorem 3.3 that the formal series w̃(0,0) solution of the
prepared ODE (3.6) associated with the first Painlevé equation, is 1-Gevrey. Its mi-
nor ŵ(0,0) = Bw̃(0,0) is thus a germ of holomorphic functions at the origin and we

set
O
w(0,0)=

[ŵ(0,0) ∈ SINGsimp. We now consider the singularity
O
I σ ∗

O
w(0,0)∈ SING,

for any σ ∈ C. By proposition 7.10, for an arbitrary direction β ∈ S̃1, the formal

Laplace transform L β
( O

I σ ∗
O
w(0,0)

)
∈A ≤0(

(

β )/A ≤−1(

(

β ) is the asymptotic class

of direction

(

β which reads also as:

L β
( O

I σ ∗
O
w(0,0)

)
= L β

( O
I σ

)
L β

( O
w(0,0)

)
.

On the one hand, L β
O
I σ is the asymptotic class

M
I σ∈ Γ (

(

β ,A ≤0/A ≤−1). On the

other hand, L β
O
w(0,0)=

\w̃(0,0). Therefore, L β
( O

I σ ∗
O
w(0,0)

)
=

M
I σ

\w̃(0,0) that can be

identified with
1
zσ

w̃(0,0) with the branch of zσ determined by the condition argz∈

(

β .

Example 7.6. We now use the notations of Sect. 3.4.2.2 but for the fact that we con-
sider arcs on S̃1. We write Î0 =]0,π[ and I?0 =]−3π/2,π/2[⊂ S̃1 and in what follows
with think of the Laplace-Borel sum wtri,0 =S Î0w̃(0,0) as (representing) a multival-
ued section of A1 on I?0 . Similarly, we set Î1 =]π,2π[ and I?1 =]−5π/2,−π/2[⊂ S̃1

and think of wtri,1 = S Î1w̃(0,0) as an element of Γ (I?1 ,A1). Notice that
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I?0 ∩ I?1 =]−3π/2,−π/2[ on S̃1. Since both wtri,0 and wtri,1 are asymptotic to the
1-Gevrey series w̃(0,0), we know that the difference wtri,0−wtri,1 is a multivalued

section of A ≤−1 on I?0 ∩ I?1 . Therefore, for any σ ∈ C,
1
zσ

wtri,0 and
1
zσ

wtri,1 glue

together to give a multivalued section of A ≤0/A ≤−1 on I?0 ∪ I?1 , that can be identi-

fied with the asymptotic class
M
I σ

\w̃(0,0) ∈ ASYMPπ,π . The formal Borel transform

B(I?0 )
( M

I σ
\w̃(0,0)

)
is the multivalued section of C on I0 =]−π/2,3π/2[ which can

be thought of as a singularity in SINGπ/2,π/2, and is given by

B(I?0 )
( M

I σ
\w̃(0,0)

)
=

O
I σ ∗

O
w(0,0). Similarly, the formal Borel transform

B(I?1 )
( M

I σ
\w̃(0,0)

)
is the multivalued section of C on I1 =]π/2,5π/2[ which pro-

vides a singularity in SING3π/2,π/2, of the form B(I?1 )
( M

I σ
\w̃(0,0)

)
=

O
I σ ∗

O
w(0,0).

These two singularities glue together as the element
O
I σ ∗

O
w(0,0) of SINGπ,π .

7.5.3.3 Formal Laplace transform for singularities at ω

The spaces SINGω , resp. SINGω,θ ,α of singularities at ω ∈ C are the translated of
SING, resp. SINGθ ,α . (See definition 7.11). By its very construction, the formal
Laplace transform brings the translation into the multilplication by an exponential.

Definition 7.28. The formal Laplace transform L sends SINGω , resp. SINGω,θ ,α ,
onto the space denoted by e−ωzASYMP, resp. e−ωzASYMPθ ,α , made of asymptotic
classes with support based at ω .

We mention the following result that can be thought of as an analogue of the
Watson’s lemma [14].

Lemma 7.4. For any ω ∈ C?, the sum of the two C-vector spaces ASYMPθ ,α and
e−ωzASYMPθ ,α is direct.

Proof. We consider an asymptotic class
M
ϕ∈ ASYMPθ ,α . By definition, one can

find a (good) open covering (J j) of J? =]−π/2−α−θ ,−θ +α +π/2[ and a “0-
cochain”

(
ϕ j ∈ A ≤0(J j)

)
j with associated “1-coboundary”(

ϕ j+1−ϕ j ∈A ≤−1(J j+1∩ J j)
)

j that represents
M
ϕ . Now assume that

M
ϕ also belongs

to e−ωzASYMPθ ,α . Considering a refinement of (J j) if necessary, one deduces that
ϕ j ∈A ≤−1(J j) for at least one j, since J? is an arc of length > π . This implies that

the formal Borel transform
O
ϕ∈ SINGθ ,α has a major

∨
ϕ which can be analytically

continued to 0, thus
O
ϕ= 0 and as a consequence

M
ϕ= 0. ut

7.6 Laplace transforms

We develop here only matters convenient for this course. For more general nonsense
on Laplace transforms in the framework of resurgent analysis, see [1, 2, 7, 8, 16].
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7.6.1 Laplace transforms

Definition 7.29. Let I ⊂ S1 be an open arc and r ≥ 0. We denote by:

1. E ≤1(I) the C-differential algebra of holomorphic functions ϕ on
•

∞
0 (I) with

1-exponential growth at infinity on the direction I : for any proper subsector
•
¯ ∞ b

•
∞
0 (I), there exist C > 0 and τ > 0 so that, for all z ∈

•
¯ ∞, |ϕ(z)| ≤Ceτ|z|;

2. when I is of length ≤ π , Ě ≤1(I) = E ≤1(Ǐ) is the space of holomorphic functions

ϕ on
•

∞
0 (Ǐ), with 1-exponential growth at infinity on the codirection I.

3. E ≤1, resp. Ě ≤1, the sheaf over S1 corresponding to the family
(
E ≤1(I)

)
, resp.

Ě ≤1(I);
4. O(C)≤1 the space of entire functions with 1-exponential growth at infinity on

every direction.

Pick an open arc I ⊂ S1 of length ≤ π , and a function
∨
ϕ∈ Ě ≤1(I). Thus

∨
ϕ is

holomorphic on
•

∞
0 (Ǐ) and for any open arc I1 so that Ī1 ⊂ I, for any ε > 0, there

exist C > 0 and τ > 0 so that, for all ζ ∈
•
¯ ∞

ε (Ǐ1), |
∨
ϕ (ζ )| ≤Ceτ|ζ |. We consider the

following Laplace integral,

ϕI1(z) =
∫

γ[θ1 ,θ2 ],ε

e−zζ
∨
ϕ (ζ )dζ =

(
−
∫

Rθ1 ,ε

+
∫

δ[θ1 ,θ2 ],ε

+
∫

Rθ2 ,ε

)
∨
ϕ (ζ )dζ ,

where Ǐ1 =]θ1,θ2[ (for the contour of integration, see definition 7.20). This Laplace
integral can be decomposed as follows:

• by classical arguments, the integral
∫

Rθ1 ,ε

e−zζ
∨
ϕ (ζ )dζ defines a holomorphic

function on
•

Π
θ1
τ and we observe that for any r > τ , for every z ∈

•
Π

θ1
r ,∣∣∣∣∣

∫
Rθ1 ,ε

e−zζ
∨
ϕ (ζ )dζ

∣∣∣∣∣≤
∫

∞

ε

e−srCeτsds≤ C
r− τ

e−ε(r−τ).

In the same way, the integral
∫

Rθ2 ,ε

e−zζ
∨
ϕ (ζ )dζ defines a holomorphic function

on
•

Π
θ2
τ and for any r > τ , for every z∈

•
Π

θ2
r ,

∣∣∣∣∣
∫

Rθ2 ,ε

e−zζ
∨
ϕ (ζ )dζ

∣∣∣∣∣≤ C
r− τ

e−ε(r−τ);

• the integral
∫

δ[θ1 ,θ2 ],ε

e−zζ
∨
ϕ (ζ )dζ defines an entire function and∣∣∣∣∣

∫
δ[θ1 ,θ2],ε

e−zζ
∨
ϕ (ζ )dζ

∣∣∣∣∣≤C|Ǐ1|εeτε eε|z|.

• by arguments already encounter (see Sect. 7.5.1), both
•

Π
θ1
τ and

•
Π

θ2
τ contains any

proper subsector
•
¯ ∞ of

•
∞
r (I

?
1 ), once r > 0 is chosen large enough.

Therefore, ϕI1 belongs to the space A ≤0(
•

∞
r1
(I?1 )) for r1 > 0 large enough, because

ε > 0 can be chosen arbitrarily small.

It is easy to see that adding to
∨
ϕ any element of O(C)≤1, does not affect the function

ϕI1 (just deform the contour of integration, by Cauchy).
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The family of functions (ϕI1)I1⊂I obtained this way glue together analytically, by
Cauchy.
The above construction gives a morphism, L (I) : Ě ≤1(I)/O(C)≤1 → A ≤0(I?),
compatible with the restriction maps, which provides a morphism of sheaves3.

Definition 7.30. The morphism of sheaves L : Ě ≤1/O(C)≤1→A ≤0 is called the
strict Laplace transform4.

We return to the construction we did to get the formal Borel transform, Sect.

7.5.2. We pick an open arc I?⊂ S1 of length≤ π and ϕ ∈A ≤0(I?). For z1 ∈
•

∞
r (I

?),

r > 0 large enough, for any direction α ∈ I?, we set
∨
ϕz1,α (ζ ) =− 1

2iπ

∫
Rα,z1

ezζ
ϕ(z)dz.

We have seen that, making α varying, one gets an element of Ě ≤1(I), while
∨
ϕz1,α

depends on z1 only modulo an element of O(C)≤1. We thus get a morphism of
sheaves B : A ≤0 → Ě ≤1/O(C)≤1 which has the following property (we refer to
[1] for the proof):

Proposition 7.11. The morphisms of sheaves L : Ě ≤1/O(C)≤1 → A ≤0 and
B : A ≤0→ Ě ≤1/O(C)≤1 are isomorphisms of sheaves of C-differential algebras,
and L ◦B = Id, B ◦L = Id.

7.6.2 Singularities and Laplace transform

7.6.2.1 Summable singularities

We recall that SINGθ ,α can be identified with the space Γ (J,C ) of multivalued
sections of C over J =]−π/2−α +θ ,θ +α +π/2[⊂ S̃1. In particular, any sin-

gularity
O
ϕ∈ SINGθ ,α can be represented by a major

∨
ϕ∈ ANAθ ,α = Γ (J̌,O0), with

J̌ =]θ −α−2π,θ +α[⊂ S̃1.

Definition 7.31. An element
∨
ϕ∈ANAθ ,α =Γ (J̌,O0) is said summable in the direc-

tion β ∈ Ĵ =]−α +θ ,θ +α[ if there exists a neighbourhood Ĵ1 ⊂ Ĵ of β so that the

two restrictions
∨
ϕ1∈ Γ (Ĵ1,O

0) and
∨
ϕ2∈ Γ (Ĵ2,O

0) of
∨
ϕ over Ĵ1 and Ĵ2 =−2π + Ĵ1

respectively, can be represented by elements of Γ (Ĵ1,E
≤1) and Γ (Ĵ2,E

≤1) respec-

tively. A singularity
O
ϕ∈ SINGθ ,α is summable in the direction Ĵ if for any β ∈ Ĵ,

the singularity
O
ϕ has a major

∨
ϕ∈ ANAθ ,α which summable in the direction β . We

denote by SINGsum
θ ,α the space of singularities

O
ϕ∈ SINGθ ,α which are summable in

the direction Ĵ.

7.6.2.2 Laplace transforms of summable singularities

We consider a singularity
O
ϕ∈ SINGsum

θ ,α and a direction β ∈ Ĵ =]−α+θ ,θ +α[. Let
∨
ϕ be a major of

O
ϕ which is summable in the direction β and set ϕ̂ = var

O
ϕ . Using

3 As usual, modulo complex conjugation
4 We abide a notation of [1], although the construction therein slightly differs from ours.
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the notations of definition 7.31, we consider the following Laplace integral where
ε > 0 is chosen small enough:

ϕβ (z) =
∫

γ[β−2π,β ],ε

e−zζ
∨
ϕ (ζ )dζ (7.11)

=
∫

δ[β−2π,β ],ε

e−zζ
∨
ϕ (ζ )dζ −

∫
Rβ−2π,ε

e−zζ
∨
ϕ2 (ζ )dζ +

∫
Rβ ,ε

e−zζ
∨
ϕ1 (ζ )dζ

=
∫

δ[β−2π,β ],ε

e−zζ
∨
ϕ (ζ )dζ +

∫
Rβ ,ε

e−zζ
ϕ̂(ζ )dζ .

From the arguments used in Sect. 7.6.1, we see that ϕβ defines an element of

A ≤0(

(

β ). Moreover, if
∨
ψ is another major of

O
ϕ which is summable in the direc-

tion β (for instance
∨
ϕ −

∨
ψ∈ O(C)≤1), then its Laplace integral ψβ coincide with

ϕβ as elements of A ≤0(

(

β ). Thus ϕβ is independent of the chosen summable major

and only depends on
O
ϕ∈ SINGsum

θ ,α . This allows us to write ϕβ = L β
O
ϕ .

Making β varying in Ĵ, the functions L β
O
ϕ obviously glue together analyti-

cally (by Cauchy and using the independence of L β
O
ϕ with respect to the chosen

summable major), to give and element L Ĵ
O
ϕ of Γ (J?,A ≤0).

Definition 7.32. The morphism L β : SINGsum
θ ,α → A ≤0(

(
β ) is called the Laplace

transform in the direction β ∈ Ĵ =]−α +θ ,θ +α[.
The morphism L Ĵ : SINGsum

θ ,α → Γ (J?,A ≤0) is called the Laplace transform in the
direction Ĵ =]−α +θ ,θ +α[.

We recover with the following proposition the examples given in the introduction
of the chapter, see also [18].

Proposition 7.12. The singularities
O
I σ and

O
Jσ ,m belong to SINGsum

θ ,α for any direc-

tion θ and any α > 0. Moreover, for any direction β ∈ S̃1,

L β
O
I σ (z) =

1
zσ

, L β
O
Jσ ,m (z) = (−1)m logm(z)

zσ
, z ∈Π

β

0 ⊂ C̃.

This has the following consequences:

Proposition 7.13. For all σ1,σ2 ∈ C, for all m1,m2 ∈ N
O
I σ1 ∗

O
I σ2=

O
I σ1+σ2 and

O
Jσ1,m1 ∗

O
Jσ2,m2=

O
Jσ1+σ2,m1+m2 .

Proof. From proposition 7.12, we deduce that L
O
I σ1=

1
zσ1

and L
O
I σ2=

1
zσ2

. Thus

by proposition 7.10, L
O
I σ1 ∗

O
I σ2=

1
zσ1+σ2

and one concludes by formal Borel trans-

form. Same proof for the other equality. ut

In definition 7.32, we meant morphisms of vector spaces. As a matter of fact,
these are morphisms of C-differential algebras. This is the matter of the following
proposition.

Proposition 7.14. The space SINGsum
θ ,α is a commutative and associative algebra

with unit δ . The Laplace transform L β : SINGsum
θ ,α → A ≤0(

(

β ) is compatible
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with the convolution of singularities: L β
O
ϕ ∗

O
ψ=

(
L β

O
ϕ
)(

L β
O
ψ
)
. Moreover,

L β (
O
∂
O
ϕ) = ∂L β

O
ϕ .

Proof. We go back to the very definition of the convolution product of microfunc-

tions and singularities. For
O
ϕ,

O
ψ∈ SINGθ ,α , for any β ∈ Ĵ =]−α + θ ,θ +α[, the

convolution product
O
ϕ ∗

O
ψ can be represented, for ζ ∈

•
S2ε(]β −2π,β [) with ε > 0

as small as we want, by

∨
ϕ ∗Γ×Γ

∨
ψ (ζ ) =

1
2iπ

∫
Γ×Γ

eν(ζ−(ξ1+ξ2))

ζ − (ξ1 +ξ2)

∨
ϕ (ξ1)

∨
ψ (ξ2)dξ1dξ2, (7.12)

(see 7.9), where Γ = Γβ ,ε,η1,η2 is as in definition 7.7 and where
∨
ϕ,
∨
ψ are thought of

as belonging to O(
•

0(]β −2π,β [)). In (7.12), ν ∈ C is a free parameter which can
be chosen at our convenience.
We now assume that

O
ϕ,

O
ψ∈ SINGsum

θ ,α and that
∨
ϕ,
∨
ψ are summable majors in the

direction β . In that case, choosing ν = |ν |e−iβ with |ν | large enough to ensure

the integrability, one can rather consider the convolution product
O
ϕ ∗

O
ψ as rep-

resented by (7.12), but this time with an endless path Γ = Γβ ,ε (see definition

7.7). This construction gives a major of
O
ϕ,

O
ψ which is summable in the direction

β . Moreover, the arguments used in the proof of the proposition 7.10 show that

L β
O
ϕ ∗

O
ψ=

(
L β

O
ϕ
)(

L β
O
ψ
)
. ut

Example 7.7. We consider the formal Borel transform ŵ(0,0) =Bw̃(0,0) where w̃(0,0)
is the formal series solution of the prepared ODE (3.6) associated with the first
Painlevé equation. We know by theorem 3.3 that ŵ(0,0) can be analytically con-

tinued to the star-shaped domain
•
R(0) with at most exponential growth of order 1

at infinity along non-horizontal directions. We set
O
w(0,0)=

[ŵ(0,0) ∈ SINGint. Then
O
w(0,0)∈ SINGsum

π/2,π/2 (or
O
w(0,0)∈ SINGsum

−π/2,π/2) : just consider the major
∨
w(0,0) (ζ ) = ŵ(0,0)(ζ )

log(ζ )
2iπ . The Laplace transform L ]0,π[ Ow(0,0) is well-defined and

gives a section of A ≤0 on ]−3π/2,π/2[. As a matter of fact,

L ]0,π[ Ow(0,0)= L ]0,π[ŵ(0,0) = S ]0,π[w̃(0,0)

and L ]0,π[ O
w(0,0) can be thought of as belonging to the space of sections

Γ (]−3π/2,π/2[,A1). We now consider the singularity
O
I σ ∗

O
w(0,0), for any σ ∈ C.

Using propositions 7.12 and 7.14, this singularity belongs (for instance) to SINGsum
π/2,π/2

and L ]0,π[ O
I σ ∗

O
w(0,0)=

(
L ]0,π[ O

I σ

)(
L ]0,π[ O

w(0,0)
)
= 1

zσ S ]0,π[w̃(0,0), this time
viewed as a multivalued section A ≤0 on ]−3π/2,π/2[⊂ S̃1.
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7.7 Spaces of resurgent functions

7.7.1 Preliminaries

We refer the reader to [1] (Pré I.3, lemme 3.0) for the proof of the following key-
lemma, the idea of which being due to Ecalle.

Lemma 7.5. Let R0 > 0 be a real positive number and Γ ⊂C be an embedded curve,
transverse to the circles |ζ |= R for all R ≥ R0. Let Φ be a holomorphic function
on a neighbourhood of Γ . Then, for any continuous function m : R+→ R+ so that
inf{m([0,ξ ])} > 0 for all ξ > 0, there exists Ψ ∈ O(C) such that, for all ζ ∈ Γ ,
|Φ(ζ )+Ψ(ζ )| ≤ m(|ζ |).

In what follows, we use the notations introduced in definition 7.7. We also recall
that C̃\Z stands for the universal covering of C\Z. One may also think of C̃\Z as
the universal covering of C̃\

⋃
θ=πk,k∈Z

{meiθ | m ∈ N?}.

Lemma 7.6. Let
O
ϕ∈ SING be a singularity which can be determined by a major

analytically continuable to C̃\Z. Then, for any direction θ and any ε > 0 small

enough, the singularity
O
ϕ has a major

∨
ϕ with the following properties:

1. the restriction of
∨
ϕ as a sectorial germ of codirection I =]−π/2+θ ,θ +π/2[,

can be represented by a function Φ holomorphic on the cut plane

C\ [0,eiθ ∞[=
•

∞
0 (Ǐ), Ǐ =]−2π +θ ,θ [;

2. Φ is bounded on
•
Sε ′(I), for every ε ′ > ε .

3. Φ can be analytically continued to C̃\Z.

Proof. Let
∨
ϕ1 be a major of

O
ϕ which can be analytically continued to C̃\Z. This

major can be represented by a function Φ1 holomorphic on
•R

0 (Ǐ)∪S2ε(Î)\ [0,eiθ ∞[,

for R > 0 and ε > 0 small enough, and Φ1 can be analytically continued to C̃\Z.

The boundary ΓI,ε = −∂
•
Sε(I) can be seen as an embedded curve H0 : R→ C that

fulfills the condition of lemma 7.5 : one can find a function Ψ1 ∈ O(C) so that
Φ2 = Φ1 +Ψ1 satisfies |Φ2(η)| ≤ exp(−|η |) for all η ∈ ΓI,ε . One can also assume
that |H ′0(s)| is bounded and these conditions ensure the integrability for the integral

Φ(ζ ) =
1

2iπ

∫
H0

Φ2(η)

ζ −η
dη which thus, defines a holomorphic function on

•
Sε(I).

Moreover, one easily sees by Cauchy that Φ = Φ2 +Ψ2 where Ψ2 ∈ O0. One ob-

serves that |ζ−η | ≥ ε ′−ε for (ζ ,η)∈
•
Sε ′(I)×ΓI,ε , with ε ′> ε . Thus Φ is bounded

on
•
Sε ′(I). Notice that Φ2 inherits from Φ1 the property of being analytically con-

tinuable to C̃\Z. Thus one can analytically continue Φ to C̃\Z by Cauchy, by de-
formation of the contour by isotopies5 H : (s, t) ∈ R× [0,1] 7→ H(s, t) = Ht(s) ∈ C\Z
that are equal to the identity in a neighbourhood of infinity, Fig. 7.8.
Finally, from the fact that Φ = Φ1 +Ψ with Ψ1 +Ψ2 ∈ O0, we see that Φ defines a

sectorial germ
∨
ϕ of codirection I =]−π/2+θ ,θ +π/2[ whose associated micro-

function coincides with the restriction of
O
ϕ to the codirection I. ut
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0

ζ

0
ζ

0

ζ

ζ−η

ηγ

Fig. 7.8 Deformation of the contour ΓI,ε by an isotopy equal to the identity in a neighbourhood of
infinity, for θ = 0.

Lemma 7.7. Let
O
ϕ∈ SING be a singularity which can be determined by a major

analytically continuable to C̃\Z. Then, for any direction θ and for any ε > 0 small

enough, the singularity
O
ϕ has a major

∨
ϕ with the following properties:

1. the restriction of
∨
ϕ as a sectorial germ of codirection I =]−π/2+θ ,θ +π/2[,

can be represented by a function Φ holomorphic on the cut plane

C\ [0,eiθ ∞[=
•

∞
0 (Ǐ), Ǐ =]−2π +θ ,θ [;

2. |Φ(η)| ≤ exp(−|η |) for all η ∈ ΓI,ε , where ΓI,ε =−∂
•
Sε(I)⊂

•
∞
0 (Ǐ);

3. Φ can be analytically continued to C̃\Z.

Proof. Just consider first the function Φ1 given by lemma 7.6, then use lemma 7.5
to define Φ from Φ1. ut

The above lemmas 7.6 and 7.7 motivate the introduction of new Riemann sur-
faces that will be used in a moment.

Definition 7.33. Let θ ∈ S1 be a direction. We set
•
Rθ ,(0) = C\ [0,eiθ ∞[. Let ζ0 be

a complex number in
•
Rθ ,(0) \Z. We denote by Aθ ,ζ0

(resp. Bζ0
) the set of paths

in
•
Rθ ,(0) (resp. C \Z) originating from ζ0, endowed with the equivalence relation

∼ •
Rθ ,(0) (resp. ∼C\Z) of homotopy of paths with fixed extremities.

We set Rθ ,ζ0
=Aθ ,ζ0

∪Bζ0
and we denote by

(θ ,ζ0)∼ the relation on Rθ ,ζ0
defined as

follows. For any two γ1,γ2 ∈Rθ ,ζ0
, γ1

(θ ,ζ0)∼ γ2 when one of the following conditions
is satisfied: either γ1 ∼ •

Rθ ,(0) γ2 or γ1 ∼C\Z γ2; or else there exists γ3 ∈ Aθ ,ζ0
∩Bζ0

such that

{
γ1 ∼ •

Rθ ,(0) γ3

γ2 ∼C\Z γ3
or

{
γ1 ∼C\Z γ3
γ2 ∼ •

Rθ ,(0) γ3
.

Let γ be an element of Rθ ,ζ0
. We denote by clθ ,ζ0

(γ) its equivalence class for the

relation
(θ ,ζ0∼ . We finally set:

Rθ

Z,ζ0
= {clθ ,ζ0

(γ) | γ ∈Rθ ,ζ0
} and pθ ,ζ0

: clθ ,ζ0
(γ) 7→ γ(1) ∈

•
Rθ ,(0).(7.13)

5 That is H is a homotopy and for each t ∈ [0,1], Ht is an embedding. Remember that we see ΓI,ε
as an embedded curve H0 : R→ C.
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Proposition 7.15. The space Rθ

Z,ζ0
can be equipped with a separated topology

which makes (Rθ

Z,ζ0
,pθ ,ζ0

) an étalé space. The space Rθ

Z,ζ0
is arc-connected and

simply connected, thus defines a Riemann surface by pulling back by pθ ,ζ0
the com-

plex structure of C. Moreover, for two points ζ0,ζ1 ∈
•
Rθ ,(0) \Z, the two Riemann

surfaces Rθ

Z,ζ0
and Rθ

Z,ζ0
are isomorphic.

The proof of proposition 7.15 is left as an exercise. (Just copy what have been
done in Sect. 4.2.2). We complete the above proposition with a definition.

Definition 7.34. The class of isomorphisms of the Riemann surfaces (Rθ

Z,ζ0
,pθ ,ζ0

)

is denoted by (Rθ
Z ,pθ ). We often use abridged notation (Rθ ,p). We call principal

sheet the unique domain Rθ ,(0) ⊂ Rθ so that the resctriction p|Rθ ,(0) realizes a

homeomorphism between Rθ ,(0) and the simply connected domain
•
Rθ ,(0).

7.7.2 Resurgent functions

Various spaces of so-called resurgent functions can be defined and used according
to the context. We start with the notion of resurgent singularities.

7.7.2.1 Resurgent singularities, resurgent asymptotic classes

Definition 7.35. A singularity
O
ϕ∈ SING is said to be Z-resurgent when it can be

determined by a major
∨
ϕ∈ ANA which can be analytically continued to C̃\Z. We

denote by RESZ or simply RES the space of Z-resurgent singularities.

A Z-resurgent singularity is often simply called a Z-resurgent function. Throughout this
course we will usually write “resurgent singularity” in place of Z-resurgent singularity.

Remark 7.5. It is important to keep in mind that the minor ϕ̂ of any resurgent singu-

larity
O
ϕ∈ RES, can be analytically continued to C̃\Z, since the minor ϕ̂ does not

depend on the chosen major.

Definition 7.36. One says that
O
ϕ∈ RES is a resurgent constant when

O
ϕ has a ma-

jor which can be analytically continued to C̃. The space of resurgent constants is
denoted by CONS.

Definition 7.37. An asymptotic class
M
ϕ∈ ASYMP is called a Z-resurgent asymp-

totic class, resp. a resurgent constant, when its formal Borel transform
O
ϕ is a Z-

resurgent singularity, resp. a resurgent constant. We denote by R̃ESZ or simply R̃ES
the space made of Z-resurgent asymptotic classes. We denote by C̃ONS the sub-
space of resurgent constants.

A Z-resurgent asymptotic class is often simply called a Z-resurgent function or even a
resurgent function.

Example 7.8. The singularities
O
I σ and

O
Jσ ,m are resurgent constants, as well as their

associated asymptotic classes
M
I σ and

M
Jσ ,m.
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7.7.2.2 Resurgent functions, resurgent series

We recall the following simple definition, for objects much discussed in [18].

Definition 7.38. The C-differential commutative and associative convolution alge-
bra Cδ ⊕ R̂Z with unit δ , is called a space of Z-resurgent functions. We denote

by
O
RZ⊂ RES the C-differential commutative and associative convolution algebra

made of resurgent singularities of the form
O
ϕ= aδ +[ϕ̂ with ϕ̂ ∈ R̂Z.

Since Cδ ⊕ R̂Z is a convolution algebra, the identity [ϕ̂ ∗ [ϕ̂ =[ (ϕ̂ ∗ ϕ̂) (proposition 7.6)

implies that
O
RZ is indeed a convolution algebra. One usually uses abridged notation

O
R in

this course.

Definition 7.39. A series expansion ϕ̃ ∈ C[[z−1]] is a Z-resurgent series when its
formal Borel transform Bϕ̃ is a Z-resurgent function or, equivalently, when the
asymptotic class \ϕ̃ belongs to R̃ESZ. We denote by R̃Z the C-differential commu-
tative and associative algebra made of Z-resurgent series.

Throughout this course we usually simply write “resurgent functions” or “resurgent series”
instead of Z-resurgent functions or Z-resurgent series, since there is no risk of misunder-
standing.

7.7.2.3 Resurgent singularities and convolution

Theorem 7.1. The space RES is a C-differential commutative and associative con-
volution algebra with unit δ , and CONS ⊂ RES is a subalgebra. Therefore, the
space R̃ES is a C-differential commutative and associative algebra and
C̃ONS⊂ R̃ES is a subalgebra.

Proof. (Adapted from [8, 1]. The reader should look before at the reasoning made
for the proof of proposition 4.6).
It is enough to only show that RES is a convolution space. We take two singularities
O
ϕ,

O
ψ∈ RES, we choose a direction θ and we suppose 0 < ε � 1.

By lemma 7.7, resp. lemma 7.6,
O
ϕ , resp.

O
ψ , has a major such that its restriction as

a sectorial germ of codirection I =]−π/2+ θ ,θ +π/2[, can be represented by a

function
∨
ϕ , resp.

∨
ψ , holomorphic on

•
Rθ ,(0), that can be analytically continued to

the Riemann surface (Rθ ,p) and moreover, satisfies the condition:

1. |
∨
ϕ(η)| ≤ exp(−|η |) for all η ∈ ΓI,ε , where ΓI,ε =−∂

•
Sε(I)⊂

•
Rθ ,(0);

2.
∨
ψ is bounded on

•
Sε(I).

We know by lemma 7.1 that ζ −ΓI,ε ⊂
•
Sε(I) for every ζ ∈

•
S2ε(I). We also think of

ΓI,ε as an embedded curve H0 : R→ C with |H ′0(s)| bounded. Therefore, the above
properties and the dominated Lebesgue theorem, ensure that the integral

χ(ζ ) =
∨
ϕ ∗H0

∨
ψ(ζ ) =

∫
H0

∨
ϕ
(
η
) ∨
ψ(ζ −η)dη (7.14)

defines a holomorphic function on
•
S2ε(I) ⊂

•
Rθ ,(0) which by (7.8), represents the

convolution product
O
ϕ ∗

O
ψ . We want to show that χ can be analytically contin-

ued onto the Riemann surface (Rθ ,p) (thus to C̃\Z as well). We choose a point



158 7 Supplements to resurgence theory

ζ0 ∈
•
S2ε(I) so that {ζ0−H0}∩Z = /0, and we view χ as a germ of holomorphic

functions at ζ0: for ξ ∈ C close to 0, χ(ζ0 +ξ ) =
∫

H0

∨
ϕ
(
η
) ∨
ψ(ξ +ζ0−η)dη . We

take a smooth path γ : [0,1]→ C\Z starting from ζ0 = γ(0). We fix R� ε so that
γ([0,1])⊂ D(0,R) and length(γ) < R. We will get the analytic continuation of χ

along γ by continuously deforming H0 through an isotopy
H : (s, t) ∈ R× [0,1] 7→ Ht(s) ∈ C\Z which is equal to the identity for |s| large
enough. We pick a C 1 function η : C→ [0,1] satisfying {ζ ∈ C | η(ζ ) = 0}= Z.
We also set a C 1 function ρ : C→ [0,1] with compact support so that the conditions
ρ|D(0,5R) = 1 and ρ|C\D(0,6R) = 0 are fulfilled. In what follows, we see H0 as an em-
bedded curve R→C and there is no loss of generality in supposing the existence of
s0 > 0 so that H0(s) ∈ D(0,3R) for |s|< s0, else H0(s) ∈ C\D(0,3R).
One considers the non-autonomous vector field X(ζ , t) = η(ζ )ρ(ζ )

η(ζ )+η

(
γ(t)−ζ

)γ ′(t). We

denote by g : (t0, t,ζ0) ∈ [0,1]2×C 7→ g(t0, t,ζ0) = gt0,t(ζ0) ∈ C the (well-defined
global) flow of the vector field, that is t ∈ [0,1] 7→ ζ (t) = gt0,t(ζ0) is the unique
integral curve satisfying both dζ

dt = X(ζ , t) and the datum ζ (t0) = ζ0. One finally
sets φt(ζ ) = g0,t(ζ ). Notice that any integral curve ζ (t) of X has length less than
length(γ)< R, since |X(ζ , t)| ≤ |γ ′(t)|. With this remark and arguments detailed in
[18], we can observe the following properties, for every t ∈ [0,1]:

1. φt(γ(0)) = γ(t), that is γ is an integral curve. (Notice that ρ
(
γ(t)

)
= 1 because

γ([0,1])⊂ D(0,R)).
2. φt(C\Z)⊂ C\Z. (One has φt(ω) = ω for any ω ∈ Z since η(ω) = 0).
3. φt(ζ ) = ζ for any ζ ∈ C\D(0,6R) (since ρ|C\D(0,6R) = 0).
4. for every ζ ∈ D(0,3R), φt

(
γ(0)− ζ

)
= γ(t)− φt

(
ζ
)
. Indeed, if t 7→ ζ (t) is an

integral curve starting from ζ (0) ∈ D(0,3R), then ζ (t) ∈ D(0,4R) for every
t ∈ [0,1] (the integral curve have length < R), thus dζ

dt = η(ζ )

η(ζ )+η

(
γ(t)−ζ

)γ ′(t).

Consider ξ (t)= γ(t)−ζ (t); one has dξ

dt = η(ξ )ρ(ξ )

η(ξ )+η

(
γ(t)−ξ

)γ ′(t) because |ξ (t)|< 5R

for every t ∈ [0,1], thus ξ is an integral curve of X .
5. for every ζ ∈C\D(0,3R), |γ(t)−φt

(
ζ
)
|> R. As a matter of fact, observe that if

t 7→ ζ (t) is an integral curve starting from ζ (0) ∈ C\D(0,3R), then |ζ (t)|> 2R
for every t ∈ [0,1] and therefore |γ(t)−φt

(
ζ
)
|> R.

We define the isotopy H : (s, t) ∈ R× [0,1] 7→ H(s, t) = Ht(s) by setting
Ht(s) = φt

(
H0(s)

)
. Since H0 avoids Z, one has Ht(s) ∈ C \Z by property 2. By

property 3, we remark that for |s| large enough, H is a constant map. Notice also that

H0 ⊂
•
Rθ ,(0) can be lifted uniquely with respect to p on the principal sheet Rθ ,(0) of

Rθ . We note H0 this lifting. We can use the lifting theorem for homotopies [11, 5] to
get the continuous mapping H : (s, t) ∈ R× [0,1] 7→H (s, t) = Ht(s) ∈Rθ which

makes commuting the following diagram:

Rθ

H ↗ ↓ p
R× [0,1] −→ C.

H
We now set K : (s, t) ∈ R× [0,1] 7→ K(s, t) = Kt(s) = γ(t)−Ht(s). We know that

K0(s) = γ(0)−H0(s) ∈
•
Sε(I) ⊂

•
Rθ ,(0) for every s ∈ R. In particular, one can lift

K0 uniquely with respect to p into an embedded curve K0 on the principal sheet
Rθ ,(0) of Rθ . Moreover K0(s) ∈ C \Z, for every s ∈ R. Property 5 ensures that

Kt(s) stays in
•
Sε(I) for |s| ≥ s0, otherwise by property 4, Kt(s) belongs to C \Z.

This implies that Kt can be lifted uniquely with respect to p into an embedded
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curve Kt which lies on the principal sheet Rθ ,(0) of Rθ for |s| ≥ s0. Apply-
ing again the lifting theorem for homotopies, one obtains a continuous mapping
K : (s, t) ∈ R× [0,1] 7→H (s, t) = Ht(s) ∈Rθ that makes commuting the follow-

ing diagram:

Rθ

K ↗ ↓ p
R× [0,1] −→ C.

K
We finally introduce the two holomorphic functions Φ ,Ψ ∈ O(Rθ ) such that

Φ(ζ ) =
∨
ϕ
(
p(ζ )

)
, Ψ(ζ ) =

∨
ψ
(
p(ζ )

)
for ζ ∈Rθ ,(0). With these notations, the germ

of holomorphic functions χ at ζ0 = γ(0) reads

χ(γ(0)+ξ ) =
∫
R

Φ
(
H0(s)

)
Ψ(ξ +K0(s))H ′0(s)ds

and its analytic continuation along γ is obtained by

χ(γ(t)+ξ ) =
∫
R

Φ
(
Ht(s)

)
Ψ(ξ +Kt(s))H ′t (s)ds. (7.15)

Indeed, remark that for |s| large enough, Φ
(
Ht(s)

)
=

∨
ϕ
(
Ht(s)

)
and

|
∨
ϕ
(
Ht(s)

)
| ≤ exp(−|Ht(s)|). Also, for |s| ≥ s0, Ψ

(
ξ +Kt(s)

)
=
∨
ψ
(
Kt(s)

)
which

is bounded since Kt(s) ∈
•
Sε(I). Thus the integral (7.15) is well-defined. The fact

that (7.15) provides the analytic continuations comes from the Cauchy formula, see
analogous arguments in [18]. ut

7.7.2.4 Supplements

One often uses other spaces in practice as we now exemplify.

The space RES(θ ,α)(L) The space R̂(θ ,α)(L) was introduced by definition 4.24
and we know by proposition 4.6 that Cδ ⊕ R̂(θ ,α)(L) is a convolution algebra. The
following definition thus makes sense.

Definition 7.40. We denote by
O
R(θ ,α)(L) ⊃

O
R the C-differential commutative and

associative convolution algebra made of singularities of the form
O
ϕ= aδ +[ϕ̂ ∈ SING

with ϕ̂ ∈ R̂(θ ,α)(L). The associated space of formal series is denoted by R̃(θ ,α)(L).

By its very definition, any element ϕ̂ ∈ R̂(θ ,α)(L) is a germ of holomorphic func-
tions at 0 that can be analytically continued to the Riemann surface R(θ ,α)(L). This

means that any
O
ϕ∈

O
R(θ ,α)(L) is a simple singularity that has a major

∨
ϕ which can be

analytically continued to the universal covering ˜R(θ ,α)(L)\{0} of R(θ ,α)(L)\{0}.
Since

O
R(θ ,α)(L) is a convolution algebra, we know that for any two singularities

O
ϕ,

O
ψ∈

O
R(θ ,α)(L), their convolution product

O
ϕ ∗

O
ψ belongs to

O
R(θ ,α)(L) as well,

thus has a major that can be analytically continued to ˜R(θ ,α)(L)\{0}. In substance,
this comes from the property that [ϕ̂ ∗ [ϕ̂ =[ (ϕ̂ ∗ ϕ̂) for two integrable singularities

(proposition 7.6). Now, what about the convolution product
O
ϕ ∗

O
ψ of two singular-

ities
O
ψ∈

O
R(θ ,α)(L) and

O
ϕ∈ RES ? To give the answer, we prefer to shift to a more

general case and we introduce a new definition.
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Definition 7.41. Let be θ ∈ {0,π} ⊂ S1, α ∈]0,π/2] and L > 0. We denote by
RES(θ ,α)(L) the space made of singularities that have majors that can be analyt-

ically continued to the Riemann surface ˜R(θ ,α)(L)\{0}. The associated space of

asymptotic classes is denoted by R̃ES
(θ ,α)

(L)⊂ ASYMP.

Proposition 7.16. The space RES(θ ,α)(L) is a C-differential commutative and as-

sociative convolution algebra with unit δ , contained RES and
O
R(θ ,α)(L) as subal-

gebras.

Proof. The proof follows that of theorem 7.16 but for the fact that one adds the
arguments used at the end of the proof of proposition 4.6.

The spaces RES(k) The spaces R̂(k) were introduced by definition 4.20. They pro-
vide new spaces of singularities which are worthy of attention.

Definition 7.42. For k ∈ N?, we denote by
O
R(k) the space of singularities of the

form
O
ϕ= aδ +[ϕ̂ ∈ SING with ϕ̂ ∈ R̂(k). The associated space of formal series is

denoted by R̃(k).

Remark 7.6. Notice that the set of spaces (
O
R(k))k∈N provides an inverse system of

spaces whose inverse limit lim
←

O
R(k) =

⋂
k

O
R(k) is

O
R. This is why we sometimes write

O
R(∞) =

O
R.

The space
O
R(1) is of particular interest since, from propositions 4.1 and 7.6,

O
R(1)

makes a convolution algebra.

The space
O
R(k) is made of simple singularities that have majors that can be ana-

lytically continued to the universal covering ˜R(k) \{0} of R(k) \{0}. We now con-
sider larger spaces of singularities.

Definition 7.43. Let k ∈ N? be a positive integer. We denote by RES(k) the space
of singularities that have majors that can be analytically continued to the Riemann

surface ˜R(k) \{0}. We denote by R̃ES(k) ⊂ASYMP the space of asymptotic classes
whose formal Borel transform belongs to RES(k).

Remark 7.7. Notice again that lim
←

RES(k) =
⋂
k

RES(k) = RES, and we sometimes

write RES(∞) = RES.

We will have a special interest in RES(1) because of the following analogous to
proposition 7.16.

Proposition 7.17. The space RES(1) is a C-differential commutative and associative

convolution algebra with unit δ . It contains RES and
O
R(1) as subalgebras.

We omit the (rather lengthy) proof of this proposition. The main idea is to con-
sider the integral representation (7.14) used in the proof of theorem 7.1 and to adapt
the construction made in Sect. 4.3.

Conjecture 7.1. We conjecture that any space RES(k) makes a convolution algebra
as well.
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7.8 Alien operators

Alien operators are powerful tools for analysing the singularities of resurgent func-
tions. These operators are carefully defined and discussed in [18], especially when
they operate on the algebra Cδ ⊕ R̂simp of simple resurgent functions. Most of the
arguments there can be easily adapted for alien operators acting on RESZ, once the
study of singularities had been made. This is why we introduce the alien operators
in a rather sketchy manner in what follows.

7.8.1 Alien operators associated with a triple

7.8.1.1 Mains definitions

We consider two directions θ1,θ2 ∈ S1, a point ω ∈Z and a sectorial germ
∨
ϕ∈O0

θ1
of

direction θ1. We can think of
∨
ϕ as a sectorial germ on a sector

•R1
0 (I1) for 0<R1 < 1

and I1 ⊂ S1 an open arc bisected by θ1, and this is what we do in what follows.

We now assume that
∨
ϕ can be analytically continued to C̃\Z. We consider a

path γ : J → C \Z starting from ζ1 ∈
•R1

0 (I1) and ending at ζ2 close to ω so that

ζ2−ω ∈
•R2

0 (I2) with 0 < R2 < 1 and I2 ⊂ S1 an open arc bisected by θ2. See
Fig. 7.9.

By hypotheses, the analytic continuation (contγ
∨
ϕ) of

∨
ϕ along γ is a well-defined

germ of holomorphic functions at ζ2 that only depends on the homotopy class of γ

(for the relation of homotopy of paths in C \Z with fixed extremities). Moreover,

if
∨
ψ∈ Oζ2−ω stands for the germ of holomorphic functions at ζ2−ω defined by

∨
ψ (ξ ) =

(
contγ

∨
ϕ
)
(ω + ξ ) then, still by analytic continuations,

∨
ψ determines a

unique sectorial germ on
•R2

0 (I2) and thus, by restriction, a unique sectorial germ
∨
ψ∈ O0

θ2
. This justifies the following definition adapted from [18].

Definition 7.44. Let be θ1,θ2 ∈ S1, ω ∈ Z and
∨
ϕ∈O0

θ1
a sectorial germ of direction

θ1 that can be analytically continued to C̃\Z. Let γ : J→ C \Z be a path starting

from a sufficiently small sector
•

0(I1) bisected by θ1 and ending close to ω in

a sufficiently small sector of the form ω +
•

0(I2) where I2 bisects θ2. Then, one

denotes by
•

A
γ

ω(θ2,θ1)
∨
ϕ∈ O0

θ2
the sectorial germ of direction θ2 represented by

∨
ψ (ξ ) =

(
contγ

∨
ϕ
)
(ω +ξ ) for ξ ∈

•
0(I2).

2

1

1

2

θ

θ

ζ

ζ

γ

0 1 2 3−2 −1

Fig. 7.9 A triple (γ,θ1,θ2) defining the operator A γ

ω (θ1,θ2) at ω =−2.
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We now consider two directions θ1,θ2 ∈ S̃1 and a singularity
O
ϕ∈ RESZ. Think-

ing of
O
ϕ as a singularity of SINGθ1,α1 (for some α1 > 0), its minor ϕ̂ can be seen as

representing a sectorial germ ϕ̂ ∈O0
•
θ 1

of direction
•
θ 1 = π(θ1)∈ S1 which can be an-

alytically continued to C̃\Z. Therefore, under the conditions of definition 7.44, the

sectorial germ
∨
ψ •

θ 2
=
•

A
γ

ω(
•
θ 2,

•
θ 1)ϕ̂ of direction

•
θ 2 = π(θ2) ∈ S1 is well-defined.

Even, by analytic continuations, one can deduce from
∨
ψ •

θ 2
a sectorial germ of direc-

tion I •
θ 2

=]−π +
•
θ 2,

•
θ 2 +π[⊂ S1 denoted by

∨
ψ I•

θ2
∈ Γ (I •

θ 2
,O0). By inverse image

by π of the sheaf O0, this sectorial germ
∨
ψ I•

θ2
determined a uniquely defined secto-

rial germ of direction Iθ2 =]−π +θ2,θ2 +π[⊂ S̃1 denoted by
∨
ψ Iθ2

. Still by analytic
continuations, this sectorial germ gives rise to a (multivalued) section on any arc of

the form ]−α−2π +(θ2 +π),(θ2 +π)+α[∈ S̃1, α > 0, that is to an element
∨
ψ of

ANA =
⋂

α>0 ANA(θ2+π),α , whose singularity
O
ψ belongs to RESZ.

Definition 7.45. Let be θ1,θ2 ∈ S̃1 and ω ∈ Z. Let γ : J→ C\Z be a path starting

from a sufficiently small sector
•

0(I1) bisected by
•
θ 1 = π(θ1) and ending close to

ω in a sufficiently small sector of the form ω +
•

0(I2) where I2 bisects
•
θ 2 = π(θ2).

For any singularity
O
ϕ∈RESZ, one denotes by A γ

ω(θ2,θ1)
O
ϕ the singularity

O
ψ which

can be represented by a major
∨
ψ∈ ANA = Γ (S̃1,O0), whose restriction

∨
ψ

θ2∈ O0
θ2

is the sectorial germ of direction θ2 determined by
∨
ψ •

θ 2
=
•

A
γ

ω(
•
θ 2,

•
θ 1)ϕ̂ , where ϕ̂ is

the minor of
O
ϕ .

The linear operator A γ

ω(θ2,θ1) : RESZ → RESZ is called the alien operator at ω

associated with the triple (γ,θ1,θ2).

The alien operators have their counterparts on asymptotic classes through formal
Borel and Laplace transforms.

Definition 7.46. The alien operator A γ

ω(θ2,θ1) at ω associated with the triple
(γ,θ1,θ2) is defined on asymptotic classes by making the following diagram com-

muting:
RES

A
γ
ω (θ2,θ1)−→ RES

L ↓↑B L ↓↑B

R̃ES
A

γ
ω (θ2,θ1)−→ R̃ES

.

7.8.1.2 The spaces RES(
•
θ ,α)(L) and RES(k)

Alien operators acting on RES(
•
θ ,α)(L) We would like to define alien operators

acting on the space RES(
•
θ ,α)(L). We suppose θ ∈ {πk,k ∈ Z} ⊂ S̃1, α ∈]0,π/2],

L > 0 and m ∈ {1, · · · ,dLe}. We set
•
θ = π(θ) ∈ {0,π} and we consider a singu-

larity
O
ϕ∈ RES(

•
θ ,α)(L) whose minor is ϕ̂ . By the very definition 7.41 of the space

RES(
•
θ ,α)(L), the sectorial germ

∨
ψ •

θ 2
=
•

A
γ

ω(
•
θ 2,

•
θ)ϕ̂ ∈O0

•
θ 2

is well defined under the

following conditions:
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1. ω = mei
•
θ and the path γ is of type γ

•
θ
ε with ε = (±)m−1 ∈ {+,−}m−1. In that

case,
•
θ 2 should be

•
θ −π;

2. however, starting from
∨
ψ •

θ−π
and be analytic continuations, one can consider as

well sectorial germs
∨
ψ •

θ 2
with

•
θ 2 ∈ I •

θ
=]−2π +

•
θ ,
•
θ [⊂ S1.

By a construction already done, the various sectorial germs
∨
ψ •

θ 2
glue together and

provide a sectorial germ
∨
ψ I•

θ

∈ Γ (I •
θ
,O0) of direction I •

θ
. Still by analytic continua-

tions and moving to multivalued sectorial germs by inverse image by π of the sheaf

O0, one eventually gets an element
∨
ψ of ANAθ ,α with π(θ) =

•
θ . This gives sense

to the following definition.

Definition 7.47. Let be θ ∈ {πk,k ∈ Z} ⊂ S̃1, α ∈]0,π/2] and L > 0. We set
•
θ = π(θ) ∈ {0,π} ⊂ S1. We pick m ∈ {1, · · · ,dLe}, we set ω = mei

•
θ and we as-

sume that the path γ is of type γ

•
θ

(±)m−1
. For any singularity

O
ϕ∈ RES(

•
θ ,α)(L), one

denotes by A γ

ω(θ ,θ)
O
ϕ the singularity

O
ψ∈ SINGθ ,α which can be represented by a

major
∨
ψ∈ANAθ ,α whose restriction

∨
ψ

θ−π∈O0
θ−π

is the sectorial germ of direction

θ −π determined by
∨
ψ

θ−π=
•

A
γ

ω(
•
θ −π,

•
θ)ϕ̂ where ϕ̂ stands for the minor of

O
ϕ .

This gives rise to a linear operator A γ

ω(θ ,θ) : RES(
•
θ ,α)(L)→ SINGθ ,α , still called

the alien operator at ω associated with the triple (γ,θ ,θ).

Alien operators acting on RES(k) We now work on the spaces RES(k) given by
definition 7.43. We want to prove that alien operators can be defined on RES(k), as-

sociated with triples of the form (γ,θ ,θ) with γ of type γ

•
θ

(+)m
or γ

•
θ

(−)m
.

We start with RES(1). Let be θ1 ∈ {πk,k ∈ Z} ⊂ S̃1 and set ω1 = ei
•
θ 1 with

•
θ 1 = π(θ1).

The very definition of RES(1) and the above reasoning lead straight to the following
linear operators, for any integer m1 ≥ 2 and any ε ∈ {−,+}:

A
γ

•
θ1
()

ω1 (θ1,θ1) : RES(1)→ SINGθ1,π , A
γ

•
θ1
(ε)m1−1

m1ω1 (θ1,θ1) : RES(1)→ SINGθ1+π/2,π/2
(7.16)

We move to the next case k = 2, that is we consider the space RES(2) ⊂ RES(1).
Of course the above operators (7.16) still act on RES(2) but, however, their ranges
can be made more precise. By the very definition of RES(2), the minor ϕ̂ of any

singularity
O
ϕ∈ RES(2), when considered as a sectorial germ, can be analytically

continued along any path γ of type γ

•
θ 1
εn1 with

ε
n1 ∈ {

(
(±)n1 ,(+)m1−1

)
,
(
(±)n1 ,(−)m1−1

)
| (n1,m1) ∈ (N?)2}.

Moreover, introducing
•
θ 2 =

•
θ 1 +(n−1)π , ω1 = ei

•
θ 1 , and ω2−ω1 = ei

•
θ 2 , the ana-

lytic continuation contγ ϕ̂ of ϕ̂ along γ is a germ of holomorphic functions whic can
be analytically continued onto the simply connected domain

p(Rεn1 ,
•
θ ) = C\{]−∞, p]∪ [p+1,+∞[}where ]p,(p+1)[=]ω1,ω2[ when m1 = 1,

]p,(p+1)[=](m1−1)ω2,m1ω2[ when m1 ≥ 2. Considering only odd values for n1

(thus
•
θ 2 =

•
θ 1 on S1), one immediately sees that (7.16) becomes:
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A
γ

•
θ1
()

ω1 (θ1,θ1) : RES(2) → RES(1), (7.17)

A
γ

•
θ1
(ε)1

2ω1
(θ1,θ1) : RES(2) → SINGθ1,π

A
γ

•
θ1
(ε)m1−1

m1ω1 (θ1,θ1) : RES(2) → SINGθ1+π/2,π/2, m1 ≥ 3.

Notice in particular that the operator A
γ

•
θ1
()

ω1 (θ2,θ1) now acts on RES(2) as well, for
any direction θ2 ∈ S̃1.

The reasoning generalizes and we give the result.

Lemma 7.8. Let be θ1 ∈ {πk,k ∈ Z} ⊂ S̃1. For any integer k ≥ 1, any ε ∈ {−,+}

and any m1 ∈ N?, setting ω1 = ei
•
θ 1 , the alien operator A

γ

•
θ1
(ε)m1−1

m1ω1 (θ1,θ1) is well
defined on RES(k) with the range:

A
γ

•
θ1
(ε)m1−1

m1ω1 (θ1,θ1) : RES(k) → RES(k−m1), 1≤ m1 ≤ k−1 (7.18)

A
γ

•
θ1
(ε)m1−1

m1ω1 (θ1,θ1) : RES(k) → SINGθ1,π , m1 = k

A
γ

•
θ1
(ε)m1−1

m1ω1 (θ1,θ1) : RES(k) → SINGθ1+π/2,π/2, m1 ≥ k+1.

7.8.1.3 Miscellaneous properties

We start with a simple result which is a consequence of the very definitions.

Proposition 7.18. For any alien operator of the form A γ

ω(θ2,θ1) : RESZ→ RESZ,

acting on RESZ, RES(
•
θ ,α)(L) or RES(k), for any singularity

O
ϕ :

A γ

ω(θ2,θ1)
( O

∂
O
ϕ
)
= (

O
∂ −ω)A γ

ω(θ2,θ1)
O
ϕ . (7.19)

In other words, [A γ

ω(θ2,θ1),
O
∂ ] =−ωA γ

ω(θ2,θ1).

We introduce new definitions before keeping on.

Definition 7.48. For any k ∈Z, one denotes by ρk ∈Aut(π) the deck transformation
of the cover (C̃,π), defined by: ρk : ζ = reiθ ∈ C̃ 7→ ρk(ζ ) = reiθ+2iπk ∈ C̃.

For any singularity of the form
O
ϕ = sing0

∨
ϕ ∈ SING,

∨
ϕ ∈ ANA, we write

ρk.
O
ϕ = sing0 (

∨
ϕ ◦ρk) ∈ SING.

More generally, for any r ∈ R, one sets ρr : ζ = reiθ ∈ C̃ 7→ ρr(ζ ) = reiθ+2iπr ∈ C̃
and ρr.

O
ϕ = sing0 (

∨
ϕ ◦ρr) ∈ SING.

Remark 7.8. With this notation, the variation map var : SING → ANA reads
var = Id−ρ−1.

The alien operators associated with a triple satisfy some identities as can be easily
observed:



7.8 Alien operators 165

λ ω
2

1

1

2

θ

θ

ζ

ζ

γ

0 1 2−2 −1

Fig. 7.10 Two triples (γ,θ1,θ2) and (γλω ,θ1,θ2) for the point ω =−2, with λω a closed path of
winding number windω (λω ) = 1 at ω .

Proposition 7.19. For any given alien operator A γ

ω(θ2,θ1) : RESZ → RESZ,
A γ

ω(θ2,θ1 + 2πk) = A γ

ω(θ2,θ1)ρk and A γ

ω(θ2 + 2πk,θ1) = ρ−k.A
γ

ω(θ2,θ1), for
any k ∈ Z.

Let us consider a point ω ∈ Z and a given triple (γ,θ1,θ2). One can extend the
path γ into the path γλ k

ω where λ k
ω is a closed path near ω that surrounds that point

like on Fig. 7.10, with winding number windω(λ
k
ω) = k ∈ Z at that point. One can

as well consider the path λ k
0 γ where λ k

0 is a closed path surrounding the origin with
winding number windω(λ

k
0 ) = k ∈ Z. A little thought provides the following result.

Proposition 7.20. We consider a triple (γ,θ1,θ2) defining alien operator A γ

ω(θ2,θ1) :
RESZ → RESZ at ω . We assume that γλ k

ω , resp. λ k
0 γ is a product of paths so that

λ k
ω , resp. λ k

0 , is a closed path surrounding ω ,resp. 0, and close to that point, with
winding number windω(λ

k
ω) = k, resp. wind0(λ

k
0 ) = k, k ∈ Z. Then,

A
λ k

0 γ

ω (θ2,θ1) = A γ

ω(θ2,θ1)ρk. , A
γλ k

ω
ω (θ2,θ1) = ρk.A

γ

ω(θ2,θ1). (7.20)

In particular,

A γ

ω(θ2,θ1+2πk)=A
λ k

0 γ

ω (θ2,θ1), A γ

ω(θ2+2πk,θ1)=A
γλ
−k
ω

ω (θ2,θ1). (7.21)

We end with the following property.

Proposition 7.21. For any alien operator of the form A γ

ω(θ ,θ) acting on RESZ or

RES(
•
θ ,α)(L), for any singularity

O
ϕ and any resurgent constant

O
const∈ CONS,

A γ

ω(θ ,θ)
( O

const ∗
O
ϕ
)
=

O
const ∗

(
A γ

ω(θ ,θ)
O
ϕ
)
. (7.22)

We stress that in proposition 7.21, only alien operators of the form A γ

ω(θ2,θ1)
with θ1 = θ2 are considered. We omit the proof of this proposition which relies on
a careful reading of what have been done for showing theorem 7.1.

7.8.2 Composition of alien operators

7.8.2.1 Alien operators on RESZ

The following definition is adapted from [18].

Definition 7.49. One calls alien operator at ω ∈ Z associated with the couple
(θ 1

1 ,θ
m
2 ) any linear combination of composite operators of the form



166 7 Supplements to resurgence theory

2
2

1
2

1
2

2
2

2

1
1

2
1

1
1

1
2

1

θ

θ

ζ

ζ

γ

10 2 3

4

θ

θ

ζ

ζ
γ−1−2 0 1

Fig. 7.11 The triple (γ1,θ
1
1 ,θ

1
2 ) for the point ω1 = −2, the triple (γ2,θ

1
2 ,θ

2
2 ) for the point ω2−

ω1 = 4, with θ 2
1 = θ 1

2 +π .

A γm
ωm−ωm−1

(θ m
2 ,θ m

1 )◦ · · · ◦A γ2
ω2−ω1

(θ 2
2 ,θ

2
1 )◦A

γ1
ω1(θ

1
2 ,θ

1
1 ) : RESZ→ RESZ

where (ω1, · · · ,ωm) ∈ Zm, m ∈ N? with ω = ωm = ∑
m
j=1 ω j−ω j−1 and the conven-

tion ω0 = 0.

Example 7.9. We exemplify the above definition. We set ω1 =−2 and ω2 = 2. The
alien operator A γ1

ω1(θ
1
2 ,θ

1
1 ) at the point ω1 is associated with the triple (γ1,θ

1
1 ,θ

1
2 )

drawn on Fig. 7.11. The alien operator A γ1
ω2−ω1

(θ 2
2 ,θ

2
1 ) at the point ω2−ω1 = 4

is associated with the triple (γ1,θ
1
1 ,θ

1
2 ) drawn on Fig. 7.11. We furthemore assume

that θ 2
1 −θ 1

2 ∈ [0,2π[ to fix our mind.
From the very definitions of the alien operators and of a minor, one easily checks

that the composite alien operator A γ2
ω2−ω1

(θ 2
2 ,θ

2
1 )◦A

γ1
ω1(θ

1
2 ,θ

1
1 ) at ω2, can be writ-

ten as the difference of two simple alien operators, namely

A γ2
ω2−ω1

(θ 2
2 ,θ

2
1 )◦A

γ1
ω1(θ

1
2 ,θ

1
1 ) = A Γ+

ω2
(θ 2

2 ,θ
1
1 )−A Γ−

ω2
(θ 2

2 ,θ
1
1 ).

In this equality, Γ + and Γ−1 stands for the (homotopy class of the) product of paths
Γ + = γ1λ+

ω1
(ω1 + γ2) and Γ− = γ1λ−ω1

(ω1 + γ2) respectively, where the paths λ+
ω1

and λ−ω1
drawn on Fig. 7.12, are homotopic to small arcs so that (λ−ω1

)−1λ+
ω1

makes
a loop around ω1 counterclockwise.

Typically, the end point of γ1 is ζ 1
2 = ω1 + rei

•
θ

1
1 while the starting point of γ2 is ζ 2

1 = rei
•
θ

2
1

with 0 < r� 1. Then, λ+
ω1

:
•
θ ∈ [

•
θ

1
2,
•
θ

2
1] 7→ω1+rei

•
θ while (λ−ω1

)−1 :
•
θ ∈ [−2π +

•
θ

2
1,
•
θ

1
2] 7→

ω1 + rei
•
θ .

From this result, one deduces from proposition 7.20 that for any k ∈ Z,

2
1

1
1

2
2

1
2

1
1

1
2

1
2

2
2

2

−2

−2

1

θ

θ

θ

θ
ζ

ζ

ζ−2+

ζ−2+

γ−2+

λ−

λ+

γ
0 1−2 −1

2

Fig. 7.12 The paths Γ + = γ1λ+
ω1
(ω1 + γ2) and Γ + = γ1λ−(ω1 + γ2), ω1 =−2.
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A γ2
ω2−ω1

(θ 2
2 ,θ

2
1 +2πk)◦A γ1

ω1(θ
1
2 ,θ

1
1 ) = A

Γ
+

k
ω2 (θ

2
2 ,θ

1
1 )−A

Γ
−

k
ω2 (θ

2
2 ,θ

1
1 ).

with Γ
+

k = γ1λ k
ω1

λ+
ω1
(ω1+γ2) and Γ

−
k = γ1λ k

ω1
λ−ω1

(ω1+γ2) respectively, where λ k
ω1

stands for a closed path around ω1 =−2 with winding number windω1(λ
k
ω1
) = k at

that point.

What have been done in the above example can be generalized. This is the matter
of the next proposition.

Proposition 7.22. We consider the two alien operators A γ1
ω1(θ

1
2 ,θ

1
1 ), A

γ2
ω2−ω1

(θ 2
2 ,θ

2
1 )

and we assume that θ 2
1 −θ 1

2 ∈ [0,2π[. Then, for any k ∈ Z,

A γ2
ω2−ω1

(θ 2
2 ,θ

2
1 +2πk)◦A γ1

ω1(θ
1
2 ,θ

1
1 ) = A

Γ
+

k
ω2 (θ

2
2 ,θ

1
1 )−A

Γ
−

k
ω2 (θ

2
2 ,θ

1
1 ).

with Γ
+

k = γ1λ k
ω1

λ+
ω1
(ω1+γ2) and Γ

−
k = γ1λ k

ω1
λ−ω1

(ω1+γ2) respectively, where λ k
ω1

stands for a closed path around ω1 with winding number windω1(λ
k
ω1
) = k at that

point, whereas λ+
ω1

and λ−ω1
follows small arcs so that (λ−ω1

)−1λ+
ω1

makes a loop
around ω1 counterclockwise.
As a consequence, any alien operator at a point ω ∈ Z associated with the couple
(θ1,θ2) can be written as a linear combination of alien operators at ω associated
with triples of the form (γ,θ1,θ2).

We now focus on paths of type γ

•
θ
εn . For m ∈N?, we take a (m−1)-tuple of signs

ε = (ε1, · · · ,εm−1) ∈ {+,−}m−1 and n = (n1, · · · ,nm−1) ∈ (N?)m−1. We choose a

direction θ1 ∈ {πk,k ∈ Z}. Following definition 4.7, to a path of type γ

•
θ 1
εn one asso-

ciates a sequence of points and directions defined as follows :

•
θ j+1 =

•
θ j + ε j(n j−1)π 1≤ j ≤ m−1 (7.23)

ω j+1−ω j = ei
•
θ j+1 0≤ j ≤ m−1

ω0 = 0.

These data thus provide a uniquely defined alien operator A
γ

•
θ1
εn

ωm (θm,θ1), once the

direction θm ∈ S̃1,
•
θ m = π(θm) is chosen.

Theorem 7.2. Let m ∈ N? be a positive integer, ε ∈ {+,−}m−1, n ∈ (N?)m−1 and

θ1 ∈{πk,k∈Z}. Let γ be a path of type γ

•
θ 1
εn , ωm and

•
θ m given by (7.23), and θm ∈ S̃1

so that
•
θ m = π(θm). Then the alien operator A γ

ωm(θm,θ1) at ωm associated with the
triple (γ,θ1,θm) can be written as a Z-linear combination of composite operators
of the form A γk

ω ′k−ω ′k−1
(θm,θ

′
k) ◦ · · · ◦A

γ2
ω ′2−ω ′1

(θ ′2,θ
′
2) ◦A

γ1
ω ′1
(θ ′1,θ

′
1) that satisfy the

properties:

• (ω ′1, · · · ,ω ′k) ∈ Zk, k ∈ N? and ω ′k = ωm;

•
•
θ m =

•
θ

′
k;

• for every j = 1, · · · ,k, the path γ j is of type γ

•
θ

′
j

(+)m j−1
, m j ∈ N?;

• ∑
k
j=1 m j ≤ m.

This theorem is of a purely geometric nature. We omit its proof (see [1] Sect. Rés II-
2, see also [18, 22]) and we rather produce two examples that explain the algorithm.
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Example 7.10. We consider a path γ of type γ

•
θ 1
ε for ε = (+,−,+) and we set

•
θ 1 = 0,

see Fig. 4.2. To the path γ one associates by (7.23) the sequence of points and direc-

tions:

{ •
θ j = 0, 1≤ j ≤ 4
ω0 = 0, ω j+1−ω j = 1 0≤ j ≤ 3

. One sets θ j = θ ′ = 0 for any j∈ [1,4].

We want to decompose the alien operator A γ

ω4(θ4,θ1). From the very definition of
the alien operators, one observes that

A
γ

•
θ3
(+)

ω4−ω2
(θ4,θ3)◦A

γ

•
θ1
(+)

ω2 (θ2,θ1) = A
γ

•
θ1
(+)3

ω4 (θ4,θ1)−A
γ

•
θ1
(+,−,+)

ω4 (θ4,θ1),

and therefore

A
γ

•
θ1
(+,−,+)

ω4 (θ4,θ1) = A
γ

•
θ
′

(+)3
ω4 (θ ′,θ ′)−A

γ

•
θ
′

(+)
ω4−ω2

(θ ′,θ ′)◦A
γ

•
θ
′

(+)
ω2 (θ ′,θ ′)

Example 7.11. A bit more difficult, we consider a path γ of type γ

•
θ 1
εn for ε = (+,−,+),

n = (1,3,1) and
•
θ 1 = 0, see Fig. 7.13. The algorithm (7.23) still provides{ •

θ j = 0, 1≤ j ≤ 4
ω0 = 0, ω j+1−ω j = 1 0≤ j ≤ 3

. One sets again θ j = θ ′ = 0 for any j∈ [1,4].

Since

A
γ

•
θ3
(+)

ω4−ω2
(θ4,θ3−2π)◦A

γ

•
θ1
(+)

ω2 (θ2,θ1) = A
γ

•
θ1
(+,−,+)

ω4 (θ4,θ1)−A
γ

•
θ1
(+,−2,+)

ω4 (θ4,θ1),

one deduces with the first example that

A
γ

•
θ1
(+,−2 ,+)

ω4 (θ4,θ1) = A
γ

•
θ
′

(+,−,+)
ω4 (θ ′,θ ′)−A

γ

•
θ
′

(+)
ω4−ω2

(θ ′,θ ′−2π)◦A
γ

•
θ
′

(+)
ω2 (θ ′,θ ′)

= A
γ

•
θ
′

(+)3
ω4 (θ ′,θ ′)−A

γ

•
θ
′

(+)
ω4−ω2

(θ ′,θ ′)◦A
γ

•
θ
′

(+)
ω2 (θ ′,θ ′)

− A
γ

•
θ
′

(+)
ω4−ω2

(θ ′,θ ′−2π)◦A
γ

•
θ
′

(+)
ω2 (θ ′,θ ′).

Example 7.12. A step further, we consider a path γ of type γ

•
θ 1
εn for

ε = (−,+,+,+,−), n = (1,2,1,1,1) and take θ1 = 0, see Fig. 4.3. Using (7.23),
we define: 

•
θ 1 =

•
θ 2 = 0

•
θ 3 = · · ·=

•
θ 6 = π

ω0 = 0, ω1−ω0 = ω2−ω1 = 1
ω3−ω2 = · · ·= ω6−ω5 =−1.

We set θ1 = θ2 = θ ′1 = 0, θ3 = · · ·= θ6 = θ ′2 = π . We start with the identity:

Fig. 7.13 A path of type

γ

•
θ 1
εn for ε = (+,−,+),

n = (1,3,1) and
•
θ 1 = 0. 0 1 3 42
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A
γ

•
θ6
()

ω6−ω5
(θ6,θ6)◦A

γ

•
θ1
(−,+2 ,+,+)

ω5 (θ5,θ1) = A
γ

•
θ1
(−,+2 ,+,+,+)

ω6 (θ6,θ1)−A γ

ω6(θ6,θ1).

Next, a little thought yields:

A
γ

•
θ3
(+,+,+)

ω6−ω2
(θ6,θ3)◦A

γ

•
θ1
(−)

ω2 (θ2,θ1) = A
γ

•
θ1
(−,+2 ,+,+,+)

ω6 (θ6,θ1)−A
γ

•
θ5
(+)

ω6 (θ6,θ5),

A
γ

•
θ3
(+,+)

ω5−ω2
(θ5,θ3)◦A

γ

•
θ1
(−)

ω2 (θ2,θ1) = A
γ

•
θ1
(−,+2 ,+,+)

ω5 (θ5,θ1)−A
γ

•
θ5
()

ω5 (θ5,θ5).

Finally, A
γ

•
θ2
()

ω2−ω1
(θ2,θ2) ◦A

γ

•
θ1
()

ω1 (θ1,θ1) = A
γ

•
θ1
(+)

ω2 (θ2,θ1)−A
γ

•
θ1
(−)

ω2 (θ2,θ1). Putting
things together, one concludes:

A γ

ω6(θ6,θ1) = A
γ

•
θ
′
2

(+)
ω6 (θ ′2,θ

′
2)

+ A
γ

•
θ
′
2

(+,+,+)
ω6−ω2

(θ ′2,θ
′
2)◦A

γ

•
θ
′
1

(+)
ω2 (θ ′1,θ

′
1)−A

γ

•
θ
′
2

()
ω6−ω5

(θ ′2,θ
′
2)◦A

γ

•
θ
′
2

()
ω5 (θ ′2,θ

′
2)

− A
γ

•
θ
′
2

(+,+,+)
ω6−ω2

(θ ′2,θ
′
2)◦A

γ

•
θ
′
1

()
ω2−ω1

(θ ′1,θ
′
1)◦A

γ

•
θ
′
1

()
ω1 (θ ′1,θ

′
1)

− A
γ

•
θ
′
2

()
ω6−ω5

(θ ′2,θ
′
2)◦A

γ

•
θ
′
2

(+,+)
ω5−ω2

(θ ′2,θ
′
2)◦A

γ

•
θ
′
1

(+)
ω2 (θ ′1,θ

′
1)

+ A
γ

•
θ
′
2

()
ω6−ω5

(θ ′2,θ
′
2)◦A

γ

•
θ
′
2

(+,+)
ω5−ω2

(θ ′2,θ
′
2)◦A

γ

•
θ
′
1

()
ω2−ω1

(θ ′1,θ
′
1)◦A

γ

•
θ
′
1

()
ω1 (θ ′1,θ

′
1).

7.8.2.2 Alien operators on RES(k)

We saw with lemma 7.8 that the alien operators associated with triples of the form

(γ,θ1,θ1) act on RES(k) for γ of type γ

•
θ 1
(+)m

and γ

•
θ 1
(−)m

. We keep on this study accord-
ing to the guiding line of this section.

We assume
•
θ 1 ∈ {0,π} and pick two integers l,k subject to the condition

2≤ l ≤ k. By the very definition of RES(k), the minor ϕ̂ of any singularity
O
ϕ∈ RES(k),

once considered as a sectorial germ, can be analytically continued along any path γ

of type γ

•
θ 1
ε

nl with

ε
nl ∈ {

(
(±)nl

l−1,(ε)ml−1
)
| ε ∈ {+,−},nl = (n1, · · · ,nl−1) ∈ (N?)l−1,ml ∈ N?}.

With the notations of (7.23), the analytic continuation contγ ϕ̂ of ϕ̂ along γ is a germ
of holomorphic functions that can be analytically continued onto the simply con-

nected domain p(Rε
nl ,
•
θ )=C\{]−∞, p]∪ [p+1,+∞[}where ]p,(p+1)[=]ωl−1,ωl [

when ml = 1, ]p,(p+1)[=](ml−1)ωl ,mlωl [ otherwise. These properties translate
into the next statement (the details are left to the reader).

Proposition 7.23. Let be θ1 ∈ {πk,k ∈ Z} ⊂ S̃1 and (l,k) ∈ N with the condition
1≤ l ≤ k. The following alien operators are well-defined, for any ε ∈ {−,+}, any

nl ∈ Nl−1 and any ml ∈ N?. Setting
•
θ l ,ωl by (7.23) and θl ∈ S̃1 with

•
θ l = π(θl),
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A

γ

•
θ1
((±)

nl
l−1(ε)ml−1)

mlωl (θl ,θ1) : RES(k) → RES(k−l−ml+1), 1≤ ml ≤ k− l

A

γ

•
θ1
((±)

nl
l−1(ε)ml−1)

mlωl (θl ,θ1) : RES(k) → SINGθ1,π , ml = k− l +1

A

γ

•
θ1
((±)

nl
l−1(ε)ml−1)

mlωl (θl ,θ1) : RES(k) → SINGθ1+π/2,π/2, m1 ≥ k− l +2.
(7.24)

Equivalently, A
γ

•
θ l
(ε)ml−1

mlωl−ωl−1
(θl ,θl)◦· · ·A

γ

•
θ2
()

ω2−ω1
(θ2,θ2)◦A

γ

•
θ1
()

ω1 (θ1,θ1) are well-defined

alien operators, with
•
θ j,ω j given by (7.23) and θ j ∈ S̃1 with

•
θ j = π(θ j), with the

following ranges:

A
γ

•
θ l
(ε)ml−1

mlωl−ωl−1
(θl ,θl)◦ · · · ◦A

γ

•
θ1
()

ω1 (θ1,θ1) : RES(k) → RES(k−l−ml+1), 1≤ ml ≤ k− l

A
γ

•
θ l
(ε)ml−1

mlωl−ωl−1
(θl ,θl)◦ · · · ◦A

γ

•
θ1
()

ω1 (θ1,θ1) : RES(k) → SINGθ1,π , ml = k− l +1

A
γ

•
θ l
(ε)ml−1

mlωl−ωl−1
(θl ,θl)◦ · · · ◦A

γ

•
θ1
()

ω1 (θ1,θ1) : RES(k) → SINGθ1+
π
2 ,

π
2
, m1 ≥ k− l +2.

(7.25)

We would like now to discuss a kind of converse of proposition 7.23 with the
next two propositions.

Proposition 7.24. Let k ∈ N? be a positive integer and
O
ϕ∈ RES(k). We suppose

that for any θ ∈ {πk,k ∈ Z} ⊂ S̃1 one has A
γ

•
θ

()
ω (θ ,θ)

O
ϕ∈ RES(k), with ω = ei

•
θ ,

•
θ = π(θ). Then

O
ϕ belongs to RES(k+1).

Proof. There will be no loss of generality in assuming that
O
ϕ is a simple singularity

and this assumption is easier to handle :
O
ϕ= aδ +[ϕ̂ ∈

O
R(k) with ϕ̂ ∈ R̂(k).

We consider a singularity
O
R(1). Thus, ϕ̂ can be analytically continued to R(1).

Equivalently, for any θ1 ∈ {πk,k ∈ Z}, ϕ̂ can be analytically continued along any

path γ1 of type γ

•
θ 1
(ε)m−1

, m ∈ N?, ε ∈ {−,+} and contγ1 ϕ̂ is a germ which can be

analytically continued to the star-shaped domain p
(
R(ε)m−1,

•
θ 1
)
.

Let us assume that for any θ1 ∈ {πk,k ∈ Z}, A
γ

•
θ1
()

ω (θ1,θ1)
O
ϕ belongs to RES(1),

where ω1 = ei
•
θ 1 . We claim that

O
ϕ belongs to RES(2).

Our assumption results in the following property : for any n1 ∈ N? and any

path γ of type γ

•
θ 1
(±)n1

1
, denoting by λ−ω1

a clockwise loop around ω1, the difference(
contγ−cont

γλ
−
ω1

)
ϕ̂ is a sectorial germ which can be analytically continued along

any path γ2 of type γ

•
θ 2
(ε)m−1

, m ∈ N?, ε ∈ {−,+},
•
θ 2 =

•
θ 1 +(n1− 1)π . Moreover

contγ2

(
contγ−cont

γλ
−
ω1

)
ϕ̂ is a germ of holomorphic functions which can be ana-
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lytically continued to the star-shaped domain p
(
R((±)n1

1 ,(ε)m−1),
•
θ 1
)
.

Start with n1 = 1 and a path γ of type γ

•
θ 1
(+)1

, resp. γ

•
θ 1
(−)1

. Take a path γ2 of type γ

•
θ 2
(+)m−1

,
•
θ 2 =

•
θ 1, resp. γ

•
θ 2
(−)m−1

. Notice that γ1 = γγ2 is a path of type γ

•
θ 1
(ε)m

. Therefore from

the above property, contγ2

(
contγ ϕ̂

)
= contγ1 ϕ̂ is well-defined and gives a germ that

can be analytically continued to the domain p
(
R(+)m,

•
θ 1
)
= p
(
R((+)1,(+)m−1),

•
θ 1
)
,

resp. p
(
R(−)m,

•
θ 1
)
= p
(
R((−)1,(−)m−1),

•
θ 1
)
. But this implies that

contγ2

(
cont

γλ
−
ω1

ϕ̂
)
= cont

γλ
−
ω1 γ2

ϕ̂ is also well-defined and provides a germ that can

be analytically continued to the domain p
(
R(+)m,

•
θ 1
)
= p
(
R((−)1,(+)m−1),

•
θ 1
)
, resp.

p
(
R(−)m,

•
θ 1
)
= p
(
R((−)3

1,(−)m−1),
•
θ 1
)
. (Notice that the path γλ−ω1

γ2 is a path of type

γ

•
θ 1
((−)1,(+)m−1)

, resp. γ

•
θ 1
((−)3

1,(−)m−1)
).

Of course, one could have chosen a path γ of type γ

•
θ 1
(+)1

and a path γ2 of type γ

•
θ 1
(−)m−1

.

The path γ1 = γλ−ω1
γ2 is a path of type γ

•
θ 1
(−)m

and we conclude for the analytic con-

tinuation of ϕ̂ along the path γγ2 of type γ

•
θ 1
((+)1,(−)m−1)

.
One can pursue this way by induction on n1 to show our claim. Here, we just

add the case n1 = 2 so as to deal with a subtlety. We thus consider a path γ of

type γ

•
θ 1
(+)2

1
and a path γ2 of type γ

•
θ 2
(ε)m−1

,
•
θ 2 =

•
θ 1 +π . Notice that the path γλ−ω1

γ2

is homotopic to a path of type γ

•
θ 1
()

when m = 1, of type γ

•
θ 2
(ε)m−2

when m ≥ 2.

Therefore, contγ2

(
cont

γλ
−
ω1

ϕ̂
)

is well-defined and one concludes that ϕ̂ can be

analytically continued along the path γ1 = γγ2 of type γ

•
θ 1
((+)2

1,(ε)m−1)
and more-

over the germ contγ1 ϕ̂ can be analytically continued to the star-shaped domain

p
(
R((+)2

1,(ε)m−1),
•
θ 1
)
.

The same reasoning can be generalized and gives the proposition. ut

A quite similar (and even simpler) reasoning gives the next result.

Proposition 7.25. Let be k ∈ N? and
O
ϕ∈ RES(k). We suppose that for any

θ1 ∈ {πk,k ∈ Z} ⊂ S̃1 and any n ∈ Nk−1, the singularity A
γ

•
θ1
((±)nk−1)

ωk (θk,θ1)
O
ϕ be-

longs to RES(1), where ωk is given by (7.23). Then
O
ϕ belongs to RES(k+1).

We eventually use theorem 7.2 to reformulate proposition 7.25.

Corollary 7.1. Let k ∈ N? be a positive integer and
O
ϕ∈ RES(k). We suppose that

A γk
ωk−ωk−1

(θk,θk)◦ · · · ◦A γ2
ω2−ω1

(θ2,θ2)◦A γ1
ω1(θ1,θ1)

O
ϕ belongs to RES(1) for any

composite operator that satisfies the properties:

• for every j = 1, · · · ,k, the path γ j is of type γ

•
θ j
(+)m j−1

, m j ∈ N?;

• ∑
k
j=1 m j = k.

Then
O
ϕ belongs to RES(k+1).
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7.8.3 Alien derivations

We now specialize our analysis to some particularly interesting alien operators.

7.8.3.1 Definitions

Definition 7.50. Let be θ ∈ {πk,k ∈ Z} ⊂ S̃1, α ∈]0,π/2] and L > 0. We set
•
θ = π(θ) ∈ {0,π} ⊂ S1. Let be ω = meiθ ∈ C̃ for m ∈ {1, · · · ,dLe}, resp. m ∈ N?.
The alien operators ∆+

ω and ∆ω at ω ,

∆
+
ω ,∆ω : RES(

•
θ ,α)(L)→ SINGθ ,α , resp. ∆

+
ω ,∆ω : RES→ RES,

are defined as follows:

∆
+
ω

O
ϕ = A

γ

•
θ

(+)m−1
•
ω

(θ ,θ)
O
ϕ (7.26)

∆ω

O
ϕ = ∑

ε=(ε1,··· ,εm−1)∈{+,−}m−1

p(ε)!q(ε)!
m!

A
γ

•
θ
ε
•
ω
(θ ,θ)

O
ϕ,

where p(ε), resp. q(ε) = m−1− p(ε), denotes the number of “+” signs, resp. “−”
signs in the sequence ε .

Definition 7.51. The alien operators ∆+
ω ,∆ω : R̃ES→ R̃ES for asymptotic classes

are defined by making the following diagrams commuting:
RES

∆
+
ω ,∆ω−→ RES

L ↓↑B L ↓↑B

R̃ES
∆
+
ω ,∆ω−→ R̃ES

.

7.8.3.2 Properties

Theorem 7.3. Under the hypotheses of definition 7.50, the alien operators

∆+
ω : RES(

•
θ ,α)(L)→ SINGθ ,α , resp. ∆+

ω : RES→ RES, satisfy the identity:

∆
+
ω (

O
ϕ ∗

O
ψ) = (∆+

ω

O
ϕ)∗

O
ψ + ∑

•
ω1+

•
ω2=

•
ω

(
∆
+
ω1

O
ϕ
)
∗
(
∆
+
ω2

O
ψ
)
+

O
ϕ ∗
(
∆
+
ω

O
ψ
)

(7.27)

where the sum runs over all ω1 = m1eiθ , ω2 = m2eiθ , with m1,m2 ∈ N? such that
m1 +m2 = m.

The alien operators ∆ω : RES(
•
θ ,α)(L)→ SINGθ ,α , resp. ∆ω : RES→ RES, satisfy

the Leibniz rule, ∆ω

(O
ϕ ∗

O
ψ
)

=
(
∆ω

O
ϕ
)
∗

O
ψ +

O
ϕ ∗

(
∆ω

O
ψ
)
. Moreover,

∆ω(
O
∂
O
ϕ) = (

O
∂ −

•
ω)(∆ω

O
ϕ). Eventually, ∆+

ω

O
cons= ∆ω

O
cons= 0 for any resurgent

constant
O

cons.

Proof. We give the proof for the identity (7.27) only, so as to exemplify the use of

singularities. Moreover we work on the space
O
R(

•
θ ,α)(L).

The reader is invited to compare with the proof made in [18] for simple resurgent functions.
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There is no loss of generality in assuming that
O
ϕ=[ϕ̂ ,

O
ψ=[ψ̂ with ϕ̂, ψ̂ ∈ R̂(θ ,α)(L).

By proposition 7.6 one has [ϕ̂ ∗ [ϕ̂ =[ (ϕ̂ ∗ ϕ̂), therefore we can use arguments de-
veloped in chapter 4 (see in particular the proof of theorem 4.1), which allow us
some abuse of notations.

The analytic continuation of the convolution product ϕ̂ ∗ ψ̂ along a path γ of type

γ

•
θ

(+)m−1
= π(γθ

(+)m−1
), ending at ζ = ω +

•
ξ 0 near ](m− 1)ei

•
θ ,mei

•
θ [, is the germ of

holomorphic functions defined as follows:

(contγ ϕ̂ ∗ψ̂)(ω+
•
ξ )=

∫
H1

ϕ̂(η1)ψ̂(η2+
•
ξ−

•
ξ 0)+

∫ •
ξ−
•
ξ 0

0
ϕ̂(ζ +η)ψ̂(

•
ξ−

•
ξ 0−η)dη .

Here H1 (= p ◦H1) is a symmatrically contractile path deduced from γ ,

ϕ̂(η1) = contH1|[0,s] ϕ̂
(
H1(s)

)
, ψ̂(η2 +

•
ξ −

•
ξ 0) = contH−1

1 |[0,s]
ψ̂
(
H−1

1 (s)+
•
ξ −

•
ξ 0
)

and ϕ̂(ζ + η) = contH1 ϕ̂
(
H1(1) + η

)
. To get the associated singularity, that is

∆+
ω (

O
ϕ ∗

O
ψ), one only needs to consider the restrictions:

1. of the first integral near the “pinching points” (see Fig. 7.14), where one easily
recognizes convolution products for majors and these provide the contribution

∑ •
ω1+

•
ω2=

•
ω

(
∆+

ω1

O
ϕ
)
∗
(
∆+

ω2

O
ψ
)

to the singularity ∆+
ω (

O
ϕ ∗

O
ψ);

2. of the two integrals near the end points, which provide the missing contributions
(use proposition 7.2).

This ends the proof. ut

Definition 7.52. The linear operators ∆ω are called alien derivations and RES is
called a resurgent algebra (since stable under alien derivations).

We refer to [18] (see also [1]) for the proof of the next statements.

Theorem 7.4. For any θ ∈ { kπ,k ∈ Z}, ω ∈ C̃ with arg(ω) = θ ,

∆ω = ∑
s∈N?

(−1)s−1

s ∑
arg(ω1)=···=arg(ωs−1)=θ

0≺
•
ω1≺···≺

•
ωs≺

•
ω

∆
+
ω−ωs−1

◦ · · · ◦∆
+
ω2−ω1

◦∆
+
ω1
, (7.28)

∆
+
ω = ∑

s∈N?

1
s! ∑

arg(ω1)=···=arg(ωs−1)=θ

0≺
•
ω1≺···≺

•
ωs≺

•
ω

∆ω−ωs−1 ◦ · · · ◦∆ω2−ω1 ◦∆ω1 , (7.29)

In the above theorem,≺ stands for the total order on [0,ω] induced by t ∈ [0,1] 7→ tω ∈ [0,ω].

The alien derivations own the property of generating the whole set of alien oper-
ators. We precise this claim with the following upshot from theorem 7.2 and theo-
rem 7.4.

Fig. 7.14 Symmetrically con-
tractile path H1 and contribu-
tions to ∆+

ω

(
ϕ̂ ∗ ψ̂

)
for ω = 3.

Pinchings occur between 1
and ζ −2, and between 2 and
ζ −1.

0 1 2 3

ζ−3 ζ−2 ζ−1 ζ
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Theorem 7.5. Let m ∈ N? be a positive integer, ε ∈ {+,−}m−1, n ∈ (N?)m−1 and

θ1 ∈ {πk,k ∈ Z}. Let γ be a path of type γ

•
θ 1
εn ,

•
ωm and

•
θ m given by (7.23), and

θm ∈ S̃1 so that
•
θ m = π(θm). Then the alien operator A γ

•
ωm

(θm,θ1) at
•
ωm associated

with the triple (γ,θ1,θm) can be written as a Z-linear, resp. Q-linear combination
of composite operators of the form

ρkn .
(
∆
+
ωn ◦ · · · ◦∆

+
ω2
◦∆

+
ω1

)
, resp. ρkn .

(
∆ωn ◦ · · · ◦∆ω2 ◦∆ω1

)
,

that satisfy the properties:

• (
•
ω1, · · · ,

•
ωn) ∈ (Z?)n, n ∈ N? and π

(
∑

n
j=1 ω j

)
=
•
ωm;

•
•
θ m = arg(ωn)+2πkn, kn ∈ Z;

• ∑
n
j=1 |ω j| ≤ m.

Example 7.13. We continue the example 7.10. The path γ is of type γ0
ε for ε = (+,−,+)

and we know that A
γ0
(+,−,+)

4 (0,0) = ∆
+
4 −∆

+
2 ◦∆

+
2 . (On the right-hand side of the

equality, (4,2) stands for (4ei0,2ei0)). Using theorem 7.4, one gets:

A
γ0
(+,−,+)

4 (0,0) = ∆4 +
1
2!

(
∆3 ◦∆1 +∆2 ◦∆2 +∆1 ◦∆3

)
+ 1

3!

(
∆2 ◦∆1 ◦∆1 +∆1 ◦∆2 ◦∆1 +∆1 ◦∆1 ◦∆1

)
+ 1

4! ∆1 ◦∆1 ◦∆1 ◦∆1
−
(
∆2 +

1
2! ∆1 ◦∆1

)
◦
(
∆2 +

1
2! ∆1 ◦∆1

)
.

Example 7.14. We continue the example 7.11. The path γ is of type γ

•
θ 1
εn for ε = (+,−,+),

n = (1,3,1) and we have shown the identity:

A
γ0
(+,−2,+)

4 (0,0) = ∆
+
4 −∆

+
2 ◦∆

+
2 −ρ−1.∆

+
2e−2iπ ◦∆

+
2 .

This can be expressed in term of alien derivatives as well.

We end with an observation. By its very definition, any singularity
O
ϕ∈

O
R(θ ,α)(L)

has a regular minor. This property involves the following relationships for the ac-
tion of the alien operators. (These are essentially consequences of propositions 7.19
and 7.20).

Proposition 7.26. We suppose α ∈]0,π/2], L > 0 and m ∈ {1, · · · ,dLe}. The fol-
lowing equalities hold for any k ∈ Z:

• for any
O
ϕ∈

O
R(0,α)(L), ∆

+
meiπ2k

O
ϕ= ρ−k.

(
∆
+
meiπ0

O
ϕ
)
, ∆meiπ2k

O
ϕ= ρ−k.

(
∆meiπ0

O
ϕ
)
;

• for any
O
ϕ∈

O
R(π,α)(L), ∆

+
meiπ(2k+1)

O
ϕ= ρ−k.

(
∆
+
meiπ

O
ϕ
)
, ∆meiπ(2k+1)

O
ϕ= ρ−k.

(
∆meiπ

O
ϕ
)
;

• moreover, if
O
ϕ∈

O
R(0,α)(L) ∩

O
R(π,α)(L) and if its minor ϕ̂ is even, then

∆
+
eiπ

O
ϕ= ρ−1/2.

(
∆
+
1

O
ϕ
)
, ∆eiπ

O
ϕ= ρ−1/2.

(
∆1

O
ϕ
)

with 1 = ei0, while if ϕ̂ is odd,

then ∆
+
eiπ

O
ϕ=−ρ−1/2.

(
∆
+
1

O
ϕ
)
, ∆eiπ

O
ϕ=−ρ−1/2.

(
∆1

O
ϕ
)
.

Example 7.15. We consider ϕ̂(ζ ) =
ζ

e2iπζ −1
∈ R̂. This is a meromorphic function

with simple poles at Z? whose residue at m ∈ Z? is resmϕ̂ = m. Introducing the

singularity
O
ϕ= [ϕ̂ , one easily deduces that for every k ∈ Z and every m ∈ N?,
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∆meiπk
O
ϕ= ∆

+
meiπk

O
ϕ= (−1)kmδ . (7.30)

The formal Laplace transform L
O
ϕ is an asymptotic class

M
ϕ= \ϕ̃ that can be repre-

sentend by a Z-resurgent series ϕ̃ ∈ R̃Z and (7.30) translates into

∆meiπk
M
ϕ= ∆

+
meiπk

M
ϕ= (−1)km. (7.31)

We now look at the singularity
O
ψσ ,n=

O
Jσ ,n ∗

O
ϕ for (σ ,n) ∈ C×N. By the Leibniz

rule and since
O
Jσ ,n is a resurgent constant,

∆meiπk
O
ψσ ,n=

O
Jσ ,n ∗∆meiπk

O
ϕ= (−1)km

O
Jσ ,n∈

⋂
α>0

SINGπk,α . (7.32)

The asymptotic class associated to
O
ψσ ,n by formal Laplace transform is

M
ψσ ,n=

M
Jσ ,n

M
ϕ∈ R̃ES. The identity (7.32) provides:

∆meiπk
M
ψσ ,n= (−1)km

M
Jσ ,n∈

⋂
α>0

ASYMPπk,α . (7.33)

7.8.3.3 The spaces RES(k)

We have already describe the action of the alien operators on the spaces RES(k). We
can draw some consequences from theorem 7.3.

Corollary 7.2. Let be k ∈ N? and ω ∈ C̃ such that
•
ω is an integer and |ω| ≤ k. The

alien operator ∆ω acts on RES(k) and

∆ω : RES(k)→ RES(k−|ω|), when 1≤ |ω| ≤ k−1
∆ω : RES(k)→ SINGarg(ω),π , when |ω|= k.

(7.34)

Moreover for any
O
ϕ,

O
ψ ∈ RES(k) :

• ∆ω(
O
∂
O
ϕ) = (

O
∂ −

•
ω)(∆ω

O
ϕ);

• ∆ω

(O
ϕ ∗

O
ψ
)

belongs to RES(1) when 1 ≤ |ω| ≤ k− 1 and to SINGarg(ω),π when

|
•
ω|= k and furthermore ∆ω

(O
ϕ ∗

O
ψ
)
=
(
∆ω

O
ϕ
)
∗

O
ψ +

O
ϕ ∗
(
∆ω

O
ψ
)

(Leibniz rule).

Proof. The identity (7.34) is a consequence of proposition 7.23. The commutation

formula [∆ω ,
O
∂ ] = −

•
ω ∆ω ensues from proposition 7.18. Notice now that for any

k ∈ N?, any L ∈]k−1,k] and any α ∈]0,π/2], one has RES(
•
θ ,α)(L)⊃ RES(k). Pick

two singularities
O
ϕ,

O
ψ ∈ RES(k) and consider them as belonging to RES(

•
θ ,α)(L).

One can apply theorem 7.3 to get: ∆ω

(O
ϕ ∗

O
ψ
)
=
(
∆ω

O
ϕ
)
∗

O
ψ+

O
ϕ ∗
(
∆ω

O
ψ
)
∈ SINGθ ,α .

Also, we know that ∆ω

O
ϕ and ∆ω

O
ψ belong to RES(k−m) or SINGθ ,π depending on

|ω|. Finally when 1≤ |ω| ≤ k−1, one can work in RES(1) ⊃ RES(k−m) which is a
convolution algebra by proposition 7.17 and this provides the conclusion. ut
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Definition 7.53. The alien operators ∆+
ω ,∆ω : R̃ES(k) → R̃ES(k−|ω|) for

1≤ |ω| ≤ k−1, resp. ∆+
ω ,∆ω : R̃ES(k)→ ASYMParg(ω),π , for |ω| = k, for asymp-

totic classes are defined by making the following diagrams commuting:

RES(k) ∆
+
ω ,∆ω−→ RES(k−|ω|)

L ↓↑B L ↓↑B

R̃ES(k) ∆
+
ω ,∆ω−→ R̃ES(k−|ω|).

, resp.
RES(k) ∆

+
ω ,∆ω−→ SINGarg(ω),π

L ↓↑B L ↓↑B

R̃ES(k) ∆
+
ω ,∆ω−→ ASYMParg(ω),π .

We add a property that will be useful in the sequel.

Corollary 7.3. Let k ∈N? be a positive integer and
O
ϕ∈ RES(k). We suppose that for

any n∈N?, ∆ωn ◦· · ·◦∆ω2 ◦∆ω1

O
ϕ belongs to RES(1) for any composite operator that

satisfies the properties: (
•
ω1, · · · ,

•
ωn) ∈ (Z?)n and ∑

n
j=1 |ω j|= k. Then

O
ϕ belongs to

RES(k+1).

Proof. This is a direct consequence of both corollary 7.1 and theorem 7.2. ut

7.9 Ramified resurgent functions

As already said, one uses various spaces of resurgent functions, accordingly to the
problem under consideration. We introduce some of them.

7.9.1 Simple and simply ramified resurgent functions

We start with the resurgent algebra of simple resurgent singularities, much discussed
in [18] (see also [1, 7]) and we make use of proposition 7.6.

Definition 7.54. A Z-resurgent singularity
O
ϕ∈ RES is said to be a simple resurgent

singularity when
O
ϕ= aδ +[ϕ̂ ∈ SINGsimp and, for any alien operator A γ

ω(θ2,θ1),

A γ

ω(θ2,θ1)
O
ϕ belongs to SINGsimp. The minor ϕ̂ , resp. the 1-Gevrey series

ϕ̃ = a+L ϕ̂ , associated with a simple Z-resurgent singularity is a simple resurgent
function, resp. a simple resurgent series, and one denotes by R̂Z

simp, resp. R̃Z
simp

the space of simple Z-resurgent functions, resp. series. The resurgent subalgebra
made of simple resurgent singularities is denoted by RESsimp

Z and the corresponding

space of asymptotic classes is denoted by R̃ES
simp
Z .

As usual in this course, we use abridged notations. One can make acting the alien
operators on the space R̃simp.

Definition 7.55. The alien operators ∆+
ω ,∆ω : R̃simp→ R̃simp are defined by making

the following diagrams commuting:
R̃ES

simp ∆
+
ω ,∆ω−→ R̃ES

simp

T1 ↓↑ \ T1 ↓↑ \

R̃simp ∆
+
ω ,∆ω−→ R̃simp

.

Obviously (from proposition 7.26), for any ϕ̃ ∈ R̃simp, the alien derivative ∆ω ϕ̃

only depends on
•
ω , thus one could define ∆+

ω ,∆ω : R̃simp→ R̃simp for ω ∈ Z?.
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Before introducing the simply ramified resurgent functions, we need to state the
following straightforward consequence of proposition 7.13.

Lemma 7.9. The space SINGs.ram of simply ramified singularities
O
ϕ= ∑

N
n=0 an

O
I−n +

[ϕ̂ , ϕ̂ ∈ O0, is a convolution subalgebra.

Definition 7.56. One denotes by ASYMPs.ram the space of asymptotic classes asso-
ciated with SINGs.ram. The restriction of the Taylor map to ASYMPs.ram is denoted
by T s.ram

1 . One denotes by \s.ram its composition inverse, that is the natural extension
of the mapping \ to C[z]⊕C[[z−1]]1.

Definition 7.57. A Z-resurgent singularity
O
ϕ∈ RES is a simply ramified resurgent

singularity if
O
ϕ= ∑

N
n=0 a−n

O
I−n + [ϕ̂ ∈ SINGs.ram and if, for any alien operator

A γ

ω(θ2,θ1), A γ

ω(θ2,θ1)
O
ϕ belongs to SINGs.ram. The resurgent subalgebra made

of simply ramified resurgent singularities is denoted by RESs.ram
Z to which corre-

sponds the space of asymptotic classes R̃ES
s.ram

. The space of the associated formal
series ϕ̃(z) = ∑

∞
n=−N anz−n is denoted by R̃Z

s.ram

One can define the alien operators ∆+
ω ,∆ω : R̃s.ram→ R̃s.ram in the same manner

than in definition 7.55 and, again, for any ϕ̃ ∈ R̃s.ram, the alien derivative ∆ω ϕ̃ only
depends on

•
ω .

7.9.2 Ramified resurgent functions

The following definition makes sense by propositions 7.6 and 7.13.

Definition 7.58. We denote by SINGram ⊂ SING the convolution subalgebra gener-

ated by the simple singularities and the set of singularities {
O
Jσ ,m, (σ ,m) ∈ C×N}.

An element of
O
ϕ∈ SINGram is called a ramified singularity and reads as a finite sum

O
ϕ= ∑

(σ ,m)

O
Jσ ,m ∗

O
ϕ(σ ,m) with

O
ϕ(σ ,m)∈ SINGsimp. The associated space of asymptotic

classes is denoted by ASYMPram ⊂ ASYMP.

To a ramified singularity
O
ϕ= ∑

(σ ,m)

O
Jσ ,m ∗

O
ϕ(σ ,m) is associated, by formal Laplace

transform, an asymptotic class
M
ϕ∈ASYMPram of the form

M
ϕ= ∑

(σ ,m)

M
Jσ ,m

M
ϕ(σ ,m) with

M
ϕ(σ ,m)=

\ϕ̃(σ ,m) ∈ ASYMPsimp. This asymptotic class provides a formal expansion
of the type

ϕ̃(z) = ∑
(σ ,m)

(−1)m logm(z)
zσ

ϕ̃(σ ,m) ∈
⊕
(σ ,m)

logm(z)
zσ

C[[z−1]]1

through the Taylor map, for any given arc of S̃1.

We have encountered such formal expansions when we considered the formal integral for
Painlevé I (theorem 5.1).
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In the same way that C[[z−1]]1 can be thought of as a constant sheaf on S1, the
space

⊕
(σ ,m)

logm(z)
zσ C[[z−1]]1 can be seen as a constant sheaf on S̃1. This justifies

the following definition.

Definition 7.59. Let be θ ∈ S̃1 and α > 0. We denote by Ñils1, resp. Ñils1,(θ ,α).

the space of global sections of the sheaf
⊕

(σ ,m)
logm(z)

zσ C[[z−1]]1, resp. section on

J? =]−π/2−α−θ ,−θ +α +π/2[. We call Ñils1 the differential algebra of 1-
Gevrey Nilsson series.

The restriction of the Taylor map to ASYMPram is denoted by T ram
1 . One denotes

by

\ ram :
Ñils1 → ASYMPram

ϕ̃ = ∑(σ ,m) J̃σ ,mϕ̃(σ ,m) → \ ramϕ̃ = ∑(σ ,m)

M
Jσ ,m

\ϕ̃(σ ,m)

its composition inverse, where J̃σ ,m(z) = (−1)m logm(z)
zσ .

One can define the space Ñils as well, made of formal expansions of the form
ϕ̃ = ∑(σ ,m) J̃σ ,mϕ̃(σ ,m) with ϕ̃(σ ,m) ∈ C[[z−1]]. Let us consider an element ϕ̃ ∈ Ñils

under the form ϕ̃ = ∑
n
i=1

ϕ̃i
zσi , ϕ̃i ∈ C[[z−1]]. We can of course assume that for

any i 6= j, σi−σ j /∈ Z. We denote ωi = e−2iπσi and we remark that ωi−ω j 6= 0
for any i 6= j. We set ρ.ϕ̃(z) = ϕ̃(ze2iπ) and more generally ρk.ϕ̃(z) = ϕ̃(ze2iπk)

for any k ∈ Z. We notice that ρk.ϕ̃ =
n

∑
i=1

ω
k
i

ϕ̃i

zσi
. Therefore, t(ϕ̃,ρ1.ϕ̃, · · · ,ρn.ϕ̃) =

At
(

ϕ̃1

zσ1
,

ϕ̃2

zσ2
, · · · , ϕ̃n

zσn

)
where A stands for the n× n invertible Vandermonde ma-

trix A =


1 · · · 1

ω1 · · · ωn
...

...
ωn

1 · · · ωn
n

. This implies that for each integer i ∈ [1,n],
ϕ̃i

zσi
is a linear

combination of ϕ̃,ρ.ϕ̃, · · · ,ρn.ϕ̃ . This observation can be generalized:

Lemma 7.10. Let ϕ̃ = ∑i ∑
ri−1
m=0 J̃σi,mϕ̃(σi,m) be an element of Ñils. Then the series

ϕ̃(σi,m) ∈ C[[z−1]] are uniquely determined by ϕ̃ and its monodromy (that is ρ.ϕ̃ ,
ρ2.ϕ̃ , etc.) once one imposes that σi−σ j /∈ Z whenever ϕ̃(σi,m).ϕ̃(σ j ,m) 6= 0.

Proof. This is a well-known fact and we follow a reasoning from [20]. We only
show how ϕ̃ determines the series ϕ̃(σi,m) since we will use this result in a moment.

If ω = e−2iπσ , observe that (ρ−ω)

(
logm(z)

zσ

)
= ω

m−1

∑
l=0

(
m
l

)
(2iπ)m−l logl(z)

zσ
and

therefore (ρ −ω)m
(

logm(z)
zσ

)
= m!

ωm

zσ
while (ρ−ω)m+1

(
logm(z)

zσ

)
= 0. As a

consequence, for any ϕ̃ ∈ Ñils one has P(ρ)ϕ̃ ∈ Ñils for any polynomial P ∈ C[X ],
and there exists a polynomial P ∈ C[X ] such that P(ρ)ϕ̃ = 0. We denote by d(ϕ̃)
the degree of the minimal polynomial of the action of ρ on ϕ̃ . We then make a rea-
soning by induction on d(ϕ̃).
Suppose that d(ϕ̃) = 1. This means that there exists ω = e−2iπσ ∈ C such that

(ρ −ω)ϕ̃ = 0, thus ρ (zσ
ϕ̃) = zσ

ϕ̃ . Therefore ϕ̃ is of the form ϕ̃ =
ϕ̃(σ1 ,0)

zσ1 with
ϕ̃(σ1,0) ∈ C[[z−1]] and a convenient choice of σ1 ∈ C so that σ1 − σ ∈ Z. (Thus
ϕ̃(σ1,0) = ρ (zσ1 ϕ̃)).
Suppose now that for any ϕ̃ ∈ Ñils such that d(ϕ̃) ≤ d, its decomposition is
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(uniquely) determined by ϕ̃,ρ.ϕ̃, · · · ,ρd .ϕ̃ .
Let be ϕ̃ ∈ Ñils with d(ϕ̃) = d + 1. The minimal polynomial of the action of ρ on
ϕ̃ is P(X) = ∏i(X−ωi)

ri with ∑i ri = d +1. Write:

P̃(X) = (X−ω1)
r1−1

∏
i6=1

(X−ωi)
ri = (X−ωi)

r1−1Q(X).

From the fact that (ρ −ω1)P̃(ρ)ϕ̃ = 0, we deduce the identity P̃(ρ)ϕ̃ =
φ̃

zσ1
with

φ̃ ∈ C[[z−1]]1 and a convenient σ1 ∈ C such that ω1 = e−2iπσ1 . Since

P̃(ρ)
(

logr1−1(z)
zσ1

)
= Q(ρ)

(
(r1−1)!

ω
r1−1
1
zσ1

)
= Q(ω1)(r1−1)!

ω
r1−1
1
zσ1

,

we see that necessarily P̃(ρ)
(

J̃σ1,r1−1ϕ̃σ1,r1−1

)
= (−1)r1−1 φ̃

zσ1
and

ϕ̃σ1,r1−1 = (−1)r1−1 φ̃

(r1−1)!ωr1−1
1 Q(ω1)

.

We finally observe that P̃(ρ)
(

φ̃ − J̃σ1,r1−1ϕ̃σ1,r1−1

)
= 0 and we can apply the in-

duction hypothesis on φ̃ − J̃σ1,r1−1ϕ̃σ1,r1−1. This ends the proof. ut

We are in good position to define the ramified resurgent functions [24, 7, 8], see
also [15].

Definition 7.60. A Z-resurgent singularity
O
ϕ∈ RESZ is a ramified resurgent singu-

larity when
O
ϕ∈ SINGram whereas, any alien operator A γ

ω(θ2,θ1), A γ

ω(θ2,θ1)
O
ϕ

belongs to SINGram. The space of ramified resurgent singularities makes a resur-
gent subalgebra denoted by RESram

Z . The corresponding space of asymptotic classes,
resp. formal expansions, is denoted by R̃ES

ram
Z , resp. R̃Z

ram.

We state a result that derives directly from lemma 7.10

Proposition 7.27. The formal expansion ϕ̃ = ∑(σ ,m) J̃σ ,mϕ̃(σ ,m) ∈ Ñils belongs to
R̃ram if and only if each of its components ϕ̃(σ ,m) belongs to R̃ram.

Definition 7.61. The alien operators ∆+
ω ,∆ω : R̃ram→ R̃ram are defined by making

the following diagrams commuting:
R̃ES

ram ∆
+
ω ,∆ω−→ R̃ES

ram

T ram
1 ↓↑ \ ram T ram

1 ↓↑ \ ram

R̃ram ∆
+
ω ,∆ω−→ R̃ram

.

We eventually lay down a direct consequence of proposition 7.19. (We warn to
the change of sign).

Proposition 7.28. Let ϕ̃ be an element of R̃ram. Then, for any ω ∈ C̃ with
•
ω ∈ Z?,

for any k ∈ Z,

∆
ωe2iπk ϕ̃ = ρk.

(
∆ω ρ−k.ϕ̃

)
, ∆

ωeiπ ϕ̃ = ρ1/2.
(

∆ω ρ−1/2.ϕ̃
)
.

Example 7.16. Suppose that ϕ̃ ∈ C[[z−1]]1 belongs to R̃ram with ∆ω ϕ̃ = log(z)
zσ ψ̃ ,

ψ̃ ∈ C[[z−1]]. For k ∈ Z, ρ−k.ϕ̃(z) = ϕ̃(z), then ∆
ωe2iπk ϕ̃(z) = log(z+2πk)

zσ e2iπkσ
ψ̃(z).
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Suppose furthermore that ϕ̃ is even, so that ρ−1/2.ϕ̃(z) = ϕ̃(z). On deduces that

∆
ωeiπ ϕ̃(z) = log(z+π)

zσ eiπσ ψ̃(−z).

7.10 Comments

We mentioned in Sect. 4.7 the generalisation of the resurgence theory with the no-
tion of “endlessly continuable functions” [1, 8]. The whole constructions made in
this chapter can be extended as well to this context.

We of course owe the main ideas presented here from the work of Ecalle, who
started his theory in the 1970’s [6]. We have borrowed most of the materials to Pham
et al. [1], in particular the microfunctions and the sheaf approach. To compare with
other written papers devoted to resurgence theory, we have paid more attention to
the sheaf and associated spaces of asymptotic classes. Finally, the responsability for
possible mistakes is ours.
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Chapter 8
Resurgent structure for the first Painlevé
equation

Abstract We show the resurgence property for the formal series solution of the
prepared form associated with the first Painlevé equation. The detailed resurgent
structure is given in Sect. 8.1. Its proof is given using the so-called bridge equation
(Sect. 8.4), after some preliminaries (Sect. 8.3). The nonlinear Stokes phenomena
are briefly analyzed in Sect. 8.2.

8.1 The main theorem

8.1.1 Reminder

The formal integral of the prepared ODE (3.6) associated with the first Painlevé
equation was described with theorem 5.1 and its corollary 5.1. It can be written
under the following equivalent form:

w̃(z,U) = W̃0(z)+
∞

∑
n=0

∑
k∈Ξn+1,0\Ξn,0

Uke−λλλ .kzW̃k(z), (8.1)

where W̃0 = w̃0 = w̃[0]
0 and for any n ∈ N and any k ∈ Ξn+1,0 \Ξn,0,

W̃k =
n

∑
l=0

1
l!
(κκκ.k)l logl(z)W̃ [0]

k−l, W̃ [0]
k = z−τττ.kw̃[0]

k . (8.2)

The formal series w̃0 ∈ C[[z−1]] solves (3.6), namely

P(∂ )w̃0 +
1
z

Q(∂ )w̃0 = F(z, w̃0) = f0 + f1w̃0 + f2w̃2
0, (8.3)

P(∂ ) = ∂ 2−1, Q(∂ ) =−3∂ , f0(z) =
392
625

z−2, f1(z) =−4z−2, f2(z) =
1
2

z−2, while

the W̃k satisfy a hierarchy of equations given by lemma 5.3 that we recall:

PkW̃k = ∑
k1+k2=k
|ki|≥1

W̃k1W̃k2

2!
∂ 2F(z, w̃0)

∂w2 , (8.4)

Pk = Pk(w̃0) = P(−λλλ .k+∂ )+
1
z

Q(−λλλ .k+∂ )− ∂F(z, w̃0)

∂w
.

183
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To what concerns the k-th series w̃[0]
k ∈C[[z−1]], we have a result that ensues directly

from theorem 6.1:

Proposition 8.1. For any k∈N2, the k-th series w̃[0]
k belongs to R̃(1), the asymptotic

class
M

W k=
\ ramW̃k belongs to R̃ES

(1)
and the singularity

O
W k= B

M
W k belongs to

RES(1).

Notice that Ĩ−τττ.kW̃k =
n

∑
l=0

1
l!
(−κκκ.k)l J̃−τττ.l,lw̃

[0]
k−l. for any n ∈ N and any k ∈ Ξn+1,0 \Ξn,0.

Therefore,
O

W k=
n

∑
l=0

1
l!
(−κκκ.k)l O

J−τττ.l,l ∗
O
wk−l

[0] where
O
w[0]

ei = δ +[ŵei for i=,1,2, otherwise

O
w[0]

k = [ŵ[0]
k .

8.1.2 The main theorem

We formulate the main result of this chapter.

Theorem 8.1. The formal integral w̃(z,U) of the prepared form (3.6) associated
with the first Painlevé equation, is resurgent. More precisely, for any k ∈ N2, W̃k
belongs to the space R̃Z

ram of ramified resurgent formal expansions.
We set ω

j
1 = e2iπ j (

•
ω

j
1 = λ1) and ω

j
2 = e2iπ( j+1/2) (

•
ω

j
2 = λ2) for any j ∈ Z. Then,

for every ω ∈ C̃ of the form ω = k0ω
j

1 , resp. ω = k0ω
j

2 , with k0 ∈N?, there exist two
sequences of complex numbers

(
An(ω)

)
n∈N and

(
Bn(ω)

)
n∈N, uniquely determined

by ω such that, for any k = (k1,k2) ∈ N2 and any n ∈ N,

∆ωW̃k+n =
n

∑
m=−1

(
(k1 +m+ k0)An−m(ω)+(k2 +m)Bn−m(ω)

)
W̃k+m+k0e1 ,

resp. (8.5)

∆ωW̃k+n =
n

∑
m=−1

(
(k2 +m+ k0)An−m(ω)+(k1 +m)Bn−m(ω)

)
W̃k+m+k0e2 ,

where by convention W̃(k1,k2) = 0 if k1 < 0 or k2 < 0.
The sequences

(
An(ω)

)
n∈N and

(
Bn(ω)

)
n∈N are subject to the conditions:

An(ω) = 0 when |ω| ≥ n+ 2 and Bn(ω) = 0 when |ω| ≥ n+ 1. Also,
(
An(ω)

)
n∈N

and
(
Bn(ω)

)
n∈N are known for every ω ∈ C̃ once they are known for argω = 0 only.

In particular, A0(ω
j

i ) = (−1) jA0(ω
0
i ) while A0(ω

j
2) =−iA0(ω

j
1).

The proof of this theorem will be given in Sect. 8.4.

8.1.2.1 Remarks

We detail (8.5) for n = 0. For any j ∈ Z and any k0 ∈ N?,

∆k0ω
j

1
w̃0 = A0(k0ω

j
1)W̃e1 = A0(k0ω

j
1)z

3/2w̃e1 (8.6)

∆k0ω
j

2
w̃0 = A0(k0ω

j
2)W̃e2 = A0(k0ω

j
2)z

3/2w̃e2

and A0(k0ω
j

i ) = 0 when k0 ≥ 2.
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When k ∈ Ξ1,0, we use abridged notations w̃k = w̃[0]
k .

By proposition 7.28, ∆
ω

j
i
w̃0 = ρ j.

(
∆

ω0
i
ρ− j.w̃0

)
, i = 1,2. Therefore,

A0(ω
j

i ) = (−1) jA0(ω
0
i ). Remember that w̃0 is even, thus w̃0 = ρ−1/2.w̃0, while

w̃e2 = ρ1/2.w̃e1 . By proposition 7.28 again, ∆
ω

j
2
w̃0 = ρ1/2.

(
∆

ω
j

1
ρ−1/2.w̃0

)
and we

deduce that A0(ω
j

2) =−iA0(ω
j

1).
Now for any k1 ∈ N?,

∆k0ω
j

1
W̃k1e1 = (k1 + k0)A0(k0ω

j
1)W̃(k1+k0)e1 (8.7)

∆k0ω
j

2
W̃k1e1 = k0A0(k0ω

j
2)W̃k1e1+k0e2 +(k1−1)B1(k0ω

j
2)W̃k1e1+k0e2−1.

and B1(k0ω
j

2) = 0 when k0 ≥ 2. We have in particular ∆
ω

j
2
W̃e1 = A0(ω

j
2)W̃1, thus

∆
ω

j
2
w̃e1 = A0(ω

j
2)z

3/2w̃1. Also, for k1 ≥ 2,

∆
ω

j
2
W̃k1e1 = A0(ω

j
2)W̃(k1−1)e1+1 +(k1−1)B1(ω

j
2)W̃(k1−1)e1

and using (8.2),

∆
ω

j
2
w̃k1e1 = A0(ω

j
2)
(
(k1−1)κ1 log(z)z−3/2w̃(k1−1)e1 + z3/2w̃[0]

(k1−1)e1+1

)
+ (k1−1)B1(ω

j
2)z
−3/2w̃(k1−1)e1 .

By proposition 7.28, ∆
ω

j
2
w̃2e1 = ρ j.

(
∆

ω0
i
ρ− j.w̃2e1

)
, therefore

∆
ω

j
2
w̃2e1 = (−1) jA0(ω

0
2 )
(
κ1 log(z+2iπ j)z−3/2w̃e1 + z3/2w̃[0]

e1+1

)
+ (−1) jB1(ω

0
2 )z
−3/2w̃e1

and one deduces: B1(ω
j

2) = (−1) j
(

B1(ω
0
2 )+2iπ jκ1A0(ω

0
2 )
)

. Of course, by sym-

metry: B1(ω
j

1) = (−1) j
(

B1(ω
0
1 )+2iπ jκ2A0(ω

0
1 )
)

.

In the same way, ∆
ω

j
2
w̃2e1 = ρ1/2.

(
∆

ω
j

1
ρ−1/2.w̃2e1

)
and we know that ρ−1/2.w̃2e1 =

w̃2e2 , ρ1/2.w̃e2 = w̃e1 , ρ1/2.w̃
[0]
e2+1 = w̃[0]

e1+1. Thus,

∆
ω

j
2
w̃2e1 = −iA0(ω

j
1)
(
−κ2 log(z+ iπ)z−3/2w̃e1 + z3/2w̃[0]

e1+1

)
+ iB1(ω

j
1)z
−3/2w̃e1

and B1(ω
j

2) = i
(

B1(ω
j

1)+ iπκ2A0(ω
j

1)
)

.

8.1.2.2 Resurgence coefficients and analytic classification

Definition 8.1. The coefficents An(ω) and Bn(ω) given by theorem 8.1 are called
the resurgence cofficients for the first Painlevé equation. The coefficient A0(ω

0
1 ) and

A0(ω
0
2 ) are the Stokes cofficients.

The resurgence coefficients are also called higher order Stokes cofficients in exponential
asymptotics.
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As a rule and apart from some integrable equations, the resurgence cofficients
are seldom known by closed formulas but can be calculated numerically : see for
instance [9] and specifically [26] for hyperasymptotic methods, see also [1]. For
the first Painlevé equation and its Stokes cofficients, an explicit expression has been
obtained by Kapaev [17, 18, 19] using isomonodromic methods, see also [33, 20]
for an exact WKB offspring. This result has also been founded by Costin et al. [8]
by means of resurgent analysis and we give this expression.

Proposition 8.2. In theorem 8.1, the Stokes coefficients are A0(ω
0
1 ) =−i

√
6

5π
and

A0(ω
0
2 ) =−

√
6

5π
.

The Stokes coefficients are also known for the second Painlevé equation, see [15] and ref-
erences therein. It is likely that the method of Costin et al. [8] can be used to get the other
resurgence cofficients for the first Painlevé equation.

We saw with corollary 5.2 that the formal integral can be interpreted as a formal
transformation w̃ = Φ̃(z,u), Φ̃(z,u) = ∑k∈N2 ukw̃[0]

k (z) ∈ C[[z−1,u]] that formally
conjugates the prepared equation (3.6) to its normal form (5.66). We mentioned
(without proof) in Sect. 6.3 that this formal transformation gives rise to analytic
transformations through Borel-Laplace summation. In other words, equation (3.6)
and the normal form (5.66) are analytically conjugated.

It can be shown (see for instance the arguments given in [3]) that for any two
differential equations that are formally conjugated to (5.66), then these differential
equations are analytically conjugated if and only if their resurgence coefficients are
the same. Therefore in this way, the resurgence coefficients are also called the holo-
morphic invariants of Ecalle. See [11] for further details.

8.2 Stokes phenomenon

Knowing the Stokes coefficients A0(ω) provides a complete description for the
lower order Stokes phenomenon. In what follows, we use the notations of theo-
rem 8.1 and we denote θ

j
i = arg(ω j

i ), i = 1,2, j ∈ Z. We simply refer to [25] for the
notion of “symbolic Stokes automorphism” ∆/

+

θ
j

i
and of “symbolic Stokes infinites-

imal generator” ∆/
θ

j
i
, for a given direction θ

j
i . We only recall their expressions and

relationships, in our frame:

∆/
+

θ
j

i
,∆/

θ
j

i
:
⊕
k∈N

e−kλizR̃Z
ram→

⊕
k∈N

e−kλizR̃Z
ram,

∆/
+

θ
j

i
= Id+ ∑

k0∈N?

•
∆
+

k0ω
j

i
, ∆/

θ
j

i
= ∑

k0∈N?

•
∆ k0ω

j
i

∆/
+

θ
j

i
= exp

(
∆/

θ
j

i

)
= Id+ ∑

`∈N?

e−k0λiz

`! ∑
k1+···+k`=k0

ki≥1

∆ k`ω
j

i
◦ · · · ◦∆ k1ω

j
i
.

(8.8)

Let us consider the formal series w̃0. From theorem 8.1, one sees that

∆/
+

θ
j

i
w̃0 = w̃0 + ∑

k∈N?

A0(ω
j

i )
ke−kλizW̃kei (8.9)
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where, on the right-hand side, one recognizes the transseries solutions. The action of
the symbolic Stokes automorphism allows to compare left and right Borel-Laplace
summation: in their intersection domain of convergence,

S θ
j

i
−

w̃0 = S θ
j

i
+

w̃0 + ∑
k∈N?

A0(ω
j

i )
ke−kλizS θ

j
i
+

W̃kei . (8.10)

This allows in particular to analytically continue the sum S θ
j

i
−

w̃0, thus the tritrun-
cated solutions, onto a wider domain.

The same calculation can be made for the (convenient) transseries as well, and
one easily gets, for i = 1,2:

S θ
j

i
−

(
w̃0 + ∑

k∈N?

Uk
i e−kλizW̃kei

)
= S θ

j
i
+

(
w̃0 + ∑

k∈N?

(
Ui +A0(ω

j
i )
)ke−kλizW̃kei

)
.

(8.11)
Once again, this provides analytic continuations of the truncated solutions onto a
wider domain.

It is a good place to mention medianization, since the kei-th series w̃kei are all
real formal series. For instance, since w̃0 belongs to R[[z−1]], its left and right

Borel-Laplace sum are complex conjugate: S θ 0
1
+ w̃0(z) = S θ 0

1
−

w̃0(z). However,
neither S θ 0

1
+

w̃0 nor S θ 0
1
−

w̃0 are real analytic functions, because of the Stokes
phenomenon. The question is therefore the following one : can we construct from
w̃0 a real analytic function by a suitable morphism of differential algebras ?

The naive idea of taking their mean does not work (why ?).

The answer is “yes”, by medianization or good averages, and is not unique. We refer
to [24, 14] for this question and its subtleties, see also [6].

Remark 8.1. The fact that the Stokes coefficient A0(ω
0
1 ) is nonzero can be deduced

from the identity (8.10) : if A0(ω
0
1 ) = 0, then necessary the associated trituncated

solution would be holomorphic on C\K where K is a compact domain. This would
mean that this trituncated solution has only a finite number of poles and that con-
tradicts theorem 2.2. The fact that A0(ω

0
1 ) is pure imaginary can be seen also from

(8.10) and from the realness of w̃0. For arg(z) = 0 and |z| large enough, one can
write

S θ 0
1
+w̃0(z) = S θ 0

1
+

w̃0(z)+ ∑
k∈N?

A0(ω
0
1 )

ke−kλizS θ 0
1
+

W̃kei(z), (8.12)

and A0(ω
0
1 ) =−A0(ω

0
1 ) comes as an upshot.

As already said, the resurgent coefficients can be numerically calculated by hy-
perasymptotic methods. In return, resurgent coefficients and higher order Stokes
phenomena play a crucial role in the hyperasymptotic approximations to Borel-
Laplace sums, see for instance [9, 26] and references therein.

8.3 The alien derivatives for the seen singularities

The idea that leads to theorem 8.1 relies on the following observations. We know

by proposition 8.1 that the singularity
O

W k belongs to RES(1), for any k ∈ N2, and
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we can apply corollary 7.2 : for any ω ∈ C̃ so that
•
ω = ±1 (the so-called seen

singularities), the alien derivative ∆ω

O
W k is well-defined. If these alien derivatives

belong to RES(1), then we see with corollary 7.3 that the singularities
O

W k belongs
to RES(2). A reasoning by induction allows to conclude.

In this section, we explain how to calculate these alien derivatives with various
methods and we direct our efforts towards w̃0.

8.3.1 Preparations

The formal series w̃0 being solution of the equation (8.3), we introduce by proposi-

tion 7.4 the singularities
O
w0=

[ŵ0,
O
f 0=

[ f̂0,
O
f 1=

[ f̂1 and
O
f 2=

[ f̂2. Notice that
O
f 0,

O
f 1 and

O
f 2 obviously belong to

O
CONS.

Equation (8.3) translates into the fact that
O
w0 satisfies the following convolution

equation:

P(
O
∂ )

O
w0 +

O
I 1 ∗

[
Q(

O
∂ )

O
w0
]
=

O
F (ζ ,

O
w0) (8.13)

=
O
f 0 +

O
f 1 ∗

O
w0 +

O
f 2 ∗

O
w
∗2
0 .

One can rather introduce the asymptotic class
M
w0=

\w̃0 ∈ASYMPsimp (cf. definition
7.27) and equation (8.3) becomes:

P(∂ )
M
w0 +

1
z

Q(∂ )
M
w0 = F(z,

M
w0) (8.14)

= f0 + f1
M
w0 + f2

M
w

2

0

As already said, we know that
O
w0 belongs to RES(1), resp.

M
w0 belongs to R̃ES

(1)
,

and corollary 7.2 can be applied : with the notations of theorem 8.1,
O

W= ∆
ω0

1

O
w0 is a

well-defined singularity of SING0,π , resp.
M

W= ∆
ω0

1

M
w0 is a well-defined asymptotic

class of ASYMP0,π .

The singularities
O
f 0,

O
f 1,

O
f 2 and

O
I 1 are all constant of resurgence. Therefore, they

vanish under the action of any alien derivation. Adding to this remark the fact that

∆
ω0

1
satisfies the Leibniz rule and the commutation rule [∆

ω0
1
,
O
∂ ] =−∆

ω0
1

(corollary

7.2 and remember that
•
ω0

1 = 1), one deduces from (8.13) that
O

W solves in SING0,π
the following associated linear convolution equation:

P(
O
∂ −1)

O
W +

O
I 1 ∗

[
Q(

O
∂ −1)

O
W
]
=

∂
O
F (ζ ,

M
w0)

∂w
∗

O
W (8.15)

=

(
O
f 1 +2

O
f 2 ∗

O
w0

)
∗

O
W .

For the same reasons, the asymptotic class
M

W is solution in ASYMP0,π of a linear
ODE:
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P(∂ −1)
M

W +
1
z

Q(∂ −1)
M

W=
∂F(z,

M
w0)

∂w
M

W . (8.16)

Of course, (8.16) can be deduced also from (8.15) by formal Laplace transform (definition
7.25 and proposition 7.10).

The differential equation (8.16) is nothing but the equation

Pe1(
M
w0)

M
W= 0 (8.17)

where Pe1 is the linear operator recalled in (8.4). We know by lemma 5.4 that the
differential equation Pe1(w̃0)W̃ = 0, that is (8.17) through the Taylor map, has its
general formal solution that belongs to the direct sum Ñils1⊕ e2zÑils1, under the
form

W̃ (z) = C1z
3
2 w̃e1(z)+C2e2zz

3
2 w̃e2(z) (8.18)

= C1W̃e1(z)+C2e2zW̃e2(z),

where W̃e1 and W̃e2 belong to the space Ñils1 of 1-Gevrey Nilsson series.
One should precise what we mean by “general formal solution”. The linear operator
Pe1 is of order 2 in z and the particular solutions W̃e1 and e2zW̃e2 are two indepen-

dent formal solutions : their wronskian is
∣∣∣∣ W̃e1 e2zW̃e2

∂W̃e1 ∂ (e2zW̃e2)

∣∣∣∣= 2z3e2z. Thus, if W̃

belongs to a differential algebra that contains Ñils1⊕ e2zÑils1 as sub-vector space,
for instance the direct sum ∏

k∈Z
e−kzÑils1 and if Pe1(w̃0)W̃ = 0, then W̃ is of the form

(8.18) with C1,C2 ∈C given by the Kramer’s formulas: C2 =− z−3e−2z

2

∣∣∣∣ W̃ W̃e1

∂W̃ ∂W̃e1

∣∣∣∣,
C1 =

z−3e−2z

2

∣∣∣∣ W̃ e2zW̃e2

∂W̃ ∂ (e2zW̃e2)

∣∣∣∣.
We claim that the general solution of equation (8.17) in ∏k∈Z e−kzASYMP0,π

is a linear combination of
M

W e1∈ ASYMPram and e2z M
W e2∈ e2zASYMPram with

M
W ei=

\ ramW̃ei . Consequently:

Lemma 8.1. There exists A0(ω
0
1 ) ∈C such that the singularity ∆

ω0
1

O
w0∈ SING0,π is

of the form

∆
ω0

1

O
w0= A0(ω

0
1 )

O
I− 3

2
∗ O

we1= A0(ω
0
1 )

O
W e1 ,

thus can be extended uniquely to an element of SING. In other equivalent words,

∆
ω0

1

M
w0= A0(ω

0
1 )

M
W e1∈ ASYMPram, ∆

ω0
1
w̃0 = A0(ω

0
1 )W̃e1 ∈ Ñils1.

As promised, we show proposition 8.1 by two different approaches in the sequel.

8.3.2 Alien derivations, first approach

We follow here ideas developed in [16, 27], see also [30, 29, 23].
We start with the following results that come from general nonsense in 1-Gevrey

theory and its proof is saved for an exercise.
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Lemma 8.2. Let w̃ ∈ z−1C[[z−1]]1 be a 1-Gevrey series with vanishing constant
term, and ŵ ∈ O0 its minor. The following properties are satisfied.

1. The formal series (1+ w̃) ∈ C[[z−1]]1 is invertible. Its inverse (1+ w̃)−1 is 1-
Gevrey and has a formal Borel transform B(1+ w̃)−1 ∈ Cδ ⊕O0 of the form
(δ + ŵ)∗−1 = δ +∑n≥1(−1)nŵ∗n.

2. The formal series log(1+ w̃) =∑n≥1
(−1)n+1

n w̃n is a 1-Gevrey with vanishing con-

stant term, whose minor is given by log∗(δ + ŵ) := ∑n≥1
(−1)n+1

n ŵ∗n.
3. The formal series w̃ is exponentiable in the sense that its exponential

ew̃ = ∑n≥1
1
n! w̃n is a 1-Gevrey series, whose minor is of the form

exp∗(ŵ) := δ +∑n≥1
1
n! ŵ∗n. Moreover, log◦exp = exp◦ log = Id.

Remark 8.2. More general results along that line in resurgence theory can be ob-
tained, see [3, 25] and specially [32].

We are now ready to calculate the alien derivative
O

W= ∆
ω0

1

O
w0∈ SING0,π . We

consider the 1-Gevrey Nilsson series W̃e1 = z3/2w̃e1 ∈ Ñils1 solution of (8.16)
(more precisely its transform through the Taylor map), and its associated singu-

larity
O

W e1=
O
I− 3

2
∗ O

we1∈ SING, where
O
we1= δ + [ŵe1 . (Remember that w̃e1 has 1 for

its constant term). Since w̃e1 is invertible in C[[z−1]], so does
O
we1 in SING, its in-

verse being given by
O
w ∗−1

e1
= δ + [

(
∑n≥1(−1)nŵ∗ne1

)
. Accordingly,

O
W e1 is invertible

in SING and
O

W ∗−1
e1

=
O
I 3

2
∗ O

w ∗−1
e1

. We now introduce the singularity
O
S∈ SING0,π

defined by
O

W=
O
S ∗

O
W e1 (8.19)

and we want to show that
O
S= A0(ω

0
1 )δ for some A0(ω

0
1 ) ∈ C. Plugging (8.19) into

(8.15), using the property that
O
∂ is a derivation in SING0,π (cf. proposition 7.6) and

that
O

W e1 solves (8.15), one easily gets for
O
S the following equation:

(
(
O
∂

2−
O
∂ )

O
S
)
∗

O
W e1 +2

( O
∂
O
S
)
∗
(
∂

O
W e1

)
−3

O
I 1 ∗

( O
∂
O
S
)
∗

O
W e1= 0. (8.20)

Since
O
∂

O
W e1=

3
2

O
I− 1

2
∗ O

we1 +
O
I− 3

2
∗
( O

∂
O
we1

)
, equation (8.20) reduces to the equation

O
∂

2 O
S=
[
δ −2

O
χ
]
∗

O
∂
O
S,

O
χ=

O
w ∗−1

e1
∗
( O

∂
O
we1

)
, (8.21)

where
O
χ = [χ̂ is the singularity associated with the minor χ̂(ζ ) of

χ̃(z) =
∂ w̃e1

w̃e1

∈ z−2C[[z−1]]1.

The formal series χ̃ has a unique primitive χ̃0(z) = ∂
−1

χ̃(z) = log
(
w̃e1(z)

)
in the

maximal ideal z−1C[[z−1]]1 of C[[z−1]]1 and, thus, χ̂0 as well as its associated sin-

gularity
O
χ0 is exponentiable in SING. (Lemma 8.2)

More simply, exp∗(
O
χ0) = δ + [ŵe1 , thus exp∗(2

O
χ0) = δ + [(2ŵe1 + ŵ∗2e1

).

We introduce
O
S0∈ SING0,π given by the identity:
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O
∂
O
S=

O
S0 ∗exp∗(−2

O
χ0). (8.22)

By construction,
O
∂ exp∗(−2

O
χ0) =−2

O
χ ∗exp∗(−2

O
χ0). One deduces from (8.21)

that
O
S0 solves the convolution equation ∂

O
S0 −

O
S0= 0. This translates into the fact

that (ζ + 1)
∨
S0 is holomorphic near ζ = 0, where

∨
S0 stands for any major of

O
S0.

Therefore
∨
S0 is holomorphic as well near ζ = 0, thus

O
S0= 0. From (8.22), this means

that
O
∂
O
S= 0, that is ζ

∨
S(ζ ) is holomorphic near ζ = 0 for any major

∨
S of

O
S. This allows

to conclude that there exists a constant A0(ω
0
1 ) ∈ C such that

O
S= A0(ω

0
1 )δ . Thus,

∆
ω0

1

O
w0= A0(ω

0
1 )

O
W e1 which implies that ∆

ω0
1

O
w0 can be continued to an element of

SING. This ends the proof of proposition 8.1 with the first approach.

8.3.3 Alien derivations, second approach

The second approach We now propose another approach, based on the notion of
asymptotic classes, that uses tools akin to Gevrey and 1-summability theories.

We know that
M

W= ∆
ω0

1

M
w0∈ ASYMP0,π satisfies the condition Pe1(

M
w0)

M
W= 0.

We look at the equation Pe1(w̃0)W̃ = 0. The operator Pe1(w̃0) is of order two
in z and has two linearly independent formal solutions W̃e1 = z

3
2 w̃e1 ∈ Ñils1 and

e2zW̃e2 = e2zz
3
2 w̃e2 ∈ e2zÑils1.

Let us represent the asymptotic classes
M
w0=

\w̃0,
M
we1=

\w̃e1 and
M
we2=

\w̃e2 on re-
striction to ASYMP0,π . We pick a (good) open covering (Ii) of
J? =]−3π/2,3π/2[ with open arcs Ii of aperture less than π . We use the Borel-
Ritt theorem for 1-Gevrey asymptotics to get, for each subscript i: w0,i, we1,i,
we2,i,∈A 1(Ii) whose 1-Gevrey asymptotics is given by w̃0, w̃e1 , w̃e2 respectively.
We know that each of these 1-Gevrey germ is uniquely defined up to 1-exponentially
flat germs, that is up to elements of A ≤−1(Ii). As a consequence, the collections
(w0,i), (we1,i), (we2,i) represent the asymptotic classes we have in mind.
For each subscript i, observe that

T1(Ii)
(
De1(w0,i)we1,i

)
=De1(w̃0)w̃e1 = 0

with De1 the linear operator given by definition 5.5, because the 1-Gevrey Taylor
map T1(Ii) is a morphism of differential algebras. This ensures that De1(w0,i)we1,i

belongs to A ≤−1(Ii).

We draw a first conclusion : De1 (
M
w0)

M
we1= 0 in ASYMP0,π and thus, Pe1 (

M
w0)

M
W e1= 0 as

well with
M

W e1= z3/2 M
we1∈ ASYMP0,π .

We add a property that ensues from an analogue of the M.A.E.T. (theorem
3.1) and for which we refer to [14, 16]: one can even find hi,e1 ∈A ≤−1(Ii) so
that De1(w0,i)(we1,i−he1,i) vanishes exactly, for each subscript i. Thus, one can

find a representative we1,i ∈A 1(Ii) of
M
we1 so that De1(w0,i)we1,i = 0 and thus,

Pe1(w0,i)We1,i = 0 as well with We1,i = z
3
2 we1,i.

The same reasoning yields: one can find a representative we2,i ∈A 1(Ii) of
M
we2 so

that De2(wi,0)we2,i = 0, thus Pe1(w0,i)e2zwe2,i = 0 with We2,i = z
3
2 we2,i.
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Therefore De2 (
M
w0)

M
we2= 0 in ASYMP0,π and thus Pe1 (

M
w0)e2z M

W e2= 0. The key point if that

e2z M
W e2 belongs to e2zASYMP0,π which is a vector space in direct sum with ASYMP0,π .

Putting things together, keeping the same notations, we see that the kernel of the
linear differential operator Pe1(wi,0) in the space of sectorial germs of direction Ii
is spanned by We1,i and e2zWe2,i.

We now go back to the asymptotic class
M

W∈ ASYMP0,π that satisfies

Pe1(
M
w0)

M
W= 0. Considering a refinement of (Ii) if necessary, one can find for each

subscript i a representative Wi ∈ A ≤0(Ii) of
M

W and a 1-exponentially flat germ
bi ∈ A ≤−1(Ii) such that Pe1(w0,i)Wi = bi. To get Wi, we apply the usual variation
of constants method. One gets Wi under the form

Wi = Bi(z)+C1We1,i +C2e2zWe2,i, C1,C2 ∈ C, (8.23)

2Bi(z) = We2,i

∫
z−3We1,i.bi−Wei,i

∫
z−3We2,i.bi.

It is a simple exercise to show that Bi belongs to A ≤−1(Ii) and one easily concludes
that Wi has to be equal to C1We1,i modulo A ≤−1(Ii).

Depending on the arc, the term C2e2zWe2,i either belongs to A ≤−1(Ii) (so one can take
C2 = 0) or escapes from Wi ∈A ≤0(Ii) (thus one has to impose C2 = 0).

This ends the second proof of proposition 8.1: the general solution of the linear

equation Pe1(
M
w0)

M
W= 0 in ASYMP0,π is C1

M
W e1 and, consequently, there exists a

constant A0(ω
0
1 )∈C so that ∆

ω0
1

M
w0= A0(ω

0
1 )

M
W e1 in ASYMP0,π . Thus, ∆

ω0
1

M
w0 can

be uniquely continued to an element of ASYMP.

Conclusion What we have shown amounts to the following upshot. The solutions
of the equation Pe1(w̃0)W̃ = 0 in the differential algebra ∏

k∈Z
e−kzÑils1 are spanned

by the independent solutions W̃e1 ∈ Ñils1 and e2zW̃e2 ∈ e2zÑils1. This implies that the

solutions of the equation Pe1(
M
w0)

M
W = 0 in the differential algebra ∏

k∈Z
e−kzASYMP,

resp. ∏
k∈Z

e−kzASYMP0,π , are spanned by the independent solutions
M

W e1∈ ASYMP

and e2z M
W e2∈ e2zASYMP, resp. their restrictions in ASYMP0,π and e2zASYMP0,π

respectively. This result can be generalized as follows.

Lemma 8.3. For k∈N2, we denote by
M

W k∈ASYMPram the asympotic class defined

by
M

W k=
\ ramW̃k where W̃k ∈ Ñils1 satisfies (8.4). Let θ ∈ S̃1 be any direction, α > 0

and k∈N2\{0}. If
M

W ∈∏`∈Z e−`zASYMPθ ,α solves the linear differential equation

Pk
M

W = ∑
k1+k2=k
|ki|≥1

M
W k1

M
W k2

2!
∂ 2F(z,

M
w0)

∂w2 , Pk =Pk(
M
w0), (8.24)

then there exist uniquely determined constants C1,C2 ∈ C so that

M
W =

M
W k +eλλλ .kz

(
C1e−λ1z M

W e1 +C2e−λ2z M
W e2

)
. (8.25)
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Proof. The general formal solution for the equation (8.4) is of the form
W̃ = W̃k + eλλλ .kz

(
C1e−λ1zW̃e1 +C2e−λ2zW̃e2

)
. We already know that

eλλλ .kz
(

C1e−λ1z M
W e1 +C2e−λ2z M

W e2

)
provides the general solution for the homoge-

neous equation Pk(
M
w0)

M
W = 0 in ∏`∈Z e−`zASYMPθ ,α . This asymptotic class

M
W k

is of the form (8.2), namely

M
W k= ∑

l

1
l!
(κκκ.k)l logl(z)z−τττ.k M

w
[0]

k ,
M
w
[0]

k = \ w̃[0]
k ,

with w̃[0]
k ∈C[[z−1]]1 satisfying as linear differential equation given in corollary 5.1.

This allows to conclude that
M

W k is a particular solution for the equation (8.24) and
one ends the proof with the arguments of the above second approach.

8.3.4 A step further

What have been previously done works as well for the other alien derivatives

∆
ω

j
i

O
w0= A0(ω

j
i )

O
W ei , resp. ∆

ω
j

i

M
w0= A0(ω

j
i )

M
W ei , for any i = 1,2 and j ∈ Z. Since

M
W e1 and

M
W e2 belong to R̃ES

(1)
(proposition 8.1), one infers from corollary 7.3 that

w̃0 belongs to R̃(2). In particular, the alien derivatives ∆2ω
j

1

O
w0∈ SING2π j,π , resp.

∆2ω
j

1

M
w0∈ ASYMP2π j,π and ∆2ω

j
2

O
w0∈ SING2π( j+1/2),π , resp.

∆2ω
j

2

M
w0∈ ASYMP2π( j+1/2),π , are well-defined. As a matter of fact, these alien

derivatives are quite simple !

Lemma 8.4. For any ω ∈ C̃ so that
•
ω = ±2, one has ∆ω

O
w0= 0. Equivalently,

∆ω

M
w0= 0, ∆ω w̃0 = 0.

Proof. We only calculate
M

W= ∆2ω
j

1

M
w0. Through the alien derivation ∆2ω

j
1
, equation

(8.3) is transformed into the linear ODE

P(∂ −2)
M

W +
1
z

Q(∂ −2)
M

W=
∂F(z,

M
w0)

∂w
M

W (8.26)

as a consequence of corollary 7.2. We recognize the equation P2e1(
M
w0)

M
W= 0. By

lemma 5.4, the general formal solution for the linear equation
P2e1(w̃0)W̃ = 0 is of the form C1ezW̃e1 +C2e3zW̃e2 and we either conclude with

the reasoning made in Sect. 8.3.2 (still write
O

W under the form
O

W=
O
S ∗

O
W e1 and

show that
O
S= 0) or rather directly with lemma 8.3 : the solutions of the equation

P2e1(
M
w0)

M
W = 0 in ∏

k∈Z
e−kzASYMP are C1ez O

W e1 +C2e3z O
W e2 and one concludes

that ∆2ω
j

1

M
w0= 0 since the alien derivative belongs to ASYMP2π j,π . ut

We can keep on that way to get the complete resurgent structure for w̃0 and, at
the same time, to analytically continue its minor ŵ0. Let us see what happens a step
further.
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To show that w̃0 belongs to R̃(3), we have to complete the informations given
by lemma 8.4. Following corollary 7.3, we would like to show that ∆ω2 ◦∆ω1

M
w0

belongs to R̃ES
(1)

for any ω1,ω2 ∈ C̃ so that
•
ω1 =±1 and

•
ω2 =±1. From what we

know, this amount to showing that the alien derivatives ∆ω2

M
W ei belong to R̃ES

(1)
.

Let us look at
M

W=∆
ω0

1

M
W e1∈ASYMP0,π . From the identity Pe1(

M
w0)

M
W e1= 0 (equa-

tion (8.16)) and corollary 7.2, we draw:

P(∂ −2)
M

W +
1
z

Q(∂ −2)
M

W=
∂F(z,

M
w0)

∂w
M

W +
M

W e1 ∆
ω0

1

M
w0

∂ 2F(z,
M
w0)

∂w2 ,

that is

P2e1(
M
w0)

M
W= A0(ω

0
1 )

M
W

2

e1

∂ 2F(z,
M
w0)

∂w2 . (8.27)

where A0(ω
0
1 ) is the resurgent constant given in lemma 8.1. Observe that the general

formal solution for the equation P2e1(w̃0)W̃ = A0(ω
0
1 )W̃

2
e1

∂ 2F(z,w̃0)
∂w2 , deduced from

(8.27) through the Taylor map, reads:

W̃ = 2A0(ω
0
1 )W̃2e1 +C1ezW̃e1 +C2e3zW̃e2 ∈∏

k∈Z
e−kzÑils1

with C1,C2 ∈ C. By lemma 8.3 one gets ∆
ω0

1

M
W e1= 2A0(ω

0
1 )

M
W 2e1 , which thus be-

longs to R̃ES
(1)

by proposition 8.1.
Of course, one can keep on that way, by induction. However, a lesson has to be

learned from what precedes : the resurgent structure is closely coupled to the formal
integral and it is much time to introduce the bridge equation.

8.4 The bridge equation and proof of the main theorem

We go back to the formal integral

w̃(z,U) = ∑
k∈N2

Uke−λλλ .kzW̃k ∈∏
k∈Z

e−kzÑils1[[U]] (8.28)

and we consider its derivatives with respect to the indeterminate Ui, i = 1,2:

∂ w̃
∂Ui

(z,U) = ∑
k∈N2

k.eiUk−eie−λ .kzW̃k ∈∏
k∈Z

e−kzÑils1[[U]] (8.29)

= W̃ei +O(U1,U2).

Since the formal integral w̃ solves the differential equation
P(∂ )w̃ + 1

z Q(∂ )w̃ = F(z, w̃), one deduces that the following identity holds for
i = 1,2:(

P(∂ )+
1
z

Q(∂ )− ∂F(z, w̃)
∂w

)
∂ w̃
∂Ui

= 0, i.e. P0(w̃)
∂ w̃
∂Ui

= 0. (8.30)
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The formal solutions for the equation P0(w̃0)W̃ = 0 is spanned by e−λ1zW̃e1 and

e−λ2zW̃e2 . Therefore,
∂ w̃
∂U1

and
∂ w̃
∂U2

are two linearly independent solutions for the

order two linear differential equation P0(w̃)W̃ = 0 , explicitly (wronsk stands for
the wronskian):

wronsk
(

∂ w̃
∂U1

,
∂ w̃
∂U2

)
= wronsk

(
e−λ1zW̃e1 ,e

−λ2zW̃e2

)
= 2z3.

Lemma 8.3 translates into the fact that for any series of the form

M
W (z,U) = ∑

k∈N2

Uk M
W k,

M
W k∈∏

k∈Z
e−kzASYMPθ ,α ,

which satisfies the second order equation P0(
M
w)

M
W= 0, there exist uniquely deter-

mined constants A(ω,U) ∈ C[[U]] and B(ω,U) ∈ C[[U]] such that

M
W (z,U) = A(ω,U)

∂
M
w

∂U1
+B(ω,U)

∂
M
w

∂U2
,

∂
M
w

∂Ui
= \ ram ∂ w̃

∂Ui
(8.31)

To the formal integral w̃(z,U), one associates its analogue through the mapping \ ram:

M
w (z,U) = ∑

k∈N2

Uke−λλλ .kz M
W k,

M
W k=

\ ramW̃k. (8.32)

We pick ω ∈ C̃ and we assume for the moment that
•
ω = ±1. By proposition 8.1

and corollary 7.2, the alien derivation ∆ω acts on the formal integral
M
w (z,U). As

a matter of fact, it will be easier to use the dotted alien derivation,
•
∆ ω = e−ωz∆ω

which has the virtue of commuting with the derivation ∂ . Therefore,

•
∆ ω

M
w (z,U) = ∑

k∈N2

Uke−λλλ .kz •
∆ ω

M
W k,

•
∆ ω

M
W k∈ e−ωzASYMParg(ω),π

and

P0(
M
w)
•
∆ ω

M
w = 0.

We deduce that the decomposition (8.31) holds for
•
∆ ω

M
w. This decomposition

•
∆ ω

M
w= A(ω,U)

∂
M
w

∂U1
+B(ω,U)

∂
M
w

∂U2
is the so-called bridge equation of Ecalle, that

is a link between alien derivatives and the usual partial derivatives.
Let Ξ ⊂ N2 be the set defined by Ξ = Ξ0 = {ke1,ke2 |k ∈ N} and set Ξn = n+Ξ

for any n ∈ N?. With these notations, the formal integral can be written as follows:

w̃(z,U) =
∞

∑
n=0

∑
k∈Ξn

Uke−λλλ .kzW̃k(z) =
∞

∑
n=0

∑
k∈Ξ

Uk+ne−λλλ .kzW̃k+n(z) (8.33)

To fix the idea, suppose that
•
ω = k0λ1 with k0 = 1 at the moment. We get from the

decomposition (8.31) the identity:
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∞

∑
n=0

∑
k∈Ξ

Uk+ne−λλλ .(k+k0e1)z∆ω

M
W k+n=

A(ω,U)
∞

∑
n=0

∑
k∈Ξ

(k+n).e1Uk+n−e1e−λλλ .kz M
W k+n

+B(ω,U)
∞

∑
n=0

∑
k∈Ξ

(k+n).e2Uk+n−e2e−λλλ .kz M
W k+n

(8.34)

Each component Uk+ne−λλλ .(k+k0e1)z∆ω

M
W k+n∈ e−λλλ .(k+k0e1)zASYMParg(ω),π has its

counterpart on the right-hand side of the equality. Necessarily,

A(ω,U) = U(1−k0)e1 ∑
n≥0

An(ω)Un (8.35)

B(ω,U) = Ue2−k0e1 ∑
n≥0

Bn(ω)Un.

This implies on the one hand hand that An(ω)= 0 when |ω| ≥ n+2 while Bn(ω)= 0
when |ω| ≥ n+1. On the other hand,

∆ω

M
W k+n =

n

∑
m=−1

An−m(ω)(k+m+ k0e1).e1
M

W k+m+k0e1 (8.36)

+
n

∑
m=−1

Bn−m(ω)(k+m+ k0e1).e2
M

W k+m+k0e1

with the convention used in theorem 8.1. The case
•
ω = k0λ2 with k0 = 1 is obtained

by symmetry.

This result implies that the asymptotic class
M

W k=
\ ramW̃k belongs to R̃ES

(2)
, as a

consequence of corollary 7.3. An easy induction on k0 ∈N? allows then to conclude
that the W̃k belong to R̃Z

ram. The rest of the theorem is shown by arguments used in
remark 8.1.2.1. This ends the proof of theorem 8.1.

8.5 Comments

For differential systems of level 1 of the type (5.67), the resurgent study of the
Stokes phenomenon and of the action of the symbolic Stokes automorphism ∆/

+
θ

on
transseries solutions have been obtained by Costin [4], under some conditions. This
has been later extended to more general differential equations (with no resonance),
and also for difference equations of the type (5.68), in particular by Braaksma and
his students (see [2, 21]). These works make use of (so-called) “staircase distribu-
tions” [4, 6] and do not make appeal to alien derivations. The method explained
in this chapter is closer to the ideas of Ecalle, leading to the bridge equation and
the full resurgent structure. Also, as we saw on the particular example of the first
Painlevé equation, this method provides (theoretically) the whole set of Ecalle’s
holomophic invariants and passes the resonance cases under some conditions (no
quasi-resonance, no nihilence [11]).
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Toward the exact WKB analysis of differential equations, linear or non-linear (Kyoto, 1998),
204, 271-296, Kyoto Univ. Press, Kyoto, 2000.



Index

Alien operator
A γ

ω (θ2,θ1), 162
∆ω , 172
∆+

ω , 172
Analytic continuation contλ , 3
Arc

I?, 47, 132
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Space Ñils1, 178
1-Gevrey series

g̃, 33
Sheaf C[[z−1]]1, 52
Space C[[z−1]]1, 33

Laurent series
g̃, 29
Space C((z−1)), 29

Power series
g̃, 29
Sheaf C[[z−1]], 52
Space C[[z−1]], 29

Space R̃(θ ,α)(L), 159
Space R̃(k), 160

Grönwall lemma, 45, 78

Holomorphic function
Ω -continuable germ, 34

Space R̂Ω , 34
Convergent Laurent series

Sheaf C{ζ ,ζ−1}, 131
Sectorial germ
∨
ϕ , 131
Sheaf O0, 131
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