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Preface

These lecture notes are an extended form of a course given at a CIMPA master
class held in LIMA, Peru, in the summer of 2008. The students who attended these
lectures were already introduced to linear differential equations, Gevrey asymp-
totics, k-summability and resurgence by my colleagues MlehLoday, Claude
Mitschi and David Sauzin. The aim was merely to show the resurgent methods act-
ing on an example and along that line, to extend the presentation of the resurgence
theory of Jean Ecalle provided that the need.

The present lecture notes re ect this plan and this pedagogical point of view. The
example that we follow along this course is the First Paimlgifferential equation,
or Painlee | for short. Besides its simplicity, various reasons justify this choice.
One of them is the non-linearity, which is the eld where the resurgence theory
reveals its power. Another reason lies on the fact that resonances occur, a case which
is scarcely found in the literature. Last but not least, the Paén&xyuations and
their transcendents appear today to be an inescapable knowledge in analysis for
young mathematicians. It was thus certainly worthy to detail the complete resurgent
structure for Painle¥ I.

We have tried to be as self-contained as possible. Nevertheless, the reader is
assumed to have a previous acquaintance with the theories of summability, espe-
cially with Borel-Laplace summation and a little background with resurgence the-
ory. Since this volume deals with ordinary non-linear differential equations, we be-
gin with de nitions and phenomena linked to the non-linearity. Special attention is
then brought to Painlévl and to its so-called tritruncated and truncated solutions
that are constructed by proving the summability of the transseries solutions. We an-
alyze the formal integral for PainléM and, equivalently, the formal transform that
brings Painleg | to its normal form. We detail the resurgent structure for Pa@lev
via additional material in resurgence theory. As a rule, each chapter ends with some
comments on possible extensions for which we provide references to the existing
literature.

Angers, November 2015 Delabaere Eric
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Chapter 1

Some elements about ordinary differential
equations

Abstract This chapter is merely devoted to recalling usual notations and elemen-
tary results on ordinary differential equations (ODES) in the complex domain. We
give the fundamental existence theorem for Cauchy problems [Sdct. 1.1). We detail
the main differences between solutions of linear versus nonlinear ODEs, when the
question of their analytic continuation is considered ($ec}. 1.2). Finally we provide
a short introduction to Painléequations (Segt. 1.3).

1.1 Ordinary differential equations in the complex domain
An ordinary differential equation (ODE) is a functional relation of the type

F oxup);utx); uNx) =0 u®(x= %(X)ZC’“: (1.1)

We refer tom as the dimensiorof the ODE. Theorder N of the ODE refers to the
highest derivative considered in the equation. This ODE of olNl&s said to be
solved in his highest derivativkit is written as

uM = Fogu; ;u™N Dy: (1.2)

1.1.1 The fundamental existence theorem

We recall the fundamental existence theorem for the Cauchy problem, for analytic
ODEs (see, e.g.[20, 1B, 125,119]). We denotelify;r) C the open disc centred
onzand of radiug. For a given domaitd C™ (i.e.,U is a connected open set)

we denote byD(U) the complex linear space of functions holomorphid.an

LetU C"beanopensetandlét:U! C be afunction. The following statements are
equivalent (this is the Osgood lemma):

f is analytic orlJ, that isf can be represented by a convergent power series in a neigh-
bourdhood of eack2 U;

f is complex differentiable ob;

f is weakly holomorphic, that i$ is continuous otJ and partially differentiable ot

with respect to each variable (x = (X1;  ;%n))-

As a matter of fact, it is enough to assume only the holomorphy in each complex variable
without the continuity hypothesis (Hartogs theorem).
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Theorem 1.1 (Cauchy problem).LetU C C™be a domain and:U! C™
be a holomorphic vector function. For evetyo;ug) 2 U, there exist a polydisc
D(%0;€0) O1 i mD(uoi;&) U and asolutioru : D(xo;€0) ! O1 i mD(uoi; &) of

the analytic ODE of order 1 and dimension %;J—( = F(x;u), which satis es the

initial value conditionu(Xp) = ug. Moreover this solution is unique, belongs to
O(D(x0; &0)) and also depends holomorphically on the initial valye

In what follows we shall consider essentiafigalar ODESs, that it ODESs of di-
mension 1 and of ordeX. The theorenj I]1 translates to this case as well, since
every ODE of ordeN and of dimension 1, once solved in his highest derivative,
is equivalent to an ODE of order 1 and of dimenshin if u= vy, W= vy,
uN D = vy 4, the following Cauchy problem,

(

u(N) = F(X; u; ;u(N 1))
uxo); U™ D(xo) = uwg ult P

is equivalent to that one:
1

Vi 0 1 o 1

0 Yo 1 O
i%mgz%:% o §and%>V;OE<xo):?@ e

N 1)
e WN 1 u(
VN 1 F(xvo; VN 1) 0

1.1.2 Some usual terminologies

The following terminologies are commonly used (see, €lg. [6]):

The general solutiorof an ODE of ordeMN and of dimension 1 is the set of all
solutions determined in application of the Cauchy thedrern 1.1. It depenis on
arbitrary complex constants.

A particular or specialsolution is a solution derived from the general solution
when xing a particular initial data.

A singularsolution is a solution which is not particular.

1.1.3 Algebraic differential equations

In a moment we shall concentrate on algebraic differential equations, these we de-
ne now.

LetU Cbeadomain. We denote by (U) the eld of meromorphic functions
onU. The ODE [(1.1) of ordeN and of dimension 1 is said to k&gebraic on a
domainUif F 2 M (U)[u;u®  ;uM]thatis,F is polynomial in(u;u® ;uV)
with meromorphic coef cients irx. An algebraic ODE igational if it is of degree
one in the highest derivative), andlinear (homogeneous) if is a linear form
in(u;u®  ;uN)y,
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1.2 On singularities of solutions of ordinary differential
equations

1.2.1 Notations

We x some notations that will be used in a moment.

De nition 1.1. Letl :[a;b] R! C be a path starting at = | (a) and ending at
x2 = | (b). If uis a (germ of) holomorphic function(s) & which can be analyti-
cally continued alongd) , we denote by coptu the resulting (germ of) holomorphic
function(s) atxy.

Remark 1.1Let O = Oy be the set of all germs of holomorphic functions. We

x2C

equipO with its usual Hausdorff topology, a badss = fU (U;F )g of open sets
being de ned as follows:U (U;F )= fj x2 Ojj x germ ofF atx2 Ug, where

. . . C Oo! C :
U Cisadomainandé 2 O(U). With the projectiory: 20,71 x2C which
associates to a germ its supportl[12, 9], the (non-connected) topological3eee
comes aretak space, that igis a local homeomorphism. The analytic continuation
of the germu 2 Oy, alongl , if exists, is the image of the unique path [a;b]! O

o]

L% & q

"[a;b]! C

I

such that (a) = uand whose projection hyis| . With this notation,

cont u= L (b). Seel[32] for more details.

1.2.2 Problem

We consider an ODE of ord&fand dimension 15 x;u(x);uqx); ;u™(x) =0

with F :U ! C a holomorphic functionon the open domain  C cN*1 As-
(N

sume that xo; Ug; ;u(()N) 2 U and that FXoilor 5l ) 0

In+2F XojUp; Uy 60

implicit function theorem, the Cauchy problem

. By the

( Foxu);udx); uM(x) =0
uxo); uUM(x) = g uf”

is locally equivalent to a Cauchy problem where the ODE is solved in its highest
derivative. Theorerh 11 thus provides a holomorphic solutiorearx = xp. We
consider a patly : [a;b] ! C from xp to X1 in C and fors 2 [a;b] we denote by
&:[a;8]! C the restriction tda;s] of g. Assume thati can be analytically contin-
ued along the path and that for evens 2 [a;b], the value ag(s) of the analytic
continuation cong X;u; u®  ;u™ alongg belongs tdJ. Thenthe analytic con-
tinuation congu along g of the solution u still satis es the differential equation
thanks to the uniqueness of the analytic continuation.

This property raises the question of describing the singularities of the analytic
continuations of solutions of analytic ODEs, for instance for an algebraic differential
equation de ned on an open domain. As we shall see, appearance of singularities is
quite different whether one considers linear or nonlinear ODEs.
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1.2.3 Linear differential equations

Linear differential equations are studied [in[[32] 30], see also,|e.f. [39, 25,119, 22].
For linear (homogeneous) ordinary differential equations it results from the Cauchy
existence theorem and the @mwall lemma that the general solution has no other
singularities than the so-calleded singularitieswhich arise from the coef cients

of the ODE once solved for the highest derivative.

1.2.3.1 Example 1

We start with an equation whese= 0 is an irregular singular point of Poinéar
rank 1,
xu+u=0; ux=ce™ c2cC:

Herex = 0 is a xed essential singularity for the general solution (but not for the
particular solutioru(x) = 0), which arises from the equation itself.

If u2 O(D?(0;r)) is holomorphic on the punctured di§F(0;r) = D(0;r) nf0g, thenu
can be represented by its Laurent series expar‘éjoahx” which convergesin @ jxj <.

n2Z
One says that 0 is an essential singularity if and only if the Laurent series expansion has an
in nite number ofn< 0 such thag, 6 0 or, equivalently, iu has no limit ( nite or in nite)
whenx! 0. A typical example is provided by the functiotie

1.2.3.2 Example 2

We consider the Airy equation,
u xu=0; u(x) = GAI(X)+ CBi(x); C1;C2C:

HereAi andBi are the Airy's special functions of the rst and second kind respec-
tively. These are entire functions. When considered on the Riemann pt{ses
[B2]), x= ¥ appears as a xed (essential) singularity for the general solution (except
again for the particular solution(x) = 0) which arises from the equatiox = ¥ is
an irregular singular point of Poindarank 3=2.

More generally, for a linear ordinary differential equation

é’N1 a)u® = 0;  a(x) 2 O(U); (1.3)
=0

=~

the general solution can be analytically continued as a multivalued functiomdé
S= fthe zeros ofg, or more precisely as a single valued holomorphic function
once it is considered on a Riemann surfécé [12, 9] de ned as a covering space,
R
p # . In other words, the general solutionusiformisable(or alsostablg [€] in
unsS
the following sense : for any Cauchy datax@P U nSthat determined a unique local
solutionu of ) onadomaitly UnS onecan ndadomaitdg R such that
Pju, :Uo! Ug is a homeomorphism, and a holomorphic functionR ! C so
thatf ju, = u pju,.
Then, for any domaitv © R so thatpjy o: U %! U%is a homeomorphism, the function
f (pju o Yis still a holomorphic solution of (1]3) od®
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1.2.4 Nonlinear differential equations

When nonlinear ODEs are concerned, beside the possibly xed singularities arising
from the equation, the general solution has as a rule other singularities which depend
on the arbitrary coef cients : these angovable singularities

1.2.4.1 Example 1

We consider the following nonlinear ODE,

.
C log(x)’
singular solution u(x) = 0

P 2= 0 general solution u(x) = C2CcC:

For the general solutiox,= 0 is a xed branch point singularity which comes from
the equation. The general solutionis uniformisable : considered as a function
on the Riemann surfad€;p) of the logarithm,€ = fx=ré? j r > 0; q 2 Rg,
p:x2 € 71x= rd 2 Cnf0g, one sees that the general solutiois meromorphic
with poles atp 1(€°) : these are movable singularities, depending on the chosen
coef cientC.

1.2.4.2 Example 2

The above example is just a special case of a more general rational ODE of order 1,
theRiccati equation

W= ag()+ ar(u+ &)’ a2 M (U); (1.4)

wherelU Cis adomain. By the change of unknown function 200 dx logv,
Y]
equation[(1.}) is linearizable into the following linear ODE,
0
wo 209 ai(x) VP+ ax(X)ap(x)v = O:
a(X)
The genegal solution for this linear equation has ( xed) singularities located at the
poles of:—gg a1(X) andax(xX)ap(x). We denote bys U this set of poles. The
2

general solution of the Riccati equatign (1.4) is then uniformisable since it can be
analytically continued as a meromorphic function on a Riemann surface de ned as
a covering oveld nS,

When theg; belong toO(U), then the general solution .4) is a meromorphic
function onU [26].

1.2.4.3 Example 3

Another well known equation is the following algebraic nonlinear ODE of order 1,
of degree 2 in its highest derivative, namely tHigtic equation

=4 gu g3 (0209 2C: (1.5)
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Fig. 1.1 The elliptic

curve L viewed as

the Riemann surface of
p=(4u® gou g3)*2 The
homology classes of the cy-
clesgs andg drawn generate
Hi(L ;2Z)

A particular solution is provided by the Weierstrgs$unctionA (x; g2;gs) which
can be obtained as the inverse function of the elliptic integral of the rst kind

u dq dx 2 1
o S — = —_——
¥ 408 g g3 du 4 gou g3

X=
(Just apply the inverse function theorem).
When the discriminanD = gg 27g§ satis es the conditiorD 6 0, the polyno-
mial function 48 gou g3= 4(u e)(u e)(u es) has 3distinct simple roots
e;e;es. In that case the elliptic functiof (x; g2; gs) is a doubly periodic mero-
morphic function with double poles at the period lattioer; + nwy, (n;m) 2 Z2,

w
“L2R.

W2 . . , : -

The period lattice can be described as follows : consider the elliptic curve

L =f(q;p)2C%p?>=49° g.q gzgforD6 0. The homology groupls(L ;Z)
is a freeZ-module of rank 2 and we denote yandg, two cycles which generate

Hi(L ;Z). Then the period lattice is generated by the period integvals %
Z 4q z dq z dg P
W2 = - (eC{UIva|ent|yW1 = 2 p:,WZ = 2 p—-——N
e P e 48 0 Gs e 4 0 Gs

The homology groupi1 (L ;Z) can be seen as a local system@mN(D) (that is a
locally constant sheaf @&-modules orC2nN(D)), whereN(D) is the zero set db.
Viewed as functions ofgz; 93), wi:2 can be analytically continued as “multivalued”
analytic functions or€2nN(D). On the discriminant locul(D), the solutions de-
generate into simply periodic solutions, with a string of poles instead of a double
array.

Conversely, starting from the period lattice wi%ll 2 R, the Weierstrasa -
2
function can be obtained by a series,

2 x4
Rlvma)= v 24 2 2 20—y 2 x X
A (X 02;03) = X +W%Of(x w) W 0= X “H Goont Osgt

where the rst summation extends over ell= mwy + nw» 6 0, (n;m) 2 Z2 while
— 2 4 2 6
02 = 60a W ,03= 140a w -
w60 w60 5
The general solution of (1.5) is given By(x xo;02;93), since [(1.5) is an au-
tonomous ODE.
To go further on the nice properties of elliptic functions see, e.g. [37].
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1.2.4.4 Example 4

The singularities of differential equations may be isolated singularities such as
poles, branch points of nite or in nite determinations, or essential singularities.
They may be also essential singular lines, or even perfect sets of singular points. For
instance, the general solution of the following Chazy equation of class I,

u®  2ud@+ 3u®=o; (1.6)

is de ned only inside or outside an open disc whose boundary is a natural movable
boundary determined by the initial data[[3, 4].

1.3 The Painlee program, Painle\e property and Painleve
equations

At the end of the 19th century a list of special transcendental functions was known,
most of them being obtained as solutions of linear algebraic differential equations.

An algebraic functioru in one complex variable is a solution of a polynomial equation
P(x;u) = 0, P 2 C[x;u]. A transcendental functiomis a function which is not algebraic.

A challenging problem in analysis was thus to discover new transcendental func-
tions de ned by algebraic ODEs which cannot be expressed in term of solutions of
linear algebraic ODEs : these new functions should thus be de ned by non-linear
algebraic differential equations| [6,(8,122].

For that purpose a systematic approach needs rst to classify the ODEs under
convenient criters. This is the goal of the so-calRainlee program(see [[6] and
references therein) which consists in classifying all algebraic ODEs of rst order,
then second order, etc ..., whose general solution can be analytically continued as a
single valuedunction. In other words, no branch point is allowed. For instance the
elliptic equation[(1.p) or the Chazy equatifn {1.6) are such equations.

According to what we have seen, the Paigl@vogram splits into two problems:

absence of xed branch point for the general solution;
absence of movable branch point for the general solution : this condition is the
so-calledPainle\é property

In the literature, the term “Painlévproperty” is sometimes used for the stronger property
for the general solution of an ODE to be meromorphic, see [6]

Notice that the Painléproperty for an algebraic ODE (x;u;u® ;u(P)= 0
de ned on adomaitd Cis preserved by:

a holomorphic change of variabk€2 U 7! X = h(x), h2 O(U);
a linear fractional change of the unknown with coef cient holomorphidJin
(action of the homographic group),

_ alqu+ b(x) _ dxv_ b(x) |
urtv= c(X)u+ d(x)’ vriu= c(X)v+ a(x)’

a;b;c;d2 O(U),ad bcé 0. Therefore, the classi cation in the Painéeprogram
is made up to these transformations.

1 This condition can be weakened by asking the general solution to be only uniformisable.



8 1 Some elements about ordinary differential equations

Notice however that other actions preserving the Paif@operty can be considered, see
[6.[7,[22].

1.3.1 ODEs of order one

We consider (nonlinear) ODEs of the form
F xuu =0 1.7

with F 2 M (U)[u; u9. For that class of ODEs, the Painéegrogram can be consid-
ered as being achieved and we mainly refel to[[20] 18,16, 22] for the classi cation.

In that caseno essential movable singular point can app€@0], Sect. 13.6).
Therefore looking for ODEs of typg (1.7) with the Pairéegroperty reduces in
asking that the movable singular points are just poles.

When [1.7) is a rational ODE, then the class of ODEs we are looking for is
represented only by the Riccati equation1.4). See [26], in particular the Malmquist-
Yosida-Steinmetz type theorems.

The ODEs of type[(1]7) of degree2 in the highest derivative and satisfying the
Painlee property essentially reduce (up to the transformations mentioned above) to
the elliptic equation[(1]5). Seel[6.120] for more precise statements.

1.3.2 ODEs of order two and Painlévequations

In contrast to what happens for algebraic ODEs of order one, essential movable
singular points may exist when the order i, making the analysis more dif cult.
Nevertheless, the classi cation is known for at least algebraic equations of order
two

F xuwu®=0 F 2M U)[uu®uf (1.8)

which are rational, that is of degree oneufff Such equations enjoying the Pairéev
property reduce (up to transformation) to:

equations which can be integrated by quadrature,
or linear equations,
or one of six ODEs known as theainle\é equationsthe rst 3 being:

(A) W% 6+ x
(A1) "% 203+ xu+ a

12 0 2

u u’ au‘+b

AN WE — —+——+
u X X

(1.9)
g+ 9
u

For the complete list see, e.9.[20] 18, 6, 22][In|(129n; g;d are arbitrary com-
plex constants. Each Painkequation can be derived from the “master equation”
R/1 by some limit processes [22].

Painlee equations have beautiful properties, see gl@. |5, 22, 16]. One of them is
the following one:

Theorem 1.2.The general solution of the Painkeequation P, J=1; ;VIadmits
no singular points except poles outside the set of xed singularities.
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Therefore, the Painlévequations have the Pain&eproperty but moreover, the
general solution is free of movable essential singularities.

Notice that the Painlévequation should be seen as de ned on the Riemann sphere
C. The set of xed singular point§; of P; is a subset of 0; 1; ¥ g. For instance§
andS, are justf ¥ g, while §;; = f0;¥qg. Theore thus translates as follows :
the general solution d®; can be analytically continued as a meromorphic function
on the universal covering & nS;.

Theoren{ 1.p can be proved in various ways. An ef cient one uses the relation-
ship between Painlévequations and monodromy-preserving deformation of some
Fuchsian differential equations [24,/23] B1} 22, 11].

The general (global) solutions of the PairBezquations are called tiRainlee
transcendentsThis refers to the fact that, for generic values of the integration con-
stants and of the parameters of the equations, these solutions cannot be written with
elementary or classical transcendental functions, a question which has been com-
pletely solved only recently with the development of the modern nonlinear differen-
tial Galois theory (se€ [38] and references therein. For an introduction to differential
Galois theory, seé [32]).

1.3.3 Painlee equations and related topics

The renewed interest in Painkequations mainly came from theoretical physics
in the seventies, with the study of PDEs of the soliton type (Boussinesq equa-
tion, Korteweg-de Vries KdV and modi ed Korteweg-de Vries equation mKdV,
etc..): when linearized by inverse scattering transform [1], these PDEs give rise to
ODEs with the Painle¥ property. For instance, the Boussinesq equation uyy
B(U%)xx+ Uxoxx= O has a self-similar solution of the forofx;t) = w(x t) where

w is either an elliptic function or satis es the rst Painlevequation. In the same
lines, the (m)KdV hierarchy introduced by Lax in_[29] (and already in substance
in [28] after the work of Gardneet al [13] on the KdV equation), will later give

rise to variousPainle\é hierarchieswhich are thought of as higher-order Pairdev
equations and much studied since. For instance, the rst P&ilierarchy is of the
form

(P|(n)) O [l + 4x=0;  n= 1,2 (1.10)

wheredj;[u] are differential polynomials recursively determined as follows (see
[36] and references therein):

dgu] =1

(0] 1.11
Tdpe glul= 1% 8uT 4w dglul, T=&n2N: (3.11)
(The rst Painlee equation is(Pl(l)).) See alsol[33] and references therein, for
an asymptotic study of the Jimbo-Miwa _|23] and Flaschka-Newell [10] second
Painlewe hierarchies [15].

For the rst and second Painlévhierarchies, one conjectures that the solutions of each
equation are meromorphic, thus satisfy the Pailgoperty, but there is no proof up to our
knowledgel[27].

Discrete (analogues ofPainlee equationsare today the matter of an intensive
research, after the pioneering work of Bessisal [2] on the study of partition
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functions in 2D quantum gravity, yielding what is now known as the rst discrete
Painlee equatio{dR) when the quartic matrix model is considered:

(dR) Wh Wpe1+ W+ W, 1 = an+ b+ cw,; ab;c2 C: (1.12)

The rst discrete Painle¥ equation naturally arises in the context of orthogonal poly-
+¥

nomials. Consider the inner productj g) = f(X)g(x)w(x)dx with the exponential
¥

weightw(x) = e "™, v(x)= Jx?+ Lx* and look for an orthogonal polynomial sequence
(pn)n o0, €achp, being a monic polynomial of degreelt can be shown that the polynomi-
als p, are governed by a three-term recurrence equation of the form

Xpﬂ(x): Pn+ 1(X)+ Pn 1()()
po(X) = L; pa(X) = x (1.13)

wherer, = hh—"l with (pn j Pm) = hndnm (dnm is the Kronecker index). This motivates the
n

calculations of the coef cients, which themselves satisfy a recurrence relation of the form

n
[ rn rpea+rp+rp g + My = N (1.14)

and we recognizédR). Among remarkable propertie14) has a continuum limit to the
rst Painlevé equation when the double-scaling limjiN ! ¥, N I tis considered. See
for instance([2lll, 14, 17] and references therein.

Non commutative extensions of integrable systems have recently attracted the atten-
tion of the specialists, withon commutativéanalogues offPainle\é equationsand
their hierarchies as main examples, see e.g. [35].

Finally, we could hardly leave untold the important group-theoretic interpretation
of Painle\e equations in the line of the work of Okamoto [34], see for instance [8]
and references therein.

It is not our aim to say more about Paindeequations in general except for
the rst Painlee equation which is used in this course as eld of experiments in
asymptotic and resurgent analysis, and which is the matter for the next chapter.
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Chapter 2
The rst Painlev &€ equation

Abstract This chapter aims at introducing the reader to properties of the rst
Painlee equation and its general solution. The de nition of the rst Paiélegua-

tion is recalled (Secf. 2.1). We precise how the Paileroperty translates for the

rst Painlevé equation (Sedt. 2.2), a proof of which being postponed to an appendix.
We explain how the rst Painley equation also arises as a condition of isomon-
odromic deformations for a linear ODE (S€ct.]2.3 and $ec}. 2.4). Some symmetry
properties are mentioned (S¢ct.]2.5). We spend some times to describe the asymp-
totic behaviour at in nity of the solutions of the rst Painlévequation and, in
particular, we introduce the truncated solutions (Sec{. 2.6). We eventually brie y
comment the importance of the rst Painkewanscendents for models in physics

(Sect[2.]).

2.1 The rst Painlevé equation

We concentrate on the rst Painlevequation,
(R) W% 6u%+ x: (2.1)

We notice that for every 2 C and every(ug;ud) 2 C2, theoren] 1] ensures the
existence of a unique solution ¢f (2.1), holomorphic nearsatisfying the initial
data u(xo);uYxo) = (uo;ud).

2.2 Painlee property for the rst Painlev & equation

As already mentioned, the rst Painleequation satis es the Painkeproperty. The
following more precise result holds.

Theorem 2.1.Every solution of the Painlévequation Pcan be analytically con-
tinued as a meromorphic function @with only double poles.

This theorem will be shown in appendix. We add the following result for com-
pleteness:

Theorem 2.2.Every solution of[(Z]1) is a transcendental meromorphic function on
C with in nitely many poles.

13
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Proof. We just give an idea of the proof. It is easy to see that every solutioh

the rst Painle\e equation[(Z]1) is a transcendental function. Otherwise, sirise
P()

| T QT
Reasoning on the degrees®fandQ, one shows that this is impossible. So every
solutionu is a transcendental meromorphic function. It can be then derived from
the Clunie lemma in Nevanlinna theory of meromorphic functions that necessarily
u has an in nite set of poles [29, 14].u

meromorphic with double poles, should be a rational functiony(x) =

The above properties were well-known since Paialid]. The following one
was also known by Painléy however its complete proof has been given only re-
cently [38], see also [5].

Theorem 2.3.A solution of Pcannot be described as any combination of solutions
of rst order algebraic differential equations and those of linear differential equa-
tions onC.

2.3 First Painleve equation and isomonodromic deformations
condition

Each Painleg equationPy is equivalent to a nonautonomous Hamiltonian system
[39]. Concerning the rst Painlég¥equation this Hamiltonian system is given by the
following rst Painlevé system

8 dU_ H, _
dx Tm~ 1
(H1) P H(umx) = P 20 xu (2.2)
3 dm_ - TH _g24x ’
dx i

It is known [12,40] that this Hamiltonian system arises a®adition of isomon-
odromic deformationsf the following (Schlesinger type) second order linear ODE,
8
12y
3 Tz = QEumY
(SL 1) (2.3)
. SU;Mx) = 422+ 2xz+ 2H(u; e Tere T
Qi(zu;mx) z+ 2H, (u; myx) ot 2z w2
In other wordsu is solution of the rst Painle& equation[(Z]1) if and only if the
monodromy data of (2]3) do not dependoiWe explain this point. Equatiof (2.3)
has two xed singularitiez = u;¥, so that any (local) solution df (3.3) can be ana-
Iytically continued to a Riemann surface which covE€rsfu;¥g. The pointz= u
is a regular singular point, and a local analysis easily shows that the monodromy
at this point (see [37]) of any fundamental system of solution$ of (2.3) does not
depend orx. The other singular poirg = ¥ is an irregular singular point. Thus

the only nontrivial monodromy data df (2.3) are given by the Stokes coef cients at
zZ=¥.

The second order linear ODE (P.3) is equivalent to a rst order linear ODE in dimension
two. Each Stokes matrix is a two by two unipotent matrix (§e€l[31, 37]), and thus depends
on a single complex coef cient called a Stokes coef cient.
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In general these Stokes coef cients dependxpexcept wherY satis es the fol-
lowing isomonodromic deformation condition:

1 _ 1Y 1TA . _ 1
™oAY 22 AT

The rst Painle\e system[(Z2]2) ensures the compatibility between equationis (2.3)

and [2.4) : solving a Painléequation is thus equivalent to solving an inverse mon-

odromy problem (Riemann-Hilbert problem) [37] 18] [17,[25,26| 42, 24, 21, 11].
We add another property : we mentioned that the asymptoti¢s g¢f (223) &

are governed by some Stokes coef ciests s(u;ntx). It can be shown that the

space of Stokes coef cients makes a complex manifdld of dimension 2. Also,

for any point ofM | there exists a unique solution of the rst Painéeequation](2]1)

for which the monodromy data of equatidn (2.3) are equal to the corresponding

coordinates of this point [25].

(D1) (2.4)

2.4 Lax formalism

There is another fruitful alternative to get the Pai@@guations, however related to

the previous one, based on the linear representations of integrable systems through
the Lax formalism[[3D]. We exemplify this theory for Paingel; for which the so-
calledLax pair AandB are the matrix operators given as followsI[17]:

V(X) 4z ux . B= 0 2

A 2, u(X)z+ u(x)2+ x=2 V(X 0T =2+ u(X) 0

To the matrix operatoA one associates a rst order ODE in thevariable, whose
time evolution (thex variable) is governed by another rst order ODE determined

by the matrix operatoB, 8
2 TY _ v
S 1{@ (2.5)
- —=BY

ix

2
The compatibility condition‘l%( = 111121{2 provides what is known as tteero cur-

vature conditior{or Lax equation), namel%\ 18 =[B;A]where[B;A] = BA AB
stands for the commutgtor. Expliciting this condition, one recovers the rst P&nlev

2 du_
equation under the forrg g{} , From what have been previously seen, the
T —=6u+x
dx

zero curvature condition allows to think ¢f (.5) as an isomonodromic deformations
condition for its rst equation.

2.5 Symmetries

We would like to notice here that the cyclic symmetry group of order ve acts on the

set of solution 1). Indeed, introducing = e%gk, k= 0; ;4,thenany solution
u of (2.7) is mapped to another solutiapthrough the transformation
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Ww(X) = wau wx ;  k=0; ;4

In generalu andug will be different solutions, an obvious exception being when
satis es the initial datai(0) = uq0) = 0.

2.6 Asymptotics at in nity

Our aim in this section is to describe all the possible behaviors at in nity of the
solutions of the rst Painle& equation[(2]1).

We rst notice thatx = ¥ is indeed a xed singularity foR : making the change of
variableu(x) = u(t); t= )—1( equation ) translates inteu®® 2t4u®= 1+ 6tu?,
wheret = 0 appears as a (irregular) singular point.

We mention that, when analysing the asymptotics of solutions of differential
equations at singular points, there is a great difference between linear and nonlinear
ODEs. When a linear ODE is concerned, the asymptotics of every solution can be
derived from the asymptotics of a fundamental system of solutions. For non linear
ODEs some care has to be taken, since as a rule singular solutions may exist, which
cannot be deduced from the general solution.

The study of all possible behaviors at in nity was rst made by Boutroukx [3,

4]. Various approaches can be used: a direct asymptotic approach in the line of
Boutroux as in[[15, 19, 22], or another one based on the relationship between the
rst Painlevé equation and a convenient Schlesinger type linear ODE as described
in Sect[2.B, se€[25] (see als0[26] 28,27, 42] for an exact semiclassical variant).

2.6.1 Dominant balance principle

We only want to give a rough idea of how to get the whole possible asymptotic be-
haviors and, in the spirit of this course, we follow the viewpoint of asymptotic as
in [15,22,19]. In this approach, for a given ODE, the rst task is to determine the
terms in the equation which are dominant and of comparable size xthe¥ along
a path or a inside a sector. The reduced equation obtained by keeping the dominant
terms only in the ODE gives the leading behavior.
One usual trick to guess the asymptotics of solutions of ODEs iddh&nant bal-
ance principlg2]. A maximal dominant balance corresponds to the case where there
is a maximal set of dominant terms of comparable size in the equation. As a rule,
this gives rise to the general behavior. The remaining cases are called subdominant
balances.

It is useful to introduce the following notations:

f()

i . . _ ?
f' gwhenx! ¥ along a path |f)(!ll§n@ = Cte Cte2 C".
f gwhenx! ¥ along a path if IimM =

' X% g(x)

The unique maximal balance fér consists in assuming all the three termgin}|(2.1)
of comparable size when! ¥ . In particularu? andx have comparable size, so that
u(x) = x20(1) whenx! ¥.We therefore writai(x) = x2v z(x) with 2(x) ! ¥
andv z(x) = O(1) whenx! ¥.If z(x) behaves like a fractional power afat
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in nity, then @ ' @ 1 and this is what will be assumed. We also make
x) A X
the following remark : ifv z is an analytic function whose asymptotics at in nity

e

is governed by a (formal, possibly Laurent) series, tl%@ ?z) v(2) at
vP07(x) V0 Z(x)

Z(x) Z(x)
Here we will adjust the choice afx) by adding the demand:

in nity, that is v Z(X) whenx! ¥.

vz(X)  z00VPzX)  ZAXAOzx)  when x! ¥:
These assumptions arandz(x) provide the identities:
W) = x 2200V Z(x) O(D) + o(1); W) = x 22(x)v*°Z(x) O(1)+ o(L):

Thus, ifv z(X) = V2 z(x) = v?°z(x) = O(1) and demanding that’®andx have

comparable size, one get& ) = x%O(l) as a necessary condition. This suggests
with Boutroux [3/4] to make the following transformation,

u(x) = ax%v(z); z= bx?st; (2.6)

with a;b 6 0 some constants, under which equatfon|(2.1) becomes:

W 4 v 96 16
o Vv 4V Joa 1% _ 5
VS sz 2w zmpz O
With the following choice fola andb,
i 5
_ed. | _ sp24i
a-{:—Fé, b—e4—0, 2.7)
one nally gets: o
welp LV 4V 2.8)

2 2 z 257
We now concentrate on this equatipn {2.8) and we examine the possible balances.

2.6.2 Maximal balance, elliptic function-type behavior

We consider the maximal balance case, that is we assume dmat its derivatives

can be compared to unity. This means that equaftion (2.8) is asymptotic to the equa-

tion %= 22 L hose solutiorisare the functions(z) = 1A (z  z; 15%)

whereA is the Weierstrasp-function (cf. Sect. 1.2]4), while, andgs are two free
complex parameters. This indeed provides the general behaviour of the Bainlev
transcendents near in nity [3] 4, 22] : fgzj large enough in each open quadrants

k=fz2C; k%< argz< (k+ 1)%9; k=0;1;2;3 mod4

1 Just multiply both sides of the equality bf; then integrate.
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Fig. 2.1 Left hand side : approximate period lattices in each quad@ntf z-plane. Right hand
side, their images in theplane through the transformatior?! zde ned by [Z.6){Z2.})

the generic solutiow of (2.§) has an approximate period lattice of poles, Fig| 2.1.
In this domain, excluding small neighbourdhoods of poles, the asymptotics of such
a generic solutiow of (2.8) is governed by Weierstrassian elliptic functions. With
Kruskal & Joshi[[22] one refers to this behavior asdliptic function-typebehavior.
Through the transformation (2.6)-(2.7), this translates for the Pdrii¢ésanscen-
dents into an asymptotic regime on the sectors:

S=1fx2C; p+k2§p<argx< p+(k+1)2€pg; k=0;1;2;3;4 mod5 (2.9)

Whenz approaches the real axie$p.the imaginary axis)jz large enough and
in a small angular strip of widt®® (logjz)=jZ , then the solutiow displays anear
oscillatory-typebehaviour with no poles, angz) ! 1 (resp. {2 ! +1) when
jz! ¥, seell22]. The ve specialrays axg= p+ k%, k=0; ;4thusplayan
important role in the asymptotics of the solutions of Paiélkthe general solutions
having lines of poles asymptotic to these rays.

2.6.3 Submaximal dominant balances, truncated solutions

We now consider submaximal dominant balances, that is wioeone of its deriva-
tives differ from order unity. As shown in_[22], the single consistent case occurs
whenv' 1 andv®® 1. This implies that equatio.8) is now asymptotic to the

1 1 . . .
equation=v2 > = 0, thatisv(Z) = 1+ o(1). Examining this case leads to the
following result:

Theorem 2.4.The rst Painle\e equation[(2]1) has:

ve complex parameter families of solutions u, the so-caitgégrales trongées
(truncated solutionKdfter Boutroux, such that u is free of poles in two adjacent
1
. X
sectors §and S+ for jxj large enough, and (x) = 5 Z 1+ O(x %) at
in nity in these sectors (for a convenient determination of the square root).
among these truncated solutions, ve special solutions, each of them being free

of poles in four adjacent sectorg; S+ 1; Sk+ 2; S+ 3 for jXj large enough, with the
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above asymptotics at in nity in these sectors. These are the so-aatkgrales
tri-tronquées (tritruncated solutions)

This theorem has various proofs, see for instahce[[20, 35, 36] for “nonconven-
tional” approaches. We will see in this course how the resurgent analysis can be
used to show theorem 2.4.

There are analogues of truncated solutions for each me(ﬁ’ﬁ%), n=1,2; inthe rst
Painle\e hierarchy[(1.70), with asymptotics at in nity of the forfr [8]:

_1_
n+1

_ 2%™1G(n+ 3=2)

1+ O(x ¥2) ; c¢p= G+ 26(1=2) | (2.10)

ux = ( 1)"C—Xn

Similar results occur for the rst discrete Paingeequation[(1.72), see [23].

2.7 First Painleve equation and physical models

As already said (Segt. 1.3.3), the Pai@quations in general and the rst Pairéev
equation in particular, appear by similarity reductions of integrable PDEs. They play
a signi cant role in others physical models, see €.gl [24] and references therein for
the rst Painlee equation. This includes the description of asymptotic regime in
transition layers and caustic-type domain. We exemplify this fact with the focus-
ing nonlinear Schirdinger equatiomeY; + e—;YXX+ jY j2Y = 0 (fNLS). It is shown

in [10] that when considering the (so-called) dispersionless kit 0, the solu-

tions (of convenient Cauchy problems) of (fNLS) are asymptotically governed by
a tritruncated solution of the rst Painlévequation. In the same work, theoretical
and numerical evidences led the authors to conjecture that the tritruncated solutions
of the rst Painlee equation have the following property, shownlin [7] under the
naming “the Dubrovin conjecture”:

Proposition 2.1.Each tritruncated solution of the rst Painlévequation is holo-
morphic on a full sector of the forfix2 C j argx 2 I;jxj  Og, where | stands
for the closure of an open arc | of lengij = 8p=5. Moreover, each tritruncated
solution can be analytically continued to a digg< rg with ro > 0 small enough.

Recently, resurgence theory spectacularly enters the realm of string theory and
related models, as an ef cient tool for making the connection between perturbative
and non-perturbative effects (see, €.al[32] and references therin). In particular, the
rst Painlevé equation was particularly adressedlih [1] thanks of its physical inter-
pretation in the context of 2D quantum gravity [9] B3}[34, 13].

Appendix

The reader only interested in learning applications of resurgence theory may skip
this appendix, where we show theorem| 2.1 for completeness. We follow the proof
given in [6]. See alsd [15, 16] and specially [14] with comments and references
therein. We start with two lemmas.

Lemma 2.1.Let u be any solution of (2.1), holomorphic on a neighbourhood of
Xo 2 C. Then the radius R of analyticity ag satises R 1=r with
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1=2 1=3
r=max u(x) ; UO(SO)

X0 19 u(xo)uixg) | 1 15

5 > o3 (21D

; WP(x0)+

g

Proof. If u(X)= & c(x X0)¥2 Cfx xog solves), then
k=0

8

> Co= U(X); c1 = u{%) .

o C2= 3¢5+ %; C3= 200C1+ ¢ (2.12)
" (k+ 1)(k+ 202 = 6aKgCmek m Kk 2

Let ber > 0 given by (2.1]) so that for any intege? [0; 3],
jaj (1+ Dr'+2 (2.13)

Assume that[(2.33) is satis ed for every O k+ 1 for a givenk 2. Then

by (2.12),

k
(k+ 1)(k+ Djcksoj 6 (M+ D(k m+ Drk 4 (k+ D)(k+ 2)(k+ 3)r 4

m=0

k
The coefcients § (m+ 1)(k m+ 1) are those of the taylor expansions(af x) * at

m=0
- "y 1 _ o i 1 K
the origin. Indeed, fojxj < 1, T x- ka‘0>l< SO thati(:L 97 ka‘o(k+ 1)x*. Therefore
102, Kk o
—_— = m+ 1)(k m+ 1) x°.
@xe C & gmaemd

We conclude that (2.13) is satis ed for every 0 and this implies thaR rl

whereR is the radius of convergence of the series expansionu

Lemma 2.2.In a neighbourhood of any given poigt2 C, there exists a one-
parameter family of meromorphic solutions u[of {2.1) having a poie Biecessarily
R is a double pole and u is given by the Laurent-series expansions

u(x) = ﬁ 150(x % é(x B3+ cu(x B4+ k;?16ck(x Bk
where @ 2 C is a free parameter.
¥ h 1 i
Proof. We are looking for a Laurent-seriaé) = g ck(X B2 Cfx gg o

k=p
satisfying [2.1). Necessarily 2,c = 1o0r0,c 1= 0. Therefore, eitheeis a
regular point, or otherwise

u(x) = %(x B)? %(x B3+ ca(x B4+ kéGCk(X B

(x B2
wherecs 2 C is a free parameter, while fdr 6 the coef cients are polynomial

functions of(g;a). Indeed, one hak 2)(k+ 5)cxv2 = 6é‘r<rpocmck m K 2. We
can de ner > 0 (depending offg;a)) such that, forO | 5,

icij %u + Dr'*2: (2.14)
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Assume that this property is satis ed for every 0 | k+ 1, for a givenk 4.
Then
2 4 kea 1 k+ 4
(k= 2)(k+ 92l 7z a (m+ Dk m+ Dr gkt D(k+2)(k+ Jr
m=0

. 1 .
and we conclude thaty, »j §(k+ 3)r k*4 Therefore (2.14) is true for evely 0O
and the Laurent series converges in the puncturedfiesl=r )?. u

The following notations will now be used:

Dy, Cisanopen disd/Vis a discrete subset @f,, andxp 2 Dy, NW.

u is a solution of[(2]1) de nes by some initial data 2 Dy, nW andu is
meromorphic irDy, nW.

| (&;b) : [0;1]! Dy, nW denotes & ¥-smooth path iy, NW with endpoints
I (&;b)(0) = aandl (a;b)(1)= b. Whenb2 D,, itis assumed thdt(a;b) is a
path wherd is removed (that is one considers the restrictiofdia[ of | (a;b)).
Moreover we assume that the length of any subsegim@ntl) of | (a;b) is less
that 4c dj.

We mention that we use the same notatidia; b) for the path and its image.
B2 1Dy, is a singular point fou.

4
Lemma 2.3.Assume that (x) = & adx ®B<+ O(jx ®° when X e along
k= 2
| (X0;®), with a 26 0. Then u is meromorphic &and u is uniquely determined by

(% ay).

Proof. Sinceu is solution of [2.1) which is analytic at each point of the smooth path
| (%0;®), one has®Px) = 6U2(X)+ x= 6 &f. ,ax B+ O(jx ®©°) %+ xwhen
x! ralongl (Xo;®). This implies that the asymptotic expansion is differentiable.
z
This is a consequence of the mean value theot§rRy = u(xg) + Xuo(s) dsalongl (xo;®)
X0

which isC¥-smooth, and the uniqueness of the asymptotic expansion.
With the same calculus made in the proof of lenjma 2.2, we show that

E

Gomr o B g BPraslx B+ Ofx B

u(x) =
We denote by the meromorphic solution of (4.1) obtained in lemma] 2.2 with
C4 = 4. We set
w)=v(x) (x B *=0(x &)
f)=u(x) v(x)=O(x %°
and we want to show that= 0. We havef® (Xlzg)zf = gwith g= 12wf+ 6f2,

g= O(jx ®’). Integrating this linear ODE yields:

f(x) = Ci(x B 3+C(x ®*
Z

3~ 4 (x B4%x 3
7(x B E(s B) g(s)ds+# g(s B “g(s)ds

Sincef(x) = O(jx °), f is solution of the xed-point problenf = N(f) with
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_ 3ZX 4 (x I‘-‘)4ZX 3
N(F)(¥) = 7(x ® E(S ) Q(S)d3+# (s ® °g(9ds

B

Forxi 2 | (xo;®) we consider the normed vector spg&ek:k),

B=ff2CO% (x;®); f=O(jx &%y, kfk= sup j(x ® >f(X);:

X2 (X1;8)

We show later tha{B; k:k) is a Banach space (lemfna[2.4). Nowfgiclose enough
from e (see lemma 2]4):

the mappingN send the unit balB of B into itself,
the mappingN : B! B is contractive.

Therefore the xed-point problenfi = N(f) has a unique solution iB by the con-
traction mapping theorem. Obviously this solutiorfis 0 and therefore= v. u

Lemma 2.4.With notations of the proof of lemra 2.@;k:k) is a Banach space
and the mappind\ : B! B is contractive.

Proof.

(B;k:k) is a Banach spaceAssume that fy) is a Cauchy sequence (B; k:k),
8e;9p: 8p;g> po; 8x2 | (x1;8); j(X B 5(fp(x) fg(x)j< e: (2.15)

Writing gp(X) = (x  B) 5fp(X), condition [2.1p) implies that for every?2 | (x1;¥)
the sequencggp(x)) is a Cauchy sequence, herg£x) !  g(x) in C. Now making
q! +¥in ) one seesthgp! guniformaly. Therefore 2 COl (x¢;®) and
is bounded o (x;;8). Thusg=(x ®) °f with f 2 B.

The mapping N is %ontractive for x close enough frome. We set
4

Ni(()= 7(x B 3 s B(9ds Na(f) (= &2 Xs ® 3g(9)dsso

thatN(f) = Ny(f)+ Ni(f). One canassumethig ® | x g fors2| (x;g).

Also, there exist > 0 anda> 0 such thajw(x)j ajx &2whenjx & r.We

now assume thgk; ¥ r. Foranyfy; f2 Bandx2 | (xg;®):

(x B ° Nl(le) N2(f2)
x
T B % (s BT 12M(S(fu(9  fA9+ (IS T3S ds;
thus
(x B ° Ni(f) Na(f)  7x & ° 12ax g'lkfy fok
+ 6jx E1%Kfy fokkfyi+ fk Lengthl (x;B)
14ix ®* 12a+ 12x ®° kf; fk:

The other term ofx ®) ® Ny(f1) Nx(f,) is worked out in a similar way.

Choosingx; close enough fromg, one obtains the existence of a constare2]0; 1]
such that for anyf1; f22 B, kN(f1) N(fo)k Ctekf; fok. w

Lemma 2.5.When X g alongl (xo;%) with g2 Dy, a singular point for u:
Lju)i+ jukx)j! +¥,
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2. uis unbounded.

Proof. 1. Lemmd 2.1 implies thati(X)j or ju{x)j has to be large fax neare which
is a singular point.
2. Multiplying (2:3) byu®and then integrating yields
z X
(UW?2=4u*+2xu 2 u(s)ds+C (2.16)
X0

whereC 2 C is a constant. Therefore ifis boundedk! ralongl (xo;®) then
wis bounded as well, which contradicts the rst property

Lemma 2.6.When X ralongl (xo;®), withe2 YDy, a singular point for u, then:

4

u 3(x) Xu(s)ds! 0 juj! +¥; julnj! +¥:
X0

Proof. By lemmd 2.5, we know that is unbounded wher! ®alongl (xo;®), so
that limsugu(x)j = + ¥, Iirr'1infju Yxj=o.
X B X B

Reminder: limsug (x) = Iilm0 sup f(X)jx21 (xo;8)\ D(&e) |,
el

x B

Iin|1inf f(x) = 'Ieilmo inf f(X)jx21 (xo;®)\ D(®e€)
Z X
Sinceu 3x) u(s)ds j u 3(x)j:|r(nax)juj: Lengthl (xo;X)) for x2 | (xo;®), it
%o X0X

turns out that
Z X
liminf u 3 u(sds liminf ju 3(x)j: maxjuj: Lengti(l (xo;X))
x B X0 X B I (X0;%)

The right hand side term vanishes becaugeunbounded wher! g, thus
Z X
liminf u 3(x) u(9ds =0 (2.17)
x ® X0
In particula& for evenyg > 0, for everyD(®;e), there existx 2 | (xo;8)\ D(®;e) so
X

that u 3(x) u(s)ds g.
X

Z X
We make the followingAssumptionu 3(x)  u(s)ds! 0is a false premise.
%o
This assumption translates into the condition : there ezgist@ such that, for every
X

D(e e), there existx 2 | (xo;B)\ D(ge) sothatu 3(x) u(s)ds g.
X
By continuity, we see that for any> 0 small enough, there exists a sequence
Xn! B Xp2 | (X0;8), such that
Z Xn
u(s)ds = g u(x) : (2.18)
%o

The arguments used in the proof of Ie 2.5 show that lifugug)j = + ¥.
n

This means that there exists a subsequégrgg of (x,) such thaju(x,)j! +¥.
Therefore we can assume th%t]lufun)j =+ ¥: with the following consequences:

from (2.18) we see that
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. Z Xn

lim u(s)ds =+ ¥ (2.19)
nox

while ) withg> 0 chosen small enough a.16) imp!yjln?(xn)j =+ ¥,
We are going to prove in several steps that the above assumption leads to a con-
tradiction.

First step We consider the solutioh, of the Cauchy problem
8 Z,,
< (h92= 43+ 2%:h+ €, with€,=C 2  u(sds

h(0) = u(xn); h%0) = uYxn)

(2.20)

whereC is the constant given in (2.[L6). Notice by (2.19) thr?tjlﬁﬁj =+ ¥ and by

(2.18) then[(2.16):
8

2 jhn(0)j = (20) 2 &, 7 1+ 0(1)

S (2.21)
" in0)j= 2g WM+ 1€, P 1+0(1) ; a2 R:
Writing
h(t) = € Hn(X); X = &7°%; (2.22)
the functionH,, is solution of the followingelliptic differential equatior(see[(1.p))
with a given initial data:

8 2=3
% (HY2= 4H3+ 2q,H + 1; with gy = X:&n

Ho(0) = & u(xe);  jHa(0)j = (29) 2 1+ o(1) ; (2.23)

2

T HY0) = € FPulxy);  jHYO)j= 29 e+ 11 14 0(0) :

From the properties of elliptic functiong{, can be analytically continued as
a doubly periodic meromorphic function with double poles at the period lattice
an+ mwa(gn) + Nw2(dn), (N;m) 2 Z2, for somea, 2 C andwy.2(gn) = Ctepa+ O(Qpn).

Second step Next we consider the functidd, satisfying to the condition:
U(X) = G Un(X); X = G72(X Xp): (2.24)
From [2.1) U, is solution of the ODE
U%% 6U2+ g+ enX; withen= € >, (2.25)

and, more precisely from (2.]L6):

< 2 _ 3
U9 =4U°+ 20U + 1+ 26, XU u(9ds
9 @ e U 2.26

T Un0)= € u(x);  UY0) = & FAulxy)

Third step We want to show thati, andH, are locally holomorphically equivalent:
we look for a functionG,, holomorphic near 0 such that

Un= Hn Gn with Go(X)= X+ gn(X);  gn(0)= 0; g2(0) = O: (2.27)
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We know from [(2.2B) thati®® 6H2+ g, hence from[(2.25) we deduce that
20°H G, +(g)?HL Gh+ MY G = enX
or else:
203(HY Gn)®+ giHY Gn = enX+(gf)*H3° Gu:
Multiplying both parts of this equality bi? Gp and integrating, one gets:

8 Zy h [
3 wn=(HY Gp) 2 , HY Gn(9 enS+Wi(9:HR® Gn(9) dS= N(wy)

Z
F 0002 W(9dS WO=0 G(0= X+ 500
(2.28)
Let D(O; JQ’J = ) be the disc centred at 0 of diameterj ™. We denote by
B(0; 'a“‘ = )the discD(0; ’e“' = ) deprived from the discs of diamete¢g) around
the poles ang E(he zerosdf. We consider a path(0; Xo) in B(O; %). In (2 ),

the integrals  are considered alorig(0; X) | (0;Xp). We can assume that the

0
length of any subsegmeh{0; X) of | (0;Xp) is less that PXj.
Let bea 2]1=4;1=2[ and (B;k:k) be the Banach spad&@= f f 2 C(I (0;Xo))g,
kfk= sggm (0x) ] f(¥)]. LetB be the balB= f f 2 B; kfk j enj?g. If w2 B and
9X)= o wSds

Zx

kgk sup w(9dS k wkiLength(l (0;Xo)) j enj® ¥
X21 (0:%) O

One can assume thdfg)  3je,j2 1™ so that

kN(W)k | enjCter(g)ieni 72+ Ctex(g)jenj?®

ThereforekN(w)k j enj? for je,j small enough. Quite similarly, fary;w, 2 B,
kN(w1)  N(w)k = O(jenj® “kwy  wok:

We conclude by the contraction mapping theordhitas a unique xed point i,
for jeyj small enough.

Final step We have seen that f¢e,j small enough and 2]1=4;1-2],

U _ . a 1=4. Jen =
n(X)= Hn X+ gn(X) 5 JO(X)] ] € ; X2B(0;

Therefore,

sup G UGt G TPX) Ha(X) = O(jenj® ) (2.29)
xzs(o;mﬁ)

Rememberthd€,j! +¥ andje,j = j€, 5:Gj! Owhenx,! R If X2 B(0; w),
then®€, X belongs to a disc of radii€,j2* deprived of some discs of radius
d(g)j€,j 5. Consequently, fon large enough,
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o 17
8x2 Dy,; 9X 2 (o;Je“JT); X (%n+ € X) izg)j@nj 1=6;

Choosingx = xg, we see from[(2.29) thatis unbounded neag which is a regular

point for u: contrad'itionJ

X
Thereforeu 3(x)  u(s)ds! 0 whenx! ralongl (Xo;B). It is now an easy

X0
exercice by Iemm.5 an 16) to see thatfiipjulg! + ¥ necessarily when
x! B (Just assume that *(xX) ! 0 is false and see that there is a contradiction.)
u

End of the Proof of theore .What remains to show is tha&tis a second order
pole. The substitution = 1= transformsG) into

wix ds C

2 _ X
W=1+¥ 5 w9t a

(2.30)

V2(s)
which avoids the poles ofu in Dy, Therefore (V)2 = 1+ o(1), then
V() =(x B2 1+o0(1) . Plugging this last equality in[(2.80) yields
(W20 = 1+ 5(x B*+o(x B, thusv’(x)=(x B2+ &(x B°+o(x ®°).
One useq (2.30) again and eventually concludes with leimma 2.3.

z X
We know from Iemm6 tha\%6 _ds. ds! Oandv! O along a patt (xo;®)
Xo
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Chapter 3

Tritruncated solutions for the rst Painlev e
equation

Abstract This chapter is devoted to the construction of the tritruncated solutions for
the rst Painle\e equation, the existence of which being announced in[SeLt. 2.6. This
example will introduce the reader to common reasonings in resurgence theory. We
construct a prepared form associated with the rst Paiakeguation (S€c 3.1). This
prepared ODE has a unique formal solution from which we deduce the existence
of truncated solutions by application of the “*main asymptotic existence theorem”.
We then study the Borel-Laplace summability property of the formal solution by
various methods (Se¢t. 3.3). One deduces the existence of the tritruncated solutions
for the rst Painle\e equation, by Borel-Laplace summation (Sgect 3.4).

3.1 Normalization and formal series solution
Throughout this cours&[[z 1]] stands for the differential algebra of formal power
series of the formg(z) = g anz ", while C((z 1)) is the space of formal Laurent

no
series. The space of formal Laurent series is a valuation eld with the natural valu-
ation

C((z M) ! Z[ ¥
val: § a,z "7! valw= minfn2 Z=a,6 0g: (3.1)
n2z

3.1.1 Normalization, prepared form

We saw in Secf. 2|6 that the rst Paink\equation is equivalent to the following
differential equation,

w1 4v 1
V4 = T4+ o+ DV, 3.2
z 2 2522 2 (3.2)
i . 5
under the Boutroux's transformationfx) = %%x%v(z), z= ¥ %x%.

The variablez is most often calledritical time [[7].

It is worth mentioning that the symmetries detailed in §ecj. 2.5 translate into the fact
that any solutiorv of (3.7) is mapped into another solutigipthrough the transfor-
mation:

w(2) = éPkv P2z . k=0; ;3 (3.3)

29
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¥
We look for a formal solution 08) of the fore(z) = § bz ' 2 C[[z 1]]. When
=0
plugging this formal series ih (3.2), one gets the necessary conditipnsl, by = 0
andb, = %. Thanks to the symmetrie.3), there is no restriction in assum-

ing bp = 1. Also, it will be convenient in the sequel to make a new transformation,

41 1

V(=1 ZS?+ ?W(Z); (3.4)

which has the virtue of bringing (3.2) into the following differential equation :

3 3921 4 1
0o ° _ o9l a4 12
wP ZWO W= e W 222vv2. (3.5)
De nition 3.1. The differential equatior (3,5), which reads

P(Tw+ %Q(‘H)W= F(zw); with P(T)= 12 L, Q)= 31;7= d% (3.6)

3921 4 1 .
s Wt @Wz: fo(2)+ f1(w+ f2(2w?, is called thepre-

pared formequation associated with the rst Painéeequation.

andF(zw) =

Remark 3.1For general comments on normalization procedures see/ é.g. [7] and
exercisg 3]1. Notice that the prepared form is not uniquely de ned.

3.1.2 Formal series solution

¥

Substituting the formal series expanséna.z linto equation|(3.6) and identifying
=0

the powers, yields a quadratic recursion relation, namely:

392

625

L2 3.7)

8

gmzmza a=

_§ =1’ 2 A& apa 2 pl=34
22,

a

The following proposition is a simple exercise.

Proposition 3.1. There exists a unique formal series solutior{ of|(3.6) denoted by:

¥
wi2= 4 az'2C[z: (3.8)
1=0

Moreover the seriew is evenyal w = 2 and the coef cients jgare all real negative.

Remark 3.2.1. One infers from[(3]7) that the seri@sdiverges since obviously
jaomi  (M)Zjagj form 1.
2. The differential equatiof (3.6) can be written as a xed point problerm,N(w),

3 . . .
N(w) =  F(zw) EWO+ w? On can consider the differential operatdras

acting on the ringC[[z 1], N: C[[z ]! CJlz 1]]. WhenCJ[z 1]] is seen as a
complete metric space (for the so-called Krull topology, seé [MBppears as
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a contractive map and the formal solutiengiven by lemma 31 is the unique
solution of the xed point problem. This way of showing the existence of the
formal solutionw is also useful for numerical calculations,

302 , 6272 , 141196832 ¢

®2= &7 " 5257 390625 -

In this course, all calculations have been produced that way under Maple 12.0
(released: 2008).

3.1.3 Towards truncated solutions

3.1.3.1 Notations

We x notations (essentially common with [19, [16]) which will be used in this
chapter and throughout the course.

De nition 3.2. We denote bys! the circle of directions about 0 of half-lines @h
We usually identifyS' with R=2pZ. Let| =]a;b[ S' be an open arc. liengthis
denoted and dened bifj= b a.

De nition 3.3. Letl S'beanopenarc. ForOr< R ¥, we denote by R(I) the
domain de ned by R(I)= fz=x€92Cjq21I;r<x< Rg. Inparticular §(I)
(resp. [ (1)) is an open sector with vertex e6p.¥) and aperturé.

One denotes byR(1) (resp. ¥ (1)) the closure of §(1) (resp. ¥(1))inC?= Cnf0g.

We use abridged notationg(l), o(1), ¥(1) and ¥(I) for sectors, wheRorr is
unspeci ed.

A sector o(19 (resp. ¥(1)) is said to be a proper subsector @f!) (resp. *(1))
and one denoteso(1 b o(1) (resp. ¥(19 b *(1)) if the closure o(19 (resp.

¥(19)isincluded in o(1) (resp. *(1)).

3.1.3.2 Main asymptotic existence theorem

We have previously seen that the ODE [3.6) is formally solved by a unique formal
seriesa(2) 2 C[[z 1]

Question 3.1Can we associate ®a holomorphic solution whose Poinéaasymp-
totics' are governed by this formal series ?

This question is the matter of the “main asymptotic existence theorem”. This theo-
rem is detailed in[16] for linear ODEs. It can be formulated to nonlinear equations,
seel[27], theorems 12.1 and 14.1, dnd [24] for extension to Gevrey asymptotics.

Theorem 3.1 (Main asymptotic existence theorem M.A.E.T.)Let | S! be an
open arc of lengthilj p=(q+ 1) where g is a nonnegative integer. L&z, w) be
a m-dimensional vector function subject to the following conditions:

1 The reader is referred to [16.119] for details on asymptotic expansions.
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1.F(zw) is holomorphic in(zw) on the domain of *(I) B(0;r) with
B(O;r)= fw2 C™ kwk rgfor somer> 0;

2. F(zw) admits an asymptotic expansion in powers of at in nity in  ¥(1),
uniformaly valid inw 2 B(0;r);
3. the equation Zw°= F(zw) is formally satis ed by a formal power series solu-
tionw(2) 2 (C[[z )™
4.if Fj(zw) d@notes the componefts df(zw), the Jacobian matrix
Tz0)  {(z0

Twy TWm .
m g has non zero eigenvalues.
22 Y1)~ qp

Twy

(zo) ITu(z0)

Twm

Then there exists a solutiom of the equation 2%w°= F(z w), holomorphic in a
domain of the form ¥ (1), whose asymptotics at in nity in every proper subsector
of ¥(1) is given by the formal solutio®.

3.1.3.3 Application

Let us transform[(3]6) into a one order ODE of dimension 2. We introduce

_ Wi _ W . . .
w= W, = W and we obtain the companion system:
_ 01 0 _ R@Ew) _ . 1., 2.
W= 13 W taw) T Rzw) - FEW2(Clz W) @9)

We xanopenard S, arbitrary but of lengthilj p. We also consider a domain
of the form ¥ (1) and we make the following observations:

1. F(zw) is polynomial with respect tov, with coef cients belonging toC[z 1].
ThereforeF(zw) is holomorphic in(zw) on the domain *(1) B(0;r) with
B(O;r)= fw2 C% kwk rgfor somer > 0;

2. again becausg(z,w) 2 (C[z 1;w])?, F(z,w) admits an asymptotic expansion in
powers ofz 1 atin nityin ¥(1), uniformaly valid inw 2 B(0;r);

3. the equation[(3]9) is formally satised by a formal power series solution

@)= o 2(Clz W3

|

5 ¥:0) Fay;0)

4. the Jacobian matrix(l)é = "111",:“21( )1111V|:V22( )
m= landm= 1.

has non zero eigenvalues

These properties allow to apply the (M.A.E.T.) and this shows the following propo-
sition (see alsa [15]):

Proposition 3.2.For any open arc | S! of lengthjlj p, there exists a solution w

of ), holomorphic in a domain of the forr (1), whose Poinca asymptotics at

in nity in every proper subsector of¥ (1), is given by the formal solutiow given

by proposition 3]L.

Propositior] 3.p thus describes the minimal opening of sectors on which holo-
morphic solutionsv asymptotic toa exist. Through the transformatiors (3.4), {2.6)
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and [2.7), these solutiomscorresponds to holomorphic functionsolutions of the
rst Painlevé equation, de ned on open sectors of apertyre3!: we thus geta rst
insight towards the truncated solutions for the rst Paigleguation (theorefn 3.4).

As a matter of fact, from the above informations and the property for any solution
of the rst Painlee equation to be a meromorphic function, one can even show the
existence of tritruncated solutioris [15]. However, to get more precise informations,
we decide in what follows to turn to the question of the Borel-Laplace summability
of w.

3.2 Areminder

We assume that the reader has a previous acquaintance with Borel-Laplace summa-
tion and a little background with resurgence theory, amply elaborated in [19, 16]
to which we refer. For the convenience of the reader, we offer a brief reminder of
de nitions and results used in this chapter.

Formal Borel transform and convolution product

De nition 3.4. The formal Borel transformB (z! z) is the linear isomorphism
B :C[lz 1J]! Cd CJ[z]] de ned by

¥ ZIl

¥
= & bz ' 7! bod ; = 4 b=
82 S'o 1z od+ 8(z);  06(2) S_l I0)

The formal serieg) is the minor of g. The inverse map. = B ! is theformal
Laplace transform

De nition 3.5. Let bod + §(z) and cod + B(z) be two elements o€d  C[[z]].
Their convolution producfbod + §) (cod + H) is de ned by

(bod+ &) (cod+B)= B (gf); where g= L (bod+ §);B= L (cod+ B):

Whent(z) = § bnz" and H(z) = § cnz" are two formal series, their convo-
no n o0

lution producty B is given by the Hurwitz producty B(z) = & diz® with
K 1

o n'm!
dk = a

| nCm.
n+ mt 1= :

 (n+ m+ 1)

Proposition 3.3.The linear map‘? bpd+ 87! zb provides a derivation of
Cd C[z]landB : C[lz q;1 ! cd cC[z];® is an isomorphism of dif-
ferential algebras.

Gevrey series of orderl

De nition 3.6. A formal seriesg(2) = é anz "2 C[[z 1] is 1-Gevreywhen there
n 0
exist constant€ > 0, A> 0 so thafa,j C(n!)A" for all n. The space of 1-Gevrey

series is denoted b@[[z ]);.

We recall from[[16, 19] that the spacd[z 1]]1 of 1-Gevrey series is a differential
algebra.
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Notice that a formal seriegsis 1-Gevrey if and only if its minog is a convergent
power series, thus de nes a germ of holomorphic functions (still denoteg) by
More precisely:

Proposition 3.4.The restricted linear map j: C[[z }]]1! Cd Ogis anisomor-
phism of differential algebras. Also, for any two germs of holomorphic functions
bR 2 Oy, their cogvolution produch B2 Og has the following integral represen-

tation: § R(z) = Ozg(h)H(z h)dh.

A avor of resurgence

De nition 3.7. Let W be a non-empty closed discrete subse€adndjb 2 Og be

a germ of holomorphic functions at 0. This germ is said tovib€ontinuableif
there exists > 0 such thaD?(0;r)\ W= 0 andjp can be represented by a function
holomorphic orD(0; r) which can be analytically continued along any patiCofW
originating from any point oD?(0;r). R R

The space of alW-continuable germs is denoted Byy. The spaceCd Ry is
called the space diV-resurgent functionsThe space ofV-resurgent formal series
is denoted byR\yy andde ned byRyw=L Cd Ry).

Theorem 3.2.LetW;, W be non-empty closed discrete subsetS.dfetW C be
the subset de ned bW = Wy [ Wo[ (Wi + W) where

Wi+ Wo = fwy+ wajwy 2 Wisw, 2 Wagr
If Wis closed and discrete, thgn 2 RAW1 andjb, 2 I‘-\’AW2 implyjo; o, 2 Ruw.
In particular, the spacéd Rz of Z-resurgent functions is stable under convo-
lution product, thus is an algebra with udit

Borel-Laplace summability

. . b
De nition 3.8. A formal seriesg(2) = § 5"

n o0
summablén directionq 2 St if the following conditions are satis ed:

2 C[[z Y]] is said to beBorel-Laplace

the seriegis 1-Gevrey or, equivalently, its mindris a convergent series whose
sum de nes a holomorphic function (still denoted gynear the origin ;

b can be analytically continued to an open sector of the foil(n) wherel St
is an open neighbourdhood gf with exponential growth of order 1 at in nity.

Under the above conditions, tiorel-Laplace sunof g in directionq is denoted
byS 9%gand dened byS 9g(z2=L ¢ B g2 v%hereL 9 stands for the.aplace
¥dd
transformin directiong, L 9(bod + §)(2) = bg+ e Zf(z)dz.
0

In addition to this de nition, we recall that the Borel-Laplace sGn¥w is holo-

morphic on a half-plane where its asymptotic behavior is governed by the formal
seriesg. This will be made more precise in a moment.

3.3 Formal series solution and Borel-Laplace summability

We go back to the formal serias given by propositiof 3]1. Since val> 0, the
formal Borel transform ofe just reduces to its minob. Also, w(Z) is the unique
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solution inC[[z 1]] of the differential equatio.6). One easily infers the following
result from the general properties of the formal Borel transform.

Proposition 3.5. The formal seriew(2) 2 C[[z ]] is solution of) if and only if
its minorw(z) 2 C[[z]] is solution of the following convolution equation:

Piw+1 Qi)w = RB+H w+B w W

=% 1 o®= 3t (3.10)
R(z) = %E R(z)= 4z E(Z)=%z:

We will see in a moment that is 1-Gevrey and even Borel-Laplace summable.
In the rest of this chapter, we analyse this Borel-Laplace summability and we offer
various approaches.

3.3.1 Formal series solution and Borel-Laplace summability: a
perturbative approach

We start with a perturbative approach which has the advantage of giving a rst
insight into the resurgent structure. In practice, we consjder](3.10) as a perturbation

of the equatiorP(‘P?)\b: R which is quite easy to solve:

either formally since the mdB(ﬁ?) 192 C[[z]] 7! (z? 1)§2 C[[z]]is invertible;
or analytically, in a space of analyic functions, sa®y, because
P(ﬁ?) 92 Op 7! (z? 1)§2 Oy is once again invertible.

To keep one, it is convenient to transform equatjon (3.10) into the following one
parameter family of convolution equations,

PMR=R+e 1 QMR +H R+B A h; (3.11)
and to look for a solution under the form

B(z;e)= § Bi(z)e": (3.12)
I 0

When plugging[(3.1]2) intq (3.11) and identifying the same powees ame obtains
a recursive system of convolution equations, namely:

8
% P(ho = B;
PBi= 1 QMR + B Ro+ B Ry Ry

Ep(ﬁ)hn: 1 Q(?)hn 1t ﬂ. hn 1t é E hnl hnz; n L
ni+tmp=n 1
(3.13)
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3.3.1.1 Formal analysis

Lemma 3.1.The syste 3) provides a uniguely determined seqL(Bnq:eo of
formal series. Furthermor(z) 2 z2+1C[[z]] for every | 0.

Proof. Use the fact that the meFﬁ(ﬁ) :C[[z]]!' CJ[z]]is invertible and the general
properties of the convolution productu

The above lemma has the following consequence:

Proposition 3.6.The serieﬁ H(z) is well de ned inC[[z]] and is formally con-
I 0
vergent to the unique formal solutiolw(z) 2 C[[z]] of the convolution equa-

tion (3.10).

We mention that proposition 3.6 has a counterpart by formal Laplace trans-
formL (z! 2. Introducingf = L H|, one gets from lem .1 that the sequence

(8) o solvesinC[[z 1]] the following recursive system of linear nonhomogeneous
ODEs:

8
% P(MFfo = fo(2)

P(1)8; = %Q(‘H)ﬁo*' f1(2)Ro+ f2(28 (3.14)

1 °

' ni+ny=n 1
From Iemm again, one deduces h& z 2 2C[[z 1]]foreveryl 0, thus:

Proposition 3.7.The seriesg 8 (2) is well de ned inC[[z 1]] and is formally
I 0
convergent to the unique formal soluti®{z) 2 C[[z !]] of the differential equa-

tion (3.8).

3.3.1.2 Analytic properties and a avor of resurgence

Instead of working in the space of formal series, one can rather work in a space of
analytic functions. The next proposition uses de nitjon| 3.7.

Proposition 3.8.For every 12 N, the formal seried given by ) de nes a
germ (still denoted bﬂ) of holomorphic functions &, which can be represented
by a function holomorphic on the open dis¢1). Moreover,H belongs to the
spaceRyy; of W-resurgent functions, whef = f0; 1, ; I, (I+1)g. Asa
consequence, the getﬁnis aZ-resurgent function.

Proof. The proposition is easily shown by induction frojn (3.13), theofem 3.2
and the following remark : for every 2 N, Ry, R, , and the linear map

P(®): 92 Rw 7! (z2 1)h2 Ry isinvertible. u
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3.3.1.3 Further preparations

solution of the prepared form equation (3.6), can be writtely(@g = é_ R (z)in
)

the spaceC[[z]], where the sequenc(ﬁ|)| o Solves the recursive system of equa-
tions [3.13). To show the Borel-Laplace summabilitysoft is thus enough to check
the following properties:

We have previously seen (proposit.6) that the mimaf the formal seriesw

the series of functioné Fh(z) converges to a holomorphic function near the

I 0
origin and can be analytically continued in a convenient sector;
this function has at most exponential growth of order 1 at in nity in this sector.

We also know by propositi.8 that eaﬁl@z) is aZ-resurgent function. This mo-
tivates the following de nition, with the notationsD(a;r) is the open disc centred
in awith radiusr andD(a;r) is its closure.

[
De nition 3.9. One setQD,(O) = D(l ;r) foranyr 2]0;1[. We denote byr 50)
=1
the star-shaped domain de ned by:
RO9=cn tzjt2[L+¥z2D( Lr) cnD;

[ i
andr © = RO =cnf [L+¥[g (See Figl 3/1).
O<r<1

De nition 3.10. Let f(z) = & az' be an analytic function on the open disc
10

D(0;r). One denote bjfj the function de nes byfj(x) = & jajx'.
I 0

Notice thatj fj is also analytic oD(0;r).

Lemma 3.2.Let ber 2]0;1[. There exists a constant,\, > 0 such that for every

polynomial g2 C[z] of degree 1 and everyzZCnD,(O), one has
a(z)

M; (0idi(1). Moreover, on can chooseNg = .

P( z)
. 1 1 1
Proof. By de nition of D,(O), —— —and Z 1+ — foreveryz 2 CnD,(O).
iz 1 r z 1 r
zP 1 1P 1 2p
- - + = 7 + p “ =012 .
Therefore, P 2) 2 p 1 ; r2(r 1) 2 for p= 0;1;2. This

2 . : .
means that one can choobg . = 2 in the lemma. It is possible to be more

Fig. 3.1 The domairrR EO).
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precise. Suppose for instance th&fz) 0. Thenjz+ 1j max 1;jzjg, thus

mj";‘,’g 1%].‘9 1. Inanutshell, one can choobk . =  in the lemma. u

As a rule, we will combined lemnfa 3.2 with the following lemma whose proof
is left as an exercise (see [19] 16]):

Lemma 3.3.Let U be a domain star-shaped frofh Suppose thaP and b are
two holomorphic functions on U and satisfy the conditions: for every U,
b(z) F jzj and §(z) G jzj with F,G positive continuous functions on
R*. ThenP b is holomorphic on U and for evey 2 U, 2 bz) F Gjzj

and zP &z) jzj F Gjzj

3.3.1.4 Majorant functions

We have in mind to show that the series of functiq"mﬁ(z), discussed in proposi-
)

tions an8, is uniformaly convergent on any compact subget®f We will
use majorant functions which we now de ne.
De nition of the majorant functions We consider, for any 2]0; 1], the sequence
of functions(lb|)| o recursively de ned by:

8

1
By = jRj(x);
%M“(O) o= Ri(x)

M= 3+jRj Ho+iBj By Wy (3.15)

% M (o)
1 . o k.
_ R,= 3+jBj M, .+ & B B, B, n L

r:(0) n+m=n 1

whereM, (g, is given bermm2 andj(x)= 22x,jRj(x) = 4x,jBj(x) = ix.
(Compare-S) W|ﬂ-3) ) We claim that for evérd N, 1 is a majorant func-
tion for . Precisely:

Lemma 3.4.For everyr 2]0;1] and every 2 N, the following properties are satis-
ed: 1, (x) is a polynomial which belongs td* 1C[x]; furthermore,

foreveryz 2 R\?: B(z) M(x) with x = jzj: (3.16)

where(R)); o is de ned by|(3.1B).

Proof. The fact that® (x) 2 x'*1C[x] is proved by induction frorr-.S) and the
properties of the convolution product. - 13)andle n 3.2, for ew@rR ¢ (0)
Bo(z) P( R)(z) My ()i Ri(x) with x = jzj, so that|(3.16) is true for
| = 0. We now assume th4t (3]16) is truefer 0; ;(n 1), for somen2 N?. By
Iemm 8 and the induction hypothesis, for evel¥ R ; (0)

P(lz) 1 QR 1 () P( 7y 162D 1 Bo 1G2))
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wherejQj(x) = 3x. Therefore, by lemmfa 3.2,

1 .
) L

with x = jzj. More generally, for similar reasons,

QAMBL 1 (2) M iQi(D) 1 By 1(x)

hn(Z) 3 M, 1(x) +]ﬂJ M, 1(x)+ é JEJ }bnl mnz(x):

M, (0 n+n=n 1

Thus, for everyz 2 Rr , Hn(z) Ibn(x). This ends the proof.u

Upper bounds for the majorant functions Before keeping on studying the above
majorant functions, we state a property which will be useful in the sequel. We rst
recall two notations.

De nition 3.11. LetU C be an open set. We denote B§U) the space of func-
tions holomorphic irJ and continuous on the closue

ForRo> 0,we seD(¥;,Ry))= z2C;jg> %

Lemma 3.5.Let be R > 0. We suppose 2 O D(¥;Ry) with f(z2)= O(z ™) at

in nity for a certain m2 N, and let be M= sup f(2)j. Then the formal Borel
2D(¥;Ro)

transformB f = fod + Pof f satis es the following properties:
.. M
1. b2 O(C) andjfgj Ry’

2. for everyz 2 C,jb(z)j p(x) %e% withx = jzj and, when m 2,

M xm?2 x
ooy M 5. _
iBz)j RO (m 2! ef;  x=jzj:
Proof. The Taylor series expansion ¢f § fiz K=z ™ Y § fm 1z ', con-
k m I 1

. . ... M
verges tof in D(¥;Rp). By the Cauchy inequalitie$fj % for anyk 2 N. The

formal Borel transform of readsB f = fod + Pwith :

S 1
1. fz)= a_ fl—— T rule, |
Zm 2 1

o 4
(m 2)| Ial frn+| 1W Whenm 2

11 |1
Also, for everyz 2 C, a ifmel 1o 2] a M_ X

(! Rg*' I
X = jzj. This ensures the uniform convergence on any compact s&, dfius
b2 O(C), and provides the upper bounddu

We return to the majorant functions de ned tpy (3.15).

2. Kz)=

MeW with
Ro

Lemma 3.6.For every 12 N, the majorant functiot® (x) is the formal Borel trans-
form of 1, (2) which has the following propertied® (2) belongs toC[z 1] and, for

everyr 2]0;1], 19 (2) is bounded on the domajg > &, preciselysup|i& (2)j

r, .. 8
14> ¢

j.
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¥
Proof. We introduce the generating functidd(x)= & M (x)e' 2 C[x][[e]]. From

1=0
(3.15), we observe that this generating function formally solves the convolution
equation

h i
B=jRj+e 3+jBj MA+jBj A A : (3.17)

Mr;(O)
Thereforeséll? can be seen as the formal Borel transform of the solution
B(ze)= é 18 (2 e 2 Clz Y[[e]] of the following second order algebraic equa-

1=0
tion: 1 h3 i
——B=jfoj(d+e —+jfj B+jfjR2
Mr (o) z
(3.18)
Lo 3921 o 4 1
with jfoj(2) = 6252 ifi(@d= 2 jfd(2 = o7

This equation has two branch solutions and one of them is asymptotic to the equa-

tion 18 = jfoj whene goes to zero. We are interested in that solution. Instead

r;(0)
of using an explicit calculation, we rather use another method which can be gener-

alized. In (3.18) we make the change of variabte% and setd(ze) = H(t;e).
The equation (3.18) becomes:

F (t;e;H) = 0; with o (3.19)
i
Hij foit ) e 3t+jfit ) H+jfjt HH? :

1
F (t;e;H) =
Mr (0
. i1F 1
SinceF (0;0;0) = 0 and —(0;0;0) =
(0:0,0) T (0;0;,0) Mr o

orem provides a unique holomorphic solutiéf(t;e) to (3.19), forjtj and jej
small enough : there exist > 0, r, > 0, r3 > 0 and a holomorphic function
H:(t;e) 2D(0;r1) D(O;r2) 7! H(t;e) g D(O;r3)  such  that  fpr  every
(t;e;H) 2 D(O;r1) D(O;rz) D(O;r3), F (t;e;H)= 0, H=H(t;e) .

To get more precise informations, we view the implicit problem (8.19) as a xed-
point problem:

6 0, the implicit function the-

H = N(H); o (3.20)
N(H) = Mg jfoit H+e 3t+jfijt ) H+ it HH?
h i
2 1
= M (g %St% e 3t+4° H+ étsz

We chooseV, . = % (see Iemm2) and we introduce the sp@¢g) of func-
tions in (t;e) which are holomorphic on the polydi¢¢ = D(O;%) D(0;2) and
continuous on the closukg. The spaceO(U);kk is a Banach algebra wheké
stands for the maximum norm.

We recall the following theoren [26]: I&f be a bounded open subset@f,n 1,E be a

Banach space and(U) be the space of functions: x 7! f(x) 2 E which are continuous

onU and holomorphic otJ. With the the maximum norrkfk = supj f(2)j, (O(U);kK) is
2U

a Banach algebra.
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For a reason of homogeneity, we introduce the, Balk fH 2 O(U);i kHk rg.
For anyH;Hi;Hp 2 By, kN(H)k £ 3204 2 T kHk+ LokHK2 1 (re-
member that < 1), while
KN(HD NHDK 2 TCkHy Hok+ okHy  Hok KHk+ KHok
1 2 r 16 1 2 128 1 2 1 2

29
—kH; Hok:
3o<H1 H2

The mappingN;g, :H 2 By 7! N(H) 2 By is thus contractive. Sindg is a closed
subset of a complete spad®; ; k:k) is complete and the contraction mapping the-
orem can be applied. We deduce the existence of a unique solitiorB, of the

xed-point problem [3.2D).
This solutionH(t; e), thus holomorphic itd = D(0; r§) D(0; 2), has a Taylor ex-

pansion with respect te at 0 of the formH(t;e) = é_ Hi(t) €', where(H)), ois a
I=0
sequence of holomorphic functions on the d¥®; %). Moreover, by the Cauchy

inequalities and using the fact that sypl(t;e)j r, one gets: for every2 N,
(t;e)2U

sup jH(t)j r—l This ends the proof of lem .6u
t2D(0;5) 2
Lemma 3.7.For everyr 2]0;1[ and every 2 N, the majorant functiod (x) is a

. . . . . 8 8ixj
polynomial which satis es: for every 2 C, j# (x)j gef .

Proof. This is due to lemmds 3.5 and B.6u

3.3.1.5 Formal series solution and Borel-Laplace summability

We are ready to show the following theorem.

Theorem 3.3.The formal solutione of the prepared equatioh (3.6) associated with

the rst Painlewé equation, is a 1-Gevrey series and satis es the following proper-

ties:

1. its minorly is an odd series, convergent to a holomorphic function which can be
analytically continued to a function (still denoted by holomorphic on the cut

planer ©@;
2. has at most exponential growth of order 1 at in nity along non-horizontal
directions. More precisely, for every2]0; 1], there exist A 0 andt > 0 such

that, for everyz 2 REO),j\by(z)j Adizi:
3. moreover in the above upper bounds one can chogsd/andt = r§.

Proof. Combining lemmals 3|4 afd 3.7, we know that, for eve]0; 1[ andl O,

the functionH(z), is holomorphic onR SO). Moreover, for everyR > 0, setting

Uz=DO:R\ R?, & suphi(2)i & MM & ;egR 16¢'R. This normal
I 0UR 10 10

convergence ensures the uniform convergence on any compact sulps&® aff

the seriesq Bi(z), which thus de nes a function holomorphic n(?. However,
I 0
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proposition 3.6 tells use that the ser'ésh converges to the formal Borel transform
1o
\w of the formal solutiorw of the ODE [3.6).

Remark 3.3Better estimates can easily be obtained, see cordllafy 3.1 and exer-
cise[3.3.

3.3.2 Formal series solution and Borel-Laplace summability:
second approach

In this second approach, however related to the rst one, we introduce a Banach
space (followingl[6/ 7]), convenient to analyse the analyticity of the formal Borel
transform of the formal series solution of the ODE[(3]6). We then introduce the
reader to a “Gonwall-like lemma” which will give the upper bounds we are looking
for.

3.3.2.1 Convolution algebra and uniform norm

De nition 3.12. LetU = Ugr  C be an open neighbourdhood of the origin, bounded

and star-shapedR = supjzj the “radius” of U. We denote by O(U);+;:;
z2U

the convolutionC-algebra (without unit) of functions continuous bhand holo-
morphic onU. We denote byM O (U) the maximal ideal ofO(U) de ned by
MO (U)= ff2 O(U); f(0)= Og. We set

b f200)7 9 (z)= zf(z)2MO (U):
Letben 0. The nornk:k, is de ned as follows: for evenyf 2 O(U),

kfkn, = Rsup e "2 f(z) :
z2U

This norm is extended t€Cd O(U) by setting: ked + fk, = j¢j + kfky,
while f#d = 0.

Proposition 3.9.The spaceCd O(U);k:k, is a Banach algebra. In particular,
forevery fg2 Cd O(U), kf gk, k fknkgkn. The spacé/ O (U) is closed in
the normed spaceO(U);k:k, . Moreover, fom > O:

. |
1.for every n2 N, for every g2 O(U), kz" gkn %kgkn,

|
K(z 7! 2™ Dky %R andk(z 7! )k, = R.

2. for every fg2 O(U), kfgkn %kfknkgko.

3.forevery f20(U),n np 0)k fkn k fkp,.
4. for every f2 MO (U), r“m¥ kfky, = 0.

5. the derivatiorﬁjo(g) . 2 0(U) 7! #f 2 MO (U) is invertible. Its inverse map
® 1satis es: for every f2 O(U), forevery 2 MO (U),ﬁ? (f g92MO (U)
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andk® X(f g)kn %kfknkﬁ? 1gko. Also, forevery 2 Cd  O(U), for every
g2 MO (U), 8 Lf g) 2 0O@U)andkl 1(f g)kk, k fkok® lgkn.

Proof. SinceRe "Rsup f(z) Rsupe "?f(z) Rsup f(z), we see that
z2U z2U z2U

k:kn is equivalent to the usual maximum norm on the vector si@@#) and this
normed vector space is complete. This shows the completenes®@d); + ;: ;kikn
and of Cd O(U);kik, aswell.
For f;g2 O(U) we have, writingz = jzje9 2 U,
L o
ReZ nizl . f(s€Ng (jzj 9)€9 €9ds
R OJZJ f(sde "Sg (jzj 9€9 e N0 9dugs

Re "Zif g(z)

Z ..
. izi
ThereforeRje W2 f g(z)j k fknkgkn %ds k fknkgkn. We conclude that
0
for everyf;g2 O(U), kf gkn k fknkgkn, hence O(U);kk, is a Banach al-
gebraandCd O(U);kk, aswell.
We now supposa > 0.
1. For the particular cask: z 7! z" andg 2 O(U):
- Z jzj _ .
Re "2l (z" g)(z) R e "s'g (jzj 9€9 e "% Ids
07 . .
izj
k gknZ e "Sd'ds

Oy
k gk, e "Sd'ds
0

n!
nn+1

This shows thakz" gk, kgkn. The other properties follow.

2. Obviouslykfgk, k fk,supgj %kfknkgko, for everyf;g2 O(U).
U
3. ltis straightforward to see that no Oimplieskfk, k fkn, whenf2 O(U).
4. 1f £ 2 MO (U), then f = zg with g 2 O(U). From the previous property,
kfkn F%kzknkgko %kgko. Thus limy ¥ kfk, = 0.
5.1ff2Cd O() andg2 MO (U) thenf g2 MO (U). Assume now that
f 2 O(U) andg2 MO (U). Then® 1(f g)(0)= 0and writingz = jzjé9 2 U,
. Ly .
Re M4f g(z) = Re M¥ o(s€Nf (jzj 9 €Yds (3.21)
0
Zizj . . o
=R 90 lg)(sd9e "Sf (jzj 99 e "0z Idigg
0
On the one hand, from (3.21),

Z .
. jzj 2
Rie "2t g(z)] %kfknkﬂ? ‘g sds %kfknk? 1k
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so that Rie 28 L(f g)(2)j %kfknkﬁ? gk, k fkok® lgk,. Thus
kB 1(f g)kn k fkak® Igk,. One easily extends this formula to the case
f2cd O).
On the other hand, from (3.21),
o Z ) i2]
Rie "2If g(z)j k fkosup® g = se "Sds ﬁkfknkﬁ 1gko;
U 0

henceRje "Z19 1(f g)(z)j %kfknk? Lgko; - Therefore:

KT gk rkTkakR ko

This ends the proof.u

3.3.2.2 A Gonwall-like lemma

We start with the following observation.

Lemma 3.8.Let be ab;c;d 0, N2 N? and (Ith)o n N be a sequence of entire
functions, real and positive oR*, with at most exponential growth of ordérat
in nity. Then, the convolution equation

|

. !
W= d+[a+bx] W+c B+ B W" (3.22)
n=1

has a unique solution i€[[x]], whose sum converges to an entire funcl¥g(x)
with at most exponential growth of ordérat in nity. The functionWy(x) is real,
positive and non-decreasing &' and, for every 2 C, the mapping &' Wy(x)
is continuous o™ .

Proof. Obviously, {3.22) has a unique solutidy 2 R*[[x]]. Its formal Laplace
transform @/ = L (Wy) 2 R*[[z 1]], solves the algebraic equation

d a b Y
W)= -+ —+ WD+ ca RV (2); (3.23)
z z z =0

where the(Fy)o n n is a(N+ 1)-tuple of holomorphic functions on a neighbour-
hood of in nity with F,(2) = O(z 1). This shows (by a reasoning already done) that
W, = O(z 1) is a holomorphic function ifz; d) for d 2 C andzon a neighbourhood
of in nity (independent ord). Therefore W, determines a function holomorphic in
(x;d) 2 C2?, with at most exponential growth of order 1 at in nity . The fact
that, ford 0, Wy is real, positive and non-decreasingRh, is evident. u

Lemma 3.9 (Gronwall lemma).LetU be a domain star-shaped frahand N2 N,

Let(R)o n N Tesp.(B)o n n, be a(N+ 1)-tuple of functions ir0O(U), resp. of

entire functions, real and positive &' . We suppose that forevedy n N and

everyz 2 U, jR(z)j B(x) withx = jzj. Let pq;r 2 C[z] be polynomials such

that the functiorz 7! p( z) is non vanishing on U and the following upper bounds

are satis ed: a= sup_qu(JZJ). < ¥, b= sup_m(]zj)_ <¥,c=sup—— <
zZUJp( Z)J zZUJp( Z)J zZUJp( Z)J
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We nally assume thalv 2 O(U) solves the following convolution equation:

N
pw+ 1 [qw=z [r(Bw]+ B+ a B own (3.24)

1

Then for every d 0, for everyz 2 U, j(z)j Wg(x) with x = jzj, where
W, 2 O(C) is the holomorphic solution of the convolution equation (B.22).

Proof. (Adapted from[[17]). We assume thiat2 O(U) is a solution of the convo-
lution equation[(3.22). We thus have, for everg U,

ZZ ZZ
p(w(z) = B(2) 0[ol(*Fn\hv](h)dm @ h)[r(§)w](h) dh
ZZ
+é’Nn . B(z h)b"(h)dh

n=1

Thus, writingx = jzj andz = x €9,

PR SN (GO N L (O NN
i 2)i o il 25 i 2)i
N z X 1 H n iq
+ 3 - . iWw "(re®jdr:
& i D eejar
Therefore,
z NZ,

iw(z)] cR(x)+ Ox[a+ b(x n]jw(réh)jdr+cd . By(x i "(ré)jdr.
n=1

We notice from|(3.2}4) thgiy(0)j = % , while W4(0) = c(0) + d, whereWy

solves (3.2P). Remark thaw(0)j  ckh(0) by de nition of ¢ and by hypothesis
oniy

First case. We assumay(0) > jlw(0)j. We want to show thgt(z)j < Wy(x) for

z ontherayz = x4 2 U.

Assume on the contrary that there exists x1€9 2 U such thajiw(z1)j  Wqy(x1).
Dene c = fz 2 [0;z4] j jW(z)] Wa(jzj)g. This is a non-empty closed set,
bounded from below, and we nate its in mum.

If jW(z)j Wgy(jzj) for somez 2]0;zy[, thenz 2 ¢ and this contradicts the
de nition of z,. Thus, for every 2 [0;zo[; jW(z)j < Wy(jzj).
If jW(z2)j > Wd(jz_zj) then, by continuity ofty andW, one can nda > 0 such
thatjl (jzoj a)€d j> Wy(jzoj a), but this this contradicts again the de ni-
tion of z,. Thereforg(zo)j = Wy(jz2)).
Putting things together, one gets with= jz,j:
. . Z X2 . 1 .
()] RO+ latble Dlje(reDidr
N % -
+cd  B(x njb"(rédjdr
n=1 0
Z

X2 ZXZ
chy(x2) + . [a+ b(xz )] Wy(r)dr+ Cg . B2 1)Wy'(r)dr.
n=1
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Thereforejlw(z2)j Wq(x2) d and we get a contradiction. As a conclusion, for
everyd > 0, foreveryz 2 U, jW(z)j] Wqy(x) with x = jzj.

Second caseThe casdy(0) = ji(0)] (thus, in particulard = 0) is deduced from
the above result. Indeed, for a giver2 U, one has byw(z)j] Wy(x) for every
d> 0. Since the mappind 7! Wy(x) is continuous ofR* (cf. Iemm), one gets
the result by lettingl! 0. w

3.3.2.3 Applications

We prove theorein 3,3 with the tools introduced in this sectionRFeI0 andr > 0,

we introduce the star-shaped domaitug= D(0;R)\ RSO). We set

Br = f2 O(UR);kik, rg,r> 0andn> O.

We consider the convolution equatign (3.10), viewed as a xed-point problem. Pre-
cisely, we consider the mapping

N:02 B 7! P() )" 1 oMb +h+h b+B b bI:
By lemmag 3.p and propositipn 8.9, one rst gets:
kN(kn Mgk 1 Qb + R+ B b+ B b tka:
By propositio again, sind@(ﬁ?) = Sﬁ, one easily obtains:
kI Q)b ky %kQ(ﬁ)bkn %kQ( z)kokik, %kbkn:

The functions ¥; #;® belong toMO (Ug). By proposition| 3., this implies
n".”l kBkn = 0,i= 0;1;2. We then deduckN(f)k, r by choosingn > 0 large

enough.

By the same arguments, one easily seeskNal) N(ip)k, kkiy ipk, with

k< 1, forty;, 2 B, and forn > 0 large enough.

This means thaiN is contractive in the closed sd; of the Banach space
O(UR);kk, , forn > 0 large enough. The contraction mapping theorem provides

a unique solutiony 2 B, for the xed-point problemla= N(13). SinceR andr can

be arbitrarily chosen, we deduce (by uniqueness) that the formal Borel trankform

of the unique formal series solution of ), de nes a holomorphic R .
One turns to the Gmwall lemma to get ui per bounds. Working in the star-shaped

domainR ﬁo), r 2]0;1[, one sees by lem ﬂ: 2, Iem@3.3 and thin@all lemma
, that for everz 2 R, jb(z)j W(x), x = jzj, whereW(x) solves the fol-
lowing convolution equation:

1

N W= iRj+ 3+jRj W+jkj W W
r;(0)

This is nothing but[(3.117) witle = 1. We adopt the notations and reasoning made
for the proof of lemma 3)6. Le®/(z) be the inverse Borel transform 8 and
W/(2) = H(t),t = z 1. The functionH solves the xed-point probleni = N(H)
with
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392 1
N(H) = M (g 6—25t2+ 3t+ 42 H+ Et2H2 ; (3.25)

We setM, ) = £, U = D(0; 755), andB; = fH 2 O(U); kHk r g. One easily
shows that for anyd; Hy; H, 2 By,

44150

We conclude with the contraction mapping theord®/(z) is holomorphic on the
oL 422 . .
domainjz > e and is bounded by there. Therefore, by lem Wis an
. . . . . . . 422y .

entire function and satis es: for every2 C; jW(x)j 4:22e™ ™. To sum up:

Corollary 3.1. In theore, one can choose=Ad:22andt = %22,

3.4 First Painlewe equation and tritruncated solutions

Theorenj 3.3 shows that one can apply the Borel-Laplace summation scheme to the
unique formal series expansi@a2 C[[z 1]] solving equatio6). This is what we
do in this section which starts with a brief reminder.

3.4.1 Reminder

We complete de nition$ 3]3 and de nition 3.8 with notations essentially common
with [19,[16]. For the convenience of the reader we also recall some results about
Borel-Laplace summability and we refer to [19] 16] for more details.

De nition 3.13. Letq 2 S! be a direction anti=]a;b[ S! be an open arc. We de-
note byq _S'theopenarcdenedby=] 5 q; g+ 5[,andl =", q. We
denote byl =[a;b] the closure of and byl”=] b; a[the complex conjugate
open arc.

De nition 3.14. For a directiong andt 2 R, we denote by g the following open
half-plane, bisected by the half-ine'@R* : p9 = fz2 C; A(z9) > t g, of aper-

turea.
Letl S'beanopenarcoflengfhj pandg:l! R bealocally bounded func-
tion. The domairD (I;g) is de ned byD (1;9) = P g(q) and is called @ectorial

g2l
neighbourhood of in nity of aperturel .

Letg= % 2 Cl[[z Y1 be a 1-Gevrey series: the mingrthus determines
no
a holomorphic function near the origin (still denoted &)y We add the following

conditions:

one can nd an open arc St such thaty can be analytically continued to an
open sector of the form§ (1);
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this function (still denoted byl is of exponential growth of order 1 at in nity:
for every proper-subsectof (19 b (1), there existA> 0 andt > 0 such that
foreveryz 2 ¥(19,jg Adlz,

Under these conditions, for every directiqr2 1° the Borel-Laplace surB 9¢g is

well-de ned and holomorphic on the half-plame!. Moreover, for two close direc-
tionsqy; gz 2 19 the Borel-Laplace sun® %2gandS %g coincide on their common

domainP f*\ P {2, thus can be glued together to give a holomorphic function on
P{[ p . More generally:

. b . .
Proposition 3.10.Letg(2) = & ?n 2 C[[z ]1 be a 1-Gevrey series subject to the
n o0
following conditions:

there exists an open arc | St of lengthjlj p so that the minoiy can be

analytically continued to the open sectcﬁ(l);

for every directiom 2 I, jo(x€9)j A(q)e¥®* x > 0, where A1! R* and

g: 1! Rarelocally bounded functions.
Then the family(S 9g)q2/ of Borel-Laplace sums determines a holomorphic func-
tion on the domaim (1;g), denoted bys 'g.

De nition 3.15. Under the conditions of propositign 3]16,is said to beBorel-

Laplace summablim the directions of. The functionS 'g2 O D(l;g) is called
the Borel-Laplace sum @ in directionl.

" b .
Proposition 3.11.Let g(2) = é ?n 2 C[[z ]] be a formal series, Borel-Laplace
n o

summable in the directions of | St, an open arc of lengtfij p. Then its Borel-
Laplace sunS 'g2 O D(l;g) is 1-Gevrey asymptotic tg on D (I;g) : for any
proper-subsector ¥ b D (I;g), there exist constants € 0 and A> 0 such that for
every N2 N and every 2 ¥,
N 1 b
S 'g(2) Iéo ?' CNIANjZ N (3.26)
In this proposition, the properfy 326 essentially characterizes the Borel-Laplace

sum. Indeed, notice that the sectorial neighbourhood of in Dity; g) is of aperture
I which satisesp < jlIj 2p, and one can draw the following consequence from
the Watson lemma (see [16]): lef (19 be any sector such thaf} > p andI® T.
Let f 2 O( *(19) be a holomorphic function which is 1-Gevrey asymptotigtmn

¥(19. Thenf andS 'g coincide on *(19\ D(I;g).
We eventually ends this reminder with the following statement:

Proposition 3.12.Let] S be anopenarc oflengithj p andf(2);g(2) 2 C[[z 1]]
be Borel-Laplace summable formal series in the directions of |. TRgeend{ £are
Borel-Laplace summable formal series in the directions of | and

S'(fFg=(S'H(S'e.S'(1H=1T(S'H.
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3.4.2 Formal series solution and Borel-Laplace summation

3.4.2.1 Borel-Laplace summation

We go back to the formal solutiom of equation[(3.5). Theorein 3.3 and corollary
[3.7 have the following consequences:

Corollary 3.2. The Borel transfornty 2 O(R (9) of the formal solutione of equa-
tion (3.6) satis es the following property.

For everyd 2]0; %[, there exist 4 > O andty > 0so that

foreveryz 2 {(d;p d[); jw(z)j Ag€'di?: (3.27)

4:22

Moreover one can choosg & 4:22,t4 = m

Proof. One can de ned = sin (r ) = arcsir(r) 2]0;%[, foranyr 2]0;1[. w

From corollary[ 3.2 and the properties of the Borel-Laplace summation, we
see that for evenrd 2]0;%[, the Borel-Laplace sun$ 9w of w in any direc-
tion q 2]d;p d[, is well-de ned and holomorphic in the half-plan@ﬁd with
tg= 4'1:22 .
sin(d)
sum S19P dig  holomorphic in the domain D(O;p[;t) with

t:q2]0;p[7't(q)= % (See Fig and exercilsE|3.4).

Moreover, sinces formally solves|(3.6), its Borel-Laplace susn*Plwis a solution

These holomorphic functions glue together to give the Borel-Laplace

of this equation which is 1-Gevrey asymptotic at in nitywwoon D (JO;p[;t).
Similarly, the formal seriew is Borel-Laplace-summable in the directions of the
interval ]p; 2p[. This provides the Borel-Laplace sugP*?’lw which belongs to

O D(p;2p[;t) andis 1-Gevrey asymptotic®onD (Jp;2p[;t).

Fig. 3.2 The (shaded)
domainD (]O;p[;t) for

422
M= Sy
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Fine Borel-Laplace summations It is possible to get more precise estimates than
those given by[(3.36), by appealing to ne Borel-Laplace summations, discussed
with much attention in([1)6, 19] to whom we refer.

De nition 3.16. We denote by& (q) the open half-strifs (q) = [ D(seiq;r), for

o 2R*
r > 0 andqg a direction.

The following proposition is the easy part of a theorem due to Nevanlinna [19, 16,
18,12/ 25].

+¥
Proposition 3.13.Lete(2) = & % 2 C[[z Y]1 be a 1-Gevrey seriesx 0, A> 0,

n=0
t > 0andq a direction. Then property [1) implies properfy (2) in what follows.

1. The minorjb_ is analytically continuable on§q) and for everyz 2 S(q),
ib(z)] A€

2. The Borel-Laplace surB 9je(2) is holomorphic inP{ and for every p O,
N Oandz2p{:

dps 9je A\ o, (k p (k1) At N el
(3.28)
where
tr p A |
Ras(FAL;N;Z p) = alNe P g MA@ Y (3.29)

AV A@ OR8N
Applications We return to theorefn 3.3 and corollary]3.1. We consider a direction
g 2]0;p[ and we choose > 0 and O< r < 1 such that sifg) = r+ r . This en-

sures that the half-strif§(q) is a subset of the domaR §O) and, by theore3,
there existA > 0 andt > 0 such that for every 2 S(q), jWw(z)j A€z with

. 4:22
sin(q) = r+ r . Also, from coroIIar, one can choofe= 4:22,t = - As a

consequence, propositipn 3}13 can be applied. The reader will easily adapt the pre-
vious considerations when the directian2]p; 2p[ are considered.
We summarize what have been obtained.

Proposition 3.14.The 1-Gevrey series2 C[[z 1]]1, solution of the prepared equa-
tion (3.6) associated with the rst Painlévequation, is Borel-Laplace summable
in the directions of the arcgl=] O;p|[, resp. L =] p;2p[. The Borel-Laplace sum
Wirio = S 19Phe, resp wii:1 = S P2l is a holomorphic solution of the differen-
tial equation (3.6) and w0; Weri;1 Satisfy the following properties. For eveqy? Io,
resp.q 2 Iy, for every r> O andr > 0 so thatjsin(q)j = r+ r, there exist > 0
and A> O such that :

Wrisj 2 O(P¢), j= Oresp. j= 1,
for every 2 P?, forevery N2 N, for j= Oresp. j= 1,

N Nletr 1
Wi 8 % A (3.30)

4 MgV A(ze9) t’

>~
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dwiry § (k Dag y N 1+r(A(z9) t) (3.31)
) .

@+ 4 N,
dz 2 MNizN - A(zéa) t 2
where the coef cientsjaare given by );
22 . .
morover one can chooseA4:22,t = . In particular Wyi-o, resp. Wi:1, is
4:.22
jsin(q)j

holomorphic inD (lp;t), resp. inD (I3;t), witht (q) =

3.4.2.2 Alink with 1-summability theory

We assume that the reader has a previous acquaintance with 1-summability theory,
introduced and much discussed inl[16], to which we refer. We only x some no-
tations, these are classical [16) 18] but for the fact that we consider asymptotics at
in nity, and we recall some properties.

De nition 3.17. Letl Sl be anopenarcand* = ¥(l) a sector.

1.A( ¥), resp A (1), is the differential algebra of holomorphic functions on the
sector ¥ admitting Poinca asymptotics at in nity in this sectoresp asymp-
totics germs at in nity ovet.

The linearmag@ : A ( ¥)! C[[z Yl,respT:A (I)! C[[z ]], which assigns
toeachf 2 A ( ¥),resp f 2 A (1), its asymptotic expansion at in nity, is called
the Taylor map.

The Taylor mapr is a morphism of differential algebras and this map is onto (Borel-Ritt
theorem).

2.A1( ¥), resp A (1), is the differential algebra of holomorphic functions on
the sector ¥ with 1-Gevrey asymptotics at in nity in this sectagsp 1-Gevrey
asymptotics germs at in nity ovdr.
Ondenotes by : A 1( ¥)! C[[z YJ1,respTi:A 1(1)! C[[z Y]], the Taylor
map restricted\ 1( ¥), resp A 1(1), called the 1-Gevrey Taylor map.

The 1-Gevrey Taylor maf; is morphism of differential algebras. This map is onto
whenjlj p (Borel-Ritt theorem). This map is injective whgn> p (Watson lemma).

3. A <0 ¥), resp A <9(I), is the space of at functions on¥, resp at germs at
in nity over |I.

A <0( ¥)is thus the kernel of the Taylor map: A ( ¥)! CJ[lz 1]

4.A Y ¥),respA (1), is the space of 1-exponentially at functions of,
resp 1-exponentially at germs at in nity ovet.

A 1 ¥)isthe kernel of the 1-Gevrey Taylor m@p: A 1( ¥)! C[[z ..

5.A is the sheaf oveB' of asymptotic functions at in nity associated with the
presheal . We denote by 1 the sheaf oveB! of 1-Gevrey asymptotic functions
at in nity associated with the presheaf ;. We denote byA <0 the sheaf over
St of at germs at in nity associated with the presheaf<. Finally A 1
stands for the sheaf ov&t of 1-Gevrey at germs at in nity associated with the
presheah 1.
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Theorem 3.4 (Borel-Ritt). The quotient sheaf =A <0, resp.A1=A 1, is iso-
morphic via the Taylor map T, resp. the 1-Gevrey Taylor mgpd the constant
sheafC[[z ]] resp.C[[z )1

We now go back to propositi14. On the one hand, The domédlp;t)
is a sectorial neighbourhood ¥f with aperturel o =] ép;+ Ep[. On the other

hand, whileD (I1;t) = e PD(lg;t) is a sectorial neighbourhood #f with aper-

gp; %p[. These two open arcs provide a good covefihg; T1g of

. L 1 1 3 1
the circle of directionsS'. Let Jy =] ép; ép[ andJ; =] ép; ép[ be the two
intersection arcs. Boti-o andwi-1 can be considered as de ning sectionshaf,

namelywyi.o 2 G(To;Al) andwiq 2 G(Tl;Al), and are asymptotic to the same
1-Gevrey formal seriew. The pair(Wyi-0;Wri-1) de nes a 0-cochain in the sense
of Cech cohomology, and the 1-cobound@myi-o  Wiri:1;Weri:1 Wari:0) belongs to
G(lA b GUuA b.

tureT1 =]

3.4.2.3 Miscellaneous properties

We discuss various properties for the Borel-Laplace sumns.

Foranyj2 Z andlj = lo+ jp =]0;pj + jp, one can of course consider the
Borel-Laplace sumwi;j = S liw, which de nes a holomorphic function on the

domainD (1j;t), a sectorial neighbourhood & with aperturelj= To jp,

T,— =] gp;+ %p[ jp. Morever, for everyj 2 Z,

Whri;j+2(2) = Wiri;j(2) for z2 D (I;t) (3.32)
becausa 2 C[[z ]]1.
We mentioned in propositi.l that the formal sewép) is even. One deduces
that for anyq 2]0; p[, for everyz2 pp ¢

SPAg(z)=S % 2:

Therefore, for everyj 2 Z,

foreveryz2 D(lj;t); Wri;j(2) = Wirizj+1( 2): (3.33)

We know by propositiol thaa(z) belongs taR[[z 1]]. This has the following
consequence : for any 2]0;p[, for z2 P, S9w(z2 = S 9w(2) (wherea

stands for the complex conjugate@® C). In other words, for anyj 2 Z, the

two functionswiri;j andwi;j+ 1 are complex conjugate,

foreveryz2 D (lj;t); Wer; (2 = Wiri;j+ 1(2): (3.34)

However, neithemii-o Nor wyi-1 are real analytic functions, since this would
mean that the 1-coboundawi.o Wi-1 iS zero which is not as we shall see
later on.

The properties[(3.33) andl (3]34) have the following consequences: for every
j 2 Z, Wyi;j is * PT -symmetric” [10,[11] 18], in the sense that for every
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z2 D(lj;t),
’ Wi (2 = WE( 2): (3.35)

In particular, forr > 0 large enough,

Wio(re P2)2R;  wlio(re P?) 2iR: (3.36)

3.4.2.4 Asymptotics and approximations

- P_— . .
By Stirling formula one hahl! 2pNN* Zze Nfor largeN. Since for a giverz6 0
Na N

the functionN 7! oL reaches its minimal value at= rjZ, it turns out from

formula @) that one can estimate the valuavgfo or wii:1 from the truncated
N

series expansioé % with N = rjz where : is the entire part. This gives rise
to thesummatiork1 t% the least tetrm

Along this state of mind, there are many ways of computing Borel-Laplace sums
approximately in practice (see, e.d.,[L4, 3]). Among them, one may quote the so-
calledhyperasymptotimethods[[1] which have strong links with resurgence theory.
These methods, originally arising from (and extending to) geometrical considera-
tions on (multiple) singular integrals [23} [9, 8], can be applied to a wide class of
problems stemming from applied mathematics and physics,/ séé [20, 121, 22] and
references therein. Other ways are available, for instance those based on the use of
conformal mappings [2] with realistic upper bounds. It is also theoretically possible
to calculate a 1-sum exactly by means of factorial series expansians [18, 12].

3.4.3 Tritruncated solutions

3.4.3.1 Tritruncated solutions

One can easily translate propositjon 3.14 into properties for the rst P&rdgqua-

tion (2.7). However, to use the Boutroux's transformatigns|(2[6)] (2.7) properly, it
is worth to work on the Riemann surface of the logarithm and we thus x some
notations.

De nition 3.18. We denote by€ the Riemann surface of the logarithm,
€=fz=rd9jr>0,q2Rg, p:z2€7 z=rd92C"

For anyz= ré9 2 €, we refer tog as to its argument, denoted by= argz.

We denote by8! (usually identi ed withR) the set of directions of half-lines about
0 on€. We (still) denote by : 8! S the natural projection which mak& an
étak space o$! (and even a universal covering).

De nition 3.19. Letq 2 &' be a direction and 2 R. We set

Pi=fz=rd*2 €ja2qandp(?2Plg
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Let| &L be an open arc ang:|! R be a locally bounded function. We set

D(l;g)= Pg(q) €. One callsD(l;g) a sectorial neighbourhood of in nity
q2l

on€.

In order to de ne the transformations (p.6) afd {2.7) safely, we introduce a bi-
holomorphic mapping.

De nition 3.20. The biholomorphic mapping is de ned by:

er e z7lx=T (@@= %e P A5 (3.37)

Forl Slanopenarcand:l! R locally bounded, the domaid (I;g) is sent
ontoT D(lj;t) € through the mapping , and we set

(=T D(;9 ; (g=p S (9 : (3.38)

We wiII consider the domaind (Ij;t), j2 Z, for I; = lg+ jp =]0;pj+ jp and
t(q)= Jsm( N . Notice thatD (Ij+1;t) = e PD(lj;t) foranyj2 Z.
The domain (1j;t) (see Flg and F|@.4) is a sectorial neighbourhood of in-
nity of aperture Kj =] —p; §p[ iljp and we may notice that, for arjy2 Z,

(lj+1;t) = e P35S (I t) In particular, (lj+st)=(Ij;t).
We now think ofwyi;j = S 'iw as a holomorphic function oB (1j;t). By (3.33)
and [3.3b), these functions satisfy some relationships: for jaRyZ, for every
z2 D(Ij;t),

Wrisj(2) = Whrizj+1(ze P); (3.39)
Wi (2) = Whijj(ze BFDPY;

with the conventiorz= re '@ 2 € for z= re? 2 €.
This gives sense without ambiguity fo (3.4), {2.6) gnd](2.7), with the transform

Fig. 3.3 The shaded domain
is the projection of (lp;t),
image by the transforma-
tion (3:37), of the domain
D(lo;t) drawn on Fig[ 3] for
4:22
t(q)= TS The dash
lines recall the sectorg (2.9).
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z2D(lj;t) $ x2 (Ij;t) (|3.40)
=2 4 4 + Wirizj T 1(%)
25T 1% T ix°

gp=2
Wri;j(2) $ Uyrizj(X) = %x

The functionsky;;j are solutions of the rst Painlévequation/(Z]1) and by (339) and
(3.40), they satisfy the following relationships: for apg Z, for everyx2  (Ij;t),

Ui j () = €=y jea(xe P=); (3.41)
Utri;j (X) = e%(2j+ Dip Utri; (Xe %(4j+ 7)ip);
We recover here the symmetries discussed in Hegt. 2.5.

By projection,uyi;j becomes a function holomorphic on the domai;;t). This
provides ve distinct functionski:j(x), j = 0; 4, the so-calledri-truncated so-
lutions

We now use notions developed In [16] to which the reader is referred. $inge

is a section orTj of A1, we deduce that the tritruncated soluti@pn;;(X) belongs

to the space of holomorphic functions with Gevrey asymptotic expansion of order

4=5 atinnity in  (Ij;t). One can thus recovex;;j(X) by its asymptotics through
5=4-summability.
Itis also worth mentioning thak,i-2(X) is a real analytic function, as a consequence
of property [3.4]L).

4:22
jsin(a)j
for j=0; 4, (It)=w? (loit), wj = e %1 The rst Painle equation
(2.1) has 5 tri-truncated solutions;j(x), j = 0; 4. The tri-truncated solution

Proposition 3.15.Let be (lg;t) = p T D(lg;t) witht(q)= and,

Uyri;j(X) is holomorphic in (Ij;t), a sectorial neighbourhood of in nity of aper-
ture Kj =] lglp; %p[ ‘g‘jp, and has in (lj;t) a Gevrey asymptotic expansion

of order4=5 which determined;j(X) uniquely. Moreover, for everyX (lj;t),

2ip; . . .
Ugri;j(X) = Wjlkrio W; x,wj=e i j=0 4, and Uri:2 is a real analytic

function.

Remark 3.41tis shown in exercise 33 that for afy= O;  ;4, the tri-truncated so-
lution uyi:j can be analytically continued to the domaifij;t) witht (q) = jsiﬁ‘;)j .

We will see later on that each tri-truncated solutigg; can be analytically contin-

ued to a wider domain than(l;;t).

Exercices

3.1.We consider an ordinary differential equation of the form

P(Tw= G(zww® :;w™ D) (3.42)
P(1) = én. an mTM2C[1];a06 0;a,6 0

m=0
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where G(zy) is holomorphic in a neighbourhood d¢fy) = (¥;0) 2 C C",
qil

n2 N?. We furthermore suppose th&(z0) = O(z 1) and :T;(|Z 0 _ =0z Y

whenjlj = 1.

1. Show that for everil 2 N and up to making transformations of the type

M
w= § az “+v (3.43)
k=1

one can instead assume ti&iz;0) = O(z M 1).
2. We suppose that for somé 2 N?, G(zy) satis esG(z0)= O(z M 1). Show
that, up to making a (so called) shearing transformation of the form

w=z My, (3.44)
one can rather assume ti@(z,0) = O(z 1), %(le) O(z ) whenjlj= 1
ig(z -
and%(lz’o): O(z MU Dy whenjlj 2.

3. Deduce that, through transformations of the type {3.43)[and|(3.44), one can bring
equation[(3.4R2) under the prepared form:

P(T)w+ %Q(ﬂ)w= Fzwwl:wt D) (3.45)
g nol
PM=a an mT™2C[T] ; QM= a bn mT™2 C[T]
m=0 m=0
whereF(zy) is holomorphic in a neighbourhood ¢£y) =(¥;002 C C"
I
such thatF(z0) = O(z 2 Mo), Mg 2 N, WFEO

Ty |
1
1 ;(IZ 0 _ = O(z 2 MJ'J) M;j; 2 N, whenjlj 2.

4. Show that the shearing transfom= z Mv, M 2 N?, brings equatio 5) into
an equation of the for®(T)v+ 1(Q(T) MPAM)v=gzv\& ;v D).

O(z ?) whenjlj = 1 and

3.2.We consider the ODO) and its unique solutio® O(R (?).

1. Show that, for any 2]0;1[, for anyz = x€9 2 R$0)1 X = jzj,

Z X . Z X .
rjw(z)j %+ 7 j\hv(re'q)jdr+% . jW 2(ré%)jdr:

2. Let ber 2]0;1[. We consider the (unique) entire functi solution of the con-
volution equation W(x) = 32+ 7 W(x)+ 3 W W/(x). We denote by/(2)

the inverse Borel tranﬂorm . .

Show that®/(2 2 O 7> @ (consider the discriminant locus). Show

— 1
thatforjzi > 293 WI(z)= 8¢ (rz 7)+ (rz 72 52 = e = oz Y

625
784 1 28
625]rz 7] 25°

3. Show thajW/(x)j 262334925 X for everyx 2 C.

at in nity, and j@/(2)j
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4. Deduce that for eveny 2]0; 1] and everyz 2 R 2, jio(z)j %‘e%sm.
3.3. We consider the ODE
2 1
Yoo y y= 392, 4, Sy (3.46)

z 625 2

deduced from2) by the transformatis(z) = 1 2i522 + y(2) or, from )

through the transformatiop(z) = z 2w(Z). In particular there exists a unique for-
mal seriegy(2) = z 2&(2) 2 C[[z Y]] solution of [3.4B). We thus know that the for-
mal Borel transfornp belongs tavl O (R (?) and satis es the convolution equation
associated witl (3.46) by formal Borel transformation:

392 z3

(22 Db 1 (zp= @3@

+%p I (3.47)

1. Let f 2 Og be a germ such th&t(0) = 0. Show that the solutiorg2 Og of the
convolution equatioiz® 1)g 1 (zg)= f are given by

c f) , 1 Zz  p

(1 22)1:2 1 z2 (1 22)1:2 o (1 h2)3:2

o(z) = f(h)dh; C2C:

(Hint : setg(z) = f(i)z differentiate the convolution equation to obtain a non-

homogeneous linear differential equation of order 1, and solve this equation).

2. Show that satis es the convolution equatio47) MO (R ©) if and only
if ¥ satis es the following xed-point problem:

392 z3 1 .
p= 625G(4) + éP b b with
i (3.48)
_ 9@z) 1 z h :
PO@= T 2% T 52 o @ hay=dhdn;
3. Show that for any 2]0;1[ and anyz 2 R, and ﬂzzw =5

4. Show that for any 2]0;1[ and anyz 2 R §0),jta(z)j ®(x) with x = jzj, where
¥ is an entire function which solves the xed-point problem:

_ 392 %3 1
=Q 625603 4—§Q 120" (3.49)
G(x) 1

QG (x) = ; +r—2 1 G (x)

5. For anyr 2]0;1[ we denote by#(2) the inverse Borel transform &. Show that
¥ (2) satis es the algebraic equation

3921

3921 1, 1
+ = + = = —
¥ 1 625r 2

%= exmzt 2 2

€(2) +0(z ®: (3.50)
6. We setU = D(¥; 7). Show that the xed-point problen} (3.50) has a unique

solution inB, s, = fH 2 O(U); kHk g, for
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Fig. 3.4 The shaded domain
is the projection of »(l2;t),
image of the domai (I2;t)
by the conformal mapping

1:4
(3.3 ,fOrt = =
) _(q) jsin(q)j
e dash lines recall the

sectors[(Z.9).

7. Deduce that the mindgrof the formal serieg solution of equatior] (3.46) can be

analytically continued is oR (@ and that, for any 2]0;1[and anyz 2 R *:

iz)] 0:7r2er 2 (3.51)
8. We setlj = lp+ jp =]0;pj+ jp, j 2 Z. Show that the Borel-Laplace sum
Yiri:j = S 'igde nes a function holomorphic op (1j;t) with t (q) = jsiﬁ(‘(‘q)j.

9. Deduce that the tri-truncated solutiaR;j, j 2 Z, is holomorphic on the domain

(I5)=T D(Ijit) witht(a)= gy See Figf 34,

3.4.We consider the domaib (J0;p[;t) fort(q) = | > 0. We want to de-

|
sin(q)?
scribe the boundar§fD (JO; p[;t) of this domain.

1. show thatD (JO; p[;t) is the envelope of the following family of line curves:
z= x+1iy,xco4q) ysin(q) = gxay» 9 210;pL.
2. Deduce thafiD (JO; p[;t) is the parabolic curve of equatigre § I .
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Chapter 4
A step beyond Borel-Laplace summability

Abstract We previously showed that the mindwof the unique formal series so-
lution w of the prepared ODE associated with the rst Paigle@guation, de nes

a function holomorphic on a cut plane. We further analyze the analytic properties
of . We show in Secf. 4|5 how can be analytically continued to a domain of a
Riemann surface, de ned in Seft. .2, and we draw some consequences. This ques-
tion is related to the problem of mastering the analytic continuations of convolution
products and, as a byproduct, of getting qualitative estimates on any compact set.
This is what we will partly do in Secf. 4.3 and Se€ct.]4.4, using only elementary
geometrical arguments. We end with some supplements in[Sect. 4.6.

4.1 Introduction

We previously analyzed the Borel-Laplace summabilitywff) 2 C[[z ]], the
unique formal solution of the prepared OQE (3.6) associated with the rst P&nlev
equation. This was done by two approaches. In one of them, we de ned a sequence
(H|)|2N of Z-resurgent functions (propositi.8) and we showed that the nkinor
of w can be represented as the sum of the se{ﬁdﬁ; which converges to a holo-

I 0

morphic function on the cut plare(® = Cnf [1;+¥[g. The key issue is:

Question 4.1Does W belong to the space df-resurgent functions or, in other
words, is® aZ-resurgent formal series ?

The answer is “yes” and this will allow an in-depth examination of the (so-called)
non-linear Stokes phenomenon for the rst Pai@exquation, in the spirit of the
various examples handled in_]10]. However, this question requires further tools and
we postpone the complete answer to the last chapter of this course. One of these
tools consists in sharpening our understandiny\bfesurgent functions, at least
whenW = Z. This is our aim in this chapter.

The W-resurgent functions have been recalled in de nitjon| 3.7. This can be
rephrased as follows fol = Z:

the germjp 2 Qg is aZ-resurgent function if and only ib can be represented
by a functionF holomorphic onUg = D(0;r), 0O< r 1, and for any given
Zp2 Uo? = U nf0g, this function can be analytically continued along any gath
of CnZ originating fromz.

61



62 4 A step beyond Borel-Laplace summability

Notice in this rephrasing thdaly could have been replaced by any connected

and simply connected neighbourdhood of the origin, for instaRé®. (Exer-
cise : why ?)

We would like to characteriz&-resurgent functions by means of Riemann sur-
faces. Letp 2 Og be a germ of holomorphic functions at 0 af@;q) be the
étak space associated with the sh@afcf. remark{ 1.1). We denote g (jo) the
connected component @ containingjp. Endowed with the restricted projection
°= g ) R (o) is the Riemann surface f.

We recall that a Riemann surface is a connected one-dimensional complex manifald [10, 7,
3]. Notice thatR (jo) is not necessarily simply connected. (Exercise : why ?)

We now assume thdu is aZ-resurgent, determined by a functiénholomorphic
onUp C, aconnected and simply connected neighbourdhood of the origin. Let us
draw some conclusions abdrt(jp) from this hypothesis.
In the rst place by the very construction & (jb), one can nd a neighbourhood
Uo R (jp) of p such thagqU) = U and the mapping%O :Ug! Upisahome-
omorphism. In particulat) g is connected and simply connected.
In addition, let bezp 2 U and denote byop = q‘]ui(zo) 2 Ug the germ of holomor-
phic functions akg determined by . Sincep is Z-resurgentjpy can be analytically
continued along any patihof CnZ originating fromzg. In other words, any such
pathg can be lifted taR (jo) from jog with respect taf, and this lifting is unique by
uniqueness of lifting [7]. We denote Iy this lifting, g= ¢° G. Now assume that
gis a loop homotopic i€ nZ to a loopgin UO?. Then congjbp = jog because cogt
only depends on the homotopy classggdh CnZ, meanwhilgby is represented by
F 2 O(Up) onUp. In regard, lifting the homotopys is homotopic to a loop itJg,
thus null-homotopic sinclg is simply connected.

This being said, we raise the following question:

Question 4.2Can we determine a simply connected Riemann sufRgcen which
anyZ-resurgent function can be analytically continued ?

We answer to this question in S€ct.]4.2, through an explicit constructigy of
We also describe there various sheets of this Riemann surface which will be usefull
for later purposes.

Next we turn to the convolution product. We already know by thegrein 3.2 that the
space ofZ-resurgent functions is stable under convolution product. In other words,
if the germsjpo;y 2 Og can be analytically continued to the Riemann surfRce
then it is the same for their convolution prodifzt Y. But what about the question
of upper bounds ? In the previous chapter, the answer was essentially the matter of
lemmd3:B and the new issue is:

Question 4.3Can we formulate an analogue of lemma] 3.3 for holomorphic func-
tions de ned on the Riemann surfaBe, ?

The main result of this chapter, namely theofenj 4.1 and its corollaries detailed
in Sect[4.4, gives a partial to this question. Its proof relies on the use of shortest
symmetrically contractile paths which we describe in Jeci. 4.3. We then apply our
results to the rst Painle& equation in Sedf. 4.5, to get theorem 4.2. A theoretical
supplement ends this chapter.
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4.2 Resurgent functions and Riemann surface

This section is devoted to de ning the Riemann surf&ce Rz and some of its
sheets. We rst recall usual notations.

4.2.1 Notations

In this course, gath (or a parametrized curve) in a topological spac is any
continuous function :[a;a+ 1]! X, where[a;a+ ] R is a (compact) interval
possibly reduced tbag.

One denotes by !the inverse path, thatls 1:t2 [a;a+ 1]7! | (2a+ 1 t)

We often work with standard pathsthat is paths de ned or0;1]. The path
| :t2[0;1] 7! | (a+ tl) is thestandardized patiof | .

For two pathd 1 : [a;a+ ]! X,l,:[b;b+ K]! X sothatl i(a+1)= | 5(b), one
denotes by 1l » theirproduct (or also concatenation)

a(t);t2 [aja+ 1]

lil2:t2 [aa+ 1+ K 7! Io(t a I+b);t2[a+l;a+|+K

We denote by x the equivalence relation of homotopy of paths with xed extrem-
itesinX : 17 x|2ifthe two pathd 1, | » in X have same extremities and there
exists a continuous ma: [0;1] [0;1]! X thatrealizes a homotopy between the
standardized patis; and| ».

When X has a ( nite R-dimensional ancC¥) differential structure, one can de-
ne smooth paths. We recall that any path can be uniformaly approach&¥by
paths. Typically in this cours& = C with its 2-dimensional real differential struc-
ture. For a plECfWIS@l pathl : 1! C,its length is denoted by lendth) where

lengthl )= a L 0(t)]dt for any partition O= tp< t; < < t, = 1 of [0;1]

k= 1 W1
for which|_ has a continuous derivative on each inteftial; ; t].

4.2.2 The Riemann surface &-resurgent functions

4.2.2.1 The spac® z,,

De nition 4.1. LetUg be a connected and simply connected neighbourdhood of the
origin in C andzg 2 Ud7 = UpnfOg. We denote by, (resp.B ;) the set of paths

in Up (resp.C nZ) originating fromzo, endowed with the equivalence relatior,
(resp. cnz) of homotopy of paths with xed extremities.

We setR, = A, [ B, and denote bfo the relation orR,; de ned as follows.
Forany twogi; & 2 R, th % & when one of the following conditions is satis ed:
eithergy u, @ Or% cnz @

or else there exisig 2 A, \ B ,, such that B U®B o G ocz®B
0 @ cz® @ U ®

Exercise 4.1.Show that™ is an equivalence relation dR, .
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De nition 4.2. Let g be an element oR, . We denote by ¢|(g) its equivalence

class for the relatior’. We selR = CnZ? and we de ne:

Rz, = fcIZO(g) jg2 R2,9 and Pz, - cIZo(g) 7! g(l) 2 R: (4.2)

Notice thatp201(0) is reduced to a single distinguished point, the equivalence
class of anyg 2 A, ending at the origin, becaukk is simply connected.

De nition 4.3. One denotes by B Rz, the unique pre-image of 0 ki, . Let be

z 2 R, one denotes by 2 Rz,,, one of its pre-image if exists. For amy2 R7.,,,

one denotes by = p,,(z) its projection byp,, .

4.2.2.2 The Riemann surfac® 7.,

The topological spaceRz,,, We endowR z.,, with a topology, a basiB = fU g
of open sets being given as follows. lzebe an element d® 7., and set = p, (2).

Assume that = cl,,(g) withg2 A, (thusz 2 Up). LetU  Ug be any connected
and simply connected open neighbourhooa offo (U;z) we associate the set
U Rz, made ofalix = cl, (&) whereg satis esth u, gWhile g is any
path inU originating fromz.

Assume thatz = cl, (g) with g2 B, (in particularz € 0). LetU CnZ
be any connected and simply connected open neighbourhoad T (U;z)
we associate the s&t Rz, made of allx = cl, (%) whereg satis es
o cnz 9andg is any path irlJ originating fromz.

Exercise 4.2.Show the following properties (hint : see the classical construction of
the universal covering a€ nZ [7,[3] and adapt the arguments):

1.B = fU g provides a Hausdorff topology dRz.,;

2. the projectiorp,, is a continuous mapping and even, a local homeomorphism :
foreveryU 2 B, the mapping, ju ! U = p,(U ) is a homeomorphism.

3. Rz, is arc-connected and simply connected.

The Riemann surfaceR z,,, The following proposition is a direct consequence of
the properties detailed in exercfse|4.2.

Proposition 4.1.The spac® 7, is a topologically separated space, arc-connected

and simply connected The projectipp, makesR 7., an étak space orR. By
pulling back byp,, the complex structure &, the spac® 7., becomes a Riemann

surface with a uniquely de ned distinguished pdirt p201(0).

Notice thatp,, is not a covering map since the curve lifting property [7, 3] is not
satis ed. For instance, as a rule, a path starting from and ending at O cannot be lifted
from OonR 2., with respect tq,,.

We precise the “pull back” of the complex structure.Uf;;U,, U1\ U260
are two open sets dR 7., such that the mappings, ju, : U1! p,(U1) and
Pru, tU2! py,(Uz) are two homeomorphisms, then the chart transition
Pzolus szjui TPg(Ui\ U2) ! p, (Ug\ Up) is nothing but the identity map, thus
is biholomorphic. This makeR 7., a Riemann surface.
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Exercise 4.3.Let Ug; o be as in de nitio{ 4.].. Letl; CnZ be a connected and
simply connected open neighbourhoodzgfsuch thatUp\ U; is connected. We
denote byUy Rz, the uniquely de ned open set such thgtju, : Uo! Uo
is a homeomorphism and we e} = pZOjui(zo). We denote byJ1 Rz, the
uniquely de ned neighbourdhood @‘0 such thap,ju, :Uz! Uz is ahomeomor-
phism.

1. Show that) = Ug[ Uj is simply connected.
2. We seU = Ug[ U;. Show thap,ju is a homeomorphism betweéh andU.

4.2.2.3 The Riemann surfacd 7

Up to now, the Riemann surfa¢® ;.,;p,,) depends on the given afo, a con-
nected and simply connected neighbourdhood of the origin, angl2tJo.

Lemma 4.1.Let Uy (resp. U) be a connected and simply connected neighbourd-
hood of the origin irC andzg 2 ug (resp.zy 2 Uf). Then there exists a ber preserv-
ing homeomorphist:Rz.,, ! Rz, between the Riemann surfa¢és; ,; pz,;0)
and(RZ;zl; pzl;g)-

Proof. Left as an exercise to the reader.

De nition 4.4. The class of isomorphisms of the Riemann surfgé®g.,; p,,;0)
is denoted byR z; p; 0). In this course we often use abridged notatifon

Proposition 4.2.Letjby 2 Og be a germ of holomorphic functions at the origin and
let (R (jbo); o; joo) be its Riemann surface. Thég is a Z-resurgent function if and
only if (R ;p;0) is contained in(R (jog); d; o), that is there exists a ber preserving
continuous map : R ! R(jog),q t = pandt (0) = jbg.

Proof. Assume thajyg is aZ-resurgent function. We s&ly = D(0; 1) and we pick
a pointzg 2 Ug. On the one hand, there is a uniquely determined dordgin R
homeomorphic tdJy by pju, and we set = pjuf)(zo). On the other hand, there
is a uniquely determined domalmoo R (jbp) homeomorphic taJy by quOo and

we setzg = qjulo(zo). We get this way a natural ber preserving homeomorphism
- 0

tjuy,:z2UQ7! z°2 UOO. We now extend jy , as follows: pick any patlin CnZ,
originating fromzo, let G be its lifting fromz_ on R with respect top and set
z = G(1) 2 R. The pathg can be lifted as well oR (jbg) with respect taj from zg
into a pathG® becausgy is Z-resurgent. We s&{1) = z° The extended mapping
t 1z 2 R 7! R(jpo) thus (well)-de ned is injective by uniqueness of liftingl [7],
continuous because we work wiliak spaces, and preserves bers.

The converse of the proposition is left to the reader as an exerdise.

In other wordsjbg 2 Qg is aZ-resurgent function if and onlfsg can be analyt-
ically continued to the Riemann surfaBe,. This means that one can identify the
spaceRr with the spac®(R) of functions holomorphic on the Riemann surf&te

De nition 4.5. The Riemann surfacéRz;p;0) is called theRiemann surface of
Z-resurgent functions
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4.2.3 Riemann surfac® z and sheets

We introduce various sheets and domaindRgn At rst sight arti cially compli-
cated, these constructions will be needed to state one of main results of this chapter,
namely theorerp 4}1 and its consequences.

4.2.3.1 Principal sheet

By the very construction of the Riemann surfd®e there exists a unique domain
RO of R so thatpj, (o realizes a homeomorphism betweR#? and the simply

connected domaiR (9. The domairR (9 is made of endpoints of paths deduced

from any segmer[D;z] R (9, by lifting from 0 with respect te.

De nition 4.6. One refers tR (9 as to theprincipal sheebf the pointed Riemann
surface(R ;0). For everyr 2]0;1[, one denotes bR ,(O) the unique open subset of

RO such thap(R(%)= R?. (See Fig).

4.2.3.2 Other sheets

De nition 4.7. Letbem2 N?, e=(e;; ;em 1)2f+;g ™ Ya(m 1)-tuple of
signs andn=(ng;  ;nm 1) 2 (N)™ 1 a(m 1)-tuple of positive integers. Let
q12f0;pg S!be adirection. Lety be a path irC originating from 0.

Whenm= 1, one says that the pathis of type 981 wheng closely follows the
segment &1]0; 1[=] O; w4 [ towardw; = €%,

Otherwise, fom 2, on says that thgis of type typegé*& if g connects the segment
]10; wy[ to the segmenvy, 1;Wm[, Wm W 1= €97, through the following steps:

g closely follows the segmeiid; w; [ toward the directiomn);, makes; half-turns
around the pointvy, anti clockwise wher; = + , clockwise where; = 1, and
nally closely follows the segmerivy;wo[, wo Wy = €%, toward the direction
Q=i+ e(m 1p;

then, successively fdk= 2; ;m 1, g makesng half-turns around the point
Wk, anti clockwise wherg = + , clockwise wheng, = 1, and eventually
closely follows the segmemivi; Wies 1[, Wies 1 Wi = €%+1, toward the direction

Ok+1= Okt &(ne  1)p.

Fig. 4.1 Above, the domaim (. Below, the domaim ©.
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Fig. 4.2 A path of typeg? for
e=(+; ;+) andg=0.

Fig. 4.3 A path of typegS,
forg=0,e=( ;+;+;+; )
andn=(1;2;1;1;1).

Whenn=(1; :1)2f1g™ 1, we simply say thag is of typeg. (See Fig
and Fig[4.B).

For instance, iy is of typegd , then someone standing a2@C and looking in the direction
of the half-line]0; €9¥ [ will see the patty avoiding the pointv, = néd 2 C? by swerving
in the direction of his right hand whes = + , of his left hand whem, =

De nition 4.8. Letbem2 N?, e2f+; g ™ n2 (N’)Mandq 2f 0;pg. We denote
by R€"d R the domain made of endpoirts= G(1) whereG is the lift from 0
with respect tg of any pathg of the formg = g1 @ with the conditions g, is a path

of type g ending atx2]p; (p+ 1)[=] Wm; Wm+1[, & is a path starting fronx, and
contained in the simply connected dom@&inf] ¥;p][ [p+ 1;+¥[g, star-shaped

fromx. Whenn=(1; ;1) 2f 1g™, we simply writeR ®4 = R €'

The collection of sheetsR (9 R ¢"9g provides an open covering B, with the
following property: the restrictiopj en,q is @ homeomorphism betwe&*"d and
the simply connected domain Cnf] ¥;p][ [p+ 1,+¥[g where
10; (P+ D[=] Win; Wi 1[, With Wim; Wins 1 as given by de nitior] 4.]7.

Remark that for every 2 f 0;pg, for everym2 N? and for everye either in
f+gorinfg ™ R andR &9 have a non-empty intersection (a half-plane on
projection). This justi es the following de nitions.

De nition 4.9. Let be m2 N?. We set(+)m 1 =(+; ;+) 2f+g™ ! and
(IJm1=( ; ; )2fg ™1 We denote by )m 1 any(m 1)-tuple of the
form( ; ; )2f+;9™ L Also,(+)o=( )o=( )o=() isthe O-tuple.

Thus the setof af )m is made of 2' elements.

De nijtion 4.10. The domain R&9 is called a R@-nearby sheet if
e2 f(+) m:( )mg. One denotes bR Y R the union of the principal sheet
m2N? [
and of all nearby sheet® ) = R (©)
q2f 0;pg; M2N?
More generally, for ank 2 N?, one de nes:

[

q2f O;pg;m2N?
n2(N?)k

R (+ ma [ R( )m§C|_

Rk+D) = R RO m Dia [ RE I Im D10,

Remark 4.1Notice thap(R ) md) = p(R( Im9) = Cnedf] ¥;m|[ [m+ L;+¥[g
and RW=R.

K
For every integek 2 N, the domairR (¥ inherits fromR the structure of complex
manifold, thus is is a Riemann surface.
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. . 1 1 .
Fig. 4.4 The domairR, when§ <r z (the scale is not correct).

4.2.4R r(o)-nearby domains

Our aim is to introduce various of the Riemann surfRcevhich will be convenient
for later purposes.
We start with the following remark: for 2]0;1[ andm2 N?, the closed discs

D(m;mr ) andD(m+ 1;(m+ 1)r) are disjoint as soon am< " ; 1 Thus, now

assuming that 2]0;%[and introducing the integer pavt (r )+ 1= b’ ; e 2

(b:c] is the oor function), one observes that the digaém;jmjr ) do not overlap
whenjmj M (r)+ 1.

De nition 4.11. Letber 2]0; %[. We denote by (r ) 2 N? the positive integer de-
nedby M (r)= b’ ; 1c 1. Foranyintegem?2 Z? such thajmj M (r)+ 1,
we denote byDr, = D(m;jmijr ) the closed disc centeredmatwith radiusjmjr , and
Do = f0Og. For anyq 2f 0;pg, we denote byp?  C the closed subset de ned by
. n . . [0} [ .
D= tzjt2[L+¥[;Z 2 Dgqpme Daam:
0Om M(r)

We set p? = CnD? We denote byR, the domain dened by
Rr= P ?\ P P [f OgandbyR;, its closure. (See FiQA).

[
Notice thatR = R . The domaing ¢ satisfy the following property,
0<r<1=5
the proof of which being left as an exercise :
Lemma 4.2.Let bez be an element @ 9. For every n2 [1;M (r )], the closed set
z Dgg,=fz xjx2Dgq,gis asubsetop .
De nition 4.12. Under the hypotheses of de nitign 4]11, for any integez [0;M (r )]
andqg 2 f 0;pg, we de ne:
o [ n (0]
= X+t(x z);z+t(z x)jt2[0;+¥]

(2X)2Dgqm Deia(m 1y

andQy" = CnE}, for any integem> M (r ), we selQ;"? = 0. For any positive
integerm  1ande= ,weseQ (¥ = QMI\f z jedi(Az) Og.See Fig.
The domaing) "9 have been de ned so as to enjoy the following property :

Lemma 4.3.Let bez 2 Q™9 for some integer 2 [1;M (r )] and some 2f 0;pg.
Then, for every integer 2 [1;m], z  Dgq, is a subset o[ ™.
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Fig. 4.5 The domainQ 2P. The setQ! '2” lies below the real axisg (" 2" lies above the real
axis.

Proof. We only consider the cagg= 0 and we suppose 2 Q ?‘;0. Le ben2 [1;m].

Assume the existence of, 2 D, suchthaz  z, 2 Q" ", thusz  z, 2 E[" ™

(see de nition[4.1D). Therefore, there ex&h n 2 Dm n, Zm n+12 Dm ne1 and
t 2 [0;+ ¥[ such that

Z Zn=Zm ntt(Zmn Zm n+1) OF Z Zn=Zm ne1+ t(Zm ne1 Zm n):

We look only at the rst case, which we write as follows:
Z=(Zm n*t Zn)+t (Zm n*t Zn) (Zm n+1t Zn) -

We observe thaty n+ zn 2 Dm While Zm n+1+ Zn 2 D 1. Thereforez 2 EM°
and this contradicts the assumptio2 Q Mmooy
De nition 4.13. Under the hypotheses of de nitipn 4]11, for any intege2 [1;M (r )]

and anyq 2 f 0;pg, we denote bp "9  C the closed subset de ned by

o o n B 0
D™= tzjt2] ¥;15;22Dgay [ tzjt2[L+¥[;Z2 Dggmey

We setp ™ = cnD™ andp %9 = 9%°. For any integem> M (r ), we set
P =0

Fore= wedenote by (O™ the domairp (9™9 = p ™I\t z j edd(Az) Og.
(See Fig[4.B).

De nition 4.14. Under the hypotheses of de nitign 4]11, for agy2 f O;pg, e =
andm2 N, we denote byr ‘™% the domaing (™9 = p Om9 [ o @ma (gee
Fig.[4.7), and we set:

. [ . [ : .
RMI = R = RimT=Cned ] ¥m[ [m+ L+ ¥

O<r 15 O<r 15

Fig. 4.6 The domairp 2P. The sep ¢ 2" lies below the real axis, the set"” 2” lies above the
real axis.
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Fig. 4.7 Figure above, the doma " 2” . Figure below, the domaiR 2P,

We have already noticed that fqr2 f 0;pgandm2 N7, the restrictiorpjy () mq
and pj, ( ymq respectively, realises a homeomorphism between the nearby sheet
R ") ma andR ( )m4 respectively, and the simply connected domain

p(RMmd)= p(R( Imdy= g ma:
This justi es the following de nition.

De nition 4.15. With the above notations, wita= andm2 [1;M (r )] an inte-
ger, one set® (9™ = ij%e)m;q R®MA  The domainR @™ is called aR (?-
nearby domainsThe conFected and simply connected domfafﬁ) R® js de-

ned by R = R R®m9 We denote byR Y the closure oR Y
1mM(r)
q2f O;pgie=

inR®M,

Observe thap Rr(l) =R . In the same line, the following lemma is a conse-
quence of lemmds 4.2 and }4.3.
Lemma4.4.Letbe m2 [1;M (r)],q2f0;pg,e= and letV be the closure of
R©@mInR O Foreveryz 2 V, and every integer @ [1;m],z Dyq,, is a subset

of R, and there exists an open dgt R (®™ "% sych thaty andz Dgq, are
p-homeomorphic.

4.2.5 Geodesics

The closed spacB; R (de nition 4.11)) can be thought of as a complete real
2-dimensional Riemannian manifold with smoo@%) boundary embedded in the
2-dimensional euclidean space. The following lemma thus makes sense.

Lemma4.5.LetX R, be any closed space with smodH{ boundary. For every

two pointszy;z, 2 X, there exists a geodesic in every homotopy class of curves from
z1 to z in X, and this geodesic may be chosen as a shortest path in the homotopy
class.
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Fig. 4.8 Shortest curve for
inRMOpRO,

In this lemma, a geodesic means a locally shortest path for the euclidean metric.
Lemma[4.5 can be seen as a corollary of the Hopf-Rinow thedrem [9]. As a mat-
ter of fact, the situation is quite simple here : insiiga geodesic is nothing but

a straight line, otherwise one just follows the smooth boundaty (See [[1] and
references therein for more general cases.)

The Riemann surfac€R ; p;0) of Z-resurgent functions can also be thought of
as a real 2-dimensional Riemannian manifold, by pulling-baclp ltye standard
euclidean metric on the complex plane. It follows from its very construction that

ﬁﬁl) (de nition ) meets the requirement:

Lemma 4.6.The closed, connected and simply connected space with siideth

boundar 79) R is a complete real 2-dimensional Riemannian manifold.

Pick a pointz 2 ﬁgl). Up to homotopy, there exists a unique pathoining 0to

zin ﬁﬁl), becaus® ﬁl) is (path)connected and simply connected. Moreover, from
the Hopf-Rinow theoreni, can be chosen as a shortedt{)path in this homotopy
class, and is uniquely determined when parametrized by arc-length. To sum up:

Lemma 4.7.For everyz 2 ﬁﬁ”, there exists a unique path in ﬁﬁl), originating
from 0 and ending atz, such thal is a shortest path in its homotopy class and is
parametrized by arc-length.

Remark 4.2lt is easy to construdt by hand.

First case: z belongs tdR' EO). Consider the curvie, with its arc-length parametriza-
tion, starting from O which follows the segmdftz ] ﬁgo). The path_ is obtained
by lifting I from Owith respect t@ on ﬁﬁl).

Second casez belongs tR ‘O™ nR(? for someq 2f 0:pg,e=  and somen2

[1;M (r)]. Consider the path = gdod; whereq; dp; d; stands for the following
geodesics with their arc-length parametrizations (seq Fip. 4.8) :

o follows the segmerf;z,] 1 P @™\ R that circumvents the segment
€9[1; m] to the right where =+ and to the left whee = ;

do is the arc-curve fronz , to z, that follows inR (™9 the boundaryDyq ;

dy follows the segmeritz ;;z] in R ‘@™ (possibly reduced to the poiay).

Once again, one deducksfrom| Dby lifting.

De nition 4.16. Let z be an element af 2 R Y. The uniqueCl-pathL in RV
given by lemma 4]7 is called the shortest path froto 9.
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4.3 Shortest symmetric(Z;r )-homotopy

4.3.1 SymmetriZ-homotopy

The notion ofsymmetridV-homotopyis introduced in[[10] and used there for ana-
lyzing the convolution product of resurgent functions, see also [4, 12, 13, 14]. For
the convenience of the reader, we recall it here/for Z.

De nition 4.17. A continuous magd : 1 |! C,I=[0;1], is called asymmetric
Z-homotopyif, for eacht 2 |, the pathH; : s2 | 7! H(s;t) satis es:

1. H{(0) = 0 andH; can be lifted on the Riemann surfaBe, with respect top
from G;

2.H(1) Hi(s)= H, (s foreverys2 I.

The pathHyp (resp. H) is called theinitial path of H (resp. nal path) and the path

t2 17! H(1) is called theendpoint path of H

A pathl in Cis called asymmetricallyZ-contractile pathif its standardized path
|_isthe nal path of a symmetriz-homotopy whose initial path follows a segment

[0;z] of R in the forward direction.

Let z be any point of the Riemann surfaée, and pick a path joining @o
z, thus uniquely de ned up to homotopy. It is known that one can nd a path
in this homotopy class with the further condition : its projectiors p L is a
symmetricallyZ-contractile path. This is a key result to analyze the convolution
product, as detailed in [10].

However, there are plenty of paths with the above properties and we raise the
question:

Question 4.4In the homotopy class of these paths, is it possible to nd a shortest
curve ?

This question is meaningless becaisg is not a complete Riemannian mani-
fold, but makes sense ﬁﬁl) which is our frame in what follows.

4.3.2 Shortest symmetricZ;r )-homotopy

De nition 4.18. Let L be a path inﬁﬁl) originating from Oand letl = p L
be its projection. The path is said to besymmetricif | satis es the condition:

11 L(9=L l(s)for everys?2 [0;1]. A symmetric pathL in ﬁﬁl) is said to
be shortest-symmetrimhenL is a shortest@1-)path among the symmetric paths
belonging to the same homotopy clasﬁﬁl).

For instance, pick a poirgt in ﬁfo) and letl be the smooth path which follows

the segmen; z] ﬁﬁo) in the forward direction with a constant velocity. The path
L in ﬁﬁo) deduced fronh by lifting from 0 with respect tg, is shortest-symmetric.

Proposition 4.3.Let z be any given point inﬂl). There exists a unique continu-

ousmapH :(st)21 7' H (st)2 ﬁﬁl), | =[0;1], which satis es the follow-
ing conditions:
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1. foreacht2 |, the pathH{:s2 1 7! H (s;t) is shortest symmetric;

2. the projection = p H ¢ of the initial pathH ¢ follows a segment iﬁ(o);

3. denoting byG the endpoint path 2 | 7! H(1), the productH (G, when
reparametrized by arc-length parametrization, coincides with the shortest path
fromOtoz.

Proof. Let z be a point inﬁﬁl) andL be the shortest path fromt0 z. We denote
byl = p L its projection.

First case: Eitherz belongs td?ﬁo).ThenI follows the segmer0; z] ﬁﬁo).We

setH:(st) 21 170 H(st) = sz2 RY. For eacht 2 I, the path
Hi:s2 1 7! H(s;t) can be lifted uniquely orﬁﬁo) from O with respect top into

apathH: 1! ﬁﬁo). From the lifting theorem for homotopigs [4, 3], the mapping
H :(sit)21 17! H(s) is continuous and matches the other conditions.

second caseOr elsez belongs toR (¥™ nR? for someq 2 0;pg,e= and
somem2 [1;M (r)]. For simplicity, we supposq = 0 ande =+ . The pathl ,
resp.L , can be written as a product= gl 1, resp.L = GL1, wheregp= p G and

| 1= dod1 = p L; are the geodesics described in re 4.2 with their arc-length
parametrizations.

We setHp = gp, resp.H o = Gg the standardized path deduced frggm resp. G,

which follows a segment iﬁﬁo), resp.ﬁﬁo). This path can be lifted from @ith re-
spect top into a unique patiH o whose endpoint is denoted lay = H ¢(1). By

its very construction, the poirtg belongs toV, the closure oR §+) mi0 nRﬁO),
and we can apply lemnfa 4.4. Therefdfig can be thought of as a geodesic in

Xz =R, n fz, Dngand is a shortest path in its homotopy class, by appli-
1nm
cation of lemm&4l5.

According to lemma 4)4 again, the spaXg=R, n [ fx Dpgremains in
1nm

the eld of application of Iemm5 for every 2 V. One gets this way a local
system X, ,,,, of Riemannian manifolds with smooth boundary.
Let 1> Obethelengthof; andT :t2 [0;1] 7! t71 2 [0; 1]. For anyt 2 [0; 1], the
pointz; = L1 T(t) belongs to/ by construction. To the pathy T is associated a
sectiont 2 [0;1] 7! X,,, thus a map 2 [0;1] 7! [g] which allows to follow the con-
tinuous deformation of the homotopy cldgg of g, the extremities 0 ang being
kept xed. In the homotopy clagst] we choose, for aniy2 [0; 1], a shortest path
in X, with its arc-length parametrization. L&t = gl 1jjo.1 11y, be the (minimal)

Fig. 4.9 The shortest sym-
metrically contractile path for

zinRM3HRO
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geodesic de ned as the product gfwith the restriction ofl ; to [0; T 1(t)]. We
denote byH; the path deduced froi&; by standardization and we eventually obtain

a continuous mapping : (s;t) 2 I 1 7! H(s;t) = H(s), | =[0;1]. See Fig[ 4)9.

For anyt 2 [0;1], the pathH; can be lifted toR | ﬁl) from O with respect tg. This

gives a path, denoted ki, which is shortest symmetric by construction and the
mappingH :(st)21 17'H (st)= H(s) 2 ﬁﬁl) is continuous by the lifting
theorem for homotopies$ [7] 3]. The reader is encouraged to check the remaining
properties. u

De nition 4.19. Let z be any given point irﬁﬁl). The uniquely determined con-
tinuous mapH given by propositio3 is called trehortest symmetri¢Z;r )-

homotopyassociated witlz. The pathH 1 :s2 [0;1] 7! H (s;1) is called theshort-
est symmetrically contractile pa#tssociated witl in ﬁﬁl) and its length is denoted
by leng (z)

Remark 4.3Let H be a shortest symmetri@;r )-homotopy. Consider the path

Hi:s2[0;1] 7! H (s;t) for any givent 2 [0;1]. ThenH  is the shortest symmetri-
)

cally contractile path associated the endp#in{l) in §§1 .
The next two statements are left as exercises.
Lemma 4.8.The mapping 2 ﬁﬁl) 7! leng (z) 2 R* is continuous.
Lemma 4.9.Let bez 2 ﬁfl) andH be its associated shortest symmeti;r )-
homotopy. Then for even2t[0; 1] and every 2 [0; 1]
leng H(s) lengthHjjog ;
leng Hy (9 leng H(1) lengthH jpy -

We nally state a result drawn froni_[8], which gives an upper bound for the
length of the shortest symmetrically contractile path we work with.

Lemma 4.10.Let bez 2 RY. Either z 2 7§0) and thenleng (z) = jz j, or

jzj leng(z) %jzj+i i 2.

Proof. The rst case is obvious. The second case meansztaR (@™ nR©
for someq 2f0;pg, e= and soman2 [1;M (r)]. Let us assume that = 0
ande =+ for simplicity. We return to the construction of the shortest symmetri-
cally contractile pattH 1 associated witlz (see also Fid. 4]9) and we denote by
Hy = p H1its projection. The pathl; is made of :
m+ 1 segments betweefD, andf z Dp n , N2 [0;m]. Each of these seg-
ments has length less tham  mj+ mr .
msegments betwedh z Dy, n and{Dns+1,n2 [1;m]. Each of these segments

has length less thgre  (m+ 1)j+(m+ 1)r.
2marcs of circle, the total length of which being less thgh® + m)2pr .

Putting things together:

leng (z) (2m+ 1)jz j+ 2m(m+ 1)(1+r)+ 2m(m+ 1)pr:

Sincer % onehagzj leng(z) (2m+ 1)jzj+ 4m(m+ 1). Remember that

M (r)+ 1= b ; 1c thusm M (r) % 1 and one concludesiu
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4.4 Convolution product and related properties

It has been recalled that the sp&ée= Rz of Z-resurgent germs is a convolution
algebra without unit (de nitiof 3]7 and theor¢m [3.2).

Question 4.5ls it possible to give quantitave estimates for the convolution product
of two Z-resurgent functions ?

The answer is “yes”, as detailed (without proof)[inl[10] (see &l$6 [2, 12]). Even,
gquantitave estimates can be obtained for iterated convolutions and this allows non-
linear operations in the frame of resurgent functions [14].

Nevertheless, these results are dif cult to use in our context. This is why we
follow another strategy in the sequel.

4.4.1 A new convolution algebra

De nition 4.20. Let k2 N? be a positive integer. We denote ny(k) the space of
germs of holomorphic functions at the origin which can be analytically continued to
the Riemann surfade (.

In other words, the gerrjp 2 Op belongs toR ¥ when there exists a function
F 2 O(R®) holomorphic onR ¥ whose gernfo 2 Og at Osatis esfo=jp p.
Notice that the linear ma}: §2 R 71 zystill provides a derivation oR .

Theorem 4.1. 1. The spac® () is a convolution algebra (without unit).
2. Letjp;p 2 R be two germs and lé% ;Y 2 O(R ™) be their associated holo-
morphic functions oR (V. Assume that the following properties hold : for ev-

eryz 2 ﬁﬁl), F(z) F leng (z) and Y(z) G leng (z) , where EG
are two positive, non-decreasing and continuous function®R6én Then the

convolution productb ¥, resp. (ﬁjb) ¥, can be analytically continued to
R @ and the corresponding function2 O(R ), resp.j 2 O(R ), satis es

the following properties: for everg 2 ﬁﬁl), c(z) F Gleng(z) , resp.

i (z) leng(z) F Gleng(z)
Proof. The standard proof for proving thRt is a convolution algebra[10, 12] can
be copied as it stands f& (. We sketch it here, essentially so as to x notations
that will be used later on, more details can be found.in [10].
Let bejo;y 2 RM and letF ;Y 2 O(R M) be their associated holomorphic func-
tions onR (.
The convolution produgb ¥ (z) is well-de ned for everyz 2 R(© and we set
c(z)= b W(z). For everyz, 2 R andx 2 C such thatjxj < 5, the point
z,+ x belongs toR (O thus there exists a uniquely determined point denoted by
zo+ x 2 R such thatp(zo+ x) = z,+ X. Therefore, the convolution product

c(zo+x)=jp P(zy+ x) reads:
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Z Zg+X
c(zo* x) = P(h)p(zo+x  h)dh
0

Zzo Zy
= PPt x hydh+ plzo+h)pix hydh:

Let nowz be any given point irﬁﬁl). We denote byd the associated shortest sym-
metric(Z;r )-homotopy given by propositi.3. We want to construct the analytic
continuation ofc atz. We therefore assume thzg is the endpoinH ¢(1) of the
intial pathH ¢. The above equality yields :

Z,
c Ho(D+x = F(Ho(9)Y (Hy X9+ x)H3(9ds

0 z,

+X . F(Ho(1)+ x9)y x(1 9) ds

whereHp = p H g stands for the projection dfl g. The analytic continuation of
¢ from H (1) along the path 2 [0;1] 7! H (1) 2 ﬁﬁl) is thus given by (see the
arguments in[10]):
z 1
c Hi(D+x = F(H(9)Y (H, Y9+ x)HI9)ds
0 z,
+X . F(H{(D)+ x9y x(1 9) ds
Z,
In particular wherz = H (1), c(z)= F H1y(9 Y H,; X9 HXs)dswhere
H 1 is the shortest symmetrically contrgctile path associated avith

Notice that the gerng (z + x) of holomorphic functions at thus obtained does
not depend on the chosen p#th sinceR (@ is simply connected.
We turn to estimates. LeE be the homothety 2 [0;1] 7! sleng (z) so that

z leng (z)
c(z)= . FHy TY)Y H, ' T 1) d.Wethenuselem 9to
get:
z leng (z)
jic(2)j F>Gleng(z) " d
0
F Gleng(z) :

The proof for the last assertion is left as an exercide.

4.4.2 Convolution space and uniform norm

The following de nition makes sense by lemina}4.8 and lefima 4.9.

De nition 4.21. LetL > 0 be a real positive number and?]0; %]. One denotes by
U, .. the open subset (Rr(l) denedby:U, =z 2 Rr(l) j leng (z) < Lg. An
element ofU, . is called aL-point

We denote byD(U ; . ) the space of functions holomorphic bl . and continuous
onU ;... For any two element§;g2 O(U (), one sets
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z
f = L Ty gn, T @ 4.2
9z)= 1 LO)gH T T,00) (4.2)

whereH ; stands for the shortest symmetrically contractile path associated with
z 2 U ., whileT, is the homothetyl, : s2 [0;1] 7! sleng (z).
The functionz 2 U ;.. 7! f g(z) is called the convolution product dfandg.

Proposition 4.4.For any two elements;§ 2 O(U ,.), their convolution product
belongs taO(U .. ). In other wordsCd O(U ,..) is a convolution algebra.

Proof. Use lemm# 4]9 and adapt the proof of theofer 4tl..
The following de nition is similar to de nition[3.12.

De nition 4.22. LetU = U;._be an open set df-points. We denote b1 O (U )
the maximal ideal 0O (U )) de ned byMO (U ) = ff 2 O(U); f(0) = Og.
Letn O be a nonnegative real number. The ndak, on O(U )) is de ned by

kfk, = L sup e "e"% @) f(z) . We extend this normt€d O(U . ) by setting
z2U

ked + fk, = jcj+ kfk, for everyf 2 O(U ) and everyc 2 C.
We now state an analogue of proposifion 3.9.

Proposition 4.5.The normed spaceCd O(U );k:k, is a Banach algebra. In

particular, for every g2 Cd  O(U , kf gkn k fkakgks. The spacéO (U)
is closed in O(U );k:k, . Moreover, fom > 0:

_ I
1. for every n2 N, for every g2 O(U), k(z 7! z") gkn %kgkn,

|
K(z 7! z"kn %L andk(z 7! Lk = L.

. forevery fg2 O(U ), kfgkn %kfknkgko.

forevery 20(U),n ng 0)k fkn Kk fkn,.
. forevery 2 MO (U ), nIlm¥ kfkn, = 0.

AW N

5. the derivatiorﬂ?jo(u—) :f20(U) 7" zf2MO (U) isinvertible and the in-
verse maf] 1 satis es: forevery 2 O(U ), forevery 2 MO (U ), 8 1(f g
belongs tM O (U ) andk® X(f g)kn n—lkakn k8 1gko.

ForeveryCd O(U ), forevery2 MO (U ), % (f g) belongsta(U ) and
KB 1(f g)kkn k fknk® lgkn.

Proof. The normk:ky, is obviously equivalent to the maximum norm on the vector

space O(U). This shows the completeness ofO(U );kik, and of
Cd O(U);kk, aswell.

Pick a pointz 2 U . For anyf;g2 O(U),

z leng (z)

h
f g(z) — d en leng Hi TZ 1(I) +leng H, 1T l(I)

z 4.3)
1 141
f H, Tz 1() e nleng Hi T, (1) 9 H ) 1 Tz 1() e nleng Hj = T, (1) :

We know from Iemm9that lepgH 1(9)) + leng (H ; Y(9) leng (z) for any

| leng (z) 1
s2 [0;1]. ThereforeLe Me"% @)jf g(z)j k fknkgkn Cd K fkakgkn.
0
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This shows that for everf;g2 O(U ), kf gk, k fknkgkn, hence O(U );k:kn

is a Banach algebra an€Cd O(U );kk, as well. We encourage the reader to
show the other propertiesiu

Remark 4.4We have already noticed that the spRAél) can be identi ed with
the spaced(R () of holomorphic functions on the Riemann surfdé". Since

OR®) = O(U; 1), formula ) provides the convolution product

L>0
O<r 15

onO(RM),

4.4.3 An extended Gmwall-like lemma

The following statement is similar to lemra3.9.

Lemma 4.11 (Extended Gbnwall lemma). Let N2 N? be a positive integer. Let
and (B)o n N, resp.(B)o n n, be a(N+ 1)-tuple of functions iO(R ), resp.

of entire functions, real, positive and non-decreasindn with at most exponen-
tial growth of orderl at in nity. We suppose that for eve n N and every

z2 ﬁﬁl), jﬁ(z)j = leng (z) . Otherwise, let pg;r be polynomial functions

such that the functiom 7! p( z) does not vanish oﬁﬁl) and we assume that the
following upper bounds are valid:

i e A0EG@) e @) 1

2Rt jp( 2)j 2Rt jp( 2)j 2R jp( - 2)j

We furthermore assume thaat2 O(ﬁﬁl)) solves the following convolution equa-
tion:

N
pb+ 1 [gwl=z [rDHwl+ R+ 3 B wn (4.4)

n=1

Then, foreveryd Oandeverg 2 R, ji(z)] Wy leng (z) , wherelWy 2 O(C)
stands for the holomorphic solution of the following convolution equation:
|

W= d+[a+ bx] W+c mg”m w" o (4.5)

n=0
Proof. Let W 2 O(ﬁﬁl)) be a solution of convolution equatio.4). This means
that for everyz 2 R\Y:

Z leng (z)
R(z) . qH:1 T,'(O)WH; T,'() d

p(f)b(z)

Zleng‘(z) 1 1/ 1/~ 1/ N
+0 Hy " T,*C)rH1 T,"C)WH, T,°() d
Nzleng(z)
+ 8 , BH, P TIO)W"H, T,Y) d:
n=1

whereH 1 stands for the shortest symmetrically contractile path associatedzwith
From Iemm and the hypotheses, one obtainsxvitheng (z):
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2 3
Z, -
wz)) —tkeo+ 4390 MO o s h, T 0 ja
ip( 2)j ° ip( 2)i jip( 2)]
NZx g
+a ——Bx Hiw"H T, () jd:
=10 jp( 2)]
Therefore
ZX
mmJCMM+OmHm Il H1 T, () jd° (4.6)
NZX
+cd R T HL T, jd:
n=1

The existence and the propertied®§, solution of ), have been given in lemma
. We adapt the proof of Iem@.g. We rst notice thie0)j cih(0) by de ni-
tion of c and by hypothesis of. SinceW(0) = d+ ci(0), we havgy(0)j W(0).
First case. We rst assumgw(0)j < W(0). One considers, fdr > 0, the open set
U, . of L-points. We remark that, on¢g > 0 is chosen small enough, then for every
0<L Lo, forveryd> 0, foreveryz 2 U ., jW(z)j < Wy(x) with x = leng (z).
This is just a consequence of Iem@ 3.9. (Eor 0 small enough, lendz) = jzj).

We now assume that there exist> 0 andz1 2 U , .L, such thajiy(z1)j Wy (x1),
X1 = leng (z1). We recall that the mapping 2 ﬁﬁl) 7! leng (z) is continuous and
we de nec = fL2 [Lo;L1] j there existz 2 U . ; jw(z)j Wqy(leng (z))g. This
is a closed set bounded from below and we denotie)®]Lo; L1] its in mum. This
implies that:

foreveryz 2 U, .,; jW(z)] Wq(leng (z));

there existz, 2 U | .L, such thajl(z,)j = Wd(xz) andxz = leng (z2) = Lo.

We take such @, 2 U, ,. By (4.6),

ZX2
ib(z2)]  cRxp)+ lat b W H1 T HC) jd
N Zx
+cd R0e ib"H TH0) jd

n=1

whereH 1 is the shortest symmetrically contractile path associated mrgthNVe

know by Iemm thatlepgH 1 T, '())  for every™ 2 [0;x;], while W

is real, positive and non-decreasing®h. Therefore,

. . Z % . “ N Z % < N,

W(z2)]  chRy(xz) + . [a+ b(x; Wy()d +c@ . B WG ()d:
n=1

This shows thajin(z,)j Wy(x2) dand we get a contradiction.

Second caseThe casdéw(0)j = W(0) (thusd = 0) is done by an argument of con-
tinuity already used in the proof of lemrpha3.qu
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4.5 Application to the rst Painlev é equation

4.5.1 A step beyond Borel-Laplace summability

We come back to the minde of the formal series solution of the prepared equa-
tion (3.6). We already know that can be analytically continued to the star-shaped
domainr (9  C, with at most exponential growth of order 1 at in nity there (the-
orem[3.3). Said in other wordi can be interpreted as a holomorphic function on
the principal sheeR (9) of the Riemann surfad@ . We claim that this function can
be analytically continued to eveR (9-nearby sheets: this is the matter of the next
theorem.

Theorem 4.2.The formal solutione of the prepared equatioh (3.6) associated with
the rst Painlewe equation satis es the following properties:

1. its minorlw can be analytically continued to the Riemann surf&®). This
provides a function it (R () still denoted by;

2. this functionly has at most exponential growth of order 1 atin nity 4D . More
precisely, for every 2]0; %], there exist real positive constantsAA(r ) > Oand
t = t(r)> Osuchthat foreverg 2 R™Y; jw(z)j Ae* withx = leng (2);

3. moreoveleng (z) #jzj+ % % 2 andone canchooseA4andt = 4

;
in the above estimates.

Proof. We begin this proof with a preliminary result which should be compared
with lemma3.2.

Lemma 4.12.There exists a real positive number, My > 0 such that for every

polynomial q of degree 1, for everyz 2 ﬁﬁl), Mj M, ;(pidi(2). More-

IPC 2)i
over one can choose My = 5763

Proof. FrcHn Iemm and IemlO, one sees that for ezeg/ﬁﬁl),

leng (z) 1,1 1 1
m Ft 7 7 2 My - Thenusethe factthat2]0;z]. u

Holomorphy of W on R® Letr > 0 andn > 0 be positive real numbers,
U =U;L R® bethe opensetaf-pointsL> 0,andB, = f12 O(U );kik, rg.
The convolution equatiof (3.]L0) can be viewed as a xed-point problei®, amd
we set:

h i
N:w2B 7P 1) 1 Qb +R+H v+ B b b:

By lemmag 4.12 and propositipn #.5,
KN@kn Mok 1 Qb+ R+ B b+ B b by

By propositio, sinc@(?) = 3
k1 Q(‘?)b Kn %kQ(ﬁ)tﬂ(n %k(z 7! Q( z))koktkn %k\h’/kn:

The functions k; B; % belong to MO (U), therefore by propositior] 4.5:
r!m{ k|5?kn = 0,i= 0;1;2. HencekN(®)k, r forn > 0 large enough.
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The same arguments shows thai(ly) N(p)k, kkly ik, with k< 1, for

3;1%, 2 B, and forn > 0 large enough.

The mappingN is thus contractive on the closed subBetof the Banach space
O(U );kk, , for n > 0 large enough. The contraction mapping theorem ensures

the existence of a unique solutidm2 B, for the xed-point problemiz= N(1).

SinceL andr can be arbitrarily chosen, we deduce (by uniqueness) that the minor

W of the unique formal series solution of [3.6) is a germ of holomorphic functions

which can be analytically continued B(®.

Upper bounds We use the Ginwall lemmd 4.1}1 (withd = 0), which tells us that
for everyz 2 ﬁﬁl), jWw(z)j Wy(x), x = leng (z), whereW/(x) solves the fol-
lowing convolution equatiorﬁﬁ\h/: iRi+ 3+jRj W+jBj W W(ustuse
Iemm). Moreover, one can choddg ) = ?63. We would like to get explicit

estimates. We consid¥¥ as the Borel transform of the functid®, solution of the
second order algebraic equation,

S B
W= jfoi(d+ S+ W+ @ 4.7)
My z

holomorphic atin nity and asymptotic tjdpj(2) there. Remember thakj(2) = %Z%,

ifi(2= %.ifi(2 = 5. Setting®/(2) = H(t), t = z 1, the above problem reads
as a xed-point problem,

H=N(H); N(H)= M, jfoi(t )+ 3t+jfi(t 1) H+jfit HH? : (4.8)

From homogeneity reasons, we introdude= D(O;r 3=4), we consider the Ba-
nach algebraO(U);kk wherekk stands for the maximum norm, and we set
B,s=fH2OU); kHk r3g. It is easy to show that the mapping
NJ'B,s :H2B,37! N(H) 2 B, s is contractive (remember: 2]0; 1=5]). Therefore,
from contraction mapping theorem, the xed-point probl¢mj(4.8) has a unique solu-

i. .
tion H in B, 5. In return we deduce th¥¥ s an entire function anp#¥(x)j 4e "
for everyx 2 C (see lemmf 3]5). One ends with lemma §.10.

4.5.2 Concluding remarks

The following comments rely on notions introduced|inl[10] to which the reader is
referred.
It turns out from theorein 4.2 that the minbcan be analytically continued along

any path of typegl) andgf! ) (de nitions an), for anyn2 N? and
any directiong 2f 0;pg S

To x our mind, we consider a patg of type gg) o The analytic continuation of
W alongg gives a germ cogiiy which can be represented by a function holomor-
phic on the open disD(2%-1; 3) adherent tan. Writing fi(z) = congw(m+ z),

we get a functionf,, holomorphic onD = D( %; %). However, theore@.z trans-
lates into the fact thaf,, can be analytically continued to a wider domain as a
“multi-valued function”. Precisely, pick a point, = 3¢%2 p 1(  3) above 3

on the Riemann surfac€€;p) of the logarithm. Let® = (Eo;%) € be the
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Fig. 4.10 Comparison of
right and left Borel-Laplace
summation for the direction
g=0.

neighbourhood ofgo which is p-homeomorphic toD. One obtains a function

fr= fm p, T2 O(B). This function can be holomorphically extended to a func-

tion (still denoted by)f,2 O( ézz), where (1;2 € is the open sector de ned by:

o =fz=x€d92€jq2] p+qodo+ 2p[;x 2]0;1=2[g.

Question 4.6Can we analytically continue eadl, into an element of ANA ?

The answer is “yes” but requires further effort and supplements to resurgence
theory, given in chapteg 7. Taking this for grantedftpthus corresponds a singu-
larity (meZ SING deduced fronty through the action of the alien operator denoted
byAn%;5° in [20], or more precisely t®;, .

0
Question 4.7Can we describe more precisely the singularifigs?

This is of course the key-question for describing the Stokes phenomenon. Partly,
the reply relies on the formal integral associated with equafion (3.6), which is the
matter of the next chapte} 5. The nal answer will be given in the last chpter 8 of
this course, with the use of the alien derivations. In the same spirit:

Question 4.8At this stage, can we compare the suBns P%lw 2 O(D( p;0[;t))

andS 1°Phg 2 O(D (JO;p[;t)) ? (See propositi4.) In other words, are we able
to analyze the Stokes phenomenon ?

Formula+ted another way, we would like to compare the right Borel-Laplace sum-
mationS % w and the left oneS © w. Look at Fig. : we have chosen two
directionsq™ 2] p;0[andg 2] p;0[ closed to zero, so that the Borel-Laplace
sumsS 9" w(2) = e “ZW(z)dz andS 9 w(2) = e “W(z)dz can be com-

[ |

+

pared on their nonempty common domain of de nitbrﬁ{m)\ P fl(q ) The curve

I 1+ can be seen as a chain on the Riemann spBereC[f ¥g running from
¥ to ¥ and avoiding the pointZ” C. In other words) !l . represents a cy-

cle for the 1-homology groupli(R [f ¥0;¥) which is homologous to the sum
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&7 1gc+ Cme 1 (With m= 2 on FigJ4.1p). Interpreting this result &1 wherew
is holomorphic with at most exponential growth of order 1 at in nity (theofen 4.2),
we get: for every 2 p S€q+)\ Pﬁ(q ) with jZ large enough,
. m Z Z
STw2=S%9w+q e ZWz)dz+ e ZWw(z)dz: (4.9)
k=1 % 1
One recognizes in this equation the very construction ofthe Stokes automorphism,

detailed in [10]. The asymptotics at in nity of the integrals e ZW(z)dz are of
%
the form e kA& (2) where\&, stands for a formal sgries which only depends on the
o]
still unknown singularityf,. The remaining integral e “W(z)dz provides an

1
exponentially smaller vanishing behaviour. It will be shown in this course that the
right-hand side of the equality (4.9) when letting ¥, is nothing but the Borel-
Laplace sum of a “transseries” introduced and studied in chggters[§ and 6.

4.6 Some supplements

We end this chapter with some supplements to the that will be used later on.

De nition 4.23. Letbeq 2f O;pg, a 2]0;p=2] andL > 0 be a real positive number.

we denote byR (@:@)(L) the set of path$ in R originating from 0, piecewis€?,
with length(l ) < L+ 1, with the conditions:

eitherl stays in the open dido(0; 1);
or else, for every 2 [0; 1], the right and left derivativego(t) do not vanish and

arglzo(t) 2] a+gq;q+al.
We denote byR (9:2)(L) the subset of the Riemann surféRede ned as follows:

RE@a(L)=fL(1)2R jI =p L belongs tR@3)(L) andL (0) = Og:

We should note in passing that every patd R(9:2)(L) can be lifted orR from
0 with respect tg.
The following assertion is left as an exercise.

Fig. 4.11 Two paths belonging t& (@@)(L) forq = OandL 2.
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Lemma 4.13.The seRR (@:2)(L) is an open and connected neighbourhood drfi

R andR@3)(L) RO R ()i with m= dLe. Also, for any n2 N?, for any
1 jm

pathg of typegd withe2f+;g landl j m,the endpoinG(1) belongs to

R (42)(m), whereG is the lift ofg from 0 with respect tqp onR .

In the above lemmal.e s the ceiling function.

Remark 4.5Notice thaiR (@) (L;) R (@@)(L,) whenLs < L,. Also, sinceR (@:a)(L)
is open and connected R, R (2)(L) inherits fromR the structure of complex
manifold, thus is a Riemann surface.

De nition 4.24. We denote byri(q;a)(L) R the space of germs of holomorphic
functions at the origin which can be analytically continued to the Riemann surface
R (@2a)(L).

Example 4.1The formal solutione of the prepared equatiop (8.6) has a miskor
which belongs taR (@:P=2)(L), for any directiory 2 f 0;pg and anyL. 2]0; 1]: this is
a consequence of theorém}4.2.

Proposition 4.6. The spacdR (4:@)(L) is a (non unitary) convolution algebra.

Proof. We just have to prove the stability by convolution product. It is shown ih [10]
that for any smooth patg: |1 =[0;1]! CnZ such thafg(0)j < 1, one can nd a
symmetricZ-homotopyH : (s;t) 2 1 1 7! H(s;t) = Hi(s) whose initial pattHy is
Ho:s2 [0;1] 7! sg(0) and whose endpoint patt2 [0; 1] 7! H;(1) coincides withg.
Lifting every pathH; from 0 on R with respect top, one gets the mapping
H :(st)21 17'H (sit)= H(s) 2 R, which is continuous by the lifting theo-
rem for homotopies, and the following diagram commutes:

R
H % #p

I 1! R:
H

(4.10)

We recall from [10] how this symmetriZ-homotopy can be constructed. Pick a
C? functionh : C! [0;1] satisfyingfz 2 C jh(z) = 0g= Z and consider the
h(z) .
t). The pattH; is ob-
h@h o)z g1t). The pattH,
tained by deformation of the initial patHy through the ow of the vector eld
g: (to;t;z) 2 [0;1]2 C 7! glot(z) 2 C of X, preciselyH(s) = g” Ho(s) .

non-autonomous vector eld(z;t) =

Let z be any point inR (4:@)(L). This point is the endpoint of a path in R
originating from Oand whose projectioh = p L belongs taR (4:2)(L). We forget
the case wheré stays inD(0; 1) and, without loss of generality, we can assume
thatl = I g with 1 g:s2 [0;1] 7! sg(0). Let us analyze the above symmetrie
homotopyH constructed frong andHg = | o, and the associated mappikg. We
would like to show thaH (s;t) 2 R (@:@)(L) for every(s;t) 2 | |. For this purpose
we introduce the pathS:t 2 |1 7! HS(t) = H(s;t). We notice thaH® 0 while for
anys2]0;1] :

1. HS(0) = Ho(s),
2. B0 = X He(t);t  thuso< MO j gqn)jand arg™;® 2] a+q;q+al.
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Denoting byHojjo.g 1 s°2 | 7! Ho(s%) the restriction path, we see that the product
of pathsF* = Hojo.qH® has the following properties, for am2]0; 1]:

1. FSis a path inR originating from 0 and is piecewisg?;

2. lengtt{F®)  length(Hojjo,q) + length(H®) length(l ) L+ 1,

3. for everyt 2 [0;1], the right and left derivative$FS){t) do not vanish and
argF9)qt) 2] a+a;q+al.

ThereforeFS belongs toR(4:@)(L) and as a consequendd, (s;t) belongs to

R (@2)(L) for every(s;t) 2 1 1. We end the proof with the arguments used re-

called in the proof of theorefn 4.1

4.7 Comments

As arule in resurgence theory, one has to deal wsittlessly continuableinctions.

This notion is de ned in[[2], a more general de nition of which being given by
Ecalle in [5,[6]. The key point is the constructionefdless Riemann surfacfg

12]). For such an endless Riemann surface, one can de ne “nearby sheets” in the
way we did in Secf. 4]2 and analogues of theofer 4.1 and propdsitipn 4.6 can be
stated.
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Chapter 5

Transseries and formal integral for the rst
Painlevé equation

Abstract This chapter has two purposes. Our rst goal is to construct the so-
called “formal transseries solutions” for the prepared form associated with the rst
Painlee equation, which will be used later on to get the truncated solutions : this
is done in Secf. 5|3, after some preliminaries in §ec}. 5.1 and[Sect. 5.2. Our second
goal is to build the formal integral for the rst Painlevequation and, equivalently,

the canonical normal form equation to which the rst Pai@@guation is formally
conjugated. This is what we do in S€[ct.|5.4. These informations will be used in a
next chapter to investigate the resurgent structure for the rst Pdrdguation.

5.1 Introduction

We have seen in chapte} 3 that the prepared equdtioh (3.6) has a unique formal
solution, from now on denoted k.. This solution is 1-Gevrey and even Borel-
Laplace summable in every directions apart from the directigms 2 Z (theo-
rem[3.3 and propositidn 3./14). To each intedya#] O; p[+ jp, j 2 Z, one associates

the Borel-Laplace sumyi;j(2) = S 'iw(o;o)(z) 20 D(lj;t) whereD(lj;t) isa
sectorial neighbourhoods & with apertureT,- =] gp;+ %p[ jp. As said in

Sect.2, eachyi;; can be thought of as a section over of the sheafA

of 1-Gevrey asymptotic functionsyy:j 2 G(T,-;A 1). These sections are asymp-
totic to the same 1-Gevrey seri@gy . Therefore the 1-coboundanyri;;  Wiio

belongs toG(T1\ To;A 1), while Wiz Wi belongs toG(T2\ T1;A 1),
whereA  listhe sheaf of 1-Gevrey at germs. In other words, the 1-coboundaries

3 1 .
Wio(2 = Wii(2d  Wwio(2); Sp<arg?d < Sp; jZ large enough (5.1)
Wo1(2) = Weri2(2)  Whriza(2); SP< arg(2) < P iz large enough

are exponentially at functions of order 1 at in nity, and we deduce from equation
(3-6) thatW;. 3);j, j = 0;1, satis es the linear ODE:

1
PIDWG+ 2+ 5 QUDWG+ 2155 = To(@Wje 255 + T2 (Wi 1+ Wi ) Wi 25
(5.2)

87
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Question 5.1Can we get more informations abddy;, 1y;; ? In other words, are we
able to analyze the Stokes phenomenon ?

We have already made some advances in reply to this query in[Sec}. 4.5.2, as
an application of theorefn 4.2. Here we return to the asymptotics. Denoting by

Ty the 1-Gevrey Taylor map, we s, 1), = To(Tj+1\ Tj)Wj+1),j. We have
\f\/(j+1);j = 0 by construction but, more interestingly for our purpose and sihace
is a morphism of differential algebras, we deduce fr (5.2)\&@11);1- solves the
problemP o\f\/ = 0, whereP ¢ stands for the second order linear differential operator

deduced from the operat&X{) + %Q(ﬂ) F(z ) by linearisation a®g,q):

1 F(ze0,0))
P(T)+ EQ(ﬂ) Tw

P+ Q) (D) 28(00/(2) 1202

Po (5.3)

=(17 1 29+ 00 %:

For a moment, let us think d?o\.f\/ = 0 as a linear ODE with holomorphic coef -
cients (thus we think o, as a convergent series at in nity). The formal invari-
ants for this this equation are governed by the Newton polygon at inMigy(P q),

drawn on Fig[ 5]1.

The de nition and properties of the Newton polygon are amply elaborated in [32], to which
the reader is referred. We only mention that the valuatiode ned there is the opposite of
our valuation val de ned by[(3]1).

The polygonN x (P o) has a single non-vertical side of slopé: this corresponds to
the fact thad\{. 1):j, ] = 0;1, are exponentially at functions of order 1 at in nity.
The characteristic equation associated with this side is nothing but the equation

P(M=0;, P(m=nf 1

The polynomialP(m) has two simple rootsn = 1 andm = 1. Therefore, from
the theory of linear ODE[39, 32], we expect #f.o to behave like 87z 120(1)
at in nity, and for Ws.; to behave like 8%z '10O(1) at in nity.
Pursuing in that direction, the coefcient$;;t, can be easily found
W = ez Ywn(2) solves the ODE3) witlP(m) = 0 andw;, 2 C[[z 1]], only
under the condition

_Qm _ 3,

t_PO(m)_ >

Fig. 5.1 The Newton polygon
atin nity Ny (P () associated
with the linear operatof (5.3).
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As a matter of fact, these behaviours are direct consequences of the analytic proper-
ties of the minowyq.o) of &g, In particularf ;= m andl = np are precisely
the so-called seen singularitiesigg,), cf. theorenj 42.

The differential equatior® o\f\/ = 0 has thus its general formal solution under
the formW = UM%z Lo, + Uoe™?z t2w, and, as we will see later on, both
&, anden, are 1-Gevery series whose minors have the same propertieiygn

However, the expectation thilt;.,o could be obtained fron1e™?z 1wy, by
Borel-Laplace summation for some well-chosdp2 C is wrong. Indeed, this
would mean thatj.; = S 1 (0,0 + U1€M™?Z tlwm , thusw(g,g) + U1€M?z tlwnl
is a formal solution of (3]6). This is not the case because of the nonlinearjty pf (3.6)
and to the very nature of the Riemann surf&@ on whichW g, can be analyti-
cally continued (theorein 4.2). This raises the question:

Question 5.2can we de ne an analogue of the general formal solution for the non-
linear equation[(3]6) ?

The answer is given by the notion of “formal integral” which we now introduce.

5.2 Formal integral : setting

5.2.1 Notations

It will be useful in the sequel to x customary notations.
De nition 5.1. We suppos@2 N?, k;h2 N", a;b 2 C".

If k=(ky; ;kn),thenjkj=ki+ + k.

If a=(a1; ;an)ora=‘'(a;; ;an),thenak= a‘f akn,
If b=(b1; ;bp),thenab=ab;+ + a,b,.

We denote byg; the j-th unit vector ofC".

5.2.2 Setting

5.2.2.1 Single level ODE
To introduce the reader to the notion of Ecalfesmal integral[19], it will be useful

to skip a moment from the OD@.G) to a more generalani¢h the same kind of
properties. Namely we introduce

P(Mw+ %Q(ﬂ)wz F(zw) (5.4)

n n 1
P(M= & an mT™2C[1] ; QN = & bn mT™2 C[1]

m=0 m=0

1 Though far from the more general. For instance (5.4) one could repigerv) by
F(zww, ;1" lw), with F holomorphic in a neighbourhood ¢¥:;0) in C C" 1, see ex-
ercise[3.]l. We refrain of doing that only for a matter of simplicity. Seé [19] for more general
results.
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with n 2 N?. We assume tha® is a polynomial of degree, that isag 6 0, and
that F(zw) is holomorphic in a neighbourhood ¢¥;0) in C? with the condition

= . . .
.”W(Z; 0)= O(z %), m2 N. (See exeruﬁ.l). We will add other assumptions to
guarantee that the ODE ($.4) has a single Tevel 1 at in nity.

When assuming furthermore that, 6 0, what have been said in Seft.|5.1
can be applied as well fof (3.4). The equatipn(5.4) has a unique formal solution
W) 2 C[[z 1] and valeg 2. The Newton polygon at in nityN y (P o) associated

. . . . 1 F
with the linear differential operatd®t o = P() + EQ(ﬂ) 2—\,\/

the operatoP(T) + %Q(ﬂ) F(z ) by linearisation at&p, has still a single non-

(zwp) deduced from

vertical side of slope 1 and the characteristic equation associated with this single
side remains the equatiét{m) = 0.

Sincean 6 0, the roots of the characteristic equation do not vanish. We will also
assume that the polynomial

m7! P(m) = én an mm"=aop(m m) (M m)

m=0

has only simple rootsn= m, i = 1; ;n. The following de nitions are adapted
from [3,[19].

De nition 5.2. Letf mg be the set of the roots of the polynomi(m), and we set
li= m,i=1 ;n The complex numbels;; ;| are called thenultipliersof
the ODE [G.4).

The ODE[(5.4) is said to havesingle levell at in nity when the multipliers are all
nonzero.

One says that the multipliers am®n-resonanivhen they are rationally indepen-
dent, that is linearly independent ov&r The multipliers arepositively resonant
when there existKreson= (k1; ;kn) 2 N"nfOg so thatl :kreson= 0, where

I =(l1; ;ln) 2 (C)" The numbelikesod + 1 is the order of the resonance,
since the positive resonance brirggmi-positively resonancabat is relationships
of the typel :(Kresont €j) = | j foranyj 2 [1;n].

We mention that the following constants are properly de ned, si¢&s only
simple roots:

QU ),
i = Coi=1 .
t| Pq | |) ) | 1 1n (5 5)
From the theory of linear differential equations (se€ [34, 32], see lalsal[4, 39]), we
notice that the linear equation

P(T)w+ %Q(ﬂ)wz 0 has a formal general solution under the form

w(2)= 3 vi(2¥i(2): (5.6)
i=1

1=
In ),yi(z) = Uie 'iZz ti U; 2 C, stands for the general solution of the differential
equationyio+ i+ t;' yi = 0, whilev; 2 C[[z 1]] is invertible and is determined

uniquely up to normalization.
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5.2.2.2 Companion system, prepared form

Formal integrals have more natural foundations when differential equations of order
one are considered. We thereforg tragslatg the QDE (5.4) into a one order ODE
w

W1
Wo V\IO
of dimensionn by introducingw = . C= : . We get the companion

Wn \N(n l)
system
Tw+ Aw = f(zZw); (5.7)
0 1 0 1

0 1 0 0
with A= % R g andf(zw) = (% : E

: 0 1 0

an 4 bn a; 4 by F(zwi)=aq

ap Zap ap Zap
Since ) has a unique formal soluti@g 2 C[[z 1]], valw, 2, we may re-
mark that [(5.f) has a unique formal solutieg 2 C"[[z !]] as well, and in fact
®0 2z *(C[[z )"

Lemma 5.1.There exists (2) 2 GLn(Cfz g[Z]) so that the meromorphic gauge
transformw = To(2)v brings [5.7) into theprepared form

0 1

1+ %1 0
v+ Bov=g(zVv); Bo= %} : : X; (5.8)
0 | n+ o
with g a C"-valued function, holomorphic in a neighbourhood @f;0) and
g(zv)= O(z 2+ O(kvk?) whenZ ¥ andv! O.
The prepared form[(58) has a unique formal solutien2 (C[[z ]))" and
@2z *(C[[z '™

Proof. The proof is based on classical ideas for linear ODEs (seé [34, 32], see also
[4,132,[15]). Looking at[(5)6), we compaie (b.7) with the linear equation
0 1

|1'|'t71 0

1
furBou=0; Bo=@® : . : K=L+_L (5.9)
0 In+ b

whose general solution (holomorphic &) is given in term of the fundamental

matrix solutionz e 2,

u@=z"*uU= [L;z%e?iu; uU2C™ (5.10)
We remark that
m

J. ( 1ym J(Zitj)l (5.11)
0

1
D
N
N
\ﬂ- Q_)o;

for (I ;t) 2 C2andm2 N, where( t)j=J! jt mimics the Pochhammer sym-
bol:
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( to=1land( t)j=( Dit(t+1) t+j 1 forj L (5.12)

We thus set the meromorphic gauge transfarm To(2)v with To(2) 2 GLn(Cfz 1g[Z])
of the form:

0 1
1 1
I tYl I'n %n
To(2) =
o n 1 Sty o n 1 Ot
als T Clon I ang T g tIg
(5.13)
By its very de nition, this gauge transform brings (p.7) into the differential equation:
v= T, T1To)+ T, ATy v+ T, H(z Tov) (5.14)
= Bovto(zv)

whereg has the properties described in the lemma. The fact[that (5.8) has a unique
formal solutiongg 2 (C[[z 1]])" is obvious. u

Example 5.1We have already seen that the companion system associatefd with (3.6)

is ). The gauge transform= Tg(2)v, To(2) = 11 3 1+1 3 , brings|3.9)
2z 2z

into the prepared form:

13 o0 y= 1511 1 Fzvtwv)

o 1 2 82 1 1 2 F(zwvi+w) (5.15)

Remark 5.1Let us consider the action of the gauge transfgrm To(2)u on the
differential equatiofffu+ Bou = 0. This differential equation is transformed into the
systegn Ty + Aoy = 0 jwith Ay = ToBoT, L (ITo)T,t of the form

0o 1 0

AO:% - . Ewithpn; ;p12CfZ 1g,pn(2)= %24.2%104.0(2 2)'
: 0 1

Pn(2) p1(2)
, p1(2) = 271; + Z%lo + O(z ?). The systenfly+ Agy = 0 is the companion system
for the one-dimensional homogeneous ODE of orger

Y+ pT" ty+  + pa(@y=0; (5.16)

whose general solution i§2) = &L, Uie lizz ti (Uy;  ;Up2Cn

5.2.2.3 Normal form, formal reduction

We have previously reduced the companion sysfem (5.7) to a prepared form through
a meromorphic gauge transform. Under some conditions, one can go further, but
through formal transformations, in the spirit of the PoirgzBulac theoreni ]3] and

the classi cation up to formal conjugation.

Proposition 5.1.We consider the ODH (5.8) and we assume that the multipliers
I 1; ;1 nare non-resonant. Then there exists a formal transformatisn®(z; u),
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Pzu)= 4 ue(@; w22 (Cllz )" (5.17)
k2NN

which formally transformg (5]8) into the lineaprmal formequationfiu + Bou = 0.

uniquely determined when one prescribes its constant term to be egejaltten
the formal seriegy are unique foikj > 1.

We will see in the sequel how this proposition can be shown. Here, we rather
concentrate on its consequences.

One can refer to, e.gl. [31, 5] for a proof that extend to possibly nilpotent cases (but with no
resonances), and to [19] for a very general frame.

We know that the general solution of the normal foffu + Bou = O is
u@= oL,z%e 2i('U), U=(Us; ;Up) 2 C". Through the action of the for-
mal transformatiow = ®(z u), this provides the following general formal solution

for the ODE [[5.8):

o) . .
e(zU)= a O(iz tie Zkig (= § Uke ! *2z tkg(2) (5.18)
k=(kqy; :kn)2NNi=1 k2NN

withl =(11; ;lp)2(CH"Mandt =(ty; ;tp)2 C".
De nition 5.3. The formal serieg (5.18) is called tf@mal integralof (5.8).

Of course, one can obtain the formal integedlz; U) of ) as well, by the
gauge transform& = To(2)&, with To(2) given by [5.18). When nally returning to
then-th order ODE[(5.4) of dimension 1 we started with, one gets its formal integral.

De nition 5.4. We assume that the multipliers are non-resonant. féhmal inte-
gral w(z U) of the ODE [(5.4) is de ned by:

B(zU)= § Ue '™z "Mex(2; e(@= (2L D 2C[z '
k2NN
= B(zUe "%z 11;  ;Upe 'n%z tn) (5.19)

with B(zu) = 82N U¥eK(2) 2 C[[z 1;u]]. The formal transformatiow= F(z u)
formally transforms[(5]4) into the normal form equatfu+ Bou = 0.

The formal integral[(5.19), thus depending on the maximdtee parame-
tersU=(Uy; ;Up) 2 C", plays the role of the general formal solution for the
ODE (5.4) of ordem. Formal integrals can be de ned as well for difference and
differential-difference equations, see, elg./[19, 31]. This notion has been enlarged
for nonlinear partial differential equations [n [35].

Remark 5.2Although working at the formal level, one may wonder what is the
chosen branch when we writet . As a matter of fact, this is not relevant at this
stage since moving from a determination to another one just translates into rescaling
the free parametey.

Remark 5.3IntroducingV¥ = UKe ! 2z tk e remark the identity:
" #

J ti .
. Ve = 1. &+ E')Ui‘ﬂui uw jusv
i=1
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Looking at the equality
w(zU) = B(zUe "%z 11, :Upe 'n7%z tn) (5.20)

and since the formal integrdl (5]19) solves the differential equdfiof (5.4), one de-
duces thaf® satis es:

P A0+ Huly B+ % Adi+ Hyuf, B=F@ze): (5.21)
1 V4 V4 1 V4

5.2.3 Formal integral, general considerations

Under convenient hypotheses, we have previously introduced the formal integral for
the ODE[5.4), that is a-parameters formal expansion of the form

w(zU)= § Uke '*2z tkyw(2); 1:t2cCM (5.22)
k2NP

Let us start with[(5.22) and investigate the conditions to impose omisein
order for [5.2R) to be formally solution df (3.4).

We could start with[(5.31) as well.
Using the identity[(5.1]1) fom2 N, one obtains fron{ (5.22):
m
- 2 kg M | kz, t:k (m p)
V\/(m)—‘a U a D (e ' "%z )(”)Wk
jkj 0 p=0
- é Uke | :kzZ t:ka;rrH-l(Wk)
jkj 0

whereTo,m: 1(Wo) = ng) and, more generally fdt 2 N2,
h

o p (tek) !
Ticme 1(Wi) = é m é p ( 1:k)P J% W(km P
p:O p j:() J z
cr>n 'k _hmoj . ) i
:am(tj)JamJ(l:k)quWI((Q);
j:O ] z g=0
that is also

T 1(W) = & kDT (5.23)
ji=0

T omo(tk)h |

|
In what follows we will simply write T.;mw 1 instead of Ti:e 1(Wk). We intro-
duce the notatioivk = Uke ! *kzz tk and we notice that for everi;;ko 2 N,
vkiykz = vkitki On the one hand,

¥ h n i
P(Tw= é vk é. an mlkme1 = é Vkpk(ﬂ)Wk (5.24)
k=0 =0 jkj 0

where forjkj 0,
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Pe(1) = é. an m( 1:k+M)™

m=0
n N m NAY 0
+8anma SLE] tjfk)'( | k+q)m |
me 1 =1 z
In other words, foijkj O,
c? 1 t:k (i
(M) = P( 1 :k+M+ a 7 PUC 1 k+1): (5.25)
j=1
Similarly
AMw= & Via(Mwk (5.26)
jki 0

with
n1 . .
2L YK G0 ke B27)

&M= Q1 k+ M+ §
j=1

On the other hand we consider the Taylor expansior @ w(z U)) at wg,

namely
é'k' 1Vka ‘F .
Fzw)= FEw)+ § —— T F(zwo), (5.28)
Nt ! w
We observe that for every2 N7,
aViwe =a Vvt a4 w, w (5.29)
ki 1 pi R TPTR
As a result, equatior (5.8) reads
1 F(z
Fzw= Fzwg)+ & VP & e W TFEW). g4,
1 opr dpsp TTw

I[JE
Finally, plugging the formal expansiop (5]22) into the differential equafior] (5.4),
using the identitieq (5.24) (5.p6), (5/30) and identifying the powéfsone gets

the next lemm@5]2 which justi es the following de nition.

De nition 5.5. Fork 2 N", we de ne
(5.31)

A = P( | k+1);
Q) = tkPY I:k+ T+ Q( | :k+1)

0?1 t:k j+ t:k i+
RM=a 5 42 PU*2( | k+ 1)+ i+1 QUFD( | ik+ 1)
(5.32)

j=0

Fork 2 N", we denote by = Dy (wp) the linear differential operator
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TF(zwo)
Tw

Di= A+ ~QuM)* SR

. 1
wherewy satis esP()wg + EQ('l])wo = F(zwp).
Fork 2 N", we denote by x = P (wp) the linear differential operator

TF(zwo) .

1
Pi=P( I:k+ M+ —Q( 1 :k+1) W (5.33)
Lemma 5.2. The n-parameters formal expansion
w(zU)= § Uke !z tky(2) (5.34)
k2NN
solves|(5.]4) if and only if :
1
P(Two+ —Q(T)wo = F(zWo): (5.35)
DegWg = 0 (5.36)
with g the i-th vector of the canonical base®f, and forjkj 2,
o W Wi T F(zwo)
DW= L —: 5.37
KK kq+ a+'k\=k ! Tw (5:37)
jkij 17 2
Remark 5.4Notice that in lemma[ 5]2 we have neither supposed that
| =(1q1; ;ln)arethe multipliers, northat=(t1; ;tp) aresuch that = Sé II '))
I

i=1; ;n.However, these conditions will come in the next section.

Example 5.2We consider equatiof (3.6) where 2,P(1)= 12 1,Q(T)= 31.
Then, for evenyk 2 N2,

R( = 12 21 :kT+(1 :k)? 1; (5.38)
QM) = (3+2t:k)( T+1 Kk);
Re(T) = tik(t:k+ 4):

In particular, takingd = (1; 1) (the zeros oz 7! P( z)) andt = g; g
(we take the values given by (5.5)), then writikg: ( ki;ko):
R =17 20a k)T+(k ko)* 1L (5.39)

QM =30 K k) Tk ko)
R = Slatk) kitko

We eventually mention some identities for later purposes, the proof of which
being left as an exercise.

Lemma 5.3.The operatord® x andD given by de nitio satisfy the identities:
for anyk;kl;kz 2N e | :klzpklel k1z — e | :kzszzeI kaz 7 t:ka = Pyz t:k
and



5.3 First Painleg equation and transseries solutions 97
(e | :klzZ t:kl)Dkl(e | :klzZ t:kl) l:(e |Zk222 t:kz)Dkz(e | :kzzZ t:kz) l:

SettingW = z *wy for k 2 N"and the w given by lemma 5|2, one hBg, W, = 0,
i = 1;2 while and forjkj 2,

o W, W T F(zwo)

P W = 5.40
W K+ a+k«=k ! Tw ( )
jkij L7 2

5.3 First Painleve equation and transseries solutions

We partly describe in this section the contains of lemimé 5.2 for the prepared form
equation|(3.) associated with the rst Pairgesquation. Thus= 2,P(T) = 12 1,
QM= 3TandF(zw)= fo(2)+ fi(Qw+ f2(2)W. Also, we will for the moment
specialise our study to only one-parameter formal expansions, that is we will as-
sume that eithetd; = 0 orU, = 0 in (5.34). This study will be enough to get the
truncated solutions. We will keep on our study of the formal integral associated with
(3:9) in Sect 54 where will we see the effects of resonances.

5.3.1 Transseries solution - statement

This section will be devoted to proving the following proposition.

Proposition 5.2.We consider the prepared ODE (B.6). Welset (1 1;12) =(1; 1)
where the i's are the multipliers, that is the roots of the polynonmaal! P( z).

1) .
We set =(tq;to) = § § , Wheret; = ISO(( Ii)),|:1;2.

2" 2
Then for each f 1;2, there exists a formal one-parameter solution[of|(3.6) in the
graded algebra  z 'ike 'k?%C[[z 1] of the form:
k2N

¥
w(zUg)= § Uke 'k%z tikgye (2); g 2 Cllz 1I: (5.41)
k=0

We haveval ey = 2(k 1) and the formal serieg (5.41) is unique once one xes
the normalization of@g to be wg(2) = 1+ O(z -). Thenwg 2 R[[z 1] and

e (2) = Fklz Ak D1+ O(z b)) for every k 1. Furthermore changing the

normalization of@g is equivalent in rescaling the parameter2JC. Eventually,
8o, (2) = Bie,( 2) foreveryk O.

De nition 5.6. The serieq (5.41) is called a forntednsseriesThe terms e! ikzz tik
are (log-freefransmonomialsThe formal seriew, are called thée-th seriesof
the transseries. We 98ke = z ' eq .

Remark 5.5The term “transseries” is due to Ecalle [20]. These are objects that are
widely used in resurgence theory, see, é.d.[9, 36, 28, 29]. More details on transseries
can be founded in[19, 20| [7, 8]. Transseries are also common objects in theoretical
physics : these are the so-called “multi-instanton expansions”, seé €.g. [40] 25, 26,
27,33/ 24/ 1, 16, 17, 18].
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In quantum mechanics or quantum eld theory, iastanton action(the terminology of
which is due to Gerard 't Hooft) is a classical solution of the equations of motion, with a
nite and non-zero action. A well-known instanton effect in quantum mechanics is given by
a particle in a double well potential. The tunneling effect provides a non-zero probability
that the particle crosses the potential barrier. This gives rise to a tunneling amplitude pro-
portionnal to thénstantone S whereSis the instanton actioffiybeing the Planck constant

or the coupling constant. For the bound states, this translates into the fact that they can be
described at a formal level by a multi-instanton expansion, that is a transseries of the form
4« oBk(R)e ¥ where the perturbative uctuatior(R) are formal expansions with re-
spect toh. The bound states are deduced from the multi-instanton expansion by (median)
Laplace-Borel summation, see [88) 10} 11,12/ 18] 14. 22, 23].

For later use, we mention a lemma that result from propositign 5.2 and Iemma 5.3.

Lemma 5.4.Under the conditions of propositi.2 and for akip N2, the (so-
called) general formal solution of the linear differential equatiBp (&)W = 0
is W = € ¥z Cie 128, + Cre ' 228, , C;;C, 2 C. For any k2 N? the (so-
called) general formal solution of the linear differential equatioR(ey)w = 0 is
w(2) = & KAk Cre 1128, + Cre ' 228, ,C1;C2 C.

5.3.2 Transseries solution - proof

5.3.2.1 A useful lemma

We start with the following lemma which will be useful in the sequel.

Lemma 5.5.We suppose;IN 2 N?. We consider the ordinary differential equation
P(T)w+ “R(W= &2); B = fuz N(1+ O(z 1) 2 2 NCllz 1J; f 6 0

with P(1) = &f-pan mT™2 C[f],an6 0, R(T) = &N-bh m(21™2 Cliz [1].
This ODE has a unique solutiow in C[[z !]], moreovervalw= val £ and
8(2) = %z N(1+ O(z 1)).

Proof. In the valuation ringC[[z ]] we consider the following map :

NiClz Mt Cliz 1) |
|
B2 P() PO w %R(ﬂ)w:

0]

(Remember thalP(0) = a, is nonzero). From the hypotheses made one easily ob-
serves thaN(C[[z 1)) z IC[[z ]] while, for everyp2 N?,

if uv2z PCl[z Y]; thenN(u) N(v) 2z P C[lz Y:

This means thall is contractive inC[[z ]], thus the xed point problermv = N(w)
has a unique solutiow = FI,',”L NP(0) in C[[z 1]]. SinceN(0) = £&2)=P(0) one gets

w(2) = %z N(1+ 0O(z 1). w
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5.3.2.2 Proof of propositior{ 5.P

We precise as an introduction that the assemign?2 R|[z 1] is just a consequence

of the realness of equati.6). The relationsheps) (2 = &y ( 2 for every

k 0, come from the property of equatidn (B.6) to be invariant under the change of
variablez7! zand to the chosen normalizationw§ , i = 1;2.

5.3.2.3 The return of the formal solution

We remark thatvg = w(g, has to solve 5) which is nothing but the equation
(3.6) one started with. In particular we know that this equation has a unique formal
solutionwq 2 C[[z 1]] which has been investigated in the previous chapters.

In what follows, one will always replacsg by this formal solutionsg. We mention

the following obvious fact, essentially due to the property thatsgal 2 and that
forevery” = 0:1;2, 1E@9 5 7 2cf 7 1g (This is one place where it is interesting

to work with a “well-prepared” equation, see what we have done in Be¢t. 3.1 to get

(3.6) and exercide 3.1):

Lemma5.6.1f wo(2) = &, ,a01z ' 2 C[[z 1]] is the formal solution 06), then

F(

for every” = 0;1;2, ‘"ﬂ#@ 2 C[[z ] has valuation2, and vanishes identically

. F(zwo) _
for every” 3. Also, ~ = =

. 20 (o
real negative, anw =z?2

4z 2+ z 2@y is even and its coef cients are all

5.3.2.4 The casegkgj= 1

Formula [5.3p) wittk = e; provides

De,We, = 0 (5.42)
whereDe, = Fe, () + %Qel(ﬂ)+ ;12Re1 W with
0
Pey(T) = P( 11+ T)=P( 1)+ PL 1)1+ %ﬂz

Qe(M = t:PY 11+ M+ Q 11+ 1)
Re, = ta(t1+ 4)
Assuming thawve, 2 C[[z 1]], one observes that the right-hand side|of (5.42) has
valuation less or equal tvalwe,) 2, because of lemnja $.6. In order to get a non
identically vanishing solution, one thus has to impose the condR{onl ;) = 0.
Following our conventions, we takkg = 1.

The same reasoning leads to impose furthermore thaP{ | 1)+ Q( |1)= 0,
thusty= 3. ThereforePy, (1) = 12 21, Qe (1) = 0,Re,(T) = L. Symmetri-

cally fork = ep,onegetd = 1,to= > as a necessary condition and
DeWe, = 0 (5.43)

where De, = Pe,(T) + 2Qe,(T) + %Re, L%Z\jv%) whereasPs, (1) = 12+ 21,
Qe ()= 0.Re,(M = .
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Fig. 5.2 The Newton polygon
atin nity Ny (De,) associ-
ated with the linear operator

G.49).

Lemma 5.7.The linear homogeneous equatiofis (5.4¢), (6.43) have both a one-
parameter family of formal solutionsgy= U1&e, and we, = Up®e, in C[[z 1],
where we, and W, are uniquely determined by their given normalization
e = 1+ O(z ). Moreoverwg 2 R[[z 1]] and e, (2) = e, ( 2). Furthemore, if
(2 = &) paz ' andwe (2) = &, ¢ae 2z ', the following quadratic recursion
relation is valid:

8
2 80= 1, L I

1 ° 5.44
> Byl = g (2 D% 1+ 4@ aepacy p1 ;1= 12 (5.44)
p=0

Proof. We only examin€[(5.42). We look at this equation in the space of normalized
formal serieC[[z 1]], namely

8
< _ 151  YF(zweo)
(T 2w = Z 5+~ Ve (5.45)

: We, 2 C[[z YI; we, = 1+ O(z Y):

We remark that the restriction of the derivation operdtaio the maximal ideal
z 1C[[z 1] is a bijective operator between!C[[z 1]] andz 2C[[z 1]]; we denote
by 1 ! the inverse operator, M
zCllz 'z *Cliz "I
1 1

We transform (5%5) into the equatior2fwe, = 72+ 125 + TF(z%)

4 2 Tw
we see that the right-hand side of this equation belongs t€[[z ]] oncews,
belongs toC[[z ]}, because of lemnfa 5.6 and to the choice of the coef ctent
This means that the map

We, and

N:Cllz ]! Cliz ']
1 151  TF(zwo)
We, ! 1 éﬂl ."2+Z?+‘HTO o

is well de ned and the probleni (5.45) is equivalent to the xed-point problem
We, = N(We,). One easily checks that the mapis contractive inC[[z 1] so that

the xed point problemwe, = N(we,) has a unique solutioa, in C[[z 1.

From the fact thaf (5.42) is a homogeneous equation, one immediately concludes
thatU e, , U1 2 C, provides a one-parameter family of formal solutions.

The proof for the quadratic recursion relatign (5.44) is left to the reader (see
also[24/1]). u
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Remark 5.6.1. The Newton polygon at in nityN ¢ (De,) drawn on Fig, has
one horizontal side that corresponds to the opera®ff. General nonsense in
asymptotic theory (sek [32], arl[6,130]) provides the existence of the formal (nor-
malized) series solutiome,. The other (normalized) formal solution associated
with the side of slope 1is ezzwez (see Iemm4) which, in our frame, is already
incorporated in the other transseries solution.

2. From lemm@ 516 of (5.44), one easily shows that

1., 9 , 341329 ,
= Zz 1+ = +
@ (D=1 527+ 52 ° 1920000

is a real formal expansion, with coef cients that alternate in sign.

5.3.2.5 The casegkej 2

Lemma 5.8.For anyk = ke, i = 1;2and k 2, equation[(5.3]7) has a unique for-
mal solution wg = g in C[[z 1]. Moreoverval e = 2(k 1).

Furthermore, when consideringwd, instead ofe, for the solution of[(5.36), then
the unique solution of (5.37) at rakk= ke, k 2, is UAwiq. Also,@iq 2 R[z 1],
Bhe (D= 1512 2k D(1+ O(z 1) andwgy(2) = ko ( 2 foreveryk 2.
Eventually, writingeye, (2) = & o8ke;:1Z I, the coef cients are governed the fol-
lowing quadratic recursion relations, for every k2:

8
% ke :0 = kel = 0;

(K Dy = k(3k 21 Daey 1 3(3k  2)%akeg) 2 (5.46)

% + AL Q@aepl0l p 2t 3 A Aqerpoer! p K i1=23
. ki+ ko=k
kl 1;&2 1
Proof. We only examine the case= kej, k 2.
The proof is done by induction da We rst consider equatior (5.87) far= 2:

w3, 12F (ze0) .

D2e1W2e1 = 771]\,\/2 ) (5.47)

With Doe; = Poey (1) + 2Qoey(T)+ 2Roe;,  T-EFY. We know thatPe, (0) = 3 is

nonzero since, bll?zel(‘ﬂ) =P( 21+ 9)= 12 41+ 3.Using Iemm6,
one sees that lemma .5 can be appliefl'to [5.47) and this provides a unique solution
W, 2 C[[z ]]. Its valuation is 2 and explicit calculation gives:

2 11 34 5324

722 TSZ + ; WZeZ(Z)Z w2e1( Z):

1
One easily checks that replaciig, by Uwe, implies changingsse, into U 2wy, .
We now assume that the properties of lenjmé 5.8 are true for every 2K 1.
When considering equatioh (5]37) fidrone gets :

o By e Wine T2F(Z0)

ket ko= K 2! w2
k]_ Lk 1
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with Die, = Piey (T)+ 1Que (T)+ 3Ree, TEE) R ()= 12 2K +(K? 1),
One deduces the conclusion of lemimg 5.8 at the Kably the arguments used pre-
viously. For the valuation, observe that Wl ¢ ®,e, 2(ki 1)+ 2(k> 1) when
ki + ko = K, thus val®e Wi,e, 2(K 2). As a matter of fact, for everk 2,
W(ko)(2) = bz 2 D(1+ O(z 1)) with
(
b1=1;
b= 5% 1§(k‘+1)5l,§=11bpbk p K 2

which easily providesy, = —K— by induction. The reader will easily check that the
recursive relationg (5.46) are true. (See also([24, ).

Remark 5.7Here again, we are not interested in the whole formal fundamen-
tal solutions of equation@47m48), which incorporate the general solution
(e '1kzz tiky 1 cre 117z lig, + Coe '2%z '2w,, of the associated homogeneous
linear ODESD (W = 0 (cf. lemmg 5.4). Taking into account the tefm ),
would imply a rescaling dil;. The otherternf )we, concerns the other transseries.

5.4 Formal integral for the rst Painlev & equation

We made general considerations on formal integrals in edt. 5.2. We started the
study of the formal integral for the prepared equatjon](3.6) associated with the rst
Painlee equation in Sedt. 5.3 : this gave us the transseries described by proposition
[5.2. When no resonances occur, one gets with quite similar arguments the formal
integral. However, this is not that simple for the rst Pairegquation where we
have to cope with resonances.

5.4.1 Notations and preliminary results

5.4.1.1 Notations

It will be useful for our purpose to introduce the following notations:
De nition 5.7. For anyn2 N?, we setn = n(1;1) and

Xno= Tk =(ki;k2) 2 N2nf0g j ki< nor ko< ng[f ng:

We also seKg:o = f(0;0)g.

Example 5.3X10=(N? f 0g)[ (fog N?)[f (1;1)g,
X20=(N? f 0;19)[ (f0;1g N°)[f (22)g.

Notice that for everym2 N, Xp+ 1:0NXno = N+ Xq0.

5.4.1.2 Resonances : rst consequences

Equation [(3.p) has the feature to hapesitively resonanmultipliers | 1 = 1,

2= 1becausé :n= 0, for everyn 2 N? (see de nition5.2). This brings semi-
positively resonances, the cases of semi-positive resonances being all described by
l1=1:(n+ep)andl =1 :(n+ &), for everyn2 N°.
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We have already seen (propositjon|5.2) that these properties have no consequence
for the transseries but, as we shall see, this produces new phenomena when the
formal integral is concerned, these being essentially consequences of the following
fact, derived from lemma$g.3.

Lemma 5.9.For every n2 N, k 2 N2, the following identities are satis ed:

Prk=Py; Dmk=Z"Dgz '™ tin= 3n

5.4.1.3 Preliminary lemmas

p

Inamoment, we will have to deal with formal expansions of the lﬁpmg' (2 §(2,
1=0

p2 N, with the f's in C[[z 1]].

M
De nition 5.8. We equip the graded algebra log'(z)C[[z 1]] with the valuation
I 12N

valdenedby:val §logd (2§ = minf val fig.
|

Lemma 5.10.We suppose;N 2 N? and p2 N. We consider the ordinary differen-
tial equation

M
P(w+ “R(w= K2 #22  lodCllz i (5.49)
I=0

n n 1
PMM= & an m1™2C[11;an6 0; RN = & oh m(@T1™2 C[iz 1I[1]
m=0

m=0

M
Then ((5.4P) has a unique soluti@n?2 IogI (2)Cl[[z Y]] andvalw= val € More-
I=0
over, if = &f. OIog (29 f ande= 3. 0Iog (2w, then:

1. &, solves the ODE: P)w+ ER(ﬂ)W: B
2.ifval < vala . ;log (2 f thenvalw, < val &> J log (2)w.
Proof. One easily sees that the arguments used for the proof of I¢mina 5.5 can be

extended, when observing that fal § Iog 2% val 3lod(®f +1. w
|

We have seen in lemnja .7 that the operafgs i = 1,2, have speci c be-
haviours. This is the purpose of the following lemma.

Lemma5.11.We suppose @ N and i 2 f1;29. We assume that
£=al logd (@82 [ lod (2C[lz ] satis es the conditions:

1. val ?p— 1, f= fp,z Y1+ 0(z 1), fp, 6 0

2.val &l OIog 2f 2

Then the equatiorDgw = £ has a unique solutions = éf”o log'(2)w in

L
|p=+01Iog (2Cl[z 1]]that satis es the conditiomal a| OIog (2@ 1. Moreover
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fpy
.
(p+ DPY 1) L
Otherwise, the general solution of the ODEw= £in |”:+Ollog'(z)C[[z Ylis of
the form w= w+ Uwg where U2 C.

Wp+]_ =

Proof. We examine the case= 1 only. The ODED¢w = £is equivalent to the
equation :

PY I fw= e+ g2+ o1, TF(280)

4 22 ﬂT h P({ | ]_) = 2

By arguments already used in the proof of lemimg 5.7, this problem amounts to
looking for a formal solution which satis es the xed-point problem

_ 1 1 > 151  TF(zwp)
WEU@* syt T Tt e
!
£ f p
—q 1 - P1 p+1 S | 1
whereU(2) = 1 =) 0+ DPY 1) logh" *(2) + Ig_olog (90(z ).

Notice that we take the primitive with no constant term. This xed-point problem
has a unique formal solution under the form

p
w= —PL g log”* (D + ] log (2w
(pr P Ty e 00 AT @ lod (e

and val é\lpzologI (2w 1. Eventually one can add to this particular solution any
solution of the homogeneous equatidgw = 0, that is any term of the forrd e
withU 2 C. u

5.4.2 Painlee I: formal integral

We are now in position to detail the formal integral associated with the rst Paénlev
equation.

Theorem 5.1.We consider the ODE (3.6). Let be= (1 1;12) =(1; 1) where the
- 3 3 i) .

| i's are the multipliers, and = (tq;t2) = é; > = SO(( I'i)),|: 1;2. We

setVk = Uke ! kzz tk for any k 2 N2 and anyU = (U;;Uy) 2 C2. We write

n= n(1;1) forany n2 N.

There exists a two-parameter formal solution3.6), freely dependingd diC?,

of the form

¥
w(zU)= wy(d+ a Vde(?; (5.50)
n=0k2 Xn+ 1;0nxn;o

and uniquely determined by the following conditions:
1.wo2 Cllz ');

o ., M

2.6 = 3 log(2el! 2 log (2C[lz 1], for everyk 2 Xn+ 1,0 Xno, N2 N;
=0 =0

3. fori= 1;2,w, satis eswg(2) = 1+ O(z 1);
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4.for every n2 N° and i= 1,2, g = é{LO'OgI(Z)WEl.e] satis es
|
valw{]lel<val an tlod (z)w{]l,a .

Moreover, the following properties are satis ed:

5. changing the normalization @, i = 1,2, is equivalent to rescaling the param-
eterU 2 C?

M
6. for every ;2 N and everyk 2 Xp+ 1.0 N Xn:0, Wk 2 log'(2)R[[z 1]]. Further-
I=0
morew['k k)(z)— w”k k)( 2) for every 12 [O;n];
7. for every 2 N? and everyk 2 Xp+ 1:0NXn:0,

1
W: r

({ %) Z"lod (2@, (5.51)

|| Qo

5 5..
where{ =({1,{2)=(5 1) isdenedby:

& 1 1 1 s .
U sy P 2p( 2y “ 120 1T h2 (5-52)

F(z0)

whereas a is given byﬂ— = az 2+ o(z ?). As a consequence, for every
n2 N°, e 2 Rl[z 1];
8. for everyk 2 N2nf0g, valel” = 2(jkj 1).

Proof. Once for all:

the property b. is easily derived by an argument of homogeneity;

the realness and eveness in propgfty 6. are just consequences of the realness of

equation[(3.6) and its property of being be invariant under the change of variable
z7! z and to the chosen normalizations.

In what follows, we investigate the terms under the famawith k 2 Xn+ 1.0 N Xno
andn 2 N. We rst look at what happens when= 0 andn = 1, step by step so as
to draw some conclusions, then we complete the proof by induction on

Casen= Oand k= 1 This is the rst case where a resonance appears. However,
this case yields no surprise. Indeed, equafion {5.37§ forl reads

1 1 Fiz
Pu(fwa + EQl(ﬂ)Wl = ?Rl+ w
1%F (z &0)

+ e, W, W2

(5.53)

with Pi(1) = Py(T) = 12 1. Therefore Iemm@.S can be applied and one gets a

unique solutioney 2 C[[z 1]] with, moreover, val, = 2 anden(2) = P(O)Z 2+ 0(z ?)
wherea = 1 is given by: 2 F(ZO) = az 2+ 0o(z ?).
2 94 902139 4

Explicit calculation y|eldsw1(z) = z

8> 80000~
Casesn= land k2 X2.0nXz.0
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Casek = 1+ g,i= 1;2 These are the rst cases of semi-positive resonances and
are more serious.
Let us concentrate on the case 1+ e; for which equation[(5.37) is

12F (2 e
D1+ e Wite = (W]_Wel + WZBIWEZ) #’
that is also, from lemma §.9 and propositjon| 5.2,

Dey(ZWirg) = Grrey; (5.54)
1°F (z o)
w2

a’z 1+ 0(z 9

Blie = Zs(wlwel + 82, We,)
1 . 1 1
P(O) 2IP( 2 1)

S 1 2
-z "+ 0O :
62 (z 9)

The conditions of application of lemmia5]11 are ful lled: equation (b.54) has a one-
parameter family of formal solutions, dependinglgi., 2 C, of the form

1] 0]
Wite = W14 T U[l];lz 3Wel; Wire = w[llel log(2) + W[ !

1+e1;
e, = {12 %o valwll, 4 (5.55)
(1= g~ +i L1 =5,
1= P 1) PO ' 2P 21, — 12

Explicitly,
4 197 5, 23903 ¢

576 & 8294

o

11
1+ el(z) = TZZ
Also remark that the property vdfl 4 characterizes the particular solution
@1, ¢, among the one-parameter fameﬁy of solutions.

The cas& = 1+ g is deduced from the above result from the invariancg of (3.6)
under the change of variabie7!  z. One gets a one-parameter family of formal
solutions, depending dd;., 2 C, of the form

Wite, = Wire, t UppoWe);  Wive, = w[ﬂezlog(z)+ w[ﬂez;

1 1 0 0
el (9=wl ( D={22 %) e (=¥ (2D (556
(2= i b+ i 1 - 5.

2= P T, PO) ' 21P( 25 12°

In the sequel, we xUpj;.1 = Upy2 = O, that is we only consider the (well and
uniquely de ned) particular solutionsy, ¢, i = 1;2.

We stress that adding terms of the foup;..we, andUy.o@e, has the effect to rescaling
the parametefU;;Uy). In particular, changing the branch of the log has non consequence
for the formal integral.

Casek = 1+ kg One step further, we consider the cse 1+ 2¢. We takei = 1
only for simplicity. From[(5.3]7) and lemnja’$.9, we get:

(5.57)
12F(zwo) .

D231(23W1+ 291) = 23 W1+ el\Nel + WZQ:LW]_"' WSQJ_WQZ TIWZ
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By propositio{ 5.2 and the above result, the right-hand side of equatiorj (5.57) is
a formal series expansion of the tyfe= #8log(2) + #9 with val 1! = 2 and

val £9 = 3. Applying lemm4 5.10, we q_et f-?) a unique formal solution of the
form . 26, = Wi, 109(2) + wlo] L olod ()C[[z ] with val et

1+ 2e1 +28
and valw[ﬂ 2, = 6. Moreoverw[lll 20, oIves the ODE
2 .
1 11°F(z wp)
I:)291(23\/\'[1+ 2e w[ll e Fer w2
1°F (2 wo)
= {162 e
Comparing to[(5.47), one concludes that
1 0
W14 2 = ‘3[13 2e log(2) + Wlll 26,7
1
w[llzﬁ 2{ 17 S@pe,; val 1+291 = 6

We now reason by induction, assuming that for ede?y[2;K 1] with K 3, one
has

0
Witke, = W[1+ ke1 log(2) + W[ll ke; ;
‘”[11+ke1 =K 12 wkel; VaIW[1+ke1 = 2(k+ 1):
Then, by [(5.3]7) and lemnja’5.9,
&, i, T2F (Z Wo)
Dke, (2w =7 3 17X 5.58
Ke (Z'€1+ Ke;) ek ke, 2 T2 (5.58)
jkaj Ljkgj 1
2F(zWo)
=B 3 T°F(Z wo
k1+%=K el oo gy
kl 1; 2 1
1%F (z wo)

+ 7 &1 Wke; + (14 K)e, ey w2

With  the  above reasoning, one gets a unique  solution

Wiike, = 6 ke, 100(2) + e ke, 2 i=0lod (2Cllz ] wherewe!) ke, SOIVes the
ODE
1] _ ° 12F (W)
DKe1(23W[1+ ke) = {1 kl+%:K klwklel\m@elv
kl Lk 1
=K{1 § aelhke 12F (2 wo)
ky+ ko= K 2 w2
kl Lk 1

Comparing to[(5.48), one concludes that

Wit Ke = ‘3[113 ke, 109(2) + o)

) 1+ Kelé
w[llKel = K{ 12 %8key; val\ts’r[1+Kel = 2(K+ 1):

Casek = (2;2) What remains to do whek 2 X2.0n Xy, iS to examine the case

k=(2;2).By (5.37) and lemma 59,
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D1(Zw,) =

2F (2 (5.59)
2 Wi We, + B4 6, B, + Woe Woe, + SV 17 (z80) .

w2

We observe fron{ (5.55) and (5]56) that
o, + @l

- 3 3 .
1te 140,01 = {12 “We) e, + { 27 ", W, = O

Therefore the log-term disappears in the right-hand side of|(5.59) as a consequence
of the symmetries of the problem. Moreover

val(el) W, + e

1
T+e 1+ e, B T W2e, B2e, + 5“”1‘5’1) 4.

By lemma 5.1D, we gea#, 2 C[[z 1]] with val e, = 6. Explicit calculation provides:
(= DL 21771 52885211
297 67 4327 54000 710

Induction We assume thall is an integer 2 and we suppose that the prop-
erties announced in theordm 5.1 are true for any integ2O;N 1] and any
K 2 Xn+ 1,0 N Xny0-

We notice on the one hand thég+ 1.0NXn:0 = 1+ XN.oNXN 1:0- On the other
hand, for everk 2 Xn.onNXN 1.0,

o 8, @, T2F (2 Wo)

Kptko=1+k 2 w2
jka Ljkgj 1

D1+ k(®1+k) = (5.60)

We setX = log(2) and we consideK as an indeterminate. The right-hand side of

(5.60) is of the forme= & €11X' with

_ ° 8, Wi, T2F (Z Wo)
ky+ko=1+k TTw
jk1j Ljkaj 1
_ 2 (Tx ek, )i, + @i, (Txek,) T2F(Zwo) .
Ky+ko= 1+k 2 w2
jkaj Lijkoj 1

Using the induction hypothesis, whér k1 2 Xn+ 1.0nXn0, foranyn2 [O;N - 1],
|

n ' n 1
T el X =({k)z 33 &)X
I=1 I=0

that isflx 1.k, = ({ :k1)z wy,. Therefore:

12F (z,Wo)

x€=2z3 3 k1)@, 8, —— "
X k1+ak12=k ({ ka)wk, ek, W

jkij Lijkoj 1

oy, 8, 12F(Z

- ({ k)Z 3 é kl k2 ﬂ (ZZWO)
ky+Ko=k 2 Tw

jkij Ljkoj 1

Thusfix £= ({ :k)z 3D«(ex) and [5.6)) provides:

Tx Dk(Zenk) =({ k)Dx(i):
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Observing thaflxDyTy ! = Dy, one easily getsy.  either from lemma 5.31 or
lemmd 5.1, withe, i = ({ :k)z 3y “ex.

The property fom,. 1 is easy and is left to the reader. This ends the proof of theorem
51 w

De nition 5.9. The two-parameter formal solution de ned by theorgem]| 5.1 is the
formal integralof the prepared ODH (3.6) associated with the rst Paiélequa-
tion. The coef cientd i, tj and{ i, i = 1;2, are thformal invariants

The formal seriew{?] are called thek-th seriesof the formal integral. We set

W,EO] =z ‘3kw{<01 and\® = z Uy for anyk 2 N2.
Remark 5.8Theoren{ 5.]1 can be compared [tol[24] and speciallyto [1], where the
calculations made there translate into ours up to renormalization. We also mention

obvious links between Theorgm b.1 and the instanton-type solutions of Kaahi
[28.12].

De nition 5.10. For anyk 2 N2, one denotes bl andFy the following operators:

Lk 2k D+ 1

E = {—:kPO(ﬂ i+ 5 QU 1K) > PRI 1K)
= {k(ﬂ I :k) {?:k(t:(Zk 1+ 4);
_ 1 k) o k)2

Fo= oo PR 1=

We need hardly mention the analogue of lenim& 5.9.
Lemma 5.12.For every n2 N, k 2 N?,
Enek = Z2TExz ', Frek= 2 Fez '"
We nally give a corollary stemming from theorgm .1.

Corollary 5.1. The formal integral[(5.50) associated with the prepared ODE]|(3.6)
can be written under the form:

w(z U) = é ka[ol; vk = Uke (:0z+({ K)Utog@) , tik. (5.61)
k2N2

Equivalentlyse(z U) = B(zUqe 12 (1 {1UD100D);y,e 122 (t2 {2U1100@) where
F(zu)= &,on2 ukwﬁol(z) 2 C[[z ;u]]is solution of the equation:

{IUl {lul

P 1 a(l +

—ufy F+ Q 1z a(l + —ufy F=F(zF):

(5.62)
The formal seriew{f] 2 z Ak 2R[[z 1]] satisfy:
3 W § ZF(ZQWO);

for anyk 2 X1:0nXop.0, D ¥ =
y 1,0 NR0,0, Dk& ek 2 W2

é Vv{(]_v"{(z] 2F(Z WO)

kptko=k 2! w2
Jkij 1

for anyk 2 Xz,0nXyo, Dk\mf(o] + Ek‘e/{?] 1=
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0], 0]
3 WﬁlWLz 12F(ze0) .
kitko=k 2! iwz -’
Ikij 1
Proof. Let us examine[(5.50) more closely. The formal integral can be written as
follows:

. 0 0 0]
otherW|seDkw|[(]+ EkwL] 1t ka[klz =

¥ Y ¥

w(zU)= 3 Ven(d+ & & & V"8 ie(2); (5.63)

n=0 i=1;2k=1n=0

that is we consider the sums along the direction given by the véttay that de-
termines the resonance. We $&t= Uke (1 0z+({:)Utlog@) 7 tik
For the rst sum we know that eache,(2 belongs to C[[z 1] and
atoVMhe, = &, T"e, becausd :n= 0.
We now look at the other sums and we use the relations given by (5.51). We get for
i=12,
1 I
n { ikz ®log(2) WLO]eri

Qo5

+k -
vh qWn+kei -

T Qox
T Qox

1n=0 0 I=0

[y

¥
Vka é Vn

n=
ng ke ({ikullog(z))wlo] .
via vV©&e ke -

=1

n+kg g0l .
T W{H ke -

o
=~

1
T Qox T Qox 1 Qox

T Qox

o
=

The equation[(5.62) is obtained by the arguments developed in rémark 5.3. The
reader will check that equatioh (5]62) is equivalent to the given hierarchy of equa-
tions. u

Let us writeuy(2) = Ure '12 (1 {1UD100@) ,(2) = Upe 22 (t2 {2UY100? gng
observe that(u;;up) provides the general analytic solution for a non linear differ-
ential equation that only depends on the formal invariants:

{?}Uluz 0 Up
0

Gus,  u (5.64)

This means that corollafy §.1 can be written in term of formal classi cation and of
(canonical) normal form:

Corollary 5.2. There exists a formal transformation=wf® (z u) of the form

Pizu= & uel(@; e2clz (5.65)
k2N2

that formally transforms the prepared ODE (B.6) into tiemal formequation:

fu+ Bp(Ju= By Zzu u (5.66)
I;+42 0 ut 0
Bo = 10 etz Bi(zu)= {01{2 ;ut= wup

z

5.5 Comments

Analogues of proposition 5.1 can be stated for differential equatess, differ-
ence equations, of order 1 and dimensipwith one level and no resonance, given
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in prepared form :

fiv+ Bo(2)v = 9(zV) (5.67)
M
with Bo(2) = Ijln;+z '™™Mj ,&;n; = n, resp.
j
v(z+ 1) = Bo(2V(2+ 9(zV) (5.68)

M
with By(2) = e i(1+ z YMi_ In each case, there exists a formal transformation
i
of the typev = B(zu), B(zu) = &onnUkex(2), 8(2) 2 C"[[z 1]] that brings the
equation to the linear normal forffu+ Bg(2)u = 0, resp.u(z+ 1) = Bg(2)u(2).

To be correct, the upshot for difference equations is more subtle.

This property is still valid for differential equations with more than one level, see
[31,5,[8] and references therein. In particular, the whole set of formal invariants is
already given by the linear part (in Jordan form) of the equation.

When resonances occur and as we saw with the rst Pandepation, the nor-
mal form equation is nonlinear and incorporates new formal invariants. This is es-
sentially a consequence of the Poires@ulac theorem [3]; for instance ip (5]66),
one recognizes the effect of the positively resonance of order 3 with the resonances
monomialsu?u, andu;U2. The classi cation is detailed in [19], see al$o[21] where
the notion of (so-called) moulds and arbori cation are used (a good introduction of
which is [37]).

Acknowledgements | am indebted to my student Julie Belpaume for helping me to working out
this chapter. | thank Jean Ecalle for interesting discussions on phenomena induced by resonances.
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Chapter 6

Truncated solutions for the rst Painleve
equation

Abstract In the previous chapters, we studied the unique formal solution of the
rst Painlevé equation then we introduced its formal integral. In this chapter, we
show that formal series components of the formal integral are 1-Gevrey and their
minors have analytic properties quite similar to those for the minor of the formal
series solution we started with (Sqct.]6.1). We then make a focus on the transseries
solution and we show their Borel-Laplace summability (Secl. 6.2). This provides
the truncated solutions by Borel-Laplace summation (§edt. 6.4).

6.1 Borel-Laplace summability of the k-th series and beyond

We described with theoremi 5.1 and its corollgry|5.1 the formal integral

w(zU) = & N2 ka{?] associated with the rst Painléequation. Our goal in this
section is mainly to show the following assertion.

Theorem 6.1.For everyk 2 N2, thek-th seriemf(o] is 1-Gevrey, its minoW{(O] de-

nes a holomorphic function o (9 with at most exponential growth of order 1 at
in nity. Moreover, \NE)] can be analytically continued to the Riemann surfRde,
with at most exponential growth of order 1 at in nity ¢V,

We already know by theoreB.S and theo@ 4.2 Wpt \hg)] enjoyes the
above properties. Our task comes down to studying the dttierseries. This is
what we do in what follows and we start with some preliminaries.

6.1.1 Preliminary results

In what follows we use a notation introduced in de nitionls.5.

Lemma 6.1.We set Bf) = 12 1 and for everyk 2 N2, R(T)= P( | k+ 1)
withl = (I'1;12)=(1; 1).Fori= 1;2,we denote b, (1) the operator de ned by
Ps (1) = P5 (1)1 so thatPy [I i) 6 0. Then, forany 2]0; 1, there exists M g > 0
such that, for everg 2 Cn D(m;mr ) :

m22?

1
1.fori= 1,2, =— M ..o\
Pq( Z) r;(0)

113
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(z+1:k)m M 0
RA( z) jkj 1

2. for everyk 2 Xi.0 with jkj 2, for m= 0;1, and, for

1 MZ. )
R( z) jkjz 1

Moreover one can choose, b = %

k6(11),

Proof. We only examine the cade2 Xi.onf(1;1)g with jkj > 1. With no loss of
generality, we can assume thak = (k;0) with Kk 2. Thus
R( z)=(z+k 1)(z+k+1), z+1:k = z+ k and we notice that
jz+k (k Dr andjz + k+ 1j (k+ Dr forz2 Cn mzzoD(mmr)

Therefore,ﬂ( i W forz2Cn°> mpz? D(m;mr ). Now eltherA(z +k O,

thusjz + k+ 1j max 1;jz + kjg and thereforemaﬁf;;j‘k’g ® 1)r : or else

A(z + k) 0, which impliesjz + k 1] maxX 1;jz + kjig and nally
maxf 1;jz+1 :kjg 1 u

IA( 2)j (k+ Dr *
Lemma 6.2.We follow the conditions of lemnja b.1. We saéﬂp: 3, while
Q«(1). Re(T) are given by|[(5.31),[(5.32) with =  ; 3 . Then, for every

k 2 X1.0nf(1;1)gwithjkj > 1, for everyz 2 R(O)

1Qd0z)) g o JRd(Z) 9y

R 2)] SO R z)) 4o

Proof. We notice that Iemn@ 1 can be appliedZa? R (0).

We havejQuj(x) = 3(jkj 1) x+ 1k (see [(5.3D)), Therefore, by lemra 6.1,
Jgkk(‘“z‘)] 3M, ,g). In the same way, one easily sees fR(1)j  Jjki(iki 1)
(cf. (6.39)), thus the result by lemra . 1u

We eventually introduce the following notation that complements de njtion|3.10.

De nition 6.1. Assume thatG(z;w) = é a(z)w' is an analytic function on the
jli 0
open polydlsdDr = OL,D(0;ri). One de nes the functiofGj, analytic onD;, by

iGiow) = & jaj(x)w.
I 0

6.1.2 Theg-th series

We start our proof of theore@.l by paying special attentioggtc- wg)].

Lemma 6.3.The g-st seriesw, is 1-Gevrey. Its formal Borel transform reads

B (@) = d + g andWg is holomorphic orR (@ with at most exponential growth
of order 1 at in nity. More precisely, for eveny 2]0; 1], there exist & Oandt > 0

such that for everyg 2 R © e (2)j A€zl In the above upper bounds one can
choose A= t = 281, MoreoverWg can be analytically continued to the Riemann

surfaceR (U, with at most exponential growth of order 1 at in nity &h(?

Proof. It is enough to studye, sincewe,(2) = We ( 2). We know thatge, solves

(5.45), namely:
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151 N TF(zwp)

ﬂlsel(ﬂ)wel = Z? ﬂT Wel; ISQ = ﬂ 2: (61)

The formal Borel transform ofee, readsB (we,) = d + We, Wwhere the minor
We, (z) 2 C[[z]] satis es the following convolution equation, deduced frém|(6.1):

!
15, 1P(z:¥0)

BP (e = o CERNE 6.2)
In this equation, we use the notation:
W = Bz)+ 2B W(z)= 4z+z Wp(z): (6.3)

Equation [(6.R) can be thought of as a linear differential equation witkgalar
singularpoint at 0.

2
Instead of), consider the convolution equaml(ﬁ)\bz a1z + azzz—l (d+ ).

- b5 _ _ z? b
Seth= ‘?Pel(‘?)\h— Z(z+ 2)W.Forz 6 0,onegeth= ayz + 325 d+ 7@+
0 2 b @

v + v
2z +2) a 2z+2) where

This implies by differentiation that(¥ = a;
) dig
= Y

o dz'’

(6-9) but for the fact of getting an in nite order differential operator.

The last ODE has a regular singular point at 0. One can apply the same trick to

Equation[(6.P) can be analyzed with the tools developed in 3.3.2. We introduce

8(z)= ?z + W = %+ z \w(z) and we remark thaB belongs to the

maximal ideaM O (R (%) of O(R?) for anyr 210;1[, thus® 82 O(R?) is
well-de ned. We setlve, = If’ell(?)? 18+ fa, and ) becomes

.M, =6 A6 +86 B (6.4)

Observe tha® B, 1% 8 belongs toMO (R(?). Let R> 0 be any real

positive numberlJr be the star-shaped domdiix = D(O;R)\ R $O) and we set
B = f#2 O(UR);kik, rg, for r > 0 andn > 0. By propositior| 39 and lemma
[6.3, whem ! ¥,

kBihE 8 AR B k! o
Explicitly
BIDE e RADEE K O e BN K

M, . .
nR(f) KB 18KkokP, (R 16ky:

Also, kB, (MY 1 8 e, kn KR Lbkokia, k, Equation ) thus trans-
lates into a xed point problerta, = N(i&,) whereN: B, ! B is a contractive map-
ping forn large enough. This ensures the existence and uniquess 2fO(R (),
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The same reasoning can be applied for showingihatan be analytically contin-
ued toR @, in application of propositioh 4.5 and theorem|4.2.

To get upper bounds, we notice 6.3) and le : 3.3 that for ev@rr §0),
b 18(2) 3+ 1 Wo(jzj) whereWp(x) = A stands for the majorant function

of Wy given bytheore3 and corolidry B.1, thus wAth 4:22 andt = %22, View-

ing the Gbnwall-like Iemm, one sees that for every R £0)  jWe, (2))] Wel(jzj)
whereW,, solves the convolution equation:

1 1
M,;(O)Wel = 21 W, (d+ We): (6.5)

This means tha\!\/el has an analytic Laplace transform under the farm

1 1 1A " 4:22
Wo(29= § = —+-— ; A=422t= =
(2 na'lrn 4z zz t r
... 581 . 1 1 1A .
When assuminggg ——, forinstance, onegetss —+ ——— 0:5 (since
r r 4z zz t

r < 1), thusj®e (2)j 1. Therefore by Iemm@.S, for any<0r < 1, for every
22RO, jWe, (2)] S%Mesfgljx". One shows in the same way thag, has at most

exponential growth of order 1 at in nity oR (¥, using lemma 4.11 and theorém|4.2.
u

6.1.3 Thekg-th series

We now turn to thekg-th series, that is the termag = w{fg of the transseries,
fork 2.
Lemma 6.4.For every integer k 2, the k-th seriessye 2 z 2 DC[[z 1] is 1-

Geuvrey, its minomv de nes a holomorphic function oR @ with at most expo-

nential growth of order 1 at in nity. Moreovei, can be analytically continued
to the Riemann surfad® (9, with at most exponential growth of order 1 at in nity
onR®,

Proof. Once again from the invariance of the equation](3.6) under the symmetry
z7! z thereis no loss of generality in studying only #e-th serieslye, .

We know thatly; We, are holomorphic oR (@ and can be analytically continued to
R®. Moreover, for every 2 R, jp(z)]  Wo(X), je,(z)]  We,(X), X = jz]

and for everyz 2 R%Y, jiog(z)]  Wo(x), jWe,(z)j] We, (x), x = leng(z), where

W, and\ll\/el are entire functions, real positive and non-decreasin@bnwith at

most exponential growth of order 1 at in nity.
We know from lemma 518 an{l (5.48) that for evéry 2,

Bhe (2= A ez ' 22 2 Iz 1]
I 0

A
z t

1 We recall thaB = A
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solves the differential equation

3 B e, Bie, T2F(Z ‘ﬁo)

ky+ ko= k 2! w?
k]_ Lko 1

We deduce that the formal Borel transfoBr(\@e,) = ae,;0d + Wie, has its minor
which satis es the identit§

. . 2 .
D kelwkel - é (akle]_,od + wklel) (ak2e1,0d + wkzel) TI lb(z ,\WO)

ket ko= k 2! w2
kl Lko 1
(6.7)
whereM ZE(Z)— z, whereas
|
B(z
Dkelwkel = Iq<e1d?)\lvke1+ 1 lel(?)wkel"' ZRye, W \bkel
(6.8)

i TP(z:80) given by ).

These equation$ (§.7) can be seen as linear differential equations vétular
point at 0. They are all of the type

N
pw+1 [Mwl=z [rM)wl+ 3 K w" (6.9)

n=0

investigated in Secf. 3.3.2 and Séct]4.5. We use the methods introduced there and
make a proof by |nduct|on ok, considering the operatol de ned as follows:

B(z;
Nb= Puey(® 1 QoMb+ zRug+ % b
3
+ é_ (Ayep;0d + wklel) (Ayep;0d + \hkzel) ﬂzlb(z WO)%
k1+k =K 2| ﬂWz
kl Lky 1

Case k= 2 LetR> 0 be areal positive numbar,2]0; 1[ andUg be the star-shaped
domainUgr = D(0O;R)\ R(O) We setB, = f82 O(UR);kik, rg forr > 0 and
n> 0, and we look at the mappirdp : 2 B; 7! Nob. We know thatty;. 2 O(R (0)
1P(z:¥0)  12P(z:¥0)

while

W belong toM O (R )) Using Iemml and ar-
guments aIready used in Sgct. 3.3.2.3, one easily showNlisf contractive map.
Thus equation{ (6]7k = 2 has a unique solution iB. This shows, by uniqueness,
thatiy,e, can be continued holomorphically (@,

When replacindJr by the open set df-pointsU = U, R (D and arguing like
what have been done for the proof of theo@ 4.2, one showsthatan be holo-

2 Remember thadye .0 = O as a rule, apart from the case 1 whereae ;0 = 1
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morphically continued to the Riemann surfaRéb .

To get upper bounds, we noticethatforevxe@Rﬁo), W %’I (x; W)
2|b o 2 . - 2 P
and W #TE (x; W) with x = jzj, 37“; (x; W) = 2jf,j(x) = x and

% ;W) = jRj(x)+ 2B Wo(x)= 4x+x Wy(x). Using Iemm2 and the

Gronwall Iemm, we sees that for everg R EO), jW2e, (2)] erl(X) where
er]_ is the entire function, real positive d®i", with at most exponential growth of
order 1 at in nity, satisfying the linear equation:

|

1 _ 9 mw
Mr Y(O) WZel - 3+ ZMr’(O)X + ﬂT\/ (X,Wo) WZel (610)
d+ W) 2 9?
+ % % (x;Wo):

When working orR (D, one rather argues with the @wall lemmd 4.1]1, thus get-
ting jwoe, (2)] WZel(x) for everyz 2 ﬁﬁl). In these estimateg, = leng(z), and
erl is the entire function, real positive and non-decreasindRbnwith at most
exponential growth of order 1 at in nity, satisfying the linear equation:

|

1 - 9 mw
meel‘ 3% ZMrx + ﬂTv(X'WO) Woe, (6.11)

L (d+We) 2 g%P

ol [ (X;Wo)3

Induction LetK 3 be an integer greater than 3. We assume that for every integer

k 2 [0;K[, \bye, is holomorphic orR (© and can be analytically continued Ro™®.
Furthermore,

for everyz 2 R$0); We, (2)] Wkel(x); X =jzj;

for everyz 2 ﬁﬁl); jWie,(2)]  Whe, (X); X = lengz);

where, in each caslhlkel is an entire function, real positive and non-decreasing on
R™*, with at most exponential growth of order 1 at in nity.

One easily shows that the mappiNg : 2 B, 7! Nkt is a contractive, either
working in (O(Ug); k:kn) or in (O(U; .1); kika). Thus, by uniquenestike, is holo-

morphic onR (@ and can by analytically continued B

We get upper bounds, either 'Rnﬁo) with the Gibnwall Iemm, or irﬁﬁl)

with the Gibnwalll Iemml. We get that for every?2 R 50) ke, (2)] WKel(x)

with x = jzj, Where\ll!/Kel is the entire function, real positive d®*, with at most
exponential growth of order 1 at in nity, satisfying the linear equation:
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1

1 9 mw o
M) Wice, = 3+ ZMr;(O)X + w (x;Wo)  Wie (6.12)
2 (ak161;0d + wklel) (ak291;0d + szel) ﬂ2|b . .
+ k1+ak.=K 21 W (XYWO)
k]_ Lko 1

Also, for everyz 2 ﬁfl), jWike,(2)j  Wike, (X) wherex = leng(z), with Wke, an
entire function, real positive and nondecreasingRIn with at most exponential
growth of order 1 at in nity, satisfying the linear equation:

1

1 _ 9 mw .
My Wie, = 3+ aMr@x + w (x;Wo)  Wie,
) (ak191;0d + Wklel) (akze1;0d + wkzel) ﬂzlb )
+ p— .
k1+?:K 2! ﬂWz (x:Wo)
kl Lk 1

This ends the proof of lemnja §.4u

6.1.4 The othek-th series

Looking at [5.58), one easily see that the above methods can be applied to study
the minory; = \bllo] of the (1;1)-seriesw;. Thus, theorer@l is shown far= 0

anyk 2 Xp+ 1:0n Xn:0 and withn = 1. The rest of the proof is made by induction on

n, using the hierarchy of equations given in corollary] 5.1 and the reasoning made
above. This part holds no surprise and is left to the reader. This ends the proof of
theoreni 6.11.

6.2 Borel-Laplace summability of the transseries

We now restrict ourself to the transseries solution of the JDE (3.6), having in view
of analyzing their Borel-Laplace summability. From the invariance of the equation
(3.6) under the symmet7!  z itis enough to only focus on the transserjes (5.41)
associated with the multipliér, = 1, namely:

¥
w(zUe) = 4 Vieie (2; VK= Uke ik tik: (6.13)
k=0

6.2.1 A useful supplement

We complete lemmja .4 with the following resuilt.

Lemma 6.5.For everyr 2]0; 1], there exist &= A(r)> 0,t = t(r) > Oand a se-
quence Wkel « » Of entire functions, real positive dR*, with the following prop-
erties:
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for every integer k 2, Wkel(x)p2 x2 3Cfxg;

3r .
for everyx 2 C, jWie, (X)j — Ae'™X and for everyintegerm [1;2k 3],

] . Pk m 1 o
Wi, (X)] 3% AL 2D €7 (X))
for everyz 2 R J\hvkel(z)J Wkel(x) with x = jzj.

27 . .
Moreover one can choose=At = Ty in the above estimates.

Proof. We know by theore@?. lemnja $.3 and lenimg 6.4 that, for every integer
k2 N, Wy, is holomorphic orR (9. Also, for everyr 2]0:1], for everyz 2 RS ),

jWie, (2)]  Wie, (X) with x = jzj whereWp(x) = Age®* andWe, (x) = Ag €'ar

are convenient majorant functions while, for any inteiger2, Wkel solves the con-
volution equati02). One rst shows that for any inte@erZ,Wkel(x) belongs

tox 3Cfxgand we reason byinduction:usingthefacttk%vg (x; W) = O(x),
one sees thatd + We,) 2 1%‘; (x;Wp) = O(x), thus Wy, (z) = O(z); then,

by an induction hypothesis, we check that integer 3 of the formk= k; + k»
with ky; K2 2 N?, (agep00 + Whie,)  (Bipep00 + Wige,) = O(x% 5) (we recall that

akep:0 = 0 apart fromae o = 1), thusWie, (z) = O(x* 3) by (6.12).
¥
We then introduce the generating functMifx;V) = § V*We, (x) and we de-

k=2
duce from|(6.1P) thal/ satis es the identity:
I
1 9 1P
W= 3+ M, gx+ — (x;W W
o 2Mri0 ﬂw( 0)
+ gvk 3 (Bkyer00 + Wige)  (Boey0d + Wie,) @ (x: Wp):
o2 kitko=k 2! w2

This can be written also as follows (remembag; .0 = 0 apart fromag; .0 = 1):

1
W=
Mr 0 I

vVdrW, +W > q2p
2! w2

3+ ng;(o)x+ ]&: (x; W) W+

Explicitly, one can choos&r/lr =7 (Iemmal)Wo(x) = 422eTX (theorem
.) W o () = 58le (Iemm), and we recall tha%v (x;Wp) = x while

W (x,Wo) = 4x + x Wp(x). Therefore W solves the convolution equation:

9 422 4:63 263 2
W= 3+ 4+ X+ 42X e W+% Vi 22 X

The generating functioM(x;V) is thus the Borel transform &/(z:;V), solution
of the algebraic equation
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!
3 9 1 422 1
+

FW= S+ 4+ 2 S5 Ty
" . | #, (6.14)
1 581 1
+gv 1+—r —it + W
r

2

with @(zV)' + ¥ 1+ 5}—81Z 1ss  whenV! 0 withjZ large enough. We

view ) asa xed point probleM/= N(W). We selJ = D(¥; 3.) D(0; #%-),

we equip the spac®(U) with the maximum norm and we consider the closed
ball B; = fW2 O(U); kWk 1g of the Banach algebraO(U);kk . One easily
shows thatN : B; ! By is a contractive map (remember that< 1), hence the
xed-point problemW= N(W) has a unique solugo\ﬁ/: W/(zV) in By. Its Taylor
expansion with respect ¥ at 0 readd®(zV) = § V@, (2), where(Bhe, )k 2

k=2
is a sequence of holomorphic functions on the dig¥; %) and, by the Cauchy

(SJ
inequalities, for every integér 2,su92j>%j\ﬁ/kel(z)j 3T’ . Moreover, since
r

Wie, (X) = O(x% 3), WBle, (2 = O(z 2k D). We end the proof with Iem@.S:
Pk .,

W/, is an entire function, for every 2 C, [®le, (X)] 3Tr %e%x’ and for

every positive integer1 m 2k 3,

pr k 27 m+1 Zm]_

. . 3
B, (X)] —

27
ar Z ii):
2 ar m o & O

This ends the proof. u

6.2.2 Borel-Laplace summability of the transseries

Before keeping on, we lay down a de nition, see also [11].

De nition 6.2. Let(@)k obe asequence of formal sergg2) 2 C[[z 1]]. One says
¥

that the transserieg(z;V) = 5_ ngk(z) is Borel-Laplace summable in a direction
k=0
g2 s if eflchgk is Borel-Laplace summable in that direction and if the series of

functionsé VvKS dg(2) converges uniformaly on any compact subset of a domain
k=0

ofthe formp @ V. Inthat case, one denotes 8yg(zV) 2 O(P{ V) itssum,

called theBorel-Laplace sum of the transseries

In the sequel, we have in mind to analyze the Borel-Laplace summability of
the transseries given by propositi@]S.Z. This means analyzing the Borel-Laplace
summability of the transseriﬁﬁz oV e, (2), resp.é’\ﬁzovkwk@(z), then substitut-
ingV = Ue 2272, resp. V= U2, in the Borel-Laplace sum. Notice however
that the mapping 7! e 2227 is ill-de ned on C but should be considered on the
Riemann surface of the square root or on its universal cov&irthis justi es the
use of domains of the foriR 3 2 €, q 2 &' (see de nitio) in what follows.
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De nition 6.3. Letg:€! C angk :R! R*? be two continuous functiong,2 St
andt 2 R. We seff 9(g;t;k)= ~ (fz2 PJ;jg(2j < k(c)g €.Letl &' be
anopenarcyg: 1! R alocally bounded functionarid :1! COR;R*?) a con-
tinuous function. We denote by (1;g;g;K ) the domain of€ de ned as follows:

[
V(iggK)= " f9g0g@q);K (q) €:
q2l

Theorem 6.2.The transseries solutions of the prepared equation (3.6) associated
with the rst Painle\e equation,

w(zUg) = g[\/i(z;U)]kwka(z); Vi(zU) = Ue lizz ti: j=1:2: (6.15)
k=0

are Borel-Laplace summable and their Borel-Laplace sums are holomorphic solu-
tions of ). More precisely, for any=R0, for any open arcjl =] jp;(j+ 1)p[ st
j2 Z,the sum y
S ie(zUe) = § M(zU)I*S e (D); (6.16)
k=0
with I = p(l;) Si andz= p(2) 2 C?, converges to a function ¢&U) holo-
morphic onV (Ij;Vi(R);t;K ) D(0;R) where one can choosg(q) = m

andK (q):c2 R 7! Wq)zgzsiﬁ' Moreover, the sun$ 'iw is solution of equa-
tion (3.8).

Proof. This theorem is a consequence of theofem 3.3, lefnnja 6.3, Iémina 6.4 and
Iemm. Let us precise the reasoningifer 1 and the open arig =] 0;p[ &
We know from lemmals 6|4 afd 6.5 (applied with= 2k  3) that for anyd 2]0; 5[

and any integek 2, foreveryz 2 §(d;p d[),
|
-k

Lend . x*4

2 o ok @ 0 O x=izh (817)

Wi, (2)]

. 27 N .
with Ag =ty = Asind)’ We now x a directionq 2 lp and fork 2, we consider

the Borel-Laplace sum

Z yda Z iy - o
S Ui (2) = e Z\pye, (z) dz = e ey, (x€9) 0

For anyc> tq and anyz2 P ¢, je %€ e ™ forx 0. Therefore, foz2 P ¢
andx O,

|
_ _+k
3p sin(q) x4

e Z)(eiqwk%(xeiq)eiq # Aék Ze [0 W daX (X):

The functionS 9ie, (2) == S 9 (2) is thus holomorphic o J and, for every
z2 ﬁg,
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Fig. 6.1 The (shaded) domain
V (lp;V1(0:5);t ;K ) on pro-
jection, fort (q) = m,
2
K = #77
(@) (©) 3t(q)? sin(q)
andVi(zU) = Ue 222,

p -7! k 2%k 2
. . 3 sin(q) Aq c
q I 9 .
1S Mg, (2] 5 c c tq'

K
We turn to the series of functiod Ue 222 S %y, (2). From what pre-
K 2

cedes, for anyR > 0, for anyc®> c > tq, for every(zU)2 P} D(O;R), the

series is normally convergent whgRe 227 342'3?@ We end with theo-

rem[3.3 and lemmfp §.3: for any directian2 lo, for any c> tq, the series of

k

functions a Ue %72 'S 9, (2) de nes a holomorphic function on the do-
k0

mainf 9 D(O;R) with f 9 = Sm fz2 P3;jRe 2% < H% Makingq

varylng onlp, these functions glue together to prowde a holomorphlc function

S 'og(z Uey) on the domaitV (Ip;Va(R);t;K ) D(O;R) witht(q) = 4Jsm(q and
K(g):c2RT7! fq)zzéleq) (sinceAq = tg), see Figl. Finally, we encourage
the reader to show th& i solves the ODH (3]6).u

Remark 6.1The theoren 6]2 can be shown by other means, see the comments in

Sect[6.b.

6.2.3 Remarks

In what follows we setwy:j:i(zU) = S 'le(zUe).

1. We know by propositio-z thale,(2) = Wie,( 2) for everyk 0. One de-
duces that for any 2 Z, for anyq 2 1}, for everyz?2 Pt( Q) 2P 2 P, ( and
SP Y, (=S 9w, (z€P). Therefore, foranyg 2 I, for everyz 2 Pp(p a)

SP dg(zUe)= S 9w(zeP;UePe) and, as a consequence, for gr Z:

for everyz2 V (1j;Vo(U);t ;K )5 Wiry;j:2(ZU) = Warusj 11(zeP;UEP?);
for everyz2 V (lj;Vl(U);t KOs Wtru;j;l(Z;U) = Whru;j 1;2(Zeip;U€'ip:2):
(6.18)
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2. Here we adopt the convention : for re2 2 € we sez=r @ 2 €.
We know by propositioh 52 thaie (2) 2 R[[z ] for anyk2 N, i = 1;2. Thus,

foranyj2 Zandanyg 2 |, forz2 Ptq(q), S dwig(2=S 9w (2). Therefore,

foranyj2 zZ, foreveryz2 V (1j;Vi(U);t;K ),

Wiru ;i (ZU) = Werg( 1);i(2U)

and with [6.18) we deduce that, for evem2 V (Ij;Vi(U);t;K ) and
z2 V (1;;V2(U);t;K ) respectively,

Wiruja(zU) = Wy jr2 22 G D1P;Te (412200 (6.19)

Wtru;j;Z(Z;U) = Wiry;ji1 28 (2j+1)ip;Ue (j+1=2)ip .

6.2.4 Considerations on the domain

Viewing (6.18) and[(6.7]9), it will be enough for our purpose to consider the
domainV (lg;Vq;t ;K ) with 1o =]0;p[, Va(U) (2) = Ue 2272 with jUj > 0,

t(q)= m, K (q) (c)= ﬁ@zsiﬁ.We would like to describe the bound-

ary of this domain. As a matter of fact, we will restrict ourself to describing its
subdomairf 9 V4(U);t(q);K (gq) with g = p=2. Considered by projection d,

this domain readsz= x+ iy, (xy) 2 R?, belongs tof % Vi;t (%);K (§) ifand
only if there existd > 1 so that

2y< %7|
_> JUJe X(X2+ y2)3:4< gl 2:

(We takec= Z/l > t(p=2)). Wenow xy= %I withl > 1and we remark that

z= x+ iy belongs tdf 2 Vi(U);t(5);K () iff x> X with X such that

juje Xy 2 Ay (6.20)
3 27
Indeed, just see that the real mappiig) e *(x>+ y?)P is decreasing whejyj  p,
and use an argument of continuity. With the implicit function theorem, these argu-
ments show the existence of a unique solufiony 2] ¥; %[7! X(y) of ),
of classC¥ and increasing witly, which can be described as follows. The above
equality is equivalent to writing

x2 3 32 *
1+ = = X = e 6.21
A A I vy (621)
and we can remarl;tha(t( a ¥?)=0if a ¥2< 32 Whenassuming® X2
In(ay)

we getX = + e,e= 0(1) as a rstapproximation. Plugging this in (6{21),

one gets

In(ay?) , ,In*(ay’)
4 Y

X = +o(y %)



6.3 Summability of the formal integral 125

and one can keep on this way to get an asymptotic expansion at any order of the
solutior?. To put it in a nutshell:

Corollary 6.1. In theoren] 62, the sumywo1(zU) = S "w(zUey) de nes, for
any U2 C?, a holomorphic function with respect to z on a domain which contains,

by projection onC, a subdomain of the form z= x+ iy; y< %7; x> X(y)
where X is an increasin€¥ function on] ¥; %[, whose asymptotics when
y! ¥ isgiven by:

In(ay?) .In*(ay?)
4 *3 42y?

» 32
+o(y 9); a= 2187U] (6.22)

X(y) =

andsothatX a )= 0if a < 32

6.3 Summability of the formal integral

We saw with corollary 5]2 that the formal integral can be interpreted as a formal
transformatiorw = E(zu),

B(zu)= & uell(2); (6.23)
k2N2

that formally transforms the prepared ODE (3.6) into the normal form equation
(5.66). It is then natural to wonder whether this formal transformation gives rise to
an analytic transformatiorts, (z u) by Borel-Laplace summation,

Fq(zu)= S 9B(zu) = & uks qw{?](z);
k2N2

with a de nition of the sum similar to that of de nitiop 6]2. One could give a positive
answer to this question, for the price of some further effort.

One has to extend Iem@.s to the whkkeh seriesmf(o]. It is worth for this matter to
complete the Banach spaces detailed by propoditign 3.9 by other “focusing algebras” for
which we refer to[[B], in particular those basedIdpnorms.

This does not mean that the formal integral is Borel-Laplace summable : this is
wrong, due to the effect of the exponentials. Only the restrictions of the formal inte-
gral to convenient submanifolds is 1-summable, which means here just considering
one of the two transseries. However, the sums of the two transseries share no com-
mon domain of convergence aadortiori the formal integral cannot be summed by
Borel-Laplace summation.

We do not pursue toward this direction and we conclude this chapter with the
truncated solutions.

3 One can also describe the solution in term of the Lambert function, the compositional inverse of
the functionxe®.
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6.4 Truncated solutions for the rst Painlevé equation

We know from theorenj 6]2 that the sumj;i(zU) = S 'lw(zUe), j 2 Z
andi = 1,2, is a holomorphic solution of (3.6), far on a domain of the form
V (I;Vi(U);t;K ). From its very de nition and from corollar@].l, the domain

V (1;;Vi(U);t;K ) contains a sectorial neighbourhood of in nity with apertuvr@
where (see Fig. 6/1):
wheni=1,Tj1=] 3p;+3p[ jp for jevenTj1=] 3p; 3Ip[ jp for j
odd;
wheni=2,Tj2=] Ip;+2p[ jp for j odd, T2 =]
even.

3p; 3L jp for |

To go back to the the rst Painlévequation[(2]1), we use the transformationof
de nition B.20.

De nition 6.4. The conformal mapping sends the domai (I;g;g;K ) onto the
domainT V (l;g;9;K ) and we set

(hggK)=T V(5ggK ) ; (hggK)=p S(;ggK ) : (6.24)
The domain (1j;Vi(U);t;K ) contains a sectorial neighbourhood of in nity with
apertureX;i (see Fig[ 6.2):

wheni= 1,Kj1 =] Zp; 2p[ ZjpforjevenkKj.=] p; Ip[ Zjp for

j odd;

wheni = 2,Kj2=]  {p; 2p[ #jpforjodd,Kj2=] %p; Ip[ &jp for

j even.

In any case, the domainglj;Vi(U);t;K ) are in connection: for every?2 Z,
(lj+1;V2(U);t;K )= e 4P (1;:Vy(U);t;K ):

From [3:3),[(2.6),[(2]7), the transformation

22V (I;ViU);tK ) $ x2 (11 VU)K ) !

i 1 1y -
! Wi T ~(X);U
Wtru;j;i(Z;U) $ Utru;j;i(X;U) = & %2 1 4 5+ i 5
25T 1(x T Y%

provides the solutions;j; (x;U) for the rst Painle\e equation. These are ttran-

cated solutions

The property|[(6.18) translates into the following relationships between truncated so-

lutions: foranyj 2 Z, foreveryx2 (1j;V1(U);t ;K ),resp.x2  (1j;V2(U);t;K ),
Utru;j;l(X;U) = e2ipzsutru:j+l;2(xe 4ip:5;U9 ip=2) (6.25)
Utru;j;Z(X;U) = eZIP:SUtru;j+1;1(Xe 4lp:5;Ue |p:2)

These are the symmetries discussed in $edt. 2.5. In the same way fromn (6.19), for

anyj2 Z, foreveryx2 glj;Vi(U);t;K ), respectivelyc2 (1j;Vo(U);t;K ),

(V) = e8I DiPyo(xe 8@ DIP;Te (412iP):  (6.26)

Troja(xU) = e%(2j+1)iputru_j_l()—(e §(4j+7)ip;Ue (i+ 1=2ipy.
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Fig. 6.2 The (shaded) do-

main  (lg;Va(U);t;K )
for t(a)= sy
K (a) (9= ;- B—

3t(a)?" sin(q)
andVy(zU) = Ue 272

6.5 Comments

We mentioned in Se.5 the existence of formal transforms of the/typ&(z u),

B(zu) = &wonnUkek(2), e (2) 2 C"[[z 1] that brings differential and difference
systems to their linear normal form, under some convenient hypotheses. For differ-
ential equations of typ¢ (5.57), the serdgsare in general not 1-summable but mul-
tisummablel[10]. The rstresults in that direction, concerning the multisummability
of the formal series solutions, have been obtained by Braaksma [1] then by Ramis &
Sibuya [12]. A resurgent approach for 1-level differential equations is undertaken by
Costin in [4], with the proof of the 1-summability of the formal integral on restric-
tion to convenient submanifolds. These results have been generalized to differential
and difference equations, see elg/[2,19./7, 5] and references therein, at least for the
cases where no resonance occurs. The question of the (multi)summability of the
above formal transforms may be delicate, even for 1-level differential systems or
ODEs, whemuasi-resonanceccurs, giving rise temall divisors

If I =(l1; ;lp) stands for the multipliers and in absence of resonance, it may happen
thatl :k comes close to one multiplier, for sork@ N". Thus, the construction of the formal
integral gives rise to division by small factors. One has “quasi-resonance” when there exists
an increasing sequen¢k; 2 N") such that limy ¥ | :kj = 0 fast enough, a condition that
translates into diophantine relations on the sequence.

More details on this subject can be found]ih [8].

We nally mention a general upshot, that of the formation of singularities near the
anti-Stokes rays. Considering the Borel-Laplace sum of a transseries stemming from
(resurgent) 1-level differential or difference equations, it is possible, as shoin in [7]
(see alsa [6]) to analyze its behavior on the boundary of its domain of convergence,
by a suitable use of a multi-scale analysis. This is detailed in [5] for the rst Pdnlev
equation.

Acknowledgements | warmly thank my student Julie Belpaume who helped me to work out this
chapter.
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Chapter 7
Supplements to resurgence theory

Abstract This chapter is devoted to some general nonsense in resurgence theory
which will be useful to study furthermore the rst Painkequation from the resur-
gence viewpoint. We de ne sectorial germs of holomorphic functions (§edt. 7.2)
and we introduce the sheaf of microfunctions (Seci. 7.3). This provides an approach
to the notion of singularities which is the purpose of Jeci. 7.4. We de ne the formal
Laplace transform for microfunctions and for singularities and conversely, the for-
mal Borel transform acting on asymptotic classes ($ect. 7.5). The main properties
of the Laplace transform needed in this course are developed td Séct. 7.6. We then
introduce some spaces of resurgent functions and de ne the alien operators (Sect.

[7.9t0[7.9).

7.1 Introduction

In this introduction, we assume that the reader has a previous acquaintance with
1-summability theory, much discussedlin|[14] to which we refer.
At its very root, one can rely the Borel-Laplace summation scheme to the simple
formula
1 o0 1 Z yda zn 1

27 sm T . ¢ Tem

dz; n2N?% z2p§:

1

n

Let p 2 O(D(0;R)) be a holomorphic function ané a“(ZB(n)
n1
ries at the origin. We choose an open &rs] a+ qg;q+ a[,0<a p=2,
bisected by the direction, and we set”’=] a q; q+a[ q. For some
r 0,weset ¥= {(I7). For any cut-offk 2]0;R[, the truncated Laplace inte-
Z yga
gralj (2 = e Zjp(z)dz provides an element ok 1( ¥) whose 1-Gevrey
0

be its Taylor se-

asymptoticsTl_ Jk(@in ¥ is given by the 1-Gevrey serieé_ % 2 C[lz Y.
’ nl
This is essentially the Borel-Ritt theorem for 1-Gevrey asymptotics. For two cut-off

pointsky; k2 2]0; R, the differenceg ¢, j k, belongs toA l( ¥), the differential

ideal of A 1( ¥) made of 1-exponentially at functions or*.
One gets this way a morphisin (1) :jp 2 Og 7! cl(j k) 2 A1(1)=A  1(1?), where
hereQy stands for the constant sheaf (of convolution algebras) 8veBy (obvi-

129
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ous) compatibility with the restriction maps, one obtaiasmorphism of sheaves
of differential algebrad, :Op! A=A 1 where the quotient sheaf;=A !
over St is known to be isomorphic to the constant shéffz ]}, (Borel-Ritt the-
orem[3.4, se€ [14,17]). The formal Laplace transfomis an isomorphism, the
inverse morphism being the formal Borel transfdBm C[[z 1]]1! Og (seen as a
morphism of sheaves).
One can extend the theory by considering Laplace integrals de ned along Hankel
contours. For instance, standard formulae provide
1 z z,s 1
G(s)= 1T o 205 e “z° *dz; s 2CnN; (7.1)

9 2p:0fe
where the integration contogf ,.qe iS the (endless) Hankel contour drawn on
Fig.[7.d, whilezs 1= ¢fs D109z and log is the branch of the logarithm so that
argllogz) 2] 2p;0[. Performing a change of variable, one gets the identity

VA

1 - =
gzLols(z): e ZTs (z)dz; z2P§; (7.2)
9 2p0je

with 22 = €992 where this time log is the branch of the logarithm so that
argllogz) 2] p;p[, while

z° llog(z)
2ipG(s)

55 1
(1 e 2ps)G(s)

fors 12N

Ts (z)= 2
fors 12 CnN:

The form ofTs that we give fors 12 CnN is well-de ned when s 2 N. It can be
analytically continued to the cases 2 N by the re ection formula.

This example provides another one that will be used later on : fnqrrmhy\l, any

s2CnN?forz2 P, ( )™z S(log2™= L °Js.m, Js:m= ‘Hls Ts with the
above convention for the lagRemark however that °Ts= L © Ts +hol when
hol is any holomorphic function on a half-strip containing the origin, with at most
exponential growth of order 1 at in nity. This justi es the introduction of the spaces
of microfunctions and singularities that we do in the next sections.

This chapter can be seen as a sequel of the resurgence theory develdpéd in [18].
For most of the materials presented here, we mainly referlto [7,19,)10] 1, 18], see
also [4]24] 211]. Another approach to resurgence theory is providéedlin [27].

Fig. 7.1 The Hankel contour
Yq 2pane forg = 0.

1 Modulo the quite innocent complex conjugatibh 17,
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7.2 Sectorial germs

7.2.1 Sectors

We precise our notations for sectors(@1p), the Riemann surface of the logarithm
(Compare these notations with de nitipn B.3).

De nition 7.1. Letl S'be anopenarc. ForOr< R ¥, we denote by R(I)

the simply connected domain &fof the form R(1)= fz = x9jq 2 I;x 2]r;R[g.

One denotes byR(l) the closure of R(I) in € We use abridged notationg(l),

“o(l), ¥(1)and ¥(1) for sectors, whei or r is unspeci ed.

For any continuous function F&L ! ]0; + ¥[, we denote by§ the simply connected

domain dened by R=fz=rd9jq28;0<r<R(q)g €. We simply write
o for such a domain, when there is no need to specify the function R.

7.2.2 Sectorial germs

De nition 7.2. Letl S be an open arc. One says that two functipn® O( (Ffl(l)),
j22 0O( 52(|)) de ne the samesectorial germj~ of direction | at0, whenj ; and
j 2 coincide on a same domain of typg(l). We denote byd(1) = |im O( §(1))

R 0

the space of germs of directiorat 0, and byO? the sheaf oves! associated with
the presheaD®.

As a rule in this paper for the (pre)sheafs one encounters, the restriction maps are the
usual restrictions of functions. We warn the reader that the presb®a$ not a sheaf

over St (see for instance a counter example giveriin [14]) : for an open,aacsection

2 0%1)= G(1;09) is a collection of holomorphic functions; 2 O( (1)) that glue
together on their intersection domains, thefdgj being an open covering of

Example 7.1We denote byCfz;z lgthe space of Laurent seri@s, a,z" which
converge on a punctured dif{0; R)?. This space can also be seen as a constant
sheaf overS! and the spac®°(S!) of global sections 00° on St coincides with
Cfz;z 1g.

For n2 N? and a given directiomjo 2 St, let us consider the sectorial germ

I (2)= Z;m”TO&()Z) 2 07, for any given determination of the log. He@f de-
notes the stalk atyy of the sheafO®. When makingq varying from gg on
=] p+dogo+ p[ St the sectorial germSq2 Og glue together and de ned a
section| 2 G(I; 0% which cannot be prolonged to a global section.

This last example illustrates the need for de ning sectorial germs for functions

de ned on sectors of. The covering map : 8! S! allows to consider the sheaf
p?0° over &, that is the inverse image hy of the sheaf0® (see[1/ 12, 3]). For

J an open arc 08!, an elemenf of p?0°(J) appears as an element of tlspace

G(J; 0 of multivalued sectionsf O° onJ, that isj” = s(J) wheresis a continuous
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F
0%= " 429.0g
#

. We say
Sl

map such that the following diagram commut%f%
!

that in another way in the following de nition:
De nition 7.3. LetJ2 &' be an open arc. One says that two functiop® O( gl(J)),

22 0( SZ(J)) de ne the same sectorial gerim of directionJ at 0 whenj ; and
j 2 coincide on a same domain of typg(J). We denote byG(J; 0°) the space of
multivalued sections of germs of directidn

Remark 7.1For anyw 2 C and by translation, one can of course de @, the
sheaf ovelS! of sectorial germs aw, associated with the preshe@¥.

7.3 Microfunctions

We introduce the sheaf of microfunctio@g atw 2 C, in the spirit of [1] to whom
we refer. SinceC,, is deduced fronC = Cy by translation, we make the focus on
the casav = 0.

7.3.1 Microfunctions, de nitions

We complete de nitior 3.7]3.

De nition 7.4. Let g be a direction andl =] a;b[ be an open arc (8! or 8'). we
set:

= qgandl’=] b; a[thecomplex conjugate arc;

=l %5 a; g+ 5[andl = "4y q;

3.9=1g 3p=2q p=2 thbecopolarofq;

4.1=]a 3p=2b p=2[= 4, g thecopolarofl;

5. whenjlj> p,P=]a+p=2;b p=2[; whenjlj< p,P=]b p=2;a+ p=2[. When
jli=p,weseP=fb p=2g.

We would like to de ne “microfunctions of codirectiohat 0”. For any open arc
| Stoflength p,we notice that its copoldris of length  p, thus can be seens

as an arc of. For such an arc, we sé(1) = 0°(1).
We now remarlghat for twoards Iy oflengths p,onehad, |;1. The restric-
tion mapr Iyily - 0%11) ! OOI,) gives rise to a restriction maqy,;i; = T, from

09(ly) into OO(I,). This justi es the following de nition.

De nition 7.5. Letl  S! be any open arc of length p.

One set©(1) = O°I) andOP(l) is called thespace of germs of codirection | @t
We denote byD? the corresponding sheaf ovst.
Viewing O as a constant sheaf ov@, we setC = 0°=0,. This quotient sheaf over
St is the sheaf ofmicrofunctionsat 0 andC (1) = G(I;C) is the space of sections
of microfunctions of codirectionat O.

The sheaf of microfunction§ makes allusion to Sato's microlocal analysis, see, E.g. [23,

13,[19]. We mention that microfunctions depending on parameters can be also de ned, see
for instance([4] for a resurgent context.
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We mention thatC (1) = 0°(1)=0y, that is the quotient sheaf coincide with the
pre-quotient sheaf, becau®g is a constant sheaf.

In what follows, we transpose with some abuse the notations for singularities
introduced in[[18] to that for microfunctions.

De nition 7.6. Let | S' be any open arc of length p. We denote by
jo= sindgj_ 2 C(I) the microfunction of codirectioh at 0 de ned by the sectorial
germj 2 O°(1) of codirectionl.

Whenl is an arc of lengtt» p, thenl is of length larger thanf2 and should be
seen as an arc @&'. In that case, a microfunctign of C(1) is represented by an

elemeni” of G(I;09).
Forany ard S'oflength> p, one can de ne the variation map var :

var :joz cH7tp2G(ROY; b(z)=i (z) | (ze ?P):

cyn 1)n
z”+ —1 can be
seen as a global section of the sh@&f The associated mlcrofunctlon is equally

0
denoted by ,, d™ or by sing T n.

Example 7.2.1. For anyn 2 N, the sectorial germ , (z) =

Notice that for any holomorphic gerin2 O, the sectorial gerrjp To de nes a

microfunction sing(jp To) equal top(0)d© = jp(0)d.
2. More generally, the constant sh&ffz;z g overS! can be seen as a subsheaf

0
of C (of vector spaces). Any microfunctioh of Cfz;z g can be written as a

("
2|p Zn+l

o
SUMA, ganl| n=&n oa.d™,where the Laurent serigs(z) = &, oan

converges fojzj > 0.
3. We assume thgb 2 Oqg is a germ of holomorphic function. For any given

direction go 2 St, we consider the m|crofunct|of1 = sind® bzl 2 Cq,

(whereCy, is the stalk atjp of the sheafC), represented by the sectorial germ

F ]b log o OO for any given determination of the log (remark tm% does
not depend on the chosen determination). Makingarying from qo up to

o]
go+ 2p on S, the microfunctiond = smgﬁ jolog
O O

f 4=T o+ 2p- This provides a global secticin: sing, b '2?3 2 G(S';C) which

does not depend of the chosen determination of the log one started with.

It can be shown (through the variation map) that the space of global sections

G(S!;C) of the sheaf of microfunctions, is composed of microfunctions of the

(] (@]
formy +sing, Jb'z?g ,withy 2 Cfz;z 'gandp 2 Oy, seell].

4. \We supposs 12 CnN and letq 2 S be a direction. The microfunction
7S 1
(1 e 2prs)G(s)'
is well-de ned once the determination of the log has been chosen. Let us now
x the arc | =]0;2p[, consider the ard =] 3p=2;3p=2[ as an arc ofS!

7b 2 Cq glue together and

0
fq= singd Ts ,represented by the sectorial gefgn(z) =

andTs 2 G(1;00) as a (uniquely well-de ned) multivalued section F on .
o)
One can apply to its associated microfunctier?2 C (1) the variation map and

var(Ts) = R 2 G(P.0?), b=]p=2:3p=2], is given byR (2) = é(s;
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7.3.2 Microfunctions and convolution product

This subsection is devoted to convolution products of microfunctions. We start with
some geometrical preliminaries.

7.3.2.1 Geometrical Preliminaries

De nition 7.7. Let e > 0 be a real;psoitive number annd S! be an open sec-
tor of length< p. We setS(P) = D(h;e), the “e-neighbourhood” inC of

h2 (P
the sector E‘(B. When the open artis of length= p, thenP= fqg and we set

sP= D(s¢%e). We set Se(l) = CnS(P and we denote by
2R

1Se(l) = ‘ﬂ&(t) the oriented boundary. We denote Gye:n,:n, the curve that
follows the oriented boundary S (1) from h; to ho. We denote byg.e the end-

less curve that follows the oriented boundar§fS¢(1).

Lemma7.1.Letz S(P be the convex domain deduced fr&tP) by the point
re ection centered orz=22 C. If disf(z;S:(P) 2e,thenz S(P  Se(l). In
particular, for everyz 2 So(l), for everyh 2 ( 1Se(1)),onehaz  h 2 S¢(l).

Proof. We only consider the case whdre S! is an open arc of lengtk p. We
pick an open sectorg (P andz 2 Cn §(P. Thenz=22 Cn (P as well. We
denote byz 3‘(9 the convex domain deduced fror’é (P by the point re ection
centered orz=22 C. One sees that for evewy2 z ¢ (P, for everyh 2 ¥(P),
dist(z; *5(9) dist(x; h) (distis the euclidean distance). Indeed, by the projection
theorem for convex sets, there exist a unique pogran the closure ofﬁ (t) so that
dist(z;hg) = dist z; 3‘(@ , see Fig. One easily shows that the perpendicular

Fig. 7.2 The domainS:(P
(left-hand side shaded do-
main), the domaiz ~ S:(P
(right-hand side shaded do-
main.
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Fig. 7.3 Picture associated
with the proof of lemm@7]2.

bisector of the segmeit ; hg] separates the two convex se@(B andz ﬁ(t).
Therefore, if distz; S(P) 2e,thenz (B  Se(l). w

Lemma7.2.Let | =]a;b[ S! be an open sector of length p and e > 0. We

considerh; 2 ( 1Se(1)) and we set = jhij. We suppose thde=r) < 1 and we
setd = arcsin(e=r) 2]0;p=2].

1.ifP=]b p=2;a+ p=2+ d[is an open sector of length p, we set b= rsin(H.

Then, forany 2 D(O;h),z hy2 §(1).
2.if ¥=]b p=2a+ p=2+ d[is an open sector of length p=2, then, for any

z2D(0;r),z hy2 ().

Proof. Left as an easy exercise. Just look at Fig| 7.

7.3.2.2 Convolution product of microfunctions

fe) 0
We pick two microfunctiong andy of codirectionl, wherel is an open arc of
length< p. For any strict subargy b |, these microfunctions can be represented by

functions]” andy belongingtoO §*"(I;) with R> r > 0 small enough.
In what follows, we choose 2]0; 5 sin(p j B)[. We remark that botB 5¢(1)\ D(0;r)
andS¢(l1)\ D(0;R) are non empty domains agk(l1)\ D(0;R) _OR”(Il).
We consider a patls = G,.e:n,:h, that follows the oriented boundaryTSe(l1)
fromhqtohy withr < jhyj< R, r < jhyj < R, drawn on Fig.

Foranyh 2 G,.e:h,:n, andanyz 2 Se(1)\ D(0;r),jz hj< R+ randwe know
by Iemm that h 2 Se(l). Therefore, the function

Z
Ciyehyh, (2) = i h Yz h)dh (7.3)

Gl;e;hl;hz

is well-de ned for all z 2 Sy (I)\ D(0;r) and is holomorphic on this domain
(which is non empty sinceeX r).



136 7 Supplements to resurgence theory

Fig. 7.4 The path of integra-
tion Gy;eshysh, -

Notice thatC),.e:n,;h, €an be analytically continued ®2¢(l)[ D(0;r) wheny
is holomorphic orD(0; R+ r), becaus¢z hj< R+ r for h on the integration con-

tour andz 2 D(O;r). Thus, by linearity, adding t§ an element 0O D(0;R+ r)
results in the addition of an element ©f D(0;r) for Cy .e:h;:h,. Similarly when
I is holomorphic orD(0; R+ r), thenC,.e:n,:n, Can be analytically continued to
S2(1)[ D(0;r) : through an homotopy iB(0; R), just deform the contou®, :e:h,:h,
into an arcGP running fromhy to hy in fh = seiquZ]r;f[; g2 % S(P: by
Cauchy, the two functions i hy(z hydhand | h ¥Y(z h)dh
Gyiehqhy GO

coincide forz 2 Sa(l)\ D(0;r), while the second integral is holomorphic on
D(0;r).

Replacinghy, ho byh® hfon 1Se(l1), withr < jhjj< R r< jhd < R results
in modifying Cy,.e:n,:n, by an element o© D(0;h) for h> 0 small enough: the
difference

Zh](? th _ N
Ciempng (Z) Cipengng=  + T (MY (z h)dh (7.4)
1 hg

can be analytically continued fro® (1) \ D(0;r) to D(0;h). Indeed, using the
condition one and by lemm& 7]2, we see that foron the two segment contours

and forz 2 D(O;h) with 0< h  rsin(®, z h remains in *é(ll)\ D(O;R+ )

whereY is holomorphic.
Finally replacinge by a anotheeOZ]O;gsin(p i B)[ yields the same conclu-

sion : forz on the intersection domaz(1)\ S,e0(l)\ D(0;r), one can compare

the two functionsC,;e;h,;h, and C,l;eqh%hg. By Cauchy, the difference reads like
(7-4) with the same conclusion.
In particular, we can le¢! 0 in the above construction: the family of functions

C\,:e;hyh, Olue together modulo the elements@y, thus providing a microfunction
of codirectionl;. Making the arcd; | recoveringl, one sees that these micro-
functions glue together to give a microfunction of codirection
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De nition 7.8. Let bel an open ard of length< p. We consider two microfunc-
0 0 _
tions of codirectior,] andy , represented by the sectorial germ of codirectign

andy respectively. For a covering dfoy open arc$; |, the family of functions
VA
I eY(2)= I h Yz h)dh (7.5)

Gl;e;hl;hz
with G = G,:e;hy:h,, glue together modul®p and provide a microfunction of codi-

o o o) o}
rectionl denoted by Y. Itis called theconvolution product of andy .

Proposition 7.1. The sheaf of microfunctior is a sheaf ofC-differential convo-

O
lution algebras, for the derivatiof: sindo(Y) 7! singi)( zY). These algebras are
commutative, associative and with udit sing, o
. . O o .
Proof. In what follows we use the previous notatiorjs andy are two microfunc-
tions of codirectiorl, an open arc of lengtk p. One pick a subarky b | and the

microfunctions can be represented by functibrendy belonging toO _g”(ll)
with R> r > 0 small enough.

o
We consider the microfunctiony o= d 2 C(S'Y) that we represent by
Vo(z)=jo(z) To(z)= jg?'(fz) with jop 2 O D(O;R+ r) and subject to the con-

dition jpog(0) = 1. Thusi~ ¢ ¥ o reads:
VA

I eYol(z)= x I (h)

Po(z_h) ..
2Ip Gl;e;hl;hz

Zz h

By Cauchy and the residue formula, one easily gets that fzraII_OR+ "(11)\ D(O;r),
I & Yo=I +hol, where hol can be analytically continued¢0;r). This implies

o} 0
that)] d=].
We then consider the integral:
Z ’
- _ 1 bo(z  (x1+ X2) . .
I' 6 e¥ (2)= 7D 60 Z (utxd) I (x1) ¥ (x2)dxidxz;  (7.6)
o2 O D(O;R+ 1) ; joo(0) = 1;

whereG = Gyehy:h,, G°= G,.e0n2ng- We remark that for anfxi; x2) 2 G GOone
has(x1+ X2) 2 Ses () \ D(0;2R). Thusi” g go¥ de nes a holomorphic func-

tion on the simply connected domadn., o(11) : just apply the Lebesgue dominated

convergence theorem faron any connected compact subse®qf co(11). This also
allows to use the Fubini theorem:

Z Z .
- 7oy — 17 joo(z (xat+ %) -
I' 6 oY (2)= ¢ 2p Gomy (x2)dxz | (x1)dxy

1 jbo(Z (X1+ X2) ._

= w0 Fp o 2 (utxg | C0dx Y (e)dx:
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From the previous considerations, we recogiizes go¥Y =" ¢ Y + hol for the

rstequality,i” ¢ go¥=Y gol + holforthe second equality, where hol is a holo-
morphic function that can be analytically continued to a neighbourhood of 0. As a

consequence,
0O 0 0 O
Joy=y ),

that is the convolution product of microfunctions is commutative. One easily shows
in the same way that the convolution product of microfunctions is associative. The

ol
fact thatq] is a derivation is obvious.u

We have previously seen two kind of integral representationg ¥ (equation

. . ) o O
)) and]” g oY (equation )) for the convolution product Y of two
microfunctions. Other representations can be obtained under convenient hypotheses
as exempli ed by the next proposition.

0
Proposition 7.2.Lety be a microfunction of codirection I, an open arc of length
< p, represented by the sectorial geffnof codirection I. Let be 2 G(S C) a
microfunction of the fornsing, =2 99 withjo 2 Og. Then, the mlcrofunctloh y

2ip
of codirection | can be represented moddg by a family of functions of the form
4 hy 4 h
p(h)y (z h)dh and p(h)Y (z h)dh (7.7)
0

with hy, h; as for de nition[7.8.

The proof is left as an exercise. (Seel[24]). Starting with the integral representa-
tion (7.5), the idea is to decompose the p@th:n,:n, as on Fig[ 7.5 and to use the
integrability of the log at the origin.

7.4 Space of singularities

The reader will recognize in what follows classical notions and notations in resur-
gence theory already encountered inl/ [18], see also [9, 10, 24, 21].

Fig. 7.5 Decomposition of
the pathGy;ein;h, -
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7.4.1 Singularities

De nition 7.9. Letq 2 R be a direction and > 0. We denote by AN4., the space
of sectiong3(J; 0% whereJ=]q a 2p;q+a[ &' andby ANA= G(8&!;0°)
the space of global sections.
Thus, ANA is the space of sectorial germs at O that are represented by functions
i~ holomorphic on a simply connected domain of the forgn
De nition 7.10. One sets SINga = ANA .3 =0Op and SING= ANA=Oq. The el-

ements of these quotient spaces are caledularitiesat 0. One denotes by sigg
the canonical projection,

_ ( ANA'! SING _ ( ANAg.a ! SINGg:a
singy : P jo ; sing: i . jo :

. o) . o}
If singy(J') =1 , thenJ” is called amajor of the singularityl .
In particular, with these notations:

Proposition 7.3.The space of singularitieSINGy,, can be identi ed with the
spaceG(J; C) of multivalued sections & byp,withJ=] 5 a+q;q+a+ 5[

De nition 7.11. One de nes the spaces SINGresp.SINGy.q;a Of singularities at
w 2 C, by translation from SINGresp.SING ;5 -

It is of course enough to study the spaces of singularities at 0 and this is what we
do in what follows.
Notice that SING;a and SING are naturalldo-modules.

o] .
De nition 7.12. Let f 2 Og be a germ of holomorphic functions andllet sing,J

O
be a singularity in SINGresp.SINGg:5 . One de nes the produdt] in SING, resp.
[e) .
SINGq;a, by f] = singy(f]").

De nition 7.13. The so-calledrariation mapis de ned by:

( SING I ANA

var: o . ) ] ]
J =singy(7) 7' jo; p(z)=T (z) T (ze 2py.

o) o}
andjp = var(j ) is called theminor of the singularityj .
0
The variation map var operates similarly on every eleme@t SINGg.5, with
o)
p=var()inGPO%, whereb=]q a;q+a[ 8.
A minor is said to baegular when it belongs t@y.

We illustrate the notion of singularities by the following examples. (The reader
will recognize sectorial germs used in the introduction of this chapter).

0O O
De nition 7.14. The singularities] s ; Js:m2 SING,s 2 C, m2 N are de ned as
follows.
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zs 1
(1 e @PS)G(s)”

n2 N.

Fors 2 CnN?, |'s= singy(Ts) whereTs (z) =
(D"
2ip zm1

Forn2 N? In— smgb(ln) with T (z) = 2" llog(z)
mo

In particular,l n= d = sing,

2ipG(n)
Form2 N ands 2 C, Js m= T s
It is useful to de ne the following subspaces of “integrable singularities”,
SING™  SING and SIN(‘Q}a SINGq:a -

De nition 7.15. An integrable minoris a germjp 2 ANA holomorphic in the do-
main o @ which has a prlmmveP such thatP! 0 uniformaly in any proper
subsector J ob 0. The space of mtegrable minors is denoted by ANA

An integrable singularityis a smgularltyj 2 SING which admits a majar holo-
morphic in the domaing € such that |Iir(?z i~ (z) = 0 uniformaly in any proper
z!
subsector_g b . One denotes by SIN® the space of integrable singularities.

There is a natural injectio®y | ANA™M from the space of germs of holomor-
phic functions to the space ANA of integrable minors. The space ANAcan be
equipped with a convolution product, by extending the usual law convoluti@yon

It is not hard to show that integrable singularities satisfy the following property:

Proposition 7.4.By restriction, the variation magarinduces a linear isomorphism
SING™! ANAM The inverse map is denoted byjo 2 ANAM 71 [jp 2 SING™.

This allows to transports the convolution law from ARAto SING™ by the
variation map.

De nition 7.19.2The convolution product ofjp;;jo, 2 ANA™ is dened by
b1 ja(z) = . jo1(h)jbi(z  h)dh. The convolution of two integrable singular-
itiesjolz [jbl;jozz [jo, 2 SING" is given by :jol jOZ: Loy joo .

Quite similarly:

De nition 7.17. A minor jo holomorphic on the domaing(P € is said to ben-

tegrableif jp has a primitivep such that! 0 uniformaly in any proper subsector
_8 b o(P. One denotes by ANg\y‘a the space of these integrable minors.

0 .
An integrable singularityis a singularity] 2 SINGq;a which has a majof holo-
morphic in the domaing(l) € and such that| Ii(r)rz I” (z) = 0 uniformaly in any
Z!

proper subsectoFg b o(l). One denotes SINK‘% the space of these integrable
singularities.

Proposition 7.5.By restriction, the variation maparinduces a linear isomorphism
SING™, ! ANAJYL . Theinverse mapis denoted byjp 2 ANAY™, 7! [jp 2 SING]Y, .

We end with further de nitions.
o} ol
De nition 7.18. Any singularity] of the formj = ad + [jp with jp 2 Oy is said to

besimple The space of simple singularities is denoted by SIRI&
The space SIN&?3™ of simply rami edsingularities is the vector space spanned by

. . ... 0O
SING®'™P and the set of singularitifd »; n2 Ng.
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7.4.2 Convolution product of singularities

The resurgence theory asserts that the space of singularities SING can be equipped
with a convolution produci]7./8, 18], see al56[[1] 22]. Since S{N@an be identi-

ed with the space G(J;C) of multivalued sections ofC by p, with

J=] & a+q;q+a+ 5[ the convolution product for microfunctions (propo-
sition[7.1) allows to transport this product to SIpig : for any two singularities

J'O;B?Z SINGq;a and any strict subarcb J of length< p, one can nd two ma-

jorsi;y 2 ANA .5 that can be represented by holomorphic functions on a sector
o(1). By projection onC, one can think of ;¥ as belonging t@®( o(l)), that is

sectorial germs of codirection By restriction,jo;)? are seen as microfunctions of

o o
codirectionl, whose convolution produgt Y 2 G(I;C) can be represented either
by 7

I eY(2)= Gj‘ h ¥ (z h)dh (7.8)

or by
z
1 f(z (X1t X))

I caY (z)= ﬁ G Gmr (x1) Y (x2)dx1dx>; (7.9)

with f 2 Og and f(0) = 1 (cf. {7.5) and[(7}6)), wher€ = G.e;nyih, is as in def-
inition [7.7. When considering a covering fby such arcd, these sections glue

0O ©
together to give the convolution prodyct Y as a multivalued section & overJ.

Proposition 7.6. The spaceING can be equipped with a convolution product de-

noted by that makes it a commutative convolution algebra, with unit
O

. 1 _ )
d = sing, ﬂ = | o. Moreover:
_ oo . . 00 _ .
1. the linear operator):] = singy(J7) 2 SING7!q] = singy( z]) 2 SING, is a
derivation.
) o) . 0 O - W T b
2.if] andy belong toSING™, thenj” Y belongstaSING™andljp [p=[(pb j).
In particular, the space of simple singulariti@®@NG*™P is a convolution subal-
gebra.

Theses properties remain true when one consi&éG, ., instead ofSING.

Proof. We have already shown that SIly& (thus SING) is a commutative convolu-

tion algebra for the convolution product with uditThe equalityljp  [p=[ (b jo)

for integrable singularities, emerges from considerations on integrals and is left as
an exercise. (Start with propositipn7.2. Se€ [24}).

7.5 Formal Laplace transform, formal Borel transform

7.5.1 Formal Laplace transform for microfunctions

We start with the following de nition.
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De nition 7.19. Let] S' be an open arc and 0 be a nonegative real number.
we denote by:

1.A" O( F(1)) theC-differential algebra of holomorphic functiopson (1) that
satisfy the property : for any proper subdomaihb ¥ (1), for anye > 0, there
existsC > Osothatforalz2 ¥,jj (2)j Ce4;

2.A %)= lim A O f(1)). This de nes a preshed ©°;

3.A Othe Sfrl.e:.f ove8! associated with the presheaf ©.

Remark 7.2The fact thatA Cis indeed a sheaf of differential algebras is an exer-
cise left to the reader. (We stress that the derivation considered is the usual one for
holomorphic functions).

The shea® ° should not be confused with the shéaf ® of at germs at in nity

(de nition B.17). As a matter of fac <°(1) A (1) A °(1) whereA stands

for the presheaf of asymptotic functions (see de nifion .17 and[14, 16, 17]).

We mention that our de nition oA  © differs from that of Malgrange iri [16] where

A Ois de ned as the sheaf of sectorial germs that admit an asymptotics belong-
ing to the formal Nilsson class, that is of the foﬁm(z)'ogzs&, s2C, m2N,

w2 C[[z 1]]. Our sheafA © contains this sheaf as a subsheaf. However, the con-
structions in the sequel resemble in much aspects to that of Malgiange [16].

The following Lemma is left to the reader as an exercise. This will allow us in a
moment to properly de ne the quotient sheaf °=A ! overSt.

Lemma 7.3.Thespacd 1( ¥),respA (1), of 1-exponentially atfunctions
on ¥, resp. of 1-exponentially at germs at in nity over |, is a differential ideal of
A OC ¥(1)) —resp. ofA” O,

De nition 7.20. Let g be any direction (ofS' or 8'). We denote byR, the ray
]10;€9¥[. Fork > e 0, we seRy.e =] e€9;€9¥[ andRy.cx =] e€9;ke].

For any closed ard = [qy; 0], we denote bygy,, resp.gye.x, the Hankel contour,
resp.truncated Hankel contour, which consists in following:

1. Ry ces 1€SP. Ry ek, backward, _
2. then the circular ardj;, = fe€9jq 2 Jg oriented in the anti-clockwise way,
3. nally Ry,e, resp. R, forward.

o)
Let us pick an open arcof St of length  p, and a microfunction 2 C(1) of
codirectionl, represented by the geii® O°(1). For any open arty =] a1; by with
I1b I, 0ne can ndR> 0 so that the restriction ¢f to 1 =la; 3p=2b; p=2[ S

is represented by a function (still denotedjbyholomorphic in the sector('?(ll).

We consider another open dpc=] az; b, I, Iy, sothatl; nl, has two connected
components. We choose one arbitrary direction in each component,
ti12]ar 3p=2az 3p=2[,q22]b, p=2b; p=2[. ForR>k > e> 0, we con-

sider the truncated Laplace integral .q,:x (2) = e #J (z)dz,see Fi.
qp:apliek
The functionj ¢,.q,k Satis es the following properties:
J ai;0;x 1S @n entire function, since one integrates on a (relatively) compact path

of the domain of holomorphy df.
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Fig. 7.6 Formal Laplace
transform. The open arcs

I1, I2, 11, I2, and the path
9= Yag;alierk-

for e > 0 chosen as small as we want, we et supﬂé(]ql;qz[)j i j.then:

VA
— forallz2 C, e Z[ (z)dz  ejl1jMe¥3 wherejlij= by ai+ p;
lag:dz]e
z
— foranyr > 0, for everyz2 p 1, e ZJ (z)dz kMe . Similarly,
7 qu,e,k
for everyz2 p {2, e Z[ (z)dz kMe ®.
;€K

— the domainp contains any closed sector of the forﬁ‘b(Jl) with J; an
openarcsothaly 1 5 a1 o1+ 5[ and r®> 0 large enough. Since

b, B < i< az+ b, one deduces tha /1 contains any closed sector of
the form ¥y(13) with r®> 0 large enough. Similarly  contains any closed
sector of the form ¥(13) with r°> 0 large enough.

From this analysis, since > 0 can be chosen arbitrarily small, we retain that

j a0k belongs to the spade °( (1)), r > 0 large enough.
Furthermore, looking at the above analysis and by Cauchy, we may observe that
for two cut-off pointsk ; k 92]e; R], for two directiongy?2]a; 3p=2;a; 3p=2[,

a92]b, p=2;b; p=2[thedifferencg q,.qyk | q@qekobelongs tA- (%))
with r > 0 large enough. We nally remark that adding ffoa function holo-
morphic onD(0;R) only affectsj q,.q,.x(2) by the addition of an element of
A Y ¥(2),r> 0large enough.

; ; ; RS M o m 12
In this way, one obtains a morphisin,(I;12) :] 2 C(1) 7] 2 A “(15)=A (15),

M

J = cl(j gy:q0:x), Which is obviosuly compatible with the restriction maps.

This allows to move up to stalké, 5 : Ca! A %A ! and nally?to a
morphism of sheaves :C! A 9%=A 1,

De nition 7.21. One callsformal Laplace transfornfor microfunctions at 0, the
morphism of sheaves :C! A 9=A 1 The quotientsheak °=A 1 over

2 Modulo complex conjugation
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St is called thesheaf of asymptotic classesn asymptotic class is usually denoted
by JM.

The term “sheaf of asymptotic classes” is borrowed frbin [1] where the gheffis de-

noted byE®, and the sheak ! is denoted bff . The notatior1JvI is own.
Example 7.3For(s;m) 2 C Nandl =] p=2;p=2[2 S!, we consider the micro-

o)
function Js.m= sindo Jssm 2 C(l) represented by the sectorial germ

Js:m= ﬂls Ts 2 O%(1) and the branch of the log such that@degz) 2 | =]  2p;0[.

By standard formulae recalled in S¢ct.]7.1, one readily gets that its formal Laplace
M o}

transformJs.m= L (I) Js:m iS an asymptotic class that can be represented by the

(sectorial germ at in nity of) holomorphic function(s) 1)’“'092;& 2 A 217,
17=] p=2;p=2[ with the determination of the log so that @diagz) 2 |7.

The following proposition is a straight consequence of the very construction of
the formal Laplace transform.

Proposition 7.7.The formal Laplace transforin :C! A 9=A  !satis esthe
M
identity:L q=9 L.

7.5.2 Formal Borel transform for asymptotic classes

Let1? S!be an open arc with length p andj 2 A °(1?) be a sectorial germ
at in nity. For any open ard; b 17, one can ndr > 0 so that the restriction of
j to If is (represented by) a holomcgphic function (still denoted hyn the do-

main ¥ (17). We sef ;.2 (2) = e”j (9dzforanyz 2 ¥(17) and any

ﬁ Ra:z
directiona 2 If, see Fig. We can make the following observations about this

Laplace integral ;,.a:

sincej belongs toA 9( ¥(17)), we know that for any proper subsector
1) b ¥(17) and anye > 0, there exist€ > 0 so that, for alz2 ¥ (J37),

ii (9] Ce¥4. Therefore] ,;4 belongs toO(P3*P) whenz; 2 ¥ (J%) and
a 2 J°. Makinga varying inJ? and sinces > 0 can be chosen arbitrarily small,
these functions glue together by Cauchy, and provide a holomorphic function

Iz,7onD(3%0) = §(J). Notice that for two pointg;; 222 ¥, (J%), the differ-

encej_zz; 7? J'_zl; 32 de nes an entire function (with at most exponential growth

Fig. 7.7 Formal Borel trans-
form. The open arc¥’, and
the pathRa, .
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of order 1 at in nity). Therefore, localising near the origin, we get a sectorial

germj ;122 O(l) = O(l), de ned modulo the elements @y, that is a micro-
function of codirectior;

whenj belongstoA  1(1?), one easily sees from the above analysisjfhat>
is holomorphic on a domain containing a full neighbourhood of the origin, thus
by localisation, an element @.

To conclude, we have dened a morphism (dE-differential algebras),

M O .
B(UY):J2A °1%=A 1(17?) 7'] = cl(i z°) 2 C(I) whose compatibility with
the restriction maps is easy to check.

De nition 7.22. The morphism of sheavés : A °=A 11 C is called thefor-
mal Borel transform

The formal Laplace transform for microfunctions and the formal Borel transform
for asymptotic classes are isomorphisms of sheaves, as shown in [1] to whom we
refer:

Proposition 7.8.The morphisms :C! A °=A !andB :A %=A 11 C
are isomorphisms of sheavesdnd B =1d,B L = Id.

fo]
Remark 7.3The morphism of sheavgs 2 Oy 7!] = sin(jO jb'zci’—gJ 2 C(l) is in-
jective as already mentioned. The following commutative diagram makes a link be-
tween the formal Laplace transform for regular mirregp.formal Borel transform
for 1-Gevrey formal series, and the formal Laplace transform for microfunctions,

Op ;I C

resp.formal Borel transform for asymptotic classes#' B B "#L

A=A 1] A 0=pA L

7.5.3 Formal Laplace transform for singularities and back to
convolution product

In the sequel, we translate to singularities what have obtained so far for microfunc-
tions.

7.5.3.1 Formal Laplace transform for singularities

We start with two de nitions.

De nition 7.23. Let g 2 ! be a direction ané > 0. We denote by ASYMR,
the space of asymptotic classes de ned as multivalued sectioAs 86A 1 on
J’=] p=2 a q; q+a+p=2[. We denote by ASYMP the space of asymp-
totic classes given by global sectionsff °=A 1 onS§L.

De nition 7.24. Let s 2 C be a complex number anch 2 N. We denote by

M M
I s 2 ASYMP the asymptotic class represented byl We denote byls .2 ASYMP
the asymptotic class represented(byl)mmgzsﬂ. We often simply write £2° in-

M M
stead ofl s and similarly forJs :m.
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We have already said that the space of singularities SINGan be identi ed
with the space G(J;C) of multivalued sections of C by p, with
J=] 5 a+q;q+a+ 5[ The formal Laplace transform for microfunctions
thus extends to singularities, by inverse image:

F F
bzslcb!_ p22st A 0=A 1 b?
sk # #
& J3b! S'3p ! St3bp?
p ?

When returning to the very construction of the formal Laplace transform (Sect.
), one sees that for any singularii?/z SINGg.a, for any direction
b2¥=] a+q;q+al settingb?=] B+ b;b+ B[, the formal Laplace trans-
formL (6?) 1 is given as the clags= cl(; y 200) 2 A O(b)=A  (b) where

b =] 5 b; b+ B8[andj, ppk(d= e ZJ (z)dz, with | any

9b 2p:blieck

0 -
major of . This introduces the following de nition. (Notice thdt= J?).

De nition 7.25. The morphisni ® =L (b?):SINGga! A %b)=A (b)is
called theformal Laplace transfornin the directionb 2 #=] a+ q;q+ al.

ol o)
For any singularity 2 SINGg:, one denotes bly 72 ASYMPy;, the asymptotic

0
class given by the collectiorl. ° ] b2k

Example 7.4\We continue the examp|e 7.3 but for the fact that we now conS|der
Js .m as a singularity |n SINgp. The formal Laplace transforrh 1 PPl Js ‘m

is the asymptotic classs;mZ ASYMPq, seen by restriction as an element of
G(Q 3p=2;3p=2[;A °=A D).

0 .
We linger for amoment at the cases of singularities of the formljp 2 SING'C;‘fa.

M fo)
For any directiorb 2] a+ q:q+ a[, the formal Laplace transfortn= L ° j,

M - Z
1'2A 9%b)=A 1(b), can be represented by the function
z z
ib zppx(d= eZ[ (z2)dz= e Zp(z)dz;  (7.10)
9o 2pbliek Ro ;0
and we thus recover the “usual” formal Laplace transform (see Sett. 7.1). In par-
ticular, we recall that we have extended the convolution law to %lfla\l@y the
fol fol fol
variation map: foi 1= [joy;] »= [jp, 2 SING'(;“a,J 1 12=Ljpy joo . The above
o 0 0
remark ) shows that ®(J 1 ] 2)=(L bJ 1)(L P j,), by the properties of
the “usual” formal Laplace transform.

o) 0 _
We now assume that is a simple singularity] = ad + [jp 2 SING™P with
2 Op. For any open ardP=] a + qg;q+ a[, the formal Laplace transform

M 0
J=L “b(ad+ ]') is an asymptotic class which belongs@J”;A1=A 1). This

again comes from (an analogue of) the idenfity (7.10) and classical arguments re-
called in the introduction of this chapter.
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De nition 7.26. One denotes by ASYMIP the subspace of asymptotic classes
obtained by injection of the global sectioB$$'; A1=A 1) into ASYMP.

Proposition 7.9.The restriction of the formal Laplace transforn to SINGSImP
hasASYMPS™P for its range.

Remark 7.4Consider a formal serigg 2 C[[z !]] and an open arc of the form
J’=] p=2 a q; gq+a+p=2[ S By the Borel-Ritt theorem, there are in-
nitely many j 2 A (J?) whose Poincadr asymptoticg (J7)] is given byje onJ?.

These varioug differ by at germs, that is elements & <°(J7). Therefore as a

rule, these germjs represent different asymptotic clas$'ve|$s ASYMPq:5 .

Now suppose thae is 1-Gevrey and choose a (good) coverfhy of J* where each
li is an open arc of length less than By the Borel-Ritt theorem for 1-Gevrey
asymptotics and for each subscriptthere exist§ ; 2 A 1(l})) whose 1-Gevrey
asymptoticsTi(lj)j i is j . Moreover, each  is uniquely de ned this way up to
1-exponentially at germs, that is up to elementsAdf 1(I;). One thus gets a

M
uniquely de ned sectioh 2 G(J*;A;=A 1) that can be thought of as an asymp-
M _
totic class. One can characterize another way this asymptotic] c2agsSyYMPSMP
M 0 0

by settlingl = L (ad+ j ) where] = [jp with jo the minor ofje while a is its con-
stant term.

De nition 7.27. The mapping : je 2 C[[z ]11 7!] = ‘je 2 ASYMP™P is de ned

M ol ol
by = L (ad+ ] ) where] = [jp, whereagb stands for the minor o anda its
constant term.

Obviously, the mappingis an isomorphism, the inverse map being the 1-Gevrey
Taylor map. This allows to mergje with je in practice.

7.5.3.2 Back to convolution product

We have said without proof that andB are morphisms of sheaves of algebras. It
is thus certainly worthy to prove the following proposition.

0 O
Proposition 7.10.For any two singularitied 1;J 22 SINGg:.a and any direction
b 2] a+q;q+ al, the following properties hold:
b O bO._ . ,,0 © b, 00 b O
(LPTa(LP1)=L"°(01 J2)andL °(f) 1)=TL °] 1.

Proof. (Adapted from [[1]). Letjol;jozz SINGy.a be two singularities with ma-
jors i 1; 2. We pick a directionb 2 $=] a+q;q+ a[ and we consider the
formal Laplace transformig/lf L b jol andJM2= L P j 5. These are elements of
A O%Db)=A  L(b) which can be represented respectively by

Z Z
9= e Zi(z)dz2A °( ¥(b)); ] 22)= L° Z[5(z)dz2A O ¥(b));

With th = Ob 2piblierksr @ = b 2pibliesik, @Nd SOMe > 0 large enough. The prod-

MM _ =
uct] 1 22 A 9%b)=A  %(b) is thus represented by
z
ji29= e A2 2) [Ty (z1) [ 2 (z2)dzadzz 2 A O( ¥ (b)):
@ @



148 7 Supplements to resurgence theory

— MM -
Let us look at the formal Borel transforBi(b)(] 1) 2) 2 C(b ’2 This Borel trans-

€”j 1) 2(2)dz

121

form can be represented by the intedjal] 2),,.,, (z) = 2p "
?

with z; 2 fl(H), r1 > r, and for any directioa 2 b?.The function(j 4j 2) 70, (2)

is holomorphic orP 3**P (go back to the construction of the formal Borel transform,

Sect). Taking 2 P gg'p with e > e, + e, we can apply Fubini.

Remark that z; + z> (or rather z; + z,) remains in the bounded strip
fz 2 Cjdist(z;€P[0;k]) e+ e, for (z1;z2) 2 1 @. Thusz (z1+ z») remains
in the domairp - for z 2 p 51*P and this ensures the integrability conditions.

This way, we get:

1 ‘
2P Rayzy w @
4 ez z1 7)) (20) F 2 (22)d22d
= —— | 1(21) ] 2(z2)dz;10z
a »2p(z z1 22) etz ,2 e
Z Z eaz 71 ) .

= ——  _[2(z2)dzy [ 1(z1)dz
0 w20 7 22) 2(z2)dza | 1(z1)dzs

(i 1) 2ya, (2) = e 2172 [ (21) 2 (22)dzadz, dz

Returning to the very construction of the convolution product for singularities, we

z O O
et J1 12

see thafj 4 2)4,:a, IS NOthing but a major of the singularity si(pgm

1z
2ipz
tion[7.8, we know thaB L = Id (when considering andL as morphisms of
sheaves), thus the conclusion. The last statement as been alreadytseen.

_ o 0
But sing, = d and therefore sing (j 1j 2)zl;a1 =J 1 | 2. From Proposi-

Example 7.5We know by theore 3 that the formal seneg, solution of the
prepared ODH (3]6) associated with the rst Pai@@guation, is 1-Gevrey. Its mi-
nor W) = B (g is thus a germ of holomorphic functions at the origin and we
. 0

set\(/)v(o;o): [w(o;o) 2 SING™™P. We now consider the singularity \(/)v(o;o)z SING,
for anys 2 C. By propositio, for an arbitrary directidn2 8, the formal

o} - -
Laplace transfornh ° [ \(/)V(O;O) 2A 9b)=A (b)is the asymptotic class
of directionb which reads also as:

o) [e) @) o)
L Ts Weg =L° Is L W

o] M —
On the one hand, ° [ is the asymptotic clasks2 G(b;A °=A 1). On the

bQ \ b O @ My
other handl. ® W)= '@ (). ThereforeL ® s Wpq =15 &qq thatcanbe

identi ed with ;w(o;o) with the branch of® determined by the condition az@ b.

Example 7.6We now use the notations of Sgct. 3.412.2 but for the fact that we con-
sider arcs o8!. We writeRy =] O;p[andi§=] 3p=2;p=2[ &'and inwhatfollows

with think of the Laplace-Borel sumwi.o= S R)\13’/(0;0) as (representing) a multival-
ued section oA ; onlg. Similarly, we sef) =] p;2p[andI} =] 5p=2; p=2[ &'
and think of wyiqx = S plw(o;o) as an element ofG(If;Al). Notice that
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Ig\ 17=] 3p=2; p=2[ on &' Since bothwii.o andwi;1 are asymptotic to the
1-Gevrey seriew(g), we know that the differencetri.o  Wiyi;1 is a multivalued
section ofA Y onI§\ I7. Therefore, for any 2 C, Zsiwm;o and Zsiwtri:l glue

together to give a multivalued section&f °=A  LonlIJ[ I7, that can be identi-
ed with the asymptotic ClaS$Ms \W(O;O) 2 ASYMPy:,. The formal Borel transform

B (19 'I\As\w(o;o) is the multivalued section & onlg=] p=2;3p=2[ which can
be thought of as a singularity in SING,-, and is given by
B(IS) llws \\tv(o;o) =(|Ds \?V(o;())- Similarly, the formal Borel transform
B(If) IIVIS ‘w(o;o) is the multivalued section o on |1 =] p=2; 5p=2[ which pro-
vides a singularity in SING,-5.,-, of the formB(Il?) llws \W(o;O) :Ios \?V(O;O)-

0
These two singularities glue together as the element\?v(o;o) of SINGyp.

7.5.3.3 Formal Laplace transform for singularities atw

The spaces SINg resp.SING,q;a Of singularities atv 2 C are the translated of
SING, resp. SINGg:a - (See de nition[7.1]L). By its very construction, the formal
Laplace transform brings the translation into the multilplication by an exponential.

De nition 7.28. The formal Laplace transforin sends SING, resp.SINGyq;a,
onto the space denoted by ¢ASYMP, resp.e "?ASYMPy.,, made ofasymptotic
classes with support basedwt

We mention the following result that can be thought of as an analogue of the
Watson's lemma [14].

Lemma 7.4.For anyw 2 C?, the sum of the twG-vector spaceA\SYMPg., and
e Y2 ASYMPg 4 is direct.

M
Proof. We consider an asymptotic clas2 ASYMP,.5. By de nition, one can
nd a (good) open coveringJ;j) of J’=] p=2 a q; g+a+p=2[anda‘“0-
cochain” ii 2 A O(Jj) J. with associated “1-coboundary”

M M
jje1 Jj2A 1341\ ) J.that represents. Now assume that also belongs

to e "?ASYMPy .5 . Considering a re nement ;) if necessary, one deduces that
jj2A Y3 foratleast ong, sincel? is an arc of lengtt» p. This implies that

0 .
the formal Borel transform 2 SING;, has a majof which can be analytically

0o M
continued to 0, thus = 0 and as a consequence 0. U

7.6 Laplace transforms

We develop here only matters convenient for this course. For more general nonsense
on Laplace transforms in the framework of resurgent analysis| 5ee[1,12, 7, 8, 16].
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7.6.1 Laplace transforms

De nition 7.29. Letl S'be anopenarcand 0. We denote by:

1.E (1) the C-differential algebra of holomorphic functiorjs on ?J‘(I) with
1-exponential growth at in nity on the directioh: for any proper subsector

¥ b ¥(l), there exisC> 0 andt > 0 so that, foralz2 ¥,jj (2] Cé'3;
2. whenl is of length p,E ()= E (1) is the space of holomorphic functions

j on §(|), with 1-exponential growth at in nity on the codirectidn

3.E 1, resp.E 1, the sheaf oveB! corresponding to the familyE (1) , resp.
E (D)

4.0(C) 1! the space of entire functions with 1-exponential growth at in nity on
every direction.

Pick an open ar¢  S! of length p, and a function” 2 E (1). Thusj is
holomorphic on ﬁ(l) and for any open art; so thatl; I, for anye > 0, there

existC> O andt > O sothat, foralz 2 ¥(l1),jI" (z)j Cé'Z. We consider the
following Laplace integral,

VA VA Z Z
jn(@d= e #J (z)dz = + + I (z)dz;
Yay:aple Ragre d[%ﬂz]?e Ropie

wherel; =] gq; g2[ (for the contour of integration, see de nitin 7]20). This Laplace

integral can be decomposed as follows:
z

by classical arguments, the integral e # j (z)dz de nes a holomorphic
1.8

function onp {* and we observe that for amy> t , for everyz2 P,

z Zy c
e Zj (z)dz e SCelSds ——e & 1);

e e r t
VA
In the same way, the integral e # | (z)dz de nes a holomorphic function

e
2 z

. ._ C

onP {2 and forany > t , for everyz2 P {2, e Zf (z)dz —e V),
2 Ryyie r t

the integral e “ | (z)dz denes an entire function and

dig. ot
[ap;aple
A

e Zf (z)dz Cjljjee®ed,
d[ql:qzl;e

by arguments already encounter (see 7.5.1),Fb§’91tlandP {2 contains any
proper subsector¥ of ?‘(Il?), oncer > 0 is chosen large enough.
Thereforej |, belongs to the spack °( { (17)) for r1 > 0 large enough, because
e > 0 can be chosen arbitrarily small.

Itis easy to see that addingjfoany element 0©(C) 1, does not affect the function
j 1, (just deform the contour of integration, by Cauchy).
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The family of functions(j |,),, | obtained this way glue together analytically, by
Cauchy.

The above construction gives a morphisdm(l) : E (1)=0(C) ! A °(17),
compatible with the restriction maps, which provides a morphism of sh&aves

De nition 7.30. The morphism of sheavés : E 1=0(C) ! A 9is called the
strict Laplace transforrh

We return to the construction we did to get the formal Borel transform, Sect.
. We pickanopenaté S'oflength pandj 2 A °(17).Fgrzi2 #(17),

r> 0 large enough, for any directien2 17, we sef 2.4 (2)= Zip e“j (2dz
1

We have seen that, makirag varying, one gets an element&f (1), while .4
depends orz; only modulo an element o®(C) 1. We thus get a morphism of
sheave8 : A %1 E '=O(C) ! which has the following property (we refer to
[1] for the proof):

Proposition 7.11.The morphisms of sheavas : E 1=0(C) 1! A © and
B:A 91 E 1=0(C) !areisomorphisms of sheaves@ifferential algebras,
andL B =1d,B L =Id.

7.6.2 Singularities and Laplace transform

7.6.2.1 Summable singularities

We recall that SING., can be identi ed with the spac&(J;C) of multivalued
sections ofC overJ=] p=2 a+q;q+a+p=2 S In particular, any sin-

o} .
gularity] 2 SINGy.4 can be represented by a maja2 ANA -5 = G(J;09), with
J=]q a 2p;q+a[ &

De nition 7.31. Anelemenf 2 ANAg.; = G(J;0°) is saidsummableén the direc-
tionb 2 =] a+ q;q+ a[ifthere exists a neighbourhoddi  Pof b so that the

two restrictiong 12 G(#1;0°) andj 22 G(B;0° of | overf andB= 2p+ H
respectively, can be represented by elemen@(df;E 1) andG(8;E 1) respec-

ol

tively. A singularity] 2 SINGy.5 is summablén the direction®if for any b 2
0 .

the singularityy has a majof 2 ANA 4.5 which summable in the directidm. We

0
denote by SIN@?;“ the space of singularitigs2 SINGq.5 which are summable in
the direction®

7.6.2.2 Laplace transforms of summable singularities

0
We consider a singularity2 SING;:i"and a directiorb 2 b-] a+q:q+al Let

. 0 fo)
|~ be a major of which is summable in the directidm and sefb = var] . Using

8 As usual, modulo complex conjugation
4 We abide a notation of[1], although the construction therein slightly differs from ours.
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the notations of de nitiorj 7.31, we consider the following Laplace integral where
e > 0is chosen small enough:

Z
ib(@= e ZJ (z)dz (7.11)
qu 2pibJe 7 7
= e Zj (z)dz e Zi,(z)dz+ e Zj1(z)dz
Zd[b 2p;ble ZRb 2pie e
= e Zj (z)dz+ e Zjp(z)dz:
db 2p;ble e

From the arguments used in Sect. 7.6.1, we seejthatle nes an element of

J— — (o]

A 9(b). Moreover, ify is another major of which is summable in the direc-

tion b (for instancg~ Y2 O(C) 1), then its Laplace integral,, coincide with

i b as elements oA O(5). Thusj y, is independent of the chosen summable major
o} . . fo)

and only depends an2 SING;:". This allows us to writ¢ , = L b

fo}
Making b varying in ® the functionsL ° |~ obviously glue together analyti-
o}
cally (by Cauchy and using the independencé df | with respect to the chosen
o}
summable major), to give and eleménf®] of G(J%;A  ©).

De nition 7.32. The morphismL P : SING3"! A O(b) is called theLaplace
transformin the directionb 2 =] a+q;q+ al.

The morphisnL ¥: SINGG™ G(I%A  9) is called the Laplace transform in the
direction®=] a+q;q+al.

We recover with the following proposition the examples given in the introduction
of the chapter, see also [18].

0 o
Proposition 7.12.The singularities s and Js :m belong toSINGZ:Z for any direc-
tion g and anya > 0. Moreover, for any directiof 2 8,

m
Lb |Os (9= Zsi; L b f])s;m(z):( 1)mlogzs(2); z2 Pg €

This has the following consequences:

o) o o
Proposition 7.13.For all s1;s22 C, forall m;;mp 2 N Is; |s,=Isy+s, and
o) o) o)

Jspmy Jspmp= Js i+ spmy+mp-

" o 1 0 1
Proof. From proposition 7.12, we deduce that| s, = =1 andL |s,= E.Thus
. o O 1
by proposition 7.10,. Is, Is,= Sis, and one concludes by formal Borel trans-

form. Same proof for the other equalityu

In de nition [7.33, we meant morphisms of vector spaces. As a matter of fact,
these are morphisms @f-differential algebras. This is the matter of the following
proposition.

Proposition 7.14.The spaceSING;:T" is a commutative and associative algebra
with unit d. The Laplace transforni P : SING3"! A O(b) is compatible
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(o) (@] [o)
bjim y= LPj

0
with the convolution of singularitied: L Py . Moreover,

00 fo)
Lo(q)=9L P,
Proof. We go back to the very de nition of the convolution product of microfunc-
00
tions and singularities. Fdr;y 2 SINGg .4, for anyb 2 b=] a+q;q+al the
0 0
convolution product Y can be represented, far2 Ss.(Jb  2p;b[) withe> 0
as small as we want, by

14 @ (xatxe)

% . m I (X1) y (X2)dX1dX2; (7.12)

I caY(2)=

(se), wher& = Genyin, iS asinde nition and wherg;Y are thought of

as belonging t®( o(Jb 2p;b[)).In ),n 2 Cis a free parameter which can

be chosen at our convenience.
We now assume that;y 2 SING;'7" and thatf ;Y are summable majors in the

directionb. In that case, choosing = jnje ® with jnj large enough to ensure
0o o
the integrability, one can rather consider the convolution proglucy as rep-
resented by[(7.12), but this time with an endless path G (see de nition
0. 0
). This construction gives a major pfy which is summable in the direction
b. Moreover, the arguments used in the proof of the proposition 7.10 show that
0o o o} o}
LP) y=LP) LPY . w
Example 7.7We consider the formal Borel transforig.q) = B ®(o.0) Wherew(gg)

is the formal series solution of the prepared OIDE](3.6) associated with the rst
Painlee equation. We know by theor.3 tha,p) can be analytically con-

tinued to the star-shaped domairf® with at most exponential growth of order 1
at in nity along non-horizontal directions. We 5&0;0): [\lv(o;o) 2 SING™. Then

VOV(O;O)Z SING 2., (or vov(o;o)z SING*%,.,,) © just consider the major

W) (2) = W00(2) Iogi(pz) . The Laplace transforio ]°¢P[\</Jv(o;0) is well-de ned and

gives a section oh  ®on] 3p=2;p=2[. As a matter of fact,
. O . .
L PlWog = L PPhygg = S 1*Plegg)

and L 10pI \(/)V(O;O) can be thought of as belonging to the space of sections
0
G( 3p=2;p=2[;A1). We now consider the singularity \(')V(o;O), for anys 2 C.
Using propositionz a14, this singularity belongs (for instance) to;igmg
0 — 0 , . o
and L 10;p[ ls \?V(O;O): L 10;p1 ls L 10;p] \?V(O;O) = Z%S ]O'p[‘ﬁ(o;o), this time
viewed as a multivalued sectign ®on] 3p=2;p=2] &'
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7.7 Spaces of resurgent functions

7.7.1 Preliminaries

We refer the reader t0 1] (Br.3, lemme 3.0) for the proof of the following key-
lemma, the idea of which being due to Ecalle.

Lemma 7.5.Let Ry > Obe areal positive number art® C be an embedded curve,
transverse to the circlegj = R for all R Ry. LetF be a holomorphic function
on a neighbourhood d&. Then, for any continuous function:®* ! R* so that
inff m([0;x])g > O for all x > 0, there exist&¥ 2 O(C) such that, for allz 2 G,

JF@)+Y (@) m(zj).

In what follows, we use the notations introduced in de nition] 7.7. We also recall
that€ nz stands for the univer[sal covering@ihZ. One may also think atnzas

the universal covering & n fmed j m2 N’g.
q=pk k2Z

ol
Lemma 7.6.Let] 2 SING be a singularity which can be determined by a major
analytically continuable tdbnz. Then, for any directiorgq and anye > 0 small

ol .
enough, the singularity has a majoqd~ with the following properties:

1. the restriction of as a sectorial germ of codirectiordH] p=2+ q;q+ p=2],
can be represented by a functioR holomorphic on the cut plane

Cn[0;€9¥[= ¥(I),1=] 2p+q;ql;
2. F is bounded or8 ««(1), for everye®> e.
3. F can be analytically continued tnz.

. 0
Proof. Let] 1 be a major of which can be analytically continued ®nz. This
major can be represented by a functiopholomorphic on g(l) [ Se(Pn[o; ¥,
for R> 0 ande > 0 small enough, an#t; can be analytically continued bnz.
The boundanG.. = 91Se(l) can be seen as an embedded ciffyeR! C that
fullls the condition of lemma[7.5 : one can nd a functiori; 2 O(C) so that
Fo= Fi1+YpsatisesjFo(h)j exp(j hj) forallh 2 G.e. One can also assume
thathg(s)j iszbounded and these conditions ensure the integrability for the integral
F(2)= 1 Fa(h)
" 2p mpz h
Moreover, one easily sees by Cauchy that F,+ Y, whereY, 2 Og. One ob-

servesthatz hj e° efor(z;h)2Seo(l) Gee, withe®> e. ThusF is bounded

dh which thus, de nes a holomorphic function @(l).

on S «o(1). Notice thatF , inherits fromF ; the property of being analytically con-

tinuable tot nZ. Thus one can analytically contine to tnz by Cauchy, by de-
formation of the contour by isotopiesl : (s;t) 2 R [0;1] 7! H(s;t) = Hi(s) 2 CnZ
that are equal to the identity in a neighbourhood of in nity, 7.8.

Finally, from the factthaF = F1+Y with Y1+ Y22 Op, we see thaF de nes a
sectorial gernj” of codirectionl =] p=2+ q;q + p=2[ whose associated micro-

function coincides with the restriction bfto the codirectio. u
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Fig. 7.8 Deformation of the contou®.e by an isotopy equal to the identity in a neighbourhood of
in nity, for g = 0.

ol
Lemma 7.7.Let] 2 SING be a singularity which can be determined by a major
analytically continuable t&nz. Then, for any directiog and for anye > 0 small

0 ,
enough, the singularity has a majoq with the following properties:

1. the restriction of as a sectorial germ of codirectiord] p=2+ q;q+ p=2],
can be represented by a functioR holomorphic on the cut plane

Cn[0;€9¥[= §(1),1=] 2p+q;qf;
2.jF(h)j exp(j hj)forallh 2 G, whereG.e = fSe(l)  §(1);
3. F can be analytically continued tnz.

Proof. Just consider rst the functiof 1 given by lemm& 716, then use lemfna]7.5
todeneF fromFi. u

The above lemmds_1.6 ahd17.7 motivate the introduction of new Riemann sur-
faces that will be used in a moment.

De nition 7.33. Letq 2 S! be a direction. We sa® 9:(9 = Cn[0;9¥[. Letzg be
a complex number iR 99 nZ. We denote bYAq.z, (resp.B ;) the set of paths

in R4 (resp.CnZz) originating fromzo, endowed with the equivalence relation
R 0:0) (resp. cnz) of homotopy of paths with xed extremities.

We setR ., = Aqz, [ Bz, and we denote b§9 % the relation orR ., de ned as

follows. Forany twah; 0 2 Rz, G (@20 o when one of the following conditions

is satis e?: eithery R 4:0) (gz Orgt cnz &; or else there existg 2 Ag., \ B4,

0] R %(0) (0¢] or h cnz®B

such that .
cnz B &% R %40 B
Let g be an element oR,.,,. We denote by ¢, (9) its equivalence class for the
(a;z

relation' ¥, We nally set:

Rg:zo = fclgz(9) J 92 Rg;2,9 and pqz, : Clg;z,(9) 7! g(l) 2 R%(9(7.13)

5 That isH is a homotopy and for eadt? [0; 1], H; is an embedding. Remember that we Gae
as an embedded curt : R! C.
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Proposition 7.15.The spaceRg.ZO can be equipped with a separated topology
which makeiRg;Zo;pq;ZO) an étale space. The spad%g;ZO is arc-connected and
simply connected, thus de nes a Riemann surface by pulling bapk Qythe com-
plex structure ofC. Moreover, for two point2g;z; 2 R 9:0 hz, the two Riemann
surfaceR g_ZO andR 2-20 are isomorphic.

The proof of propositiof 7.15 is left as an exercise. (Just copy what have been
done in Secf. 4.212). We complete the above proposition with a de nition.

De nition 7.34. The class of isomorphisms of the Riemann surfa(tEé%Zo; Pq:zo)

is denoted bYR J;pq). We often use abridged notati¢R 9;p). We callprincipal
sheetthe unique domaiR%(© RY so that the resctrictiopj,qo realizes a

homeomorphism betwedn (9 and the simply connected domaf:(©

7.7.2 Resurgent functions

Various spaces of so-called resurgent functions can be de ned and used according
to the context. We start with the notion of resurgent singularities.

7.7.2.1 Resurgent singularities, resurgent asymptotic classes

fol
De nition 7.35. A singularity] 2 SING is said to b&-resurgentwhen it can be

determined by a majdr 2 ANA which can be analytically continued bnz. we
denote by REg or simply RES the space @Fresurgent singularities.

A Z-resurgent singularity is often simply calledZaresurgent function. Throughout this
course we will usually write “resurgent singularity” in placedfesurgent singularity.

Remark 7.5t is important to keep in mind that the minprof any resurgent singu-

fol
larity ] 2 RES, can be analytically continued @nz, since the minojp does not
depend on the chosen major.

[o] ol
De nition 7.36. One says that 2 RES is aresurgent constanvhen] has a ma-
jor which can be analytically continued &. The space of resurgent constants is
denoted by CONS.

M
De nition 7.37. An asymptotic clas$ 2 ASYMP is called aZ-resurgent asymp-

totic class resp.a resurgent constantvhen its formal Borel transform is aZ-
resurgent singularityesp.a resurgent constant. We denotef#yS, or simplyRES

the space made @-resurgent asymptotic classes. We denot€¥®NS the sub-
space of resurgent constants.

A Z-resurgent asymptotic class is often simply called-gesurgent function or even a
resurgent function.

. .. O o) .
Example 7.8The singularitied s andJs-m are resurgent constants, as well as their
M M
associated asymptotic clasdesandJs :m.
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7.7.2.2 Resurgent functions, resurgent series

We recall the following simple de nition, for objects much discussed_in [18].

De nition 7.38. The C-differential commutative and associative convolution alge-
braCd Rz with unitd, is called a space df-resurgent functions. We denote

0
by Rz RES theC-differential commutative and associative convolution algebra
o}

made of resurgent singularities of the fofns ad + [jp with jo 2 9.

SinceCd Ry is a convolution algebra, the identitpp [p=[ (o jp) (propositior] 7.5)

(0] O
implies thatR 7 is indeed a convolution algebra. One usually uses abridged nofation
this course.

De nition 7.39. A series expansio 2 C[[z 1]] is aZ-resurgent series when its
formal Borel transfornB je is a Z-resurgent function or, equivalently, when the
asymptotic classe belongs td¥ES,. We denote by€, the C-differential commu-
tative and associative algebra mad&eafesurgent series.

Throughout this course we usually simply write “resurgent functions” or “resurgent series”
instead ofZ-resurgent functions aZ-resurgent series, since there is no risk of misunder-
standing.

7.7.2.3 Resurgent singularities and convolution

Theorem 7.1.The spacdRESis a C-differential commutative and associative con-
volution algebra with unitd, and CONS RESis a subalgebra. Therefore, the
space RES is a C-differential commutative and associative algebra and

CONS RESis a subalgebra.

Proof. (Adapted from|[[8 L]. The reader should look before at the reasoning made
for the proof of propositiofi 4]6).
It is enough to only show that RES is a convolution space. We take two singularities

00
] ;Y 2 RES, we choose a directianand we suppose® e 1.

0 o}
By Iemmresp.lemm] , resp.y , has a major such that its restriction as
a sectorial germ of codirection=] p=2+ q;q + p=2[, can be represented by a

function]~, resp.Y , holomorphic orR %(?, that can be analytically continued to
the Riemann surfaggRk 9; p) and moreover, satis es the condition:

1. ji (h)j] exp(j hj)forallh 2 G.e, whereG.e= TSe(l) RO;
2. Y is bounded org ¢(1).

We know by Iemml that G.e Se(l)foreveryz 2 Sa(l). We also think of
G.e as an embedded curt® : R! C with ng(s)j bounded. Therefore, the above
properties and the dominated Lebesgue theorem, ensure that the integral
z
c(z)=1 nY(2)= . 7 hy(z h)dh (7.14)

0

de nes a holomorphic function 08 2(1) R %@ which by ), represents the

o O
convolution product Y. We want to show that can be analytically contin-
ued onto the Riemann surfa¢R 9;p) (thus to€nz as well). We choose a point
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Zp 2 S2(l) so thatfzg Hog\ Z = 0, and we vigwc as a germ of holomorphic
functions atzg: for x 2 C close to 0,c(zo+ X) = J— h Y(x+zy h)dh.We

take a smooth paty: [0;1]! CnZ starting fromzo = g(0). We x R e sothat
o(0;1]) D(0;R) and lengtlig) < R. We will get the analytic continuation af
along g by continuously deforming Hy through an isotopy
H:(st)2 R [0;1] 7! Hi(s) 2 CnZ which is equal to the identity fojg large
enough. We pick &£ functionh : C! [0;1] satisfyingfz 2 C jh(z)= 0g= Z.

We also set &£ functionr : C! [0;1] with compact support so that the conditions
Iiposr) = 1 andr jenp(oer) = O are fullled. In what follows, we seélp as an em-
bedded curv® ! C and there is no loss of generality in supposing the existence of
So > 0 so thatHp(s) 2 D(0; 3R) for j§ < sy, elseHp(s) 2 CnD(0; 3R).

One considers the non-autonomous vector ¥ ;t) = Mg(’(t). We
h(z)+h go(t) z

denote byg : (to;t;z0) 2 [0;1]2 C 7! g(to;t;z0) = g©(zp) 2 C the (well-de ned
global) ow of the vector eld, that ist 2 [0;1] 7! z(t) = g©%(zo) is the unique
integral curve satisfying botﬂj— = X(z;t) and the datunz (tg) = zg. One nally
setsfi(z) = g®!(z). Notice that any integral curve(t) of X has length less than
length(g) < R, sincejX(z:t)j j g¥t)j. With this remark and arguments detailed in
[18], we can observe the following properties, for evey|0; 1]:

1. f¢(g(0)) = g(t), that isg is an integral curve. (Notice that g(t) = 1 because
9([0;1])  D(G;R)).

2. fy(Cnz) CnZ.(One had(w)= w foranyw 2 Z sinceh(w) = 0).

3. fi(z) = z foranyz 2 CnD(0;6R) (sincer jcnpo;er) = 0)-

4. for everyz 2 D(O;3R), f g(0) z = g(t) f{ z .Indeed, ift 7! z(t) is an
integral curve starting fronz (0) 2 D(0;3R), then z(t) 2 D(0;4R) for every

t 2 [0; 1] (the integral curve have length R), thusd—Z ﬁgo( ).
git) z
Considex (t)= g(t) z(t); one hadk = ¢g‘)(t) becausgx (t)j < 5R
h(x)+h g(t) x

for everyt 2 [0; 1], thusx is an integral curve oX.

5. foreveryz 2 CnD(0;3R), jg(t) f: z j> R As a matter of fact, observe that if
t 7! z(t) is an integral curve starting from(0) 2 CnD(0; 3R), thenjz(t)j > 2R
for everyt 2 [0;1] and thereforgg(t) f: z j> R

We dene the isotopy H:(s;t)2 R [0;1] 7! H(s;t) = Hi(s) by setting
Hi(s) = ft Ho(s) . SinceHp avoidsZ, one hasHi(s) 2 CnZ by propertyDZ. By
property B, we remark that fgsj large enought is a constant map. Notice also that
Ho R %O can be lifted uniquely with respect poon the principal shed® %9 of

R 9. We noteH g this lifting. We can use the lifting theorem for homotopies [11, 5] to
get the continuous mappitt) : (s;t) 2 R [0;1] 7! H (s;t) = H¢(s) 2 RY9 which

R
0,
makes commuting the following diagramy [0'|_1|] |An #(&:p

H
We now setK : (s;it) 2 R [0;1] 7! K(s;t) = Ki(s) = g(t) Hi(s). We know that

Ko(s) = g(0) Ho(s) 2 Se(l) RO for everys2 R. In particular, one can lift
Ko uniguely with respect t@ into an embedded curvé ¢ on the principal sheet
R (9 of RY. MoreoverKq(s) 2 CnZz, for everys2 R. Property b ensures that

Ki(s) stays inS¢(l) forj§ o, otherwise by property|&:(s) belongs toCnZ.
This implies thatK; can be lifted uniquely with respect fointo an embedded
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curve K¢ which lies on the principal shed®® (O of RY for j§ . Apply-
ing again the lifting theorem for homotopies, one obtains a continuous mapping
K :(st)2R [0;1]7! H (s;t)= H(s) 2 RY that makes commuting the follow-

R
0
ing diagram:R [O'Ii] !/0 #ép

K
We nally introduce the two holomorphic functions ;Y 2 O(RY) such that

F(z)=7 p(z) ,Y(z)=Y p(z) forz 2 RO With these notations, the germ
of holomorphic functiong atzg = g(0) reads
4
c(g0)+x)= F Ho(9 Y (x+Ko(s)HY9)ds
R

and its analytic continuation alorggis obtained by
VA
c(gt)+x)= F H(9 Y (x+K9) Hto(s)ds (7.15)
R

Indeed, remark that forjs large enough,F H(S) = | H(s) and
im Hi(s) j explj Hi(9))). Also, forj§  so,Y x+ K(s) =Y K¢(s) which

is bounded sinc&;(s) 2 S¢(l). Thus the integra5) is well-de ned. The fact
that [7.1%) provides the analytic continuations comes from the Cauchy formula, see
analogous arguments in [18]u

7.7.2.4 Supplements

One often uses other spaces in practice as we now exemplify.

The spaceRES®2)(L) The spaceR (912)(L) was introduced by de nitioff 4.34
and we know by propositi.6 thed R (@3)(L) is a convolution algebra. The
following de nition thus makes sense.

De nition 7.40. We denote byg(q?a)(L) F(i) the C-differential commutative and
associativg convolution algebra made of singularities of the fc())mad +1jp 2 SING
with o 2 R(@:@)(L). The associated space of formal series is denotd@By*) (L).

By its very de nition, any elemenb 2 R (4)(L) is a germ of holomorphic func-
tions at 0 that can be analytically continued to the Riemann suRa&&) (L). This
means that an}?Z §<q:a> (L) is a simple singularity that has a majowhich can be
analytically continued to the universal coveriﬁgq;é\)(L) nf0gof R (@) (L) nf0g.
Sincepcg)(CI?a)(L) is a convolution algebra, we know that for any two singularities
jo;)(/jz §<q:a>(L), their convolution produclO )? belongs tofq)(q:a)(L) as well,

thus has a major that can be analytically continued (@D’é\J(L) nf0g. In substance,
this comes from the property thip [jp =[ (o jp) for two integrable singularities

i , 0 O .
(proposmo). Now, what about the convolution producty of two singular-

o 0, o} ) .
itiesy 2 R (@:@)(L) and] 2 RES ? To give the answer, we prefer to shift to a more
general case and we introduce a new de nition.
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De nition 7.41. Let beq 2f0;pg S%, a 2]0;p=2] andL > 0. We denote by
RESY3)(L) the space made of singularities that have majors that can be analyt-

ically continued to the Riemann surfaBE(Q?é\)(L) nf0g. The associated space of
asymptotic classes is denoted IEEéq’a)(L) ASYMP.

Proposition 7.16.The spaceRES9:2)(L) is a C-differential commutative and as-
o

sociative convolution algebra with urd, containedRESandR (9:2)(L) as subal-

gebras.

Proof. The proof follows that of theorefn 7.J16 but for the fact that one adds the
arguments used at the end of the proof of proposjtioh 4.6.

The spaceRESY The spaces?® were introduced by de nitiof 4.20. They pro-
vide new spaces of singularities which are worthy of attention.

0
De nition 7.42. For k 2 N?, we denote byr ¥ the space of singularities of the

0
form ) = ad +[jp 2 SING with o 2 B The associated space of formal series is
denoted by€®).

o
Remark 7.6Notice that the set of spacér X)), provides an inverse system of

spaces whose inverse limitlig'” = R isR. Thisis why we sometimes write
k

0 0
R (¥) = R.

o o
The spaceR (Y is of particular interest since, from propositi4.1 RE)
makes a convolution algebra.

0
The spacg (¥ is made of simple singularities that have majors that can be ana-

lytically continued to the universal coveriiy® nf0g of R ¥ nf0g. We now con-
sider larger spaces of singularities.

De nition 7.43. Let k 2 N? be a positive integer. We denote by REShe space
of singularities that have majors that can be analytically continued to the Riemann

surfaceR 0 nfog. We denote by@ESY  ASYMP the space of asymptotic classes
whose formal Borel transform belongs to RES

\

Remark 7.7Notice again that IlRESY = RESY = RES, and we sometimes
k

write RES¥) = RES.

We will have a special interest in RESbecause of the following analogous to
propositior] 7.1p.
Proposition 7.17.The spac®RES?Y is aC-differential commutative and associative
o)
convolution algebra with unitl. It containsRESandR () as subalgebras.
We omit the (rather lengthy) proof of this proposition. The main idea is to con-

sider the integral representatign (7.14) used in the proof of theorém 7.1 and to adapt
the construction made in SeCi. 4.3.

Conjecture 7.1We conjecture that any space RESnakes a convolution algebra
as well.
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7.8 Alien operators

Alien operators are powerful tools for analysing the singularities of resurgent func-
tions. These operators are carefully de ned and discussed in [18], especially when
they operate on the algeb@l FSMP of simple resurgent functions. Most of the
arguments there can be easily adapted for alien operators acting on &i® the
study of singularities had been made. This is why we introduce the alien operators
in a rather sketchy manner in what follows.

7.8.1 Alien operators associated with a triple

7.8.1.1 Mains de nitions

We consider two directiorg; g 2 St, a pointw 2 Z and a sectorial gerfn2 Ogl of

directiong;. We can think of~ as a sectorial germ on a sect@l(ll) forO< Ry<1
andl;  S!an open arc bisected loy, and this is what we do in what follows.

We now assume thgf can be analytically continued tbnz. We consider a
pathg:J! CnZ starting fromz; 2 gl(ll) and ending ar, close tow so that
Zo W2 (Ffz(lz) with 0< Ry < 1 andl, S! an open arc bisected hy,. See

Fig.[7.9.
By hypotheses, the analytic continuatifsont j) of | alongg is a well-de ned

germ of holomorphic functions ab that only depends on the homotopy clasgof
(for the relation of homotopy of paths @nZ with xed extremities). Moreover,

if Y2 O,,  stands for the germ of holomorphic functionszat w de ned by
Y (x)= cony ] (w+ x) then, still by analytic continuation, determines a
unigue sectorial germ ongz(lz) and thus, by restriction, a unique sectorial germ

y2 ng. This justi es the following de nition adapted froni [18].

De nition 7.44. Letbeq; g2 2 St, w2 Z andj 2 Ogl a sectorial germ of direction
g1 that can be analytically continued tnz. Let g:J! CnZ be a path starting
from a suf ciently small sector o(l1) bisected byg; and ending close tw in

a suf ciently small sector of the formv + (l2) wherel, bisectsg,. Then, one
denotes bya §(gz;a1) 72 082 the sectorial germ of directiog, represented by

Y (x)= cont] (w+x)forx2 ol).

Fig. 7.9 Atriple (g;q1;a) de ning the operatoA (a:1;qp) atw = 2.
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ol
We now consider two directiorg; gz 2 8* and a singularity 2 RES,. Think-
o}
ing of] as a singularity of SING ., (for someas > 0), its minorjp can be seen as

representing a sectorial gejr? O° of directiong1 = p(g1) 2 St which can be an-
q1

alytically continued td€ nZ. Therefore, under the conditions of de niti44, the
sectorial gerny = A S’v(qz;ql)jb of directiongz = p(qz) 2 St is well-de ned.
qz2

Even, by analytic continuations, one can deduce fyfoma sectorial germ of direc-
g2
tionl =] p+qgzqgz+p[ Stdenoted by, 2 G(I ;09. By inverse image
q2 q2 g2

by p of the sheaD?, this sectorial gerny, determined a uniquely de ned secto-
q2

rial germ of directionlg, =] p+ g2; g2+ p|[ &' denoted by 1, - Still by analytic
continuations, this sectorial germ gives rise to a (multivalueé) section on any arc of

theform] a 2p+(g2+ p);(g2+ p)+ a2 &, a > 0, thatis to an elemeift of
T . . O
ANA = = ;5 0ANA 4,+p);a» Whose singularity belongs to RES.

De nition 7.45. Let beqy;g2 2 8 andw 2 Z. Letg:J! CnZ be a path starting
from a suf ciently small sector o(l1) bisected byy1 = p(q.) and ending close to
w in a suf ciently small sector of the forrwv + o(12) wherel, bisectsq2 = p(0y).
For any singularit)'voz RES, one denotes b 3 (a2;q1) jo the singularity;(/3 which
can be represented by a majo2 ANA = G(&';0%), whose restrictioly 4,2 OF

is the sectorial germ of directiagp determined by = A §,(q2;q1)jo, wherejp is
q2

0O
the minor of] .
The linear operatoA J(qo;01) : RES ! RES is called thealien operator atw
associated with the triplég; q1; d2).

The alien operators have their counterparts on asymptotic classes through formal
Borel and Laplace transforms.

De nition 7.46. The alien operatoA J(a;q1) at w associated with the triple
(g;q1;02) is de ned on asymptotic classes by making the following diagram com-

g .
RES “"®% pEg
muting: L #'B L #B.

g .
REs A ®@%  gEg

7.8.1.2 The spaceRESY®)(L) and RESW

Alien operators acting on RES92)(L) We would like to de ne alien operators
acting on the space REE(L). We suppose 2 f pk;k2 Zg 8!, a 2]0;p=2],
L>0andm2f1, ;d.eg We setq= p(q) 2f 0;pgand we consider a singu-
o] .
larity ] 2 RES93)(L) whose minor igb. By the very de nition of the space
RES®2)(L), the sectorial geril = A §(qz:q)p 2 O° is well de ned under the
q2 q2

following conditions:
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1. w = med and the patty is of typegd withe=( )m 12f+;g ™ L In that
caseg should beg p;
2. however, starting frorl§rGI - and be analytic continuations, one can consider as

well sectorial germy  withq221 =] 2p+q;q[ S.
q2 q

By a construction already done, the various sectorial gefmsglue together and
g2

provide a sectorial geryi; 2 G(I ;0°) of directionl . Still by analytic continua-
tions and moving to muIti\c}aIuedqsectoriaI germs b)?inverse image bfthe sheaf
00, one eventually gets an eleméhtof ANA .o With p(q) = g. This gives sense
to the following de nition.

De nition 7.47. Let be q 2fpk;k2Zg &', a 2]0;p=2] and L > 0. We set
g=p(q)2f0;pg St We pickm2f1; ;dLeg we setw = m¢d and we as-
sume that the patg is of typeg(q Yo 1" For any singularity'oz RES9:3)(L), one

o) 0
denotes byA §,(q;q) the singularityy 2 SINGg:a Which can be represented by a
majory 2 ANA .o whose restrictioly ¢ 2 Og p is the sectorial germ of direction

o)
g pdetermined by 4 p= A S’v(q p;q)jo wherejp stands for the minor df .

This gives rise to a linear operatarg,(q;q) : RES¥) (L) I SINGg.a, still called
the alien operator at associated with the tripleg; q; q).

Alien operators acting on RESY We now work on the spaces RiSgiven by
de nition . We want to prove that alien operators can be de ned on(RES-

sociated with triples of the forr(g; q; q) with g of typeg(‘l) or g(q =

We startwith RES. Letbeq; 2 f pk;k2 Zg  8'and setv; = €91 with g1 = p(aa).
The very de nition of RE$Y and the above reasoning lead straight to the following
linear operators, for any integem 2 and anye 2f ;+g:

d1 g(qe%m
A, (G1i62) :RESD ! SINGgpi A munt “(G1id2) :RESD ! SINGy s poopes
(7.16)
We move to the next cade= 2, that is we consider the space RES RES?.
Of course the above 0perato.16) still act on RESut, however, their ranges
can be made more precise. By the very de nition of F&She minorjp of any

o}
singularity] 2 RES?, when considered as a sectorial germ, can be analytically

continued along any pathof typeg?i with

e 2f ()" m o1 ()™ )m 1 i (nzmy) 2 (N?)%g:
Moreover, introducingjz = q1+(n  1)p, w; = €91, andw, w; = €92, the ana-
lytic continuation cong jo of jp alongg is a germ of holomorphic functions whic can
be analytically continued onto the simply connected domain
p(RE"™9)= Cnf] ¥;p][ [p+ 1;+¥[gwhere]p;(p+ 1)[=] wi;wo[ whenmy = 1,
Ip;(p+ DE](m Dwy; mpwy[ whenny 2. Considering only odd values fog

(thusgz = g1 onSt), one immediately sees th.16) becomes:
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a1
A, (quiay) :RES?D 1 RESY, (7.17)
% 2
A Jut(g1;qe) :RES? 1 SINGy,

qa1
g(e)ml 1

A 1(01;01) :RES? 1 SINGy 4 p=pp=2; M1 3

a1
Notice in particular that the operatAr\g,J(v)l (g2;q1) now acts on RED as well, for

any directiong, 2 &'
The reasoning generalizes and we give the result.

Lemma7.8.Let beqy 2f pk;k2 Zg 8. For any integer k 1, anye2f ;+g
a1

and any m 2 N?, settingw; = €91, the alien operatorA ii,’fll l(ql;ql) is well

de ned onRESX with the range:

At (quo) RESM 1T RESK™): 1 m k1 (7.18)
A ot (A1 a1) i RES¥ 1 SINGgp; mi=k

A muwr [(01;01) :RES¥ 1 SINGg ,ppppi M k+ 1L

7.8.1.3 Miscellaneous properties

We start with a simple result which is a consequence of the very de nitions.

Proposition 7.18.For any alien operator of the formA %(a2;q1) :RES ! RES,
o}
acting onRES,, RES9@)(L) or RESY, for any singularityl :

9/ oo _ O Gy 2.
Aw(dza) 11 =(1 WAR(Gsa)] : (7.19)

o]
In other words[A J(02;91); 1= WA 5(92;01).
We introduce new de nitions before keeping on.
De nition 7.48. For anyk 2 Z, one denotes by, 2 Aut(p) the deck transformation
of the cover(€;p), de ned by:r:z = rd42 € 7! ry(z) = rgd*2pk2 €,
fo} . .
For any singularity of the forml = singJ) 2 SING, |' 2 ANA, we write
o} .
rel =singg(J” rg) 2 SING.
More generally, forany 2 R, one sets, :z = ré92 € 7! r (z) = rdd*2pr 2 €
[¢) .
andr,:] = singg(J' r)2 SING.

Remark 7.8With this notation, the variation map var : SING ANA reads
var=1d r 1.

The alien operators associated with a triple satisfy some identities as can be easily
observed:
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Fig. 7.10 Two triples(g; di;02) and(glw;qi;qz) for the pointw = 2, with | \, a closed path of
winding number wing (I ) = 1 atw.

Proposition 7.19.For any given alien operatoA J(00;q1) : RES ! RES,
A 3(d2:q1+ 20K) = A J(daidn)rk and A (g2 + 2pkidn) = 1 A §,(d2;Ga), for
any k2 Z.

Let us consider a point 2 Z and a given tripl€g; gi1;d2). One can extend the
pathg into the pathgl X wherel X is a closed path neav that surrounds that point
like on Fig., with winding number wipdl X) = k2 Z at that point. One can
as well consider the paih'§g wherel (‘; is a closed path surrounding the origin with
winding number wing (I g) = k2 Z. Alittle thought provides the following result.

Proposition 7.20.We consider a triplég; q:; g2) de ning alien operatorA J(q2;a1) :
RES ! RES atw. We assume thal X, resp.l £gis a product of paths so that
| X, resp.l & is a closed path surrounding,resp.0, and close to that point, with
winding numbewindy (1 £) = k, respwindo(l &) = k, k2 Z. Then,

Aaa) = Ao A SN (ga) = reA Maa):  (7.20)
In particular,
A S(Gat 200= A G A LG+ 2pkian) = A 9 (a2 n): (7.21)
We end with the following property.

Proposition 7.21.For any alien operator of the formA %(q;q) acting onRES, or
. ) e 0
RESY2)(L), for any singularityi and any resurgent constaobns CONS

o o 0 o
A J(q;q) const | = const AJ(q:q) : (7.22)
We stress that in propositi¢n 7|21, only alien operators of the ®@(dz; d1)

with g1 = g are considered. We omit the proof of this proposition which relies on
a careful reading of what have been done for showing thepregm 7.1.

7.8.2 Composition of alien operators

7.8.2.1 Alien operators orRES

The following de nition is adapted fromi [18].

De nition 7.49. One callsalien operator atw 2 Z associated with the couple
(qll; g5") any linear combination of composite operators of the form
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Fig. 7.11 The triple (gi;ai; q3) for the pointwy = 2, the triple(g; g3;q2) for the pointw;
wi = 4, withq? = g3 + p.

A (@al) AR L (afiaf) Af(g3a)) tRES ! RES
where(w1; ;Wm)2Z™ m2 N? with w = Wy, = érj“:le wj 1 and the conven-
tionwg = 0.

Example 7.9We exemplify the above de nition. We sety = 2 andw, = 2. The
alien operatoA { (q3;q{) at the pointw; is associated with the tripkey; a1; q5)
drawn on Figl. The alien operatary, \, (a2;q7) at the pointw, w; = 4
is associated with the tripl(egl;qll;qzl) drawn on Figl. We furthemore assume
thatg? g3 2 [0;2p[to x our mind.

From the very de nitions of the alien operators and of a minor, one easily checks
that the composite alien operatdre, . (42;02) A {,(a3;a1) atw, can be writ-
ten as the difference of two simple alien operators, namely

AL (030D Ad(ahah)=AS (aZad) AS (a%ad):

In this equalityG* andG ! stands for the (homotopy class of the) product of paths
= al g, (Wit @) andG = al ,, (w1 + @) respectively, where the pathg,

andl ,,, drawn on FigE‘Z, are homotopic to small arcs so that) I, makes

a loop aroundv;, counterclockwise.

Typically, the end point ofy is z2 = w; + reéai while the starting point ofp is z2 = rédz
withO<r 1.Then)y :q2[q3:qf]7! wa+rédwhile(l,,) *:q2[ 2p+q%q3]7

wi + red.

From this result, one deduces from proposifion [7.20 that forkehy,

Fig. 7.12 The pathss™ = gl (W1 + @) andG*" = @il  (wi+ @), w1 = 2.
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AL . (aZaf+2pk) AR (92;0d)= A & (qZah) AS (qZad:

withG" = al V'f,ll V’\',l(wl+ @) andG, = al ¥ wy | w, (W1+ @) respectively, Wheré
stands for a closed path arouwgd = 2 with winding number wing}, (I 1) =k at
that point.

What have been done in the above example can be generalized. This is the matter
of the next proposition.

Proposition 7.22.We consider the two alien operatotks‘f‘vll(q2 ) A2 Wo Wl(q22;q12)
and we assume thaf g 2 [0;2p[. Then, for any R Z,

AZ . (aZa2+2pk) AZ(akad)= A (q2 ad) A (aZad):

withG" = aul & 1w (Wa+ @) andG, = aul (& |, (W1+ @) respectively, where
stands for a closed path arourvd, with wmdmg numbewindy, (| V‘f,l) = k at that
point, wheread ; andl, follows small arcs so thal ,,,) 4 w, makes a loop
aroundw; counterclockwise.

As a consequence, any alien operator at a pair? Z associated with the couple
(g1;02) can be written as a linear combination of alien operatorswaaissociated
with triples of the form(g; q1;02).

We now focus on paths of typgh. Form2 N?, we take a(m 1) tuple of signs
e=(e; ;em1)2f+;g™Yandn=(ny; ;nm 1) 2 (N)™ 1. We choose a

directionqy 2 f pk;k 2 Zg. Following de nition|4.7, to a path of typg2! one asso-
ciates a sequence of points and directions de ned as follows :

gi+1=dqj*tem Hp 1 j m 1 (7.23)
Wj+1 Wj = vt 0 j m 1
wo = O:

a1
These data thus provide a uniquely de ned alien operAt&; (gm; q1), once the
directiongm 2 ', qm = p(gm) is chosen.

Theorem 7.2.Let m2 N? be a positive integee2f +;: g ™ 1, n2 (N)™ 1 and

o1 2f pk;k2 Zg. Letgbe a path of typgt, wym andgm given by[(7.28), andm 2 &t

so thatgm = p(dm). Then the alien operatok S{,m(qm; 01) atwp, associated with the
triple (g;01;0m) can be written as &-linear combination of composite operators

of the fprmA \?53 wp 1(qm; ad A \?jg Wg(qg; d A \?\}?(qf; g that satisfy the
properties:

(w; 0) 2 ZK, k2 N? andw?= Wi,

qm= CIk’

forevery j= 1, ;k, the pathy; is of typeg(qj) M2 N7,
m;
é. IJ'(: 1 m] m.

This theorem is of a purely geometric nature. We omit its proof (See [1] SestlIR
2, see alsa [18, 22]) and we rather produce two examples that explain the algorithm.
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Example 7.10We consider a pathof typegd* fore=(+ ; ;+) andwesej1=0
see F'(gE]Z. To the pathone associates by (7]23) the sequence of points and direc-
tons: 9i=0 1 | 4

Wo=0; wj+1 wj=10 j 3
We want to decompose the alien operaﬁo%,A(q4; gi1). From the very de nition of
the alien operators, one observes that

. One setg|j = q°= Oforanyj 2 [1;4].

\?(VZ) w(da;03) A g(+) (201)= A & )3(CI4,Q1) Ay, g“ RECTHNE

and therefore

q1 0
A%f ) (ga01) = Ag”:“(q 99 AS‘VZ) w,(a%09 Aq” (%99

Example 7.11A bit more dif cult, we consider a patg of typeg}! fore=(+ ; ;+),
t1=(1'3'1) and q1 = 0, see Fig.3. The algorith23) still provides
g;=0,1 j 4
Wo=0; wj+1 w;=10 |j
Since

3" One sets agaiq; = q%= Oforanyj 2 [1;4].

9 9(+) o N
Al w(Gaigs 20) A (dz01)= Aw, 7 (Gaia) Aw 7 (04:0);
one deduces with the rst example that
Q1 5. g( 9(0 g(qo
A (e = Ay P (@009 A w(a%a® 20) A (q%q9
= Ag“”(q 99 Af&? w,(a5a9 Ag“’ (%99
A%? w (@50 2p) Ag“’ (a%99:

Example 7.12A step further, we consider a patly of type g}t for
e=( ;+;+;+; ),n=(12111) and takeg, = 0, see Fig[ 4]3. Using (7.p3),
we de ne: 8

301020
3= =Qqe6=0P
Bwo= 0wy Wo=wWp wi=1
W3 W=  =wg ws= 1
Wesetg; = g2 = qY= 0,g3= = gs = q9= p. We start with the identity:

Fig. 7.13 A path of type
g fore=(+; ;4),
n=(13;1) andq1=0



7.8 Alien operators 169

AY (Gt A Lo (a0 = A L9 (Gea) A 9 (dsi):

Next, a little thought yields:

d1

Ag(+++) A ) _ g +2+++) A )
e (G6:03) AW, (02:01) = A g (96;01) A we (de;0s);

g( ‘41 - g(qs
A e, (0s:03) A wz)(QZ )= Aws 7 (0s:02) A v, (O5:0s):

q2

l
Finally, AD (@) AD (o) = AS (@) AL (iay. Puting
things together one concludes:

INACHNE % Y (0209
0 0
2
+ A 36; S (agad) AL i) J(a2a) AR L.(a2a) AN (@Sad
0 qg

A 36; TE%0) AW L (a%ad AW @fad

qz
ALY ws(q% @) A 33; p(aad) AL g‘*’ (a;ap)

q0

g( 0 9<?+2-+ 0 4° 0 g(qg 0
+ AWL ws(A3:09) A w0, (a9:a)) AW w(alaD) A (afiad:

7.8.2.2 Alien operators orRESK

We saw with lemm@ 7]8 that the alien operators associated with triples of the form
(9;q1;q1) act on RE& for g of typeg(‘f; . andg(ql)m. We keep on this study accord-
ing to the guiding line of this section.

We assumeq 2f 0;pg and pick two integerd;k subject to the condition

ol
2 | k. Bythe veryde nition of RE$Y, the minorjp of any singularity 2 RESY,
once considered as a sectorial germ, can be analytically continued along agy path

of typegdt with

e 2f () @e)m 1 je2f+; g m=(n; 1) 2 (N)' Lm 2 Ng:
With the notations of (7.43), the analytic continuation ggnbf b alonggis a germ
of holomorphic functions that can be analytically continued onto the simply con-

nected domaip(R " @)= Cnf] ¥;p][ [p+ L;+¥[gwhere]p;(p+ D[=]w 1;w[
whenm = 1,]1p;(p+ D[=I(m D)wi; mw[ otherwise. These properties translate
into the next statement (the details are left to the reader).

Proposition 7.23.Let beq; 2f pk;k2 Zg 8% and (I;k) 2 N with the condition
1 | k. The following alien operators are well-de ned, for aap f ;+g, any

n 2 N' L and any m2 N”. Settingg; w; by ) andy 2 8 with q; = p(q)),
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a1
% Hm 1©m D

A mw (q;q) :RESW 1 RESK ! M*D: 1 m k|
¢,
A fT(l(W)ll o 1)(QI;Q1) 'RESNW 1 SINGgp; m=k I1+1
g,
O J@m D
A mw.I M Y (aqi;00) : RESH SINGg,+p=2p=2; Mk 1+2
(7.24)
. g(qel)m 1 g(q2 Q(Q1
EquivalentlyA ' w ,(ai;a) A W)z w, (G2;02) A w)l (91;91) are well-de ned

alien operators, withy j; wj given by ) andj 2 &' with gj = p(qj), with the
following ranges:

q|
g(e)m a1
Al o (aia) AW (Gug):RESW ! RESK! ™D 1 m ko

g(q;)m a1

Al (@:a) AW (@) RESM ! SINGgp; m=k 1+1
g(qel)m 1 g(ql K

Amw w o (@d) A (dugy) (RESY L SINGy g5 m k I+2:

(7.25)

We would like now to discuss a kind of converse of proposifion|7.23 with the
next two propositions.

o
Proposition 7.24.Let k2 N? be a positive integer anif 2 RESY. We suppose

q o) )
that for anyq 2f pk;k2 zg &' one hasA \?(V)(q;q)J 2 RESY, with w = €4,
0
g = p(q). Then belongs tRESK* D,

fo)
Proof. There will be no loss of generality in assuming thas a simple singularity
o} 0 -
and this assumption is easier to handle=:ad +[p 2 R™® withjp 2 R®.

0
We consider a singularitr (V. Thus,jo can be analytically continued t& (.
Equivalently, for anyg; 2 f pk;k 2 Zg, b can be analytically continued along any

pathg of type qel)m » m2 N?, e2f ;+gand cong, jo is a germ which can be

analytically continued to the star-shaped donmiR (&)m vd1

d1 e}
Let us assume that for amy 2 f pk;k2 Zg, A 36) (q1;01) ] belongs to RE®,

wherew; = €91, We claim thai  belongs to RES).
Our assumption results in the following property : for amy2 N? and any

pathg of type g(‘“)nl, denoting byl ,,, a clockwise loop arounds, the difference
1
cony cont;, o is a sectorial germ which can be analytically continued along
w1

any pathg of typeg(qe?)m L, m2 N?, e2f ;+g,g2=qi+(m 1)p. Moreover
cong, cony conf, ~ jois a germ of holomorphic functions which can be ana-
w1
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lytically continued to the star-shaped domgirR ( )1'(&)m ia1

Start withn; = 1 and a patlg of typeg(+) , resp.g(‘“)l. Take a patly, of typeg(‘lz)

gz2= qu, resp.g(qz)m p Notice thaty; = gg is a path of typeg(qel)m. Therefore from
the above property, cagt conyjp = con, jo is well-de ned and gives a germ that
can be analytically continued to the domairR () md1 = p R() 1) m 1):a1 |

resp. pROImar =p R Ju(Imdar . But this implies that
cong, cont, b = cony, gzjb is also well-de ned and provides a germ that can
w1 wy

be analytically continued to the domginR M) ma1 = p R )1 m 101 | resp.

p ROmar = p R()%H(m i1 | (Notice that the patigl,, @ is a path of type

q1 a1
915 m 0 ESPYC )3 )
Of course, one could have chosen a @dﬁtypeg(‘ll) , and a patlgp of typeg(ql)m N

The pathgs = gl,, @ is a path of typeg(ql and we conclude for the analytic con-

tinuation ofjp along the patlyg of typeg((+) o) 1)
One can pursue this way by induction opto show our claim. Here, we just
add the casey = 2 so as to deal with a subtlety. We thus consider a gatif

type g(‘il)i and a pathyp, of typeg( L 92= g1+ p. Notice that the patigl,,, &

is homotopic to a path of typg81 whenm= 1, of type g(qeﬁm . whenm 2.
Therefore, conf cont, jo is well-de ned and one concludes thjat can be
w1

analytically continued along the path = gg of type g((+) and more-
over the germ cogtjp can be analytically continued to the star -shaped domain
p R L@m s |

The same reasoning can be generalized and gives the proposition.

A quite similar (and even simpler) reasoning gives the next result.

o
Proposition 7.25.Let be k2 N? and j 2 RESY. We suppose that for any

O
i Y (qon) I~ be-

longs toRESY , wherew, is given by‘). Theh belongs td?EkaJ' D,

g1 2fpkk2Zg &' and anyn2 N 1, the smgulantyA

We eventually use theorgm ¥.2 to reformulate proposition 7.25.

o
Corollary 7.1. Let k2 N? be a positive integer anii2 RESX. We suppose that

& . @ . Gy O g0
A W w1 (G 0) AW, w(d202) A w(di;a1)] belongs taRES™ for any
composite operator that satis es the properties:

forevery j= 1, ;k, the pathg; is of typeg(clj) oM 2 N?;
m;

2 k L —
a.J':lm]— k.

o
Then] belongs taRESK* D,
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7.8.3 Alien derivations

We now specialize our analysis to some particularly interesting alien operators.

7.8.3.1 De nitions

De nition 7.50. Let be q 2fpk;k2Zg &', a 2]0;p=2] and L > 0. We set

q=p(q)2f0;pg S Letbew= med2 €form2f1;, ;dLeg resp. m2 N°.
The alien operator®;, andD,, atw,

Dyy;Dw : RES93)(L) ! SINGg.a; resp. Dj;Dy:RES! RES

are de ned as follows:

a
D; "= A 3”'" @:q)) (7.26)
0 o lg(e)! 0
Dwl = a 7p(e)m?(e) Af(q;q)l ;

e=(e;; sem 1)2f+;g™m?

wherep(e), resp. de)= m 1 p(e), denotes the number of
signs in the sequene

signs,resp.”

De nition 7.51. The alien operator®;,;D,, : RES! RES for asymptotic classes

RES ™ RES
are de ned by making the following diagrams commuting: #" B L #B.

ges ™ gES

7.8.3.2 Properties

Theorem 7.3.Under the hypotheses of de nitioh 7]50, the alien operators
D} :RES9®)(L)! SINGy.a, resp.D;, : RES! RES satisfy the identity:

Dp(° V)=(op) Y+ & Dul DLy +F oiy (.2

W1+ Wo=W

where the sum runs over all; = mée?, wp, = mpeld, with my;mp 2 N? such that
m+ mp = m.
The alien operator®,, : RES9®)(L) ! SINGga, resp.Dy : RES! RES satisfy
the Leibniz rule, Dy 2oy o= ijo y o+ i DW)? . Moreover,
DW(1(])jo) = (1(]) w)(Dy jo). Eventually,Dj, cons Dy cSns 0 for any resurgent
constantcons

Proof. We give the proof for the identit 7) only, so as to exemplify the use of
singularities. Moreover we work on the spagé&2)(L).

The reader is invited to compare with the proof madé_in [18] for simple resurgent functions.
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There is no loss of generality in assuming fﬁat[jb, yO: [y with jo;yp 2 R (@) (L),
By propositior] 7.5 one hdgo [jp=[(jo ), therefore we can use arguments de-
veloped in chapt€r|4 (see in particular the proof of thedrerh 4.1), which allow us
some abuse of notations.

The analytic continuation of the convolution prodilictyp along a pathy of type

oy, , = P(dly,, ) ending az = w+ xo nearl(m  1)e%;me[, is the germ of
holomorphic functions de ned as follows:

z Zy
(congjp P)(w+x)= Hjb(hl)y)(hZ"'X Xg)+ . p(z+h)p(x xq h)dh:

Here H1 (= p Hi) is a symmatrically contractile path deduced frogn

P(h1) = conty gl Hi(s) . P(ha+ X Xxo) = conty 35 g H; 9+ x  xg

andjp(z + h) = coniy, o Hi(1)+ h . To get the associated singularity, that is
0 O

Dy ( Y), one only needs to consider the restrictions:

1. of the rst integral near the “pinching points” (see Hig. 1.14), where one easily
recognizes convolution products for majors and these provide the contribution
o} 0 foliNe)
a, g w Dy, D,y tothe singularityDy (I Y);
1 Wo=
2. of the two integrals near the end points, which provide the missing contributions

(use propositiof 7]2).
This ends the proof. u

De nition 7.52. The linear operator®,, are called alien derivations and RES is
called a resurgent algebra (since stable under alien derivations).

We refer to[[18] (see als6][1]) for the proof of the next statements.

Theorem 7.4.Foranyq 2f kp;k2 Zg, w 2 € withargw) = q,

o] ( 1)5 ! ol + + + .
DW: a. a DV\I Ws 1 DW2 W1 DW]_' (728)
oN? S agwy)= =argws 1)=q
0 wiy Ws W
+ o 1 o
DW = a 7' DW Ws 1 DW2 W1 D\Nlu (729)
2N? S argwy)= =argws 1)=q

0 wy Ws W
In the above theorem, stands for the total order ¢@; w] induced byt 2 [0;1] 7! tw 2 [O; w].

The alien derivations own the property of generating the whole set of alien oper-
ators. We precise this claim with the following upshot from theorerh 7.2 and theo-
remZ.4.

Fig. 7.14 Symmetrically con-
tractile pathH; and contribu-
tionstoD}, b Y forw= 3.
Pinchings occur between 1
andz 2, and between 2 and
z 1.
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Theorem 7.5.Let m2 N? be a positive integeg2f+;g ™ 1, n2 (N*)™ ! and

o1 2 f pkik 2 Zg. Letg be a path of typegt, wy and qm given by [(7.28), and

0m2 & so thatgm= p(gm). Then the alien operatdk 9 (qm, gi1) atwpy, associated

with the triple(g; g:1;qm) can be written as & - Ilnear resp Q-linear combination
of composite operators of the form

rI(n: D\T\In DV-;Z DVTI]_ ; resp' rkn: IJ/Vn DWZ |:X/‘/l ;
that satisfy the properties:
(W1, ;wn)2 (29", n2N’andp &}-;wj = Wm;

qm= argwn) + 2pkn, kn 2 Z;
&l=1jwij  m.
Example 7.13We continue the examgle 7]10. The pgib of typeg fore = (+ ; ;+)

and we know thaf g“ “(0;0)= D; D; Dj.(On the right-hand side of the
equality,(4; 2) stands fo(4€?; 2€°)). Using theorem 74, one gets:

A% 90,02 D+ 4 Dy D1+ Dy D2+ D1 Ds
+3 D2 D1 Di+ D1 Do D1+ D Dy Dy + D1 Dy D1 Dy
Do+ D1 Dy Do+ 2Dy Dy

Example 7.14We continue the examplle 7/11. The pgib of typegdi fore=(+ ; ;+),
n =( 1;3;1) and we have shown the identity:

@
AL%(0,0=Df Df Df r oD

+ .
2e 2ip DZ )

This can be expressed in term of alien derivatives as well.
o 0,
We end with an observation. By its very de nition, any singulafitg R (4:2)(L)

has aregular minor. This property involves the following relationships for the ac-
tion of the alien operators. (These are essentially consequences of propgsitipns 7.19

and7.29).

Proposition 7.26.We suppos@a 2]0;p=2], L> 0and m2f 1; ;dLeg The fol-
lowing equalities hold forany R Z:

© 0 o)
for anyJ 2 R a)(L), D J =r Dmépoj ,Dgpx) =T & Dpgpo | ;

foranyj 2 R(p a)(L) D*

me|p2k
o .
me'p(2k+1)J : DmeipJ +Dgp@en ) =T & Dy )5
moreover, ifJ 2 R(O'a)(L)\ R(p,a)(L) and if its minor o is even, then
o) o o o) .
Dyl =1 15D ] ,Dgpl =1 12 D1J  with 1= €°, while if o is odd,
, O e o o
thenDeipJ = r 12D )] ,Dgpl = 1 12 D1

Example 7.15We considejp(z) = ﬁ 2 R.Thisisa meromorphic function
with simple poles aZ” whose residue an2 Z? is resjp = m. Introducing the

fo)
singularity] = ljp, one easily deduces that for evérg Z and everym2 N?,



7.8 Alien operators 175
o . O K
Dn.eipk J = DI’T‘eipk J = ( l) m: (730)

0 M
The formal Laplace transforin j is an asymptotic clags= ‘je that can be repre-
sentend by & -resurgent serigig 2 F¢, and ) translates into

M, M K
Dmeika = DrTEipkl :( 1) m: (731)

) o] o}
We now look at the singularity s.n=Js:n ] for (s;n) 2 C N. By the Leibniz
0
rule and sincds ., is a resurgent constant,

0 o o e \
DIT'Eipk y S ;n: Js n DITEipk J = ( 1) sz Yn2 SINka’a. (732)

a>0

0
The asymptotic class associated Yos:, by formal Laplace transform is
M M M
Ysn=Jsnl 2 RES. The identit2) provides:

M M \
Dn.eipk Ys n= ( 1) mJs ;n2 ASYMPpk;a: (733)

a>0

7.8.3.3 The spaceRESY

We have already describe the action of the alien operators on the spac¥s RES
can draw some consequences from theqrein 7.3.

Corollary 7.2. Let be k2 N” andw 2 € such thatw is an integer angwj k. The
alien operatorD,, acts onRES¥ and

Dw:RESK1 RESKIW): whenl jwj k 1

DN : RESk) ! SINC%rgW);p; when jW] =k (7'34)

Moreover for any'o;y 2 RESK :
00 0 fo}

Dw(1(T)J )g(ﬂ w)(Dw1);

Dv i Y belongs toRESY whenl j wj k 1 and toSINGygw)p When

jwj = k and furthermored, jo )(/) = DNJ'O )(/3+ jo DW)? (Leibniz rule).
Proof. The identity [7.34) is a consequence of proposifion]7.23. The commutation
formula[DW;'|(1)] = w Dy ensues from propositi18. Notice now that for any
k2 N?, anyL 2]k 1;K] and anya 2]0;p=2], one has RES'®) (L) RESM. Pick
two singularitiesjo;)? 2 RESY and consider them as belonging to RES (L).
One can apply theorem 7.3 to gBY; JO )(/D = DNjO )/o+jo Dw)? 2 SINGg:a -

O (@]
Also, we know thaDy,] andD,Y belong to RE& ™ or SING,,, depending on
jwj. Finallywhen 1 j wj k 1, one canworkin RE® RESK ™ whichis a
convolution algebra by propositi¢n 7]17 and this provides the conclusion.
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De nition 7.53. The alien operatorsD};;D,, : RESY | RESKI W) for
1jw k 1,resp.Dy;Dy:RESH ! ASYMPyguw)p, for jwj = k, for asymp-
totic classes are dened by making the following diagrams commuting:

RESW ™ REgKS w) RESH 4™ SINGuguyp
L #B L #B ,resp.L #'B L #B
RESY P gEgki wi. RESY ™ ASYMPygup:

We add a property that will be useful in the sequel.

ol
Corollary 7.3. Let k2 N? be a positive integer and2 RESY. We suppose that for
fo}
any n2 N?, Dy, Dw, Dw,] belongs tdRES? for any composite operator that
fol
satis es the propertiestwy; ;W) 2 (Z)" andé’j‘:ljwjj = k. Then belongsto
RESK D,

Proof. This is a direct consequence of both corolfary 7.1 and theprejm ©.2.

7.9 Rami ed resurgent functions

As already said, one uses various spaces of resurgent functions, accordingly to the
problem under consideration. We introduce some of them.

7.9.1 Simple and simply rami ed resurgent functions

We start with the resurgent algebra of simple resurgent singularities, much discussed
in [18] (see alsa [1,17]) and we make use of proposifioh 7.6.

o
De nition 7.54. A Z-resurgent singularity 2 RES is said to be aimple resurgent
o) _
singularity when = ad + [jp 2 SINGS™P and, for any alien operatak J(a;q1),

A $(g2;01) jo belongs to SINE™. The minor o, resp. the 1-Gevrey series
fe = a+ L )b, associated with a simp-resurgent singularity is simple resurgent
function resp.a simple resurgent serieand one denotes B zSMP, resp. &, SiMmP
the space of simpl&-resurgent functionsiesp. series. The resurgent subalgebra
made of simple resurgent singularities is denoted by??lfﬁnd the corresponding

space of asymptotic classes is denotecﬂE)SSZ'mp.

As usual in this course, we use abridged notations. One can make acting the alien
operators on the spages™P.
De nition 7.55. The alien operator®;, ; D, : FESMP1  FSIMP gre de ned by making

gES™ % O gES™
the following diagrams commuting Ty #" T #"\ .
Fesimp DyT/ Dw Fesimp

Obviously (from propositioG), for arjg 2 FESMP, the alien derivativd,je
only depends ow, thus one could de n®;,; D, : FBSMP1  FeSIMPfor w 2 77,
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Before introducing the simply rami ed resurgent functions, we need to state the
following straightforward consequence of proposifion .13.

Lemma7.9.The space SING™M of simply ramied singularities
fol o}
I'=aNan I n+lp,p2 O, is aconvolution subalgebra.

De nition 7.56. One denotes by ASYMP?™ the space of asymptotic classes asso-
ciated with SING™™. The restriction of the Taylor map to ASYMP™is denoted

by TS'a™. One denotes by*™@Mits composition inverse, that is the natural extension
of the mapping to C[Z  C[[z ]]1.

ol
De nition 7.57. A Z-resurgent singularity 2 RES is asimply rami ed resurgent
o} o) .
singularity if | = aN.oa n [ n+[jp 2 SING®™®™ and if, for any alien operator
o} _
A J(02;01), A (a2;01) i belongs to SING™™. The resurgent subalgebra made
of simply rami ed resurgent singularities is denoted by BES to which corre-

sponds the space of asymptotic clad@ES . The space of the associated formal
seriese(z) = &f- yanz "is denoted by, sram

One can de ne the alien operatddg, ; Dy : FES™@M1  FES™@Min the same manner
than in de nition and, again, for afy2 FES@™ the alien derivativ®,je only
depends omv.

7.9.2 Rami ed resurgent functions

The following de nition makes sense by propositi¢ns| 7.6 pnd]7.13.

De nition 7.58. We denote by SING™  SING the convolution subalgebra gener-
(0]
ated by the simple singularities and the set of singularitiasm; (s;m) 2 C  Ng.

0
An element of 2 SING@Mis called arami ed singularityand reads as a nite sum
0 0 0 0 .
i'= & Jsim 1 (sm With] (s,m2 SING®™. The associated space of asymptotic

(s5m)

classes is denoted by ASYNA®  ASYMP.

o o) o)
Toaramiedsingularity = & Js:m | (s:m) IS associated, by formal Laplace
(s;m)

M M M M
transform, an asymptotic clas® ASYMP@"of theformj = § Js:mi (s:m) With
(s5m)

M :
1 (s:m= ‘B(s:m 2 ASYMPS'™P, This asymptotic class provides a formal expansion
of the type

p@= & (0", 2 " 0L

(s;m) (s;m)

Cliz 'Ilx

through the Taylor map, for any given arc®¥.

We have encountered such formal expansions when we considered the formal integral for
Painlee | (theorenj 5]1).
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In the same way thaE[[z 1]]; can be thought of as a constant sheaSbnthe

L m L
space (s Iogzs(z)C[[z 11 can be seen as a constant sheaBbnThis justi es
the following de nition.

De nition 7.59. Let beq 2 &' anda > O We denote bylils;, resp. Rilsy.(q.a)-
the space of global sections of the shea@‘S ) 67@ [z Y);, resp. section on

J’=] p=2 a q; q+a+p=2[ We call Hllsl the differential algebra ol-
Gevrey Nilsson series
The restriction of the Taylor map to ASYNM#'is denoted byi{2™. One denotes

by
vram . il I ASYMP?M
T ] H H Q M B
e= a(s;m)%;mle(s;m) ! \ramJe = d(s;m) Js;m\p(s;m)
. .. . m
its composition inverse, whe® - m(2) = ( 1)”""°gZSJ.

One can de ne the spadgils as well, made of formal expansions of the form
= 8(s:m % mes:m With &s.m 2 C[[z ]. Let us consider an elemept2 Hils
under the formje = éin=1%, e 2 C[[z 1]]. We can of course assume that for

anyi 6 j,s; sj2Z. Wedenotew; = e 2ipsi and we remark thaty; w;6 0
for anyi 6 j. We setr :je(2) = Je(zez'P) and more generally:je(2) = je(ze?P¥)

for anyk 2 Z. We notice that y:je = a ije. Thereforel(je;riije;  :rnje) =
i=1
Al Bif2 ko whereA stands for then n invertible Vandermonde ma-
7s1’ 652 " 7#5n 1
1
W1 Wy
trix A= . This implies that for each integee [1; n] is a linear
w] W,?

combination ofe;r :je;  ;rp:je. This observation can be generalized:

Lemma 7.10.Letje = &; &} o&,:m€s,:m be an element dflils. Then the series

EBsi;m 2 Cllz 1] are uniquely determined g and its monodromy (that is:je,
rz:je, etc.) once one imposes that sj 2 Z whenevegs;.m :je(sj;m) 6 0.

Proof. This is a well-known fact and we follow a reasoning fromI[20]. We only
show howje determines the seriggs; ., since we will use this result in a moment.

m m 1 |
If w= e 2PS observethatr w) Iogzs(z) =w 3 rln (2ip)™ |Iogis(z) and
1=0
log™(2) wm log™(2)
m ~I \7 = 1 m+1 9\ =
therefore(r  w) % m! = while (r w) % 0. As a

consequence, for ang 2 Nils one had(r )je 2 Nils for any polynomialP 2 C[X],
and there exists a polynomigl2 C[X] such thatP(r )je = 0. We denote byl(je)
the degree of the minimal polynomial of the actiorrobn je. We then make a rea-
soning by induction onl(je).

Suppose thatl() = 1. This means that there exists= e 2PS 2 C such that
(r  w)je =0, thusr (Zje) = Zje. Thereforele is of the formje = ’e(slo) with
®s,:0 2 Cllz 1] and a convenient choice &f; 2 C so thats; s 2 Z. (Thus
B0 =1 (Z18)).

Suppose now that for ang 2 Nils such thatd(je) d, its decomposition is
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(uniguely) determined big;r :je;  ;rgq:je.
Let beje 2 Nils with d(je) = d+ 1. The minimal polynomial of the action of on
EisP(X)= 6;(X w)" with &;rj = d+ 1. Write:

BOX) = (X wa) PO wi)t = (X w) TQ(X):
i61
From the fact thafr  w1)P(r )je = 0, we deduce the identit(r )je = ; with

£2 C[[z 11 and a convenierg; 2 C such thatv; = e 2PS1, Since
|

IO rg. 1 7 er 1’ er 1
o) 2T @ or) 9™ = Qwn pfL
- : e
we see that necessarilyB(r) %, 1€, 1 = ( DT 15 and

e

(1 1)iwit "Qwr)
We nally observe tha®(r) © %.., 1s,r;, 1 = 0 and we can apply the in-

jesl;rl 1=( 1)r1 !

duction hypothesis of &1, 1)€s,:r, 1. This ends the proof.u

We are in good position to de ne the rami ed resurgent functions [24] 7, 8], see
also [15].

ol
De nition 7.60. A Z-resurgent singularity 2 RES, is arami ed resurgentsingu-

0O ol
larity when] 2 SING@™ whereas, any alien operatérJ(a2;a1), A 3(g2;q1) |

belongs to SING™. The space of rami ed resurgent singularities makes a resur-
gent subalgebra denoted by RE'S The corresponding space of asymptotic classes,

resp.formal expansions, is denoted &Esrzam, resp.Fe,"am,
We state a result that derives directly from lenjma]r.10

Proposition 7.27.The formal expansio = & s:m % :ms:m 2 Nils belongs to
Fé"a™if and only if each of its componerjeg . belongs ta™@™,

De nition 7.61. The alien operatorB,, ; D, : @M1 F€'aM gre de ned by making

RES™™ O gEd™
the following diagrams commutingg{am #" \ram Tjam g \ram
Feram Dp:\r/ D Feram

We eventually lay down a direct consequence of proposftion 7.19. (We warn to
the change of sign).

Proposition 7.28.Letje be an element d€™2™. Then, for anyw 2 € withw 2 Z?,
forany k2 Z,

Dyezrkie = r'k: Dwr ke 5 Dygple = rizm: Dur 1l

Example 7.16Suppose thag 2 C[[z !]]1 belongs tor€™@M with Dyje = '°%2

bl ’

2 Cllz Y]. Fork2 Z,1 1cle(2) = (2, thenD,ope(d) = X520 ¢ (7).
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Suppose furthermore thi is even, so that 1-,:je(2) = je(2). On deduces that
Duanfe(2) = “L52he( 2).

7.10 Comments

We mentioned in Sedft. 4.7 the generalisation of the resurgence theory with the no-
tion of “endlessly continuable functions”I[1] 8]. The whole constructions made in
this chapter can be extended as well to this context.

We of course owe the main ideas presented here from the work of Ecalle, who
started his theory in the 1970I5/[6]. We have borrowed most of the materials to Pham
et al.[1], in particular the microfunctions and the sheaf approach. To compare with
other written papers devoted to resurgence theory, we have paid more attention to
the sheaf and associated spaces of asymptotic classes. Finally, the responsability for
possible mistakes is ours.
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