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Preface

These lecture notes are an extended form of a course given at a CIMPA master
class held in LIMA, Peru, in the summer of 2008. The students who attended these
lectures were already introduced to linear differential equations, Gevrey asymp-
totics, k-summability and resurgence by my colleagues Mich�ele Loday, Claude
Mitschi and David Sauzin. The aim was merely to show the resurgent methods act-
ing on an example and along that line, to extend the presentation of the resurgence
theory of Jean Ecalle provided that the need.

The present lecture notes re�ect this plan and this pedagogical point of view. The
example that we follow along this course is the First Painlevé differential equation,
or Painlev́e I for short. Besides its simplicity, various reasons justify this choice.
One of them is the non-linearity, which is the �eld where the resurgence theory
reveals its power. Another reason lies on the fact that resonances occur, a case which
is scarcely found in the literature. Last but not least, the Painlevé equations and
their transcendents appear today to be an inescapable knowledge in analysis for
young mathematicians. It was thus certainly worthy to detail the complete resurgent
structure for Painlev́e I.

We have tried to be as self-contained as possible. Nevertheless, the reader is
assumed to have a previous acquaintance with the theories of summability, espe-
cially with Borel-Laplace summation and a little background with resurgence the-
ory. Since this volume deals with ordinary non-linear differential equations, we be-
gin with de�nitions and phenomena linked to the non-linearity. Special attention is
then brought to Painlevé I and to its so-called tritruncated and truncated solutions
that are constructed by proving the summability of the transseries solutions. We an-
alyze the formal integral for Painlevé I and, equivalently, the formal transform that
brings Painlev́e I to its normal form. We detail the resurgent structure for Painlevé I
via additional material in resurgence theory. As a rule, each chapter ends with some
comments on possible extensions for which we provide references to the existing
literature.

Angers, November 2015 Delabaere Eric
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Chapter 1
Some elements about ordinary differential
equations

Abstract This chapter is merely devoted to recalling usual notations and elemen-
tary results on ordinary differential equations (ODEs) in the complex domain. We
give the fundamental existence theorem for Cauchy problems (Sect. 1.1). We detail
the main differences between solutions of linear versus nonlinear ODEs, when the
question of their analytic continuation is considered (Sect. 1.2). Finally we provide
a short introduction to Painlevé equations (Sect. 1.3).

1.1 Ordinary differential equations in the complex domain

An ordinary differential equation (ODE) is a functional relation of the type

F
�
x;u(x);u0(x); � � � ;u(N)(x)

�
= 0; u(k)(x) =

dku
dxk (x) 2 Cm: (1.1)

We refer tom as the dimensionof the ODE. Theorder N of the ODE refers to the
highest derivative considered in the equation. This ODE of orderN is said to be
solved in his highest derivativeif it is written as

u(N) = F(x;u; � � � ;u(N� 1)): (1.2)

1.1.1 The fundamental existence theorem

We recall the fundamental existence theorem for the Cauchy problem, for analytic
ODEs (see, e.g. [20, 18, 25, 19]). We denote byD(z; r) � C the open disc centred
on z and of radiusr. For a given domainU � Cm (i.e.,U is a connected open set)
we denote byO(U) the complex linear space of functions holomorphic onU.

Let U � Cn be an open set and letf : U ! C be a function. The following statements are
equivalent (this is the Osgood lemma):

� f is analytic onU, that is f can be represented by a convergent power series in a neigh-
bourdhood of eachx 2 U;

� f is complex differentiable onU;
� f is weakly holomorphic, that isf is continuous onU and partially differentiable onU

with respect to each variablexi (x = ( x1; � � � ;xn)).

As a matter of fact, it is enough to assume only the holomorphy in each complex variable
without the continuity hypothesis (Hartogs theorem).

1



2 1 Some elements about ordinary differential equations

Theorem 1.1 (Cauchy problem).Let U � C � Cm be a domain andF : U ! Cm

be a holomorphic vector function. For every(x0;u0) 2 U, there exist a polydisc
D(x0;e0) Õ1� i� mD(u0i ;ei) � U and a solutionu : D(x0;e0) ! Õ1� i� mD(u0i ;ei) of

the analytic ODE of order 1 and dimension m,
du
dx

= F(x;u), which satis�es the

initial value conditionu(x0) = u0. Moreover this solution is unique,u belongs to
O(D(x0;e0)) and also depends holomorphically on the initial valueu0.

In what follows we shall consider essentiallyscalar ODEs, that it ODEs of di-
mension 1 and of orderN. The theorem 1.1 translates to this case as well, since
every ODE of orderN and of dimension 1, once solved in his highest derivative,
is equivalent to an ODE of order 1 and of dimensionN : if u = v0, u0 = v1, � � � ,
u(N� 1) = vN� 1, the following Cauchy problem,

(
u(N) = F(x;u; � � � ;u(N� 1))�

u(x0); � � � ;u(N� 1)(x0)
�

=
�

u0; � � � ;u(N� 1)
0

�
;

is equivalent to that one:

d
dx

0

B
B
B
@

v0
...

vN� 2
vN� 1

1

C
C
C
A

=

0

B
B
B
@

v1
...

vN� 1
F(x;v0; � � � ;vN� 1)

1

C
C
C
A

and

0

B
@

v0
...

vN� 1

1

C
A (x0) =

0

B
@

u0
...

u(N� 1)
0

1

C
A :

1.1.2 Some usual terminologies

The following terminologies are commonly used (see, e.g. [6]):

� Thegeneral solutionof an ODE of orderN and of dimension 1 is the set of all
solutions determined in application of the Cauchy theorem 1.1. It depends onN
arbitrary complex constants.

� A particular or specialsolution is a solution derived from the general solution
when �xing a particular initial data.

� A singularsolution is a solution which is not particular.

1.1.3 Algebraic differential equations

In a moment we shall concentrate on algebraic differential equations, these we de-
�ne now.

LetU � C be a domain. We denote byM (U) the �eld of meromorphic functions
on U. The ODE (1.1) of orderN and of dimension 1 is said to bealgebraic on a
domain Uif F 2 M (U)[u;u0; � � � ;u(N) ] that is,F is polynomial in(u;u0; � � � ;u(N))
with meromorphic coef�cients inx. An algebraic ODE isrational if it is of degree
one in the highest derivativeu(N) , andlinear (homogeneous) ifF is a linear form
in (u;u0; � � � ;u(N)).
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1.2 On singularities of solutions of ordinary differential
equations

1.2.1 Notations

We �x some notations that will be used in a moment.

De�nition 1.1. Let l : [a;b] � R ! C be a path starting atx1 = l (a) and ending at
x2 = l (b). If u is a (germ of) holomorphic function(s) atx1 which can be analyti-
cally continued alongl , we denote by contl u the resulting (germ of) holomorphic
function(s) atx2.

Remark 1.1.Let O =
G

x2C

Ox be the set of all germs of holomorphic functions. We

equipO with its usual Hausdorff topology, a basisB = f U (U;F )g of open sets
being de�ned as follows:U (U;F ) = f j x 2 Ox j j x germ ofF at x 2 Ug, where

U � C is a domain andF 2 O(U). With the projectionq :
O ! C

j x 2 Ox 7! x 2 C
which

associates to a germ its support [12, 9], the (non-connected) topological spaceO be-
comes ańetaĺe space, that isq is a local homeomorphism. The analytic continuation
of the germu 2 Ox1 alongl , if exists, is the image of the unique pathL : [a;b] ! O

such thatL (a) = u and whose projection byq is l ,

O
L % & q
[a;b] �! C

l

. With this notation,

contl u = L (b). See [32] for more details.

1.2.2 Problem

We consider an ODE of orderN and dimension 1,F
�
x;u(x);u0(x); � � � ;u(N)(x)

�
= 0

with F : U ! C a holomorphic function on the open domainU � C � CN+ 1. As-

sume that
�

x0;u0; � � � ;u(N)
0

�
2 U and that

(
F

�
x0;u0; � � � ;u(N)

0

�
= 0

¶N+ 2F
�
x0;u0; � � � ;u(N)

0

�
6= 0

. By the

implicit function theorem, the Cauchy problem
(

F
�
x;u(x);u0(x); � � � ;u(N)(x)

�
= 0�

u(x0); � � � ;u(N)(x0)
�

=
�

u0; � � � ;u(N)
0

�

is locally equivalent to a Cauchy problem where the ODE is solved in its highest
derivative. Theorem 1.1 thus provides a holomorphic solutionu nearx = x0. We
consider a pathg : [a;b] ! C from x0 to x1 in C and fors 2 [a;b] we denote by
gs : [a;s] ! C the restriction to[a;s] of g. Assume thatu can be analytically contin-
ued along the pathg and that for everys 2 [a;b], the value atg(s) of the analytic
continuation contgs

�
x;u;u0; � � � ;u(N)

�
alonggs belongs toU. Thenthe analytic con-

tinuation contgu along g of the solution u still satis�es the differential equation,
thanks to the uniqueness of the analytic continuation.

This property raises the question of describing the singularities of the analytic
continuations of solutions of analytic ODEs, for instance for an algebraic differential
equation de�ned on an open domain. As we shall see, appearance of singularities is
quite different whether one considers linear or nonlinear ODEs.
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1.2.3 Linear differential equations

Linear differential equations are studied in [32, 30], see also, e.g. [39, 25, 19, 22].
For linear (homogeneous) ordinary differential equations it results from the Cauchy
existence theorem and the Grönwall lemma that the general solution has no other
singularities than the so-called�xed singularitieswhich arise from the coef�cients
of the ODE once solved for the highest derivative.

1.2.3.1 Example 1

We start with an equation wherex = 0 is an irregular singular point of Poincaré
rank 1,

x2u0+ u = 0; u(x) = Ce1=x; C 2 C:

Herex = 0 is a �xed essential singularity for the general solution (but not for the
particular solutionu(x) = 0), which arises from the equation itself.

If u 2 O(D?(0; r)) is holomorphic on the punctured discD?(0; r) = D(0; r) n f 0g, thenu
can be represented by its Laurent series expansionå

n2Z
anxn which converges in 0< jxj < r.

One says that 0 is an essential singularity if and only if the Laurent series expansion has an
in�nite number ofn < 0 such thatan 6= 0 or, equivalently, ifu has no limit (�nite or in�nite)
whenx ! 0. A typical example is provided by the function e1=x.

1.2.3.2 Example 2

We consider the Airy equation,

u00� xu= 0; u(x) = C1Ai(x)+ C2Bi(x); C1;C2 2 C:

HereAi andBi are the Airy's special functions of the �rst and second kind respec-
tively. These are entire functions. When considered on the Riemann sphereC (see
[32]), x= ¥ appears as a �xed (essential) singularity for the general solution (except
again for the particular solutionu(x) = 0) which arises from the equation :x = ¥ is
an irregular singular point of Poincaré rank 3=2.

More generally, for a linear ordinary differential equation

N

å
k= 0

ak(x)u(k) = 0; ak(x) 2 O(U); (1.3)

the general solution can be analytically continued as a multivalued function onU nS,
S= f the zeros ofaNg, or more precisely as a single valued holomorphic function
once it is considered on a Riemann surface [12, 9] de�ned as a covering space,

R
p #

U nS
. In other words, the general solution isuniformisable(or alsostable) [6] in

the following sense : for any Cauchy data atx0 2 U nSthat determined a unique local
solutionu of (1.3) on a domainU0 � U nS, one can �nd a domainU0 � R such that
pjU 0 : U0 ! U0 is a homeomorphism, and a holomorphic functionf : R ! C so
thatf jU 0 = u� pjU 0.

Then, for any domainU 0 � R so thatpjU 0 : U 0 ! U0 is a homeomorphism, the function
f � (pjU 0)� 1 is still a holomorphic solution of (1.3) onU0.
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1.2.4 Nonlinear differential equations

When nonlinear ODEs are concerned, beside the possibly �xed singularities arising
from the equation, the general solution has as a rule other singularities which depend
on the arbitrary coef�cients : these aremovable singularities.

1.2.4.1 Example 1

We consider the following nonlinear ODE,

xu0� u2 = 0;
general solution :u(x) =

1
C� log(x)

; C 2 C:

singular solution :u(x) = 0

For the general solution,x = 0 is a �xed branch point singularity which comes from
the equation. The general solutionu is uniformisable : considered as a function
on the Riemann surface(eC;p) of the logarithm,eC = f x = reiq j r > 0; q 2 Rg,

p : x 2 eC 7!
�
x= reiq 2 C n f 0g, one sees that the general solutionu is meromorphic

with poles atp � 1(eC) : these are movable singularities, depending on the chosen
coef�cient C.

1.2.4.2 Example 2

The above example is just a special case of a more general rational ODE of order 1,
theRiccati equation,

u0= a0(x)+ a1(x)u+ a2(x)u2 ai 2 M (U); (1.4)

whereU � C is a domain. By the change of unknown functionu = �
1

a2(x)
d
dx

logv,

equation (1.4) is linearizable into the following linear ODE,

v00+
�

a0
2(x)

a2(x)
� a1(x)

�
v0+ a2(x)a0(x)v = 0:

The general solution for this linear equation has (�xed) singularities located at the

poles of
a0

2(x)
a2(x)

� a1(x) anda2(x)a0(x). We denote byS� U this set of poles. The

general solution of the Riccati equation (1.4) is then uniformisable since it can be
analytically continued as a meromorphic function on a Riemann surface de�ned as
a covering overU nS.
When theai belong toO(U), then the general solution of (1.4) is a meromorphic
function onU [26].

1.2.4.3 Example 3

Another well known equation is the following algebraic nonlinear ODE of order 1,
of degree 2 in its highest derivative, namely theelliptic equation:

u02 = 4u3 � g2u� g3; (g2;g3) 2 C: (1.5)
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Fig. 1.1 The elliptic
curve L viewed as
the Riemann surface of
p = ( 4u3 � g2u� g3)1=2. The
homology classes of the cy-
clesg1 andg2 drawn generate
H1(L ;Z)

A particular solution is provided by the Weierstrassp-functionÃ (x;g2;g3) which
can be obtained as the inverse function of the elliptic integral of the �rst kind

x =
Z u

¥

dq
p

4q3 � g2q� g3
;

�
dx
du

� 2

=
1

4u3 � g2u� g3
:

(Just apply the inverse function theorem).
When the discriminantD = g3

2 � 27g2
3 satis�es the conditionD 6= 0, the polyno-

mial function 4u3 � g2u� g3 = 4(u� e1)(u� e2)(u� e3) has 3 distinct simple roots
e1;e2;e3. In that case the elliptic functionÃ (x;g2;g3) is a doubly periodic mero-
morphic function with double poles at the period latticemw1 + nw2, (n;m) 2 Z2,
w1

w2
=2 R.

The period lattice can be described as follows : consider the elliptic curve
L = f (q; p) 2 C2; p2 = 4q3 � g2q� g3g for D 6= 0. The homology groupH1(L ;Z)
is a freeZ-module of rank 2 and we denote byg1 andg2 two cycles which generate

H1(L ;Z). Then the period lattice is generated by the period integralsw1 =
Z

g1

dq
p

,

w2 =
Z

g2

dq
p

(equivalentlyw1 = 2
Z e2

e1

dq
p

4q3 � g2q� g3
, w2 = 2

Z e3

e1

dq
p

4q3 � g2q� g3
).

The homology groupH1(L ;Z) can be seen as a local system onC2nN(D) (that is a
locally constant sheaf ofZ-modules onC2nN(D)), whereN(D) is the zero set ofD.
Viewed as functions of(g2;g3), w1;2 can be analytically continued as “multivalued”
analytic functions onC2 nN(D). On the discriminant locusN(D), the solutions de-
generate into simply periodic solutions, with a string of poles instead of a double
array.

Conversely, starting from the period lattice with
w1

w2
=2 R, the WeierstrassÃ -

function can be obtained by a series,

Ã (x;g2;g3) = x� 2 + å
w6= 0

f (x� w)� 2 � w� 2g = x� 2 + g2
x2

20
+ g3

x4

28
+ � � �

where the �rst summation extends over allw = mw1 + nw2 6= 0, (n;m) 2 Z2 while
g2 = 60 å

w6= 0
w� 4, g3 = 140 å

w6= 0
w� 6.

The general solution of (1.5) is given byÃ (x � x0;g2;g3), since (1.5) is an au-
tonomous ODE.
To go further on the nice properties of elliptic functions see, e.g. [37].
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1.2.4.4 Example 4

The singularities of differential equations may be isolated singularities such as
poles, branch points of �nite or in�nite determinations, or essential singularities.
They may be also essential singular lines, or even perfect sets of singular points. For
instance, the general solution of the following Chazy equation of class III,

u(3) � 2uu(2) + 3u02 = 0; (1.6)

is de�ned only inside or outside an open disc whose boundary is a natural movable
boundary determined by the initial data [3, 4].

1.3 The Painlev́e program, Painlev́e property and Painlev́e
equations

At the end of the 19th century a list of special transcendental functions was known,
most of them being obtained as solutions of linear algebraic differential equations.

An algebraic functionu in one complex variablex is a solution of a polynomial equation
P(x;u) = 0, P 2 C[x;u]. A transcendental functionu is a function which is not algebraic.

A challenging problem in analysis was thus to discover new transcendental func-
tions de�ned by algebraic ODEs which cannot be expressed in term of solutions of
linear algebraic ODEs : these new functions should thus be de�ned by non-linear
algebraic differential equations [6, 8, 22].

For that purpose a systematic approach needs �rst to classify the ODEs under
convenient criters. This is the goal of the so-calledPainlev́e program(see [6] and
references therein) which consists in classifying all algebraic ODEs of �rst order,
then second order, etc ..., whose general solution can be analytically continued as a
single valuedfunction1. In other words, no branch point is allowed. For instance the
elliptic equation (1.5) or the Chazy equation (1.6) are such equations.

According to what we have seen, the Painlevé program splits into two problems:

� absence of �xed branch point for the general solution;
� absence of movable branch point for the general solution : this condition is the

so-calledPainlev́e property.

In the literature, the term “Painlevé property” is sometimes used for the stronger property
for the general solution of an ODE to be meromorphic, see [6]

Notice that the Painlev́e property for an algebraic ODEF (x;u;u0; � � � ;u(p)) = 0
de�ned on a domainU � C is preserved by:

� a holomorphic change of variablex 2 U 7! X = h(x), h 2 O(U);
� a linear fractional change of the unknown with coef�cient holomorphic inU

(action of the homographic group),

u 7! v =
a(x)u+ b(x)
c(x)u+ d(x)

; v 7! u =
d(x)v� b(x)

� c(x)v+ a(x)
;

a;b;c;d 2 O(U), ad� bc6= 0. Therefore, the classi�cation in the Painlevé program
is made up to these transformations.

1 This condition can be weakened by asking the general solution to be only uniformisable.
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Notice however that other actions preserving the Painlevé property can be considered, see
[6, 7, 22].

1.3.1 ODEs of order one

We consider (nonlinear) ODEs of the form

F
�
x;u;u0� = 0; (1.7)

with F 2 M (U)[u;u0]. For that class of ODEs, the Painlevé program can be consid-
ered as being achieved and we mainly refer to [20, 18, 6, 22] for the classi�cation.

In that caseno essential movable singular point can appear([20], Sect. 13.6).
Therefore looking for ODEs of type (1.7) with the Painlevé property reduces in
asking that the movable singular points are just poles.

When (1.7) is a rational ODE, then the class of ODEs we are looking for is
represented only by the Riccati equation (1.4). See [26], in particular the Malmquist-
Yosida-Steinmetz type theorems.

The ODEs of type (1.7) of degree� 2 in the highest derivative and satisfying the
Painlev́e property essentially reduce (up to the transformations mentioned above) to
the elliptic equation (1.5). See [6, 20] for more precise statements.

1.3.2 ODEs of order two and Painlevé equations

In contrast to what happens for algebraic ODEs of order one, essential movable
singular points may exist when the order is� 2, making the analysis more dif�cult.
Nevertheless, the classi�cation is known for at least algebraic equations of order
two

F
�
x;u;u0;u00� = 0; F 2 M (U)[u;u0;u00] (1.8)

which are rational, that is of degree one inu00. Such equations enjoying the Painlevé
property reduce (up to transformation) to:

� equations which can be integrated by quadrature,
� or linear equations,
� or one of six ODEs known as thePainlev́e equations, the �rst 3 being:

(PI ) u00= 6u2 + x
(PII ) u00= 2u3 + xu+ a

(PIII ) u00=
u02

u
�

u0

x
+

a u2 + b
x

+ gu3 +
d
u

(1.9)

For the complete list see, e.g. [20, 18, 6, 22]. In (1.9),a ;b ;g;d are arbitrary com-
plex constants. Each Painlevé equation can be derived from the “master equation”
PVI by some limit processes [22].

Painlev́e equations have beautiful properties, see e.g. [5, 22, 16]. One of them is
the following one:

Theorem 1.2.The general solution of the Painlevé equation PJ, J= I ; � � � ;V I admits
no singular points except poles outside the set of �xed singularities.
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Therefore, the Painlevé equations have the Painlevé property but moreover, the
general solution is free of movable essential singularities.
Notice that the Painlev́e equation should be seen as de�ned on the Riemann sphere
C. The set of �xed singular pointsSJ of PJ is a subset off 0;1;¥ g. For instanceSI
andSII are justf ¥ g, while SIII = f 0;¥ g. Theorem 1.2 thus translates as follows :
the general solution ofPJ can be analytically continued as a meromorphic function
on the universal covering ofC nSJ.

Theorem 1.2 can be proved in various ways. An ef�cient one uses the relation-
ship between Painlevé equations and monodromy-preserving deformation of some
Fuchsian differential equations [24, 23, 31, 22, 11].

The general (global) solutions of the Painlevé equations are called thePainlev́e
transcendents. This refers to the fact that, for generic values of the integration con-
stants and of the parameters of the equations, these solutions cannot be written with
elementary or classical transcendental functions, a question which has been com-
pletely solved only recently with the development of the modern nonlinear differen-
tial Galois theory (see [38] and references therein. For an introduction to differential
Galois theory, see [32]).

1.3.3 Painlev́e equations and related topics

The renewed interest in Painlevé equations mainly came from theoretical physics
in the seventies, with the study of PDEs of the soliton type (Boussinesq equa-
tion, Korteweg-de Vries KdV and modi�ed Korteweg-de Vries equation mKdV,
etc..): when linearized by inverse scattering transform [1], these PDEs give rise to
ODEs with the Painlev́e property. For instance, the Boussinesq equationutt � uxx �
6(u2)xx + uxxxx = 0 has a self-similar solution of the formu(x;t) = w(x� t) where
w is either an elliptic function or satis�es the �rst Painlevé equation. In the same
lines, the (m)KdV hierarchy introduced by Lax in [29] (and already in substance
in [28] after the work of Gardneret al [13] on the KdV equation), will later give
rise to variousPainlev́e hierarchieswhich are thought of as higher-order Painlevé
equations and much studied since. For instance, the �rst Painlevé hierarchy is of the
form

(P(n)
I ) d[n+ 1][u]+ 4x = 0; n = 1;2; � � � (1.10)

whered[n][u] are differential polynomials recursively determined as follows (see
[36] and references therein):

�
d[0][u] = 1
¶d[n+ 1][u] =

�
¶3 � 8u¶ � 4u0

�
d[n][u]; ¶ = d

dx; n 2 N:
(1.11)

(The �rst Painlev́e equation is(P(1)
I ).) See also [33] and references therein, for

an asymptotic study of the Jimbo-Miwa [23] and Flaschka-Newell [10] second
Painlev́e hierarchies [15].

For the �rst and second Painlevé hierarchies, one conjectures that the solutions of each
equation are meromorphic, thus satisfy the Painlevé property, but there is no proof up to our
knowledge [27].

Discrete (analogues of)Painlev́e equationsare today the matter of an intensive
research, after the pioneering work of Bessiset al [2] on the study of partition
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functions in 2D quantum gravity, yielding what is now known as the �rst discrete
Painlev́e equation(dPI ) when the quartic matrix model is considered:

(dPI ) wn
�
wn+ 1 + wn + wn� 1

�
= an+ b+ cwn; a;b;c 2 C: (1.12)

The �rst discrete Painlev́e equation naturally arises in the context of orthogonal poly-

nomials. Consider the inner product( f j g) =
Z + ¥

� ¥
f (x)g(x)w(x)dx with the exponential

weightw(x) = e� NV(x) ,V(x) = m
2 x2+ l

4 x4, and look for an orthogonal polynomial sequence
(pn)n� 0, eachpn being a monic polynomial of degreen. It can be shown that the polynomi-
als pn are governed by a three-term recurrence equation of the form

�
xpn(x) = pn+ 1(x)+ rnpn� 1(x)
p0(x) = 1; p1(x) = x (1.13)

wherern =
hn

hn� 1
with (pn j pm) = hndnm (dnm is the Kronecker index). This motivates the

calculations of the coef�cientsrn which themselves satisfy a recurrence relation of the form

l rn
�
rn+ 1 + rn + rn� 1

�
+ mrn =

n
N

(1.14)

and we recognize(dPI ). Among remarkable properties, (1.14) has a continuum limit to the

�rst Painlevé equation when the double-scaling limitn;N ! ¥ ,
n
N

! t is considered. See

for instance [21, 14, 17] and references therein.

Non commutative extensions of integrable systems have recently attracted the atten-
tion of the specialists, withnon commutative(analogues of)Painlev́e equationsand
their hierarchies as main examples, see e.g. [35].

Finally, we could hardly leave untold the important group-theoretic interpretation
of Painlev́e equations in the line of the work of Okamoto [34], see for instance [8]
and references therein.

It is not our aim to say more about Painlevé equations in general except for
the �rst Painlev́e equation which is used in this course as �eld of experiments in
asymptotic and resurgent analysis, and which is the matter for the next chapter.
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Mathématique de France, Paris, 2006.

9. W. Ebeling, Functions of several complex variables and their singularities.Translated from
the 2001 German original by Philip G. Spain. Graduate Studies in Mathematics, 83. American
Mathematical Society, Providence, RI, 2007.



References 11

10. H. Flaschka, A. C. Newell,Monodromy- and spectrum-preserving deformations. I.Comm.
Math. Phys.76 (1980), no. 1, 65-116.

11. A.S. Fokas, A.R. Its, A.A. Kapaev, V.Y. Novokshenov,Painlev́e transcendents. The Riemann-
Hilbert approach.Mathematical Surveys and Monographs, 128. American Mathematical So-
ciety, Providence, RI, 2006.

12. O. Forster,Lectures on Riemann Surfaces, Graduate texts in mathematics; 81, Springer, New
York (1981).

13. C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura,Methods for solving the Korteweg-
de Vries equation.Phys. Rev. Letters19 (1967), 1095–1097.

14. B. Grammaticos, Y. Kosmann-Schwarzbach, T. Tamizhmani (eds),Discrete integrable sys-
tems.Lecture Notes in Physics, 644. Springer-Verlag, Berlin, 2004.

15. P. Gordoa, N. Joshi, A. Pickering,Second and fourth Painlevé hierarchies and Jimbo-Miwa
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Chapter 2
The �rst Painlev é equation

Abstract This chapter aims at introducing the reader to properties of the �rst
Painlev́e equation and its general solution. The de�nition of the �rst Painlevé equa-
tion is recalled (Sect. 2.1). We precise how the Painlevé property translates for the
�rst Painlevé equation (Sect. 2.2), a proof of which being postponed to an appendix.
We explain how the �rst Painlev́e equation also arises as a condition of isomon-
odromic deformations for a linear ODE (Sect. 2.3 and Sect. 2.4). Some symmetry
properties are mentioned (Sect. 2.5). We spend some times to describe the asymp-
totic behaviour at in�nity of the solutions of the �rst Painlevé equation and, in
particular, we introduce the truncated solutions (Sect. 2.6). We eventually brie�y
comment the importance of the �rst Painlevé transcendents for models in physics
(Sect. 2.7).

2.1 The �rst Painlevé equation

We concentrate on the �rst Painlevé equation,

(PI ) u00= 6u2 + x: (2.1)

We notice that for everyx0 2 C and every(u0;u0
0) 2 C2, theorem 1.1 ensures the

existence of a unique solution of (2.1), holomorphic nearx0, satisfying the initial
data

�
u(x0);u0(x0)

�
= ( u0;u0

0).

2.2 Painlev́e property for the �rst Painlev é equation

As already mentioned, the �rst Painlevé equation satis�es the Painlevé property. The
following more precise result holds.

Theorem 2.1.Every solution of the Painlevé equation PI can be analytically con-
tinued as a meromorphic function onC with only double poles.

This theorem will be shown in appendix. We add the following result for com-
pleteness:

Theorem 2.2.Every solution of (2.1) is a transcendental meromorphic function on
C with in�nitely many poles.

13
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Proof. We just give an idea of the proof. It is easy to see that every solutionu of
the �rst Painlev́e equation (2.1) is a transcendental function. Otherwise, sinceu is

meromorphic with double poles,u should be a rational function,u(x) =
P(x)
Q(x)2 .

Reasoning on the degrees ofP andQ, one shows that this is impossible. So every
solutionu is a transcendental meromorphic function. It can be then derived from
the Clunie lemma in Nevanlinna theory of meromorphic functions that necessarily
u has an in�nite set of poles [29, 14].ut

The above properties were well-known since Painlevé [41]. The following one
was also known by Painlevé, however its complete proof has been given only re-
cently [38], see also [5].

Theorem 2.3.A solution of PI cannot be described as any combination of solutions
of �rst order algebraic differential equations and those of linear differential equa-
tions onC.

2.3 First Painlev́e equation and isomonodromic deformations
condition

Each Painlev́e equationPJ is equivalent to a nonautonomous Hamiltonian system
[39]. Concerning the �rst Painlev́e equation this Hamiltonian system is given by the
following �rst Painlevé system:

(H I )

8
>>><

>>>:

du
dx

=
¶HI

¶ m
= m

dm
dx

= �
¶HI

¶u
= 6u2 + x

; HI (u;m;x) =
1
2

m2 � 2u3 � xu: (2.2)

It is known [12, 40] that this Hamiltonian system arises as acondition of isomon-
odromic deformationsof the following (Schlesinger type) second order linear ODE,

(S L I )

8
>>><

>>>:

¶2Y
¶z2 = QI (z;u;m;x)Y

QI (z;u;m;x) = 4z3 + 2xz+ 2HI (u;m;x) �
m

z� u
+

3
4(z� u)2 :

(2.3)

In other words,u is solution of the �rst Painlev́e equation (2.1) if and only if the
monodromy data of (2.3) do not depend onx. We explain this point. Equation (2.3)
has two �xed singularitiesz= u;¥ , so that any (local) solution of (2.3) can be ana-
lytically continued to a Riemann surface which coversC n f u;¥ g. The pointz= u
is a regular singular point, and a local analysis easily shows that the monodromy
at this point (see [37]) of any fundamental system of solutions of (2.3) does not
depend onx. The other singular pointz = ¥ is an irregular singular point. Thus
the only nontrivial monodromy data of (2.3) are given by the Stokes coef�cients at
z= ¥ .

The second order linear ODE (2.3) is equivalent to a �rst order linear ODE in dimension
two. Each Stokes matrix is a two by two unipotent matrix (see [31, 37]), and thus depends
on a single complex coef�cient called a Stokes coef�cient.
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In general these Stokes coef�cients depend onx, except whenY satis�es the fol-
lowing isomonodromic deformation condition:

(DI )
¶Y
¶x

= AI
¶Y
¶z

�
1
2

¶AI

¶z
Y ; AI =

1
2(z� u)

(2.4)

The �rst Painlev́e system (2.2) ensures the compatibility between equations (2.3)
and (2.4) : solving a Painlevé equation is thus equivalent to solving an inverse mon-
odromy problem (Riemann-Hilbert problem) [37, 18, 17, 25, 26, 42, 24, 21, 11].

We add another property : we mentioned that the asymptotics of (2.3) atz = ¥
are governed by some Stokes coef�cientssi = si(u;m;x). It can be shown that the
space of Stokes coef�cients makes a complex manifoldM I of dimension 2. Also,
for any point ofM I there exists a unique solution of the �rst Painlevé equation (2.1)
for which the monodromy data of equation (2.3) are equal to the corresponding
coordinates of this point [25].

2.4 Lax formalism

There is another fruitful alternative to get the Painlevé equations, however related to
the previous one, based on the linear representations of integrable systems through
the Lax formalism [30]. We exemplify this theory for Painlevé I, for which the so-
calledLax pair AandB are the matrix operators given as follows [17]:

A =
�

v(x) 4
�
z� u(x)

�

z2 + u(x)z+ u(x)2 + x=2 � v(x)

�
; B =

�
0 2

z=2+ u(x) 0

�
:

To the matrix operatorA one associates a �rst order ODE in thez variable, whose
time evolution (thex variable) is governed by another �rst order ODE determined
by the matrix operatorB, 8

><

>:

¶Y
¶z

= AY

¶Y
¶x

= BY
(2.5)

The compatibility condition
¶2Y
¶z¶x

=
¶2Y
¶x¶z

provides what is known as thezero cur-

vature condition(or Lax equation), namely¶A
¶x � ¶B

¶z = [ B;A] where[B;A] = BA� AB
stands for the commutator. Expliciting this condition, one recovers the �rst Painlevé

equation under the form

8
><

>:

du
dx

= v
dv
dx

= 6u2 + x
. From what have been previously seen, the

zero curvature condition allows to think of (2.5) as an isomonodromic deformations
condition for its �rst equation.

2.5 Symmetries

We would like to notice here that the cyclic symmetry group of order �ve acts on the
set of solutions (2.1). Indeed, introducingwk = e

2ip
5 k, k = 0; � � � ;4, then any solution

u of (2.1) is mapped to another solutionuk through the transformation
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uk(x) = w2
k u

�
wkx

�
; k = 0; � � � ;4:

In generalu anduk will be different solutions, an obvious exception being whenu
satis�es the initial datau(0) = u0(0) = 0.

2.6 Asymptotics at in�nity

Our aim in this section is to describe all the possible behaviors at in�nity of the
solutions of the �rst Painlev́e equation (2.1).
We �rst notice thatx = ¥ is indeed a �xed singularity forPI : making the change of

variableu(x) = u(t); t =
1
x

, equation (2.1) translates intot5u00+ 2t4u0= 1+ 6tu2,

wheret = 0 appears as a (irregular) singular point.
We mention that, when analysing the asymptotics of solutions of differential

equations at singular points, there is a great difference between linear and nonlinear
ODEs. When a linear ODE is concerned, the asymptotics of every solution can be
derived from the asymptotics of a fundamental system of solutions. For non linear
ODEs some care has to be taken, since as a rule singular solutions may exist, which
cannot be deduced from the general solution.

The study of all possible behaviors at in�nity was �rst made by Boutroux [3,
4]. Various approaches can be used: a direct asymptotic approach in the line of
Boutroux as in [15, 19, 22], or another one based on the relationship between the
�rst Painlevé equation and a convenient Schlesinger type linear ODE as described
in Sect. 2.3, see [25] (see also [26, 28, 27, 42] for an exact semiclassical variant).

2.6.1 Dominant balance principle

We only want to give a rough idea of how to get the whole possible asymptotic be-
haviors and, in the spirit of this course, we follow the viewpoint of asymptotic as
in [15, 22, 19]. In this approach, for a given ODE, the �rst task is to determine the
terms in the equation which are dominant and of comparable size whenx ! ¥ along
a path or a inside a sector. The reduced equation obtained by keeping the dominant
terms only in the ODE gives the leading behavior.
One usual trick to guess the asymptotics of solutions of ODEs is thedominant bal-
ance principle[2]. A maximal dominant balance corresponds to the case where there
is a maximal set of dominant terms of comparable size in the equation. As a rule,
this gives rise to the general behavior. The remaining cases are called subdominant
balances.

It is useful to introduce the following notations:

� f ' g whenx ! ¥ along a path if lim
x! ¥

f (x)
g(x)

= Cte, Cte2 C?.

� f � g whenx ! ¥ along a path if lim
x! ¥

f (x)
g(x)

= 0.

The unique maximal balance forPI consists in assuming all the three terms in (2.1)
of comparable size whenx ! ¥ . In particularu2 andx have comparable size, so that
u(x) = x

1
2 O(1) whenx ! ¥ . We therefore writeu(x) = x

1
2 v

�
z(x)

�
with z(x) ! ¥

andv
�
z(x)

�
= O(1) whenx ! ¥ . If z(x) behaves like a fractional power ofx at
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in�nity, then
z0(x)
z(x)

'
z00(x)
z0(x)

'
1
x

and this is what will be assumed. We also make

the following remark : ifv
�
z
�

is an analytic function whose asymptotics at in�nity

is governed by a (formal, possibly Laurent) series, then
v00(z)

z2 �
v0(z)

z
� v(z) at

in�nity, that is
v00

�
z(x)

�

z2(x)
�

v0
�
z(x)

�

z(x)
� v

�
z(x)

�
whenx ! ¥ .

Here we will adjust the choice ofz(x) by adding the demand:

v
�
z(x)

�
� z(x)v0� z(x)

�
� z(x)2v00� z(x)

�
when x ! ¥ :

These assumptions onv andz(x) provide the identities:

u0(x) = x� 1
2 z(x)v0� z(x)

�
O(1)+ o(1); u00(x) = x� 3

2 z2(x)v00� z(x)
�
O(1)+ o(1):

Thus, if v
�
z(x)

�
= v0� z(x)

�
= v00� z(x)

�
= O(1) and demanding thatu00andx have

comparable size, one getsz(x) = x
5
4 O(1) as a necessary condition. This suggests

with Boutroux [3, 4] to make the following transformation,

u(x) = a x
1
2 v(z); z= bx

5
4 ; (2.6)

with a ;b 6= 0 some constants, under which equation (2.1) becomes:

v00+
v0

z
�

4
25

v
z2 �

96a
25b2 v2 �

16
25ab 2 = 0:

With the following choice fora andb,

a =
e

ip
2

p
6

; b = e
5ip
4

24
5
4

30
; (2.7)

one �nally gets:

v00=
1
2

v2 �
1
2

�
v0

z
+

4
25

v
z2 : (2.8)

We now concentrate on this equation (2.8) and we examine the possible balances.

2.6.2 Maximal balance, elliptic function-type behavior

We consider the maximal balance case, that is we assume thatv and its derivatives
can be compared to unity. This means that equation (2.8) is asymptotic to the equa-

tion v00=
1
2

v2 �
1
2

whose solutions1 are the functionsv(z) = 12Ã (z� z0;
1
12

;g3)

whereÃ is the Weierstrassp-function (cf. Sect. 1.2.4), whilez0 andg3 are two free
complex parameters. This indeed provides the general behaviour of the Painlevé
transcendents near in�nity [3, 4, 22] : forjzj large enough in each open quadrants

Qk = f z2 C; k
p
2

< argz< (k+ 1)
p
2

g; k = 0;1;2;3 mod 4;

1 Just multiply both sides of the equality byv0, then integrate.
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Fig. 2.1 Left hand side : approximate period lattices in each quadrantsQi of z-plane. Right hand
side, their images in thex-plane through the transformationx 7! zde�ned by (2.6)-(2.7)

the generic solutionv of (2.8) has an approximate period lattice of poles, Fig. 2.1.
In this domain, excluding small neighbourdhoods of poles, the asymptotics of such
a generic solutionv of (2.8) is governed by Weierstrassian elliptic functions. With
Kruskal & Joshi [22] one refers to this behavior as anelliptic function-typebehavior.
Through the transformation (2.6)-(2.7), this translates for the Painlevé I transcen-
dents into an asymptotic regime on the sectors:

Sk = f x2 C; � p + k
2p
5

< argx< � p +( k+ 1)
2p
5

g; k= 0;1;2;3;4 mod 5: (2.9)

Whenz approaches the real axis (resp.the imaginary axis),jzj large enough and

in a small angular strip of widthO
�

(logjzj)=jzj
�

, then the solutionv displays anear

oscillatory-typebehaviour with no poles, andv(z) ! � 1 (resp. v(z) ! + 1) when
jzj ! ¥ , see [22]. The �ve special rays argx = � p + k2p

5 , k = 0; � � � ;4 thus play an
important role in the asymptotics of the solutions of Painlevé I, the general solutions
having lines of poles asymptotic to these rays.

2.6.3 Submaximal dominant balances, truncated solutions

We now consider submaximal dominant balances, that is whenv or one of its deriva-
tives differ from order unity. As shown in [22], the single consistent case occurs
whenv ' 1 andv00� 1. This implies that equation (2.8) is now asymptotic to the

equation
1
2

v2 �
1
2

= 0, that isv(z) = � 1+ o(1). Examining this case leads to the

following result:

Theorem 2.4.The �rst Painlev́e equation (2.1) has:

� �ve complex parameter families of solutions u, the so-calledintégrales tronqúees
(truncated solutions)after Boutroux, such that u is free of poles in two adjacent

sectors Sk and Sk+ 1 for jxj large enough, and u(x) =
�

�
x
6

� 1
2

�
1+ O(x� 5

2 )
�

at

in�nity in these sectors (for a convenient determination of the square root).
� among these truncated solutions, �ve special solutions, each of them being free

of poles in four adjacent sectors Sk;Sk+ 1;Sk+ 2;Sk+ 3 for jxj large enough, with the
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above asymptotics at in�nity in these sectors. These are the so-calledintégrales
tri-tronqúees (tritruncated solutions).

This theorem has various proofs, see for instance [20, 35, 36] for “nonconven-
tional” approaches. We will see in this course how the resurgent analysis can be
used to show theorem 2.4.

There are analogues of truncated solutions for each member(P(n)
I ), n = 1;2; � � � in the �rst

Painlev́e hierarchy (1.10), with asymptotics at in�nity of the form [8]:

u(x) =
�

(� 1)n x
cn

� 1
n+ 1 �

1+ O(x� 2n+ 3
2n+ 2 )

�
; cn =

23n+ 1G(n+ 3=2)
G(n+ 2)G(1=2)

: (2.10)

Similar results occur for the �rst discrete Painlevé equation (1.12), see [23].

2.7 First Painlev́e equation and physical models

As already said (Sect. 1.3.3), the Painlevé equations in general and the �rst Painlevé
equation in particular, appear by similarity reductions of integrable PDEs. They play
a signi�cant role in others physical models, see e.g. [24] and references therein for
the �rst Painlev́e equation. This includes the description of asymptotic regime in
transition layers and caustic-type domain. We exemplify this fact with the focus-
ing nonlinear Schr̈odinger equationieYt + e2

2 Yxx+ jY j2Y = 0 (fNLS). It is shown
in [10] that when considering the (so-called) dispersionless limite ! 0, the solu-
tions (of convenient Cauchy problems) of (fNLS) are asymptotically governed by
a tritruncated solution of the �rst Painlevé equation. In the same work, theoretical
and numerical evidences led the authors to conjecture that the tritruncated solutions
of the �rst Painlev́e equation have the following property, shown in [7] under the
naming “the Dubrovin conjecture”:

Proposition 2.1.Each tritruncated solution of the �rst Painlevé equation is holo-
morphic on a full sector of the formf x 2 C j argx 2 I ; jxj � 0g, where I stands
for the closure of an open arc I of lengthjI j = 8p=5. Moreover, each tritruncated
solution can be analytically continued to a discjxj < r0 with r0 > 0 small enough.

Recently, resurgence theory spectacularly enters the realm of string theory and
related models, as an ef�cient tool for making the connection between perturbative
and non-perturbative effects (see, e.g. [32] and references therin). In particular, the
�rst Painlevé equation was particularly adressed in [1] thanks of its physical inter-
pretation in the context of 2D quantum gravity [9, 33, 34, 13].

Appendix

The reader only interested in learning applications of resurgence theory may skip
this appendix, where we show theorem 2.1 for completeness. We follow the proof
given in [6]. See also [15, 16] and specially [14] with comments and references
therein. We start with two lemmas.

Lemma 2.1.Let u be any solution of (2.1), holomorphic on a neighbourhood of
x0 2 C. Then the radius R of analyticity at x0 satis�es R� 1=r with
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r = max
� �

�
�u(x0)

�
�
�
1=2

;
�
�
�
u0(x0)

2

�
�
�
1=3

;
�
�
�u2(x0)+

x0

6

�
�
�
1=4

;
�
�
�
u(x0)u0(x0)

2
+

1
24

�
�
�
1=5�

: (2.11)

Proof. If u(x) =
¥

å
k= 0

ck(x� x0)k 2 Cf x� x0g solves (2.1), then

8
><

>:

c0 = u(x0); c1 = u0(x0)

c2 = 3c2
0 +

x0

2
; c3 = 2c0c1 +

1
6

(k+ 1)(k+ 2)ck+ 2 = 6å k
m= 0cmck� m; k � 2

(2.12)

Let ber > 0 given by (2.11) so that for any integerl 2 [0;3],

jcl j � (l + 1)r l+ 2: (2.13)

Assume that (2.13) is satis�ed for every 0� l � k + 1 for a givenk � 2. Then
by (2.12),

(k+ 1)(k+ 2)jck+ 2j � 6
k

å
m= 0

(m+ 1)(k� m+ 1)r k+ 4 � (k+ 1)(k+ 2)(k+ 3)r k+ 4:

The coef�cients
k

å
m= 0

(m+ 1)(k � m+ 1) are those of the taylor expansions of(1� x)� 4 at

the origin. Indeed, forjxj < 1,
1

1� x
= å

k� 0
xk so that

1
(1� x)2 = å

k� 0
(k+ 1)xk. Therefore

�
1

(1� x)2

� 2

= å
k� 0

 
k

å
m= 0

(m+ 1)(k� m+ 1)

!

xk.

We conclude that (2.13) is satis�ed for everyl � 0 and this implies thatR �
1
r

,

whereR is the radius of convergence of the series expansionu. ut

Lemma 2.2.In a neighbourhood of any given pointex 2 C, there exists a one-
parameter family of meromorphic solutions u of (2.1) having a pole atex. Necessarily
ex is a double pole and u is given by the Laurent-series expansions

u(x) =
1

(x� ex)2 �
ex

10
(x� ex)2 �

1
6

(x� ex)3 + c4(x� ex)4 + å
k� 6

ck(x� ex)k

where c4 2 C is a free parameter.

Proof. We are looking for a Laurent-seriesu(x) =
¥

å
k= p

ck(x� ex)k 2 Cf x� exg
h 1

x� ex

i

satisfying (2.1). Necessarilyp � � 2, c� 2 = 1 or 0,c� 1 = 0. Therefore, eitherex is a
regular point, or otherwise

u(x) =
1

(x� ex)2 �
ex

10
(x� ex)2 �

1
6

(x� ex)3 + c4(x� ex)4 + å
k� 6

ck(x� ex)k

wherec4 2 C is a free parameter, while fork � 6 the coef�cients are polynomial
functions of(ex;a ). Indeed, one has(k� 2)(k+ 5)ck+ 2 = 6å k

m= 0cmck� m, k � 2. We
can de�ner > 0 (depending on(ex;a )) such that, for 0� l � 5,

jcl j �
1
3

(l + 1)r l+ 2: (2.14)
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Assume that this property is satis�ed for everycl , 0 � l � k+ 1, for a givenk � 4.
Then

(k� 2)(k+ 5)jck+ 2j �
2
3

k

å
m= 0

(m+ 1)(k� m+ 1)r k+ 4 �
1
9

(k+ 1)(k+ 2)(k+ 3)r k+ 4

and we conclude thatjck+ 2j �
1
3

(k+ 3)r k+ 4. Therefore (2.14) is true for everyl � 0

and the Laurent series converges in the punctured dicsD(ex;1=r )?. ut

The following notations will now be used:

� Dx0 � C is an open disc,W is a discrete subset ofDx0 andx0 2 Dx0 nW.
� u is a solution of (2.1) de�nes by some initial data atx0 2 Dx0 nW and u is

meromorphic inDx0 nW.
� l (a;b) : [0;1] ! Dx0 nW denotes aC¥ -smooth path inDx0 nW with endpoints

l (a;b)(0) = a andl (a;b)(1) = b. Whenb 2 ¶Dx0 it is assumed thatl (a;b) is a
path whereb is removed (that is one considers the restriction to[0;1[ of l (a;b)).
Moreover we assume that the length of any subsegmentl (c;d) of l (a;b) is less
that 2jc� dj.
We mention that we use the same notationl (a;b) for the path and its image.

� ex 2 ¶Dx0 is a singular point foru.

Lemma 2.3.Assume that u(x) =
4

å
k= � 2

ak(x � ex)k + O(jx � exj5) when x! ex along

l (x0; ex), with a� 2 6= 0. Then u is meromorphic atex and u is uniquely determined by
(ex;a4).

Proof. Sinceu is solution of (2.1) which is analytic at each point of the smooth path
l (x0; ex), one hasu00(x) = 6u2(x)+ x= 6

�
å 4

k= � 2ak(x� ex)k + O(jx� exj5)
� 2

+ x when
x ! ex alongl (x0; ex). This implies that the asymptotic expansion is differentiable.

This is a consequence of the mean value theorem,u(x) = u(x0)+
Z x

x0

u0(s) dsalongl (x0; ex)

which isC¥ -smooth, and the uniqueness of the asymptotic expansion.

With the same calculus made in the proof of lemma 2.2, we show that

u(x) =
1

(x� ex)2 �
ex

10
(x� ex)2 �

1
6

(x� ex)3 + a4(x� ex)4 + O(jx� exj5):

We denote byv the meromorphic solution of (2.1) obtained in lemma 2.2 with
c4 = a4. We set

w(x) = v(x) � (x� ex)� 2 = O(jx� exj2)
f (x) = u(x) � v(x) = O(jx� exj5)

and we want to show thatf = 0. We havef 00� 12
(x� ex)2 f = g with g = 12w f + 6f 2,

g = O(jx� exj7). Integrating this linear ODE yields:

f (x) = C1(x� ex)� 3 + C2(x� ex)4

� 7(x� ex)� 3
Z x

ex
(s� ex)4g(s) ds+

(x� ex)4

7

Z x

ex
(s� ex)� 3g(s) ds:

Since f (x) = O(jx� exj5), f is solution of the �xed-point problemf = N( f ) with
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N( f )(x) = � 7(x� ex)� 3
Z x

ex
(s� ex)4g(s) ds+

(x� ex)4

7

Z x

ex
(s� ex)� 3g(s) ds:

Forx1 2 l (x0; ex) we consider the normed vector space(B;k:k),

B = f f 2 C0(l (x1; ex)) ; f = O(jx� exj5g; k f k = sup
x2l (x1;ex)

j(x� ex)� 5 f (x)j:

We show later that(B;k:k) is a Banach space (lemma 2.4). Now forx1 close enough
from ex (see lemma 2.4):

� the mappingN send the unit ballB of B into itself,
� the mappingN : B ! B is contractive.

Therefore the �xed-point problemf = N( f ) has a unique solution inB by the con-
traction mapping theorem. Obviously this solution isf = 0 and thereforeu = v. ut

Lemma 2.4.With notations of the proof of lemma 2.3:(B;k:k) is a Banach space
and the mappingN : B ! B is contractive.

Proof.

(B;k:k) is a Banach space.Assume that( fp) is a Cauchy sequence in(B;k:k),

8e; 9p0 : 8p;q > p0; 8x 2 l (x1; ex); j(x� ex)� 5( fp(x) � fq(x)) j < e : (2.15)

Writing gp(x) = ( x� ex)� 5 fp(x), condition (2.15) implies that for everyx 2 l (x1; ex)
the sequence(gp(x)) is a Cauchy sequence, hencegp(x) ! g(x) in C. Now making
q ! + ¥ in (2.15) one sees thatgp ! g uniformaly. Thereforeg 2 C0(l (x1; ex)) and
is bounded onl (x1; ex). Thusg = ( x� ex)� 5 f with f 2 B.

The mapping N is contractive for x1 close enough fromex. We set

N1( f )(x) = � 7(x� ex)� 3 Rx
ex (s� ex)4g(s) ds, N2( f )(x) = (x� ex)4

7

Rx
ex (s� ex)� 3g(s) dsso

thatN( f ) = N1( f ) + N1( f ). One can assume thatjs� exj � j x � exj for s2 l (x;ex)) .
Also, there existr > 0 anda > 0 such thatjw(x)j � ajx� exj2 whenjx� exj � r. We
now assume thatjx1 � exj � r. For anyf1; f2 2 B andx 2 l (x1; ex):

�
�
�(x� ex)� 5

�
N1( f1) � N2( f2)

� �
�
�

�

�
�
�
� � 7(x� ex)� 8

Z x

ex
(s� ex)4

�
12w(s)( f1(s) � f2(s))+ 6( f 2

1 (s) � f 2
2 (s))

�
ds

�
�
�
� ;

thus
�
�
�(x� ex)� 5

�
N1( f1) � N2( f2)

� �
�
� � 7jx� exj� 8

�
12ajx� exj11k f1 � f2k

+ 6jx� exj14k f1 � f2kk f1 + f2k
�

Length(l (x;ex))

� 14jx� exj4
�

12a+ 12jx� exj3
�

k f1 � f2k:

The other term of(x � ex)� 5
�

N2( f1) � N2( f2)
�

is worked out in a similar way.

Choosingx1 close enough fromex, one obtains the existence of a constantCte2]0;1[
such that for anyf1; f2 2 B, kN( f1) � N( f2)k � Ctek f1 � f2k. ut

Lemma 2.5.When x! ex alongl (x0; ex) with ex 2 ¶Dx0 a singular point for u:

1. ju(x)j + ju0(x)j ! + ¥ ,
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2. u is unbounded.

Proof. 1. Lemma 2.1 implies thatju(x)j or ju0(x)j has to be large forx nearex which
is a singular point.

2. Multiplying (2.1) byu0and then integrating yields

(u0)2 = 4u3 + 2xu� 2
Z x

x0

u(s) ds+ C (2.16)

whereC 2 C is a constant. Therefore ifu is boundedx ! ex alongl (x0; ex) then
u0 is bounded as well, which contradicts the �rst property.ut

Lemma 2.6.When x! ex alongl (x0; ex), with ex 2 ¶Dx0 a singular point for u, then:

u� 3(x)
Z x

x0

u(s) ds! 0; ju(x)j ! + ¥ ; ju0(x)j ! + ¥ :

Proof. By lemma 2.5, we know thatu is unbounded whenx ! ex alongl (x0; ex), so
that limsup

x! ex
ju(x)j = + ¥ , liminf

x! ex
ju� 1(x)j = 0.

Reminder: limsup
x! ex

f (x) = lim
e! 0

�
sup

�
f (x) j x 2 l (x0; ex) \ D(ex;e)

	 �
,

liminf
x! ex

f (x) = lim
e! 0

�
inf

�
f (x) j x 2 l (x0; ex) \ D(ex;e)

	 �
.

Since

�
�
�
�u

� 3(x)
Z x

x0

u(s) ds

�
�
�
� � j u� 3(x)j: max

l (x0;x)
juj: Length(l (x0;x)) for x 2 l (x0; ex), it

turns out that

liminf
x! ex

� �
�
�
�u

� 3(x)
Z x

x0

u(s) ds

�
�
�
�

�
� liminf

x! ex

�
ju� 3(x)j: max

l (x0;x)
juj: Length(l (x0;x))

�
:

The right hand side term vanishes becauseu is unbounded whenx ! ex, thus

liminf
x! ex

� �
�
�
�u

� 3(x)
Z x

x0

u(s) ds

�
�
�
�

�
= 0: (2.17)

In particular, for everyg > 0, for everyD(ex;e), there existsx 2 l (x0; ex) \ D(ex;e) so

that

�
�
�
�u

� 3(x)
Z x

x0

u(s) ds

�
�
�
� � g.

We make the followingAssumption: u� 3(x)
Z x

x0

u(s) ds! 0 is a false premise.

This assumption translates into the condition : there existsg > 0 such that, for every

D(ex;e), there existsx 2 l (x0; ex) \ D(ex;e) so that

�
�
�
�u

� 3(x)
Z x

x0

u(s) ds

�
�
�
� � g.

By continuity, we see that for anyg > 0 small enough, there exists a sequence
xn ! ex, xn 2 l (x0; ex), such that

�
�
�
�

Z xn

x0

u(s) ds

�
�
�
� = g

�
�u3(xn)

�
� : (2.18)

The arguments used in the proof of lemma 2.5 show that limsup
n

ju(xn)j = + ¥ .

This means that there exists a subsequence(xnk) of (xn) such thatju(xnk)j ! + ¥ .
Therefore we can assume that lim

n
ju(xn)j = + ¥ : with the following consequences:

from (2.18) we see that



24 2 The �rst Painlev́e equation

lim
n

�
�
�
�

Z xn

x0

u(s) ds

�
�
�
� = + ¥ (2.19)

while (2.18) withg > 0 chosen small enough and (2.16) imply lim
n

ju0(xn)j = + ¥ .

We are going to prove in several steps that the above assumption leads to a con-
tradiction.

First step We consider the solutionhn of the Cauchy problem
8
<

:
(h0)2 = 4h3 + 2xnh+ eCn with eCn = C� 2

Z xn

x0

u(s) ds

h(0) = u(xn); h0(0) = u0(xn)
(2.20)

whereC is the constant given in (2.16). Notice by (2.19) that lim
n

j eCnj = + ¥ and by

(2.18) then (2.16):
8
><

>:

jhn(0)j = ( 2g)� 1=3
�
� eCn

�
�1=3�

1+ o(1)
�

jh0
n(0)j =

�
�2g� 1eif n + 1

�
�1=2�

� eCn
�
�1=2�

1+ o(1)
�
; f n 2 R:

(2.21)

Writing
hn(t) = eC1=3

n Hn(X); X = eC1=6
n t; (2.22)

the functionHn is solution of the followingelliptic differential equation(see (1.5))
with a given initial data:

8
>>>>><

>>>>>:

(H0)2 = 4H3 + 2qnH + 1; with qn = xn eC� 2=3
n

Hn(0) = eC� 1=3
n u(xn); jHn(0)j = ( 2g)� 1=3�

1+ o(1)
�
;

H0
n(0) = eC� 1=2

n u0(xn); jH0
n(0)j =

�
�2g� 1eif n + 1

�
�1=2�

1+ o(1)
�
:

(2.23)

From the properties of elliptic functions,Hn can be analytically continued as
a doubly periodic meromorphic function with double poles at the period lattice
an + mw1(qn) + nw2(qn), (n;m) 2 Z2, for somean 2 C andw1;2(qn) = Cte1;2 + O(qn).

Second stepNext we consider the functionUn satisfying to the condition:

u(x) = eC1=3
n Un(X); X = eC1=6

n (x� xn): (2.24)

From (2.1),Un is solution of the ODE

U00= 6U2 + qn + enX; with en = eC� 5=6
n ; (2.25)

and, more precisely from (2.16):
8
<

:
(U0)2 = 4U3 + 2qnU + 1+ 2en

�
XU �

Z X

0
U(S) dS

�

Un(0) = eC� 1=3
n u(xn); U0

n(0) = eC� 1=2
n u0(xn)

(2.26)

Third step We want to show thatUn andHn are locally holomorphically equivalent:
we look for a functionGn holomorphic near 0 such that

Un = Hn � Gn with Gn(X) = X + gn(X); gn(0) = 0; g0
n(0) = 0: (2.27)
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We know from (2.23) thatH00
n = 6H2

n + qn, hence from (2.25) we deduce that

2g0
nH00

n � Gn + ( g0
n)2H00

n � Gn + g00
nH0

n � Gn = enX

or else:
2g0

n(H0
n � Gn)0+ g00

nH0
n � Gn = enX +( g0

n)2H00
n � Gn:

Multiplying both parts of this equality byH0
n � Gn and integrating, one gets:

8
>>><

>>>:

wn = ( H0
n � Gn)� 2

Z X

0
H0

n � Gn(S)
h
enS+ w2

n(S):H00
n � Gn(S)

i
dS= N(wn)

gn(X) =
Z X

0
wn(S) dS; wn(0) = 0; Gn(X) = X + gn(X):

(2.28)

Let D(0; jenj� 1=4

2 ) be the disc centred at 0 of diameterjenj� 1=4. We denote by
eD(0; jenj� 1=4

2 ) the discD(0; jenj� 1=4

2 ) deprived from the discs of diameterd(g) around

the poles and the zeros ofH0
n. We consider a pathl (0;X0) in eD(0; jenj� 1=4

2 ). In (2.28),

the integrals
Z X

0
are considered alongl (0;X) � l (0;X0). We can assume that the

length of any subsegmentl (0;X) of l (0;X0) is less that 2jXj.
Let bea 2]1=4;1=2[ and (B;k:k) be the Banach spaceB = f f 2 C0(l (0;X0))g,
k f k = supx2l (0;X0) j f (x)j. Let B be the ballB = f f 2 B; k f k � j enjag. If w 2 B and

g(X) =
RX

0 w(S) dS,

kgk � sup
X2l (0;X0)

�
�
�
�

Z X

0
w(S) dS

�
�
�
� � k wk:Length(l (0;X0)) � j enja� 1=4:

One can assume thatd(g) � 3jenja� 1=4 so that

kN(w)k � j enjCte1(g)jenj� 1=2 + Cte2(g)jenj2a� 1=4:

ThereforekN(w)k � j enja for jenj small enough. Quite similarly, forw1;w2 2 B,

kN(w1) � N(w2)k = O(jenja� 1=4)kw1 � w2k:

We conclude by the contraction mapping theorem:N has a unique �xed point inB,
for jenj small enough.

Final step We have seen that forjenj small enough anda 2]1=4;1=2[,

Un(X) = Hn
�
X + gn(X)

�
; jg(X)j � j enja� 1=4; X 2 eD(0;

jenj� 1=4

2
):

Therefore,

sup
X2 eD(0; jenj� 1=4

2 )

�
� eC� 1=3

n u(xn + eC� 1=6
n X) � Hn(X)

�
� = O(jenja� 1=4): (2.29)

Remember thatj eCnj ! + ¥ andjenj = j eC� 5=6
n j ! 0 whenxn ! ex. If X 2 eD(0; jenj� 1=4

2 ),

then eC� 1=6
n X belongs to a disc of radiusj eCnj1=24 deprived of some discs of radius

d(g)j eCnj� 1=6. Consequently, forn large enough,
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8x 2 Dx0; 9X 2 eD(0;
jenj� 1=4

2
);

�
�
�x� (xn + eC� 1=6

n X)
�
�
� �

d(g)
2

j eCnj� 1=6:

Choosingx = x0, we see from (2.29) thatu is unbounded nearx0 which is a regular
point foru: contradiction.

Therefore,u� 3(x)
Z x

x0

u(s) ds! 0 whenx ! ex alongl (x0; ex). It is now an easy

exercice by lemma 2.5 and (2.16) to see that minfj uj; ju0jg ! + ¥ necessarily when
x ! ex. (Just assume thatu� 1(x) ! 0 is false and see that there is a contradiction.)
ut

End of the Proof of theorem 2.1.What remains to show is thatex is a second order
pole. The substitutionu = 1=v2 transforms (2.16) into

(v0)2 = 1+
x
2

v4 �
v6

2

Z x

x0

ds
v2(s)

+
C
4

v6: (2.30)

We know from lemma 2.6 that
v6

2

Z x

x0

ds
v2(s)

ds! 0 andv ! 0 along a pathl (x0; ex)

which avoids the poles ofu in Dx0. Therefore (v0)2 = 1 + o(1), then
v2(x) = ( x� ex)2

�
1+ o(1)

�
. Plugging this last equality in (2.30) yields

(v0)2(x) = 1+ ex
2(x� ex)4 + o((x� ex)4), thusv2(x) = ( x� ex)2 + ex

10(x� ex)6 + o((x� ex)6).
One uses (2.30) again and eventually concludes with lemma 2.3.
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Chapter 3
Tritruncated solutions for the �rst Painlev é
equation

Abstract This chapter is devoted to the construction of the tritruncated solutions for
the �rst Painlev́e equation, the existence of which being announced in Sect. 2.6. This
example will introduce the reader to common reasonings in resurgence theory. We
construct a prepared form associated with the �rst Painlevé equation (Sec 3.1). This
prepared ODE has a unique formal solution from which we deduce the existence
of truncated solutions by application of the “`main asymptotic existence theorem”.
We then study the Borel-Laplace summability property of the formal solution by
various methods (Sect. 3.3). One deduces the existence of the tritruncated solutions
for the �rst Painlev́e equation, by Borel-Laplace summation (Sect. 3.4).

3.1 Normalization and formal series solution

Throughout this course,C[[z� 1]] stands for the differential algebra of formal power
series of the formeg(z) = å

n� 0
anz� n, while C((z� 1)) is the space of formal Laurent

series. The space of formal Laurent series is a valuation �eld with the natural valu-
ation

val :
C((z� 1)) ! Z [ ¥
å
n2Z

anz� n 7! val ew = minf n 2 Z =an 6= 0g: (3.1)

3.1.1 Normalization, prepared form

We saw in Sect. 2.6 that the �rst Painlevé equation is equivalent to the following
differential equation,

v00+
v0

z
= �

1
2

+
4
25

v
z2 +

1
2

v2; (3.2)

under the Boutroux's transformation:u(x) = e
ip
2p
6

x
1
2 v(z), z= e

5ip
4 24

5
4

30 x
5
4 .

The variablez is most often calledcritical time [7].

It is worth mentioning that the symmetries detailed in Sect. 2.5 translate into the fact
that any solutionv of (3.2) is mapped into another solutionvk through the transfor-
mation:

vk(z) = eipkv
�
eipk=2z

�
; k = 0; � � � ;3: (3.3)

29
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We look for a formal solution of (2.8) of the formev(z) =
¥

å
l= 0

bl z
� l 2 C[[z� 1]]. When

plugging this formal series in (3.2), one gets the necessary conditions:b2
0 = 1,b1 = 0

and b2 = � 4
25. Thanks to the symmetries (3.3), there is no restriction in assum-

ing b0 = 1. Also, it will be convenient in the sequel to make a new transformation,

v(z) = 1�
4
25

1
z2 +

1
z2 w(z); (3.4)

which has the virtue of bringing (3.2) into the following differential equation :

w00�
3
z

w0� w =
392
625

1
z2 �

4
z2 w+

1
2z2 w2: (3.5)

De�nition 3.1. The differential equation (3.5), which reads

P(¶)w+
1
z

Q(¶)w = F(z;w); with P(¶) = ¶2 � 1; Q(¶) = � 3¶; ¶ =
d
dz

(3.6)

andF(z;w) =
392
625

1
z2 �

4
z2 w+

1
2z2 w2 = f0(z)+ f1(z)w+ f2(z)w2, is called thepre-

pared formequation associated with the �rst Painlevé equation.

Remark 3.1.For general comments on normalization procedures see, e.g. [7] and
exercise 3.1. Notice that the prepared form is not uniquely de�ned.

3.1.2 Formal series solution

Substituting the formal series expansion
¥

å
l= 0

al z
� l into equation (3.6) and identifying

the powers, yields a quadratic recursion relation, namely:
8
>>>><

>>>>:

a0 = a1 = 0; a2 = �
392
625

al = l2al � 2 �
1
2

l � 2

å
p= 0

a(p)a(l � 2� p) ; l = 3;4; � � �

(3.7)

The following proposition is a simple exercise.

Proposition 3.1.There exists a unique formal series solution of (3.6) denoted by:

ew(z) =
¥

å
l= 0

al z
� l 2 C[[z� 1]]: (3.8)

Moreover the seriesew is even,val ew = 2 and the coef�cients al are all real negative.

Remark 3.2.1. One infers from (3.7) that the seriesew diverges since obviously
ja2mj � (m!)2ja2j for m� 1.

2. The differential equation (3.6) can be written as a �xed point problem,w= N(w),

N(w) = � F(z;w) �
3
z

w0+ w00. On can consider the differential operatorN as

acting on the ringC[[z� 1]], N : C[[z� 1]] ! C[[z� 1]]. WhenC[[z� 1]] is seen as a
complete metric space (for the so-called Krull topology, see [19]),N appears as
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a contractive map and the formal solutionew given by lemma 3.1 is the unique
solution of the �xed point problem. This way of showing the existence of the
formal solutionew is also useful for numerical calculations,

ew(z) = �
392
625

z� 2 �
6272
625

z� 4 �
141196832

390625
z� 6 + � � �

In this course, all calculations have been produced that way under Maple 12.0
(released: 2008).

3.1.3 Towards truncated solutions

3.1.3.1 Notations

We �x notations (essentially common with [19, 16]) which will be used in this
chapter and throughout the course.

De�nition 3.2. We denote byS1 the circle of directions about 0 of half-lines onC.
We usually identifyS1 with R=2pZ. Let I =] a ;b [� S1 be an open arc. Itslengthis
denoted and de�ned byjI j = b � a .

De�nition 3.3. Let I � S1 be an open arc. For 0� r < R� ¥ , we denote by
�

R
r (I ) the

domain de�ned by
� R

r (I ) = f z = xeiq 2 C j q 2 I ; r < x < Rg. In particular
�

R
0(I )

(resp.
�

¥
r (I )) is an open sector with vertex 0 (resp.¥ ) and apertureI .

One denotes by
�
¯ R

0(I ) (resp.
�
¯ ¥

r (I )) the closure of
�

R
0(I ) (resp.

�
¥
r (I )) in C? = C n f 0g.

We use abridged notations
�

0(I ),
�
¯ 0(I ),

�
¥ (I ) and

�
¯ ¥ (I ) for sectors, whenRor r is

unspeci�ed.

A sector
�

0(I0) (resp.
�

¥ (I )) is said to be a proper subsector of
�

0(I ) (resp.
�

¥ (I ))

and one denotes
�

0(I0) b
�

0(I ) (resp.
�

¥ (I0) b
�

¥ (I )) if the closure
�
¯ 0(I0) (resp.

�
¯ ¥ (I0)) is included in

�
0(I ) (resp.

�
¥ (I )).

3.1.3.2 Main asymptotic existence theorem

We have previously seen that the ODE (3.6) is formally solved by a unique formal
seriesew(z) 2 C[[z� 1]].

Question 3.1.Can we associate toew a holomorphic solution whose Poincaré asymp-
totics1 are governed by this formal series ?

This question is the matter of the “main asymptotic existence theorem”. This theo-
rem is detailed in [16] for linear ODEs. It can be formulated to nonlinear equations,
see [27], theorems 12.1 and 14.1, and [24] for extension to Gevrey asymptotics.

Theorem 3.1 (Main asymptotic existence theorem M.A.E.T.).Let I � S1 be an
open arc of lengthjI j � p=(q+ 1) where q is a nonnegative integer. LetF(z;w) be
a m-dimensional vector function subject to the following conditions:

1 The reader is referred to [16, 19] for details on asymptotic expansions.
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1. F(z;w) is holomorphic in (z;w) on the domain of
�

¥ (I ) � B(0; r) with
B(0; r) = f w 2 Cm; kwk � rg for some r> 0;

2. F(z;w) admits an asymptotic expansion in powers of z� 1 at in�nity in
�

¥ (I ),
uniformaly valid inw 2 B(0; r);

3. the equation z� qw0= F(z;w) is formally satis�ed by a formal power series solu-
tion ew(z) 2 (C[[z� 1]])m;

4. if Fj (z;w) denotes the components ofF(z;w), the Jacobian matrix

lim
z! ¥ ;z2

�
¥ (I )

0

B
@

¶F1
¶w1

(z;0) � � � ¶F1
¶wm

(z;0)
� � � � � � � � �

¶Fm
¶w1

(z;0) � � � ¶Fm
¶wm

(z;0)

1

C
A has non zero eigenvalues.

Then there exists a solutionw of the equation z� qw0= F(z;w), holomorphic in a

domain of the form
�

¥ (I ), whose asymptotics at in�nity in every proper subsector

of
�

¥ (I ) is given by the formal solutionew.

3.1.3.3 Application

Let us transform (3.6) into a one order ODE of dimension 2. We introduce

w =
�

w1
w2

�
=

�
w
w0

�
and we obtain the companion system:

¶w =
�

0 1
1 3

z

�
w+

�
0

F(z;w1)

�
=

�
F1(z;w)
F2(z;w)

�
= F(z;w) 2 (C[z� 1;w])2: (3.9)

We �x an open arcI � S1, arbitrary but of lengthjI j � p. We also consider a domain

of the form
�

¥ (I ) and we make the following observations:

1. F(z;w) is polynomial with respect tow, with coef�cients belonging toC[z� 1].

ThereforeF(z;w) is holomorphic in(z;w) on the domain
�

¥ (I ) � B(0; r) with
B(0; r) = f w 2 C2; kwk � rg for somer > 0;

2. again becauseF(z;w) 2 (C[z� 1;w])2, F(z;w) admits an asymptotic expansion in

powers ofz� 1 at in�nity in
�

¥ (I ), uniformaly valid inw 2 B(0; r);
3. the equation (3.9) is formally satis�ed by a formal power series solution

ew(z) =
�

ew
ew0

�
2 (C[[z� 1]])2;

4. the Jacobian matrix
�

0 1
1 0

�
=

 
¶F1
¶w1

(¥ ;0) ¶F1
¶w2

(¥ ;0)
¶F2
¶w1

(¥ ;0) ¶F2
¶w2

(¥ ;0)

!

has non zero eigenvalues

m1 = � 1 andm2 = 1.

These properties allow to apply the (M.A.E.T.) and this shows the following propo-
sition (see also [15]):

Proposition 3.2.For any open arc I� S1 of lengthjI j � p, there exists a solution w

of (3.6), holomorphic in a domain of the form
�

¥ (I ), whose Poincaŕe asymptotics at

in�nity in every proper subsector of
�

¥ (I ), is given by the formal solutionew given
by proposition 3.1.

Proposition 3.2 thus describes the minimal opening of sectors on which holo-
morphic solutionsw asymptotic toew exist. Through the transformations (3.4), (2.6)
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and (2.7), these solutionsw corresponds to holomorphic functionsu solutions of the
�rst Painlevé equation, de�ned on open sectors of aperture 4p=5 : we thus get a �rst
insight towards the truncated solutions for the �rst Painlevé equation (theorem 2.4).

As a matter of fact, from the above informations and the property for any solution
of the �rst Painlev́e equation to be a meromorphic function, one can even show the
existence of tritruncated solutions [15]. However, to get more precise informations,
we decide in what follows to turn to the question of the Borel-Laplace summability
of ew.

3.2 A reminder

We assume that the reader has a previous acquaintance with Borel-Laplace summa-
tion and a little background with resurgence theory, amply elaborated in [19, 16]
to which we refer. For the convenience of the reader, we offer a brief reminder of
de�nitions and results used in this chapter.

Formal Borel transform and convolution product

De�nition 3.4. The formal Borel transformB (z ! z ) is the linear isomorphism
B : C[[z� 1]] ! Cd � C[[z ]] de�ned by

eg(z) =
¥

å
l= 0

bl z
� l 7! b0d + bg(z); bg(z ) =

¥

å
l= 1

bl
z l � 1

G(l)
:

The formal seriesbg is theminor of eg. The inverse mapL = B � 1 is the formal
Laplace transform.

De�nition 3.5. Let b0d + bg(z) and c0d + bh(z) be two elements ofCd � C[[z ]].
Their convolution product(b0d + bg) � (c0d + bh) is de�ned by

(b0d + bg) � (c0d + bh) = B (egeh); where eg = L (b0d + bg); eh = L (c0d + bh):

When bg(z) = å
n� 0

bnzn and bh(z) = å
n� 0

cnzn are two formal series, their convo-

lution product bg � bh is given by the Hurwitz product,bg � bh(z ) = å
k� 1

dkz
k with

dk = å
n+ m+ 1= k

n!m!
(n+ m+ 1)!

bncm.

Proposition 3.3.The linear mapb¶ : b0d + bg 7! � z bg provides a derivation of
Cd � C[[z ]] and B :

�
C[[z� 1]];¶

�
!

�
Cd � C[[z ]]; b¶

�
is an isomorphism of dif-

ferential algebras.

Gevrey series of order1

De�nition 3.6. A formal serieseg(z) = å
n� 0

anz� n 2 C[[z� 1]] is 1-Gevreywhen there

exist constantsC > 0, A > 0 so thatjanj � C(n!)An for all n. The space of 1-Gevrey
series is denoted byC[[z� 1]]1.

We recall from [16, 19] that the spaceC[[z� 1]]1 of 1-Gevrey series is a differential
algebra.
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Notice that a formal serieseg is 1-Gevrey if and only if its minorbg is a convergent
power series, thus de�nes a germ of holomorphic functions (still denoted bybg).
More precisely:

Proposition 3.4.The restricted linear mapB j : C[[z� 1]]1 ! Cd � O0 is an isomor-
phism of differential algebras. Also, for any two germs of holomorphic functions
bg;bh 2 O0, their convolution productbg� bh 2 O0 has the following integral represen-

tation: bg� bh(z ) =
Z z

0
bg(h )bh(z � h )dh .

A �avor of resurgence

De�nition 3.7. Let W be a non-empty closed discrete subset ofC and bj 2 O0 be
a germ of holomorphic functions at 0. This germ is said to beW-continuableif
there existsr > 0 such thatD?(0; r) \ W = /0 andbj can be represented by a function
holomorphic onD(0; r) which can be analytically continued along any path ofCnW
originating from any point ofD?(0; r).
The space of allW-continuable germs is denoted bŷR W. The spaceCd � R̂ W is
called the space ofW-resurgent functions. The space ofW-resurgent formal series
is denoted byR̃ W and de�ned byR̃ W = L

�
Cd � R̂ W).

Theorem 3.2.LetW1, W2 be non-empty closed discrete subsets ofC. LetW � C be
the subset de�ned byW = W1 [ W2 [ (W1 + W2) where

W1 + W2 = f w1 + w2 j w1 2 W1;w2 2 W1g:

If W is closed and discrete, thenbj 1 2 R̂ W1 and bj 2 2 R̂ W2 imply bj 1 � bj 2 2 R̂ W.

In particular, the spaceCd � R̂ Z of Z-resurgent functions is stable under convo-
lution product, thus is an algebra with unitd.

Borel-Laplace summability

De�nition 3.8. A formal serieseg(z) = å
n� 0

bn

zn 2 C[[z� 1]] is said to beBorel-Laplace

summablein directionq 2 S1 if the following conditions are satis�ed:

� the serieseg is 1-Gevrey or, equivalently, its minorbg is a convergent series whose
sum de�nes a holomorphic function (still denoted bybg) near the origin ;

� bg can be analytically continued to an open sector of the form
�

¥
0 (I ) whereI � S1

is an open neighbourdhood ofq, with exponential growth of order 1 at in�nity.

Under the above conditions, theBorel-Laplace sumof eg in directionq is denoted
by S q eg and de�ned byS q eg(z) = L q � B eg(z) whereL q stands for theLaplace

transformin directionq, L q (b0d + bg)(z) = b0 +
Z ¥ eiq

0
e� zz bg(z)dz .

In addition to this de�nition, we recall that the Borel-Laplace sumS q ew is holo-
morphic on a half-plane where its asymptotic behavior is governed by the formal
serieseg. This will be made more precise in a moment.

3.3 Formal series solution and Borel-Laplace summability

We go back to the formal seriesew given by proposition 3.1. Since valew > 0, the
formal Borel transform ofew just reduces to its minorbw. Also, ew(z) is the unique
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solution inC[[z� 1]] of the differential equation (3.6). One easily infers the following
result from the general properties of the formal Borel transform.

Proposition 3.5.The formal seriesew(z) 2 C[[z� 1]] is solution of (3.6) if and only if
its minor bw(z) 2 C[[z ]] is solution of the following convolution equation:

P(b¶) bw+ 1�
�
Q(b¶) bw

�
= bf0 + bf1 � bw+ bf2 � bw� bw;

P(b¶) = b¶2 � 1; Q(b¶) = � 3b¶;

bf0(z ) =
392
625

z; bf1(z ) = � 4z ; bf2(z ) =
1
2

z :

(3.10)

We will see in a moment thatew is 1-Gevrey and even Borel-Laplace summable.
In the rest of this chapter, we analyse this Borel-Laplace summability and we offer
various approaches.

3.3.1 Formal series solution and Borel-Laplace summability: a
perturbative approach

We start with a perturbative approach which has the advantage of giving a �rst
insight into the resurgent structure. In practice, we consider (3.10) as a perturbation
of the equationP(b¶) bw = bf0 which is quite easy to solve:

� either formally since the mapP(b¶) : bg2 C[[z ]] 7! (z2 � 1)bg2 C[[z ]] is invertible;
� or analytically, in a space of analyic functions, sayO0, because

P(b¶) : bg 2 O0 7! (z2 � 1)bg 2 O0 is once again invertible.

To keep one, it is convenient to transform equation (3.10) into the following one
parameter family of convolution equations,

P(b¶)bh = bf0 + e
�

� 1�
�
Q(b¶)bh

�
+ bf1 � bh+ bf2 � bh� bh

�
; (3.11)

and to look for a solution under the form

bh(z ;e) = å
l � 0

bhl (z )el : (3.12)

When plugging (3.12) into (3.11) and identifying the same powers ine, one obtains
a recursive system of convolution equations, namely:

8
>>>>>><

>>>>>>:

P(b¶)bh0 = bf0;

P(b¶)bh1 = � 1�
�
Q(b¶)bh0

�
+ bf1 � bh0 + bf2 � bh0 � bh0;

P(b¶)bhn = � 1�
�
Q(b¶)bhn� 1

�
+ bf1 � bhn� 1 + å

n1+ n2= n� 1

bf2 � bhn1 � bhn2; n � 1:

(3.13)
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3.3.1.1 Formal analysis

Lemma 3.1.The system (3.13) provides a uniquely determined sequence(bhl ) l � 0 of
formal series. Furthermorebhl (z ) 2 z2l+ 1C[[z ]] for every l� 0.

Proof. Use the fact that the mapP(b¶) : C[[z ]] ! C[[z ]] is invertible and the general
properties of the convolution product.ut

The above lemma has the following consequence:

Proposition 3.6.The serieså
l � 0

bhl (z ) is well de�ned inC[[z ]] and is formally con-

vergent to the unique formal solutionbw(z) 2 C[[z ]] of the convolution equa-
tion (3.10).

We mention that proposition 3.6 has a counterpart by formal Laplace trans-
form L (z ! z). Introducingehl = L bhl , one gets from lemma 3.1 that the sequence
(ehl ) l � 0 solves inC[[z� 1]] the following recursive system of linear nonhomogeneous
ODEs:

8
>>>>>>>><

>>>>>>>>:

P(¶)eh0 = f0(z)

P(¶)eh1 = �
1
z

Q(¶)eh0 + f1(z)eh0 + f2(z)eh2
0

P(¶)ehn = �
1
z

Q(¶)ehn� 1 + f1(z)ehn� 1 + f2(z) å
n1+ n2= n� 1

ehn1
ehn2; n � 1:

(3.14)

From lemma 3.1 again, one deduces thatehl 2 z� 2l � 2C[[z� 1]] for everyl � 0, thus:

Proposition 3.7.The serieså
l � 0

ehl (z) is well de�ned in C[[z� 1]] and is formally

convergent to the unique formal solutionew(z) 2 C[[z� 1]] of the differential equa-
tion (3.6).

3.3.1.2 Analytic properties and a �avor of resurgence

Instead of working in the space of formal series, one can rather work in a space of
analytic functions. The next proposition uses de�nition 3.7.

Proposition 3.8.For every l2 N, the formal seriesbhl given by (3.13) de�nes a
germ (still denoted bybhl ) of holomorphic functions at0, which can be represented
by a function holomorphic on the open disc D(0;1). Moreover,bhl belongs to the
spaceR̂ Wl of Wl -resurgent functions, whereWl = f 0; � 1; � � � ; � l ; � (l + 1)g. As a
consequence, the germbhl is a Z-resurgent function.

Proof. The proposition is easily shown by induction from (3.13), theorem 3.2
and the following remark : for everyl 2 N, R̂ Wl � R̂ Wl+ 1 and the linear map

P(b¶) : bg 2 R̂ Wl 7! (z2 � 1)bg 2 R̂ Wl is invertible. ut
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3.3.1.3 Further preparations

We have previously seen (proposition 3.6) that the minorbw of the formal seriesew
solution of the prepared form equation (3.6), can be written asbw(z) = å

l � 0

bhl (z ) in

the spaceC[[z ]], where the sequence(bhl ) l � 0 solves the recursive system of equa-
tions (3.13). To show the Borel-Laplace summability ofew, it is thus enough to check
the following properties:

� the series of functionså
l � 0

bhl (z ) converges to a holomorphic function near the

origin and can be analytically continued in a convenient sector;
� this function has at most exponential growth of order 1 at in�nity in this sector.

We also know by proposition 3.8 that eachbhl (z ) is aZ-resurgent function. This mo-
tivates the following de�nition, with the notations :D(a; r) is the open disc centred
in a with radiusr andD(a; r) is its closure.

De�nition 3.9. One setsD (0)
r =

[

l = � 1

D(l ; r ) for anyr 2]0;1[. We denote by
�

R
(0)
r

the star-shaped domain de�ned by:

�
R

(0)
r = C n

�
tz j t 2 [1;+ ¥ [; z 2 D(� 1; r )

	
� C nD

(0)
r ;

and
�

R (0) =
[

0< r < 1

�
R

(0)
r = C n f� [1;+ ¥ [g. (See Fig. 3.1).

De�nition 3.10. Let f (z ) = å
l � 0

al z
l be an analytic function on the open disc

D(0; r). One denote byj f j the function de�nes byj f j(x ) = å
l � 0

jal jx
l .

Notice thatj f j is also analytic onD(0; r).

Lemma 3.2.Let ber 2]0;1[. There exists a constant Mr ;(0) > 0 such that for every

polynomial q 2 C[z ] of degree � 1 and every z 2 C nD (0)
r , one has

�
�
�

q(z )
P(� z )

�
�
� � Mr ;(0) jqj(1). Moreover, on can choose Mr ;(0) = 1

r .

Proof. By de�nition of D (0)
r ,

1
jz � 1j

�
1
r

and

�
�
�
�

z
z � 1

�
�
�
� � 1+

1
r

for everyz 2 C nD (0)
r .

Therefore,
�
�
�

z p

P(� z )

�
�
� �

1
r 2� p

�
1+

1
r

� p

�
1
r 2 (r + 1)p �

2p

r 2 for p = 0;1;2. This

means that one can chooseMr ;(0) =
2
r 2 in the lemma. It is possible to be more

Fig. 3.1 The domain
�

R
(0)
r .
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precise. Suppose for instance thatÂ(z ) � 0. Then jz + 1j � maxf 1; jz jg, thus
maxf 1;jz jg

jP(� z )j � 1
r . In a nutshell, one can chooseMr ;(0) = 1

r in the lemma. ut

As a rule, we will combined lemma 3.2 with the following lemma whose proof
is left as an exercise (see [19, 16]):

Lemma 3.3.Let U be a domain star-shaped from0. Suppose thatbf and bg are
two holomorphic functions on U and satisfy the conditions: for everyz 2 U,�
� bf (z )

�
� � F

�
jz j

�
and

�
�bg(z )

�
� � G

�
jz j

�
with F;G positive continuous functions on

R+ . Thenbf � bg is holomorphic on U and for everyz 2 U,
�
� bf � bg(z )

�
� � F � G

�
jz j

�

and
�
�
�
�
z bf

�
� bg(z )

�
�
� � j z j

�
F � G

�
jz j

� �
.

3.3.1.4 Majorant functions

We have in mind to show that the series of functionså
l � 0

bhl (z ), discussed in proposi-

tions 3.6 and 3.8, is uniformaly convergent on any compact subset of
�

R (0) . We will
use majorant functions which we now de�ne.

De�nition of the majorant functions We consider, for anyr 2]0;1[, the sequence
of functions( bHl ) l � 0 recursively de�ned by:

8
>>>>>>>>>><

>>>>>>>>>>:

1
Mr ;(0)

bH0 = j bf0j(x );

1
Mr ;(0)

bH1 =
�
3+ j bf1j

�
� bH0 + j bf2j � bH0 � bH0;

1
Mr ;(0)

bHn =
�
3+ j bf1j

�
� bHn� 1 + å

n1+ n2= n� 1
j bf2j � bHn1 � bHn2; n � 1:

(3.15)

whereMr ;(0) is given by lemma 3.2 andj bf0j(x ) = 392
625x , j bf1j(x ) = 4x , j bf2j(x ) = 1

2x .
(Compare (3.15) with (3.13).) We claim that for everyl 2 N, bHl is a majorant func-
tion for bhl . Precisely:

Lemma 3.4.For everyr 2]0;1[ and every l2 N, the following properties are satis-
�ed: bHl (x ) is a polynomial which belongs tox l+ 1C[x ]; furthermore,

for everyz 2
�

R
(0)
r ;

�
�bhl (z )

�
� � bHl (x ) with x = jz j; (3.16)

where(bhl ) l � 0 is de�ned by (3.13).

Proof. The fact thatbHl (x ) 2 x l+ 1C[x ] is proved by induction from (3.15) and the

properties of the convolution product. By (3.13) and lemma 3.2, for everyz 2
�

R
(0)
r ,

�
�bh0(z )

�
� �

�
�
�
�

1
P(� z )

�
�
�
�
�
� bf0(z )

�
� � Mr ;(0) j bf0j(x ) with x = jz j, so that (3.16) is true for

l = 0. We now assume that (3.16) is true forl = 0; � � � ; (n� 1), for somen 2 N?. By

lemma 3.3 and the induction hypothesis, for everyz 2
�

R
(0)
r ,

�
�
�
�

1
P(� z )

�
�
�
� :

�
�
�1�

�
Q(b¶)bhn� 1

�
(z )

�
�
� �

�
�
�
�

1
P(� z )

�
�
�
� jQj(jz j)

�
1� bHn� 1(jz j)

�
;
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wherejQj(x ) = 3x . Therefore, by lemma 3.2,
�
�
�
�

1
P(� z )

�
�
�
� :

�
�
�1�

�
Q(b¶)bhn� 1

�
(z )

�
�
� � Mr ;(0) jQj(1)

�
1� bHn� 1(x )

�

with x = jz j. More generally, for similar reasons,

1
Mr ;(0)

�
�bhn(z )

�
� �

�
3� bHn� 1(x )

�
+ j bf1j � bHn� 1(x )+ å

n1+ n2= n� 1
j bf2j � bHn1 � bHn2(x ):

Thus, for everyz 2
�

R
(0)
r ,

�
�bhn(z )

�
� � bHn(x ). This ends the proof. ut

Upper bounds for the majorant functions Before keeping on studying the above
majorant functions, we state a property which will be useful in the sequel. We �rst
recall two notations.

De�nition 3.11. Let U � C be an open set. We denote byO(U) the space of func-
tions holomorphic inU and continuous on the closureU.

ForR0 > 0, we setD(¥ ;R0) =
�

z2 C; jzj >
1
R0

�
.

Lemma 3.5.Let be R0 > 0. We suppose f2 O
�
D(¥ ;R0)

�
with f(z) = O(z� m) at

in�nity for a certain m2 N, and let be M= sup
z2D(¥ ;R0)

j f (z)j. Then the formal Borel

transformB f = f0d + bf of f satis�es the following properties:

1. bf 2 O(C) andj f0j �
M
R0

.

2. for everyz 2 C, j bf (z )j �
�
� bf

�
�(x ) �

M
R0

e
x

R0 with x = jz j and, when m� 2,

j bf (z )j �
M
Rm

0

xm� 2

(m� 2)!
� e

x
R0 ; x = jz j:

Proof. The Taylor series expansion off , å
k� m

fkz
� k = z� (m� 1) å

l � 1
fm+ l� 1z� l , con-

verges tof in D(¥ ;R0). By the Cauchy inequalities,j fkj �
M
Rk

0
for anyk 2 N. The

formal Borel transform off readsB f = f0d + bf with :

1. bf (z ) = å
l � 1

fl
z l � 1

(l � 1)!
as rule,

2. bf (z ) =
zm� 2

(m� 2)!
�

 

å
l � 1

fm+ l� 1
z l � 1

(l � 1)!

!

whenm� 2.

Also, for everyz 2 C, å
l � 1

j fm+ l� 1j
jz j l � 1

(l � 1)!
� å

l � 1

M

Rm+ l� 1
0

x l � 1

(l � 1)!
�

M
Rm

0
e

x
R0 with

x = jz j. This ensures the uniform convergence on any compact set ofC, thus
bf 2 O(C), and provides the upper bounds.ut

We return to the majorant functions de�ned by (3.15).

Lemma 3.6.For every l2 N, the majorant functionbHl (x ) is the formal Borel trans-
form of eHl (z) which has the following properties:eHl (z) belongs toC[z� 1] and, for

everyr 2]0;1[, eHl (z) is bounded on the domainjzj > 8
r , preciselysup

jzj> 8
r

j eHl (z)j �
1
2l .
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Proof. We introduce the generating function:bH(x) =
¥

å
l= 0

bHl (x ) el 2 C[x ][[e]]. From

(3.15), we observe that this generating function formally solves the convolution
equation

1
Mr ;(0)

bH = j bf0j + e
h�

3+ j bf1j
�

� bH + j bf2j � bH � bH
i
: (3.17)

Therefore, bH can be seen as the formal Borel transform of the solution

eH(z;e) =
¥

å
l= 0

eHl (z) el 2 C[z� 1][[e]] of the following second order algebraic equa-

tion:
1

Mr ;(0)

eH = j f0j(z)+ e
h� 3

z
+ j f1j

�
eH + j f2j eH2

i

with j f0j(z) =
392
625

1
z2 ; j f1j(z) =

4
z2 ; j f2j(z) =

1
2z2 :

(3.18)

This equation has two branch solutions and one of them is asymptotic to the equa-

tion
1

Mr ;(0)

eH = j f0j whene goes to zero. We are interested in that solution. Instead

of using an explicit calculation, we rather use another method which can be gener-

alized. In (3.18) we make the change of variablet =
1
z

and seteH(z;e) = H(t;e).

The equation (3.18) becomes:

F (t;e;H) = 0; with (3.19)

F (t;e;H) =
1

Mr ;(0)
H � j f0j(t � 1) � e

h�
3t + j f1j(t � 1)

�
H + j f2j(t � 1)H2

i
:

Since F (0;0;0) = 0 and
¶F
¶H

(0;0;0) =
1

Mr ;(0)
6= 0, the implicit function the-

orem provides a unique holomorphic solutionH(t;e) to (3.19), for jtj and jej
small enough : there existr1 > 0, r2 > 0, r3 > 0 and a holomorphic function
H : (t;e) 2 D(0; r1) � D(0; r2) 7! H(t;e) 2 D(0; r3) such that for every

(t;e;H) 2 D(0; r1) � D(0; r2) � D(0; r3),
h
F (t;e;H) = 0 , H = H(t;e)

i
.

To get more precise informations, we view the implicit problem (3.19) as a �xed-
point problem:

H = N(H); (3.20)

N(H) = Mr ;(0)

�
j f0j(t � 1) + e

h�
3t + j f1j(t � 1)

�
H + j f2j(t � 1)H2

i�

= Mr ;(0)

�
392
625

t2 + e
h�

3t + 4t2�
H +

1
2

t2H2
i �

:

We chooseMr ;(0) = 1
r (see lemma 3.2) and we introduce the spaceO(U) of func-

tions in (t;e) which are holomorphic on the polydiscU = D(0; r
8 ) � D(0;2) and

continuous on the closureU. The space
�
O(U);kk

�
is a Banach algebra wherekk

stands for the maximum norm.

We recall the following theorem [26]: letU be a bounded open subset ofCn, n � 1, E be a
Banach space andO(U) be the space of functionsf : x 7! f (x) 2 E which are continuous
onU and holomorphic onU. With the the maximum normk f k = sup

z2U
j f (z)j, (O(U);k:k) is

a Banach algebra.
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For a reason of homogeneity, we introduce the ballBr = f H 2 O(U); kHk � r g.

For anyH;H1;H2 2 Br , kN(H)k � 1
r

�
392
625

r 2

64 + 2
h

7r
16kHk+ r 2

128kHk2
i�

� r (re-
member thatr < 1), while

kN(H1) � N(H2)k �
2
r

�
7r
16

kH1 � H2k+
r 2

128
kH1 � H2k

�
kH1k+ kH2k

� �

�
29
32

kH1 � H2k:

The mappingNjBr : H 2 Br 7! N(H) 2 Br is thus contractive. SinceBr is a closed
subset of a complete space,(Br ;k:k) is complete and the contraction mapping the-
orem can be applied. We deduce the existence of a unique solutionH in Br of the
�xed-point problem (3.20).
This solutionH(t;e), thus holomorphic inU = D(0; r

8 ) � D(0;2), has a Taylor ex-

pansion with respect toe at 0 of the formH(t;e) =
¥

å
l= 0

Hl (t) el , where(Hl ) l � 0 is a

sequence of holomorphic functions on the discD(0; r
8 ). Moreover, by the Cauchy

inequalities and using the fact that sup
(t;e)2U

jH(t;e)j � r , one gets: for everyl 2 N,

sup
t2D(0; r

8 )
jHl (t)j �

r
2l . This ends the proof of lemma 3.6.ut

Lemma 3.7.For everyr 2]0;1[ and every l2 N, the majorant functionbHl (x ) is a

polynomial which satis�es: for everyx 2 C, j bHl (x )j �
8
2l e

8
r jx j .

Proof. This is due to lemmas 3.5 and 3.6.ut

3.3.1.5 Formal series solution and Borel-Laplace summability

We are ready to show the following theorem.

Theorem 3.3.The formal solutionew of the prepared equation (3.6) associated with
the �rst Painlev́e equation, is a 1-Gevrey series and satis�es the following proper-
ties:

1. its minorbw is an odd series, convergent to a holomorphic function which can be
analytically continued to a function (still denoted bybw) holomorphic on the cut

plane
�

R (0) ;
2. bw has at most exponential growth of order 1 at in�nity along non-horizontal

directions. More precisely, for everyr 2]0;1[, there exist A> 0 andt > 0 such

that, for everyz 2
�

R
(0)
r , j bw(z)j � Aet jz j ;

3. moreover in the above upper bounds one can choose A= 16andt = 8
r .

Proof. Combining lemmas 3.4 and 3.7, we know that, for everyr 2]0;1[ andl � 0,

the functionbhl (z ), is holomorphic on
�

R
(0)
r . Moreover, for everyR > 0, setting

UR = D(0;R) \
�

R
(0)
r , å

l � 0
sup
UR

jbhl (z )j � å
l � 0

bHl (R) � å
l � 0

8
2l e

8
r R � 16e

8
r R. This normal

convergence ensures the uniform convergence on any compact subset of
�

R (0) of

the serieså
l � 0

bhl (z ), which thus de�nes a function holomorphic on
�

R (0) . However,
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proposition 3.6 tells use that the serieså
l � 0

bhl converges to the formal Borel transform

bw of the formal solutionew of the ODE (3.6). ut

Remark 3.3.Better estimates can easily be obtained, see corollary 3.1 and exer-
cise 3.3.

3.3.2 Formal series solution and Borel-Laplace summability:
second approach

In this second approach, however related to the �rst one, we introduce a Banach
space (following [6, 7]), convenient to analyse the analyticity of the formal Borel
transform of the formal seriesew solution of the ODE (3.6). We then introduce the
reader to a “Gr̈onwall-like lemma” which will give the upper bounds we are looking
for.

3.3.2.1 Convolution algebra and uniform norm

De�nition 3.12. LetU = UR � C be an open neighbourdhood of the origin, bounded
and star-shaped,R = sup

z2U
jz j the “radius” of U. We denote by

�
O(U);+ ; :; �

�

the convolutionC-algebra (without unit) of functions continuous onU and holo-
morphic onU. We denote byM O (U) the maximal ideal ofO(U) de�ned by
M O (U) = f f 2 O(U); f (0) = 0g. We set

b¶ : f 2 O(U) 7! b¶ f (z ) = � z f (z ) 2 M O (U):

Let ben � 0. The normk:kn is de�ned as follows: for everyf 2 O(U),

k f kn = Rsup
z2U

�
�e� njz j f (z )

�
�:

This norm is extended toCd � O(U) by setting: kcd + f kn = jcj + k f kn ,
while b¶d = 0.

Proposition 3.9.The space
�
Cd � O(U);k:kn

�
is a Banach algebra. In particular,

for every f;g 2 Cd � O(U), k f � gkn � k f knkgkn . The spaceM O (U) is closed in
the normed space

�
O(U);k:kn

�
. Moreover, forn > 0:

1. for every n 2 N, for every g 2 O(U), kzn � gkn �
n!

nn+ 1 kgkn ,

k(z 7! zn+ 1)kn �
n!

nn+ 1 R andk(z 7! 1)kn = R.

2. for every f;g 2 O(U), k f gkn �
1
R

k f knkgk0.

3. for every f2 O(U), n � n0 � 0 ) k f kn � k f kn0.
4. for every f2 M O (U), lim

n! ¥
k f kn = 0.

5. the derivationb¶jO (U) : f 2 O(U) 7! b¶ f 2 M O (U) is invertible. Its inverse map
b¶ � 1 satis�es: for every f2 O(U), for every g2 M O (U), b¶ � 1( f � g) 2 M O (U)
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andkb¶ � 1( f � g)kn �
1

nR
k f knkb¶ � 1gk0. Also, for every f2 Cd � O(U), for every

g 2 M O (U), b¶ � 1( f � g) 2 O(U) andkb¶ � 1( f � g)kkn � k f knkb¶ � 1gkn .

Proof. Since Re� nR sup
z2U

�
� f (z )

�
� � Rsup

z2U

�
�e� njz j f (z )

�
� � Rsup

z2U

�
� f (z )

�
�, we see that

k:kn is equivalent to the usual maximum norm on the vector spaceO(U) and this

normed vector space is complete. This shows the completeness of
� �

O(U);+ ; :
�
;k:kn

�

and of
�
Cd � O(U);k:kn

�
as well.

For f ;g 2 O(U) we have, writingz = jz jeiq 2 U,

Re� njz j f � g(z ) = Re� njz j
Z jz j

0
f (seiq )g

�
(jz j � s)eiq �

eiqds

= R
Z jz j

0
f (seiq )e� nsg

�
(jz j � s)eiq �

e� n(jz j� s) eiqds:

ThereforeRje� njz j f � g(z )j � k f knkgkn

Z jz j

0

1
R

ds� k f knkgkn . We conclude that

for every f ;g 2 O(U), k f � gkn � k f knkgkn , hence
�

O(U);k:kn

�
is a Banach al-

gebra and
�
Cd � O(U);k:kn

�
as well.

We now supposen > 0.

1. For the particular casef : z 7! zn andg 2 O(U):

Re� njz j
�
�(zn � g)(z )

�
� � R

Z jz j

0
e� nssn

�
�
�g

�
(jz j � s)eiq � �

�
�e� n(jz j� s) ds

� k gkn

Z jz j

0
e� nssnds

� k gkn

Z ¥

0
e� nssnds:

This shows thatkzn � gkn �
n!

nn+ 1 kgkn . The other properties follow.

2. Obviously,k f gkn � k f kn sup
U

jgj �
1
R

k f knkgk0, for every f ;g 2 O(U).

3. It is straightforward to see thatn � n0 � 0 impliesk f kn � k f kn0 whenf 2 O(U).
4. If f 2 M O (U), then f = zg with g 2 O(U). From the previous property,

k f kn �
1
R

kzknkgk0 �
1
n

kgk0. Thus limn! ¥ k f kn = 0.

5. If f 2 Cd � O(U) andg 2 M O (U) then f � g 2 M O (U). Assume now that
f 2 O(U) andg2 M O (U). Thenb¶ � 1( f � g)(0) = 0 and writingz = jz jeiq 2 U,

Re� njz j f � g(z ) = Re� njz j
Z jz j

0
g(seiq ) f

�
(jz j � s) eiqds (3.21)

= R
Z jz j

0
seiq (b¶ � 1g)(seiq )e� ns f

�
(jz j � s)eiq �

e� n(jz j� s) eiqds:

On the one hand, from (3.21),

Rje� njz j f � g(z )j �
1
R

k f knkb¶ � 1gkn

Z jz j

0
sds�

jz j2

2R
k f knkb¶ � 1gkn ;
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so that Rje� njz j b¶ � 1( f � g)(z )j �
jz j
2R

k f knkb¶ � 1gkn � k f knkb¶ � 1gkn . Thus

kb¶ � 1( f � g)kn � k f knkb¶ � 1gkn . One easily extends this formula to the case
f 2 Cd � O(U).
On the other hand, from (3.21),

Rje� njz j f � g(z )j � k f kn sup
U

jb¶ � 1gj
Z jz j

0
se� nsds�

jz j
nR

k f knkb¶ � 1gk0;

henceRje� njz j b¶ � 1( f � g)(z )j �
1

nR
k f knkb¶ � 1gk0; . Therefore:

kb¶ � 1( f � g)kn �
1

nR
k f knkb¶ � 1gk0:

This ends the proof. ut

3.3.2.2 A Gr̈onwall-like lemma

We start with the following observation.

Lemma 3.8.Let be a;b;c;d � 0, N 2 N? and ( bFn)0� n� N be a sequence of entire
functions, real and positive onR+ , with at most exponential growth of order1 at
in�nity. Then, the convolution equation

bw= d+ [ a+ bx] � bw+ c

 

bF0 +
N

å
n= 1

bFn � bw� n

!

(3.22)

has a unique solution inC[[x ]], whose sum converges to an entire functionbwd(x )
with at most exponential growth of order1 at in�nity. The function bwd(x ) is real,
positive and non-decreasing onR+ and, for everyx 2 C, the mapping d7! bwd(x )
is continuous onR+ .

Proof. Obviously, (3.22) has a unique solutionbwd 2 R+ [[x ]]. Its formal Laplace
transform,ewd = L ( bwd) 2 R+ [[z� 1]], solves the algebraic equation

ew(z) =
d
z

+
�

a
z

+
b
z2

�
ew(z)+ c

N

å
n= 0

Fn(z) ewn
(z); (3.23)

where the(Fn)0� n� N is a (N + 1)-tuple of holomorphic functions on a neighbour-
hood of in�nity with Fn(z) = O(z� 1). This shows (by a reasoning already done) that
ewd = O(z� 1) is a holomorphic function in(z;d) for d 2 C andzon a neighbourhood
of in�nity (independent ond). Therefore,bwd determines a function holomorphic in
(x ;d) 2 C2, with at most exponential growth of order 1 at in�nity inx . The fact
that, ford � 0, bwd is real, positive and non-decreasing onR+ , is evident. ut

Lemma 3.9 (Grönwall lemma).Let U be a domain star-shaped from0and N2 N?.
Let ( bfn)0� n� N, resp.( bFn)0� n� N, be a(N + 1)-tuple of functions inO(U), resp. of
entire functions, real and positive onR+ . We suppose that for every0 � n � N and
everyz 2 U, j bfn(z )j � bFn(x ) with x = jz j. Let p;q; r 2 C[z ] be polynomials such
that the functionz 7! p(� z ) is non vanishing on U and the following upper bounds

are satis�ed: a= sup
z2U

jqj(jz j)
j p(� z )j

< ¥ , b= sup
z2U

jr j(jz j)
j p(� z )j

< ¥ , c = sup
z2U

1
jp(� z )j

< ¥ .
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We �nally assume thatbw 2 O(U) solves the following convolution equation:

p(b¶) bw+ 1� [q(b¶) bw] = z � [r(b¶) bw]+ bf0 +
N

å
n= 1

bfn � bw� n: (3.24)

Then for every d� 0, for every z 2 U, j bw(z)j � bwd(x ) with x = jz j, where
bwd 2 O(C) is the holomorphic solution of the convolution equation (3.22).

Proof. (Adapted from [17]). We assume thatbw 2 O(U) is a solution of the convo-
lution equation (3.22). We thus have, for everyz 2 U,

p(b¶) bw(z) = bf0(z ) �
Z z

0
[q(b¶) bw](h ) dh +

Z z

0
(z � h )[r(b¶) bw](h ) dh

+
N

å
n= 1

Z z

0
bfn(z � h ) bw� n(h ) dh

Thus, writingx = jz j andz = xeiq ,

j bw(z)j �
1

jp(� z )j
bF0(x )+

Z x

0

�
jqj(x )

j p(� z )j
+

jrj(x )
j p(� z )j

(x � r)
�

j bw(reiq )j dr

+
N

å
n= 1

Z x

0

1
jp(� z )j

bFn(x � r)j bw� n(reiq )j dr:

Therefore,

j bw(z)j � cbF0(x )+
Z x

0
[a+ b(x � r)] j bw(reiq )j dr + c

N

å
n= 1

Z x

0
bFn(x � r)j bw� n(reiq )j dr:

We notice from (3.24) thatj bw(0)j =
�
�
�

bf0(0)
p(0)

�
�
� , while bwd(0) = cbF0(0) + d, where bwd

solves (3.22). Remark thatj bw(0)j � cbF0(0) by de�nition of c and by hypothesis
on bF0.

First case. We assumebwd(0) > j bw(0)j. We want to show thatj bw(z)j < bwd(x ) for
z on the rayz = xeiq 2 U.
Assume on the contrary that there existsz1 = x1eiq 2 U such thatj bw(z1)j � bwd(x1).
De�ne c = f z 2 [0;z1] j j bw(z)j � bwd(jz j)g. This is a non-empty closed set,
bounded from below, and we notez2 its in�mum.

� If j bw(z)j � bwd(jz j) for somez 2]0;z2[, thenz 2 c and this contradicts the
de�nition of z2. Thus, for everyz 2 [0;z2[; j bw(z)j < bwd(jz j).

� If j bw(z2)j > bwd(jz2j) then, by continuity ofbw and bwd, one can �nda > 0 such
thatj bw

�
(jz2j � a )eiq

�
j > bwd(jz2j � a ), but this this contradicts again the de�ni-

tion of z2. Thereforej bw(z2)j = bwd(jz2j).

Putting things together, one gets withx2 = jz2j:

j bw(z2)j � cbF0(x2) +
Z x2

0
[a+ b(x2 � r)] j bw(reiq )j dr

+ c
N

å
n= 1

Z x2

0
bFn(x2 � r)j bw� n(reiq )j dr

� cbF0(x2) +
Z x2

0
[a+ b(x2 � r)] bwd(r) dr + c

N

å
n= 1

Z x2

0
bFn(x2 � r) bw� n

d (r) dr:
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Thereforej bw(z2)j � bwd(x2) � d and we get a contradiction. As a conclusion, for
everyd > 0, for everyz 2 U, j bw(z)j � bwd(x ) with x = jz j.

Second case.The casebwd(0) = j bw(0)j (thus, in particular,d = 0) is deduced from
the above result. Indeed, for a givenz 2 U, one has byj bw(z)j � bwd(x ) for every
d > 0. Since the mappingd 7! bwd(x ) is continuous onR+ (cf. lemma 3.8), one gets
the result by lettingd ! 0. ut

3.3.2.3 Applications

We prove theorem 3.3 with the tools introduced in this section. ForR> 0 andr > 0,

we introduce the star-shaped domainUR = D(0;R) \
�

R
(0)
r . We set

Br = f bv 2 O(UR);kbvkn � rg, r > 0 andn > 0.
We consider the convolution equation (3.10), viewed as a �xed-point problem. Pre-
cisely, we consider the mapping

N : bv 2 Br 7! P(b¶)� 1
h

� 1�
�
Q(b¶)bv

�
+ bf0 + bf1 � bv+ bf2 � bv� bv

i
:

By lemmas 3.2 and proposition 3.9, one �rst gets:

kN(bv)kn � Mr ;(0)k � 1�
�
Q(b¶)bv

�
+ bf0 + bf1 � bv+ bf2 � bv� bvkn :

By proposition 3.9 again, sinceQ(b¶) = � 3b¶, one easily obtains:

k1�
�
Q(b¶)bv

�
kn �

1
n

kQ(b¶)bvkn �
1

Rn
kQ(� z )k0kbvkn �

3
n

kbvkn :

The functions bf0; bf1; bf2 belong to M O (UR). By proposition 3.9, this implies
lim
n! ¥

k bfikn = 0, i = 0;1;2. We then deducekN(bv)kn � r by choosingn > 0 large

enough.
By the same arguments, one easily sees thatkN(bv1) � N(bv2)kn � kkbv1 � bv2kn with
k < 1, for bv1; bv2 2 Br and forn > 0 large enough.
This means thatN is contractive in the closed setBr of the Banach space�
O(UR);k:kn

�
, for n > 0 large enough. The contraction mapping theorem provides

a unique solutionbw 2 Br for the �xed-point problembv = N(bv). SinceR andr can
be arbitrarily chosen, we deduce (by uniqueness) that the formal Borel transformbw

of the unique formal seriesew solution of (3.6), de�nes a holomorphic in
�

R (0) .
One turns to the Grönwall lemma to get upper bounds. Working in the star-shaped

domain
�

R
(0)
r , r 2 ]0;1[, one sees by lemma 3.2, lemma 3.3 and the Grönwall lemma

3.9, that for everyz 2
�

R
(0)
r , j bw(z)j � bw(x ), x = jz j, where bw(x ) solves the fol-

lowing convolution equation:

1
Mr ;(0)

bw= j bf0j +
�
3+ j bf1j

�
� bw+ j bf2j � bw� bw:

This is nothing but (3.17) withe = 1. We adopt the notations and reasoning made
for the proof of lemma 3.6. Letew(z) be the inverse Borel transform ofbw and
ew(z) = H(t), t = z� 1. The functionH solves the �xed-point problemH = N(H)
with
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N(H) = Mr ;(0)

�
392
625

t2 +
�
3t + 4t2�

H +
1
2

t2H2
�

: (3.25)

We setMr ;(0) = 1
r , U = D(0; r

4:22), andBr = f H 2 O(U); kHk � r g. One easily
shows that for anyH;H1;H2 2 B1,

N(H) 2 Br and kN(H1) � N(H2)k �
44150
44521

kH1 � H2k:

We conclude with the contraction mapping theorem:ew(z) is holomorphic on the

domainjzj >
4:22

r
and is bounded byr there. Therefore, by lemma 3.5,bw is an

entire function and satis�es: for everyx 2 C; j bw(x )j � 4:22e
4:22

r jx j . To sum up:

Corollary 3.1. In theorem 3.3, one can choose A= 4:22andt = 4:22
r .

3.4 First Painlev́e equation and tritruncated solutions

Theorem 3.3 shows that one can apply the Borel-Laplace summation scheme to the
unique formal series expansionew 2 C[[z� 1]] solving equation (3.6). This is what we
do in this section which starts with a brief reminder.

3.4.1 Reminder

We complete de�nitions 3.3 and de�nition 3.8 with notations essentially common
with [19, 16]. For the convenience of the reader we also recall some results about
Borel-Laplace summability and we refer to [19, 16] for more details.

De�nition 3.13. Let q 2 S1 be a direction andI =] a ;b [� S1 be an open arc. We de-
note by

(

q � S1 the open arc de�ned by

(

q =] � p
2 � q; � q + p

2 [, and

(

I =
S

q2I

(

q. We
denote byĪ = [ a ;b ] the closure ofI and byI? =] � b ; � a [ the complex conjugate
open arc.

De�nition 3.14. For a directionq andt 2 R, we denote by
�

P q
t the following open

half-plane, bisected by the half-line e� iqR+ :
�

P q
t = f z2 C; Â(zeiq ) > t g, of aper-

ture

(

q.
Let I � S1 be an open arc of lengthjI j � p andg : I ! R be a locally bounded func-

tion. The domain
�

D (I ;g) is de�ned by
�

D (I ;g) =
[

q2I

�
P q

g(q) and is called asectorial

neighbourhood of in�nity, of aperture

(

I .

Let eg = å
n� 0

bn

zn 2 C[[z� 1]]1 be a 1-Gevrey series: the minorbg thus determines

a holomorphic function near the origin (still denoted bybg). We add the following
conditions:

� one can �nd an open arcI � S1 such thatbg can be analytically continued to an

open sector of the form
�

¥
0 (I );
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� this function (still denoted by)bg is of exponential growth of order 1 at in�nity:

for every proper-subsector
�

¥ (I0) b
�

¥
0 (I ), there existA > 0 andt > 0 such that

for everyz 2
�

¥ (I0), jbgj � Aet jz j .

Under these conditions, for every directionq 2 I0, the Borel-Laplace sumS q eg is

well-de�ned and holomorphic on the half-plane
�

P q
t . Moreover, for two close direc-

tionsq1;q2 2 I0, the Borel-Laplace sumsS q1 eg andS q2 eg coincide on their common

domain
�

P q1
t \

�
P q2

t , thus can be glued together to give a holomorphic function on
�

P q1
t [

�
P q2

t . More generally:

Proposition 3.10.Let eg(z) = å
n� 0

bn

zn 2 C[[z� 1]]1 be a 1-Gevrey series subject to the

following conditions:

� there exists an open arc I� S1 of lengthjI j � p so that the minorbg can be

analytically continued to the open sector
�

¥
0 (I );

� for every directionq 2 I, jbg(xeiq )j � A(q)eg(q)x , x > 0, where A: I ! R+ and
g : I ! R are locally bounded functions.

Then the family(S q eg)q2I of Borel-Laplace sums determines a holomorphic func-

tion on the domain
�

D (I ;g), denoted byS I eg.

De�nition 3.15. Under the conditions of proposition 3.10,eg is said to beBorel-

Laplace summablein the directions ofI . The functionS I eg 2 O
� �
D (I ;g)

�
is called

the Borel-Laplace sum ofeg in directionI .

Proposition 3.11.Let eg(z) = å
n� 0

bn

zn 2 C[[z� 1]] be a formal series, Borel-Laplace

summable in the directions of I� S1, an open arc of lengthjI j � p. Then its Borel-

Laplace sumS I eg 2 O
� �
D (I ;g)

�
is 1-Gevrey asymptotic toeg on

�
D (I ;g) : for any

proper-subsector
�

¥ b
�

D (I ;g), there exist constants C> 0 and A> 0 such that for

every N2 N and every z2
�

¥ ,
�
�
�
�
�
S I eg(z) �

N� 1

å
l= 0

bl

zl

�
�
�
�
�
� CN!ANjzj� N: (3.26)

In this proposition, the property 3.26 essentially characterizes the Borel-Laplace

sum. Indeed, notice that the sectorial neighbourhood of in�nity
�

D (I ;g) is of aperture

(

I which satis�esp < j

(

I j � 2p, and one can draw the following consequence from

the Watson lemma (see [16]): let
�

¥ (I0) be any sector such thatjI0j > p andI0�

(

I .

Let f 2 O(
�

¥ (I0)) be a holomorphic function which is 1-Gevrey asymptotic toeg on
�

¥ (I0). Then f andS I eg coincide on
�

¥ (I0) \
�

D (I ;g).
We eventually ends this reminder with the following statement:

Proposition 3.12.Let I � S1 be an open arc of lengthjI j � p and ef (z); eg(z) 2 C[[z� 1]]
be Borel-Laplace summable formal series in the directions of I. Thenef eg and¶ ef are
Borel-Laplace summable formal series in the directions of I and
S I ( ef eg) = ( S I ef )(S I eg), S I (¶ ef ) = ¶(S I ef ).
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3.4.2 Formal series solution and Borel-Laplace summation

3.4.2.1 Borel-Laplace summation

We go back to the formal solutionew of equation (3.6). Theorem 3.3 and corollary
3.1 have the following consequences:

Corollary 3.2. The Borel transformbw 2 O(
�

R (0)) of the formal solutionew of equa-
tion (3.6) satis�es the following property.

For everyd 2]0;
p
2

[, there exist Ad > 0 andt d > 0 so that

for everyz 2
� ¥

0 (]d;p � d[); j bw(z)j � Adet d jz j : (3.27)

Moreover one can choose Ad = 4:22, t d =
4:22

sin(d)
.

Proof. One can de�ned = sin� 1(r ) = arcsin(r ) 2 ]0;
p
2

[, for anyr 2]0;1[. ut

From corollary 3.2 and the properties of the Borel-Laplace summation, we

see that for everyd 2]0;
p
2

[, the Borel-Laplace sumS q ew of ew in any direc-

tion q 2]d;p � d[, is well-de�ned and holomorphic in the half-plane
�

P q
t d

with

t d =
4:22

sin(d)
. These holomorphic functions glue together to give the Borel-Laplace

sum S ]d;p� d[ ew, holomorphic in the domain
�

D (]0;p[; t ) with

t : q 2]0;p[7! t (q) =
4:22

sin(q)
. (See Fig. 3.2 and exercise 3.4).

Moreover, sinceew formally solves (3.6), its Borel-Laplace sumS ]0;p[ ew is a solution

of this equation which is 1-Gevrey asymptotic at in�nity toew on
�

D (]0;p[; t ).
Similarly, the formal seriesew is Borel-Laplace-summable in the directions of the

interval ]p;2p[. This provides the Borel-Laplace sumS ]p;2p[ ew which belongs to

O
� �
D (]p;2p[; t )

�
and is 1-Gevrey asymptotic toew on

�
D (]p;2p[; t ).

Fig. 3.2 The (shaded)

domain
�

D (]0;p[; t ) for

t (q) =
4:22

sin(q)
.
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Fine Borel-Laplace summations It is possible to get more precise estimates than
those given by (3.26), by appealing to �ne Borel-Laplace summations, discussed
with much attention in [16, 19] to whom we refer.

De�nition 3.16. We denote bySr (q) the open half-stripSr (q) =
[

s2R+

D(seiq ; r), for

r > 0 andq a direction.

The following proposition is the easy part of a theorem due to Nevanlinna [19, 16,
18, 12, 25].

Proposition 3.13.Let ej (z) =
+ ¥

å
n= 0

an

zn 2 C[[z� 1]]1 be a 1-Gevrey series, r> 0, A> 0,

t > 0 andq a direction. Then property (1) implies property (2) in what follows.

1. The minor bj is analytically continuable on Sr (q) and for everyz 2 Sr (q),
j bj (z )j � Aet jz j .

2. The Borel-Laplace sumS q ej (z) is holomorphic in
�

P q
t and for every p� 0,

N � 0 and z2
�

P q
t :

�
�
�
dpS q ej

dzp (z) �
N

å
k= p

(� 1)pak� p
(k� p) � � � (k � 1)

zk

�
�
� � Ras(r;A; t ;N;zeiq ; p)

(3.28)
where

Ras(r;A; t ;N;z; p) = A
N!et r

rNjzjN
p!

(Â(z) � t )p+ 1

p

å
l= 0

�
r(Â (z) � t )

� l

l !
(3.29)

Applications We return to theorem 3.3 and corollary 3.1. We consider a direction
q 2]0;p[ and we chooser > 0 and 0< r < 1 such that sin(q) = r + r . This en-

sures that the half-stripSr (q) is a subset of the domain
�

R
(0)
r and, by theorem 3.3,

there existA > 0 andt > 0 such that for everyz 2 Sr (q), j bw(z)j � Aet jz j with

sin(q) = r + r . Also, from corollary 3.1, one can chooseA = 4:22, t =
4:22

r
. As a

consequence, proposition 3.13 can be applied. The reader will easily adapt the pre-
vious considerations when the directionsq 2]p;2p[ are considered.
We summarize what have been obtained.

Proposition 3.14.The 1-Gevrey seriesew2 C[[z� 1]]1, solution of the prepared equa-
tion (3.6) associated with the �rst Painlevé equation, is Borel-Laplace summable
in the directions of the arc I0 =] 0;p[, resp. I1 =] p;2p[. The Borel-Laplace sum
wtri ;0 = S ]0;p[ ew, resp wtri ;1 = S ]p;2p[ ew. is a holomorphic solution of the differen-
tial equation (3.6) and wtri ;0;wtri ;1 satisfy the following properties. For everyq 2 I0,
resp.q 2 I1, for every r> 0 and r > 0 so thatj sin(q)j = r + r , there existt > 0
and A> 0 such that :

� wtri ; j 2 O(
�

P q
t ), j = 0 resp. j= 1;

� for every z2
�

P q
t , for every N2 N, for j = 0 resp. j= 1,

�
�
�wtri ; j (z) �

N

å
k= 0

ak

zk

�
�
� � A

N!et r

rNjzjN
1

Â(zeiq ) � t
; (3.30)
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�
�
�
dwtri ; j

dz
(z)+

N

å
k= 1

(k� 1)a(k� 1)

zk

�
�
� � A

N!et r

rNjzjN
1+ r(Â(zeiq ) � t )

�
Â (zeiq ) � t

� 2 (3.31)

where the coef�cients ak are given by (3.7);

� morover one can choose A= 4:22, t =
4:22

r
. In particular wtri ;0, resp. wtri ;1, is

holomorphic in
�

D (I0; t ), resp. in
�

D (I1; t ), with t (q) =
4:22

j sin(q)j
.

3.4.2.2 A link with 1-summability theory

We assume that the reader has a previous acquaintance with 1-summability theory,
introduced and much discussed in [16], to which we refer. We only �x some no-
tations, these are classical [16, 18] but for the fact that we consider asymptotics at
in�nity, and we recall some properties.

De�nition 3.17. Let I � S1 be an open arc and
�

¥ =
�

¥ (I ) a sector.

1. A (
�

¥ ), resp. A (I ), is the differential algebra of holomorphic functions on the

sector
�

¥ admitting Poincaŕe asymptotics at in�nity in this sector,resp. asymp-
totics germs at in�nity overI .

The linear mapT : A (
�

¥ ) ! C[[z� 1]], resp. T : A (I ) ! C[[z� 1]], which assigns

to eachf 2 A (
�

¥ ), resp. f 2 A (I ), its asymptotic expansion at in�nity, is called
the Taylor map.

The Taylor mapT is a morphism of differential algebras and this map is onto (Borel-Ritt
theorem).

2. A 1(
�

¥ ), resp. A 1(I ), is the differential algebra of holomorphic functions on

the sector
�

¥ with 1-Gevrey asymptotics at in�nity in this sector,resp. 1-Gevrey
asymptotics germs at in�nity overI .

On denotes byT1 : A 1(
�

¥ ) ! C[[z� 1]]1, resp. T1 : A 1(I ) ! C[[z� 1]]1, the Taylor

map restrictedA 1(
�

¥ ), resp. A 1(I ), called the 1-Gevrey Taylor map.

The 1-Gevrey Taylor mapT1 is morphism of differential algebras. This map is onto
whenjI j � p (Borel-Ritt theorem). This map is injective whenjI j > p (Watson lemma).

3. A < 0(
�

¥ ), resp. A < 0(I ), is the space of �at functions on
�

¥ , resp. �at germs at
in�nity over I .

A < 0(
�

¥ ) is thus the kernel of the Taylor mapT : A (
�

¥ ) ! C[[z� 1]]

4. A �� 1(
�

¥ ), resp. A �� 1(I ), is the space of 1-exponentially �at functions on
�

¥ ,
resp. 1-exponentially �at germs at in�nity overI .

A �� 1(
�

¥ ) is the kernel of the 1-Gevrey Taylor mapT1 : A 1(
�

¥ ) ! C[[z� 1]]1.

5. A is the sheaf overS1 of asymptotic functions at in�nity associated with the
presheafA . We denote byA 1 the sheaf overS1 of 1-Gevrey asymptotic functions
at in�nity associated with the presheafA 1. We denote byA < 0 the sheaf over
S1 of �at germs at in�nity associated with the presheafA < 0. Finally A �� 1

stands for the sheaf overS1 of 1-Gevrey �at germs at in�nity associated with the
presheafA �� 1.
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Theorem 3.4 (Borel-Ritt). The quotient sheafA =A < 0, resp.A 1=A �� 1, is iso-
morphic via the Taylor map T, resp. the 1-Gevrey Taylor map T1, to the constant
sheaf,C[[z� 1]] resp.C[[z� 1]]1

We now go back to proposition 3.14. On the one hand, The domain
�

D (I0; t )

is a sectorial neighbourhood of¥ with aperture

(

I 0 =] �
3
2

p;+
1
2

p[. On the other

hand, while
�

D (I1; t ) = e� ip
�

D (I0; t ) is a sectorial neighbourhood of¥ with aper-

ture

(

I 1 =] �
5
2

p; �
1
2

p[. These two open arcs provide a good coveringf

(

I 0;

(

I 1g of

the circle of directionsS1. Let J0 =] �
1
2

p;
1
2

p[ andJ1 =] �
3
2

p; �
1
2

p[ be the two

intersection arcs. Bothwtri ;0 andwtri ;1 can be considered as de�ning sections ofA 1,

namelywtri ;0 2 G(

(

I 0;A 1) andwtri ;1 2 G(

(

I 1;A 1), and are asymptotic to the same
1-Gevrey formal seriesew. The pair(wtri ;0;wtri ;1) de�nes a 0-cochain in the sense
of �Cech cohomology, and the 1-coboundary(wtri ;0 � wtri ;1;wtri ;1 � wtri ;0) belongs to
G(J0;A �� 1) � G(J1;A �� 1).

3.4.2.3 Miscellaneous properties

We discuss various properties for the Borel-Laplace sumswtri ; j .

For any j 2 Z and I j = I0 + jp =] 0;pj + jp, one can of course consider the
Borel-Laplace sumwtri ; j = S I j ew, which de�nes a holomorphic function on the

domain
�

D (I j ; t ), a sectorial neighbourhood of¥ with aperture

(

I j =

(

I 0 � jp,

(

I j =] �
3
2

p;+
1
2

p[� jp. Morever, for everyj 2 Z,

wtri ; j+ 2(z) = wtri ; j (z) for z2
�

D (I j ; t ) (3.32)

becauseew 2 C[[z� 1]]1.
We mentioned in proposition 3.1 that the formal seriesew(z) is even. One deduces

that for anyq 2]0;p[, for everyz2
�

P p� q
t

S p� q ew(z) = S � q ew(� z):

Therefore, for everyj 2 Z,

for everyz2
�

D (I j ; t ); wtri ; j (z) = wtri ; j+ 1(� z): (3.33)

We know by proposition 3.1 thatew(z) belongs toR[[z� 1]]. This has the following

consequence : for anyq 2]0;p[, for z 2
�

P q
t , S q ew(z) = S � q ew(z) (wherea

stands for the complex conjugate ofa 2 C). In other words, for anyj 2 Z, the
two functionswtri ; j andwtri ; j+ 1 are complex conjugate,

for everyz2
�

D (I j ; t ); wtri ; j (z) = wtri ; j+ 1(z): (3.34)

However, neitherwtri ;0 nor wtri ;1 are real analytic functions, since this would
mean that the 1-coboundarywtri ;0 � wtri ;1 is zero which is not as we shall see
later on.
The properties (3.33) and (3.34) have the following consequences: for every
j 2 Z, wtri ; j is “ PT -symmetric” [10, 11, 13], in the sense that for every



3.4 First Painlev́e equation and tritruncated solutions 53

z2
�

D (I j ; t ),
wtri ; j (z) = wtri ; j (� z): (3.35)

In particular, forr > 0 large enough,

wtri ;0(re� ip=2) 2 R; w0
tri ;0(re� ip=2) 2 iR: (3.36)

3.4.2.4 Asymptotics and approximations

By Stirling formula one hasN! �
p

2pNN+ 1
2 e� N for largeN. Since for a givenz6= 0

the functionN 7!
NNe� N

(rjzj)N reaches its minimal value atn = rjzj, it turns out from

formula (3.30) that one can estimate the value ofwtri ;0 or wtri ;1 from the truncated

series expansion
N

å
k= 0

ak

zk with N =
�
rjzj

�
where

�
:
�

is the entire part. This gives rise

to thesummation to the least term.
Along this state of mind, there are many ways of computing Borel-Laplace sums

approximately in practice (see, e.g., [14, 3]). Among them, one may quote the so-
calledhyperasymptoticmethods [1] which have strong links with resurgence theory.
These methods, originally arising from (and extending to) geometrical considera-
tions on (multiple) singular integrals [23, 9, 8], can be applied to a wide class of
problems stemming from applied mathematics and physics, see [20, 21, 22] and
references therein. Other ways are available, for instance those based on the use of
conformal mappings [2] with realistic upper bounds. It is also theoretically possible
to calculate a 1-sum exactly by means of factorial series expansions [18, 12].

3.4.3 Tritruncated solutions

3.4.3.1 Tritruncated solutions

One can easily translate proposition 3.14 into properties for the �rst Painlevé equa-
tion (2.1). However, to use the Boutroux's transformations (2.6), (2.7) properly, it
is worth to work on the Riemann surface of the logarithm and we thus �x some
notations.

De�nition 3.18. We denote byeC the Riemann surface of the logarithm,

eC = f z= reiq j r > 0; q 2 Rg; p : z2 eC 7!
�
z= reiq 2 C?:

For anyz= reiq 2 eC, we refer toq as to its argument, denoted byq = argz.
We denote byeS1 (usually identi�ed withR) the set of directions of half-lines about
0 on eC. We (still) denote byp : eS1 ! S1 the natural projection which makeseS1 an
étaĺe space onS1 (and even a universal covering).

De�nition 3.19. Let q 2 eS1 be a direction andt 2 R. We set

P q
t = f z= reia 2 eC j a 2

(

q andp(z) 2
�

P q
t g:



54 3 Tritruncated solutions for the �rst Painlevé equation

Let I � eS1 be an open arc andg : I ! R be a locally bounded function. We set
D (I ;g) =

[

q2I

P q
g(q) � eC. One callsD (I ;g) a sectorial neighbourhood of in�nity

on eC.

In order to de�ne the transformations (2.6) and (2.7) safely, we introduce a bi-
holomorphic mapping.

De�nition 3.20. The biholomorphic mappingT is de�ned by:

eC T! eC; z7! x = T (z) =
304=5

24
e� ipz4=5: (3.37)

For I � eS1 an open arc andg : I ! R locally bounded, the domainD (I ;g) is sent
ontoT

�
D (I j ; t )

�
� eC through the mappingT , and we set

(I ;g) = T
�
D (I ;g)

�
;

�
(I ;g) = p

�
S (I ;g)

�
: (3.38)

We will consider the domainsD (I j ; t ), j 2 Z, for I j = I0 + jp =] 0;pj + jp and

t (q) =
4:22

j sin(q)j
. Notice thatD (I j+ 1; t ) = e� ipD (I j ; t ) for any j 2 Z.

The domain (I j ; t ) (see Fig. 3.3 and Fig. 3.4) is a sectorial neighbourhood of in-

�nity of apertureK j =] �
11
5

p; �
3
5

p[�
4
5

jp and we may notice that, for anyj 2 Z,

(I j+ 1; t ) = e� 4ip=5S (I j ; t ). In particular,
�
(I j+ 5; t ) =

�
(I j ; t ).

We now think ofwtri ; j = S I j ew as a holomorphic function onD (I j ; t ). By (3.33)
and (3.35), these functions satisfy some relationships: for anyj 2 Z, for every
z2 D (I j ; t ),

wtri ; j (z) = wtri ; j+ 1(ze� ip ); (3.39)

wtri ; j (z) = wtri ; j (ze� (2j+ 1)ip );

with the conventionz= re� ia 2 eC for z= reia 2 eC.
This gives sense without ambiguity to (3.4), (2.6) and (2.7), with the transform

Fig. 3.3 The shaded domain
is the projection of (I0; t ),
image by the transforma-
tion (3.37), of the domain
D (I0; t ) drawn on Fig. 3.2 for

t (q) =
4:22

j sin(q)j
. The dash

lines recall the sectors (2.9).
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z2 D (I j ; t ) $ x 2 (I j ; t ) (3.40)

wtri ; j (z) $ utri ; j (x) =
eip=2
p

6
x1=2

 

1�
4

25
�
T � 1(x)

� 2 +
wtri ; j

�
T � 1(x)

�

�
T � 1(x)

� 2

!

:

The functionsutri ; j are solutions of the �rst Painlev́e equation (2.1) and by (3.39) and
(3.40), they satisfy the following relationships: for anyj 2 Z, for everyx 2 (I j ; t ),

utri ; j (x) = e2ip=5utri ; j+ 1(xe� 4ip=5); (3.41)

utri ; j (x) = e
2
5 (2j+ 1)iputri ; j (xe� 2

5 (4j+ 7)ip );

We recover here the symmetries discussed in Sect. 2.5.

By projection,utri ; j becomes a function holomorphic on the domain
�
(I j ; t ). This

provides �ve distinct functionsutri ; j (x), j = 0; � � � ;4, the so-calledtri-truncated so-
lutions.
We now use notions developed in [16] to which the reader is referred. Sincewtri ; j

is a section on

(

I j of A 1, we deduce that the tritruncated solutionutri ; j (x) belongs
to the space of holomorphic functions with Gevrey asymptotic expansion of order

4=5 at in�nity in
�
(I j ; t ). One can thus recoverutri ; j (x) by its asymptotics through

5=4-summability.
It is also worth mentioning thatutri ;2(x) is a real analytic function, as a consequence
of property (3.41).

Proposition 3.15.Let be
�
(I0; t ) = p

�
T

�
D (I0; t )

� �
with t (q) =

4:22
j sin(q)j

and,

for j = 0; � � � ;4,
�
(I j ; t ) = w2

j

�
(I0; t ), w j = e� 2ip

5 j . The �rst Painlev́e equation
(2.1) has 5 tri-truncated solutions utri ; j (x), j = 0; � � � 4. The tri-truncated solution

utri ; j (x) is holomorphic in
�
(I j ; t ), a sectorial neighbourhood of in�nity of aper-

ture Kj =] � 11
5 p; � 3

5p[� 4
5 jp, and has in

�
(I j ; t ) a Gevrey asymptotic expansion

of order4=5 which determined utri ; j (x) uniquely. Moreover, for every x2
�
(I j ; t ),

utri ; j (x) = w jutri ;0
�
w� 2

j x
�
, w j = e� 2ip

5 j , j = 0; � � � ;4, and utri ;2 is a real analytic
function.

Remark 3.4.It is shown in exercise 3.3 that for anyj = 0; � � � ;4, the tri-truncated so-

lution utri ; j can be analytically continued to the domain
�
(I j ; t ) with t (q) = 1:4

j sin(q)j .
We will see later on that each tri-truncated solutionutri ; j can be analytically contin-

ued to a wider domain than
�
(I j ; t ).

Exercices

3.1.We consider an ordinary differential equation of the form

P(¶)w = G(z;w;w0; :::;w(n� 1)) (3.42)

P(¶) =
n

å
m= 0

an� m¶m 2 C[¶]; a0 6= 0; an 6= 0



56 3 Tritruncated solutions for the �rst Painlevé equation

where G(z;y) is holomorphic in a neighbourhood of(z;y) = ( ¥ ;0) 2 C � Cn,

n 2 N?. We furthermore suppose thatG(z;0) = O(z� 1) and
¶ jljG(z;0)

¶yl = O(z� 1)

whenjlj = 1.

1. Show that for everyM 2 N and up to making transformations of the type

w =
M

å
k= 1

akz
� k + v; (3.43)

one can instead assume thatG(z;0) = O(z� M� 1).
2. We suppose that for someM 2 N?, G(z;y) satis�esG(z;0) = O(z� M� 1). Show

that, up to making a (so called) shearing transformation of the form

w = z� Mv; (3.44)

one can rather assume thatG(z;0) = O(z� 1),
¶ jljG(z;0)

¶yl = O(z� 1) whenjlj = 1

and
¶ jljG(z;0)

¶yl = O(z� M(jlj� 1)) whenjlj � 2.

3. Deduce that, through transformations of the type (3.43) and (3.44), one can bring
equation (3.42) under the prepared form:

P(¶)w+
1
z

Q(¶)w = F(z;w;w0; :::;w(n� 1)) (3.45)

P(¶) =
n

å
m= 0

an� m¶m 2 C[¶] ; Q(¶) =
n� 1

å
m= 0

bn� m¶m 2 C[¶]

whereF(z;y) is holomorphic in a neighbourhood of(z;y) = ( ¥ ;0) 2 C � Cn

such thatF(z;0) = O(z� 2� M0), M0 2 N,
¶ jljF(z;0)

¶yl = O(z� 2) whenjlj = 1 and

¶ jljF(z;0)
¶yl = O(z� 2� Mjlj ), Mjlj 2 N, whenjlj � 2.

4. Show that the shearing transformw = z� Mv, M 2 N?, brings equation (3.45) into
an equation of the formP(¶)v+ 1

z (Q(¶) � MP0(¶)) v = g(z;v;v0; � � � ;v(n� 1)).

3.2.We consider the ODE (3.10) and its unique solutionbw 2 O(
�

R (0)).

1. Show that, for anyr 2]0;1[, for anyz = xeiq 2
�

R
(0)
r , x = jz j,

r j bw(z)j �
392
625

+ 7
Z x

0
j bw(reiq )j dr +

1
2

Z x

0
j bw� 2(reiq )j dr:

2. Let ber 2]0;1[. We consider the (unique) entire functionbw solution of the con-
volution equationr bw(x ) = 392

625 + 7� bw(x )+ 1
2 � bw� bw(x ). We denote byew(z)

the inverse Borel transform ofbw.

Show that ew(z) 2 O
� n

jzj > 203
25r

o�
(consider the discriminant locus). Show

that forjzj > 203
25r , ew(z) = 784

625

�
(r z� 7)+

�
(r z� 7)2 � 784

625

� 1=2
� � 1

, ew(z) = O(z� 1)

at in�nity, and j ew(z)j � 784
625

1
jr z� 7j � 28

25.

3. Show thatj bw(x )j � 5684
625r e

203
25r jx j for everyx 2 C.
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4. Deduce that for everyr 2]0;1[ and everyz 2
�

R
(0)
r , j bw(z)j � 5684

625r e
203
25r jz j .

3.3.We consider the ODE

y00+
y0

z
� y =

392
625

z� 4 +
1
2

y2: (3.46)

deduced from (3.2) by the transformationv(z) = 1 �
4

25z2 + y(z) or, from (3.6)

through the transformationy(z) = z� 2w(z). In particular there exists a unique for-
mal seriesey(z) = z� 2 ew(z) 2 C[[z� 1]] solution of (3.46). We thus know that the for-

mal Borel transformby belongs toM O (
�

R (0)) and satis�es the convolution equation
associated with (3.46) by formal Borel transformation:

(z2 � 1)by� 1� (z by) =
392
625

z3

G(4)
+

1
2

by� by: (3.47)

1. Let f 2 O0 be a germ such thatf (0) = 0. Show that the solutionsg 2 O0 of the
convolution equation(z2 � 1)g� 1� (zg) = f are given by

g(z) =
C

(1� z2)1=2
�

f (z )
1� z2 +

1
(1� z2)1=2

Z z

0

h
(1� h 2)3=2

f (h ) dh ; C 2 C:

(Hint : setg(z ) = G(z)
1� z2 , differentiate the convolution equation to obtain a non-

homogeneous linear differential equation of order 1, and solve this equation).

2. Show thatby satis�es the convolution equation (3.47) inM O (
�

R (0)) if and only
if by satis�es the following �xed-point problem:

by = P
�

392
625

z3

G(4)

�
+

1
2

P
�
by� by

�
with

�
P g

�
(z ) = �

g(z )
1� z2 +

1
(1� z2)1=2

Z z

0

h
(1� h 2)3=2

g(h ) dh ;

(3.48)

3. Show that for anyr 2]0;1[ and anyz 2
�

R
(0)
r , and

�
�
� z

(1� z2)3=2

�
�
� � 1

r 3=2 .

4. Show that for anyr 2]0;1[ and anyz 2
�

R
(0)
r , jby(z )j � bY(x) with x = jz j, where

bY is an entire function which solves the �xed-point problem:

bY = Q
�

392
625

x3

G(4)

�
+

1
2

Q
�
bY � bY

�
(3.49)

�
QG

�
(x ) =

G(x)
r

+
1
r 2

�
1� G

�
(x )

5. For anyr 2]0;1[ we denote byeY(z) the inverse Borel transform ofbY. Show that
eY(z) satis�es the algebraic equation

r eY =
�

392
625

1
z4 +

1
2

eY2
� �

1+
1
r z

�
; eY(z) =

392
625

1
r z4 + O(z� 5): (3.50)

6. We setU = D(¥ ; r
1:4). Show that the �xed-point problem (3.50) has a unique

solution inBr 3=2 = f H 2 O(U); kHk � r 3

2 g, for
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Fig. 3.4 The shaded domain
is the projection of 2(I2; t ),
image of the domainD (I2; t )
by the conformal mapping

(3.37), fort (q) =
1:4

j sin(q)j
.

The dash lines recall the
sectors (2.9).

7. Deduce that the minorby of the formal seriesey solution of equation (3.46) can be

analytically continued is on
�

R (0) and that, for anyr 2]0;1[ and anyz 2
�

R
(0)
r :

jby(z )j � 0:7r 2e
1:4
r jz j : (3.51)

8. We setI j = I0 + jp =] 0;pj + jp, j 2 Z. Show that the Borel-Laplace sum

ytri ; j = S I j ey de�nes a function holomorphic on
�

D (I j ; t ) with t (q) = 1:4
j sin(q)j .

9. Deduce that the tri-truncated solutionutri ; j , j 2 Z, is holomorphic on the domain
(I j ; t ) = T

�
D (I j ; t )

�
with t (q) = 1:4

j sin(q)j . See Fig. 3.4.

3.4.We consider the domain
�

D (]0;p[; t ) for t (q) = l
sin(q) , l > 0. We want to de-

scribe the boundary¶
�

D (]0;p[; t ) of this domain.

1. show that¶
�

D (]0;p[; t ) is the envelope of the following family of line curves:
z= x+ iy, xcos(q) � ysin(q) = l

sin(q) , q 2]0;p[.

2. Deduce that¶
�

D (]0;p[; t ) is the parabolic curve of equationy = x2

4l � l .
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23. F. Pham,Intégrales singuli�eres.Savoirs Actuels (Les Ulis). EDP Sciences, Les Ulis; CNRS
Editions, Paris, 2005

24. J.-P. Ramis, Y. Sibuya,Hukuhara domains and fundamental existence and uniqueness theo-
rems for asymptotic solutions of Gevrey type.Asymptotic Anal.2 (1989), no. 1, 39-94.

25. A.D. Sokal, An improvement of Watson's theorem on Borel summability.J. Math. Phys.21
(1980), no. 2, 261-263.

26. F. Tr�eves, Basic linear partial differential equations., Pure and Applied Mathematics, Vol.
62. Academic Press, New York-London, 1975.

27. W. Wasow,Asymptotic expansions for ODE.Reprint of the 1965 edition. Robert E. Krieger
Publishing Co., Huntington, N.Y., 1976.





Chapter 4
A step beyond Borel-Laplace summability

Abstract We previously showed that the minorbw of the unique formal series so-
lution ew of the prepared ODE associated with the �rst Painlevé equation, de�nes
a function holomorphic on a cut plane. We further analyze the analytic properties
of bw. We show in Sect. 4.5 howbw can be analytically continued to a domain of a
Riemann surface, de�ned in Sect. 4.2, and we draw some consequences. This ques-
tion is related to the problem of mastering the analytic continuations of convolution
products and, as a byproduct, of getting qualitative estimates on any compact set.
This is what we will partly do in Sect. 4.3 and Sect. 4.4, using only elementary
geometrical arguments. We end with some supplements in Sect. 4.6.

4.1 Introduction

We previously analyzed the Borel-Laplace summability ofew(z) 2 C[[z� 1]], the
unique formal solution of the prepared ODE (3.6) associated with the �rst Painlevé
equation. This was done by two approaches. In one of them, we de�ned a sequence
(bhl ) l2N of Z-resurgent functions (proposition 3.8) and we showed that the minorbw
of ew can be represented as the sum of the serieså

l � 0

bhl which converges to a holo-

morphic function on the cut plane
�

R (0) = C n f� [1;+ ¥ [g. The key issue is:

Question 4.1.Does bw belong to the space ofZ-resurgent functions or, in other
words, isew aZ-resurgent formal series ?

The answer is “yes” and this will allow an in-depth examination of the (so-called)
non-linear Stokes phenomenon for the �rst Painlevé equation, in the spirit of the
various examples handled in [10]. However, this question requires further tools and
we postpone the complete answer to the last chapter of this course. One of these
tools consists in sharpening our understanding ofW-resurgent functions, at least
whenW = Z. This is our aim in this chapter.

The W-resurgent functions have been recalled in de�nition 3.7. This can be
rephrased as follows forW = Z:

the germbj 2 O0 is a Z-resurgent function if and only ifbj can be represented
by a functionF holomorphic onU0 = D(0; r), 0 < r � 1, and for any given
z0 2 U?

0 = U n f 0g, this function can be analytically continued along any pathg
of C nZ originating fromz0.

61



62 4 A step beyond Borel-Laplace summability

Notice in this rephrasing thatU0 could have been replaced by any connected

and simply connected neighbourdhood of the origin, for instance
�

R (0) . (Exer-
cise : why ?)

We would like to characterizeZ-resurgent functions by means of Riemann sur-
faces. Letbj 2 O0 be a germ of holomorphic functions at 0 and(O;q) be the
étaĺe space associated with the sheafO (cf. remark 1.1). We denote byR ( bj ) the
connected component ofO containingbj . Endowed with the restricted projection
q0= qjR ( bj ) , R ( bj ) is the Riemann surface ofbj .

We recall that a Riemann surface is a connected one-dimensional complex manifold [10, 7,
3]. Notice thatR ( bj ) is not necessarily simply connected. (Exercise : why ?)

We now assume thatbj is aZ-resurgent, determined by a functionF holomorphic
onU0 � C, a connected and simply connected neighbourdhood of the origin. Let us
draw some conclusions aboutR ( bj ) from this hypothesis.
In the �rst place by the very construction ofR ( bj ), one can �nd a neighbourhood
U0 � R ( bj ) of bj such thatq0(U0) = U and the mappingq0jU 0 : U0 ! U0 is a home-
omorphism. In particular,U0 is connected and simply connected.
In addition, let bez0 2 U and denote bybj 0 = q0j� 1

U 0
(z0) 2 U0 the germ of holomor-

phic functions atz0 determined byF . Sincebj is Z-resurgent,bj 0 can be analytically
continued along any pathg of C nZ originating fromz0. In other words, any such
pathg can be lifted toR ( bj ) from bj 0 with respect toq0, and this lifting is unique by
uniqueness of lifting [7]. We denote byG this lifting, g = q0� G. Now assume that
g is a loop homotopic inC nZ to a loopg0 in U?

0 . Then contg bj 0 = bj 0 because contg
only depends on the homotopy class ofg in C nZ, meanwhilebj 0 is represented by
F 2 O(U0) onU0. In regard, lifting the homotopy,G is homotopic to a loop inU0,
thus null-homotopic sinceU0 is simply connected.

This being said, we raise the following question:

Question 4.2.Can we determine a simply connected Riemann surfaceR Z on which
anyZ-resurgent function can be analytically continued ?

We answer to this question in Sect. 4.2, through an explicit construction ofR Z .
We also describe there various sheets of this Riemann surface which will be usefull
for later purposes.

Next we turn to the convolution product. We already know by theorem 3.2 that the
space ofZ-resurgent functions is stable under convolution product. In other words,
if the germsbj ; by 2 O0 can be analytically continued to the Riemann surfaceR Z ,
then it is the same for their convolution productbj � by . But what about the question
of upper bounds ? In the previous chapter, the answer was essentially the matter of
lemma 3.3 and the new issue is:

Question 4.3.Can we formulate an analogue of lemma 3.3 for holomorphic func-
tions de�ned on the Riemann surfaceR Z ?

The main result of this chapter, namely theorem 4.1 and its corollaries detailed
in Sect. 4.4, gives a partial to this question. Its proof relies on the use of shortest
symmetrically contractile paths which we describe in Sect. 4.3. We then apply our
results to the �rst Painlev́e equation in Sect. 4.5, to get theorem 4.2. A theoretical
supplement ends this chapter.
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4.2 Resurgent functions and Riemann surface

This section is devoted to de�ning the Riemann surfaceR = R Z and some of its
sheets. We �rst recall usual notations.

4.2.1 Notations

In this course, apath (or a parametrized curve)l in a topological spaceX is any
continuous functionl : [a;a+ l ] ! X, where[a;a+ l ] � R is a (compact) interval
possibly reduced tof ag.
One denotes byl � 1 the inverse path, that isl � 1 : t 2 [a;a+ l ] 7! l (2a+ l � t)
We often work with standard paths, that is paths de�ned on[0;1]. The path
l : t 2 [0;1] 7! l (a+ tl ) is thestandardized pathof l .
For two pathsl 1 : [a;a+ l ] ! X, l 2 : [b;b+ k] ! X so thatl 1(a+ l ) = l 2(b), one
denotes byl 1l 2 their product (or also concatenation),

l 1l 2 : t 2 [a;a+ l + k] 7!
�

l 1(t); t 2 [a;a+ l ]
l 2(t � a� l + b); t 2 [a+ l ;a+ l + k]

We denote by� X the equivalence relation of homotopy of paths with �xed extrem-
ities in X : l 1 � X l 2 if the two pathsl 1, l 2 in X have same extremities and there
exists a continuous mapH : [0;1] � [0;1] ! X that realizes a homotopy between the
standardized pathsl 1 andl 2.
When X has a (�nite R-dimensional andC¥ ) differential structure, one can de-
�ne smooth paths. We recall that any path can be uniformaly approached byC¥ -
paths. Typically in this course,X = C with its 2-dimensional real differential struc-
ture. For a piecewiseC1-pathl : I ! C, its length is denoted by length(l ) where

length(l ) =
n

å
k= 1

Z tk

tk� 1

jl 0(t)jdt, for any partition 0= t0 < t1 < � � � < tn = 1 of [0;1]

for which l has a continuous derivative on each interval[tk� 1; tk].

4.2.2 The Riemann surface ofZ-resurgent functions

4.2.2.1 The spaceR Z;z0

De�nition 4.1. LetU0 be a connected and simply connected neighbourdhood of the
origin in C andz0 2 U?

0 = U0 n f 0g. We denote byAz0
(resp.B z0

) the set of paths
in U0 (resp.C nZ) originating fromz0, endowed with the equivalence relation� U0

(resp.� CnZ) of homotopy of paths with �xed extremities.

We setRz0
= Az0

[ B z0
and denote by

z0� the relation onRz0
de�ned as follows.

For any twog1;g2 2 Rz0
, g1

z0� g2 when one of the following conditions is satis�ed:

� eitherg1 � U0 g2 or g1 � CnZ g2

� or else there existsg3 2 Az0
\ B z0

such that
�

g1 � U0 g3
g2 � CnZ g3

or
�

g1 � CnZ g3

g2 � U0 g3
.

Exercise 4.1.Show that
z0� is an equivalence relation onRz0

.
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De�nition 4.2. Let g be an element ofRz0
. We denote by clz0

(g) its equivalence

class for the relation
z0� . We set

�
R = C nZ? and we de�ne:

R Z;z0
= f clz0

(g) j g 2 Rz0
g and pz0

: clz0
(g) 7! g(1) 2

�
R : (4.1)

Notice thatp� 1
z0

(0) is reduced to a single distinguished point, the equivalence
class of anyg 2 Az0

ending at the origin, becauseU0 is simply connected.

De�nition 4.3. One denotes by 02 R Z;z0
the unique pre-image of 0 bypz0

. Let be

z 2
�

R , one denotes byz 2 R Z;z0
one of its pre-image if exists. For anyz 2 R Z;z0

,

one denotes by
�
z = pz0

(z ) its projection bypz0
.

4.2.2.2 The Riemann surfaceR Z;z0

The topological spaceR Z;z0
We endowR Z;z0

with a topology, a basisB = f U g
of open sets being given as follows. Letz be an element ofR Z;z0

and setz = pz0
(z ).

� Assume thatz = clz0
(g) with g2 Az0

(thusz 2 U0). LetU � U0 be any connected
and simply connected open neighbourhood ofz . To (U;z ) we associate the set
U � R Z;z0

made of allx = clz0
(g1g2) whereg1 satis�esg1 � U0 g while g2 is any

path inU originating fromz.
� Assume thatz = clz0

(g) with g 2 B z0
(in particularz 6= 0). Let U � C nZ

be any connected and simply connected open neighbourhood ofz . To (U;z )
we associate the setU � R Z;z0

made of allx = clz0
(g1g2) whereg1 satis�es

g1 � CnZ g andg2 is any path inU originating fromz.

Exercise 4.2.Show the following properties (hint : see the classical construction of
the universal covering ofC nZ [7, 3] and adapt the arguments):

1. B = f U g provides a Hausdorff topology onR Z;z0
;

2. the projectionpz0
is a continuous mapping and even, a local homeomorphism :

for everyU 2 B , the mappingpz0
jU ! U = pz0

(U ) is a homeomorphism.
3. R Z;z0

is arc-connected and simply connected.

The Riemann surfaceR Z;z0
The following proposition is a direct consequence of

the properties detailed in exercise 4.2.

Proposition 4.1.The spaceR Z;z0
is a topologically separated space, arc-connected

and simply connected The projectionpz0
makesR Z;z0

an étaĺe space on
�

R . By
pulling back bypz0

the complex structure ofC, the spaceR Z;z0
becomes a Riemann

surface with a uniquely de�ned distinguished point0 = p� 1
z0

(0).

Notice thatpz0
is not a covering map since the curve lifting property [7, 3] is not

satis�ed. For instance, as a rule, a path starting from and ending at 0 cannot be lifted
from 0onR Z;z0

with respect topz0
.

We precise the “pull back” of the complex structure. IfU1;U2, U1 \ U2 6= /0
are two open sets ofR Z;z0

such that the mappingspz0
jU 1 : U1 ! pz0

(U1) and
pz0

jU 2 : U2 ! pz0
(U2) are two homeomorphisms, then the chart transition

pz0
jU 2 � pz0

j� 1
U 1

: pz0
(U1 \ U2) ! pz0

(U1 \ U2) is nothing but the identity map, thus
is biholomorphic. This makesR Z;z0

a Riemann surface.
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Exercise 4.3.Let U0;z0 be as in de�nition 4.1. LetU1 � C nZ be a connected and
simply connected open neighbourhood ofz0 such thatU0 \ U1 is connected. We
denote byU0 � R Z;z0

the uniquely de�ned open set such thatpz0
jU 0 : U0 ! U0

is a homeomorphism and we setz
0

= pz0
j� 1
U 0

(z0). We denote byU1 � R Z;z0
the

uniquely de�ned neighbourdhood ofz
0

such thatpz0
jU 1 : U1 ! U1 is a homeomor-

phism.

1. Show thatU = U0 [ U1 is simply connected.
2. We setU = U0 [ U1. Show thatpz0

jU is a homeomorphism betweenU andU.

4.2.2.3 The Riemann surfaceR Z

Up to now, the Riemann surface(R Z;z0
;pz0

) depends on the given ofU0, a con-
nected and simply connected neighbourdhood of the origin, and ofz0 2 U0.

Lemma 4.1.Let U0 (resp. U1) be a connected and simply connected neighbourd-
hood of the origin inC andz0 2 U?

0 (resp.z1 2 U?
1 ). Then there exists a �ber preserv-

ing homeomorphismt : R Z;z0
! R Z;z1

between the Riemann surfaces(R Z;z0
;pz0

;0)
and(R Z;z1

;pz1
;0).

Proof. Left as an exercise to the reader.

De�nition 4.4. The class of isomorphisms of the Riemann surfaces(R Z;z0
;pz0

;0)
is denoted by(R Z ;p;0). In this course we often use abridged notationR .

Proposition 4.2.Let bj 0 2 O0 be a germ of holomorphic functions at the origin and
let (R ( bj 0);q; bj 0) be its Riemann surface. Thenbj 0 is a Z-resurgent function if and
only if (R ;p;0) is contained in(R ( bj 0);q; bj 0), that is there exists a �ber preserving
continuous mapt : R ! R ( bj 0), q� t = p andt (0) = bj 0.

Proof. Assume thatbj 0 is aZ-resurgent function. We setU0 = D(0;1) and we pick
a pointz0 2 U?

0 . On the one hand, there is a uniquely determined domainU0 � R
homeomorphic toU0 by pjU 0 and we setz

0
= pj� 1

U 0
(z0). On the other hand, there

is a uniquely determined domainU 0
0 � R ( bj 0) homeomorphic toU0 by qjU 0

0
and

we setz0
0

= qj� 1
U 0

0
(z0). We get this way a natural �ber preserving homeomorphism

t jU 0 : z 2 U0 7! z02 U 0
0 . We now extendt jU 0 as follows: pick any pathg in CnZ,

originating fromz0, let G be its lifting from z
0

on R with respect top and set

z = G(1) 2 R . The pathg can be lifted as well onR ( bj 0) with respect toq from z0
0

into a pathG0, becausebj 0 is Z-resurgent. We setG0(1) = z0. The extended mapping
t : z 2 R 7! R ( bj 0) thus (well)-de�ned is injective by uniqueness of lifting [7],
continuous because we work withétaĺe spaces, and preserves �bers.
The converse of the proposition is left to the reader as an exercise.ut

In other words,bj 0 2 O0 is aZ-resurgent function if and onlybj 0 can be analyt-
ically continued to the Riemann surfaceR Z . This means that one can identify the
spaceR̂ with the spaceO(R ) of functions holomorphic on the Riemann surfaceR .

De�nition 4.5. The Riemann surface(R Z ;p;0) is called theRiemann surface of
Z-resurgent functions.
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4.2.3 Riemann surfaceR Z and sheets

We introduce various sheets and domains onR Z . At �rst sight arti�cially compli-
cated, these constructions will be needed to state one of main results of this chapter,
namely theorem 4.1 and its consequences.

4.2.3.1 Principal sheet

By the very construction of the Riemann surfaceR , there exists a unique domain
R (0) of R so thatpjR (0) realizes a homeomorphism betweenR (0) and the simply

connected domain
�

R (0) . The domainR (0) is made of endpointsz of paths deduced

from any segment[0;z ] �
�

R (0) , by lifting from 0 with respect top.

De�nition 4.6. One refers toR (0) as to theprincipal sheetof the pointed Riemann
surface(R ;0). For everyr 2]0;1[, one denotes byR (0)

r the unique open subset of

R (0) such thatp(R (0)
r ) =

�
R

(0)
r . (See Fig. 4.1).

4.2.3.2 Other sheets

De�nition 4.7. Let bem2 N?, e = ( e1; � � � ;em� 1) 2 f + ; �g m� 1 a (m� 1)-tuple of
signs andn = ( n1; � � � ;nm� 1) 2 (N?)m� 1 a (m� 1)-tuple of positive integers. Let
q1 2 f 0;pg � S1 be a direction. Letg be a path inC originating from 0.
Whenm = 1, one says that the pathg is of typegq1

() wheng closely follows the

segment eiq1]0;1[=] 0;w1[ towardw1 = eiq1.
Otherwise, form� 2, on says that theg is of type typegq1

en if g connects the segment
]0;w1[ to the segment]wm� 1;wm[, wm � wm� 1 = eiqm, through the following steps:

� g closely follows the segment]0;w1[ toward the directionq1, makesn1 half-turns
around the pointw1, anti clockwise whene1 = + , clockwise whene1 = � 1, and
�nally closely follows the segment]w1;w2[, w2 � w1 = eiq2, toward the direction
q2 = q1 + e1(n1 � 1)p;

� then, successively fork = 2; � � � ;m� 1, g makesnk half-turns around the point
wk, anti clockwise whenek = + , clockwise whenek = � 1, and eventually
closely follows the segment]wk;wk+ 1[, wk+ 1 � wk = eiqk+ 1, toward the direction
qk+ 1 = qk + ek(nk � 1)p.

Fig. 4.1 Above, the domain
�

R (0) . Below, the domain
�

R
(0)
r .
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Fig. 4.2 A path of typegq
e for

e = (+ ; � ;+) andq = 0.

Fig. 4.3 A path of typegq
en

for q = 0,e = ( � ;+ ;+ ;+ ; � )
andn = ( 1;2;1;1;1).

Whenn = ( 1; � � � ;1) 2 f 1gm� 1, we simply say thatg is of typegq1
e . (See Fig. 4.2

and Fig. 4.3).

For instance, ifg is of typegq
e , then someone standing at 02 C and looking in the direction

of the half-line]0;eiq¥ [ will see the pathg avoiding the pointwn = neiq 2 C? by swerving
in the direction of his right hand whenen = + , of his left hand whenen = � .

De�nition 4.8. Let bem2 N?, e 2 f + ; �g m, n 2 (N?)m andq 2 f 0;pg. We denote
by R en;q � R the domain made of endpointsz = G(1) whereG is the lift from 0
with respect top of any pathg of the formg = g1g2 with the conditions :g1 is a path

of typegq
en ending at

�
x2]p; (p+ 1)[=] wm;wm+ 1[, g2 is a path starting from

�
x , and

contained in the simply connected domainCnf ] � ¥ ; p] [ [p+ 1;+ ¥ [g, star-shaped

from
�
x . Whenn = ( 1; � � � ;1) 2 f 1gm, we simply writeR e;q = R en;q .

The collection of sheetsf R (0) ;R en;qg provides an open covering ofR , with the
following property: the restrictionpjR en;q is a homeomorphism betweenR en;q and
the simply connected domain C n f ] � ¥ ; p] [ [p+ 1;+ ¥ [g where
]p; (p+ 1)[=] wm;wm+ 1[, with wm;wm+ 1 as given by de�nition 4.7.

Remark that for everyq 2 f 0;pg, for everym 2 N? and for everye either in
f + gm or in f�g m, R (0) andR e;q have a non-empty intersection (a half-plane on
projection). This justi�es the following de�nitions.

De�nition 4.9. Let be m 2 N?. We set (+) m� 1 = (+ ; � � � ;+) 2 f + gm� 1 and
(� )m� 1 = ( � ; � � � ; � ) 2 f�g m� 1. We denote by(� )m� 1 any (m� 1)-tuple of the
form (� ; � � � ; � ) 2 f + ; �g m� 1. Also, (+) 0 = ( � )0 = ( � )0 = () is the 0-tuple.

Thus the set of all(� )m is made of 2m elements.

De�nition 4.10. The domain R e;q is called a R (0)-nearby sheet if
e 2

[

m2N?

f (+) m; (� )mg. One denotes byR (1) � R the union of the principal sheet

and of all nearby sheets:R (1) = R (0)
[

q2f 0;pg;m2N?

R (+) m;q [ R (� )m;q .

More generally, for anyk 2 N?, one de�nes:

R (k+ 1) = R (k)
[

q2f 0;pg;m2N?

n2(N?)k

R (( � )n
k ;(+) m� 1);q [ R (( � )n

k ;(� )m� 1);q :

Remark 4.1.Notice thatp(R (+) m;q ) = p(R (� )m;q ) = C neiq f ] � ¥ ;m] [ [m+ 1;+ ¥ [g
and

[

k

R (k) = R .

For every integerk 2 N, the domainR (k) inherits fromR the structure of complex
manifold, thus is is a Riemann surface.
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Fig. 4.4 The domain
�

R r when
1
9

< r �
1
7

(the scale is not correct).

4.2.4 R (0)
r -nearby domains

Our aim is to introduce various of the Riemann surfaceR which will be convenient
for later purposes.

We start with the following remark: forr 2]0;1[ andm 2 N?, the closed discs

D(m;mr ) andD(m+ 1;(m+ 1)r ) are disjoint as soon asm< r � 1� 1
2 . Thus, now

assuming thatr 2]0; 1
5[ and introducing the integer partM (r )+ 1 = br � 1� 1

2 c � 2
(b:c] is the �oor function), one observes that the discsD(m; jmjr ) do not overlap
whenjmj � M (r )+ 1.

De�nition 4.11. Let ber 2]0; 1
5[. We denote byM (r ) 2 N? the positive integer de-

�ned by M (r ) = br � 1� 1
2 c � 1. For any integerm2 Z? such thatjmj � M (r )+ 1,

we denote byDm = D(m; jmjr ) the closed disc centered atm with radiusjmjr , and
D0 = f 0g. For anyq 2 f 0;pg, we denote byD q

r � C the closed subset de�ned by

D q
r =

n
tz j t 2 [1;+ ¥ [; z 2 Deiq (M+ 1)

o [

0� m� M (r )
Deiq m:

We set
�

P q
r = C n D q

r . We denote by
�

R r the domain de�ned by
�

R r =
� �

P 0
r \

�
P p

r

�
[ f 0g and by

�

R r its closure. (See Fig. 4.4).

Notice that
�

R =
[

0< r < 1=5

�
R r . The domains

�
P q

r satisfy the following property,

the proof of which being left as an exercise :

Lemma 4.2.Let bez be an element of
�

P q
r . For every n2 [1;M (r )], the closed set

z � Deiq n = f z � x j x 2 Deiq ng is a subset of
�

P q
r .

De�nition 4.12. Under the hypotheses of de�nition 4.11, for any integerm2 [0;M (r )]
andq 2 f 0;pg, we de�ne:

Em;q
r =

[

(z ;x )2Deiq m� Deiq (m+ 1)

n
x + t(x � z );z + t(z � x ) j t 2 [0;+ ¥ [

o

and
�

Q
m;q
r = CnEq

r ;m. for any integerm> M (r ), we set
�

Q
m;q
r = /0 . For any positive

integerm� 1 ande = � , we set
�

Q
(e)m;q
r =

�
Q

m;q
r \ f z j eeiq (Áz) � 0g. See Fig. 4.5.

The domains
�

Q
m;q
r have been de�ned so as to enjoy the following property :

Lemma 4.3.Let bez 2
�

Q
m;q
r for some integer m2 [1;M (r )] and someq 2 f 0;pg.

Then, for every integer n2 [1;m], z � Deiq n is a subset of
�

Q
m� n;q
r .
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Fig. 4.5 The domain
�
Q

2;p
r . The set

�
Q

(� )2;p
r lies below the real axis,

�
Q

(+) 2;p
r lies above the real

axis.

Proof. We only consider the caseq = 0 and we supposez 2
�

Q
m;0
r . Le ben2 [1;m].

Assume the existence ofzn 2 Dn such thatz � zn =2
�

Q
m� n;0
r , thusz � zn 2 Em� n;0

r

(see de�nition 4.12). Therefore, there existzm� n 2 Dm� n, zm� n+ 1 2 Dm� n+ 1 and
t 2 [0;+ ¥ [ such that

z � zn = zm� n + t(zm� n � zm� n+ 1) or z � zn = zm� n+ 1 + t(zm� n+ 1 � zm� n):

We look only at the �rst case, which we write as follows:

z = ( zm� n + zn) + t
�

(zm� n + zn) � (zm� n+ 1 + zn)
�

:

We observe thatzm� n + zn 2 Dm while zm� n+ 1 + zn 2 Dm+ 1. Thereforez 2 Em;0
r

and this contradicts the assumptionz 2
�

Q
m;0
r . ut

De�nition 4.13. Under the hypotheses of de�nition 4.11, for any integerm2 [1;M (r )]
and anyq 2 f 0;pg, we denote byD m;q

r � C the closed subset de�ned by

D m;q
r =

n
tz j t 2 ] � ¥ ;1]; z 2 Deiq m

o
[

n
tz j t 2 [1;+ ¥ [; z 2 Deiq (m+ 1)

o
:

We set
�

P
m;q
r = C nD m;q

r and
�

P
0;q
r =

�
Q

0;0
r . For any integerm > M (r ), we set

�
P

m;q
r = /0.

Fore= � we denote by
�

P
(e)m;q
r the domain

�
P

(e)m;q
r =

�
P

m;q
r \ f z j eeiq (Áz) � 0g.

(See Fig. 4.6).

De�nition 4.14. Under the hypotheses of de�nition 4.11, for anyq 2 f 0;pg, e = �

andm 2 N, we denote by
�

R
(e)m;q
r the domain

�
R

(e)m;q
r =

�
P

(e)m;q
r [

�
Q

(� e)m;q
r (see

Fig. 4.7), and we set:

�
R m;q =

[

0< r � 1=5

�
R

(+) m;q
r =

[

0< r � 1=5

�
R

(� )m;q
r = C neiq �

] � ¥ ;m] [ [m+ 1;+ ¥ [
	

:

Fig. 4.6 The domain
�

P
2;p
r . The set

�
P

(� )2;p
r lies below the real axis, the set

�
P

(+) 2;p
r lies above the

real axis.
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Fig. 4.7 Figure above, the domain
�

R
(+) 2;p
r . Figure below, the domain

�
R 2;p .

We have already noticed that forq 2 f 0;pg andm2 N?, the restrictionpjR (+) m;q

and pjR (� )m;q respectively, realises a homeomorphism between the nearby sheet
R (+) m;q andR (� )m;q respectively, and the simply connected domain

p(R (+) m;q ) = p(R (� )m;q ) =
�

R m;q :

This justi�es the following de�nition.

De�nition 4.15. With the above notations, withe = � andm2 [1;M (r )] an inte-

ger, one setsR (e)m;q
r = pj� 1

R (e)m;q

� �
R

(e)m;q
r

�
. The domainR (e)m;q

r is called aR (0)
r -

nearby domains.The connected and simply connected domainR (1)
r � R (1) is de-

�ned by R (1)
r = R (0)

r
[

1� m� M (r )
q2f 0;pg;e= �

R (e)m;q
r . We denote byR (1)

r the closure ofR (1)
r

in R (1) .

Observe thatp
�

R (1)
r

�
=

�
R r . In the same line, the following lemma is a conse-

quence of lemmas 4.2 and 4.3.

Lemma 4.4.Let be m2 [1;M (r )], q 2 f 0;pg, e = � and letV be the closure of

R (e)m;q
r nR (0)

r . For everyz 2 V , and every integer n2 [1;m],
�
z � Deiq n is a subset

of
�

R r and there exists an open setU � R (e)m� n;q
r such thatU and

�
z � Deiq n are

p-homeomorphic.

4.2.5 Geodesics

The closed space
�

R r �
�

R (de�nition 4.11) can be thought of as a complete real
2-dimensional Riemannian manifold with smooth (C1) boundary embedded in the
2-dimensional euclidean space. The following lemma thus makes sense.

Lemma 4.5.Let X �
�

R r be any closed space with smooth(C1) boundary. For every
two pointsz1;z2 2 X, there exists a geodesic in every homotopy class of curves from
z1 to z2 in X, and this geodesic may be chosen as a shortest path in the homotopy
class.
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Fig. 4.8 Shortest curve forz
in R (+) 3;0

r nR (0)
r .

In this lemma, a geodesic means a locally shortest path for the euclidean metric.
Lemma 4.5 can be seen as a corollary of the Hopf-Rinow theorem [9]. As a mat-
ter of fact, the situation is quite simple here : insideX, a geodesic is nothing but
a straight line, otherwise one just follows the smooth boundary¶X. (See [1] and
references therein for more general cases.)

The Riemann surface(R ;p;0) of Z-resurgent functions can also be thought of
as a real 2-dimensional Riemannian manifold, by pulling-back byp the standard
euclidean metric on the complex plane. It follows from its very construction that
R (1)

r (de�nition 4.15) meets the requirement:

Lemma 4.6.The closed, connected and simply connected space with smoothC1-
boundaryR (1)

r � R is a complete real 2-dimensional Riemannian manifold.

Pick a pointz 2 R (1)
r . Up to homotopy, there exists a unique pathL joining 0 to

z in R (1)
r , becauseR (1)

r is (path)connected and simply connected. Moreover, from
the Hopf-Rinow theorem,L can be chosen as a shortest (C1-)path in this homotopy
class, and is uniquely determined when parametrized by arc-length. To sum up:

Lemma 4.7.For everyz 2 R (1)
r , there exists a unique pathL in R (1)

r , originating
from 0 and ending atz , such thatL is a shortest path in its homotopy class and is
parametrized by arc-length.

Remark 4.2.It is easy to constructL by hand.

First case: z belongs toR
(0)
r . Consider the curvel , with its arc-length parametriza-

tion, starting from 0 which follows the segment[0;
�
z ] �

�

R (0)
r . The pathL is obtained

by lifting l from 0with respect top onR (1)
r .

Second case:z belongs toR (e)m;q
r nR (0)

r for someq 2 f 0;pg, e = � and somem2
[1;M (r )]. Consider the pathl = g0d0d1 whereg0;d0;d1 stands for the following
geodesics with their arc-length parametrizations (see Fig. 4.8) :

� g0 follows the segment[0;
�
z0] � ¶

� �

P (e)m;q
r \

�

R (0)
r

�
that circumvents the segment

eiq [1;m] to the right whene = + and to the left whene = � ;

� d0 is the arc-curve from
�
z0 to

�
z1 that follows in

�

R (e)m;q
r the boundary¶Deiq m;

� d1 follows the segment[
�
z1;

�
z ] in

�

R (e)m;q
r (possibly reduced to the point

�
z).

Once again, one deducesL from l by lifting.

De�nition 4.16. Let z be an element ofz 2 R (1)
r . The uniqueC1-pathL in R (1)

r
given by lemma 4.7 is called the shortest path from 0to z .
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4.3 Shortest symmetric(Z; r )-homotopy

4.3.1 SymmetricZ-homotopy

The notion ofsymmetricW-homotopyis introduced in [10] and used there for ana-
lyzing the convolution product of resurgent functions, see also [4, 12, 13, 14]. For
the convenience of the reader, we recall it here forW = Z.

De�nition 4.17. A continuous mapH : I � I ! C, I = [ 0;1], is called asymmetric
Z-homotopyif, for eacht 2 I , the pathHt : s2 I 7! H(s;t) satis�es:

1. Ht (0) = 0 andHt can be lifted on the Riemann surfaceR Z with respect top
from 0;

2. Ht (1) � Ht (s) = H � 1
t (s) for everys2 I .

The pathH0 (resp. H1) is called theinitial path of H (resp.�nal path) and the path
t 2 I 7! Ht (1) is called theendpoint path of H.
A path l in C is called asymmetricallyZ-contractile pathif its standardized path
l is the �nal path of a symmetricZ-homotopy whose initial path follows a segment

[0;z ] of
�

R in the forward direction.

Let z be any point of the Riemann surfaceR Z and pick a path joining 0to
z , thus uniquely de�ned up to homotopy. It is known that one can �nd a pathL
in this homotopy class with the further condition : its projectionl = p � L is a
symmetricallyZ-contractile path. This is a key result to analyze the convolution
product, as detailed in [10].

However, there are plenty of paths with the above properties and we raise the
question:

Question 4.4.In the homotopy class of these paths, is it possible to �nd a shortest
curve ?

This question is meaningless becauseR Z is not a complete Riemannian mani-
fold, but makes sense onR (1)

r which is our frame in what follows.

4.3.2 Shortest symmetric(Z; r )-homotopy

De�nition 4.18. Let L be a path inR (1)
r originating from 0and let l = p � L

be its projection. The pathL is said to besymmetricif l satis�es the condition:
l (1) � l (s) = l � 1(s)for every s 2 [0;1]. A symmetric pathL in R (1)

r is said to
beshortest-symmetricwhenL is a shortest (C1-)path among the symmetric paths
belonging to the same homotopy class inR (1)

r .

For instance, pick a pointz in R (0)
r and letl be the smooth path which follows

the segment[0;
�
z ] �

�

R (0)
r in the forward direction with a constant velocity. The path

L in R (0)
r deduced froml by lifting from 0 with respect top, is shortest-symmetric.

Proposition 4.3.Let z be any given point inR (1)
r . There exists a unique continu-

ous mapH : (s;t) 2 I � I 7! H (s;t) 2 R (1)
r , I = [ 0;1], which satis�es the follow-

ing conditions:
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1. for each t2 I, the pathH t : s2 I 7! H (s;t) is shortest symmetric;

2. the projection H0 = p� H 0 of the initial pathH 0 follows a segment in
�

R (0)
r ;

3. denoting byG the endpoint path t2 I 7! H t (1), the productH 0G, when
reparametrized by arc-length parametrization, coincides with the shortest path
from0 to z .

Proof. Let z be a point inR (1)
r andL be the shortest path from 0to z . We denote

by l = p� L its projection.

First case: Eitherz belongs toR (0)
r . Thenl follows the segment[0;

�
z ] �

�

R (0)
r . We

set H : (s;t) 2 I � I 7! H(s;t) = s
�
z2

�

R (0)
r . For each t 2 I , the path

Ht : s2 I 7! H(s;t) can be lifted uniquely onR (0)
r from 0 with respect top into

a pathH t : I ! R (0)
r . From the lifting theorem for homotopies [7, 3], the mapping

H : (s;t) 2 I � I 7! H t (s) is continuous and matches the other conditions.

second case:Or elsez belongs toR (e)m;q
r nR (0)

r for someq 2 f 0;pg, e = � and
somem 2 [1;M (r )]. For simplicity, we supposeq = 0 ande = + . The pathl ,
resp.L , can be written as a productl = g0l 1, resp.L = G0L 1, whereg0 = p� G0 and
l 1 = d0d1 = p� L 1 are the geodesics described in remark 4.2 with their arc-length
parametrizations.
We setH0 = g0, resp.H 0 = G0 the standardized path deduced fromg0, resp.G0,

which follows a segment in
�

R (0)
r , resp.R (0)

r . This path can be lifted from 0with re-
spect top into a unique pathH 0 whose endpoint is denoted byz0 = H 0(1). By
its very construction, the pointz0 belongs toV , the closure ofR (+) m;0

r n R (0)
r ,

and we can apply lemma 4.4. ThereforeH0 can be thought of as a geodesic in

Xz0
=

�

R r n
[

1� n� m

f
�
z0 � Dng and is a shortest path in its homotopy class, by appli-

cation of lemma 4.5.

According to lemma 4.4 again, the spaceXx =
�

R r n
[

1� n� m

f
�
x � Dng remains in

the �eld of application of lemma 4.5 for everyx 2 V . One gets this way a local
system

�
Xx

�
x2V of Riemannian manifolds with smooth boundary.

Let `1 > 0 be the length ofL 1 andT : t 2 [0;1] 7! t`1 2 [0; `1]. For anyt 2 [0;1], the
pointzt = L 1 � T(t) belongs toV by construction. To the pathL 1 � T is associated a
sectiont 2 [0;1] 7! Xzt , thus a mapt 2 [0;1] 7! [gt ] which allows to follow the con-
tinuous deformation of the homotopy class[g0] of g0, the extremities 0 andz0 being
kept �xed. In the homotopy class[gt ] we choose, for anyt 2 [0;1], a shortest pathgt
in Xzt with its arc-length parametrization. LetKt = gt l 1j[0;T � 1(t)] be the (minimal)

Fig. 4.9 The shortest sym-
metrically contractile path for
z in R (+) 3;0

r nR (0)
r
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geodesic de�ned as the product ofgt with the restriction ofl 1 to [0;T � 1(t)]. We
denote byHt the path deduced fromKt by standardization and we eventually obtain
a continuous mappingH : (s;t) 2 I � I 7! H(s;t) = Ht (s), I = [ 0;1]. See Fig. 4.9.
For anyt 2 [0;1], the pathHt can be lifted toR (1)

r from 0 with respect top. This
gives a path, denoted byH t , which is shortest symmetric by construction and the
mappingH : (s;t) 2 I � I 7! H (s;t) = H t (s) 2 R (1)

r is continuous by the lifting
theorem for homotopies [7, 3]. The reader is encouraged to check the remaining
properties. ut

De�nition 4.19. Let z be any given point inR (1)
r . The uniquely determined con-

tinuous mapH given by proposition 4.3 is called theshortest symmetric(Z; r )-
homotopyassociated withz . The pathH 1 : s2 [0;1] 7! H (s;1) is called theshort-
est symmetrically contractile pathassociated withz in R (1)

r and its length is denoted
by lengr (z )

Remark 4.3.Let H be a shortest symmetric(Z; r )-homotopy. Consider the path
H t : s2 [0;1] 7! H (s;t) for any givent 2 [0;1]. ThenH t is the shortest symmetri-
cally contractile path associated the endpointH t (1) in R (1)

r .

The next two statements are left as exercises.

Lemma 4.8.The mappingz 2 R (1)
r 7! lengr (z ) 2 R+ is continuous.

Lemma 4.9.Let bez 2 R (1)
r and H be its associated shortest symmetric(Z; r )-

homotopy. Then for every t2 [0;1] and every s2 [0;1]:

� lengr
�
H t (s)

�
� length

�
H t j[0;s]

�
;

� lengr
�
H � 1

t (s)
�

� lengr
�
H t (1)

�
� length

�
H t j[0;s]

�
.

We �nally state a result drawn from [8], which gives an upper bound for the
length of the shortest symmetrically contractile path we work with.

Lemma 4.10.Let be z 2 R (1)
r . Either z 2 R

(0)
r and thenlengr (z ) = j

�
z j, or

j
�
z j � lengr (z ) � 1

r j
�
z j + 1

r

�
1
r � 2

�
.

Proof. The �rst case is obvious. The second case means thatz 2 R (e)m;q
r nR (0)

r
for someq 2 f 0;pg, e = � and somem 2 [1;M (r )]. Let us assume thatq = 0
ande = + for simplicity. We return to the construction of the shortest symmetri-
cally contractile pathH 1 associated withz (see also Fig. 4.9) and we denote by
H1 = p� H 1 its projection. The pathH1 is made of :

� m+ 1 segments between¶Dn and¶
� �

z � Dm� n
�
, n 2 [0;m]. Each of these seg-

ments has length less thanj
�
z � mj + mr .

� msegments between¶
� �

z � Dm� n
�

and¶Dn+ 1, n2 [1;m]. Each of these segments

has length less thanj
�
z � (m+ 1)j + ( m+ 1)r .

� 2m arcs of circle, the total length of which being less than 2(1+ � � � + m)2pr .

Putting things together:

lengr (z ) � (2m+ 1)j
�
z j + 2m(m+ 1)(1+ r )+ 2m(m+ 1)pr :

Sincer � 1
5, one hasj

�
z j � lengr (z ) � (2m+ 1)j

�
z j + 4m(m+ 1). Remember that

M (r )+ 1 = br � 1� 1
2 c, thusm� M (r ) � 1

2r � 1 and one concludes.ut



4.4 Convolution product and related properties 75

4.4 Convolution product and related properties

It has been recalled that the spaceR̂ = R̂ Z of Z-resurgent germs is a convolution
algebra without unit (de�nition 3.7 and theorem 3.2).

Question 4.5.Is it possible to give quantitave estimates for the convolution product
of two Z-resurgent functions ?

The answer is “yes”, as detailed (without proof) in [10] (see also [2, 12]). Even,
quantitave estimates can be obtained for iterated convolutions and this allows non-
linear operations in the frame of resurgent functions [14].

Nevertheless, these results are dif�cult to use in our context. This is why we
follow another strategy in the sequel.

4.4.1 A new convolution algebra

De�nition 4.20. Let k 2 N? be a positive integer. We denote bŷR (k) the space of
germs of holomorphic functions at the origin which can be analytically continued to
the Riemann surfaceR (k) .

In other words, the germbj 2 O0 belongs toR̂ (k) when there exists a function
F 2 O(R (k)) holomorphic onR (k) whose germf 0 2 O0 at 0 satis�es f 0 = bj � p.

Notice that the linear mapb¶ : bg 2 R̂ (k) 7! � z bg still provides a derivation ofR̂ (k) .

Theorem 4.1. 1. The spaceR̂ (1) is a convolution algebra (without unit).
2. Let bj ; by 2 R̂ (1) be two germs and letF ;Y 2 O(R (1)) be their associated holo-

morphic functions onR (1) . Assume that the following properties hold : for ev-
ery z 2 R (1)

r ,
�
�F (z )

�
� � F

�
lengr (z )

�
and

�
�Y (z )

�
� � G

�
lengr (z )

�
, where F;G

are two positive, non-decreasing and continuous functions onR+ . Then the
convolution productbj � by , resp. (b¶ bj ) � by , can be analytically continued to
R (1) and the corresponding functionc 2 O(R (1)), resp.¡ 2 O(R (1)), satis�es
the following properties: for everyz 2 R (1)

r ,
�
�c (z )

�
� � F � G

�
lengr (z )

�
, resp.

�
�¡ (z )

�
� � lengr (z )

�
F � G

�
lengr (z )

� �
.

Proof. The standard proof for proving that̂R is a convolution algebra [10, 12] can
be copied as it stands for̂R (1) . We sketch it here, essentially so as to �x notations
that will be used later on, more details can be found in [10].
Let be bj ; by 2 R̂ (1) and letF ;Y 2 O(R (1)) be their associated holomorphic func-
tions onR (1) .

The convolution productbj � by (
�
z) is well-de�ned for everyz 2 R (0) and we set

c (z ) = bj � by (
�
z). For every

�
z0 2

�

R (0)
r and

�
x 2 C such thatj

�
x j < r

2 , the point
�
z0 +

�
x belongs to

�
R (0) , thus there exists a uniquely determined point denoted by

z0 +
�
x 2 R (0) such thatp(z0 +

�
x) =

�
z0 +

�
x . Therefore, the convolution product

c (z0 +
�
x) = bj � by (

�
z0 +

�
x) reads :
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c (z0 +
�
x) =

Z �
z0+

�
x

0
bj (h ) by (

�
z0 +

�
x � h )dh

=
Z �

z0

0
bj (h ) by (

�
z0 +

�
x � h )dh +

Z �
x

0
bj (

�
z0 + h) by (

�
x � h )dh :

Let nowz be any given point inR (1)
r . We denote byH the associated shortest sym-

metric(Z; r )-homotopy given by proposition 4.3. We want to construct the analytic
continuation ofc at z . We therefore assume thatz0 is the endpointH 0(1) of the
intial pathH 0. The above equality yields :

c
�
H 0(1)+

�
x

�
=

Z 1

0
F (H 0(s))Y (H � 1

0 (s)+
�
x)H0

0(s)ds

+
�
x

Z 1

0
F (H 0(1)+

�
xs)y

� �
x(1� s)

�
ds:

whereH0 = p� H 0 stands for the projection ofH 0. The analytic continuation of
c from H 0(1) along the patht 2 [0;1] 7! H t (1) 2 R (1)

r is thus given by (see the
arguments in [10]):

c
�
H t (1)+

�
x

�
=

Z 1

0
F (H t (s))Y (H � 1

t (s)+
�
x)H0

t (s)ds

+
�
x

Z 1

0
F (H t (1)+

�
xs)y

� �
x(1� s)

�
ds:

In particular whenz = H 1(1), c (z ) =
Z 1

0
F

�
H 1(s)

�
Y

�
H � 1

1 (s)
�

H0
1(s)ds where

H 1 is the shortest symmetrically contractile path associated withz .

Notice that the germc(z +
�
x) of holomorphic functions atz thus obtained does

not depend on the chosen pathH 1 sinceR (1) is simply connected.
We turn to estimates. LetT be the homothetys 2 [0;1] 7! s:lengr (z ) so that

c (z ) =
Z lengr (z )

0
F

�
H 1 � T � 1(`)

�
Y

�
H � 1

1 � T � 1(`)
�

d`. We then use lemma 4.9 to

get:

jc (z )j �
Z lengr (z )

0
F

�
`
�
G

�
lengr (z ) � `

�
d`

� F � G
�
lengr (z )

�
:

The proof for the last assertion is left as an exercise.ut

4.4.2 Convolution space and uniform norm

The following de�nition makes sense by lemma 4.8 and lemma 4.9.

De�nition 4.21. Let L > 0 be a real positive number andr 2]0; 1
5]. One denotes by

U r ;L the open subset ofR (1)
r de�ned by: U r ;L = f z 2 R (1)

r j lengr (z ) < Lg. An
element ofU r ;L is called aL-point.
We denote byO(U r ;L) the space of functions holomorphic onU r ;L and continuous
onU r ;L. For any two elementsf ;g 2 O(U r ;L), one sets
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f � g(z ) =
Z lengr (z )

0
f
�
H 1 � T � 1

z (`)
�
g
�
H � 1

1 � T � 1
z (`)

�
d` (4.2)

whereH 1 stands for the shortest symmetrically contractile path associated with
z 2 U r ;L, while Tz is the homothetyTz : s2 [0;1] 7! s:lengr (z ).
The functionz 2 U r ;L 7! f � g(z ) is called the convolution product off andg.

Proposition 4.4.For any two elements f;g 2 O(U r ;L), their convolution product
belongs toO(U r ;L). In other words,Cd � O(U r ;L) is a convolution algebra.

Proof. Use lemma 4.9 and adapt the proof of theorem 4.1.ut

The following de�nition is similar to de�nition 3.12.

De�nition 4.22. Let U = U r ;L be an open set ofL-points. We denote byM O (U )
the maximal ideal ofO(U )) de�ned byM O (U ) = f f 2 O(U ); f (0) = 0g.
Let n � 0 be a nonnegative real number. The normk:kn on O(U )) is de�ned by
k f kn = L sup

z2U

�
�e� nlengr (z ) f (z )

�
�. We extend this norm toCd � O(U r ;L) by setting

kcd + f kn = jcj + k f kn for every f 2 O(U ) and everyc 2 C.

We now state an analogue of proposition 3.9.

Proposition 4.5.The normed space
�
Cd � O(U );k:kn

�
is a Banach algebra. In

particular, for every f;g 2 Cd � O(U , k f � gkn � k f knkgkn . The spaceM O (U )
is closed in

�
O(U );k:kn

�
. Moreover, forn > 0:

1. for every n2 N, for every g2 O(U ), k(z 7!
�
zn) � gkn �

n!
nn+ 1 kgkn ,

k(z 7!
�
zn)kn �

n!
nn+ 1 L andk(z 7! 1)kn = L.

2. for every f;g 2 O(U ), k f gkn �
1
L

k f knkgk0.

3. for every f2 O(U ), n � n0 � 0 ) k f kn � k f kn0.
4. for every f2 M O (U ), lim

n! ¥
k f kn = 0.

5. the derivationb¶jO (U ) : f 2 O(U ) 7! �
�
z f 2 M O (U ) is invertible and the in-

verse mapb¶ � 1 satis�es: for every f2 O(U ), for every g2 M O (U ), b¶ � 1( f � g)

belongs toM O (U ) andkb¶ � 1( f � g)kn �
1

nL
k f knkb¶ � 1gk0.

For everyCd � O(U ), for every g2 M O (U ), b¶ � 1( f � g) belongs toO(U ) and
kb¶ � 1( f � g)kkn � k f knkb¶ � 1gkn .

Proof. The normk:kn is obviously equivalent to the maximum norm on the vector
space O(U ). This shows the completeness of

�
O(U );k:kn

�
and of�

Cd � O(U );k:kn
�

as well.
Pick a pointz 2 U . For anyf ;g 2 O(U ),

f � g(z ) =
Z lengr (z )

0
d` e

n
h
lengr

�
H 1� T � 1

z (l )
�

+ lengr

�
H � 1

1 � T � 1
z (l )

� i

(4.3)

� f
�
H 1 � T � 1

z (`)
�
e� nlengr

�
H 1� T � 1

z (l )
�
g
�
H � 1

1 � T � 1
z (`)

�
e� nlengr

�
H � 1

1 � T � 1
z (l )

�
:

We know from lemma 4.9 that lengr (H 1(s))+ lengr (H � 1
1 (s)) � lengr (z ) for any

s2 [0;1]. ThereforeLe� nlengr (z ) j f � g(z )j � k f knkgkn

Z lengr (z )

0

1
L

d` � k f knkgkn .
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This shows that for everyf ;g2 O(U ), k f � gkn � k f knkgkn , hence
�

O(U );k:kn

�

is a Banach algebra and
�
Cd � O(U );k:kn

�
as well. We encourage the reader to

show the other properties.ut

Remark 4.4.We have already noticed that the spaceR̂ (1) can be identi�ed with
the spaceO(R (1)) of holomorphic functions on the Riemann surfaceR (1) . Since
O(R (1)) =

\

L> 0
0< r � 1=5

O(U r ;L), formula (4.2) provides the convolution product

onO(R (1)).

4.4.3 An extended Gr̈onwall-like lemma

The following statement is similar to lemma 3.9.

Lemma 4.11 (Extended Gr̈onwall lemma). Let N 2 N? be a positive integer. Let
and( bfn)0� n� N, resp.( bFn)0� n� N, be a(N + 1)-tuple of functions inO(R (1)), resp.
of entire functions, real, positive and non-decreasing onR+ , with at most exponen-
tial growth of order1 at in�nity. We suppose that for every0 � n � N and every
z 2 R (1)

r , j bfn(z )j � bFn
�
lengr (z )

�
. Otherwise, let p;q; r be polynomial functions

such that the functionz 7! p(�
�
z) does not vanish onR (1)

r and we assume that the
following upper bounds are valid:

a= sup
z2R (1)

r

jqj(lengr (z ))

j p(�
�
z)j

< ¥ ; b= sup
z2R (1)

r

jr j(lengr (z ))

j p(�
�
z)j

< ¥ ; c= sup
z2R (1)

r

1

jp(�
�
z)j

< ¥ :

We furthermore assume thatbw 2 O(R (1)
r ) solves the following convolution equa-

tion:

p(b¶) bw+ 1� [q(b¶) bw] = z � [r(b¶) bw]+ bf0 +
N

å
n= 1

bfn � bw� n: (4.4)

Then, for every d� 0and everyz 2 R (1)
r , j bw(z)j � bwd

�
lengr (z )

�
, wherebwd 2 O(C)

stands for the holomorphic solution of the following convolution equation:

bw= d+ [ a+ bx] � bw+ c

 

bF0 +
N

å
n= 0

bFn � bw� n

!

: (4.5)

Proof. Let bw 2 O(R (1)
r ) be a solution of convolution equation (4.4). This means

that for everyz 2 R (1)
r :

p(b¶) bw(z) = bf0(z ) �
Z lengr (z )

0
q
�
H 1 � T � 1

z (`)
�

bw
�
H 1 � T � 1

z (`)
�

d`

+
Z lengr (z )

0
H � 1

1 � T � 1
z (`)r

�
H 1 � T � 1

z (`)
�

bw
�
H 1 � T � 1

z (`)
�

d`

+
N

å
n= 1

Z lengr (z )

0
bfn

�
H � 1

1 � T � 1
z (`)

�
bw� n�

H 1 � T � 1
z (`)

�
d`:

whereH 1 stands for the shortest symmetrically contractile path associated withz .
From lemma 4.9 and the hypotheses, one obtains withx = lengr (z ):



4.4 Convolution product and related properties 79

j bw(z)j �
1

jp(�
�
z)j

bF0(x )+
Z x

0

2

4 jqj(`)

j p(�
�
z)j

+
jrj(`)

j p(�
�
z)j

(x � `)

3

5 j bw
�
H 1 � T � 1

z (`)
�
j d`

+
N

å
n= 1

Z x

0

1

jp(�
�
z)j

bFn(x � `)j bw� n�
H 1 � T � 1

z (`)
�
j d`:

Therefore

j bw(z)j � cbF0(x )+
Z x

0
[a+ b(x � s)] j bw

�
H 1 � T � 1

z (`)
�
j d` (4.6)

+ c
N

å
n= 1

Z x

0
bFn(x � `)j bw� n�

H 1 � T � 1
z (`)

�
j d`:

The existence and the properties ofbwd, solution of (4.5), have been given in lemma
3.8. We adapt the proof of lemma 3.9. We �rst notice thatj bw(0)j � cbF0(0) by de�ni-
tion of c and by hypothesis onbF0. Sincebw(0) = d+ cbF0(0), we havej bw(0)j � bw(0).

First case. We �rst assumej bw(0)j < bw(0). One considers, forL > 0, the open set
U r ;L of L-points. We remark that, onceL0 > 0 is chosen small enough, then for every
0< L � L0, for veryd > 0, for everyz 2 U r ;L, j bw(z)j < bwd(x ) with x = lengr (z ).
This is just a consequence of lemma 3.9. (ForL > 0 small enough, lengr (z ) = jz j).

We now assume that there existL1 > 0 andz1 2 U r ;L1 such thatj bw(z1)j � bwd(x1),

x1 = lengr (z1). We recall that the mappingz 2 R (1)
r 7! lengr (z ) is continuous and

we de�nec = f L 2 [L0;L1] j there existsz 2 U r ;L; j bw(z)j � bwd(lengr (z ))g. This
is a closed set bounded from below and we denote byL2 2]L0;L1] its in�mum. This
implies that:

� for everyz 2 U r ;L2; j bw(z)j � bwd(lengr (z )) ;
� there existsz2 2 U r ;L2 such thatj bw(z2)j = bwd(x2) andx2 = lengr (z2) = L2.

We take such az2 2 U r ;L2. By (4.6),

j bw(z2)j � cbF0(x2) +
Z x2

0
[a+ b(x2 � `)] j bw

�
H 1 � T � 1

z2
(`)

�
j d`

+ c
N

å
n= 1

Z x2

0
bFn(x2 � `)j bw� n�

H 1 � T � 1
z2

(`)
�
j d`

whereH 1 is the shortest symmetrically contractile path associated withz2. We
know by lemma 4.9 that lengr (H 1 � T � 1

z2
(`)) � ` for every ` 2 [0;x2], while bwd

is real, positive and non-decreasing onR+ . Therefore,

j bw(z2)j � cbF0(x2) +
Z x2

0
[a+ b(x2 � `)] bwd(`) d` + c

N

å
n= 1

Z x2

0
bFn(x2 � `) bw� n

d (`) d`:

This shows thatj bw(z2)j � bwd(x2) � d and we get a contradiction.

Second caseThe casej bw(0)j = bw(0) (thusd = 0) is done by an argument of con-
tinuity already used in the proof of lemma 3.9.ut
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4.5 Application to the �rst Painlev é equation

4.5.1 A step beyond Borel-Laplace summability

We come back to the minorbw of the formal series solution of the prepared equa-
tion (3.6). We already know thatbw can be analytically continued to the star-shaped

domain
�

R (0) � C, with at most exponential growth of order 1 at in�nity there (the-
orem 3.3). Said in other words,bw can be interpreted as a holomorphic function on
the principal sheetR (0) of the Riemann surfaceR . We claim that this function can
be analytically continued to everyR (0)-nearby sheets: this is the matter of the next
theorem.

Theorem 4.2.The formal solutionew of the prepared equation (3.6) associated with
the �rst Painlev́e equation satis�es the following properties:

1. its minor bw can be analytically continued to the Riemann surfaceR (1) . This
provides a function inO(R (1)) still denoted bybw;

2. this functionbw has at most exponential growth of order 1 at in�nity onR (1) . More
precisely, for everyr 2]0; 1

5], there exist real positive constants A= A(r ) > 0 and

t = t (r ) > 0 such that for everyz 2 R (1)
r ; j bw(z)j � Aetx with x = lengr (z );

3. moreoverlengr (z ) � 1
r j

�
z j + 1

r

�
1
r � 2

�
and one can choose A= 4 andt = 4

r 3

in the above estimates.

Proof. We begin this proof with a preliminary result which should be compared
with lemma 3.2.

Lemma 4.12.There exists a real positive number Mr ;(1) > 0 such that for every

polynomial q of degree� 1, for everyz 2 R (1)
r ,

jqj(lengr (z ))

jP(�
�
z)j

j � Mr ;(1) jqj(1). More-

over one can choose Mr ;(1) = 6
5r 3

Proof. From lemma 3.2 and lemma 4.10, one sees that for everyz 2 R (1)
r ,

lengr (z )

jP(�
�
z)j

�
h

1
r + 1

r

�
1
r � 2

�i
Mr ;(0) . Then use the fact thatr 2]0; 1

5]. ut

Holomorphy of bw on R (1) Let r > 0 and n > 0 be positive real numbers,
U = U r ;L � R (1) be the open set ofL-points,L > 0, andBr = f bv 2 O(U );kbvkn � rg.
The convolution equation (3.10) can be viewed as a �xed-point problem onBr and
we set:

N : bv 2 Br 7! P� 1(b¶)
h

� 1�
�
Q(b¶)bv

�
+ bf0 + bf1 � bv+ bf2 � bv� bv

i
:

By lemmas 4.12 and proposition 4.5,

kN(bv)kn � Mr ;(1)k � 1�
�
Q(b¶)bv

�
+ bf0 + bf1 � bv+ bf2 � bv� bvkn :

By proposition 4.5, sinceQ(b¶) = � 3b¶:

k1�
�
Q(b¶)bv

�
kn �

1
n

kQ(b¶)bvkn �
1

Ln
k(z 7! Q(�

�
z))k0kbvkn �

3L
n

kbwkn :

The functions bf0; bf1; bf2 belong to M O (U ), therefore by proposition 4.5:
lim
n! ¥

k bfikn = 0, i = 0;1;2. Hence,kN(bv)kn � r for n > 0 large enough.
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The same arguments shows thatkN(bv1) � N(bv2)kn � kkbv1 � bv2kn with k < 1, for
bv1; bv2 2 Br and forn > 0 large enough.
The mappingN is thus contractive on the closed subsetBr of the Banach space�
O(U );k:kn

�
, for n > 0 large enough. The contraction mapping theorem ensures

the existence of a unique solutionbw 2 Br for the �xed-point problembv = N(bv).
SinceL andr can be arbitrarily chosen, we deduce (by uniqueness) that the minor
bw of the unique formal seriesew solution of (3.6) is a germ of holomorphic functions
which can be analytically continued toR (1) .

Upper bounds We use the Gr̈onwall lemma 4.11 (withd = 0), which tells us that
for everyz 2 R (1)

r , j bw(z)j � bwd(x ), x = lengr (z ), where bw(x ) solves the fol-

lowing convolution equation 1
Mr ;(1)

bw= j bf0j +
�
3+ j bf1j

�
� bw+ j bf2j � bw� bw (just use

lemma 4.12). Moreover, one can chooseMr ;(1) = 6
5r 3 . We would like to get explicit

estimates. We considerbw as the Borel transform of the functionew, solution of the
second order algebraic equation,

1
Mr ;(1)

ew= j f0j(z)+
� 3

z
+ j f1j

�
ew+ j f2j ew2

; (4.7)

holomorphic at in�nity and asymptotic toj f0j(z) there. Remember thatj f0j(z) = 392
625

1
z2 ,

j f1j(z) = 4
z2 , j f2j(z) = 1

2z2 . Setting ew(z) = H(t), t = z� 1, the above problem reads
as a �xed-point problem,

H = N(H); N(H) = Mr ;(1)

�
j f0j(t � 1) +

�
3t + j f1j(t � 1)

�
H + j f2j(t � 1)H2

�
: (4.8)

From homogeneity reasons, we introduceU = D(0;r 3=4), we consider the Ba-
nach algebra

�
O(U);kk

�
where kk stands for the maximum norm, and we set

Br 3 = f H 2 O(U); kHk � r 3g. It is easy to show that the mapping
NjBr 3

: H 2 Br 3 7! N(H) 2 Br 3 is contractive (remember:r 2 ]0;1=5]). Therefore,

from contraction mapping theorem, the �xed-point problem (4.8) has a unique solu-

tion H in Br 3. In return we deduce thatbw is an entire function andj bw(x )j � 4e
4

r 3 jx j

for everyx 2 C (see lemma 3.5). One ends with lemma 4.10.

4.5.2 Concluding remarks

The following comments rely on notions introduced in [10] to which the reader is
referred.

It turns out from theorem 4.2 that the minorbw can be analytically continued along
any path of typegq

(+) m� 1
andgq

(� )m� 1
(de�nitions 4.7 and 4.9), for anym 2 N? and

any directionq 2 f 0;pg � S1.
To �x our mind, we consider a pathg of typeg0

(+) m� 1
. The analytic continuation of

bw alongg gives a germ contg bw which can be represented by a function holomor-
phic on the open discD( 2m� 1

2 ; 1
2) adherent tom. Writing fm(z ) = contg bw(m+ z),

we get a functionfm holomorphic onD = D(� 1
2; 1

2). However, theorem 4.2 trans-
lates into the fact thatfm can be analytically continued to a wider domain as a
“multi-valued function”. Precisely, pick a pointz

0
= 1

2eiq0 2 p � 1(� 1
2) above� 1

2

on the Riemann surface(eC;p) of the logarithm. LeteD = eD(z
0
; 1

2) � eC be the
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Fig. 4.10 Comparison of
right and left Borel-Laplace
summation for the direction
q = 0.

neighbourhood ofz
0

which is p-homeomorphic toD. One obtains a function
_
f m= fm � p,

_
f 2 O( eD). This function can be holomorphically extended to a func-

tion (still denoted by)
_
f m2 O( 1=2

0 ), where 1=2
0 � eC is the open sector de�ned by:

1=2
0 = f z = xeiq 2 eC j q 2] � p + q0;q0 + 2p[;x 2]0;1=2[g.

Question 4.6.Can we analytically continue each
_
f m into an element of ANA ?

The answer is “yes” but requires further effort and supplements to resurgence

theory, given in chapter 7. Taking this for granted, to
_
f m thus corresponds a singu-

larity
O
f m2 SING deduced frombw through the action of the alien operator denoted

by A
g;z0

m in [10], or more precisely toD+
m .

Question 4.7.Can we describe more precisely the singularities
O
f m ?

This is of course the key-question for describing the Stokes phenomenon. Partly,
the reply relies on the formal integral associated with equation (3.6), which is the
matter of the next chapter 5. The �nal answer will be given in the last chapter 8 of
this course, with the use of the alien derivations. In the same spirit:

Question 4.8.At this stage, can we compare the sumsS ]� p;0[ ew 2 O(
�

D (] � p;0[; t ))

andS ]0;p[ ew 2 O(
�

D (]0;p[; t )) ? (See proposition 3.14.) In other words, are we able
to analyze the Stokes phenomenon ?

Formulated another way, we would like to compare the right Borel-Laplace sum-
mation S 0+

ew and the left oneS 0�
ew. Look at Fig. 4.10 : we have chosen two

directionsq+ 2] � p;0[ andq � 2] � p;0[ closed to zero, so that the Borel-Laplace

sumsS q+
ew(z) =

Z

l +

e� zz bw(z)dz andS q �
ew(z) =

Z

l �

e� zz bw(z)dz can be com-

pared on their nonempty common domain of de�nition
�

P q+

t (q+ ) \
�

P q �

t (q � ) . The curve

l � 1
� l + can be seen as a chain on the Riemann sphereC = C [ f ¥ g running from

¥ to ¥ and avoiding the pointsZ? � C. In other words,l � 1
� l + represents a cy-

cle for the 1-homology groupH1(
�

R [ f ¥ g;¥ ) which is homologous to the sum
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å m
k= 1gk + Cm+ 1 (with m= 2 on Fig. 4.10). Interpreting this result onR (1) wherebw

is holomorphic with at most exponential growth of order 1 at in�nity (theorem 4.2),

we get: for everyz2
�

P q+

t (q+ ) \
�

P q �

t (q � ) with jzj large enough,

S q+
ew(z) = S q �

ew(z)+
m

å
k= 1

Z

gk

e� zz bw(z)dz +
Z

Cm+ 1

e� zz bw(z)dz : (4.9)

One recognizes in this equation the very construction of the Stokes automorphism,

detailed in [10]. The asymptotics at in�nity of the integrals
Z

gk

e� zz bw(z)dz are of

the form e� kzeWk(z) where eWk stands for a formal series which only depends on the

still unknown singularity
O
f k. The remaining integral

Z

Cm+ 1

e� zz bw(z)dz provides an

exponentially smaller vanishing behaviour. It will be shown in this course that the
right-hand side of the equality (4.9) when lettingm! ¥ , is nothing but the Borel-
Laplace sum of a “transseries” introduced and studied in chapters 5 and 6.

4.6 Some supplements

We end this chapter with some supplements to the that will be used later on.

De�nition 4.23. Let beq 2 f 0;pg, a 2]0;p=2] andL > 0 be a real positive number.

we denote byR (q;a )(L) the set of pathsl in
�

R originating from 0, piecewiseC1,
with length(l ) < L + 1, with the conditions:

� eitherl stays in the open discD(0;1);
� or else, for everyt 2 [0;1], the right and left derivativesl 0(t) do not vanish and

argl 0(t) 2 ] � a + q;q + a [.

We denote byR (q;a )(L) the subset of the Riemann surfaceR de�ned as follows:

R (q;a )(L) = f L (1) 2 R j l = p� L belongs toR (q;a )(L) andL (0) = 0g:

We should note in passing that every pathl 2 R (q;a )(L) can be lifted onR from
0 with respect top.
The following assertion is left as an exercise.

Fig. 4.11 Two paths belonging toR (q;a )(L) for q = 0 andL � 2.
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Lemma 4.13.The setR (q;a )(L) is an open and connected neighbourhood of0 in
R andR (q;a )(L) � R (0)

[

1� j� m

R (� ) j ;q with m= dLe. Also, for any m2 N?, for any

path g of typegq
e with e 2 f + ; �g j and 1 � j � m, the endpointG(1) belongs to

R (q;a )(m), whereG is the lift ofg from0 with respect top onR .

In the above lemma,d:e is the ceiling function.

Remark 4.5.Notice thatR (q;a )(L1) � R (q;a )(L2) whenL1 < L2. Also, sinceR (q;a )(L)
is open and connected inR , R (q;a )(L) inherits fromR the structure of complex
manifold, thus is a Riemann surface.

De�nition 4.24. We denote byR̂ (q;a )(L) � R̂ the space of germs of holomorphic
functions at the origin which can be analytically continued to the Riemann surface
R (q;a )(L).

Example 4.1.The formal solutionew of the prepared equation (3.6) has a minorbw
which belongs toR̂ (q;p=2)(L), for any directionq 2 f 0;pg and anyL 2]0;1]: this is
a consequence of theorem 4.2.

Proposition 4.6.The spaceR̂ (q;a )(L) is a (non unitary) convolution algebra.

Proof. We just have to prove the stability by convolution product. It is shown in [10]
that for any smooth pathg : I = [ 0;1] ! C nZ such thatjg(0)j < 1, one can �nd a
symmetricZ-homotopyH : (s;t) 2 I � I 7! H(s;t) = Ht (s) whose initial pathH0 is
H0 : s2 [0;1] 7! sg(0) and whose endpoint patht 2 [0;1] 7! Ht (1) coincides withg.
Lifting every path Ht from 0 on R with respect top, one gets the mapping
H : (s;t) 2 I � I 7! H (s;t) = H t (s) 2 R , which is continuous by the lifting theo-
rem for homotopies, and the following diagram commutes:

R
H % # p

I � I �!
�

R :
H

(4.10)

We recall from [10] how this symmetricZ-homotopy can be constructed. Pick a
C1 function h : C ! [0;1] satisfyingf z 2 C j h (z ) = 0g = Z and consider the

non-autonomous vector �eldX(z ;t) =
h (z )

h (z )+ h
�
g(t) � z

� g0(t). The pathHt is ob-

tained by deformation of the initial pathH0 through the �ow of the vector �eld
g : (t0; t;z ) 2 [0;1]2 � C 7! gt0;t (z ) 2 C of X, preciselyHt (s) = g0;t � H0(s)

�
.

Let z be any point inR (q;a )(L). This point is the endpoint of a pathL in R
originating from 0and whose projectionl = p� L belongs toR (q;a )(L). We forget
the case wherel stays inD(0;1) and, without loss of generality, we can assume
that l = l 0g with l 0 : s 2 [0;1] 7! sg(0). Let us analyze the above symmetricZ-
homotopyH constructed fromg andH0 = l 0, and the associated mappingH . We
would like to show thatH (s;t) 2 R (q;a )(L) for every(s;t) 2 I � I . For this purpose
we introduce the pathHs : t 2 I 7! Hs(t) = H(s;t). We notice thatH0 � 0 while for
anys2]0;1] :

1. Hs(0) = H0(s),

2. dHs(t)
dt = X

�
Hs(t);t

�
, thus 0<

�
�
� dHs(t)

dt

�
�
� � j g0(t)j and argdHs(t)

dt 2] � a + q;q + a [.
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Denoting byH0j[0;s] : s02 I 7! H0(s0s) the restriction path, we see that the product
of pathsFs = H0j[0;s]Hs has the following properties, for anys2]0;1]:

1. Fs is a path in
�

R originating from 0 and is piecewiseC1;
2. length(Fs) � length(H0j[0;s]) + length(Hs) � length(l ) � L + 1,
3. for everyt 2 [0;1], the right and left derivatives(Fs)0(t) do not vanish and

arg(Fs)0(t) 2 ] � a + q;q + a [.

ThereforeFs belongs toR (q;a )(L) and as a consequence,H (s;t) belongs to
R (q;a )(L) for every (s;t) 2 I � I . We end the proof with the arguments used re-
called in the proof of theorem 4.1.ut

4.7 Comments

As a rule in resurgence theory, one has to deal withendlessly continuablefunctions.
This notion is de�ned in [2], a more general de�nition of which being given by
Ecalle in [5, 6]. The key point is the construction ofendless Riemann surfaces[2,
12]). For such an endless Riemann surface, one can de�ne “nearby sheets” in the
way we did in Sect. 4.2 and analogues of theorem 4.1 and proposition 4.6 can be
stated.
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Chapter 5
Transseries and formal integral for the �rst
Painlevé equation

Abstract This chapter has two purposes. Our �rst goal is to construct the so-
called “formal transseries solutions” for the prepared form associated with the �rst
Painlev́e equation, which will be used later on to get the truncated solutions : this
is done in Sect. 5.3, after some preliminaries in Sect. 5.1 and Sect. 5.2. Our second
goal is to build the formal integral for the �rst Painlevé equation and, equivalently,
the canonical normal form equation to which the �rst Painlevé equation is formally
conjugated. This is what we do in Sect. 5.4. These informations will be used in a
next chapter to investigate the resurgent structure for the �rst Painlevé equation.

5.1 Introduction

We have seen in chapter 3 that the prepared equation (3.6) has a unique formal
solution, from now on denoted byew(0;0) . This solution is 1-Gevrey and even Borel-
Laplace summable in every directions apart from the directionskp, k 2 Z (theo-
rem 3.3 and proposition 3.14). To each intervalI j =] 0;p[+ jp, j 2 Z, one associates

the Borel-Laplace sumwtri ; j (z) = S I j ew(0;0)(z) 2 O
� �
D (I j ; t )

�
where

�
D (I j ; t ) is a

sectorial neighbourhoods of¥ with aperture

(

I j =] �
3
2

p;+
1
2

p[� jp. As said in

Sect. 3.4.2.2, eachwtri ; j can be thought of as a section over

(

I j of the sheafA 1

of 1-Gevrey asymptotic functions,wtri ; j 2 G(

(

I j ;A 1). These sections are asymp-
totic to the same 1-Gevrey seriesew(0;0) . Therefore the 1-coboundarywtri ;1 � wtri ;0

belongs toG(

(

I 1 \

(

I 0;A �� 1), while wtri ;2 � wtri ;1 belongs toG(

(

I 2 \

(

I 1;A �� 1),
whereA �� 1 is the sheaf of 1-Gevrey �at germs. In other words, the 1-coboundaries

W1;0(z) = wtri ;1(z) � wtri ;0(z); �
3
2

p < arg(z) < �
1
2

p; jzj large enough;

W2;1(z) = wtri ;2(z) � wtri ;1(z); �
5
2

p < arg(z) < �
3
2

p; jzj large enough;
(5.1)

are exponentially �at functions of order 1 at in�nity, and we deduce from equation
(3.6) thatW( j+ 1); j , j = 0;1, satis�es the linear ODE:

P(¶)W( j+ 1); j +
1
z

Q(¶)W( j+ 1); j = f1(z)W( j+ 1); j + f2(z)(wtri ; j+ 1 + wtri ; j )W( j+ 1); j :

(5.2)

87
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Question 5.1.Can we get more informations aboutW( j+ 1); j ? In other words, are we
able to analyze the Stokes phenomenon ?

We have already made some advances in reply to this query in Sect. 4.5.2, as
an application of theorem 4.2. Here we return to the asymptotics. Denoting by
T1 the 1-Gevrey Taylor map, we setfW( j+ 1); j = T1(

(

I j+ 1 \

(

I j )W( j+ 1); j . We have
fW( j+ 1); j = 0 by construction but, more interestingly for our purpose and sinceT1

is a morphism of differential algebras, we deduce from (5.2) thatfW( j+ 1); j solves the

problemP 0
fW = 0, whereP 0 stands for the second order linear differential operator

deduced from the operatorP(¶)+
1
z

Q(¶) � F(z; �) by linearisation atew(0;0) :

P 0 = P(¶)+
1
z

Q(¶) �
¶F(z; ew(0;0))

¶w
(5.3)

= P(¶)+
1
z

Q(¶) � f1(z) � 2ew(0;0)(z) f2(z)

= ( ¶2 � 1) �
3
z

¶ + O(z� 2):

For a moment, let us think ofP 0
fW = 0 as a linear ODE with holomorphic coef�-

cients (thus we think ofew(0;0) as a convergent series at in�nity). The formal invari-
ants for this this equation are governed by the Newton polygon at in�nityN ¥ (P 0),
drawn on Fig. 5.1.

The de�nition and properties of the Newton polygon are amply elaborated in [32], to which
the reader is referred. We only mention that the valuationv¥ de�ned there is the opposite of
our valuation val de�ned by (3.1).

The polygonN ¥ (P 0) has a single non-vertical side of slope� 1: this corresponds to
the fact thatW( j+ 1); j , j = 0;1, are exponentially �at functions of order 1 at in�nity.
The characteristic equation associated with this side is nothing but the equation

P(m) = 0; P(m) = m2 � 1:

The polynomialP(m) has two simple roots,m1 = � 1 andm2 = 1. Therefore, from
the theory of linear ODE [39, 32], we expect forW1;0 to behave like em2zz� t 2O(1)
at in�nity, and for W2;1 to behave like em1zz� t 1O(1) at in�nity.
Pursuing in that direction, the coef�cientst 1; t 2 can be easily found :
fW = emzz� t ewm(z) solves the ODE (5.3) withP(m) = 0 and ewl 2 C[[z� 1]], only

under the condition

t =
Q(m)
P0(m)

= �
3
2

:

Fig. 5.1 The Newton polygon
at in�nity N ¥ (P 0) associated
with the linear operator (5.3).
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As a matter of fact, these behaviours are direct consequences of the analytic proper-
ties of the minorbw(0;0) of ew(0;0) . In particular,l 1 = � m1 andl 2 = � m2 are precisely
the so-called seen singularities ofbw(0;0) , cf. theorem 4.2.

The differential equationP 0
fW = 0 has thus its general formal solution under

the form fW = U1em1zz� t 1 ewm1 + U2em2zz� t 2 ewm2 and, as we will see later on, both
ewm1 andewm2 are 1-Gevery series whose minors have the same properties thanbw(0;0) .

However, the expectation thatW1;0 could be obtained fromU1em1zz� t 1 ewm1 by
Borel-Laplace summation for some well-chosenU1 2 C is wrong. Indeed, this
would mean thatwtri ;1 = S I1

�
ew(0;0) + U1em1zz� t 1 ewm1

�
, thusew(0;0) + U1em1zz� t 1 ewm1

is a formal solution of (3.6). This is not the case because of the nonlinearity of (3.6)
and to the very nature of the Riemann surfaceR (1) on which bw(0;0) can be analyti-
cally continued (theorem 4.2). This raises the question:

Question 5.2.can we de�ne an analogue of the general formal solution for the non-
linear equation (3.6) ?

The answer is given by the notion of “formal integral” which we now introduce.

5.2 Formal integral : setting

5.2.1 Notations

It will be useful in the sequel to �x customary notations.

De�nition 5.1. We supposen 2 N?, k;h 2 Nn, a;b 2 Cn.

� If k = ( k1; � � � ;kn), thenjkj = k1 + � � � + kn.
� If a = ( a1; � � � ;an) or a = t (a1; � � � ;an), thenak = ak1

1 � � � akn
n .

� If b = ( b1; � � � ;bn), thena:b = a1b1 + � � � + anbn.
� We denote byej the j-th unit vector ofCn.

5.2.2 Setting

5.2.2.1 Single level1 ODE

To introduce the reader to the notion of Ecalle'sformal integral[19], it will be useful
to skip a moment from the ODE (3.6) to a more general one1 with the same kind of
properties. Namely we introduce

P(¶)w+
1
z

Q(¶)w = F(z;w) (5.4)

P(¶) =
n

å
m= 0

an� m¶m 2 C[¶] ; Q(¶) =
n� 1

å
m= 0

bn� m¶m 2 C[¶]

1 Though far from the more general. For instance in (5.4) one could replaceF(z;w) by
F(z;w;¶w; � � � ;¶n� 1w), with F holomorphic in a neighbourhood of(¥ ;0) in C � Cn� 1, see ex-
ercise 3.1. We refrain of doing that only for a matter of simplicity. See [19] for more general
results.
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with n 2 N?. We assume thatP is a polynomial of degreen, that isa0 6= 0, and
thatF(z;w) is holomorphic in a neighbourhood of(¥ ;0) in C2 with the condition
¶mF
¶wm (z;0) = O(z� 2), m2 N. (See exercise 3.1). We will add other assumptions to

guarantee that the ODE (5.4) has a single level 1 at in�nity.
When assuming furthermore thatan 6= 0, what have been said in Sect. 5.1

can be applied as well for (5.4). The equation (5.4) has a unique formal solution
ew0 2 C[[z� 1]] and valew0 � 2. The Newton polygon at in�nityN ¥ (P 0) associated

with the linear differential operatorP 0 = P(¶)+
1
z

Q(¶) �
¶F
¶w

(z; ew0) deduced from

the operatorP(¶) +
1
z

Q(¶) � F(z; �) by linearisation atew0, has still a single non-

vertical side of slope� 1 and the characteristic equation associated with this single
side remains the equationP(m) = 0.

Sincean 6= 0, the roots of the characteristic equation do not vanish. We will also
assume that the polynomial

m7! P(m) =
n

å
m= 0

an� mmm = a0(m� m1) � � � (m� mn)

has only simple rootsm= mi , i = 1; � � � ;n. The following de�nitions are adapted
from [3, 19].

De�nition 5.2. Let f mig be the set of the roots of the polynomialP(m), and we set
l i = � mi , i = 1; � � � ;n. The complex numbersl 1; � � � ; l n are called themultipliersof
the ODE (5.4).
The ODE (5.4) is said to have asingle level1 at in�nity when the multipliers are all
nonzero.
One says that the multipliers arenon-resonantwhen they are rationally indepen-
dent, that is linearly independent overZ. The multipliers arepositively resonant
when there existskreson = ( k1; � � � ;kn) 2 Nn n f 0g so that lll :kreson = 0, where
lll = ( l 1; � � � ; l n) 2 (C?)n The numberjkresonj + 1 is the order of the resonance,
since the positive resonance bringssemi-positively resonances, that is relationships
of the typelll :(kreson+ ej ) = l j for any j 2 [1;n].

We mention that the following constants are properly de�ned, sinceP has only
simple roots:

t i =
Q(� l i)
P0(� l i)

; i = 1; � � � ;n: (5.5)

From the theory of linear differential equations (see [34, 32], see also [4, 39]), we
notice that the linear equation
P(¶)w+ 1

zQ(¶)w = 0 has a formal general solution under the form

w(z) =
n

å
i= 1

vi(z)yi(z): (5.6)

In (5.6),yi(z) = Uie� l izz� t i ,Ui 2 C, stands for the general solution of the differential

equationy0
i +

�
l i +

t i

z

�
yi = 0, while vi 2 C[[z� 1]] is invertible and is determined

uniquely up to normalization.
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5.2.2.2 Companion system, prepared form

Formal integrals have more natural foundations when differential equations of order
one are considered. We therefore translate the ODE (5.4) into a one order ODE

of dimensionn by introducingw =

0

B
B
B
@

w1
w2
...

wn

1

C
C
C
A

=

0

B
B
B
@

w
w0

...
w(n� 1)

1

C
C
C
A

. We get the companion

system
¶w+ Aw = f(z;w); (5.7)

with A =

0

B
B
B
B
@

0 � 1 � � � 0
...

...
...

...
... 0 � 1

an
a0

+ bn
za0

� � � � � � a1
a0

+ b1
za0

1

C
C
C
C
A

andf(z;w) =

0

B
B
B
@

0
...
0

F(z;w1)=a0

1

C
C
C
A

.

Since (5.4) has a unique formal solutionew0 2 C[[z� 1]], val ew0 � 2, we may re-
mark that (5.7) has a unique formal solutionew0 2 Cn[[z� 1]] as well, and in fact
ew0 2 z� 2(C[[z� 1]])n.

Lemma 5.1.There exists T0(z) 2 GLn(Cf z� 1g[z]) so that the meromorphic gauge
transformw = T0(z)v brings (5.7) into theprepared form

¶v+ B0v = g(z;v); B0 =

0

B
@

l 1 + t 1
z � � � 0

...
...

...
0 � � � l n + t n

z

1

C
A ; (5.8)

with g a Cn-valued function, holomorphic in a neighbourhood of(¥ ;0) and
g(z;v) = O(z� 2) + O(kvk2) when z! ¥ andv ! 0.
The prepared form (5.8) has a unique formal solutionev0 2 (C[[z� 1]])n and
ev0 2 z� 2(C[[z� 1]])n.

Proof. The proof is based on classical ideas for linear ODEs (see [34, 32], see also
[4, 39, 15]). Looking at (5.6), we compare (5.7) with the linear equation

¶u+ B0u = 0; B0 =

0

B
@

l 1 + t 1
z � � � 0

...
...

...
0 � � � l n + t n

z

1

C
A = L +

1
z

L; (5.9)

whose general solution (holomorphic oneC) is given in term of the fundamental
matrix solutionz� Le� zL ,

u(z) = z� Le� zL U = � n
i= 1z� t i e� zl i U; U 2 Cn: (5.10)

We remark that

�
e� l zz� t

� (m)
= e� l zz� t

m

å
j= 0

�
m
j

�
(� l )m� j (� t ) j

zj (5.11)

for (l ; t ) 2 C2 andm2 N, where(� t ) j = j!
�

� t
j

�
mimics the Pochhammer sym-

bol:
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(� t )0 = 1 and(� t ) j = ( � 1) j t (t + 1) � � �
�
t + j � 1

�
for j � 1: (5.12)

We thus set the meromorphic gauge transformw = T0(z)v with T0(z) 2 GLn(Cf z� 1g[z])
of the form:

T0(z) =

0

B
B
B
B
B
@

1 � � � 1
� l 1 � t 1

z � � � � l n � t n
z

...
...

å n� 1
j= 0

�
n� 1

j

�
(� l 1)n� 1� j (� t 1) j

zj � � � å n� 1
j= 0

�
n� 1

j

�
(� l n)n� 1� j (� t n) j

zj

1

C
C
C
C
C
A

:

(5.13)
By its very de�nition, this gauge transform brings (5.7) into the differential equation:

¶v = �
�
T � 1

0 (¶T0) + T � 1
0 AT0

�
v+ T � 1

0 f(z;T0v) (5.14)

= � B0v+ g(z;v)

whereg has the properties described in the lemma. The fact that (5.8) has a unique
formal solutionev0 2 (C[[z� 1]])n is obvious. ut

Example 5.1.We have already seen that the companion system associated with (3.6)

is (3.9). The gauge transformw = T0(z)v, T0(z) =
�

1 1
� 1+ 3

2z 1+ 3
2z

�
, brings (3.9)

into the prepared form:

¶v+
�

1� 3
2z 0

0 � 1� 3
2z

�
v =

15
8z2

�
� 1 � 1
1 1

�
v+

1
2

�
� F(z;v1 + v2)
F(z;v1 + v2)

�
: (5.15)

Remark 5.1.Let us consider the action of the gauge transformy = T0(z)u on the
differential equation¶u+ B0u = 0. This differential equation is transformed into the
system ¶y + A0y = 0 with A0 = T0B0T � 1

0 � (¶T0)T � 1
0 of the form

A0 =

0

B
B
B
B
@

0 � 1 � � � 0
...

...
...

...
... 0 � 1

pn(z) � � � � � � p1(z)

1

C
C
C
C
A

with pn; � � � ; p1 2 Cf z� 1g, pn(z) = an
a0

+ bn
za0

+ O(z� 2),

� � � , p1(z) = a1
a0

+ b1
za0

+ O(z� 2). The system¶y+ A0y = 0 is the companion system
for the one-dimensional homogeneous ODE of ordern,

¶ny+ p1(z)¶n� 1y+ � � � + pn(z)y = 0; (5.16)

whose general solution isy(z) = å n
i= 1Uie� l izz� t i , (U1; � � � ;Un) 2 Cn.

5.2.2.3 Normal form, formal reduction

We have previously reduced the companion system (5.7) to a prepared form through
a meromorphic gauge transform. Under some conditions, one can go further, but
through formal transformations, in the spirit of the Poincaré-Dulac theorem [3] and
the classi�cation up to formal conjugation.

Proposition 5.1.We consider the ODE (5.8) and we assume that the multipliers
l 1; � � � ; l n are non-resonant. Then there exists a formal transformationv = eT(z;u),
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eT(z;u) = å
k2Nn

ukevk(z); evk(z) 2 (C[[z� 1]])n; (5.17)

which formally transforms (5.8) into the linearnormal formequation¶u+ B0u = 0.
In (5.17),ev0 stands for the unique formal solution of (5.8); for j= 1; : : : ;n, evej is
uniquely determined when one prescribes its constant term to be equal toej ; then
the formal seriesevk are unique forjkj > 1.

We will see in the sequel how this proposition can be shown. Here, we rather
concentrate on its consequences.

One can refer to, e.g., [31, 5] for a proof that extend to possibly nilpotent cases (but with no
resonances), and to [19] for a very general frame.

We know that the general solution of the normal form¶u + B0u = 0 is
u(z) = � n

i= 1z� t i e� zl i (tU), U = ( U1; � � � ;Un) 2 Cn. Through the action of the for-
mal transformationv = eT(z;u), this provides the following general formal solution
for the ODE (5.8):

ev(z;U) = å
k=( k1;��� ;kn)2Nn

n

Õ
i= 1

(Uiz� t i e� zl i )kievk(z) = å
k2Nn

Uke� lll :kzz� ttt :kevk(z) (5.18)

with lll = ( l 1; � � � ; l n) 2 (C?)n andttt = ( t 1; � � � ; t n) 2 Cn.

De�nition 5.3. The formal series (5.18) is called theformal integralof (5.8).

Of course, one can obtain the formal integralew(z;U) of (5.7) as well, by the
gauge transformew = T0(z)ev, with T0(z) given by (5.13). When �nally returning to
then-th order ODE (5.4) of dimension 1 we started with, one gets its formal integral.

De�nition 5.4. We assume that the multipliers are non-resonant. Theformal inte-
gral ew(z;U) of the ODE (5.4) is de�ned by:

ew(z;U) = å
k2Nn

Uke� lll :kzz� ttt :k ewk(z); ewk(z) = evk(z):(1; � � � ;1) 2 C[[z� 1]];

= eF (z;U1e� l 1zz� t 1; � � � ;Une� l nzz� t n) (5.19)

with eF (z;u) = å k2Nn uk ewk(z) 2 C[[z� 1;u]]. The formal transformationw= eF (z;u)
formally transforms (5.4) into the normal form equation¶u+ B0u = 0.

The formal integral (5.19), thus depending on the maximaln free parame-
ters U = ( U1; � � � ;Un) 2 Cn, plays the role of the general formal solution for the
ODE (5.4) of ordern. Formal integrals can be de�ned as well for difference and
differential-difference equations, see, e.g. [19, 31]. This notion has been enlarged
for nonlinear partial differential equations in [35].

Remark 5.2.Although working at the formal level, one may wonder what is the
chosen branch when we writez� ttt :k . As a matter of fact, this is not relevant at this
stage since moving from a determination to another one just translates into rescaling
the free parameterU.

Remark 5.3.IntroducingVk = Uke� lll :kzz� ttt :k , we remark the identity:

¶z
�
Vk ewk

�
=

"
�

¶z �
n

å
i= 1

(l i +
t i

z
)ui¶ui

� �
uk ewk

�
#

ju= V :
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Looking at the equality

ew(z;U) = eF (z;U1e� l 1zz� t 1; � � � ;Une� l nzz� t n) (5.20)

and since the formal integral (5.19) solves the differential equation (5.4), one de-
duces thateF satis�es:

P
�

¶z �
n

å
i= 1

(l i +
t i

z
)ui¶ui

�
eF +

1
z

Q
�

¶z �
n

å
i= 1

(l i +
t i

z
)ui¶ui

�
eF = F(z; eF ): (5.21)

5.2.3 Formal integral, general considerations

Under convenient hypotheses, we have previously introduced the formal integral for
the ODE (5.4), that is an-parameters formal expansion of the form

w(z;U) = å
k2Nn

Uke� lll :kzz� ttt :kwk(z); lll ; ttt 2 Cn; (5.22)

Let us start with (5.22) and investigate the conditions to impose on thewk 's in
order for (5.22) to be formally solution of (5.4).

We could start with (5.21) as well.

Using the identity (5.11) form2 N, one obtains from (5.22):

w(m) = å
jkj� 0

Uk
m

å
p= 0

�
m
p

�
(e� lll :kzz� ttt :k)(p)w(m� p)

k

= å
jkj� 0

Uke� lll :kzz� ttt :kTk;m+ 1(wk)

whereT0;m+ 1(w0) = w(m)
0 and, more generally fork 2 N2,

Tk;m+ 1(wk) =
m

å
p= 0

�
m
p

� h p

å
j= 0

�
p
j

�
(� lll :k)p� j (� ttt :k) j

zj

i
w(m� p)

k

=
m

å
j= 0

�
m
j

�
(� ttt :k) j

zj

hm� j

å
q= 0

�
m� j

q

�
(� lll :k)m� j� qw(q)

k

i
;

that is also

Tk;m+ 1(wk) =
m

å
j= 0

�
m
j

�
(� ttt :k) j

zj

h
(� lll :k + ¶)m� jwk

i
: (5.23)

In what follows we will simply writeTk;m+ 1 instead ofTk;m+ 1(wk). We intro-
duce the notationVk = Uke� lll :kzz� ttt :k and we notice that for everyk1;k2 2 Nn,
Vk1Vk2 = Vk1+ k1. On the one hand,

P(¶)w =
¥

å
k= 0

Vk
h n

å
m= 0

an� mTk;m+ 1

i
= å

jkj� 0

Vk pk(¶)wk (5.24)

where forjkj � 0,
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pk(¶) =
n

å
m= 0

an� m(� lll :k + ¶)m

+
n

å
m= 1

an� m

n m

å
j= 1

�
m
j

�
(� ttt :k) j

zj (� lll :k + ¶)m� j
o

:

In other words, forjkj � 0,

pk(¶) = P(� lll :k + ¶)+
n

å
j= 1

1
zj

�
� ttt :k

j

�
P( j)(� lll :k + ¶): (5.25)

Similarly

Q(¶)w = å
jkj� 0

Vkqk(¶)wk (5.26)

with

qk(¶) = Q(� lll :k + ¶)+
n� 1

å
j= 1

1
zj

�
� ttt :k

j

�
Q( j)(� lll :k + ¶): (5.27)

On the other hand we consider the Taylor expansion ofF(z;w(z;U)) at w0,
namely

F(z;w) = F(z;w0) + å̀
� 1

�
å jkj� 1Vkwk

� `

`!
¶ `F(z;w0)

¶w` : (5.28)

We observe that for everỳ2 N?,

�
å

jkj� 1

Vkwk

� `
= å

jpj� `

Vp å
p1+ ���+ p` = p
jpi j� 1;1� i� `

wp1 � � � wp` : (5.29)

As a result, equation (5.28) reads

F(z;w) = F(z;w0) + å̀
� 1

jpj� `

Vp å
p1+ ���+ p` = p
jpi j� 1;1� i� `

wp1 � � � wp`

`!
¶ `F(z;w0)

¶w` : (5.30)

Finally, plugging the formal expansion (5.22) into the differential equation (5.4),
using the identities (5.24), (5.26), (5.30) and identifying the powersVk , one gets
the next lemma 5.2 which justi�es the following de�nition.

De�nition 5.5. Fork 2 Nn, we de�ne

Pk(¶) = P(� lll :k + ¶); (5.31)

Qk(¶) = � ttt :kP0(� lll :k + ¶)+ Q(� lll :k + ¶)

Rk(¶) =
n� 2

å
j= 0

1
zj

��
� ttt :k
j + 2

�
P( j+ 2)(� lll :k + ¶)+

�
� ttt :k
j + 1

�
Q( j+ 1)(� lll :k + ¶)

�
:

(5.32)

Fork 2 Nn, we denote byDk = Dk(w0) the linear differential operator
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Dk = Pk(¶)+
1
z

Qk(¶)+
1
z2 Rk �

¶F(z;w0)
¶w

wherew0 satis�esP(¶)w0 +
1
z

Q(¶)w0 = F(z;w0).

For k 2 Nn, we denote byP k = P k(w0) the linear differential operator

P k = P(� lll :k + ¶)+
1
z

Q(� lll :k + ¶) �
¶F(z;w0)

¶w
: (5.33)

Lemma 5.2.The n-parameters formal expansion

w(z;U) = å
k2Nn

Uke� lll :kzz� ttt :kwk(z) (5.34)

solves (5.4) if and only if :

P(¶)w0 +
1
z

Q(¶)w0 = F(z;w0); (5.35)

Dei wei = 0 (5.36)

with ei the i-th vector of the canonical base ofCn, and forjkj � 2,

Dkwk = å
k1+ ���+ k` = k
jk i j� 1; `� 2

wk1 � � � wk`

`!
¶ `F(z;w0)

¶w` : (5.37)

Remark 5.4.Notice that in lemma 5.2 we have neither supposed that

lll = ( l 1; � � � ; l n) are the multipliers, nor thatttt = ( t 1; � � � ; t n) are such thatt i =
Q(� l i)
P0(� l i)

,

i = 1; � � � ;n. However, these conditions will come in the next section.

Example 5.2.We consider equation (3.6) wheren = 2,P(¶) = ¶2 � 1,Q(¶) = � 3¶.
Then, for everyk 2 N2,

Pk(¶) = ¶2 � 2lll :k¶ + ( lll :k)2 � 1; (5.38)

Qk(¶) = ( 3+ 2ttt :k)( � ¶ + lll :k);

Rk(¶) = ttt :k(ttt :k + 4):

In particular, takinglll = ( 1; � 1) (the zeros ofz 7! P(� z )) andttt =
�

�
3
2

; �
3
2

�

(we take the values given by (5.5)), then writingk = ( k1;k2):

Pk(¶) = ¶2 � 2(k1 � k2)¶ + ( k1 � k2)2 � 1; (5.39)

Qk(¶) = 3(1� k1 � k2)( � ¶ + k1 � k2);

Rk(¶) =
9
4

(k1 + k2)
�

k1 + k2 �
8
3

�
:

We eventually mention some identities for later purposes, the proof of which
being left as an exercise.

Lemma 5.3.The operatorsP k andDk given by de�nition 5.5 satisfy the identities:
for any k;k1;k2 2 Nn, e� lll :k1zP k1elll :k1z = e� lll :k2zP k2elll :k2z, z� ttt :kDk = P kz� ttt :k

and
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(e� lll :k1zz� ttt :k1)Dk1(e� lll :k1zz� ttt :k1)� 1 = ( e� lll :k2zz� ttt :k2)Dk2(e� lll :k2zz� ttt :k2)� 1:

Setting Wk = z� ttt :kwk for k 2 Nn and the wk given by lemma 5.2, one hasP eiWei = 0,
i = 1;2 while and forjkj � 2,

P kWk = å
k1+ ���+ k` = k
jk i j� 1; `� 2

Wk1 � � � Wk`

`!
¶ `F(z;w0)

¶w` : (5.40)

5.3 First Painlev́e equation and transseries solutions

We partly describe in this section the contains of lemma 5.2 for the prepared form
equation (3.6) associated with the �rst Painlevé equation. Thusn = 2,P(¶) = ¶2 � 1,
Q(¶) = � 3¶ andF(z;w) = f0(z)+ f1(z)w+ f2(z)w2. Also, we will for the moment
specialise our study to only one-parameter formal expansions, that is we will as-
sume that eitherU1 = 0 or U2 = 0 in (5.34). This study will be enough to get the
truncated solutions. We will keep on our study of the formal integral associated with
(3.6) in Sect. 5.4 where will we see the effects of resonances.

5.3.1 Transseries solution - statement

This section will be devoted to proving the following proposition.

Proposition 5.2.We consider the prepared ODE (3.6). We setlll = ( l 1; l 2) = ( 1; � 1)
where thel i 's are the multipliers, that is the roots of the polynomialz 7! P(� z ).

We setttt = ( t 1; t 2) =
�

�
3
2

; �
3
2

�
, wheret i =

Q(� l i)
P0(� l i)

, i = 1;2.

Then for each i= 1;2, there exists a formal one-parameter solution of (3.6) in the
graded algebra

M

k2N

z� t ike� l ikzC[[z� 1]] of the form:

ew(z;Uei) =
¥

å
k= 0

Uke� l ikzz� t ik ewkei (z); ewkei 2 C[[z� 1]]: (5.41)

We haveval ewkei = 2(k � 1) and the formal series (5.41) is unique once one �xes
the normalization ofewei to be ewei (z) = 1 + O(z� 1). Then ewkei 2 R[[z� 1]] and

ewkei (z) =
k

12k� 1 z� 2(k� 1)(1+ O(z� 1)) for every k� 1. Furthermore changing the

normalization ofewei is equivalent in rescaling the parameter U2 C. Eventually,
ewke1(z) = ewke2(� z) for every k� 0.

De�nition 5.6. The series (5.41) is called a formaltransseries. The terms e� l ikzz� t ik

are (log-free)transmonomials. The formal seriesewkei are called thekei-th seriesof
the transseries. We seteWkei = z� t ik ewkei .

Remark 5.5.The term “transseries” is due to Ecalle [20]. These are objects that are
widely used in resurgence theory, see, e.g. [9, 36, 28, 29]. More details on transseries
can be founded in [19, 20, 7, 8]. Transseries are also common objects in theoretical
physics : these are the so-called “multi-instanton expansions”, see e.g. [40, 25, 26,
27, 33, 24, 1, 16, 17, 18].
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In quantum mechanics or quantum �eld theory, aninstanton action(the terminology of
which is due to Gerard 't Hooft) is a classical solution of the equations of motion, with a
�nite and non-zero action. A well-known instanton effect in quantum mechanics is given by
a particle in a double well potential. The tunneling effect provides a non-zero probability
that the particle crosses the potential barrier. This gives rise to a tunneling amplitude pro-
portionnal to theinstantone� S=h̄ whereSis the instanton action,h̄ being the Planck constant
or the coupling constant. For the bound states, this translates into the fact that they can be
described at a formal level by a multi-instanton expansion, that is a transseries of the form
å k� 0

eEk(h̄)e� kS=h̄ where the perturbative �uctuationseEk(h̄) are formal expansions with re-
spect toh̄. The bound states are deduced from the multi-instanton expansion by (median)
Laplace-Borel summation, see [38, 10, 11, 12, 13, 14, 22, 23].

For later use, we mention a lemma that result from proposition 5.2 and lemma 5.3.

Lemma 5.4.Under the conditions of proposition 5.2 and for anyk 2 N2, the (so-
called) general formal solution of the linear differential equationP k( ew0) eW = 0
is eW = elll :kz

�
C1e� l 1z eWe1 + C2e� l 2z eWe2

�
, C1;C2 2 C. For any k 2 N2 the (so-

called) general formal solution of the linear differential equationDk( ew0) ew = 0 is
ew(z) = elll :kzzttt :k

�
C1e� l 1z eWe1 + C2e� l 2z eWe2

�
, C1;C2 2 C.

5.3.2 Transseries solution - proof

5.3.2.1 A useful lemma

We start with the following lemma which will be useful in the sequel.

Lemma 5.5.We suppose n;N 2 N?. We consider the ordinary differential equation

P(¶)w+
1
z

R(¶)w = ef (z); ef (z) = fNz� N(1+ O(z� 1)) 2 z� NC[[z� 1]]; fN 6= 0

with P(¶) = å n
m= 0an� m¶m 2 C[¶], an 6= 0, R(¶) = å n� 1

m= 0gn� m(z)¶m 2 C[[z� 1]][¶].
This ODE has a unique solutionew in C[[z� 1]], moreover val ew = val ef and
ew(z) = fN

P(0) z� N(1+ O(z� 1)) .

Proof. In the valuation ringC[[z� 1]] we consider the following map :

N : C[[z� 1]] ! C[[z� 1]]

w !
1

P(0)

h
ef (z) �

�
P(¶) � P(0)

�
w�

1
z

R(¶)w
i
:

(Remember thatP(0) = an is nonzero). From the hypotheses made one easily ob-
serves thatN(C[[z� 1]]) � z� 1C[[z� 1]] while, for everyp 2 N?,

if u;v 2 z� pC[[z� 1]]; thenN(u) � N(v) 2 z� p� 1C[[z� 1]]:

This means thatN is contractive inC[[z� 1]], thus the �xed point problemw = N(w)
has a unique solutionew = lim

p! ¥
Np(0) in C[[z� 1]]. SinceN(0) = ef (z)=P(0) one gets

ew(z) = fN
P(0) z� N(1+ O(z� 1)) . ut
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5.3.2.2 Proof of proposition 5.2

We precise as an introduction that the assertionewkei 2 R[[z� 1]] is just a consequence
of the realness of equation (3.6). The relationshipsew(0;k)(z) = ew(k;0)(� z) for every
k � 0, come from the property of equation (3.6) to be invariant under the change of
variablez7! � zand to the chosen normalization ofewei , i = 1;2.

5.3.2.3 The return of the formal solution

We remark thatw0 = w(0;0) has to solve (5.35) which is nothing but the equation
(3.6) one started with. In particular we know that this equation has a unique formal
solution ew0 2 C[[z� 1]] which has been investigated in the previous chapters.
In what follows, one will always replacew0 by this formal solutionew0. We mention
the following obvious fact, essentially due to the property that valew0 � 2 and that

for every` = 0;1;2, ¶` F(z;0)
¶w` 2 z� 2Cf z� 1g. (This is one place where it is interesting

to work with a “well-prepared” equation, see what we have done in Sect. 3.1 to get
(3.6) and exercise 3.1):

Lemma 5.6.If ew0(z) = å l � 2a0;l z� l 2 C[[z� 1]] is the formal solution of (3.6), then

for every` = 0;1;2, ¶` F(z;ew0)
¶w` 2 C[[z� 1]] has valuation2, and vanishes identically

for every` � 3. Also, ¶F(z;ew0)
¶w = � 4z� 2 + z� 2 ew0 is even and its coef�cients are all

real negative, and¶
2F(z;ew0)

¶w2 = z� 2.

5.3.2.4 The casesjkei j = 1

Formula (5.36) withk = e1 provides

De1we1 = 0 (5.42)

whereDe1 = Pe1(¶)+
1
z

Qe1(¶)+
1
z2 Re1 �

¶F(z; ew0)
¶w

with

Pe1(¶) = P(� l 1 + ¶) = P(� l 1) + P0(� l 1)¶ +
P00(� l 1)

2!
¶2

Qe1(¶) = � t 1P0(� l 1 + ¶)+ Q(� l 1 + ¶)

Re1 = t 1(t 1 + 4)

Assuming thatwe1 2 C[[z� 1]], one observes that the right-hand side of (5.42) has
valuation less or equal to(val we1) � 2, because of lemma 5.6. In order to get a non
identically vanishing solution, one thus has to impose the conditionP(� l 1) = 0.
Following our conventions, we takel 1 = 1.
The same reasoning leads to impose furthermore that� t 1P0(� l 1) + Q(� l 1) = 0,
thust 1 = � 3

2. Therefore,Pe1(¶) = ¶2 � 2¶, Qe1(¶) = 0, Re1(¶) = � 15
4 . Symmetri-

cally for k = e2, one getsl 2 = � 1, t 2 = �
3
2

as a necessary condition and

De2we2 = 0 (5.43)

where De2 = Pe2(¶) + 1
zQe2(¶) + 1

z2 Re2 � ¶F(z;ew0)
¶w whereasPe2(¶) = ¶2 + 2¶,

Qe2(¶) = 0, Re2(¶) = � 15
4 .
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Fig. 5.2 The Newton polygon
at in�nity N ¥ (De1) associ-
ated with the linear operator
(5.45).

Lemma 5.7.The linear homogeneous equations (5.42), (5.43) have both a one-
parameter family of formal solutions we1 = U1 ewe1 and we2 = U2 ewe2 in C[[z� 1]],
where ewe1 and ewe2 are uniquely determined by their given normalization
ewei = 1+ O(z� 1). Moreover ewei 2 R[[z� 1]] and ewe2(z) = ewe1(� z). Furthemore, if
ew0(z) = å l � 0a0;l z� l and ewe1(z) = å l � 0ae1;l z� l , the following quadratic recursion
relation is valid:

8
><

>:

ae1;0 = 1;

ae1;l =
1
8l

 

� (2l � 1)2ae1;l � 1 + 4
l � 1

å
p= 0

ae1;pa0;l � p� 1

!

; l = 1;2; � � �
(5.44)

Proof. We only examine (5.42). We look at this equation in the space of normalized
formal seriesC[[z� 1]], namely

8
<

:
(¶ � 2)¶we1 =

�
15
4

1
z2 +

¶F(z; ew0)
¶w

�
we1

we1 2 C[[z� 1]]; we1 = 1+ O(z� 1):
(5.45)

We remark that the restriction of the derivation operator¶ to the maximal ideal
z� 1C[[z� 1]] is a bijective operator betweenz� 1C[[z� 1]] andz� 2C[[z� 1]]; we denote
by ¶ � 1 the inverse operator, ¶!

z� 1C[[z� 1]] z� 2C[[z� 1]]:
 
¶ � 1

We transform (5.45) into the equation� 2¶we1 =
�

� ¶2 + 15
4

1
z2 + ¶F(z;ew0)

¶w

�
we1 and

we see that the right-hand side of this equation belongs toz� 2C[[z� 1]] oncewe1

belongs toC[[z� 1]], because of lemma 5.6 and to the choice of the coef�cientt 1.
This means that the map

N : C[[z� 1]] ! C[[z� 1]]

we1 ! 1�
1
2

¶ � 1
�

� ¶2 +
15
4

1
z2 +

¶F(z; ew0)
¶w

�
we1

is well de�ned and the problem (5.45) is equivalent to the �xed-point problem
we1 = N(we1). One easily checks that the mapN is contractive inC[[z� 1]] so that
the �xed point problemwe1 = N(we1) has a unique solutionewe1 in C[[z� 1]].
From the fact that (5.42) is a homogeneous equation, one immediately concludes
thatU1 ewe1, U1 2 C, provides a one-parameter family of formal solutions.
The proof for the quadratic recursion relation (5.44) is left to the reader (see
also [24, 1]). ut
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Remark 5.6.1. The Newton polygon at in�nityN ¥ (De1) drawn on Fig. 5.2, has
one horizontal side that corresponds to the operator� 2¶. General nonsense in
asymptotic theory (see [32], or [6, 30]) provides the existence of the formal (nor-
malized) series solutionewe1. The other (normalized) formal solution associated
with the side of slope� 1 is e2zewe2 (see lemma 5.4) which, in our frame, is already
incorporated in the other transseries solution.

2. From lemma 5.6 or (5.44), one easily shows that

ewe1(z) = 1�
1
8

z� 1 +
9

128
z� 2 �

341329
1920000

z� 3 + � � �

is a real formal expansion, with coef�cients that alternate in sign.

5.3.2.5 The casesjkei j � 2

Lemma 5.8.For anyk = kei , i = 1;2 and k� 2, equation (5.37) has a unique for-
mal solution wkei = ewkei in C[[z� 1]]. Moreoverval ewkei = 2(k� 1).
Furthermore, when considering Uewei instead ofewei for the solution of (5.36), then
the unique solution of (5.37) at rankk = kei , k � 2, is Uk ewkei . Also, ewkei 2 R[[z� 1]],

ewkei (z) =
k

12k� 1 z� 2(k� 1)(1+ O(z� 1)) and ew(0;k)(z) = ew(k;0)(� z) for every k� 2.

Eventually, writingewke1(z) = å l � 0ake1;l z� l , the coef�cients are governed the fol-
lowing quadratic recursion relations, for every k� 2:

8
>>>>>>><

>>>>>>>:

ake1;0 = ake1;1 = 0;

(k2 � 1)ake1;l = k(3k� 2l � 1)ake1;l � 1 � 1
4(3k� 2l )2ake1;l � 2

+ å l � 2
p= 0

0

B
@ake1;pa0;l � p� 2 + 1

2 å
k1+ k2= k

k1� 1;k2� 1

ak1e1;pak2e1;l � p� 2

1

C
A ; l = 2;3; � � �

(5.46)

Proof. We only examine the casek = ke1, k � 2.
The proof is done by induction onk. We �rst consider equation (5.37) fork = 2:

D2e1w2e1 =
ew2

e1

2!
¶2F(z; ew0)

¶w2 ; (5.47)

with D2e1 = P2e1(¶) + 1
zQ2e1(¶) + 1

z2 R2e1 � ¶F(z;ew0)
¶w . We know thatP2e1(0) = 3 is

nonzero since, by (5.31),P2e1(¶) = P(� 2l 1 + ¶) = ¶2 � 4¶ + 3. Using lemma 5.6,
one sees that lemma 5.5 can be applied to (5.47) and this provides a unique solution
ew2e1 2 C[[z� 1]]. Its valuation is 2 and explicit calculation gives:

ew2e1(z) =
1
6

z� 2 �
11
72

z� 3 +
53
192

z� 4 + � � � ; ew2e2(z) = ew2e1(� z):

One easily checks that replacingewe1 by U ewe1 implies changingew2e1 into U2 ew2e1.
We now assume that the properties of lemma 5.8 are true for every 2� k � K � 1.
When considering equation (5.37) forK one gets :

DKe1wKe1 = å
k1+ k2= K

k1� 1;k2� 1

ewk1e1 ewk2e1

2!
¶2F(z; ew0)

¶w2 ; (5.48)
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with DKe1 = PKe1(¶)+ 1
zQKe1(¶)+ 1

z2 RKe1 � ¶F(z;ew0)
¶w , PKe1(¶) = ¶2 � 2K¶ + ( K2 � 1).

One deduces the conclusion of lemma 5.8 at the rankK by the arguments used pre-
viously. For the valuation, observe that valewk1e1 ewk2e1 � 2(k1 � 1)+ 2(k2 � 1) when
k1 + k2 = K, thus valewk1e1 ewk2e1 � 2(K � 2). As a matter of fact, for everyk � 2,
ew(k;0)(z) = bkz� 2(K� 1)(1+ O(z� 1)) with

(
b1 = 1;
bk = 1

2(k� 1)(k+ 1) å k� 1
p= 1bpbk� p; k � 2;

which easily providesbk = k
12k� 1 by induction. The reader will easily check that the

recursive relations (5.46) are true. (See also [24, 1]).ut

Remark 5.7.Here again, we are not interested in the whole formal fundamen-
tal solutions of equations (5.47), (5.48), which incorporate the general solution
(e� l 1kzz� t 1k)� 1

�
C1e� l 1zz� t 1 ewe1 + C2e� l 2zz� t 2 ewe2

�
of the associated homogeneous

linear ODEsD (k;0)w = 0 (cf. lemma 5.4). Taking into account the term(� � � ) ewe1

would imply a rescaling ofU1. The other term(� � � ) ewe2 concerns the other transseries.

5.4 Formal integral for the �rst Painlev é equation

We made general considerations on formal integrals in Sect. 5.2. We started the
study of the formal integral for the prepared equation (3.6) associated with the �rst
Painlev́e equation in Sect. 5.3 : this gave us the transseries described by proposition
5.2. When no resonances occur, one gets with quite similar arguments the formal
integral. However, this is not that simple for the �rst Painlevé equation where we
have to cope with resonances.

5.4.1 Notations and preliminary results

5.4.1.1 Notations

It will be useful for our purpose to introduce the following notations:

De�nition 5.7. For anyn 2 N?, we setn = n(1;1) and

Xn;0 = f k = ( k1;k2) 2 N2 n f 0g j k1 < n or k2 < ng [ f ng:

We also setX0;0 = f (0;0)g.

Example 5.3.X1;0 = ( N? � f 0g) [ (f 0g � N?) [ f (1;1)g,
X2;0 = ( N? � f 0;1g) [ (f 0;1g � N?) [ f (2;2)g.
Notice that for everyn 2 N, Xn+ 1;0 nXn;0 = n+ X1;0.

5.4.1.2 Resonances : �rst consequences

Equation (3.6) has the feature to havepositively resonantmultipliers l 1 = 1,
l 2 = � 1 becauselll :n = 0, for everyn 2 N? (see de�nition 5.2). This brings semi-
positively resonances, the cases of semi-positive resonances being all described by
l 1 = lll :(n+ e1) andl 2 = lll :(n+ e2), for everyn 2 N?.
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We have already seen (proposition 5.2) that these properties have no consequence
for the transseries but, as we shall see, this produces new phenomena when the
formal integral is concerned, these being essentially consequences of the following
fact, derived from lemma 5.3.

Lemma 5.9.For every n2 N, k 2 N2, the following identities are satis�ed:

P n+ k = P k ; Dn+ k = zttt :nDkz� ttt :n; ttt :n = � 3n:

5.4.1.3 Preliminary lemmas

In a moment, we will have to deal with formal expansions of the type
p

å
l= 0

logl (z) efl (z),

p 2 N, with the efl 's in C[[z� 1]].

De�nition 5.8. We equip the graded algebra
M

l2N

logl (z)C[[z� 1]] with the valuation

val de�ned by: val

 

å
l

logl (z) efl

!

= min
l

f val efl g.

Lemma 5.10.We suppose n;N 2 N? and p2 N. We consider the ordinary differen-
tial equation

P(¶)w+
1
z

R(¶)w = ef (z); ef (z) 2
pM

l= 0

logl (z)C[[z� 1]]; (5.49)

P(¶) =
n

å
m= 0

an� m¶m 2 C[¶]; an 6= 0; R(¶) =
n� 1

å
m= 0

gn� m(z)¶m 2 C[[z� 1]][¶]

Then (5.49) has a unique solutionew 2
pM

l= 0

logl (z)C[[z� 1]] andval ew = val ef . More-

over, if ef = å p
l= 0 logl (z) efl and ew = å p

l= 0 logl (z) ewl , then:

1. ewp solves the ODE: P(¶)w+
1
z

R(¶)w = efp;

2. if val efp < val å p� 1
l= 0 logl (z) efl thenval ewp < val å p� 1

l= 0 logl (z) ewl .

Proof. One easily sees that the arguments used for the proof of lemma 5.5 can be

extended, when observing that val¶

 

å
l

logl (z) efl

!

� val

 

å
l

logl (z) efl

!

+ 1. ut

We have seen in lemma 5.7 that the operatorsDei , i = 1;2, have speci�c be-
haviours. This is the purpose of the following lemma.

Lemma 5.11.We suppose p2 N and i 2 f 1;2g. We assume that
ef = å p

l= 0 logl (z) efl 2
L p

l= 0 logl (z)C[[z� 1]] satis�es the conditions:

1. val efp = 1, efp = fp1z� 1(1+ 0(z� 1)) , fp1 6= 0

2. val
�

å p� 1
l= 0 logl (z) efl

�
� 2.

Then the equationDei w = ef has a unique solutionew = å p+ 1
l= 0 logl (z) ewl in

L p+ 1
l= 0 logl (z)C[[z� 1]] that satis�es the conditionval

�
å p

l= 0 logl (z) ewl
�

� 1. Moreover



104 5 Transseries and formal integral for the �rst Painlevé equation

ewp+ 1 =
fp1

(p+ 1)P0(� l i)
ewei .

Otherwise, the general solution of the ODEDei w = ef in
L p+ 1

l= 0 logl (z)C[[z� 1]] is of
the form w= ew+ U ewei where U2 C.

Proof. We examine the casei = 1 only. The ODEDe1w = ef is equivalent to the
equation :

P0(� l 1)¶w = ef +
�

� ¶2 +
15
4

1
z2 +

¶F(z; ew0)
¶w

�
w; P0(� l 1) = � 2:

By arguments already used in the proof of lemma 5.7, this problem amounts to
looking for a formal solution which satis�es the �xed-point problem

w = U(z)+
1

P0(� l 1)
¶ � 1

�
� ¶2 +

15
4

1
z2 +

¶F(z; ew0)
¶w

�
w

whereU(z) = ¶ � 1

 
ef

P0(� l 1)

!

=
fp1

(p+ 1)P0(� l 1)
logp+ 1(z) +

p

å
l= 0

logl (z)O(z� 1).

Notice that we take the primitive with no constant term. This �xed-point problem
has a unique formal solution under the form

ew =
fp1

(p+ 1)P0(� l 1)
ewei logp+ 1(z)+

p

å
l= 0

logl (z) ewl

and val
�
å p

l= 0 logl (z) ewl
�

� 1. Eventually one can add to this particular solution any
solution of the homogeneous equationDei w = 0, that is any term of the formU ewei

with U 2 C. ut

5.4.2 Painlev́e I: formal integral

We are now in position to detail the formal integral associated with the �rst Painlevé
equation.

Theorem 5.1.We consider the ODE (3.6). Let belll = ( l 1; l 2) = ( 1; � 1) where the

l i 's are the multipliers, andttt = ( t 1; t 2) =
�

�
3
2

; �
3
2

�
, t i =

Q(� l i)
P0(� l i)

, i = 1;2. We

set Vk = Uke� lll :kzz� ttt :k for any k 2 N2 and anyU = ( U1;U2) 2 C2. We write
n = n(1;1) for any n2 N.
There exists a two-parameter formal solution of (3.6), freely depending onU 2 C2,
of the form

ew(z;U) = ew0(z)+
¥

å
n= 0

å
k2Xn+ 1;0nXn;0

Vk ewk(z); (5.50)

and uniquely determined by the following conditions:

1. ew0 2 C[[z� 1]];

2. ewk =
n

å
l= 0

logl (z) ew[l ]
k 2

nM

l= 0

logl (z)C[[z� 1]], for everyk 2 Xn+ 1;0 nXn;0, n2 N;

3. for i = 1;2, ewei satis�es ewei (z) = 1+ O(z� 1);
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4. for every n 2 N? and i = 1;2, ewn+ ei = å n
l= 0 logl (z) ew[l ]

n+ ei
satis�es

val ew[n]
n+ e1

< val
�

å n� 1
l= 0 logl (z) ew[l ]

n+ ei

�
.

Moreover, the following properties are satis�ed:

5. changing the normalization ofewei , i = 1;2, is equivalent to rescaling the param-
eterU 2 C2;

6. for every n2 N and everyk 2 Xn+ 1;0 nXn;0, ewk 2
nM

l= 0

logl (z)R[[z� 1]]. Further-

more ew[l ]
(k1;k2)(z) = ew[l ]

(k2;k1)(� z) for every l2 [0;n];
7. for every n2 N? and everyk 2 Xn+ 1;0 nXn;0,

ewk =
n

å
l= 0

1
l !

({{{ :k) l zt :l logl (z) ew[0]
k� l (5.51)

where{{{ = ( { 1; { 2) = (
5
12

; �
5
12

) is de�ned by:

{ i =
a2

P0(� l i)

�
1

P(0)
+

1
2!

1
P(� 2l i)

�
=

5
12

l i ; i = 1;2; (5.52)

whereas a is given by
¶2F(z;0)

¶w2 = az� 2 + o(z� 2). As a consequence, for every

n 2 N?, ewn 2 R[[z� 1]] ;
8. for everyk 2 N2 n f 0g, val ew[0]

k = 2(jkj � 1).

Proof. Once for all:

� the property 5. is easily derived by an argument of homogeneity;
� the realness and eveness in property 6. are just consequences of the realness of

equation (3.6) and its property of being be invariant under the change of variable
z7! � z, and to the chosen normalizations.

In what follows, we investigate the terms under the formewk with k 2 Xn+ 1;0 nXn;0
andn 2 N. We �rst look at what happens whenn = 0 andn = 1, step by step so as
to draw some conclusions, then we complete the proof by induction onn.

Casen = 0 and k = 1 This is the �rst case where a resonance appears. However,
this case yields no surprise. Indeed, equation (5.37) fork = 1 reads

P1(¶)w1 +
1
z

Q1(¶)w1 =
�

�
1
z2 R1 +

¶F(z; ew0)
¶w

�
w1

+ ewe1 ewe2

¶2F(z; ew0)
¶w2 (5.53)

with P1(¶) = P0(¶) = ¶2 � 1. Therefore lemma 5.5 can be applied and one gets a

unique solutionew1 2 C[[z� 1]] with, moreover, valew1 = 2 andew1(z) =
a

P(0)
z� 2 + o(z� 2)

wherea = 1 is given by:¶
2F(z;0)
¶w2 = az� 2 + o(z� 2).

Explicit calculation yields:ew1(z) = � z� 2 �
9
8

z� 4 �
902139
80000

z� 6 � � � � .

Casesn = 1 and k 2 X2;0 nX1;0
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Casesk = 1+ ei , i = 1;2 These are the �rst cases of semi-positive resonances and
are more serious.

Let us concentrate on the casek = 1+ e1 for which equation (5.37) is

D1+ e1w1+ e1 = ( ew1 ewe1 + ew2e1 ewe2)
¶2F(z; ew0)

¶w2 ;

that is also, from lemma 5.9 and proposition 5.2,

De1(z3w1+ e1) = eg1+ e1; (5.54)

eg1+ e1 = z3 ( ew1 ewe1 + ew2e1 ewe2)
¶2F(z; ew0)

¶w2

=
�

1
P(0)

+
1
2!

1
P(� 2l 1)

�
a2z� 1 + O(z� 2)

= �
5
6

z� 1 + O(z� 2):

The conditions of application of lemma 5.11 are ful�lled: equation (5.54) has a one-
parameter family of formal solutions, depending onU[1];1 2 C, of the form

w1+ e1 = ew1+ e1 + U[1];1z� 3 ewe1; ew1+ e1 = ew[1]
1+ e1

log(z)+ ew[0]
1+ e1

;

ew[1]
1+ e1

= { 1z� 3 ewe1; val ew[0]
1+ e1

� 4:

{ 1 = a2

P0(� l 1)

�
1

P(0) + 1
2!

1
P(� 2l 1)

�
= 5

12:

(5.55)

Explicitly,

ew[0]
1+ e1

(z) =
11
72

z� 4 �
197
576

z� 5 +
23903
82944

z� 6 � � � �

Also remark that the property valew[0]
1+ e1

� 4 characterizes the particular solution
ew1+ e1 among the one-parameter family of solutions.

The casek = 1+ ei is deduced from the above result from the invariance of (3.6)
under the change of variablez 7! � z. One gets a one-parameter family of formal
solutions, depending onU[1];2 2 C, of the form

w1+ e2 = ew1+ e2 + U[1];2 ewe2; ew1+ e2 = ew[1]
1+ e2

log(z)+ ew[0]
1+ e2

;

ew[1]
1+ e2

(z) = ew[1]
1+ e1

(� z) = { 2z� 3 ewe2(z); ew[0]
1+ e2

(z) = ew[0]
1+ e1

(� z)

{ 2 = a2

P0(� l 2)

�
1

P(0) + 1
2!

1
P(� 2l 2)

�
= � 5

12:

(5.56)

In the sequel, we �xU[1];1 = U[1];2 = 0, that is we only consider the (well and
uniquely de�ned) particular solutionsew1+ ei , i = 1;2.

We stress that adding terms of the formU[1];1 ewe1 andU[1];2 ewe2 has the effect to rescaling
the parameter(U1;U2). In particular, changing the branch of the log has non consequence
for the formal integral.

Casesk = 1+ kei One step further, we consider the casek = 1+ 2ei . We takei = 1
only for simplicity. From (5.37) and lemma 5.9, we get:

(5.57)

D2e1(z3w1+ 2e1) = z3 �
ew1+ e1 ewe1 + ew2e1 ew1 + ew3e1 ewe2

� ¶2F(z; ew0)
¶w2 :
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By proposition 5.2 and the above result, the right-hand side of equation (5.57) is
a formal series expansion of the typeef = ef [1] log(z) + ef [0] with val ef [1] = 2 and
val ef [0] = 3. Applying lemma 5.10, we get for (5.57) a unique formal solution of the
form ew1+ 2e1 = ew[1]

1+ 2e1
log(z) + ew[0]

1+ 2e1
2

L 1
l= 0 logl (z)C[[z� 1]] with val ew[1]

1+ 2e1
= 5

and valew[0]
1+ 2e1

= 6. Moreover,ew[1]
1+ 2e1

solves the ODE

D2e1(z3w[1]
1+ 2e1

) = z3 ew[1]
1+ e1

ewe1

¶2F(z; ew0)
¶w2

= { 1 ew2
e1

¶2F(z; ew0)
¶w2 :

Comparing to (5.47), one concludes that

ew1+ 2e1 = ew[1]
1+ 2e1

log(z)+ ew[0]
1+ 2e1

;

ew[1]
1+ 2e1

= 2{ 1z� 3 ew2e1; val ew[0]
1+ 2e1

= 6:

We now reason by induction, assuming that for everyk 2 [2;K � 1] with K � 3, one
has

ew1+ ke1 = ew[1]
1+ ke1

log(z)+ ew[0]
1+ ke1

;

ew[1]
1+ ke1

= k{ 1z� 3 ewke1; val ew[0]
1+ ke1

= 2(k+ 1):

Then, by (5.37) and lemma 5.9,

DKe1(z3 ew1+ Ke1) = z3 å
k1+ k2= 1+ Ke1
jk1j� 1; jk2j� 1

ewk1 ewk2

2
¶2F(z;w0)

¶w2 (5.58)

= z3 å
k1+ k2= K

k1� 1;k2� 1

ew1+ k1e1 ewk2e1

¶2F(z;w0)
¶w2

+ z3 �
ew1 ewKe1 + ew(1+ K)e1

ewe2

� ¶2F(z;w0)
¶w2

With the above reasoning, one gets a unique solution
ew1+ Ke1 = ew[1]

1+ Ke1
log(z) + ew[0]

1+ Ke1
2

L 1
l= 0 logl (z)C[[z� 1]] where ew[1]

1+ Ke1
solves the

ODE

DKe1(z3 ew[1]
1+ Ke1

) = { 1 å
k1+ k2= K

k1� 1;k2� 1

k1 ewk1e1 ewk2e1

¶2F(z;w0)
¶w2

= K{ 1 å
k1+ k2= K

k1� 1;k2� 1

ewk1e1 ewk2e1

2
¶2F(z;w0)

¶w2

Comparing to (5.48), one concludes that

ew1+ Ke1 = ew[1]
1+ Ke1

log(z)+ ew[0]
1+ Ke1

;

ew[1]
1+ Ke1

= K{ 1z� 3 ewKe1; val ew[0]
1+ Ke1

= 2(K + 1):

Casek = ( 2;2) What remains to do whenk 2 X2;0 nX1;0 is to examine the case
k = ( 2;2). By (5.37) and lemma 5.9,
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D1(z3w2) =

z3
�

ew1+ e1 ewe2 + ew1+ e2 ewe1 + ew2e1 ew2e2 + 1
2 ew1 ew1

� ¶2F(z;ew0)
¶w2 :

(5.59)

We observe from (5.55) and (5.56) that

ew[1]
1+ e1

ewe2 + ew[1]
1+ e2

ewe1 = { 1z� 3 ewe1 ewe2 + { 2z� 3 ewe2 ewe1 = 0:

Therefore the log-term disappears in the right-hand side of (5.59) as a consequence
of the symmetries of the problem. Moreover

val( ew[0]
1+ e1

ewe2 + ew[0]
1+ e2

ewe1 + ew2e1 ew2e2 +
1
2

ew1 ew1) � 4:

By lemma 5.10, we getew2 2 C[[z� 1]] with val ew2 = 6. Explicit calculation provides:

ew2(z) = �
5
6

1
z6 �

2177
432

1
z8 �

5288521
54000

1
z10 + � � � .

Induction We assume thatN is an integer� 2 and we suppose that the prop-
erties announced in theorem 5.1 are true for any integern 2 [0;N � 1] and any
k 2 Xn+ 1;0 nXn;0.

We notice on the one hand thatXN+ 1;0 nXN;0 = 1+ XN;0 nXN� 1;0. On the other
hand, for everyk 2 XN;0 nXN� 1;0,

D1+ k( ew1+ k) = å
k1+ k2= 1+ k

jk1j� 1; jk2j� 1

ewk1 ewk2

2
¶2F(z;w0)

¶w2 (5.60)

We setX = log(z) and we considerX as an indeterminate. The right-hand side of
(5.60) is of the formef = å ef [l ]Xl with

¶X ef = ¶X å
k1+ k2= 1+ k

jk1j� 1; jk2j� 1

ewk1 ewk2

2
¶2F(z;w0)

¶w2

= å
k1+ k2= 1+ k

jk1j� 1; jk2j� 1

(¶X ewk1) ewk2 + ewk1(¶X ewk2)
2

¶2F(z;w0)
¶w2 :

Using the induction hypothesis, when1+ k1 2 Xn+ 1;0 nXn;0, for anyn 2 [0;N � 1],

¶X

 
n

å
l= 1

ew[l ]
1+ k1

Xl

!

= ( {{{ :k1)z� 3
n� 1

å
l= 0

ew[l ]
k1

Xl ;

that is¶X ew1+ k1 = ( {{{ :k1)z� 3 ewk1. Therefore:

¶X ef = z� 3 å
k1+ k2= k

jk1j� 1; jk2j� 1

({{{ :k1) ewk1 ewk2

¶2F(z;w0)
¶w2

= ( {{{ :k)z� 3 å
k1+ k2= k

jk1j� 1; jk2j� 1

ewk1 ewk2

2
¶2F(z;w0)

¶w2 :

Thus¶X ef = ( {{{ :k)z� 3Dk( ewk) and (5.60) provides:

¶X

�
Dk(z3 ew1+ k)

�
= ( {{{ :k)Dk( ewk):
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Observing that¶XDk¶ � 1
X = Dk , one easily getsew1+ k either from lemma 5.11 or

lemma 5.10, withew1+ k = ( {{{ :k)z� 3¶ � 1
X ewk .

The property forewn+ 1 is easy and is left to the reader. This ends the proof of theorem
5.1. ut

De�nition 5.9. The two-parameter formal solution de�ned by theorem 5.1 is the
formal integralof the prepared ODE (3.6) associated with the �rst Painlevé equa-
tion. The coef�cientsl i , t i and{ i , i = 1;2, are theformal invariants.
The formal seriesew[0]

k are called thek-th seriesof the formal integral. We set
eW[0]

k = z� ttt :k ew[0]
k and eWk = z� ttt :k ewk for anyk 2 N2.

Remark 5.8.Theorem 5.1 can be compared to [24] and specially to [1], where the
calculations made there translate into ours up to renormalization. We also mention
obvious links between Theorem 5.1 and the instanton-type solutions of Kawaiet al
[28, 2].

De�nition 5.10. For anyk 2 N2, one denotes byEk andFk the following operators:

Ek =
{{{ :k
z4 P0(¶ � lll :k)+

{{{ :k
z5

�
Q0(¶ � lll :k) �

t :(2k � 1)+ 1
2!

P00(¶ � lll :k)
�

= 2
{{{ :k
z4 (¶ � lll :k) �

{{{ :k
z5 (t :(2k � 1)+ 4) ;

Fk =
1
2!

({{{ :k)2

z8 P00(¶ � lll :k) =
({{{ :k)2

z8 :

We need hardly mention the analogue of lemma 5.9.

Lemma 5.12.For every n2 N, k 2 N2,

En+ k = zttt :nEkz� ttt :n; Fn+ k = zttt :nFkz� ttt :n:

We �nally give a corollary stemming from theorem 5.1.

Corollary 5.1. The formal integral (5.50) associated with the prepared ODE (3.6)
can be written under the form:

ew(z;U) = å
k2N2

Vk ew[0]
k ; Vk = Uke� (lll :k)z+( {{{ :k)U1 log(z)z� ttt :k : (5.61)

Equivalently,ew(z;U) = eF (z;U1e� l 1z� (t 1� { 1U1) log(z) ;U2e� l 2z� (t 2� { 2U1) log(z)) where
eF (z;u) = å k2N2 uk ew[0]

k (z) 2 C[[z� 1;u]] is solution of the equation:

P
�

¶z�
2

å
i= 1

(l i +
t i � { iu1

z
)ui¶ui

�
eF +

1
z

Q
�

¶z�
2

å
i= 1

(l i +
t i � { iu1

z
)ui¶ui

�
eF = F(z; eF ):

(5.62)
The formal seriesew[0]

k 2 z� 2jkj+ 2R[[z� 1]] satisfy:

� for anyk 2 X1;0 nX0;0, Dk ew[0]
k = å

k1+ k2= k
jk i j� 1

w[0]
k1

w[0]
k2

2!
¶2F(z; ew0)

¶w2 ;

� for anyk 2 X2;0 nX1;0, Dk ew[0]
k + Ek ew[0]

k� 1 = å
k1+ k2= k

jk i j� 1

w[0]
k1

w[0]
k2

2!
¶2F(z; ew0)

¶w2 ;
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� otherwise,Dk ew[0]
k + Ek ew[0]

k� 1 + Fk ew[0]
k� 2 = å

k1+ k2= k
jk i j� 1

w[0]
k1

w[0]
k2

2!
¶2F(z; ew0)

¶w2 ;

Proof. Let us examine (5.50) more closely. The formal integral can be written as
follows:

ew(z;U) =
¥

å
n= 0

Vn ewn(z)+ å
i= 1;2

¥

å
k= 1

¥

å
n= 0

Vn+ kei ewn+ kei (z); (5.63)

that is we consider the sums along the direction given by the vector(1;1) that de-
termines the resonance. We setTk = Uke� (lll :k)z+( {{{ :k)U1 log(z)z� ttt :k .
For the �rst sum we know that eachewn(z) belongs to C[[z� 1]] and
å ¥

n= 0Vn ewn = å ¥
n= 0Tn ewn because{ :n = 0.

We now look at the other sums and we use the relations given by (5.51). We get for
i = 1;2,

¥

å
k= 1

¥

å
n= 0

Vn+ kei ewn+ kei =
¥

å
k= 1

Vkei
¥

å
n= 0

Vn
n

å
l= 0

1
l !

�
{ ikz� 3 log(z)

� l
ew[0]

n� l+ kei

=
¥

å
n= 0

Vn
¥

å
k= 1

Vkei e({ ikU1 log(z)) ew[0]
n+ kei

:

=
¥

å
n= 0

¥

å
k= 1

Tn+ kei ew[0]
n+ kei

:

The equation (5.62) is obtained by the arguments developed in remark 5.3. The
reader will check that equation (5.62) is equivalent to the given hierarchy of equa-
tions. ut

Let us writeu1(z) = U1e� l 1z� (t 1� { 1U1) log(z) , u2(z) = U2e� l 2z� (t 2� { 2U1) log(z) and
observe thatt (u1;u2) provides the general analytic solution for a non linear differ-
ential equation that only depends on the formal invariants:

¶
�

u1
u2

�
+

�
l 1 + t 1

z 0
0 l 2 + t 2

z

� �
u1
u2

�
=

� { 1
z4 u1u2 0

0 { 2
z4 u1u2

� �
u1
u2

�
: (5.64)

This means that corollary 5.1 can be written in term of formal classi�cation and of
(canonical) normal form:

Corollary 5.2. There exists a formal transformation w= eF (z;u) of the form

eF (z;u) = å
k2N2

uk ew[0]
k (z); ew[0]

k 2 C[[z� 1]]; (5.65)

that formally transforms the prepared ODE (3.6) into thenormal formequation:

¶u+ B0(z)u = B1
�
z;u

�
u (5.66)

B0 =
�

l 1 + t 1
z 0

0 l 2 + t 2
z

�
; B1(z;u) =

u1

z4

�
{ 1 0
0 { 2

�
; u1 = u1u2:

5.5 Comments

Analogues of proposition 5.1 can be stated for differential equations,resp.differ-
ence equations, of order 1 and dimensionn, with one level and no resonance, given
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in prepared form :

¶v+ B0(z)v = g(z;v) (5.67)

with B0(z) =
M

j

�
l j In j + z� 1M j

�
, å j n j = n, resp.

v(z+ 1) = B0(z)v(z)+ g(z;v) (5.68)

with B0(z) =
M

j

e� l j z(1+ z� 1)M j . In each case, there exists a formal transformation

of the typev = eT(z;u), eT(z;u) = å k2Nn ukevk(z), evk(z) 2 Cn[[z� 1]] that brings the
equation to the linear normal form¶u+ B0(z)u = 0, resp.u(z+ 1) = B0(z)u(z).

To be correct, the upshot for difference equations is more subtle.

This property is still valid for differential equations with more than one level, see
[31, 5, 8] and references therein. In particular, the whole set of formal invariants is
already given by the linear part (in Jordan form) of the equation.

When resonances occur and as we saw with the �rst Painlevé equation, the nor-
mal form equation is nonlinear and incorporates new formal invariants. This is es-
sentially a consequence of the Poincaré-Dulac theorem [3]; for instance in (5.66),
one recognizes the effect of the positively resonance of order 3 with the resonances
monomialsu2

1u2 andu1u2
2. The classi�cation is detailed in [19], see also [21] where

the notion of (so-called) moulds and arbori�cation are used (a good introduction of
which is [37]).

Acknowledgements I am indebted to my student Julie Belpaume for helping me to working out
this chapter. I thank Jean Ecalle for interesting discussions on phenomena induced by resonances.
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21. J.Écalle, Singularit́es non abordables par la géoḿetrie. Ann. Inst. Fourier (Grenoble)42
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Chapter 6
Truncated solutions for the �rst Painlev é
equation

Abstract In the previous chapters, we studied the unique formal solution of the
�rst Painlevé equation then we introduced its formal integral. In this chapter, we
show that formal series components of the formal integral are 1-Gevrey and their
minors have analytic properties quite similar to those for the minor of the formal
series solution we started with (Sect. 6.1). We then make a focus on the transseries
solution and we show their Borel-Laplace summability (Sect. 6.2). This provides
the truncated solutions by Borel-Laplace summation (Sect. 6.4).

6.1 Borel-Laplace summability of the k-th series and beyond

We described with theorem 5.1 and its corollary 5.1 the formal integral
ew(z;U) = å k2N2 Vk ew[0]

k associated with the �rst Painlevé equation. Our goal in this
section is mainly to show the following assertion.

Theorem 6.1.For everyk 2 N2, thek-th seriesew[0]
k is 1-Gevrey, its minorbw[0]

k de-

�nes a holomorphic function on
�

R (0) with at most exponential growth of order 1 at
in�nity. Moreover, bw[0]

k can be analytically continued to the Riemann surfaceR (1) ,
with at most exponential growth of order 1 at in�nity onR (1) .

We already know by theorem 3.3 and theorem 4.2 thatbw0 = bw[0]
0 enjoyes the

above properties. Our task comes down to studying the otherk-th series. This is
what we do in what follows and we start with some preliminaries.

6.1.1 Preliminary results

In what follows we use a notation introduced in de�nition 5.5.

Lemma 6.1.We set P(¶) = ¶2 � 1 and for everyk 2 N2, Pk(¶) = P(� lll :k + ¶)
with lll = ( l 1; l 2) = ( 1; � 1). For i = 1;2, we denote bỹPei (¶) the operator de�ned by
Pei (¶) = P̃ei (¶)¶ so thatP̃ei (� l i) 6= 0. Then, for anyr 2]0;1[, there exists Mr ;(0) > 0

such that, for everyz 2 C n
[

m2Z?

D(m;mr ) :

1. for i = 1;2,
�
�
�

1
P̃ei (� z )

�
�
� � Mr ;(0) ;

113
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2. for everyk 2 X1;0 with jkj � 2, for m= 0;1,
�
�
�
(z + lll :k)m

Pk(� z )

�
�
� �

Mr ;(0)

jkj � 1
and, for

k 6= ( 1;1),
�
�
�

1
Pk(� z )

�
�
� �

M2
r ;(0)

jkj2 � 1
.

Moreover one can choose Mr ;(0) = 1
r .

Proof. We only examine the casek 2 X1;0 n f (1;1)g with jkj > 1. With no loss of
generality, we can assume thatk = ( k;0) with k � 2. Thus
Pk(� z ) = ( z + k� 1)(z + k+ 1), z + lll :k = z + k and we notice that
jz + k� 1j � (k � 1)r and jz + k + 1j � (k + 1)r for z 2 C n

S
m2Z? D(m;mr ).

Therefore, 1
jPk (� z )j � 1

(k2� 1)r 2 for z 2 Cn
S

m2Z? D(m;mr ). Now eitherÂ(z + k) � 0,

thus jz + k + 1j � maxf 1; jz + kjg and thereforemaxf 1;jz+ lll :kjg
jPk (� z )j � 1

(k� 1)r ; or else
Â(z + k) � 0, which implies jz + k � 1j � maxf 1; jz + kjg and �nally
maxf 1;jz+ lll :kjg

jPk (� z )j � 1
(k+ 1)r . ut

Lemma 6.2.We follow the conditions of lemma 6.1. We set Q(¶) = � 3¶, while
Qk(¶), Rk(¶) are given by (5.31), (5.32) witht =

�
� 3

2; � 3
2

�
. Then, for every

k 2 X1;0 n f (1;1)g with jkj > 1, for everyz 2
�

R
(0)
r ,

jQk j(jz j)
jPk(� z )j

� 3Mr ;(0) ;
jRk j(jz j)
jPk(� z )j

�
9
4

M2
r ;(0) :

Proof. We notice that lemma 6.1 can be applied forz 2
�

R
(0)
r .

We havejQk j(x ) = 3(jkj � 1)
�
�x + lll :k

�
� (see (5.39)), Therefore, by lemma 6.1,

jQk j(jz j)
jPk (� z )j � 3Mr ;(0) . In the same way, one easily sees thatjRk(¶)j � 9

4 jkj(jkj � 1)
(cf. (5.39)), thus the result by lemma 6.1.ut

We eventually introduce the following notation that complements de�nition 3.10.

De�nition 6.1. Assume thatG(z ;w) = å
jlj� 0

cl(z )wl is an analytic function on the

open polydiscDr = Õn
i= 0D(0;r i). One de�nes the functionjGj, analytic onDr , by

jGj(x ;w) = å
l � 0

jcl j(x )wl .

6.1.2 Theei-th series

We start our proof of theorem 6.1 by paying special attention toewei = ew[0]
ei .

Lemma 6.3.The ei-st series ewei is 1-Gevrey. Its formal Borel transform reads

B ( ewei ) = d + bwei and bwei is holomorphic on
�

R (0) with at most exponential growth
of order 1 at in�nity. More precisely, for everyr 2]0;1[, there exist A> 0 andt > 0

such that for everyz 2
�

R
(0)
r , j bwei (z )j � Aet jz j . In the above upper bounds one can

choose A= t = 5:81
r . Moreover,bwei can be analytically continued to the Riemann

surfaceR (1) , with at most exponential growth of order 1 at in�nity onR (1) .

Proof. It is enough to studyewe1 sinceewe2(z) = ewe1(� z). We know thatewe1 solves
(5.45), namely:
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¶P̃e1(¶) ewe1 =
�

15
4

1
z2 +

¶F(z; ew0)
¶w

�
ewe1; P̃ei = ¶ � 2: (6.1)

The formal Borel transform ofewe1 readsB ( ewe1) = d + bwe1 where the minor
bwe1(z ) 2 C[[z ]] satis�es the following convolution equation, deduced from (6.1):

b¶P̃e1(b¶) bwe1 =

 
15
4

z +
¶ bF(z ; bw0)

¶w

!

� (d + bwe1): (6.2)

In this equation, we use the notation:

¶ bF(z ; bw0)
¶w

= bf1(z )+ 2bf2 � bw0(z ) = � 4z + z � bw0(z ): (6.3)

Equation (6.2) can be thought of as a linear differential equation with aregular
singularpoint at 0.

Instead of (6.2), consider the convolution equationb¶P̃e1(b¶) bw =
�

a1z + a2
z2

2!

�
� (d + bw).

Setbg = b¶P̃e1(b¶) bw = z(z + 2) bw. Forz 6= 0, one getsbg =
�

a1z + a2
z2

2!

�
�

�
d +

bg
z(z + 2)

�
.

This implies by differentiation thatbg(4) = a1

� bg
z(z + 2)

� (2)
+ a2

� bg
z(z + 2)

� (1)
where

bg(i) =
di bg
dz i . The last ODE has a regular singular point at 0. One can apply the same trick to

(6.2) but for the fact of getting an in�nite order differential operator.

Equation (6.2) can be analyzed with the tools developed in Sect. 3.3.2. We introduce

bG(z) =
15
4

z +
¶ bF(z ; bw0)

¶w
= �

z
4

+ z � bw0(z ) and we remark thatbG belongs to the

maximal idealM O (
�

R
(0)
r ) of O(

�
R

(0)
r ) for any r 2]0;1[, thusb¶ � 1 bG 2 O(

�
R

(0)
r ) is

well-de�ned. We setbwe1 = P̃� 1
e1

(b¶)b¶ � 1 bG+ bve1 and (6.2) becomes

b¶P̃e1(b¶)bve1 = bG�
�

P̃� 1
e1

(b¶)b¶ � 1 bG
�

+ bG� bve1: (6.4)

Observe thatbG�
�

P̃� 1
e1

(b¶)b¶ � 1 bG
�

belongs toM O (
�

R
(0)
r ). Let R > 0 be any real

positive number,UR be the star-shaped domainUR = D(0;R) \
�

R
(0)
r and we set

Br = f bv 2 O(UR);kbvkn � rg, for r > 0 andn > 0. By proposition 3.9 and lemma
6.1, whenn ! ¥ ,

kP̃� 1
e1

(b¶)b¶ � 1
�

bG�
�

P̃� 1
e1

(b¶)b¶ � 1 bG
��

kn ! 0:

Explicitly

kP̃� 1
e1

(b¶)b¶ � 1
�

bG�
�

P̃� 1
e1

(b¶)b¶ � 1 bG
��

kn �
Mr ;(0)

R
kb¶ � 1

�
bG�

�
P̃� 1

e1
(b¶)b¶ � 1 bG

��
kn

�
Mr ;(0)

nR2 kb¶ � 1 bGk0kP̃� 1
e1

(b¶)b¶ � 1 bGkn :

Also, kP̃� 1
e1

(b¶)b¶ � 1
�

bG� bve1

�
kn �

Mr ;(0)

nR2 kb¶ � 1 bGk0kbve1kn , Equation (6.4) thus trans-

lates into a �xed point problembve1 = N(bve1) whereN : Br ! Br is a contractive map-

ping forn large enough. This ensures the existence and uniquess ofbwe1 2 O(
�

R (0)).
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The same reasoning can be applied for showing thatbwe1 can be analytically contin-
ued toR (1) , in application of proposition 4.5 and theorem 4.2.

To get upper bounds, we notice by (6.3) and lemma 3.3 that for everyz 2
�

R
(0)
r ,�

�
�b¶ � 1 bG(z)

�
�
� � 1

4 + 1� bw0(jz j) wherebw0(x ) = Aetx stands for the majorant function

of bw0 given by theorem 3.3 and corollary 3.1, thus withA= 4:22 andt = 4:22
r . View-

ing the Gr̈onwall-like lemma 3.9, one sees that for everyz 2
�

R
(0)
r , j bwe1(z )j � bwe1(jz j)

where bwe1 solves the convolution equation:

1
Mr ;(0)

bwe1 =
�

1
4

+ 1� bw0

�
� (d + bwe1): (6.5)

This means thatbwe1 has an analytic Laplace transform under the form1:

ewe1(z) = å
n� 1

1
r n

�
1
4z

+
1
z

A
z� t

� n

; A = 4:22; t =
4:22

r
:

When assumingjzj �
5:81

r
, for instance, one gets

�
�
�
�
1
r

�
1
4z

+
1
z

A
z� t

� �
�
�
� � 0:5 (since

r < 1), thusj ewe1(z)j � 1. Therefore by lemma 3.5, for any 0< r < 1, for every

z 2
�

R
(0)
r , j bwe1(z )j � 5:81

r e
5:81

r jx j . One shows in the same way thatbwe1 has at most

exponential growth of order 1 at in�nity onR (1) , using lemma 4.11 and theorem 4.2.
ut

6.1.3 Thekei-th series

We now turn to thekei-th series, that is the termsewkei = ew[0]
kei

of the transseries,
for k � 2.

Lemma 6.4.For every integer k� 2, the k-th seriesewkei 2 z� 2(k� 1)C[[z� 1]] is 1-

Gevrey, its minorbwkei de�nes a holomorphic function on
�

R (0) with at most expo-
nential growth of order 1 at in�nity. Moreover,bwkei can be analytically continued
to the Riemann surfaceR (1) , with at most exponential growth of order 1 at in�nity
onR (1) .

Proof. Once again from the invariance of the equation (3.6) under the symmetry
z7! � z, there is no loss of generality in studying only thekei-th seriesbwke1.

We know thatbw0; bwe1 are holomorphic on
�

R (0) and can be analytically continued to

R (1) . Moreover, for everyz 2
�

R
(0)
r , j bw0(z )j � bw0(x ), j bwe1(z )j � bwe1(x ), x = jz j

and for everyz 2 R
(1)
r , j bw0(z )j � bw0(x ), j bwe1(z )j � bwe1(x ), x = leng(z ), where

bw0 and bwe1 are entire functions, real positive and non-decreasing onR+ , with at
most exponential growth of order 1 at in�nity.
We know from lemma 5.8 and (5.48) that for everyk � 2,

ewke1(z) = å
l � 0

ake1;l z
� l 2 z� 2(k� 1)C[[z� 1]]

1 We recall thatB
�

A
z� t

�
= Aetx :
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solves the differential equation

Dke1 ewke1 = å
k1+ k2= k

k1� 1;k2� 1

ewk1e1 ewk2e1

2!
¶2F(z; ew0)

¶w2 : (6.6)

We deduce that the formal Borel transformB ( ewke1) = ake1;0d + bwke1 has its minor
which satis�es the identity2:

Dke1 bwke1 = å
k1+ k2= k

k1� 1;k2� 1

(ak1e1;0d + bwk1e1) � (ak2e1;0d + bwk2e1)
2!

�
¶2 bF(z ; bw0)

¶w2

(6.7)

where
¶2 bF(z ; bw0)

¶w2 = 2bf2(z ) = z , whereas

Dke1 bwke1 = Pke1(b¶) bwke1 + 1� Qke1(b¶) bwke1 +

 

zRke1 �
¶ bF(z ; bw0)

¶w

!

� bwke1

(6.8)

with
¶ bF(z ; bw0)

¶w
given by (6.3).

These equations (6.7) can be seen as linear differential equations with aregular
point at 0. They are all of the type

p(b¶) bw+ 1� [q(b¶) bw] = z � [r(b¶) bw]+
N

å
n= 0

bfn � bw� n (6.9)

investigated in Sect. 3.3.2 and Sect. 4.5. We use the methods introduced there and
make a proof by induction onk, considering the operatorsNk de�ned as follows:

Nkbv = P� 1
(k;0)(

b¶)

"

� 1�
�
Q(k;0)(b¶)bv

�
+

 

� zR(k;0) +
¶ bF(z ; bw0)

¶w

!

� bv

+ å
k1+ k2= K

k1� 1;k2� 1

(ak1e1;0d + bwk1e1) � (ak2e1;0d + bwk2e1)
2!

�
¶2 bF(z ; bw0)

¶w2

3

7
5 :

Case k= 2 LetR> 0 be a real positive number,r 2 ]0;1[ andUR be the star-shaped

domainUR = D(0;R) \
�

R
(0)
r . We setBr = f bv 2 O(UR);kbvkn � rg for r > 0 and

n > 0, and we look at the mappingN2 : bv2 Br 7! N2bv. We know thatbw(1;0) 2 O(
�

R (0))

while
¶ bF(z ; bw0)

¶w
and

¶2 bF(z ; bw0)
¶w2 belong toM O (

�
R

(0)
r ). Using lemma 6.1 and ar-

guments already used in Sect. 3.3.2.3, one easily shows thatN2 is a contractive map.
Thus equation (6.7),k = 2 has a unique solution inBr . This shows, by uniqueness,

that bw2e1 can be continued holomorphically on
�

R (0) .
When replacingUR by the open set ofL-pointsU = U r ;L � R (1) and arguing like
what have been done for the proof of theorem 4.2, one shows thatbw2e1 can be holo-

2 Remember thatake1;0 = 0 as a rule, apart from the casek = 1 whereae1;0 = 1.
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morphically continued to the Riemann surfaceR (1) .

To get upper bounds, we notice that for everyz 2
�

R
(0)
r ,

�
�
� ¶ bF(z ;bw0)

¶w

�
�
� �

�
�
� ¶ bF

¶w

�
�
� (x ; bw0)

and
�
�
� ¶2 bF(z ;bw0)

¶w2

�
�
� �

�
�
� ¶2 bF

¶w2

�
�
� (x ; bw0) with x = jz j,

�
�
� ¶2 bF

¶w2

�
�
� (x ; bw0) = 2j f2j(x ) = x and

�
�
� ¶ bF

¶w

�
�
� (x ; bw0) = j bf1j(x )+ 2j bf2j � bw0(x ) = 4x + x � bw0(x ). Using lemma 6.2 and the

Grönwall lemma 3.9, we sees that for everyz 2
�

R
(0)
r , j bw2e1(z )j � bw2e1(x ) where

bw2e1 is the entire function, real positive onR+ , with at most exponential growth of
order 1 at in�nity, satisfying the linear equation:

1
Mr ;(0)

bw2e1 =

 

3+
9
4

Mr ;(0)x +

�
�
�
�
�
¶ bF
¶w

�
�
�
�
�
(x ; bw0)

!

� bw2e1 (6.10)

+
(d + bwe1)� 2

2!
�

�
�
�
�
�
¶2 bF
¶w2

�
�
�
�
�
(x ; bw0):

When working onR (1) , one rather argues with the Grönwall lemma 4.11, thus get-
ting j bw2e1(z )j � bw2e1(x ) for everyz 2 R (1)

r . In these estimates,x = leng(z ), and
bw2e1 is the entire function, real positive and non-decreasing onR+ , with at most
exponential growth of order 1 at in�nity, satisfying the linear equation:

1
Mr ;(1)

bw2e1 =

 

3+
9
4

Mr ;(1)x +

�
�
�
�
�
¶ bF
¶w

�
�
�
�
�
(x ; bw0)

!

� bw2e1 (6.11)

+
(d + bwe1)� 2

2!
�

�
�
�
�
�
¶2 bF
¶w2

�
�
�
�
�
(x ; bw0):

Induction Let K � 3 be an integer greater than 3. We assume that for every integer

k 2 [0;K[, bwke1 is holomorphic on
�

R (0) and can be analytically continued toR (1) .
Furthermore,

for everyz 2
�

R
(0)
r ; j bwke1(z )j � bwke1(x ); x = jz j;

for everyz 2 R
(1)
r ; j bwke1(z )j � bwke1(x ); x = leng(z );

where, in each case,bwke1 is an entire function, real positive and non-decreasing on
R+ , with at most exponential growth of order 1 at in�nity.

One easily shows that the mappingNK : bv 2 Br 7! NKbv is a contractive, either
working in(O(UR);k:kn) or in (O(U r ;L);k:kn). Thus, by uniqueness,bwKe1 is holo-

morphic on
�

R (0) and can by analytically continued toR (1) .

We get upper bounds, either in
�

R
(0)
r with the Gr̈onwall lemma 3.9, or inR (1)

r

with the Gr̈onwall lemma 4.11. We get that for everyz 2
�

R
(0)
r j bwKe1(z )j � bwKe1(x )

with x = jz j, where bwKe1 is the entire function, real positive onR+ , with at most
exponential growth of order 1 at in�nity, satisfying the linear equation:
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1
Mr ;(0)

bwKe1 =

 

3+
9
4

Mr ;(0)x +

�
�
�
�
�
¶ bF
¶w

�
�
�
�
�
(x ; bw0)

!

� bwKe1 (6.12)

+ å
k1+ k2= K

k1� 1;k2� 1

(ak1e1;0d + bwk1e1) � (ak2e1;0d + bwk2e1)
2!

�

�
�
�
�
�
¶2 bF
¶w2

�
�
�
�
�
(x ; bw0):

Also, for everyz 2 R
(1)
r , j bwKe1(z )j � bwKe1(x ) wherex = leng(z ), with bwKe1 an

entire function, real positive and nondecreasing onR+ , with at most exponential
growth of order 1 at in�nity, satisfying the linear equation:

1
Mr ;(1)

bwKe1 =

 

3+
9
4

Mr ;(1)x +

�
�
�
�
�
¶ bF
¶w

�
�
�
�
�
(x ; bw0)

!

� bwKe1

+ å
k1+ k2= K

k1� 1;k2� 1

(ak1e1;0d + bwk1e1) � (ak2e1;0d + bwk2e1)
2!

�

�
�
�
�
�
¶2 bF
¶w2

�
�
�
�
�
(x ; bw0):

This ends the proof of lemma 6.4.ut

6.1.4 The otherk-th series

Looking at (5.53), one easily see that the above methods can be applied to study
the minor bw1 = bw[0]

1 of the (1;1)-seriesew1. Thus, theorem 6.1 is shown fork = 0
anyk 2 Xn+ 1;0 nXn;0 and withn = 1. The rest of the proof is made by induction on
n, using the hierarchy of equations given in corollary 5.1 and the reasoning made
above. This part holds no surprise and is left to the reader. This ends the proof of
theorem 6.1.

6.2 Borel-Laplace summability of the transseries

We now restrict ourself to the transseries solution of the ODE (3.6), having in view
of analyzing their Borel-Laplace summability. From the invariance of the equation
(3.6) under the symmetryz7! � z, it is enough to only focus on the transseries (5.41)
associated with the multiplierl 1 = 1, namely:

ew(z;Ue1) =
¥

å
k= 0

Vk ewke1(z); Vk = Uke� l 1kzz� t 1k: (6.13)

6.2.1 A useful supplement

We complete lemma 6.4 with the following result.

Lemma 6.5.For everyr 2]0;1[, there exist A= A(r ) > 0, t = t (r ) > 0 and a se-
quence

�
bwke1

�
k� 2 of entire functions, real positive onR+ , with the following prop-

erties:
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� for every integer k� 2, bwke1(x ) 2 x2k� 3Cf xg;

� for everyx 2 C, j bwke1(x )j �
�

3
p

r
2

� k

Aet jx j , and for every integer m2 [1;2k� 3],

j bwke1(x )j �
�

3
p

r
2

� k
Am+ 1

�
zm� 1

(m� 1)! � etz
�

(jx j).

� for everyz 2
�

R
(0)
r , j bwke1(z )j � bwke1(x ) with x = jz j.

Moreover one can choose A= t =
27
4r

in the above estimates.

Proof. We know by theorem 3.3, lemma 6.3 and lemma 6.4 that, for every integer

k 2 N, bwke1 is holomorphic on
�

R (0) . Also, for everyr 2]0;1[, for everyz 2
�

R
(0)
r ,

j bwke1(z )j � bwke1(x ) with x = jz j where bw0(x ) = A0et 0x and bwe1(x ) = Ae1et e1x

are convenient majorant functions while, for any integerk � 2, bwke1 solves the con-
volution equation (6.12). One �rst shows that for any integerk � 2, bwke1(x ) belongs

to x2k� 3Cf xg and we reason by induction: using the fact that
�
�
� ¶2 bF

¶w2

�
�
� (x ; bw0) = O(x),

one sees that(d + bwe1)� 2 �
�
�
� ¶2 bF

¶w2

�
�
� (x ; bw0) = O(x), thus bw2e1(z ) = O(z); then,

by an induction hypothesis, we check that integerk � 3 of the formk = k1 + k2
with k1;k2 2 N?, (ak1e1;0d + bwk1e1) � (ak2e1;0d + bwk2e1) = O(x2k� 5) (we recall that
ake1;0 = 0 apart fromae1;0 = 1), thusbwke1(z ) = O(x2k� 3) by (6.12).

We then introduce the generating functionbw(x ;V) =
¥

å
k= 2

Vk bwke1(x ) and we de-

duce from (6.12) thatbw satis�es the identity:

1
Mr ;(0)

bw=

 

3+
9
4

Mr ;(0)x +

�
�
�
�
�
¶ bF
¶w

�
�
�
�
�
(x ; bw0)

!

� bw

+
¥

å
k= 2

Vk å
k1+ k2= k

k1� 1;k2� 1

(ak1e1;0d + bwk1e1) � (ak2e1;0d + bwk2e1)
2!

�

�
�
�
�
�
¶2 bF
¶w2

�
�
�
�
�
(x ; bw0):

This can be written also as follows (remember:ake1;0 = 0 apart fromae1;0 = 1):

1
Mr ;(0)

bw=
 

3+
9
4

Mr ;(0)x +

�
�
�
�
�
¶ bF
¶w

�
�
�
�
�
(x ; bw0)

!

� bw+

�
V

�
d + bwe1

�
+ bw

� � 2

2!
�

�
�
�
�
�
¶2 bF
¶w2

�
�
�
�
�
(x ; bw0):

Explicitly, one can chooseMr ;(0) = 1
r (lemma 6.1),bw0(x ) = 4:22e

4:22
r x (theorem

3.3), bwe1(x ) = 5:81
r e

5:81
r x (lemma 6.3), and we recall that

�
�
� ¶2 bF

¶w2

�
�
� (x ; bw0) = x while

�
�
� ¶ bF

¶w

�
�
� (x ; bw0) = 4x + x � bw0(x ). Therefore,bw solves the convolution equation:

r bw =
�

3+
�

4+
9

4r

�
x + 4:22x � e

4:22
r x

�
� bw+

x
2!

�
�

V
�
d +

4:63
r

e
4:63

r x �
+ bw

� � 2

:

The generating functionbw(x ;V) is thus the Borel transform ofew(z ;V), solution
of the algebraic equation
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r ew=

 
3
z

+
�

4+
9

4r

�
1
z2 +

4:22
z2

1

z� 4:22
r

!

ew

+
1

2z2

"

V

 

1+
5:81

r
1

z� 5:81
r

!

+ ew
#2 (6.14)

with ew(z;V) ' 1
2r

�
V
z

�
1+ 5:81

r
1

z� 5:81
r

�� 2

whenV ! 0 with jzj large enough. We

view (6.14) as a �xed point problemw= N(w). We setU = D(¥ ; 4r
27) � D(0; 2

3
p

r ),

we equip the spaceO(U) with the maximum norm and we consider the closed
ball B1 = f w 2 O(U); kwk � 1g of the Banach algebra

�
O(U);kk

�
. One easily

shows thatN : B1 ! B1 is a contractive map (remember thatr < 1), hence the
�xed-point problemw= N(w) has a unique solutionew= ew(z;V) in B1. Its Taylor

expansion with respect toV at 0 readsew(z;V) =
¥

å
k= 2

Vk ewke1(z), where( ewke1)k� 2

is a sequence of holomorphic functions on the discD(¥ ; 4r
27) and, by the Cauchy

inequalities, for every integerk � 2, supjzj> 27
4r

j ewke1(z)j �
�

3
p

r
2

� k
. Moreover, since

bwke1(x ) = O(x2k� 3), ewke1(z) = O(z� 2(k� 1)). We end the proof with lemma 3.5:

ewke1 is an entire function, for everyx 2 C, j ewke1(x )j �
�

3
p

r
2

� k
27
4r e

27
4r jx j and for

every positive integer 1� m� 2k� 3,

j ewke1(x )j �
�

3
p

r
2

� k �
27
4r

� m+ 1 �
zm� 1

(m� 1)!
� e

27
4r z

�
(jx j):

This ends the proof. ut

6.2.2 Borel-Laplace summability of the transseries

Before keeping on, we lay down a de�nition, see also [11].

De�nition 6.2. Let (egk)k� 0 be a sequence of formal seriesegk(z) 2 C[[z� 1]]. One says

that the transserieseg(z;V) =
¥

å
k= 0

Vkegk(z) is Borel-Laplace summable in a direction

q 2 S1 if each egk is Borel-Laplace summable in that direction and if the series of

functions
¥

å
k= 0

VkS q egk(z) converges uniformaly on any compact subset of a domain

of the form
�

P q
t � V . In that case, one denotes byS q eg(z;V) 2 O(

�
P q

t � V ) its sum,
called theBorel-Laplace sum of the transseries.

In the sequel, we have in mind to analyze the Borel-Laplace summability of
the transseries given by proposition 5.2. This means analyzing the Borel-Laplace
summability of the transserieså ¥

k= 0Vk ewke1(z), resp.å ¥
k= 0Vk ewke2(z), then substitut-

ing V = Ue� zz3=2, resp. V= Uezz3=2, in the Borel-Laplace sum. Notice however
that the mappingz 7! e� zz3=2 is ill-de�ned on C but should be considered on the
Riemann surface of the square root or on its universal coveringeC. This justi�es the
use of domains of the formP q

t 2 eC, q 2 eS1 (see de�nition 3.19) in what follows.
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De�nition 6.3. Let g : eC ! C andk : R ! R+ ? be two continuous functions,q 2 eS1

andt 2 R. We setf q (g; t ;k ) =
S

c> t f z2 P q
c ; jg(z)j < k (c)g � eC. Let I � eS1 be

an open arc,g : I ! R a locally bounded function andK : I ! C0(R;R+ ?) a con-
tinuous function. We denote byV (I ;g;g;K ) the domain ofeC de�ned as follows:

V (I ;g;g;K ) =
[

q2I

f q �
g;g(q);K (q)

�
� eC:

Theorem 6.2.The transseries solutions of the prepared equation (3.6) associated
with the �rst Painlev́e equation,

ew(z;Uei) =
¥

å
k= 0

[Vi(z;U)]k ewkei (z); Vi(z;U) = Ue� l izz� t i ; i = 1;2; (6.15)

are Borel-Laplace summable and their Borel-Laplace sums are holomorphic solu-
tions of (3.6). More precisely, for any R> 0, for any open arc Ij =] jp; ( j + 1)p[� eS1,
j 2 Z, the sum

S I j ew(z;Uei) :=
¥

å
k= 0

[Vi(z;U)]kS
�
I j ewkei (

�
z); (6.16)

with
�
I j = p(I j ) � S1 and

�
z = p(z) 2 C?, converges to a function of(z;U) holo-

morphic onV (I j ;Vi(R); t ;K ) � D(0;R) where one can chooset (q) = 27
4j sin(q)j

and K (q) : c 2 R 7! 2c2

3t (q)2
p

sin(q)
. Moreover, the sumS I j ew is solution of equa-

tion (3.6).

Proof. This theorem is a consequence of theorem 3.3, lemma 6.3, lemma 6.4 and
lemma 6.5. Let us precise the reasoning fori = 1 and the open arcI0 =] 0;p[� eS1.
We know from lemmas 6.4 and 6.5 (applied withm= 2k� 3) that for anyd 2]0; p

2 [

and any integerk � 2, for everyz 2
�

¥
0 (]d;p � d[),

j bwke1(z )j �

 
3
p

sin(d)
2

! k

A2k� 2
d

�
x2k� 4

(2k� 4)!
� et dx

�
(x ); x = jz j; (6.17)

with Ad = t d =
27

4sin(d)
. We now �x a directionq 2 I0 and fork � 2, we consider

the Borel-Laplace sum

S
�
q ewke1(

�
z) =

Z ¥ ei
�
q

0
e�

�
zz bwke1(z ) dz =

Z + ¥

0
e�

�
zxei

�
q

bwke1(xei
�
q ) ei

�
qdx:

For anyc > t q and anyz2 P
q
c , je�

�
zxei

�
q
j � e� cx , for x � 0. Therefore, forz2 P

q
c

andx � 0,

�
�
�
�e

�
�
zxei

�
q

bwke1(xei
�
q ) ei

�
q

�
�
�
� �

 
3
p

sin(q)
2

! k

A2k� 2
q e� cx

�
x2k� 4

(2k� 4)!
� et q x

�
(x ):

The functionS q ewke1(z) := S
�
q ewke1(

�
z) is thus holomorphic onP q

c and, for every

z2 P
q
c ,
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Fig. 6.1 The (shaded) domain
V (I0;V1(0:5); t ;K ) on pro-
jection, for t (q) = 27

4j sin(q)j ,�
K (q)

�
(c) = 2c2

3t (q)2
p

sin(q)

andV1(z;U) = Ue� zz3=2.

jS q ewke1(z)j �

 
3
p

sin(q)
2

! k �
Aq

c

� 2k� 2 c
c� t q

:

We turn to the series of functionå
k� 2

�
Ue� zz3=2

� k
S q ewke1(z). From what pre-

cedes, for anyR > 0, for anyc0 > c > t q , for every (z;U) 2 P q
c0 � D(0;R), the

series is normally convergent whenjRe� zz3=2j � 2c2

3A2
q

p
sin(q)

. We end with theo-

rem 3.3 and lemma 6.3: for any directionq 2 I0, for any c > t q , the series of

functions å
k� 0

�
Ue� zz3=2

� k
S q ewke1(z) de�nes a holomorphic function on the do-

mainf q � D(0;R) with f q =
S

c> t q
f z2 P q

c ; jRe� zz3=2j < 2c2

3A2
q

p
sin(q)

g. Makingq

varying on I0, these functions glue together to provide a holomorphic function
S I0 ew(z;Ue1) on the domainV (I0;V1(R); t ;K ) � D(0;R) with t (q) = 27

4j sin(q)j and

K (q) : c 2 R 7! 2c2

3t (q)2
p

sin(q)
(sinceAq = t q ), see Fig. 6.1. Finally, we encourage

the reader to show thatS I j ew solves the ODE (3.6). ut

Remark 6.1.The theorem 6.2 can be shown by other means, see the comments in
Sect. 6.5.

6.2.3 Remarks

In what follows we setwtru; j;i(z;U) = S I j ew(z;Uei).

1. We know by proposition 5.2 thatewke2(z) = ewke1(� z) for everyk � 0. One de-
duces that for anyj 2 Z, for anyq 2 I j , for everyz2 P p� q

t (p� q) , zeip 2 P � q
t (� q) and

S p� q ewke2(z) = S � q ewke1(zeip ). Therefore, for anyq 2 I j , for everyz2 P p� q
t (p� q) ,

S p� q ew(z;Ue2) = S � q ew(zeip ;Ueip=2e1) and, as a consequence, for anyj 2 Z:

for everyz2 V (I j ;V2(U); t ;K ); wtru; j;2(z;U) = wtru; j � 1;1(zeip ;Ueip=2);

for everyz2 V (I j ;V1(U); t ;K ); wtru; j;1(z;U) = wtru; j � 1;2(zeip ;Ueip=2):

(6.18)
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2. Here we adopt the convention : forz= reia 2 eC, we setz= r � ia 2 eC.
We know by proposition 5.2 thatewkei (z) 2 R[[z� 1]] for anyk 2 N, i = 1;2. Thus,
for any j 2 Z and anyq 2 I j , for z2 P q

t (q) , S q ewkei (z) = S � q ewkei (z). Therefore,
for any j 2 Z, for everyz2 V (I j ;Vi(U); t ;K ),

wtru; j;i(z;U) = wtru;(� j � 1);i(z;U)

and with (6.18) we deduce that, for everyz 2 V (I j ;V1(U); t ;K ) and
z2 V (I j ;V2(U); t ;K ) respectively,

wtru; j;1(z;U) = wtru; j;2
�
ze� (2j+ 1)ip ;Ue� ( j+ 1=2)ip �

(6.19)

wtru; j;2(z;U) = wtru; j;1
�
ze� (2j+ 1)ip ;Ue� ( j+ 1=2)ip �

:

6.2.4 Considerations on the domain

Viewing (6.18) and (6.19), it will be enough for our purpose to consider the
domain V (I0;V1; t ;K ) with I0 =] 0;p[,

�
V1(U)

�
(z) = Ue� zz3=2 with jUj > 0,

t (q) = 27
4j sin(q)j ,

�
K (q)

�
(c) = 2c2

3t (q)2
p

sin(q)
. We would like to describe the bound-

ary of this domain. As a matter of fact, we will restrict ourself to describing its
subdomainf q

�
V1(U); t (q);K (q)

�
with q = p=2. Considered by projection onC,

this domain reads:z = x+ iy, (x;y) 2 R2, belongs tof
p
2
�
V1; t ( p

2 );K ( p
2 )

�
if and

only if there existsl > 1 so that
8
><

>:

y < �
27
4

l

jUje� x(x2 + y2)3=4 <
2
3

l 2:

(We takec = 27
4 l > t (p=2)). We now �x y = � 27

4 l with l > 1 and we remark that
z= x+ iy belongs tof

p
2
�
V1(U); t ( p

2 );K ( p
2 )

�
iff x > X with X such that

jUje� X(X2 + y2)3=4 =
2
3

�
4
27

y
� 2

: (6.20)

Indeed, just see that the real mappingx 7! e� x(x2 + y2)p is decreasing whenjyj � p,
and use an argument of continuity. With the implicit function theorem, these argu-
ments show the existence of a unique solutionX : y 2] � ¥ ; � 3

4[7! X(y) of (6.20),
of classC¥ and increasing withy, which can be described as follows. The above
equality is equivalent to writing

�
1+

X2

y2

� 3

= a y2e4X; a =
�

32
2187jUj

� 4

: (6.21)

and we can remark thatX(� a � 1=2) = 0 if � a � 1=2 < � 3
4. When assumingy2 � X2,

we getX = �
ln(a y2)

4
+ e, e = o(1) as a �rst approximation. Plugging this in (6.21),

one gets

X = �
ln(a y2)

4
+ 3

ln2(a y2)
42y2 + o(y� 2)
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and one can keep on this way to get an asymptotic expansion at any order of the
solution3. To put it in a nutshell:

Corollary 6.1. In theorem 6.2, the sum wtru;0;1(z;U) = S I0 ew(z;Ue1) de�nes, for
any U 2 C?, a holomorphic function with respect to z on a domain which contains,

by projection onC, a subdomain of the form
�

z= x+ iy; y < �
27
4

; x > X(y)
�

where X is an increasingC¥ function on] � ¥ ; � 3
4[, whose asymptotics when

y ! � ¥ is given by:

X(y) = �
ln(a y2)

4
+ 3

ln2(a y2)
42y2 + o(y� 2); a =

�
32

2187jUj

� 4

(6.22)

and so that X(� a � 1=2) = 0 if � a � 1=2 < � 3
4.

6.3 Summability of the formal integral

We saw with corollary 5.2 that the formal integral can be interpreted as a formal
transformationw = eF (z;u),

eF (z;u) = å
k2N2

uk ew[0]
k (z); (6.23)

that formally transforms the prepared ODE (3.6) into the normal form equation
(5.66). It is then natural to wonder whether this formal transformation gives rise to
an analytic transformationsF q (z;u) by Borel-Laplace summation,

F q (z;u) = S q eF (z;u) = å
k2N2

ukS q ew[0]
k (z);

with a de�nition of the sum similar to that of de�nition 6.2. One could give a positive
answer to this question, for the price of some further effort.

One has to extend lemma 6.5 to the wholek-th seriesew[0]
k . It is worth for this matter to

complete the Banach spaces detailed by proposition 3.9 by other “focusing algebras” for
which we refer to [6], in particular those based onL1

n-norms.

This does not mean that the formal integral is Borel-Laplace summable : this is
wrong, due to the effect of the exponentials. Only the restrictions of the formal inte-
gral to convenient submanifolds is 1-summable, which means here just considering
one of the two transseries. However, the sums of the two transseries share no com-
mon domain of convergence anda fortiori the formal integral cannot be summed by
Borel-Laplace summation.

We do not pursue toward this direction and we conclude this chapter with the
truncated solutions.

3 One can also describe the solution in term of the Lambert function, the compositional inverse of
the functionxex.
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6.4 Truncated solutions for the �rst Painlevé equation

We know from theorem 6.2 that the sumwtru; j;i(z;U) = S I j ew(z;Uei), j 2 Z
and i = 1;2, is a holomorphic solution of (3.6), forz on a domain of the form
V (I j ;Vi(U); t ;K ). From its very de�nition and from corollary 6.1, the domain

V (I j ;Vi(U); t ;K ) contains a sectorial neighbourhood of in�nity with aperture

(

I j ;i
where (see Fig. 6.1):

� when i = 1,
(

I j ;1 =] � 1
2p;+ 1

2p[� jp for j even,

(

I j ;1 =] � 3
2p; � 1

2p[� jp for j
odd;

� when i = 2,

(

I j ;2 =] � 1
2p;+ 1

2p[� jp for j odd,

(

I j ;2 =] � 3
2p; � 1

2p[� jp for j
even.

To go back to the the �rst Painlevé equation (2.1), we use the transformationT of
de�nition 3.20.

De�nition 6.4. The conformal mappingT sends the domainV (I ;g;g;K ) onto the
domainT

�
V (I ;g;g;K )

�
and we set

(I ;g;g;K ) = T
�
V (I ;g;g;K )

�
;

�
(I ;g;g;K ) = p

�
S (I ;g;g;K )

�
: (6.24)

The domain (I j ;Vi(U); t ;K ) contains a sectorial neighbourhood of in�nity with
apertureK j ;i (see Fig. 6.2):

� wheni = 1, K j ;1 =] � 7
5p; � 3

5p[� 4
5 jp for j even,K j ;1 =] � 11

5 p; � 7
5p[� 4

5 jp for
j odd;

� wheni = 2, K j ;2 =] � 7
5p; � 3

5p[� 4
5 jp for j odd,K j ;2 =] � 11

5 p; � 7
5p[� 4

5 jp for
j even.

In any case, the domains(I j ;Vi(U); t ;K ) are in connection: for everyj 2 Z,

(I j+ 1;V2(U); t ;K ) = e� 4ip=5 (I j ;V1(U); t ;K ):

From (3.4), (2.6), (2.7), the transformation

z2 V (I j ;Vi(U); t ;K ) $ x 2 (I j ;Vi(U); t ;K )

wtru; j;i(z;U) $ utru; j;i(x;U) = ei p
2 x

1
2p

6

 

1� 4

25
�

T � 1(x)
� 2 +

wtri ; j ;i

�
T � 1(x);U

�

�
T � 1(x)

� 2

!

provides the solutionsutru; j;i(x;U) for the �rst Painlev́e equation. These are thetrun-
cated solutions.
The property (6.18) translates into the following relationships between truncated so-
lutions: for anyj 2 Z, for everyx2 (I j ;V1(U); t ;K ), resp. x2 (I j ;V2(U); t ;K ),

utru; j;1(x;U) = e2ip=5utru; j+ 1;2(xe� 4ip=5;Ue� ip=2) (6.25)

utru; j;2(x;U) = e2ip=5utru; j+ 1;1(xe� 4ip=5;Ue� ip=2)

These are the symmetries discussed in Sect. 2.5. In the same way from (6.19), for
any j 2 Z, for everyx 2 S(I j ;V1(U); t ;K ), respectivelyx 2 (I j ;V2(U); t ;K ),

utru; j;1(x;U) = e
2
5 (2j+ 1)iputru; j;2(xe� 2

5 (4j+ 7)ip ;Ue� ( j+ 1=2)ip ); (6.26)

utru; j;2(x;U) = e
2
5 (2j+ 1)iputru; j;1(xe� 2

5 (4j+ 7)ip ;Ue� ( j+ 1=2)ip ):
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Fig. 6.2 The (shaded) do-

main
�

(I0;V1(U); t ;K )
for t (q) = 27

4j sin(q)j ,�
K (q)

�
(c) = 2c2

3t (q)2
p

sin(q)

andV1(z;U) = Ue� zz3=2.

6.5 Comments

We mentioned in Sect. 5.5 the existence of formal transforms of the typev = eT(z;u),
eT(z;u) = å k2Nn ukevk(z), evk(z) 2 Cn[[z� 1]] that brings differential and difference
systems to their linear normal form, under some convenient hypotheses. For differ-
ential equations of type (5.67), the seriesevk are in general not 1-summable but mul-
tisummable [10]. The �rst results in that direction, concerning the multisummability
of the formal series solutions, have been obtained by Braaksma [1] then by Ramis &
Sibuya [12]. A resurgent approach for 1-level differential equations is undertaken by
Costin in [4], with the proof of the 1-summability of the formal integral on restric-
tion to convenient submanifolds. These results have been generalized to differential
and difference equations, see e.g. [2, 9, 7, 5] and references therein, at least for the
cases where no resonance occurs. The question of the (multi)summability of the
above formal transforms may be delicate, even for 1-level differential systems or
ODEs, whenquasi-resonanceoccurs, giving rise tosmall divisors.

If lll = ( l 1; � � � ; l n) stands for the multipliers and in absence of resonance, it may happen
thatlll :k comes close to one multiplier, for somek 2 Nn. Thus, the construction of the formal
integral gives rise to division by small factors. One has “quasi-resonance” when there exists
an increasing sequence(k j 2 Nn) such that limj ! ¥ lll :k j = 0 fast enough, a condition that
translates into diophantine relations on the sequence.

More details on this subject can be found in [8].
We �nally mention a general upshot, that of the formation of singularities near the

anti-Stokes rays. Considering the Borel-Laplace sum of a transseries stemming from
(resurgent) 1-level differential or difference equations, it is possible, as shown in [7]
(see also [6]) to analyze its behavior on the boundary of its domain of convergence,
by a suitable use of a multi-scale analysis. This is detailed in [5] for the �rst Painlevé
equation.

Acknowledgements I warmly thank my student Julie Belpaume who helped me to work out this
chapter.
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8. J. Ecalle,Les fonctions ŕesurgentes. Tome III : l'équation du pont et la classi�cation analy-
tique des objets locaux.Publ. Math. d'Orsay, Université Paris-Sud, 1985.05 (1985).
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Chapter 7
Supplements to resurgence theory

Abstract This chapter is devoted to some general nonsense in resurgence theory
which will be useful to study furthermore the �rst Painlevé equation from the resur-
gence viewpoint. We de�ne sectorial germs of holomorphic functions (Sect. 7.2)
and we introduce the sheaf of microfunctions (Sect. 7.3). This provides an approach
to the notion of singularities which is the purpose of Sect. 7.4. We de�ne the formal
Laplace transform for microfunctions and for singularities and conversely, the for-
mal Borel transform acting on asymptotic classes (Sect. 7.5). The main properties
of the Laplace transform needed in this course are developed to Sect. 7.6. We then
introduce some spaces of resurgent functions and de�ne the alien operators (Sect.
7.7 to 7.9).

7.1 Introduction

In this introduction, we assume that the reader has a previous acquaintance with
1-summability theory, much discussed in [14] to which we refer.

At its very root, one can rely the Borel-Laplace summation scheme to the simple
formula

1
zn = L q

�
zn� 1

G(n)

�
=

Z ¥ eiq

0
e� zz zn� 1

G(n)
dz ; n 2 N?; z2

�
P q

0 :

Let bj 2 O(D(0;R)) be a holomorphic function andå
n� 1

an
zn� 1

G(n)
be its Taylor se-

ries at the origin. We choose an open arcI =] � a + q;q + a [, 0 < a � p=2,
bisected by the directionq, and we setI? =] � a � q; � q + a [� �q. For some

r � 0, we set
�

¥ =
�

¥
r (I?). For any cut-offk 2]0;R[, the truncated Laplace inte-

gral j k (z) =
Z keiq

0
e� zz bj (z )dz provides an element ofA 1(

�
¥ ) whose 1-Gevrey

asymptoticsT
1;

�
¥
j k (z) in

�
¥ is given by the 1-Gevrey serieså

n� 1

an

zn 2 C[[z� 1]]1.

This is essentially the Borel-Ritt theorem for 1-Gevrey asymptotics. For two cut-off

pointsk1;k2 2]0;R[, the differencej k1 � j k2 belongs toA
�� 1

(
�

¥ ), the differential

ideal ofA 1(
�

¥ ) made of 1-exponentially �at functions on
�

¥ .
One gets this way a morphismL (I ) : bj 2 O0 7! cl(j k ) 2 A 1(I?)=A �� 1(I?), where
hereO0 stands for the constant sheaf (of convolution algebras) overS1. By (obvi-

129
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ous) compatibility with the restriction maps, one obtains1 a morphism of sheaves
of differential algebras,L : O0 ! A 1=A �� 1, where the quotient sheafA 1=A �� 1

overS1 is known to be isomorphic to the constant sheafC[[z� 1]]1 (Borel-Ritt the-
orem 3.4, see [14, 17]). The formal Laplace transfomL is an isomorphism, the
inverse morphism being the formal Borel transformB : C[[z� 1]]1 ! O0 (seen as a
morphism of sheaves).

One can extend the theory by considering Laplace integrals de�ned along Hankel
contours. For instance, standard formulae provide

G(s ) =
1

1� e� 2ips

Z

g[� 2p;0];e

e� z z s � 1dz; s 2 C nN; (7.1)

where the integration contourg[� 2p;0];e is the (endless) Hankel contour drawn on
Fig. 7.1, whilez s � 1 = e(s � 1) logz and logz is the branch of the logarithm so that
arg(logz) 2] � 2p;0[. Performing a change of variable, one gets the identity

1
zs = L 0 _

I s (z) =
Z

g[� 2p;0];e

e� zz _
I s (z )dz ; z2

�
P 0

0; (7.2)

with zs = es logz where this time logz is the branch of the logarithm so that
arg(logz) 2] � p;p[, while

_
I s (z ) =

8
>><

>>:

z s � 1 log(z )
2ipG(s )

for s � 1 2 N

z s � 1

(1� e� 2ips )G(s )
for s � 1 2 C nN:

The form of
_
I s that we give fors � 1 2 C nN is well-de�ned when� s =2 N. It can be

analytically continued to the case� s 2 N by the re�ection formula.

This example provides another one that will be used later on : for anym2 N, any

s 2 CnN?, for z2
�

P 0
0, (� 1)mz� s (logz)m = L 0 _

Js ;m,
_
Js ;m=

�
¶

¶s

� m _
I s with the

above convention for the logz. Remark however thatL 0 _
I s = L 0

� _
I s + hol

�
when

hol is any holomorphic function on a half-strip containing the origin, with at most
exponential growth of order 1 at in�nity. This justi�es the introduction of the spaces
of microfunctions and singularities that we do in the next sections.

This chapter can be seen as a sequel of the resurgence theory developed in [18].
For most of the materials presented here, we mainly refer to [7, 9, 10, 1, 18], see
also [4, 24, 21]. Another approach to resurgence theory is provided in [27].

Fig. 7.1 The Hankel contour
g[q� 2p;q];e for q = 0.

1 Modulo the quite innocent complex conjugationI ! I?.
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7.2 Sectorial germs

7.2.1 Sectors

We precise our notations for sectors on(eC;p), the Riemann surface of the logarithm
(Compare these notations with de�nition 3.3).

De�nition 7.1. Let I � eS1 be an open arc. For 0� r < R � ¥ , we denote by R
r (I )

the simply connected domain ofeC of the form R
r (I ) = f z = xeiq j q 2 I ;x 2]r;R[g.

One denotes bȳR
r (I ) the closure of R

r (I ) in eC We use abridged notations0(I ),
¯ 0(I ), ¥ (I ) and ¯ ¥ (I ) for sectors, whenR or r is unspeci�ed.
For any continuous function R :eS1 ! ]0;+ ¥ [, we denote by R

0 the simply connected
domain de�ned by R

0 = f z = reiq j q 2 eS1; 0 < r < R(q)g � eC. We simply write
0 for such a domain, when there is no need to specify the function R.

7.2.2 Sectorial germs

De�nition 7.2. Let I � S1 be an open arc. One says that two functionsj 1 2 O(
� R1

0 (I )) ,

j 2 2 O(
� R2

0 (I )) de�ne the samesectorial germ
_
j of direction I at0, whenj 1 and

j 2 coincide on a same domain of type
�

0(I ). We denote byO0(I ) = lim�!
R! 0

O(
� R

0(I ))

the space of germs of directionI at 0, and byO0 the sheaf overS1 associated with
the presheafO0.

As a rule in this paper for the (pre)sheafs one encounters, the restriction maps are the
usual restrictions of functions. We warn the reader that the presheafO0 is not a sheaf
over S1 (see for instance a counter example given in [14]) : for an open arcI , a section
_
j 2 O0(I ) = G(I ;O0) is a collection of holomorphic functionsj i 2 O(

� Ri
0 (Ii )) that glue

together on their intersection domains, the setf Iig being an open covering ofI

Example 7.1.We denote byCf z ;z � 1g the space of Laurent serieså n2Z anzn which
converge on a punctured discD(0;R)?. This space can also be seen as a constant
sheaf overS1 and the spaceO0(S1) of global sections ofO0 on S1 coincides with
Cf z ;z � 1g.
For n 2 N? and a given directionq0 2 S1, let us consider the sectorial germ
_
j q0 (z ) = zn� 1 log(z )

2ipG(n) 2 O0
q0

, for any given determination of the log. HereO0
q0

de-

notes the stalk atq0 of the sheafO0. When makingq varying from q0 on

I =] � p + q0;q0 + p[� S1, the sectorial germs
_
j q2 O0

q glue together and de�ned a

section
_
j 2 G(I ;O0) which cannot be prolonged to a global section.

This last example illustrates the need for de�ning sectorial germs for functions
de�ned on sectors ofeC. The covering mapp : eS1 ! S1 allows to consider the sheaf
p?O0 over eS1, that is the inverse image byp of the sheafO0 (see [1, 12, 3]). For

J an open arc ofeS1, an element
_
j of p?O0(J) appears as an element of thespace

G(J;O0) of multivalued sectionsof O0 onJ, that is
_
j = s(J) wheres is a continuous
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map such that the following diagram commutes:

O0 =
F

q2S1 O0
q

s% #
eS1 �! S1

p

. We say

that in another way in the following de�nition:

De�nition 7.3. LetJ 2 eS1 be an open arc. One says that two functionsj 1 2 O( R1
0 (J)) ,

j 2 2 O( R2
0 (J)) de�ne the same sectorial germ

_
j of directionJ at 0 whenj 1 and

j 2 coincide on a same domain of type0(J). We denote byG(J;O0) the space of
multivalued sections of germs of directionJ.

Remark 7.1.For anyw 2 C and by translation, one can of course de�neOw , the
sheaf overS1 of sectorial germs atw, associated with the presheafOw .

7.3 Microfunctions

We introduce the sheaf of microfunctionsCw at w 2 C, in the spirit of [1] to whom
we refer. SinceCw is deduced fromC = C0 by translation, we make the focus on
the casew = 0.

7.3.1 Microfunctions, de�nitions

We complete de�nition 3.13.

De�nition 7.4. Let q be a direction andI =] a ;b [ be an open arc (ofS1 or eS1). we
set:

1. q � = � q andI? =] � b ; � a [ the complex conjugate arc;
2.

(

q =] � p
2 � q; � q + p

2 [ and

(

I =
S

q2I

(

q;
3. �q =] q � 3p=2;q � p=2[ thecopolarof q;
4. �I =] a � 3p=2;b � p=2[=

S
q2I

�q thecopolarof I ;
5. whenjI j > p, bI =] a + p=2;b � p=2[; whenjI j < p, bI =] b � p=2;a + p=2[. When

jI j = p, we setbI = f b � p=2g.

We would like to de�ne “microfunctions of codirectionI at 0”. For any open arc
I � S1 of length� p, we notice that its copolar�I is of length� p, thus can be seens
as an arc ofS1. For such an arc, we set�O0(I ) = O0( �I ).
We now remark that for two arcsI2 � I1 of lengths� p, one has�I2 � �I1. The restric-
tion mapr �I2; �I1

: O0( �I1) ! O0( �I2) gives rise to a restriction map�r I2;I1 = r �I2; �I1
from

�O0(I1) into �O0(I2). This justi�es the following de�nition.

De�nition 7.5. Let I � S1 be any open arc of length� p.
One sets�O0(I ) = O0( �I ) and �O0(I ) is called thespace of germs of codirection I at0.
We denote by�O0 the corresponding sheaf overS1.
Viewing O0 as a constant sheaf overS1, we setC = �O0=O0. This quotient sheaf over
S1 is the sheaf ofmicrofunctionsat 0 andC(I) = G(I ;C) is the space of sections
of microfunctions of codirection Iat 0.

The sheaf of microfunctionsC makes allusion to Sato's microlocal analysis, see, e.g. [23,
13, 19]. We mention that microfunctions depending on parameters can be also de�ned, see
for instance [4] for a resurgent context.
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We mention thatC(I ) = �O0(I )=O0, that is the quotient sheaf coincide with the
pre-quotient sheaf, becauseO0 is a constant sheaf.

In what follows, we transpose with some abuse the notations for singularities
introduced in [18] to that for microfunctions.

De�nition 7.6. Let I � S1 be any open arc of length� p. We denote by
O
j = singI

0
_
j 2 C(I ) the microfunction of codirectionI at 0 de�ned by the sectorial

germ
_
j 2 �O0(I ) of codirectionI .

WhenI is an arc of length> p, then �I is of length larger than 2p and should be

seen as an arc ofeS1. In that case, a microfunction
O
j of C(I ) is represented by an

element
_
j of G( �I ;O0).

For any arcI � S1 of length> p, one can de�ne the variation map var :

var :
O
j 2 C(I ) 7! bj 2 G(bI ;O0); bj (z ) =

_
j (z )�

_
j (ze� 2ip ):

Example 7.2.1. For anyn 2 N, the sectorial germ
_
I � n (z ) =

(� 1)n

2ip
n!

zn+ 1 can be

seen as a global section of the sheafO0. The associated microfunction is equally

denoted by
O
I � n, d(n) or by sing0

_
I � n.

Notice that for any holomorphic germbj 2 O0, the sectorial germbj
_
I 0 de�nes a

microfunction sing0( bj
_
I 0) equal tobj (0)d(0) = bj (0)d.

2. More generally, the constant sheafCf z ;z � 1g overS1 can be seen as a subsheaf

of C (of vector spaces). Any microfunction
O
y of Cf z ;z � 1g can be written as a

sumå n� 0an
O
I � n= å n� 0and(n) , where the Laurent series

_
y (z ) = å n� 0an

(� 1)n

2ip
n!

zn+ 1

converges forjz j > 0.
3. We assume thatbj 2 O0 is a germ of holomorphic function. For any given

direction q0 2 S1, we consider the microfunction
O
f q0

= singq0
0

�
bj log

2ip

�
2 Cq0

(whereCq0 is the stalk atq0 of the sheafC), represented by the sectorial germ
_
f q0

= bj log
2ip 2 �O0

q0
, for any given determination of the log (remark that

O
f q0

does
not depend on the chosen determination). Makingq varying from q0 up to

q0 + 2p on S1, the microfunctions
O
f q= singq

0

�
bj log

2ip

�
2 Cq glue together and

O
f q0

=
O
f q0+ 2p . This provides a global section

O
f = sing0

�
bj log

2ip

�
2 G(S1;C) which

does not depend of the chosen determination of the log one started with.
It can be shown (through the variation map) that the space of global sections
G(S1;C) of the sheaf of microfunctions, is composed of microfunctions of the

form
O
y + sing0

�
bj log

2ip

�
, with

O
y 2 Cf z ;z � 1g and bj 2 O0, see [1].

4. We supposes � 1 2 C nN and letq 2 S1 be a direction. The microfunction
O
f q= singq

0

�
_
I s

�
, represented by the sectorial germ

_
I s (z ) =

z s � 1

(1� e� 2ips )G(s )
,

is well-de�ned once the determination of the log has been chosen. Let us now
�x the arc I =] 0;2p[, consider the arc�I =] � 3p=2;3p=2[ as an arc ofeS1

and
_
I s 2 G( �I ;O0) as a (uniquely well-de�ned) multivalued section ofO0 on �I .

One can apply to its associated microfunction
O
I s 2 C(I) the variation map and

var(
O
I s ) = bIs 2 G(bI ;O0), bI =] p=2;3p=2[, is given bybIs (z ) =

z s � 1

G(s )
.
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7.3.2 Microfunctions and convolution product

This subsection is devoted to convolution products of microfunctions. We start with
some geometrical preliminaries.

7.3.2.1 Geometrical Preliminaries

De�nition 7.7. Let e > 0 be a real psoitive number andI � S1 be an open sec-
tor of length< p. We setSe(bI ) =

[

h2
�

¥
0 (bI )

D(h ;e), the “e-neighbourhood” inC of

the sector
�

¥
0 (bI ). When the open arcI is of length= p, thenbI = f qg and we set

Se(bI ) =
[

s2R+

D(seiq ;e). We set
�
S e(I ) = C n Se(bI ) and we denote by

� ¶
�
S e(I ) = ¶Se(bI ) the oriented boundary. We denote byGI ;e;h1;h2 the curve that

follows the oriented boundary� ¶
�
S e(I ) from h1 to h2. We denote byGI ;e the end-

less curve that follows the oriented boundary� ¶
�
S e(I ).

Lemma 7.1.Let z � Se(bI ) be the convex domain deduced fromSe(bI ) by the point

re�ection centered onz=2 2 C. If dist(z ;Se(bI )) � 2e, thenz � Se(bI ) �
�
S e(I ). In

particular, for everyz 2
�
S 2e(I ), for everyh 2 (� ¶

�
S e(I )) , one hasz � h 2

�
S e(I ).

Proof. We only consider the case whereI � S1 is an open arc of length< p. We

pick an open sector
�

¥
0 (bI ) andz 2 C n

�
¥
0 (bI ). Thenz=2 2 C n

�
¥
0 (bI ) as well. We

denote byz �
�

¥
0 (bI ) the convex domain deduced from

�
¥
0 (bI ) by the point re�ection

centered onz=2 2 C. One sees that for everyx 2 z �
�

¥
0 (bI ), for everyh 2

�
¥
0 (bI ),

dist(z ;
�

¥
0 (bI )) � dist(x ;h ) (dist is the euclidean distance). Indeed, by the projection

theorem for convex sets, there exist a unique pointh0 on the closure of
�

¥
0 (bI ) so that

dist(z ;h0) = dist
�
z ;

�
¥
0 (bI )

�
, see Fig. 7.2. One easily shows that the perpendicular

Fig. 7.2 The domainSe(bI )
(left-hand side shaded do-
main), the domainz � Se(bI )
(right-hand side shaded do-
main.
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Fig. 7.3 Picture associated
with the proof of lemma 7.2.

bisector of the segment[z ;h0] separates the two convex sets
�

¥
0 (bI ) andz �

�
¥
0 (bI ).

Therefore, if dist(z ;Se(bI )) � 2e, thenz � Se(bI ) �
�
S e(I ). ut

Lemma 7.2.Let I =] a ;b [� S1 be an open sector of length� p and e > 0. We

considerh1 2 (� ¶
�
S e(I )) and we set r= jh1j. We suppose that(e=r) < 1 and we

setd = arcsin(e=r) 2]0;p=2[.

1. if bJ =] b � p=2;a + p=2+ d[ is an open sector of length< p, we set h= r sin( bJ).

Then, for anyz 2 D(0;h), z � h1 2
�

¥
0 ( �I ).

2. if bJ =] b � p=2;a + p=2+ d[ is an open sector of length� p=2, then, for any

z 2 D(0; r), z � h1 2
�

¥
0 ( �I ).

Proof. Left as an easy exercise. Just look at Fig. 7.3.ut

7.3.2.2 Convolution product of microfunctions

We pick two microfunctions
O
j and

O
y of codirectionI , whereI is an open arc of

length< p. For any strict subarcI1 b I , these microfunctions can be represented by

functions
_
j and

_
y belonging toO

� �
¯ R+ r

0 ( �I1)
�

with R> r > 0 small enough.

In what follows, we choosee2]0; r
2 sin(p �j bI j)[. We remark that both

�
S 2e(I ) \ D(0; r)

and
�
S e(I1) \ D(0;R) are non empty domains and

�
S e(I1) \ D(0;R) �

�
¯ R+ r

0 ( �I1).

We consider a pathG = GI1;e;h1;h2 that follows the oriented boundary� ¶
�
S e(I1)

from h1 to h2 with r < jh1j < R, r < jh2j < R, drawn on Fig. 7.4.

For anyh 2 GI1;e;h1;h2 and anyz 2
�
S 2e(I ) \ D(0; r), jz � h j < R+ r and we know

by lemma 7.1 thatz � h 2
�
S e(I ). Therefore, the function

_
c I1;e;h1;h2 (z ) =

Z

GI1;e;h1;h2

_
j

�
h

� _
y (z � h )dh (7.3)

is well-de�ned for all z 2
�
S 2e(I ) \ D(0; r) and is holomorphic on this domain

(which is non empty since 2e < r).
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Fig. 7.4 The path of integra-
tion GI1;e;h1;h2 .

Notice that
_
c I1;e;h1;h2 can be analytically continued to

�
S 2e(I ) [ D(0; r) when

_
y

is holomorphic onD(0;R+ r), becausejz � h j < R+ r for h on the integration con-

tour andz 2 D(0; r). Thus, by linearity, adding to
_
y an element ofO

�
D(0;R+ r)

�

results in the addition of an element ofO
�
D(0; r)

�
for

_
c I1;e;h1;h2. Similarly when

_
j is holomorphic onD(0;R+ r), then

_
c I1;e;h1;h2 can be analytically continued to

�
S 2e(I ) [ D(0; r) : through an homotopy inD(0;R), just deform the contourGI1;e;h1;h2

into an arcG0 running fromh1 to h2 in f h = seiq j s2]r;R[; q 2 b̄Ig � Se(bI ); by

Cauchy, the two functions
Z

GI1;e;h1;h2

_
j

�
h

� _
y (z � h )dh and

Z

G0

_
j

�
h

� _
y (z � h )dh

coincide for z 2
�
S 2e(I ) \ D(0; r), while the second integral is holomorphic on

D(0; r).

Replacingh1, h2 by h 0
1, h 0

2 on� ¶
�
S e(I1), with r < jh 0

1j < R, r < jh 0
2j < R, results

in modifying
_
c I1;e;h1;h2 by an element ofO

�
D(0;h)

�
for h > 0 small enough: the

difference

_
c I1;e;h1;h2 (z )�

_
c I1;e;h 0

1;h 0
2
=

� Z h 0
1

h1

+
Z h2

h 0
2

�
_
j (h )

_
y (z � h )dh (7.4)

can be analytically continued from
�
S 2e(I ) \ D(0; r) to D(0;h). Indeed, using the

condition one and by lemma 7.2, we see that forh on the two segment contours

and for z 2 D(0;h) with 0 < h � r sin(bI), z � h remains in
�

¥
0 ( �I1) \ D(0;R+ r)

where
_
y is holomorphic.

Finally replacinge by a anothere02]0; r
2 sin(p � j bI j)[ yields the same conclu-

sion : forz on the intersection domain
�
S 2e(I ) \

�
S 2e0(I ) \ D(0; r), one can compare

the two functions
_
c I1;e;h1;h2 and

_
c I1;e0;h 0

1;h 0
2
. By Cauchy, the difference reads like

(7.4) with the same conclusion.
In particular, we can lete ! 0 in the above construction: the family of functions

_
c I1;e;h1;h2 glue together modulo the elements ofO0, thus providing a microfunction
of codirectionI1. Making the arcsI1 � I recoveringI , one sees that these micro-
functions glue together to give a microfunction of codirectionI .



7.3 Microfunctions 137

De�nition 7.8. Let beI an open arcI of length< p. We consider two microfunc-

tions of codirectionI ,
O
j and

O
y , represented by the sectorial germ of codirectionI ,

_
j

and
_
y respectively. For a covering ofI by open arcsI1 � I , the family of functions

_
j � G

_
y (z ) =

Z

GI1;e;h1;h2

_
j

�
h

� _
y (z � h )dh (7.5)

with G = GI1;e;h1;h2, glue together moduloO0 and provide a microfunction of codi-

rectionI denoted by
O
j �

O
y . It is called theconvolution product of

O
j and

O
y .

Proposition 7.1.The sheaf of microfunctionsC is a sheaf ofC-differential convo-

lution algebras, for the derivation
O
¶: singI

0(
_
y ) 7! singI

0(� z
_
y ). These algebras are

commutative, associative and with unitd = sing0

�
1

2ip
1
z

�
.

Proof. In what follows we use the previous notations :
O
j and

O
y are two microfunc-

tions of codirectionI , an open arc of length< p. One pick a subarcI1 b I and the

microfunctions can be represented by functions
_
j and

_
y belonging toO

� �
¯ R+ r

0 ( �I1)
�

with R> r > 0 small enough.

We consider the microfunction
O
y 0= d 2 C(S1) that we represent by

_
y 0 (z ) = bj 0(z )

_
I 0 (z ) = bj 0(z )

2ipz with bj 0 2 O
�
D(0;R+ r)

�
and subject to the con-

dition bj 0(0) = 1. Thus
_
j � G

_
y 0 reads:

_
j � G

_
y 0 (z ) =

1
2ip

Z

GI1;e;h1;h2

_
j (h )

bj 0(z � h )
z � h

dh :

By Cauchy and the residue formula, one easily gets that for allz 2
�
¯ R+ r

0 ( �I1) \ D(0; r),
_
j � G

_
y 0=

_
j + hol, where hol can be analytically continued toD(0; r). This implies

that
O
j � d =

O
j .

We then consider the integral:

_
j � G� G0

_
y (z ) =

1
2ip

Z

G� G0

bj 0(z � (x1 + x2)
z � (x1 + x2)

_
j (x1)

_
y (x2)dx1dx2; (7.6)

bj 0 2 O
�
D(0;R+ r)

�
; bj 0(0) = 1;

whereG = GI1;e;h1;h2, G0= GI1;e0;h 0
1;h 0

2
. We remark that for any(x1;x2) 2 G� G0one

has(x1 + x2) 2 Se+ e0(bI1) \ D(0;2R). Thus
_
j � G� G0

_
y de�nes a holomorphic func-

tion on the simply connected domain
�
S e+ e0(I1) : just apply the Lebesgue dominated

convergence theorem forz on any connected compact subset of
�
S e+ e0(I1). This also

allows to use the Fubini theorem:

_
j � G� G0

_
y (z ) =

Z

G

�
1

2ip

Z

G0

bj 0(z � (x1 + x2)
z � (x1 + x2)

_
y (x2)dx2

�
_
j (x1)dx1

=
Z

G0

�
1

2ip

Z

G

bj 0(z � (x1 + x2)
z � (x1 + x2)

_
j (x1)dx1

�
_
y (x2)dx2:
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From the previous considerations, we recognize
_
j � G� G0

_
y =

_
j � G

_
y + hol for the

�rst equality,
_
j � G� G0

_
y =

_
y � G0

_
j + hol for the second equality, where hol is a holo-

morphic function that can be analytically continued to a neighbourhood of 0. As a
consequence,

O
j �

O
y =

O
y �

O
j ;

that is the convolution product of microfunctions is commutative. One easily shows
in the same way that the convolution product of microfunctions is associative. The

fact that
O
¶ is a derivation is obvious. ut

We have previously seen two kind of integral representations,
_
j � G

_
y (equation

(7.5)) and
_
j � G� G0

_
y (equation (7.6)) for the convolution product

O
j �

O
y of two

microfunctions. Other representations can be obtained under convenient hypotheses
as exempli�ed by the next proposition.

Proposition 7.2.Let
O
y be a microfunction of codirection I, an open arc of length

< p, represented by the sectorial germ
_
y of codirection I. Let be

O
j 2 G(S1;C) a

microfunction of the formsing0

�
bj log

2ip

�
with bj 2 O0. Then, the microfunction

O
j �

O
y

of codirection I can be represented moduloO0 by a family of functions of the form
Z h1

0
bj (h )

_
y (z � h )dh and

Z h2

0
bj (h )

_
y (z � h )dh (7.7)

with h1, h2 as for de�nition 7.8.

The proof is left as an exercise. (See [24]). Starting with the integral representa-
tion (7.5), the idea is to decompose the pathGI1;e;h1;h2 as on Fig. 7.5 and to use the
integrability of the log at the origin.

7.4 Space of singularities

The reader will recognize in what follows classical notions and notations in resur-
gence theory already encountered in [18], see also [9, 10, 24, 21].

Fig. 7.5 Decomposition of
the pathGI1;e;h1;h2 .
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7.4.1 Singularities

De�nition 7.9. Let q 2 R be a direction anda > 0. We denote by ANAq;a the space
of sectionsG( �J;O0) where �J =] q � a � 2p;q + a [� eS1, and by ANA= G(eS1;O0)
the space of global sections.

Thus, ANA is the space of sectorial germs at 0 that are represented by functions
_
j holomorphic on a simply connected domain of the form0.

De�nition 7.10. One sets SINGq;a = ANAq;a =O0 and SING= ANA=O0. The el-
ements of these quotient spaces are calledsingularitiesat 0. One denotes by sing0
the canonical projection,

sing0 :

(
ANA ! SING
_
j 7!

O
j

; sing0 :

(
ANAq;a ! SINGq;a
_
j 7!

O
j

:

If sing0(
_
j ) =

O
j , then

_
j is called amajor of the singularity

O
j .

In particular, with these notations:

Proposition 7.3.The space of singularitiesSINGq;a can be identi�ed with the
spaceG(J;C) of multivalued sections ofC byp, with J=] � p

2 � a + q;q + a + p
2 [.

De�nition 7.11. One de�nes the spaces SINGw , resp.SINGw;q;a of singularities at
w 2 C, by translation from SING,resp.SINGq;a .

It is of course enough to study the spaces of singularities at 0 and this is what we
do in what follows.

Notice that SINGq;a and SING are naturallyO0-modules.

De�nition 7.12. Let f 2 O0 be a germ of holomorphic functions and let
O
j = sing0

_
j

be a singularity in SING,resp.SINGq;a . One de�nes the productf
O
j in SING,resp.

SINGq;a , by f
O
j = sing0( f

_
j ).

De�nition 7.13. The so-calledvariation mapis de�ned by:

var :

(
SING ! ANA
O
j = sing0(

_
j ) 7! bj ; bj (z ) =

_
j (z )�

_
j (ze� 2ip );

and bj = var(
O
j ) is called theminor of the singularity

O
j .

The variation map var operates similarly on every element
O
j 2 SINGq;a , with

bj = var(
O
j ) in G( bJ;O0), wherebJ =] q � a ;q + a [� eS1.

A minor is said to beregular when it belongs toO0.

We illustrate the notion of singularities by the following examples. (The reader
will recognize sectorial germs used in the introduction of this chapter).

De�nition 7.14. The singularities
O
I s ;

O
Js ;m2 SING, s 2 C, m 2 N are de�ned as

follows.
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� For s 2 C nN?,
O
I s = sing0(

_
I s ) where

_
I s (z ) = zs � 1

(1� e� 2ips )G(s ) .

In particular,
O
I � n= d(n) = sing0

�
(� 1)n

2ip
n!

zn+ 1

�
; n 2 N.

� Forn 2 N?,
O
I n= sing0(

_
I n) with

_
I n (z ) = zn� 1 log(z )

2ipG(n) .

� Form2 N ands 2 C,
O
Js ;m=

�
¶

¶s

� m O
I s .

It is useful to de�ne the following subspaces of “integrable singularities”,
SINGint � SING and SINGint

q;a � SINGq;a .

De�nition 7.15. An integrable minoris a germbj 2 ANA holomorphic in the do-
main 0 � eC which has a primitivebf such thatbf ! 0 uniformaly in any proper
subsector̄ 0

0 b 0. The space of integrable minors is denoted by ANAint.

An integrable singularityis a singularity
O
j 2 SING which admits a major

_
j holo-

morphic in the domain 0 � eC such that lim
z ! 0

z
_
j (z ) = 0 uniformaly in any proper

subsector̄ 0
0 b 0. One denotes by SINGint the space of integrable singularities.

There is a natural injectionO0 ,! ANA int from the space of germs of holomor-
phic functions to the space ANAint of integrable minors. The space ANAint can be
equipped with a convolution product, by extending the usual law convolution onO0.

It is not hard to show that integrable singularities satisfy the following property:

Proposition 7.4.By restriction, the variation mapvar induces a linear isomorphism
SINGint ! ANA int. The inverse map is denoted by[ : bj 2 ANA int 7! [ bj 2 SINGint.

This allows to transports the convolution law from ANAint to SINGint by the
variation map.

De�nition 7.16. The convolution product ofbj 1; bj 2 2 ANA int is de�ned by

bj 1 � bj 2(z ) =
Z z

0
bj 1(h ) bj 1(z � h )dh . The convolution of two integrable singular-

ities
O
j 1= [ bj 1;

O
j 2= [ bj 2 2 SINGint is given by :

O
j 1 �

O
j 2= [

�
bj 1 � bj 2

�
.

Quite similarly:

De�nition 7.17. A minor bj holomorphic on the domain0(bI ) � eC is said to bein-
tegrableif bj has a primitivebf such thatbf ! 0 uniformaly in any proper subsector
¯ 0

0 b 0(bI ). One denotes by ANAint
q;a the space of these integrable minors.

An integrable singularityis a singularity
O
j 2 SINGq;a which has a major

_
j holo-

morphic in the domain 0( �I ) � eC and such that lim
z ! 0

z
_
j (z ) = 0 uniformaly in any

proper subsector̄0
0 b 0( �I ). One denotes SINGint

q;a the space of these integrable
singularities.

Proposition 7.5.By restriction, the variation mapvar induces a linear isomorphism
SINGint

q;a ! ANA int
q;a . The inverse map is denoted by[ : bj 2 ANA int

q;a 7! [ bj 2 SINGint
q;a .

We end with further de�nitions.

De�nition 7.18. Any singularity
O
j of the form

O
j = ad + [ bj with bj 2 O0 is said to

besimple. The space of simple singularities is denoted by SINGsimp.
The space SINGs:ram of simply rami�edsingularities is the vector space spanned by

SINGsimp and the set of singularitiesf
O
I � n; n 2 Ng.



7.5 Formal Laplace transform, formal Borel transform 141

7.4.2 Convolution product of singularities

The resurgence theory asserts that the space of singularities SING can be equipped
with a convolution product [7, 8, 18], see also [1, 22]. Since SINGq;a can be identi-
�ed with the space G(J;C) of multivalued sections ofC by p, with
J =] � p

2 � a + q;q + a + p
2 [, the convolution product for microfunctions (propo-

sition 7.1) allows to transport this product to SINGq;a : for any two singularities
O
j ;

O
y 2 SINGq;a and any strict subarcI b J of length< p, one can �nd two ma-

jors
_
j ;

_
y 2 ANAq;a that can be represented by holomorphic functions on a sector

0( �I ). By projection onC, one can think of
_
j ;

_
y as belonging toO(

�
0( �I )) , that is

sectorial germs of codirectionI . By restriction,
O
j ;

O
y are seen as microfunctions of

codirectionI , whose convolution product
O
j �

O
y 2 G(I ;C) can be represented either

by
_
j � G

_
y (z ) =

Z

G

_
j

�
h

� _
y (z � h )dh (7.8)

or by

_
j � G� G

_
y (z ) =

1
2ip

Z

G� G

f (z � (x1 + x2))
z � (x1 + x2)

_
j (x1)

_
y (x2)dx1dx2; (7.9)

with f 2 O0 and f (0) = 1 (cf. (7.5) and (7.6)), whereG = GI ;e;h1;h2 is as in def-
inition 7.7. When considering a covering ofJ by such arcsI , these sections glue

together to give the convolution product
O
j �

O
y as a multivalued section ofC overJ.

Proposition 7.6.The spaceSING can be equipped with a convolution product de-
noted by � that makes it a commutative convolution algebra, with unit

d = sing0

�
1

2ipz

�
=

O
I 0. Moreover:

1. the linear operator,
O
¶:

O
j = sing0(

_
j ) 2 SING7!

O
¶

O
j = sing0(� z

_
j ) 2 SING, is a

derivation.
2. if

O
j and

O
y belong toSINGint, then

O
j �

O
y belongs toSINGint and [ bj � [ bj = [ ( bj � bj ).

In particular, the space of simple singularitiesSINGsimp is a convolution subal-
gebra.

Theses properties remain true when one considersSINGq;a instead ofSING.

Proof. We have already shown that SINGq;a (thus SING) is a commutative convolu-
tion algebra for the convolution product with unitd. The equality[ bj � [ bj = [ ( bj � bj )
for integrable singularities, emerges from considerations on integrals and is left as
an exercise. (Start with proposition 7.2. See [24]).ut

7.5 Formal Laplace transform, formal Borel transform

7.5.1 Formal Laplace transform for microfunctions

We start with the following de�nition.
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De�nition 7.19. Let I � S1 be an open arc andr � 0 be a nonegative real number.
we denote by:

1. A � 0(
�

¥
r (I )) theC-differential algebra of holomorphic functionsj on

�
¥
r (I ) that

satisfy the property : for any proper subdomain
�
¯ ¥ b

�
¥
r (I ), for anye > 0, there

existsC > 0 so that for allz2
�
¯ ¥ , jj (z)j � Ceejzj ;

2. A � 0(I ) = lim�!
r! ¥

A � 0(
� ¥

r (I )) . This de�nes a presheafA � 0;

3. A � 0 the sheaf overS1 associated with the presheafA � 0.

Remark 7.2.The fact thatA � 0 is indeed a sheaf of differential algebras is an exer-
cise left to the reader. (We stress that the derivation considered is the usual one for
holomorphic functions).
The sheafA � 0 should not be confused with the sheafA < 0 of �at germs at in�nity
(de�nition 3.17). As a matter of fact,A < 0(I ) � A (I ) � A � 0(I ) whereA stands
for the presheaf of asymptotic functions (see de�nition 3.17 and [14, 16, 17]).
We mention that our de�nition ofA � 0 differs from that of Malgrange in [16] where
A � 0 is de�ned as the sheaf of sectorial germs that admit an asymptotics belong-
ing to the formal Nilsson class, that is of the formå ew(z) logm(z)

zs , s 2 C, m 2 N,
ew 2 C[[z� 1]]. Our sheafA � 0 contains this sheaf as a subsheaf. However, the con-
structions in the sequel resemble in much aspects to that of Malgrange [16].

The following Lemma is left to the reader as an exercise. This will allow us in a
moment to properly de�ne the quotient sheafA � 0=A �� 1 overS1.

Lemma 7.3.The spaceA �� 1(
�

¥ ), resp.A �� 1(I ), of 1-exponentially �at functions

on
�

¥ , resp. of 1-exponentially �at germs at in�nity over I, is a differential ideal of

A � 0(
�

¥ (I )) –resp. ofA � 0.

De�nition 7.20. Let q be any direction (ofS1 or eS1). We denote byRq the ray
]0;eiq¥ [. Fork > e � 0, we setRq;e =] eeiq ;eiq¥ [ andRq;e;k =] eeiq ;keiq [.
For any closed arc̄J = [ q1;q2], we denote bygJ̄;e, resp.gJ̄;e;k , the Hankel contour,
resp.truncated Hankel contour, which consists in following:

1. Rq1;e, resp. Rq1;e;k , backward,
2. then the circular arcdJ̄;e = f eeiq j q 2 J̄g oriented in the anti-clockwise way,
3. �nally Rq2;e, resp. Rq2;e;k , forward.

Let us pick an open arcI of S1 of length� p, and a microfunction
O
j 2 C(I ) of

codirectionI , represented by the germ
_
j 2 �O0(I ). For any open arcI1 =] a1;b1[ with

Ī1 b I , one can �ndR> 0 so that the restriction of
_
j to �I1 =] a1 � 3p=2;b1 � p=2[� S1

is represented by a function (still denoted by
_
j ) holomorphic in the sectorR

0( �I1).
We consider another open arcI2 =] a2;b2[, Ī2 � I1, so that�I1 n �̄I2 has two connected
components. We choose one arbitrary direction in each component,
q1 2]a1 � 3p=2;a2 � 3p=2[, q2 2]b2 � p=2;b1 � p=2[. ForR> k > e > 0, we con-

sider the truncated Laplace integralj q1;q2;k (z) =
Z

g[q1;q2];e;k

e� zz _
j (z )dz , see Fig. 7.6.

The functionj q1;q2;k satis�es the following properties:

� j q1;q2;k is an entire function, since one integrates on a (relatively) compact path

of the domain of holomorphy of
_
j .
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Fig. 7.6 Formal Laplace
transform. The open arcs
I1, I2, �I1, �̄I2, and the path
g = g[q1;q2];e;k .

� for e > 0 chosen as small as we want, we setM = sup̄ k
e (]q1;q2[) j

_
j j. then:

– for all z2 C,

�
�
�
�
�

Z

d[q1;q2];e

e� zz _
j (z )dz

�
�
�
�
�
� ej �I1jMeejzj wherej �I1j = b1 � a1 + p;

– for anyr > 0, for everyz2
�

P q1
r ,

�
�
�
�
�

Z

Rq1;e;k

e� zz _
j (z )dz

�
�
�
�
�
� kMe� er . Similarly,

for everyz2
�

P q2
r ,

�
�
�
�
�

Z

Rq2;e;k

e� zz _
j (z )dz

�
�
�
�
�
� kMe� er .

– the domain
�

P q1
r contains any closed sector of the form

�
¯ ¥

r0(J1) with J1 an
open arc so that̄J1 � ] � p

2 � q1; � q1 + p
2 [ and r0 > 0 large enough. Since

b2 � p
2 < q1 < a2 + p

2 , one deduces that
�

P q1
r contains any closed sector of

the form
�
¯ ¥

r0(I?
2) with r0> 0 large enough. Similarly,

�
P q2

r contains any closed

sector of the form
�
¯ ¥

r0(I?
2) with r0> 0 large enough.

From this analysis, sincee > 0 can be chosen arbitrarily small, we retain that

j q1;q2;k belongs to the spaceA � 0(
�

¥
r (I?

2)) , r > 0 large enough.
� Furthermore, looking at the above analysis and by Cauchy, we may observe that

for two cut-off pointsk ;k 02]e;R[, for two directionsq0
1 2]a1 � 3p=2;a2 � 3p=2[,

q0
2 2]b2 � p=2;b1 � p=2[ the differencej q1;q2;k � j q0

1;q0
2;k 0 belongs toA �� 1(

�
¥
r (I?

2))

with r > 0 large enough. We �nally remark that adding to
_
j a function holo-

morphic onD(0;R) only affectsj q1;q2;k (z) by the addition of an element of

A �� 1(
�

¥
r (I?

2)) , r > 0 large enough.

In this way, one obtains a morphism,L (I ; I2) :
O
j 2 C(I ) 7!

M
j 2 A � 0(I?

2)=A �� 1(I?
2),

M
j = cl(j q1;q2;k ), which is obviosuly compatible with the restriction maps.
This allows to move up to stalks,L a : Ca !

�
A � 0=A �� 1�

a � and �nally2 to a
morphism of sheavesL : C ! A � 0=A �� 1.

De�nition 7.21. One callsformal Laplace transformfor microfunctions at 0, the
morphism of sheavesL : C ! A � 0=A �� 1. The quotient sheafA � 0=A �� 1 over

2 Modulo complex conjugation
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S1 is called thesheaf of asymptotic classes. An asymptotic class is usually denoted

by
M
j .

The term “sheaf of asymptotic classes” is borrowed from [1] where the sheafA � 0 is de-

noted byE0, and the sheafA �� 1 is denoted byE � . The notation
M
j is own.

Example 7.3.For (s ;m) 2 C� N andI =] � p=2;p=2[2 S1, we consider the micro-

function
O
Js ;m= singI

0

�
_
Js ;m

�
2 C(I ) represented by the sectorial germ

_
Js ;m=

�
¶

¶s

� _
I s 2 �O0(I ) and the branch of the log such that arg(logz) 2 �I =] � 2p;0[.

By standard formulae recalled in Sect. 7.1, one readily gets that its formal Laplace

transform
M
Js ;m= L (I )

O
Js ;m is an asymptotic class that can be represented by the

(sectorial germ at in�nity of) holomorphic function(s)(� 1)mlogm(z)
zs 2 A � 0(I?),

I? =] � p=2;p=2[ with the determination of the log so that arg(logz) 2 I?.

The following proposition is a straight consequence of the very construction of
the formal Laplace transform.

Proposition 7.7.The formal Laplace transformL : C ! A � 0=A �� 1 satis�es the

identity : L �
M
¶= ¶ � L .

7.5.2 Formal Borel transform for asymptotic classes

Let I? � S1 be an open arc with length� p andj 2 A � 0(I?) be a sectorial germ
at in�nity. For any open arcI?

1 b I?, one can �ndr > 0 so that the restriction of
j to I?

1 is (represented by) a holomorphic function (still denoted byj ) on the do-

main
�

¥
r (I?

1). We set
_
j z1;a (z ) = �

1
2ip

Z

Ra ;z1

ezz j (z)dzfor anyz1 2
�

¥
r (I?

1) and any

directiona 2 I?
1 , see Fig. 7.7. We can make the following observations about this

Laplace integral
_
j z1;a :

� since j belongs toA � 0(
�

¥
r (I?

1)) , we know that for any proper subsector
�
¯ ¥

r1
(J?) b

�
¥
r (I?

1) and anye > 0, there existsC > 0 so that, for allz 2
�
¯ ¥

r1
(J?),

jj (z)j � Ceejzj . Therefore
_
j z1;a belongs toO(

�
P a + p

e ) when z1 2
�
¯ ¥

r1
(J?) and

a 2 J̄?. Makinga varying inJ? and sincee > 0 can be chosen arbitrarily small,
these functions glue together by Cauchy, and provide a holomorphic function
_
j z1;J? on

�
D (J?;0) =

�
¥
0 ( �J). Notice that for two pointsz1;z2 2

�
¯ ¥

r1
(J?), the differ-

ence
_
j z2;J? �

_
j z1;J? de�nes an entire function (with at most exponential growth

Fig. 7.7 Formal Borel trans-
form. The open arcsI?, and
the pathRa ;z1 .
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of order 1 at in�nity). Therefore, localising near the origin, we get a sectorial

germ
_
j z1;I?2 O( �I ) = �O(I ), de�ned modulo the elements ofO0, that is a micro-

function of codirectionI ;

� whenj belongs toA �� 1(I?), one easily sees from the above analysis that
_
j z1;I?

is holomorphic on a domain containing a full neighbourhood of the origin, thus
by localisation, an element ofO0.

To conclude, we have de�ned a morphism (ofC-differential algebras),

B (I?) :
M
j 2 A � 0(I?)=A �� 1(I?) 7!

O
j = cl (

_
j z1;I?) 2 C(I ) whose compatibility with

the restriction maps is easy to check.

De�nition 7.22. The morphism of sheavesB : A � 0=A �� 1 ! C is called thefor-
mal Borel transform

The formal Laplace transform for microfunctions and the formal Borel transform
for asymptotic classes are isomorphisms of sheaves, as shown in [1] to whom we
refer:

Proposition 7.8.The morphismsL : C ! A � 0=A �� 1 andB : A � 0=A �� 1 ! C
are isomorphisms of sheaves andL � B = Id, B � L = Id.

Remark 7.3.The morphism of sheavesbj 2 O0 7!
O
j = singI

0

�
bj log

2ip

�
2 C(I ) is in-

jective as already mentioned. The following commutative diagram makes a link be-
tween the formal Laplace transform for regular minor,resp.formal Borel transform
for 1-Gevrey formal series, and the formal Laplace transform for microfunctions,

resp.formal Borel transform for asymptotic classes:
O0 ,! C

L #" B B "# L
A 1=A �� 1 ,! A � 0=A �� 1:

7.5.3 Formal Laplace transform for singularities and back to
convolution product

In the sequel, we translate to singularities what have obtained so far for microfunc-
tions.

7.5.3.1 Formal Laplace transform for singularities

We start with two de�nitions.

De�nition 7.23. Let q 2 eS1 be a direction anda > 0. We denote by ASYMPq;a
the space of asymptotic classes de�ned as multivalued sections ofA � 0=A �� 1 on
J? =] � p=2� a � q; � q + a + p=2[. We denote by ASYMP the space of asymp-
totic classes given by global sections ofA � 0=A �� 1 oneS1.

De�nition 7.24. Let s 2 C be a complex number andm 2 N. We denote by
M
I s 2 ASYMP the asymptotic class represented by 1=zs . We denote by

M
Js ;m2 ASYMP

the asymptotic class represented by(� 1)mlogm(z)
zs . We often simply write 1=zs in-

stead of
M
I s and similarly for

M
Js ;m.
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We have already said that the space of singularities SINGq;a can be identi�ed
with the space G(J;C) of multivalued sections of C by p, with
J =] � p

2 � a + q;q + a + p
2 [. The formal Laplace transform for microfunctions

thus extends to singularities, by inverse image:

LF
�b2S1 C �b !

F
�b?2S1

�
A � 0=A �� 1

�
�b?

s% # #

eS1 � J 3 b �! S1 3
�
b ! S1 3

�
b?

p ?

When returning to the very construction of the formal Laplace transform (Sect.

7.5.1), one sees that for any singularity
O
j 2 SINGq;a , for any direction

b 2 bJ =] � a + q;q + a [, setting

(

b ? =] � p
2 + b;b + p

2 [, the formal Laplace trans-

form L (

(

b ?)
O
j is given as the class

M
j = cl(j b� 2p;b ;k ) 2 A � 0(

(

b )=A �� 1(

(

b ) where

(

b =] � p
2 � b ; � b + p

2 [ and j b� 2p;b ;k (z) =
Z

g[b � 2p;b ];e;k

e� zz _
j (z )dz , with

_
j any

major of
O
j . This introduces the following de�nition. (Notice that

(

bJ = J?).

De�nition 7.25. The morphismL b = L (

(

b ?) : SINGq;a ! A � 0(

(

b )=A �� 1(

(

b ) is
called theformal Laplace transformin the directionb 2 bJ =] � a + q;q + a [.

For any singularity
O
j 2 SINGq;a , one denotes byL bJ

O
j 2 ASYMPq;a the asymptotic

class given by the collection
�
L b

O
j

�
b2 bJ.

Example 7.4.We continue the example 7.3 but for the fact that we now consider
O
Js ;m as a singularity in SING0;p . The formal Laplace transformL ]� p;p[ O

Js ;m

is the asymptotic class
M
Js ;m2 ASYMP0;p seen by restriction as an element of

G(] � 3p=2;3p=2[;A � 0=A �� 1).

We linger for a moment at the cases of singularities of the form
O
j = [ bj 2 SINGint

q;a .

For any directionb 2] � a + q;q + a [, the formal Laplace transform
M
j = L b

O
j ,

M
j 2 A � 0(

(

b )=A �� 1(

(

b ), can be represented by the function

j b� 2p;b ;k (z) =
Z

g[b � 2p;b ];e;k

e� zz _
j (z )dz =

Z

Rb;0;k

e� zz bj (z )dz ; (7.10)

and we thus recover the “usual” formal Laplace transform (see Sect. 7.1). In par-
ticular, we recall that we have extended the convolution law to SINGint

q;a by the

variation map: for
O
j 1= [ bj 1;

O
j 2= [ bj 2 2 SINGint

q;a ,
O
j 1 �

O
j 2= [

�
bj 1 � bj 2

�
. The above

remark (7.10) shows thatL b (
O
j 1 �

O
j 2) = ( L b

O
j 1)(L b

O
j 2), by the properties of

the “usual” formal Laplace transform.

We now assume that
O
j is a simple singularity,

O
j = ad + [ bj 2 SINGsimp with

bj 2 O0. For any open arcbJ =] � a + q;q + a [, the formal Laplace transform
M
j = L bJ(ad+

O
j ) is an asymptotic class which belongs toG(J?;A 1=A �� 1). This

again comes from (an analogue of) the identity (7.10) and classical arguments re-
called in the introduction of this chapter.
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De�nition 7.26. One denotes by ASYMPsimp the subspace of asymptotic classes
obtained by injection of the global sectionsG(eS1;A 1=A �� 1) into ASYMP.

Proposition 7.9.The restriction of the formal Laplace transformL to SINGsimp

hasASYMPsimp for its range.

Remark 7.4.Consider a formal seriesej 2 C[[z� 1]] and an open arc of the form
J? =] � p=2� a � q; � q + a + p=2[� eS1. By the Borel-Ritt theorem, there are in-
�nitely many j 2 A (J?) whose Poincaŕe asymptoticsT(J?)j is given byej on J?.
These variousj differ by �at germs, that is elements ofA < 0(J?). Therefore as a

rule, these germsj represent different asymptotic classes
M
j 2 ASYMPq;a .

Now suppose thatej is 1-Gevrey and choose a (good) covering(Ii) of J? where each
Ii is an open arc of length less thanp. By the Borel-Ritt theorem for 1-Gevrey
asymptotics and for each subscripti, there existsj i 2 A 1(Ii) whose 1-Gevrey
asymptoticsT1(Ii)j i is j . Moreover, eachj i is uniquely de�ned this way up to
1-exponentially �at germs, that is up to elements ofA �� 1(Ii). One thus gets a

uniquely de�ned section
M
j 2 G(J?;A 1=A �� 1) that can be thought of as an asymp-

totic class. One can characterize another way this asymptotic class
M
j 2 ASYMPsimp

by settling
M
j = L (ad+

O
j ) where

O
j = [ bj with bj the minor ofej while a is its con-

stant term.

De�nition 7.27. The mapping\ : ej 2 C[[z� 1]]1 7!
M
j = \ ej 2 ASYMPsimp is de�ned

by
M
j = L (ad+

O
j ) where

O
j = [ bj , whereasbj stands for the minor ofej anda its

constant term.

Obviously, the mapping\ is an isomorphism, the inverse map being the 1-Gevrey
Taylor map. This allows to merge\ ej with ej in practice.

7.5.3.2 Back to convolution product

We have said without proof thatL andB are morphisms of sheaves of algebras. It
is thus certainly worthy to prove the following proposition.

Proposition 7.10.For any two singularities
O
j 1;

O
j 22 SINGq;a and any direction

b 2] � a + q;q + a [, the following properties hold:

(L b
O
j 1)(L b

O
j 1) = L b (

O
j 1 �

O
j 2) andL b (

O
¶

O
j 1) = ¶L b

O
j 1.

Proof. (Adapted from [1]). Let
O
j 1;

O
j 22 SINGq;a be two singularities with ma-

jors
_
j 1;

_
j 2. We pick a directionb 2 bJ =] � a + q;q + a [ and we consider the

formal Laplace transforms
M
j 1= L b

O
j 1 and

M
j 2= L b

O
j 2. These are elements of

A � 0(

(

b )=A �� 1(

(

b ) which can be represented respectively by

j 1(z) =
Z

g1

e� zz _
j 1 (z )dz 2 A � 0(

� ¥
r (

(

b )) ; j 2(z) =
Z

g2

e� zz _
j 2 (z )dz 2 A � 0(

� ¥
r (

(

b )) ;

with g1 = g[b � 2p;b ];e1;k1
, g2 = g[b � 2p;b ];e2;k2

and somer > 0 large enough. The prod-

uct
M
j 1

M
j 22 A � 0(

(

b )=A �� 1(

(

b ) is thus represented by

j 1j 2(z) =
Z

g1� g2

e� z(z1+ z2) _
j 1 (z1)

_
j 2 (z2)dz1dz2 2 A � 0(

� ¥
r (

(

b )) :
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Let us look at the formal Borel transformB (

(

b )(
M
j 1

M
j 2) 2 C(

(

b ?). This Borel trans-

form can be represented by the integral
_

(j 1j 2)z1;a1
(z ) = �

1
2ip

Z

Ra1;z1

ezz j 1j 2(z)dz

with z1 2
�

¥
r1

(
?

(

b ), r1 > r, and for any directiona1 2

(

b ?. The function
_

(j 1j 2)z1;a1
(z )

is holomorphic on
�

P a1+ p
0 (go back to the construction of the formal Borel transform,

Sect. 7.5.2). Takingz 2
�

P a1+ p
2e with e > e1 + e2, we can apply Fubini.

Remark that z1 + z2 (or rather
�
z1 +

�
z2) remains in the bounded strip

f z 2 C j dist(z ;eib [0;k ]) � e1 + e2g, for (z1;z2) 2 g1 � g2. Thusz � (z1 + z2) remains

in the domain
�

P a1+ p
e for z 2

�
P a1+ p

2e and this ensures the integrability conditions.

This way, we get:

_
(j 1j 2)z1;a1

(z ) = �
1

2ip

Z

Ra1;z1

ezz
� Z

g1� g2

e� z(z1+ z2) _
j 1 (z1)

_
j 2 (z2)dz1dz2

�
dz

=
Z

g1� g2

ez1(z � z1� z2)

2ip(z � z1 � z2)

_
j 1 (z1)

_
j 2 (z2)dz1dz2

=
Z

g1

 Z

g2

ez1(z � z1� z2)

2ip(z � z1 � z2)

_
j 2 (z2)dz2

!
_
j 1 (z1)dz1

Returning to the very construction of the convolution product for singularities, we

see that
_

(j 1j 2)z1;a1
is nothing but a major of the singularity sing0

�
ez1z

2ipz

�
�

O
j 1 �

O
j 2.

But sing0

�
ez1z

2ipz

�
= d and therefore sing0

�
_

(j 1j 2)z1;a1

�
=

O
j 1 �

O
j 2. From Proposi-

tion 7.8, we know thatB � L = Id (when consideringB andL as morphisms of
sheaves), thus the conclusion. The last statement as been already seen.ut

Example 7.5.We know by theorem 3.3 that the formal seriesew(0;0) solution of the
prepared ODE (3.6) associated with the �rst Painlevé equation, is 1-Gevrey. Its mi-
nor bw(0;0) = B ew(0;0) is thus a germ of holomorphic functions at the origin and we

set
O
w(0;0)= [ bw(0;0) 2 SINGsimp. We now consider the singularity

O
I s �

O
w(0;0)2 SING,

for any s 2 C. By proposition 7.10, for an arbitrary directionb 2 eS1, the formal

Laplace transformL b � O
I s �

O
w(0;0)

�
2 A � 0(

(

b )=A �� 1(

(

b ) is the asymptotic class

of direction

(

b which reads also as:

L b � O
I s �

O
w(0;0)

�
= L b � O

I s
�
L b � O

w(0;0)
�
:

On the one hand,L b O
I s is the asymptotic class

M
I s 2 G(

(

b ;A � 0=A �� 1). On the

other hand,L b O
w(0;0)= \ ew(0;0) . Therefore,L b

� O
I s �

O
w(0;0)

�
=

M
I s

\ ew(0;0) that can be

identi�ed with
1
zs ew(0;0) with the branch ofzs determined by the condition argz2

(

b .

Example 7.6.We now use the notations of Sect. 3.4.2.2 but for the fact that we con-
sider arcs oneS1. We writebI0 =] 0;p[ andI?

0 =] � 3p=2;p=2[� eS1 and in what follows

with think of the Laplace-Borel sumwtri ;0 = S bI0 ew(0;0) as (representing) a multival-

ued section ofA 1 onI?
0 . Similarly, we setbI1 =] p;2p[ andI?

1 =] � 5p=2; � p=2[� eS1

and think of wtri ;1 = S bI1 ew(0;0) as an element ofG(I?
1 ;A 1). Notice that
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I?
0 \ I?

1 =] � 3p=2; � p=2[ on eS1. Since bothwtri ;0 andwtri ;1 are asymptotic to the
1-Gevrey seriesew(0;0) , we know that the differencewtri ;0 � wtri ;1 is a multivalued

section ofA �� 1 on I?
0 \ I?

1 . Therefore, for anys 2 C,
1
zs wtri ;0 and

1
zs wtri ;1 glue

together to give a multivalued section ofA � 0=A �� 1 on I?
0 [ I?

1 , that can be identi-

�ed with the asymptotic class
M
I s

\ ew(0;0) 2 ASYMPp;p . The formal Borel transform

B (I?
0)

� M
I s

\ ew(0;0)
�

is the multivalued section ofC on I0 =] � p=2;3p=2[ which can
be thought of as a singularity in SINGp=2;p=2, and is given by

B (I?
0)

� M
I s

\ ew(0;0)
�

=
O
I s �

O
w(0;0) . Similarly, the formal Borel transform

B (I?
1)

� M
I s

\ ew(0;0)
�

is the multivalued section ofC on I1 =] p=2;5p=2[ which pro-

vides a singularity in SING3p=2;p=2, of the formB (I?
1)

� M
I s

\ ew(0;0)
�

=
O
I s �

O
w(0;0) .

These two singularities glue together as the element
O
I s �

O
w(0;0) of SINGp;p .

7.5.3.3 Formal Laplace transform for singularities atw

The spaces SINGw , resp.SINGw;q;a of singularities atw 2 C are the translated of
SING, resp.SINGq;a . (See de�nition 7.11). By its very construction, the formal
Laplace transform brings the translation into the multilplication by an exponential.

De�nition 7.28. The formal Laplace transformL sends SINGw , resp.SINGw;q;a ,
onto the space denoted by e� wzASYMP, resp.e� wzASYMPq;a , made ofasymptotic
classes with support based atw.

We mention the following result that can be thought of as an analogue of the
Watson's lemma [14].

Lemma 7.4.For anyw 2 C?, the sum of the twoC-vector spacesASYMPq;a and
e� wzASYMPq;a is direct.

Proof. We consider an asymptotic class
M
j 2 ASYMPq;a . By de�nition, one can

�nd a (good) open covering(Jj ) of J? =] � p=2� a � q; � q + a + p=2[ and a “0-
cochain”

�
j j 2 A � 0(Jj )

�
j with associated “1-coboundary”

�
j j+ 1 � j j 2 A �� 1(Jj+ 1 \ Jj )

�
j that represents

M
j . Now assume that

M
j also belongs

to e� wzASYMPq;a . Considering a re�nement of(Jj ) if necessary, one deduces that
j j 2 A �� 1(Jj ) for at least onej, sinceJ? is an arc of length> p. This implies that

the formal Borel transform
O
j 2 SINGq;a has a major

_
j which can be analytically

continued to 0, thus
O
j = 0 and as a consequence

M
j = 0. ut

7.6 Laplace transforms

We develop here only matters convenient for this course. For more general nonsense
on Laplace transforms in the framework of resurgent analysis, see [1, 2, 7, 8, 16].
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7.6.1 Laplace transforms

De�nition 7.29. Let I � S1 be an open arc andr � 0. We denote by:

1. E � 1(I ) the C-differential algebra of holomorphic functionsj on
�

¥
0 (I ) with

1-exponential growth at in�nity on the directionI : for any proper subsector
�
¯ ¥ b

�
¥
0 (I ), there existC > 0 andt > 0 so that, for allz2

�
¯ ¥ , jj (z)j � Cet jzj ;

2. whenI is of length� p, �E � 1(I ) = E � 1( �I ) is the space of holomorphic functions

j on
�

¥
0 ( �I ), with 1-exponential growth at in�nity on the codirectionI .

3. E � 1, resp. �E � 1, the sheaf overS1 corresponding to the family
�
E � 1(I )

�
, resp.

�E � 1(I );
4. O(C)� 1 the space of entire functions with 1-exponential growth at in�nity on

every direction.

Pick an open arcI � S1 of length � p, and a function
_
j 2 �E � 1(I ). Thus

_
j is

holomorphic on
�

¥
0 ( �I ) and for any open arcI1 so thatĪ1 � I , for anye > 0, there

existC > 0 andt > 0 so that, for allz 2
�
¯ ¥

e ( �I1), j
_
j (z )j � Cet jz j . We consider the

following Laplace integral,

j I1(z) =
Z

g[q1;q2];e

e� zz _
j (z )dz =

 

�
Z

Rq1;e

+
Z

d[q1;q2];e

+
Z

Rq2;e

!
_
j (z )dz ;

where�I1 =] q1;q2[ (for the contour of integration, see de�nition 7.20). This Laplace
integral can be decomposed as follows:

� by classical arguments, the integral
Z

Rq1;e

e� zz _
j (z )dz de�nes a holomorphic

function on
�

P q1
t and we observe that for anyr > t , for everyz2

�

P q1
r ,

�
�
�
�
�

Z

Rq1;e

e� zz _
j (z )dz

�
�
�
�
�
�

Z ¥

e
e� srCet sds�

C
r � t

e� e(r� t ) :

In the same way, the integral
Z

Rq2;e

e� zz _
j (z )dz de�nes a holomorphic function

on
�

P q2
t and for anyr > t , for everyz2

�

P q2
r ,

�
�
�
�
�

Z

Rq2;e

e� zz _
j (z )dz

�
�
�
�
�
�

C
r � t

e� e(r� t ) ;

� the integral
Z

d[q1;q2];e

e� zz _
j (z )dz de�nes an entire function and

�
�
�
�
�

Z

d[q1;q2];e

e� zz _
j (z )dz

�
�
�
�
�
� Cj �I1jeete eejzj .

� by arguments already encounter (see Sect. 7.5.1), both
�

P q1
t and

�
P q2

t contains any

proper subsector
�
¯ ¥ of

�
¥
r (I?

1), oncer > 0 is chosen large enough.

Therefore,j I1 belongs to the spaceA � 0(
�

¥
r1

(I?
1)) for r1 > 0 large enough, because

e > 0 can be chosen arbitrarily small.

It is easy to see that adding to
_
j any element ofO(C)� 1, does not affect the function

j I1 (just deform the contour of integration, by Cauchy).
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The family of functions(j I1)I1� I obtained this way glue together analytically, by
Cauchy.
The above construction gives a morphism,L (I ) : �E � 1(I )=O(C)� 1 ! A � 0(I?),
compatible with the restriction maps, which provides a morphism of sheaves3.

De�nition 7.30. The morphism of sheavesL : �E � 1=O(C)� 1 ! A � 0 is called the
strict Laplace transform4.

We return to the construction we did to get the formal Borel transform, Sect.

7.5.2. We pick an open arcI? � S1 of length� p andj 2 A � 0(I?). Forz1 2
�

¥
r (I?),

r > 0 large enough, for any directiona 2 I?, we set
_
j z1;a (z ) = �

1
2ip

Z

Ra ;z1

ezz j (z)dz.

We have seen that, makinga varying, one gets an element of�E � 1(I ), while
_
j z1;a

depends onz1 only modulo an element ofO(C)� 1. We thus get a morphism of
sheavesB : A � 0 ! �E � 1=O(C)� 1 which has the following property (we refer to
[1] for the proof):

Proposition 7.11.The morphisms of sheavesL : �E � 1=O(C)� 1 ! A � 0 and
B : A � 0 ! �E � 1=O(C)� 1 are isomorphisms of sheaves ofC-differential algebras,
andL � B = Id, B � L = Id.

7.6.2 Singularities and Laplace transform

7.6.2.1 Summable singularities

We recall that SINGq;a can be identi�ed with the spaceG(J;C) of multivalued
sections ofC over J =] � p=2� a + q;q + a + p=2[� eS1. In particular, any sin-

gularity
O
j 2 SINGq;a can be represented by a major

_
j 2 ANAq;a = G( �J;O0), with

�J =] q � a � 2p;q + a [� eS1.

De�nition 7.31. An element
_
j 2 ANAq;a = G( �J;O0) is saidsummablein the direc-

tion b 2 bJ =] � a + q;q + a [ if there exists a neighbourhoodbJ1 � bJ of b so that the

two restrictions
_
j 12 G( bJ1;O0) and

_
j 22 G( bJ2;O0) of

_
j over bJ1 and bJ2 = � 2p + bJ1

respectively, can be represented by elements ofG( bJ1;E � 1) andG( bJ2;E � 1) respec-

tively. A singularity
O
j 2 SINGq;a is summablein the directionbJ if for any b 2 bJ,

the singularity
O
j has a major

_
j 2 ANAq;a which summable in the directionb. We

denote by SINGsum
q;a the space of singularities

O
j 2 SINGq;a which are summable in

the directionbJ.

7.6.2.2 Laplace transforms of summable singularities

We consider a singularity
O
j 2 SINGsum

q;a and a directionb 2 bJ =] � a + q;q + a [. Let
_
j be a major of

O
j which is summable in the directionb and setbj = var

O
j . Using

3 As usual, modulo complex conjugation
4 We abide a notation of [1], although the construction therein slightly differs from ours.
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the notations of de�nition 7.31, we consider the following Laplace integral where
e > 0 is chosen small enough:

j b (z) =
Z

g[b � 2p;b ];e

e� zz _
j (z )dz (7.11)

=
Z

d[b � 2p;b ];e

e� zz _
j (z )dz �

Z

Rb� 2p;e

e� zz _
j 2 (z )dz +

Z

Rb;e

e� zz _
j 1 (z )dz

=
Z

d[b � 2p;b ];e

e� zz _
j (z )dz +

Z

Rb;e

e� zz bj (z )dz :

From the arguments used in Sect. 7.6.1, we see thatj b de�nes an element of

A � 0(

(

b ). Moreover, if
_
y is another major of

O
j which is summable in the direc-

tion b (for instance
_
j �

_
y 2 O(C)� 1), then its Laplace integraly b coincide with

j b as elements ofA � 0(

(

b ). Thusj b is independent of the chosen summable major

and only depends on
O
j 2 SINGsum

q;a . This allows us to writej b = L b
O
j .

Making b varying in bJ, the functionsL b
O
j obviously glue together analyti-

cally (by Cauchy and using the independence ofL b
O
j with respect to the chosen

summable major), to give and elementL bJ
O
j of G(J?;A � 0).

De�nition 7.32. The morphismL b : SINGsum
q;a ! A � 0(

(
b ) is called theLaplace

transformin the directionb 2 bJ =] � a + q;q + a [.
The morphismL bJ : SINGsum

q;a ! G(J?;A � 0) is called the Laplace transform in the

direction bJ =] � a + q;q + a [.

We recover with the following proposition the examples given in the introduction
of the chapter, see also [18].

Proposition 7.12.The singularities
O
I s and

O
Js ;m belong toSINGsum

q;a for any direc-

tion q and anya > 0. Moreover, for any directionb 2 eS1,

L b O
I s (z) =

1
zs ; L b O

Js ;m (z) = ( � 1)m logm(z)
zs ; z2 P b

0 � eC:

This has the following consequences:

Proposition 7.13.For all s1;s2 2 C, for all m1;m2 2 N
O
I s1 �

O
I s2=

O
I s1+ s2 and

O
Js1;m1 �

O
Js2;m2=

O
Js1+ s2;m1+ m2.

Proof. From proposition 7.12, we deduce thatL
O
I s1=

1
zs1

andL
O
I s2=

1
zs2

. Thus

by proposition 7.10,L
O
I s1 �

O
I s2=

1
zs1+ s2

and one concludes by formal Borel trans-

form. Same proof for the other equality.ut

In de�nition 7.32, we meant morphisms of vector spaces. As a matter of fact,
these are morphisms ofC-differential algebras. This is the matter of the following
proposition.

Proposition 7.14.The spaceSINGsum
q;a is a commutative and associative algebra

with unit d. The Laplace transformL b : SINGsum
q;a ! A � 0(

(

b ) is compatible
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with the convolution of singularities:L b O
j �

O
y =

�
L b O

j
��

L b O
y

�
. Moreover,

L b (
O
¶

O
j ) = ¶L b O

j .

Proof. We go back to the very de�nition of the convolution product of microfunc-

tions and singularities. For
O
j ;

O
y 2 SINGq;a , for anyb 2 bJ =] � a + q;q + a [, the

convolution product
O
j �

O
y can be represented, forz 2

�
S 2e(]b � 2p;b [) with e > 0

as small as we want, by

_
j � G� G

_
y (z ) =

1
2ip

Z

G� G

en(z � (x1+ x2))

z � (x1 + x2)

_
j (x1)

_
y (x2)dx1dx2; (7.12)

(see 7.9), whereG = Gb;e;h1;h2
is as in de�nition 7.7 and where

_
j ;

_
y are thought of

as belonging toO(
�

0(]b � 2p;b [)) . In (7.12),n 2 C is a free parameter which can
be chosen at our convenience.
We now assume that

O
j ;

O
y 2 SINGsum

q;a and that
_
j ;

_
y are summable majors in the

direction b. In that case, choosingn = jnje� ib with jnj large enough to ensure

the integrability, one can rather consider the convolution product
O
j �

O
y as rep-

resented by (7.12), but this time with an endless pathG = Gb;e (see de�nition

7.7). This construction gives a major of
O
j ;

O
y which is summable in the direction

b. Moreover, the arguments used in the proof of the proposition 7.10 show that

L b O
j �

O
y =

�
L b O

j
��

L b O
y

�
. ut

Example 7.7.We consider the formal Borel transformbw(0;0) = B ew(0;0) whereew(0;0)
is the formal series solution of the prepared ODE (3.6) associated with the �rst
Painlev́e equation. We know by theorem 3.3 thatbw(0;0) can be analytically con-

tinued to the star-shaped domain
�

R (0) with at most exponential growth of order 1

at in�nity along non-horizontal directions. We set
O
w(0;0)= [ bw(0;0) 2 SINGint. Then

O
w(0;0)2 SINGsum

p=2;p=2 (or
O
w(0;0)2 SINGsum

� p=2;p=2) : just consider the major
_
w(0;0) (z ) = bw(0;0)(z ) log(z )

2ip . The Laplace transformL ]0;p[ O
w(0;0) is well-de�ned and

gives a section ofA � 0 on ] � 3p=2;p=2[. As a matter of fact,

L ]0;p[ O
w(0;0)= L ]0;p[ bw(0;0) = S ]0;p[ ew(0;0)

and L ]0;p[ O
w(0;0) can be thought of as belonging to the space of sections

G(] � 3p=2;p=2[;A 1). We now consider the singularity
O
I s �

O
w(0;0) , for anys 2 C.

Using propositions 7.12 and 7.14, this singularity belongs (for instance) to SINGsum
p=2;p=2

and L ]0;p[ O
I s �

O
w(0;0)=

�
L ]0;p[ O

I s
��

L ]0;p[ O
w(0;0)

�
= 1

zs S ]0;p[ ew(0;0) , this time

viewed as a multivalued sectionA � 0 on ] � 3p=2;p=2[� eS1.
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7.7 Spaces of resurgent functions

7.7.1 Preliminaries

We refer the reader to [1] (Pré I.3, lemme 3.0) for the proof of the following key-
lemma, the idea of which being due to Ecalle.

Lemma 7.5.Let R0 > 0be a real positive number andG � C be an embedded curve,
transverse to the circlesjz j = R for all R� R0. Let F be a holomorphic function
on a neighbourhood ofG. Then, for any continuous function m: R+ ! R+ so that
inff m([0;x ])g > 0 for all x > 0, there existsY 2 O(C) such that, for allz 2 G,
jF (z )+ Y (z)j � m(jz j).

In what follows, we use the notations introduced in de�nition 7.7. We also recall
that ]C nZ stands for the universal covering ofCnZ. One may also think of]C nZ as
the universal covering ofeC n

[

q= pk;k2Z

f meiq j m2 N?g.

Lemma 7.6.Let
O
j 2 SING be a singularity which can be determined by a major

analytically continuable to]C nZ. Then, for any directionq and anye > 0 small

enough, the singularity
O
j has a major

_
j with the following properties:

1. the restriction of
_
j as a sectorial germ of codirection I=] � p=2+ q;q + p=2[,

can be represented by a functionF holomorphic on the cut plane

C n[0;eiq¥ [=
�

¥
0 ( �I ), �I =] � 2p + q;q[;

2. F is bounded on
�
S e0(I ), for everye0> e.

3. F can be analytically continued to]C nZ.

Proof. Let
_
j 1 be a major of

O
j which can be analytically continued to]C nZ. This

major can be represented by a functionF 1 holomorphic on
�

R
0( �I ) [ S2e(bI ) n[0;eiq¥ [,

for R> 0 ande > 0 small enough, andF 1 can be analytically continued to]C nZ.

The boundaryGI ;e = � ¶
�
S e(I ) can be seen as an embedded curveH0 : R ! C that

ful�lls the condition of lemma 7.5 : one can �nd a functionY1 2 O(C) so that
F 2 = F 1 + Y1 satis�esjF 2(h )j � exp(�j h j) for all h 2 GI ;e. One can also assume
thatjH0

0(s)j is bounded and these conditions ensure the integrability for the integral

F (z ) =
1

2ip

Z

H0

F 2(h )
z � h

dh which thus, de�nes a holomorphic function on
�
S e(I ).

Moreover, one easily sees by Cauchy thatF = F 2 + Y2 whereY2 2 O0. One ob-

serves thatjz � h j � e0� e for (z ;h ) 2
�
S e0(I ) � GI ;e, with e0> e. ThusF is bounded

on
�
S e0(I ). Notice thatF 2 inherits fromF 1 the property of being analytically con-

tinuable to]C nZ. Thus one can analytically continueF to ]C nZ by Cauchy, by de-
formation of the contour by isotopies5 H : (s;t) 2 R � [0;1] 7! H(s;t) = Ht (s) 2 C nZ
that are equal to the identity in a neighbourhood of in�nity, Fig. 7.8.
Finally, from the fact thatF = F 1 + Y with Y1 + Y2 2 O0, we see thatF de�nes a

sectorial germ
_
j of codirectionI =] � p=2+ q;q + p=2[ whose associated micro-

function coincides with the restriction of
O
j to the codirectionI . ut
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Fig. 7.8 Deformation of the contourGI ;e by an isotopy equal to the identity in a neighbourhood of
in�nity, for q = 0.

Lemma 7.7.Let
O
j 2 SING be a singularity which can be determined by a major

analytically continuable to]C nZ. Then, for any directionq and for anye > 0 small

enough, the singularity
O
j has a major

_
j with the following properties:

1. the restriction of
_
j as a sectorial germ of codirection I=] � p=2+ q;q + p=2[,

can be represented by a functionF holomorphic on the cut plane

C n[0;eiq¥ [=
�

¥
0 ( �I ), �I =] � 2p + q;q[;

2. jF (h )j � exp(�j h j) for all h 2 GI ;e, whereGI ;e = � ¶
�
S e(I ) �

�
¥
0 ( �I );

3. F can be analytically continued to]C nZ.

Proof. Just consider �rst the functionF 1 given by lemma 7.6, then use lemma 7.5
to de�ne F from F 1. ut

The above lemmas 7.6 and 7.7 motivate the introduction of new Riemann sur-
faces that will be used in a moment.

De�nition 7.33. Let q 2 S1 be a direction. We set
�

R q;(0) = C n[0;eiq¥ [. Let z0 be

a complex number in
�

R q;(0) nZ. We denote byAq;z0
(resp.B z0

) the set of paths

in
�

R q;(0) (resp.C nZ) originating fromz0, endowed with the equivalence relation
� �

R q;(0) (resp.� CnZ) of homotopy of paths with �xed extremities.

We setRq;z0
= Aq;z0

[ B z0
and we denote by

(q;z0)
� the relation onRq;z0

de�ned as

follows. For any twog1;g2 2 Rq;z0
, g1

(q;z0)
� g2 when one of the following conditions

is satis�ed: eitherg1 � �
R q;(0) g2 or g1 � CnZ g2; or else there existsg3 2 Aq;z0

\ B z0

such that

(
g1 � �

R q;(0) g3

g2 � CnZ g3
or

(
g1 � CnZ g3

g2 � �
R q;(0) g3

.

Let g be an element ofRq;z0
. We denote by clq;z0

(g) its equivalence class for the

relation
(q;z0� . We �nally set:

R q
Z;z0

= f clq;z0
(g) j g 2 Rq;z0

g and pq;z0
: clq;z0

(g) 7! g(1) 2
�

R q;(0) :(7.13)

5 That isH is a homotopy and for eacht 2 [0;1], Ht is an embedding. Remember that we seeGI ;e
as an embedded curveH0 : R ! C.
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Proposition 7.15.The spaceR q
Z;z0

can be equipped with a separated topology

which makes(R q
Z;z0

;pq;z0
) an étaĺe space. The spaceR q

Z;z0
is arc-connected and

simply connected, thus de�nes a Riemann surface by pulling back bypq;z0
the com-

plex structure ofC. Moreover, for two pointsz0;z1 2
�

R q;(0) nZ, the two Riemann
surfacesR q

Z;z0
andR q

Z;z0
are isomorphic.

The proof of proposition 7.15 is left as an exercise. (Just copy what have been
done in Sect. 4.2.2). We complete the above proposition with a de�nition.

De�nition 7.34. The class of isomorphisms of the Riemann surfaces(R q
Z;z0

;pq;z0
)

is denoted by(R q
Z ;pq ). We often use abridged notation(R q ;p). We callprincipal

sheetthe unique domainR q;(0) � R q so that the resctrictionpjR q;(0) realizes a

homeomorphism betweenR q;(0) and the simply connected domain
�

R q;(0) .

7.7.2 Resurgent functions

Various spaces of so-called resurgent functions can be de�ned and used according
to the context. We start with the notion of resurgent singularities.

7.7.2.1 Resurgent singularities, resurgent asymptotic classes

De�nition 7.35. A singularity
O
j 2 SING is said to beZ-resurgentwhen it can be

determined by a major
_
j 2 ANA which can be analytically continued to]C nZ. We

denote by RESZ or simply RES the space ofZ-resurgent singularities.

A Z-resurgent singularity is often simply called aZ-resurgent function. Throughout this
course we will usually write “resurgent singularity” in place ofZ-resurgent singularity.

Remark 7.5.It is important to keep in mind that the minorbj of any resurgent singu-

larity
O
j 2 RES, can be analytically continued to]C nZ, since the minorbj does not

depend on the chosen major.

De�nition 7.36. One says that
O
j 2 RES is aresurgent constantwhen

O
j has a ma-

jor which can be analytically continued toeC. The space of resurgent constants is
denoted by CONS.

De�nition 7.37. An asymptotic class
M
j 2 ASYMP is called aZ-resurgent asymp-

totic class, resp.a resurgent constant, when its formal Borel transform
O
j is a Z-

resurgent singularity,resp.a resurgent constant. We denote bygRESZ or simply gRES
the space made ofZ-resurgent asymptotic classes. We denote byĈONS the sub-
space of resurgent constants.

A Z-resurgent asymptotic class is often simply called aZ-resurgent function or even a
resurgent function.

Example 7.8.The singularities
O
I s and

O
Js ;m are resurgent constants, as well as their

associated asymptotic classes
M
I s and

M
Js ;m.
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7.7.2.2 Resurgent functions, resurgent series

We recall the following simple de�nition, for objects much discussed in [18].

De�nition 7.38. TheC-differential commutative and associative convolution alge-
bra Cd � R̂ Z with unit d, is called a space ofZ-resurgent functions. We denote

by
O
R Z � RES theC-differential commutative and associative convolution algebra

made of resurgent singularities of the form
O
j = ad + [ bj with bj 2 bR Z .

SinceCd � R̂ Z is a convolution algebra, the identity[ bj � [ bj = [ ( bj � bj ) (proposition 7.6)

implies that
O
R Z is indeed a convolution algebra. One usually uses abridged notation

O
R in

this course.

De�nition 7.39. A series expansionej 2 C[[z� 1]] is a Z-resurgent series when its
formal Borel transformB ej is a Z-resurgent function or, equivalently, when the
asymptotic class\ ej belongs togRESZ . We denote byeR Z theC-differential commu-
tative and associative algebra made ofZ-resurgent series.

Throughout this course we usually simply write “resurgent functions” or “resurgent series”
instead ofZ-resurgent functions orZ-resurgent series, since there is no risk of misunder-
standing.

7.7.2.3 Resurgent singularities and convolution

Theorem 7.1.The spaceRESis a C-differential commutative and associative con-
volution algebra with unitd, and CONS� RES is a subalgebra. Therefore, the
space gRES is a C-differential commutative and associative algebra and
ĈONS� gRESis a subalgebra.

Proof. (Adapted from [8, 1]. The reader should look before at the reasoning made
for the proof of proposition 4.6).
It is enough to only show that RES is a convolution space. We take two singularities
O
j ;

O
y 2 RES, we choose a directionq and we suppose 0< e � 1.

By lemma 7.7,resp.lemma 7.6,
O
j , resp.

O
y , has a major such that its restriction as

a sectorial germ of codirectionI =] � p=2+ q;q + p=2[, can be represented by a

function
_
j , resp.

_
y , holomorphic on

�
R q;(0) , that can be analytically continued to

the Riemann surface(R q ;p) and moreover, satis�es the condition:

1. j
_
j (h )j � exp(�j h j) for all h 2 GI ;e, whereGI ;e = � ¶

�
S e(I ) �

�
R q;(0) ;

2.
_
y is bounded on

�
S e(I ).

We know by lemma 7.1 thatz � GI ;e �
�
S e(I ) for everyz 2

�
S 2e(I ). We also think of

GI ;e as an embedded curveH0 : R ! C with jH0
0(s)j bounded. Therefore, the above

properties and the dominated Lebesgue theorem, ensure that the integral

c (z ) =
_
j � H0

_
y (z ) =

Z

H0

_
j

�
h

� _
y (z � h )dh (7.14)

de�nes a holomorphic function on
�
S 2e(I ) �

�
R q;(0) which by (7.8), represents the

convolution product
O
j �

O
y . We want to show thatc can be analytically contin-

ued onto the Riemann surface(R q ;p) (thus to ]C nZ as well). We choose a point
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z0 2
�
S 2e(I ) so thatf z0 � H0g \ Z = /0, and we viewc as a germ of holomorphic

functions atz0: for x 2 C close to 0,c (z0 + x) =
Z

H0

_
j

�
h

� _
y (x + z0 � h )dh . We

take a smooth pathg : [0;1] ! C nZ starting fromz0 = g(0). We �x R� e so that
g([0;1]) � D(0;R) and length(g) < R. We will get the analytic continuation ofc
along g by continuously deforming H0 through an isotopy
H : (s;t) 2 R � [0;1] 7! Ht (s) 2 C nZ which is equal to the identity forjsj large
enough. We pick aC1 functionh : C ! [0;1] satisfyingf z 2 C j h (z ) = 0g = Z.
We also set aC1 functionr : C ! [0;1] with compact support so that the conditions
r jD(0;5R) = 1 andr jCnD(0;6R) = 0 are ful�lled. In what follows, we seeH0 as an em-
bedded curveR ! C and there is no loss of generality in supposing the existence of
s0 > 0 so thatH0(s) 2 D(0;3R) for jsj < s0, elseH0(s) 2 C nD(0;3R).
One considers the non-autonomous vector �eldX(z ;t) = h(z)r (z )

h (z )+ h
�

g(t)� z
� g0(t). We

denote byg : (t0; t;z0) 2 [0;1]2 � C 7! g(t0; t;z0) = gt0;t (z0) 2 C the (well-de�ned
global) �ow of the vector �eld, that ist 2 [0;1] 7! z (t) = gt0;t (z0) is the unique
integral curve satisfying bothdz

dt = X(z ;t) and the datumz(t0) = z0. One �nally
setsf t (z ) = g0;t (z ). Notice that any integral curvez(t) of X has length less than
length(g) < R, sincejX(z ;t)j � j g0(t)j. With this remark and arguments detailed in
[18], we can observe the following properties, for everyt 2 [0;1]:

1. f t (g(0)) = g(t), that isg is an integral curve. (Notice thatr
�
g(t)

�
= 1 because

g([0;1]) � D(0;R)).
2. f t (C nZ) � C nZ. (One hasf t (w) = w for anyw 2 Z sinceh (w) = 0).
3. f t (z ) = z for anyz 2 C nD(0;6R) (sincer jCnD(0;6R) = 0).
4. for everyz 2 D(0;3R), f t

�
g(0) � z

�
= g(t) � f t

�
z

�
. Indeed, ift 7! z (t) is an

integral curve starting fromz(0) 2 D(0;3R), then z(t) 2 D(0;4R) for every
t 2 [0;1] (the integral curve have length< R), thus dz

dt = h(z)

h (z )+ h
�

g(t)� z
� g0(t).

Considerx (t) = g(t) � z (t); one hasdx
dt = h(x)r (x )

h (x )+ h
�

g(t)� x
� g0(t) becausejx (t)j < 5R

for everyt 2 [0;1], thusx is an integral curve ofX.
5. for everyz 2 CnD(0;3R), jg(t) � f t

�
z

�
j > R. As a matter of fact, observe that if

t 7! z (t) is an integral curve starting fromz(0) 2 CnD(0;3R), thenjz (t)j > 2R
for everyt 2 [0;1] and thereforejg(t) � f t

�
z

�
j > R.

We de�ne the isotopy H : (s;t) 2 R � [0;1] 7! H(s;t) = Ht (s) by setting
Ht (s) = f t

�
H0(s)

�
. SinceH0 avoidsZ, one hasHt (s) 2 C nZ by property 2. By

property 3, we remark that forjsj large enough,H is a constant map. Notice also that

H0 �
�

R q;(0) can be lifted uniquely with respect top on the principal sheetR q;(0) of
R q . We noteH 0 this lifting. We can use the lifting theorem for homotopies [11, 5] to
get the continuous mappingH : (s;t) 2 R � [0;1] 7! H (s;t) = H t (s) 2 R q which

makes commuting the following diagram:

R q

H % # p
R � [0;1] �! C:

H
We now setK : (s;t) 2 R � [0;1] 7! K(s;t) = Kt (s) = g(t) � Ht (s). We know that

K0(s) = g(0) � H0(s) 2
�
S e(I ) �

�
R q;(0) for everys 2 R. In particular, one can lift

K0 uniquely with respect top into an embedded curveK 0 on the principal sheet
R q;(0) of R q . MoreoverK0(s) 2 C nZ, for everys 2 R. Property 5 ensures that

Kt (s) stays in
�
S e(I ) for jsj � s0, otherwise by property 4,Kt (s) belongs toC nZ.

This implies thatKt can be lifted uniquely with respect top into an embedded
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curve K t which lies on the principal sheetR q;(0) of R q for jsj � s0. Apply-
ing again the lifting theorem for homotopies, one obtains a continuous mapping
K : (s;t) 2 R � [0;1] 7! H (s;t) = H t (s) 2 R q that makes commuting the follow-

ing diagram:

R q

K % # p
R � [0;1] �! C:

K
We �nally introduce the two holomorphic functionsF ;Y 2 O(R q ) such that

F (z ) =
_
j

�
p(z )

�
, Y (z ) =

_
y

�
p(z )

�
for z 2 R q;(0) . With these notations, the germ

of holomorphic functionsc at z0 = g(0) reads

c (g(0)+ x) =
Z

R
F

�
H 0(s)

�
Y (x + K 0(s))H0

0(s)ds

and its analytic continuation alongg is obtained by

c (g(t)+ x) =
Z

R
F

�
H t (s)

�
Y (x + K t (s))H0

t (s)ds: (7.15)

Indeed, remark that for jsj large enough, F
�
H t (s)

�
=

_
j

�
Ht (s)

�
and

j
_
j

�
Ht (s)

�
j � exp(�j Ht (s)j). Also, for jsj � s0, Y

�
x + K t (s)

�
=

_
y

�
Kt (s)

�
which

is bounded sinceKt (s) 2
�
S e(I ). Thus the integral (7.15) is well-de�ned. The fact

that (7.15) provides the analytic continuations comes from the Cauchy formula, see
analogous arguments in [18].ut

7.7.2.4 Supplements

One often uses other spaces in practice as we now exemplify.

The spaceRES(q;a )(L) The spaceR̂ (q;a )(L) was introduced by de�nition 4.24
and we know by proposition 4.6 thatCd � R̂ (q;a )(L) is a convolution algebra. The
following de�nition thus makes sense.

De�nition 7.40. We denote by
O
R (q;a )(L) �

O
R the C-differential commutative and

associative convolution algebra made of singularities of the form
O
j = ad + [ bj 2 SING

with bj 2 R̂ (q;a )(L). The associated space of formal series is denoted byeR (q;a )(L).

By its very de�nition, any elementbj 2 R̂ (q;a )(L) is a germ of holomorphic func-
tions at 0 that can be analytically continued to the Riemann surfaceR (q;a )(L). This

means that any
O
j 2

O
R (q;a )(L) is a simple singularity that has a major

_
j which can be

analytically continued to the universal covering ^R (q;a )(L) n f 0g of R (q;a )(L) n f 0g.

Since
O
R (q;a )(L) is a convolution algebra, we know that for any two singularities

O
j ;

O
y 2

O
R (q;a )(L), their convolution product

O
j �

O
y belongs to

O
R (q;a )(L) as well,

thus has a major that can be analytically continued to ^R (q;a )(L) n f 0g. In substance,
this comes from the property that[ bj � [ bj = [ ( bj � bj ) for two integrable singularities

(proposition 7.6). Now, what about the convolution product
O
j �

O
y of two singular-

ities
O
y 2

O
R (q;a )(L) and

O
j 2 RES ? To give the answer, we prefer to shift to a more

general case and we introduce a new de�nition.
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De�nition 7.41. Let be q 2 f 0;pg � S1, a 2]0;p=2] and L > 0. We denote by
RES(q;a )(L) the space made of singularities that have majors that can be analyt-

ically continued to the Riemann surface ^R (q;a )(L) n f 0g. The associated space of

asymptotic classes is denoted bygRES
(q;a )

(L) � ASYMP.

Proposition 7.16.The spaceRES(q;a )(L) is a C-differential commutative and as-

sociative convolution algebra with unitd, containedRESand
O
R (q;a )(L) as subal-

gebras.

Proof. The proof follows that of theorem 7.16 but for the fact that one adds the
arguments used at the end of the proof of proposition 4.6.

The spacesRES(k) The spacesbR (k) were introduced by de�nition 4.20. They pro-
vide new spaces of singularities which are worthy of attention.

De�nition 7.42. For k 2 N?, we denote by
O
R (k) the space of singularities of the

form
O
j = ad + [ bj 2 SING with bj 2 bR (k) . The associated space of formal series is

denoted byeR (k) .

Remark 7.6.Notice that the set of spaces(
O
R (k))k2N provides an inverse system of

spaces whose inverse limit lim
 

O
R (k) =

\

k

O
R (k) is

O
R . This is why we sometimes write

O
R (¥ ) =

O
R .

The space
O
R (1) is of particular interest since, from propositions 4.1 and 7.6,

O
R (1)

makes a convolution algebra.

The space
O
R (k) is made of simple singularities that have majors that can be ana-

lytically continued to the universal covering^R (k) n f 0g of R (k) n f 0g. We now con-
sider larger spaces of singularities.

De�nition 7.43. Let k 2 N? be a positive integer. We denote by RES(k) the space
of singularities that have majors that can be analytically continued to the Riemann

surface ^R (k) n f 0g. We denote bygRES(k) � ASYMP the space of asymptotic classes
whose formal Borel transform belongs to RES(k) .

Remark 7.7.Notice again that lim
 

RES(k) =
\

k

RES(k) = RES, and we sometimes

write RES(¥ ) = RES.

We will have a special interest in RES(1) because of the following analogous to
proposition 7.16.

Proposition 7.17.The spaceRES(1) is aC-differential commutative and associative

convolution algebra with unitd. It containsRESand
O
R (1) as subalgebras.

We omit the (rather lengthy) proof of this proposition. The main idea is to con-
sider the integral representation (7.14) used in the proof of theorem 7.1 and to adapt
the construction made in Sect. 4.3.

Conjecture 7.1.We conjecture that any space RES(k) makes a convolution algebra
as well.
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7.8 Alien operators

Alien operators are powerful tools for analysing the singularities of resurgent func-
tions. These operators are carefully de�ned and discussed in [18], especially when
they operate on the algebraCd � bR simp of simple resurgent functions. Most of the
arguments there can be easily adapted for alien operators acting on RESZ , once the
study of singularities had been made. This is why we introduce the alien operators
in a rather sketchy manner in what follows.

7.8.1 Alien operators associated with a triple

7.8.1.1 Mains de�nitions

We consider two directionsq1;q2 2 S1, a pointw 2 Z and a sectorial germ
_
j 2 O0

q1
of

directionq1. We can think of
_
j as a sectorial germ on a sector

� R1
0 (I1) for 0< R1 < 1

andI1 � S1 an open arc bisected byq1, and this is what we do in what follows.

We now assume that
_
j can be analytically continued to]C nZ. We consider a

pathg : J ! C nZ starting fromz1 2
� R1

0 (I1) and ending atz2 close tow so that

z2 � w 2
� R2

0 (I2) with 0 < R2 < 1 andI2 � S1 an open arc bisected byq2. See
Fig. 7.9.

By hypotheses, the analytic continuation(contg
_
j ) of

_
j alongg is a well-de�ned

germ of holomorphic functions atz2 that only depends on the homotopy class ofg
(for the relation of homotopy of paths inC nZ with �xed extremities). Moreover,

if
_
y 2 Oz2� w stands for the germ of holomorphic functions atz2 � w de�ned by

_
y (x ) =

�
contg

_
j

�
(w + x) then, still by analytic continuations,

_
y determines a

unique sectorial germ on
� R2

0 (I2) and thus, by restriction, a unique sectorial germ
_
y 2 O0

q2
. This justi�es the following de�nition adapted from [18].

De�nition 7.44. Let beq1;q2 2 S1, w 2 Z and
_
j 2 O0

q1
a sectorial germ of direction

q1 that can be analytically continued to]C nZ. Let g : J ! C nZ be a path starting

from a suf�ciently small sector
�

0(I1) bisected byq1 and ending close tow in

a suf�ciently small sector of the formw +
�

0(I2) whereI2 bisectsq2. Then, one

denotes by
�

A
g
w(q2;q1)

_
j 2 O0

q2
the sectorial germ of directionq2 represented by

_
y (x ) =

�
contg

_
j

�
(w + x) for x 2

�
0(I2).

Fig. 7.9 A triple (g;q1;q2) de�ning the operatorA g
w(q1;q2) atw = � 2.
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We now consider two directionsq1;q2 2 eS1 and a singularity
O
j 2 RESZ . Think-

ing of
O
j as a singularity of SINGq1;a1 (for somea1 > 0), its minorbj can be seen as

representing a sectorial germbj 2 O0
�
q1

of direction
�
q1 = p(q1) 2 S1 which can be an-

alytically continued to]C nZ. Therefore, under the conditions of de�nition 7.44, the

sectorial germ
_
y �

q2
=

�
A

g
w(

�
q2;

�
q1) bj of direction

�
q2 = p(q2) 2 S1 is well-de�ned.

Even, by analytic continuations, one can deduce from
_
y �

q2
a sectorial germ of direc-

tion I �
q2

=] � p +
�
q2;

�
q2 + p[� S1 denoted by

_
y I �

q2

2 G(I �
q2

;O0). By inverse image

by p of the sheafO0, this sectorial germ
_
y I �

q2

determined a uniquely de�ned secto-

rial germ of directionIq2 =] � p + q2;q2 + p[� eS1 denoted by
_
y Iq2

. Still by analytic
continuations, this sectorial germ gives rise to a (multivalued) section on any arc of

the form] � a � 2p +( q2 + p); (q2 + p)+ a [2 eS1, a > 0, that is to an element
_
y of

ANA =
T

a > 0ANA (q2+ p);a , whose singularity
O
y belongs to RESZ .

De�nition 7.45. Let beq1;q2 2 eS1 andw 2 Z. Let g : J ! C nZ be a path starting

from a suf�ciently small sector
�

0(I1) bisected by
�
q1 = p(q1) and ending close to

w in a suf�ciently small sector of the formw +
�

0(I2) whereI2 bisects
�
q2 = p(q2).

For any singularity
O
j 2 RESZ , one denotes byA g

w(q2;q1)
O
j the singularity

O
y which

can be represented by a major
_
y 2 ANA = G(eS1;O0), whose restriction

_
y q22 O0

q2

is the sectorial germ of directionq2 determined by
_
y �

q2
=

�
A

g
w(

�
q2;

�
q1) bj , wherebj is

the minor of
O
j .

The linear operatorA g
w(q2;q1) : RESZ ! RESZ is called thealien operator atw

associated with the triple(g;q1;q2).

The alien operators have their counterparts on asymptotic classes through formal
Borel and Laplace transforms.

De�nition 7.46. The alien operatorA g
w(q2;q1) at w associated with the triple

(g;q1;q2) is de�ned on asymptotic classes by making the following diagram com-

muting:
RES

A g
w (q2;q1)
�! RES

L #" B L #" B

gRES
A g

w (q2;q1)
�! gRES

.

7.8.1.2 The spacesRES(
�
q;a )(L) and RES(k)

Alien operators acting on RES(
�
q;a )(L) We would like to de�ne alien operators

acting on the space RES(
�
q;a )(L). We supposeq 2 f pk;k 2 Zg � eS1, a 2]0;p=2],

L > 0 andm2 f 1; � � � ;dLeg. We set
�
q = p(q) 2 f 0;pg and we consider a singu-

larity
O
j 2 RES(

�
q;a )(L) whose minor isbj . By the very de�nition 7.41 of the space

RES(
�
q;a )(L), the sectorial germ

_
y �

q2
=

�
A

g
w(

�
q2;

�
q) bj 2 O0

�
q2

is well de�ned under the

following conditions:
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1. w = mei
�
q and the pathg is of typeg

�
q
e with e = ( � )m� 1 2 f + ; �g m� 1. In that

case,
�
q2 should be

�
q � p;

2. however, starting from
_
y �

q� p
and be analytic continuations, one can consider as

well sectorial germs
_
y �

q2
with

�
q2 2 I �

q
=] � 2p +

�
q;

�
q[� S1.

By a construction already done, the various sectorial germs
_
y �

q2
glue together and

provide a sectorial germ
_
y I �

q
2 G(I �

q
;O0) of directionI �

q
. Still by analytic continua-

tions and moving to multivalued sectorial germs by inverse image byp of the sheaf

O0, one eventually gets an element
_
y of ANAq;a with p(q) =

�
q. This gives sense

to the following de�nition.

De�nition 7.47. Let be q 2 f pk;k 2 Zg � eS1, a 2]0;p=2] and L > 0. We set
�
q = p(q) 2 f 0;pg � S1. We pick m2 f 1; � � � ;dLeg, we setw = mei

�
q and we as-

sume that the pathg is of typeg
�
q
(� )m� 1

. For any singularity
O
j 2 RES(

�
q;a )(L), one

denotes byA g
w(q;q)

O
j the singularity

O
y 2 SINGq;a which can be represented by a

major
_
y 2 ANAq;a whose restriction

_
y q� p2 O0

q� p is the sectorial germ of direction

q � p determined by
_
y q� p=

�
A

g
w(

�
q � p;

�
q) bj wherebj stands for the minor of

O
j .

This gives rise to a linear operatorA g
w(q;q) : RES(

�
q;a )(L) ! SINGq;a , still called

the alien operator atw associated with the triple(g;q;q).

Alien operators acting on RES(k) We now work on the spaces RES(k) given by
de�nition 7.43. We want to prove that alien operators can be de�ned on RES(k) , as-

sociated with triples of the form(g;q;q) with g of typeg
�
q
(+) m

or g
�
q
(� )m

.

We start with RES(1) . Let beq1 2 f pk;k 2 Zg � eS1 and setw1 = ei
�
q1 with

�
q1 = p(q1).

The very de�nition of RES(1) and the above reasoning lead straight to the following
linear operators, for any integerm1 � 2 and anye 2 f� ;+ g:

A
g

�
q1
()

w1 (q1;q1) : RES(1) ! SINGq1;p ; A
g

�
q1
(e)m1� 1

m1w1 (q1;q1) : RES(1) ! SINGq1+ p=2;p=2
(7.16)

We move to the next casek = 2, that is we consider the space RES(2) � RES(1) .
Of course the above operators (7.16) still act on RES(2) but, however, their ranges
can be made more precise. By the very de�nition of RES(2) , the minor bj of any

singularity
O
j 2 RES(2) , when considered as a sectorial germ, can be analytically

continued along any pathg of typeg
�
q1
en1 with

en1 2 f
�
(� )n1; (+) m1� 1

�
;
�
(� )n1; (� )m1� 1

�
j (n1;m1) 2 (N?)2g:

Moreover, introducing
�
q2 =

�
q1 +( n� 1)p, w1 = ei

�
q1, andw2 � w1 = ei

�
q2, the ana-

lytic continuation contg bj of bj alongg is a germ of holomorphic functions whic can
be analytically continued onto the simply connected domain

p(R en1 ;
�
q ) = C n f ] � ¥ ; p] [ [p+ 1;+ ¥ [gwhere]p; (p+ 1)[=] w1;w2[ whenm1 = 1,

]p; (p+ 1)[=]( m1 � 1)w2;m1w2[ whenm1 � 2. Considering only odd values forn1

(thus
�
q2 =

�
q1 onS1), one immediately sees that (7.16) becomes:
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A
g

�
q1
()

w1 (q1;q1) : RES(2) ! RES(1) ; (7.17)

A
g

�
q1
(e)1

2w1
(q1;q1) : RES(2) ! SINGq1;p

A
g

�
q1
(e)m1� 1

m1w1 (q1;q1) : RES(2) ! SINGq1+ p=2;p=2; m1 � 3:

Notice in particular that the operatorA
g

�
q1
()

w1 (q2;q1) now acts on RES(2) as well, for
any directionq2 2 eS1.

The reasoning generalizes and we give the result.

Lemma 7.8.Let beq1 2 f pk;k 2 Zg � eS1. For any integer k� 1, anye 2 f� ;+ g

and any m1 2 N?, settingw1 = ei
�
q1, the alien operatorA

g
�
q1
(e)m1� 1

m1w1 (q1;q1) is well
de�ned onRES(k) with the range:

A
g

�
q1
(e)m1� 1

m1w1 (q1;q1) : RES(k) ! RES(k� m1) ; 1 � m1 � k � 1 (7.18)

A
g

�
q1
(e)m1� 1

m1w1 (q1;q1) : RES(k) ! SINGq1;p ; m1 = k

A
g

�
q1
(e)m1� 1

m1w1 (q1;q1) : RES(k) ! SINGq1+ p=2;p=2; m1 � k+ 1:

7.8.1.3 Miscellaneous properties

We start with a simple result which is a consequence of the very de�nitions.

Proposition 7.18.For any alien operator of the formA g
w(q2;q1) : RESZ ! RESZ ,

acting onRESZ , RES(
�
q;a )(L) or RES(k) , for any singularity

O
j :

A g
w(q2;q1)

� O
¶

O
j

�
= (

O
¶ � w)A g

w(q2;q1)
O
j : (7.19)

In other words,[A g
w(q2;q1);

O
¶] = � wA g

w(q2;q1).

We introduce new de�nitions before keeping on.

De�nition 7.48. For anyk 2 Z, one denotes byr k 2 Aut(p) the deck transformation
of the cover(eC;p), de�ned by:r k : z = reiq 2 eC 7! r k(z ) = reiq+ 2ipk 2 eC.

For any singularity of the form
O
j = sing0

_
j 2 SING,

_
j 2 ANA, we write

r k:
O
j = sing0 (

_
j � r k) 2 SING.

More generally, for anyr 2 R, one setsr r : z = reiq 2 eC 7! r r (z ) = reiq+ 2ipr 2 eC

andr r :
O
j = sing0 (

_
j � r r ) 2 SING.

Remark 7.8.With this notation, the variation map var : SING! ANA reads
var= Id � r � 1.

The alien operators associated with a triple satisfy some identities as can be easily
observed:
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Fig. 7.10 Two triples(g;q1;q2) and(gl w ;q1;q2) for the pointw = � 2, with l w a closed path of
winding number windw(l w) = 1 atw.

Proposition 7.19.For any given alien operatorA g
w(q2;q1) : RESZ ! RESZ ,

A g
w(q2;q1 + 2pk) = A g

w(q2;q1)r k andA g
w(q2 + 2pk;q1) = r � k:A

g
w(q2;q1), for

any k2 Z.

Let us consider a pointw 2 Z and a given triple(g;q1;q2). One can extend the
pathg into the pathgl k

w wherel k
w is a closed path nearw that surrounds that point

like on Fig. 7.10, with winding number windw(l k
w) = k 2 Z at that point. One can

as well consider the pathl k
0g wherel k

0 is a closed path surrounding the origin with
winding number windw(l k

0 ) = k 2 Z. A little thought provides the following result.

Proposition 7.20.We consider a triple(g;q1;q2) de�ning alien operatorA g
w(q2;q1) :

RESZ ! RESZ at w. We assume thatgl k
w , resp.l k

0g is a product of paths so that
l k

w , resp.l k
0 , is a closed path surroundingw,resp.0, and close to that point, with

winding numberwindw(l k
w) = k, resp.wind0(l k

0 ) = k, k2 Z. Then,

A
l k

0g
w (q2;q1) = A g

w(q2;q1)r k: ; A gl k
w

w (q2;q1) = r k:A
g
w(q2;q1): (7.20)

In particular,

A g
w(q2;q1+ 2pk) = A

l k
0g

w (q2;q1); A g
w(q2+ 2pk;q1) = A gl � k

w
w (q2;q1): (7.21)

We end with the following property.

Proposition 7.21.For any alien operator of the formA g
w(q;q) acting onRESZ or

RES(
�
q;a )(L), for any singularity

O
j and any resurgent constant

O
const2 CONS,

A g
w(q;q)

� O
const�

O
j

�
=

O
const�

�
A g

w(q;q)
O
j

�
: (7.22)

We stress that in proposition 7.21, only alien operators of the formA g
w(q2;q1)

with q1 = q2 are considered. We omit the proof of this proposition which relies on
a careful reading of what have been done for showing theorem 7.1.

7.8.2 Composition of alien operators

7.8.2.1 Alien operators onRESZ

The following de�nition is adapted from [18].

De�nition 7.49. One callsalien operator atw 2 Z associated with the couple
(q1

1 ;qm
2 ) any linear combination of composite operators of the form
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Fig. 7.11 The triple(g1;q1
1 ;q1

2 ) for the pointw1 = � 2, the triple(g2;q1
2 ;q2

2 ) for the pointw2 �
w1 = 4, with q2

1 = q1
2 + p.

A gm
wm� wm� 1

(qm
2 ;qm

1 ) � � � � � A g2
w2� w1

(q2
2 ;q2

1 ) � A g1
w1(q1

2 ;q1
1 ) : RESZ ! RESZ

where(w1; � � � ;wm) 2 Zm, m2 N? with w = wm = å m
j= 1w j � w j � 1 and the conven-

tion w0 = 0.

Example 7.9.We exemplify the above de�nition. We setw1 = � 2 andw2 = 2. The
alien operatorA g1

w1(q1
2 ;q1

1 ) at the pointw1 is associated with the triple(g1;q1
1 ;q1

2 )
drawn on Fig. 7.11. The alien operatorA g1

w2� w1
(q2

2 ;q2
1 ) at the pointw2 � w1 = 4

is associated with the triple(g1;q1
1 ;q1

2 ) drawn on Fig. 7.11. We furthemore assume
thatq2

1 � q1
2 2 [0;2p[ to �x our mind.

From the very de�nitions of the alien operators and of a minor, one easily checks
that the composite alien operatorA g2

w2� w1
(q2

2 ;q2
1 ) � A g1

w1(q1
2 ;q1

1 ) atw2, can be writ-
ten as the difference of two simple alien operators, namely

A g2
w2� w1

(q2
2 ;q2

1 ) � A g1
w1(q1

2 ;q1
1 ) = A G+

w2
(q2

2 ;q1
1 ) � A G�

w2
(q2

2 ;q1
1 ):

In this equality,G+ andG� 1 stands for the (homotopy class of the) product of paths
G+ = g1l +

w1
(w1 + g2) andG� = g1l �

w1
(w1 + g2) respectively, where the pathsl +

w1

andl �
w1

drawn on Fig. 7.12, are homotopic to small arcs so that(l �
w1

)� 1l +
w1

makes
a loop aroundw1 counterclockwise.

Typically, the end point ofg1 is z1
2 = w1 + rei

�
q1

1 while the starting point ofg2 is z2
1 = rei

�
q2

1

with 0< r � 1. Then,l +
w1

:
�
q 2 [

�
q1

2;
�
q2

1] 7! w1 + rei
�
q while (l �

w1
)� 1 :

�
q 2 [� 2p +

�
q2

1;
�
q1

2] 7!

w1 + rei
�
q .

From this result, one deduces from proposition 7.20 that for anyk 2 Z,

Fig. 7.12 The pathsG+ = g1l +
w1

(w1 + g2) andG+ = g1l � (w1 + g2), w1 = � 2.
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A g2
w2� w1

(q2
2 ;q2

1 + 2pk) � A g1
w1(q1

2 ;q1
1 ) = A

G+
k

w2 (q2
2 ;q1

1 ) � A
G�

k
w2 (q2

2 ;q1
1 ):

with G+
k = g1l k

w1
l +

w1
(w1+ g2) andG�

k = g1l k
w1

l �
w1

(w1+ g2) respectively, wherel k
w1

stands for a closed path aroundw1 = � 2 with winding number windw1(l k
w1

) = k at
that point.

What have been done in the above example can be generalized. This is the matter
of the next proposition.

Proposition 7.22.We consider the two alien operatorsA g1
w1(q1

2 ;q1
1 ), A g2

w2� w1
(q2

2 ;q2
1 )

and we assume thatq2
1 � q1

2 2 [0;2p[. Then, for any k2 Z,

A g2
w2� w1

(q2
2 ;q2

1 + 2pk) � A g1
w1(q1

2 ;q1
1 ) = A

G+
k

w2 (q2
2 ;q1

1 ) � A
G�

k
w2 (q2

2 ;q1
1 ):

withG+
k = g1l k

w1
l +

w1
(w1+ g2) andG�

k = g1l k
w1

l �
w1

(w1+ g2) respectively, wherel k
w1

stands for a closed path aroundw1 with winding numberwindw1(l k
w1

) = k at that
point, whereasl +

w1
and l �

w1
follows small arcs so that(l �

w1
)� 1l +

w1
makes a loop

aroundw1 counterclockwise.
As a consequence, any alien operator at a pointw 2 Z associated with the couple
(q1;q2) can be written as a linear combination of alien operators atw associated
with triples of the form(g;q1;q2).

We now focus on paths of typeg
�
q
en . Form2 N?, we take a(m� 1)-tuple of signs

e = ( e1; � � � ;em� 1) 2 f + ; �g m� 1 andn = ( n1; � � � ;nm� 1) 2 (N?)m� 1. We choose a

directionq1 2 f pk;k 2 Zg. Following de�nition 4.7, to a path of typeg
�
q1
en one asso-

ciates a sequence of points and directions de�ned as follows :

�
q j+ 1 =

�
q j + ej (n j � 1)p 1 � j � m� 1 (7.23)

w j+ 1 � w j = ei
�
q j+ 1 0 � j � m� 1

w0 = 0:

These data thus provide a uniquely de�ned alien operatorA
g

�
q1
en

wm (qm;q1), once the

directionqm 2 eS1,
�
qm = p(qm) is chosen.

Theorem 7.2.Let m2 N? be a positive integer,e 2 f + ; �g m� 1, n 2 (N?)m� 1 and

q1 2 f pk;k2 Zg. Letgbe a path of typeg
�
q1
en , wm and

�
qm given by (7.23), andqm 2 eS1

so that
�
qm = p(qm). Then the alien operatorA g

wm(qm;q1) at wm associated with the
triple (g;q1;qm) can be written as aZ-linear combination of composite operators
of the formA gk

w0
k� w0

k� 1
(qm;q0

k) � � � � � A g2
w0

2� w0
1
(q0

2;q0
2) � A g1

w0
1
(q0

1;q0
1) that satisfy the

properties:

� (w0
1; � � � ;w0

k) 2 Zk, k 2 N? andw0
k = wm;

�
�
qm =

�
q

0

k;

� for every j= 1; � � � ;k, the pathgj is of typeg
�
q

0

j
(+) mj � 1

, mj 2 N?;

� å k
j= 1mj � m.

This theorem is of a purely geometric nature. We omit its proof (see [1] Sect. Rés II-
2, see also [18, 22]) and we rather produce two examples that explain the algorithm.
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Example 7.10.We consider a pathgof typeg
�
q1
e for e = (+ ; � ;+) and we set

�
q1 = 0,

see Fig. 4.2. To the pathg one associates by (7.23) the sequence of points and direc-

tions:

(
�
q j = 0; 1 � j � 4
w0 = 0; w j+ 1 � w j = 1 0� j � 3

. One setsq j = q0= 0 for any j 2 [1;4].

We want to decompose the alien operatorA g
w4(q4;q1). From the very de�nition of

the alien operators, one observes that

A
g

�
q3
(+)

w4� w2
(q4;q3) � A

g
�
q1
(+)

w2 (q2;q1) = A
g

�
q1
(+) 3

w4 (q4;q1) � A
g

�
q1
(+ ;� ;+)

w4 (q4;q1);

and therefore

A
g

�
q1
(+ ;� ;+)

w4 (q4;q1) = A
g

�
q0
(+) 3

w4 (q0;q0) � A
g

�
q0
(+)

w4� w2
(q0;q0) � A

g
�
q0
(+)

w2 (q0;q0)

Example 7.11.A bit more dif�cult, we consider a pathgof typeg
�
q1
en for e = (+ ; � ;+) ,

n = ( 1;3;1) and
�
q1 = 0, see Fig. 7.13. The algorithm (7.23) still provides(

�
q j = 0; 1 � j � 4
w0 = 0; w j+ 1 � w j = 1 0� j � 3

. One sets againq j = q0= 0 for any j 2 [1;4].

Since

A
g

�
q3
(+)

w4� w2
(q4;q3 � 2p) � A

g
�
q1
(+)

w2 (q2;q1) = A
g

�
q1
(+ ;� ;+)

w4 (q4;q1) � A
g

�
q1
(+ ;� 2;+)

w4 (q4;q1);

one deduces with the �rst example that

A
g

�
q1
(+ ;� 2;+)

w4 (q4;q1) = A
g

�
q0
(+ ;� ;+)

w4 (q0;q0) � A
g

�
q0
(+)

w4� w2
(q0;q0� 2p) � A

g
�
q0
(+)

w2 (q0;q0)

= A
g

�
q0
(+) 3

w4 (q0;q0) � A
g

�
q0
(+)

w4� w2
(q0;q0) � A

g
�
q0
(+)

w2 (q0;q0)

� A
g

�
q0
(+)

w4� w2
(q0;q0� 2p) � A

g
�
q0
(+)

w2 (q0;q0):

Example 7.12.A step further, we consider a pathg of type g
�
q1
en for

e = ( � ;+ ;+ ;+ ; � ), n = ( 1;2;1;1;1) and takeq1 = 0, see Fig. 4.3. Using (7.23),
we de�ne: 8

>>><

>>>:

�
q1 =

�
q2 = 0

�
q3 = � � � =

�
q6 = p

w0 = 0; w1 � w0 = w2 � w1 = 1
w3 � w2 = � � � = w6 � w5 = � 1:

We setq1 = q2 = q0
1 = 0, q3 = � � � = q6 = q0

2 = p. We start with the identity:

Fig. 7.13 A path of type

g
�
q1
en for e = (+ ; � ;+) ,

n = ( 1;3;1) and
�
q1 = 0.
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A
g

�
q6
()

w6� w5
(q6;q6) � A

g
�
q1
(� ;+ 2;+ ;+)

w5 (q5;q1) = A
g

�
q1
(� ;+ 2;+ ;+ ;+)

w6 (q6;q1) � A g
w6(q6;q1):

Next, a little thought yields:

A
g

�
q3
(+ ;+ ;+)

w6� w2
(q6;q3) � A

g
�
q1
(� )

w2 (q2;q1) = A
g

�
q1
(� ;+ 2;+ ;+ ;+)

w6 (q6;q1) � A
g

�
q5
(+)

w6 (q6;q5);

A
g

�
q3
(+ ;+)

w5� w2
(q5;q3) � A

g
�
q1
(� )

w2 (q2;q1) = A
g

�
q1
(� ;+ 2;+ ;+)

w5 (q5;q1) � A
g

�
q5
()

w5 (q5;q5):

Finally, A
g

�
q2
()

w2� w1
(q2;q2) � A

g
�
q1
()

w1 (q1;q1) = A
g

�
q1
(+)

w2 (q2;q1) � A
g

�
q1
(� )

w2 (q2;q1). Putting
things together, one concludes:

A g
w6(q6;q1) = A

g
�
q0

2
(+)

w6 (q0
2;q0

2)

+ A
g

�
q0

2
(+ ;+ ;+)

w6� w2
(q0

2;q0
2) � A

g
�
q0

1
(+)

w2 (q0
1;q0

1) � A
g

�
q0

2
()

w6� w5
(q0

2;q0
2) � A

g
�
q0

2
()

w5 (q0
2;q0

2)

� A
g

�
q0

2
(+ ;+ ;+)

w6� w2
(q0

2;q0
2) � A

g
�
q0

1
()

w2� w1
(q0

1;q0
1) � A

g
�
q0

1
()

w1 (q0
1;q0

1)

� A
g

�
q0

2
()

w6� w5
(q0

2;q0
2) � A

g
�
q0

2
(+ ;+)

w5� w2
(q0

2;q0
2) � A

g
�
q0

1
(+)

w2 (q0
1;q0

1)

+ A
g

�
q0

2
()

w6� w5
(q0

2;q0
2) � A

g
�
q0

2
(+ ;+)

w5� w2
(q0

2;q0
2) � A

g
�
q0

1
()

w2� w1
(q0

1;q0
1) � A

g
�
q0

1
()

w1 (q0
1;q0

1):

7.8.2.2 Alien operators onRES(k)

We saw with lemma 7.8 that the alien operators associated with triples of the form

(g;q1;q1) act on RES(k) for g of typeg
�
q1
(+) m

andg
�
q1
(� )m

. We keep on this study accord-
ing to the guiding line of this section.

We assume
�
q1 2 f 0;pg and pick two integersl ;k subject to the condition

2 � l � k. By the very de�nition of RES(k) , the minorbj of any singularity
O
j 2 RES(k) ,

once considered as a sectorial germ, can be analytically continued along any pathg

of typeg
�
q1
enl with

enl 2 f
�
(� )nl

l � 1; (e)ml � 1
�

j e 2 f + ; �g ;nl = ( n1; � � � ;nl � 1) 2 (N?) l � 1;ml 2 N?g:

With the notations of (7.23), the analytic continuation contg bj of bj alongg is a germ
of holomorphic functions that can be analytically continued onto the simply con-

nected domainp(R enl ;
�
q ) = C n f ] � ¥ ; p] [ [p+ 1;+ ¥ [gwhere]p; (p+ 1)[=] wl � 1;wl [

whenml = 1, ]p; (p+ 1)[=]( ml � 1)wl ;ml wl [ otherwise. These properties translate
into the next statement (the details are left to the reader).

Proposition 7.23.Let beq1 2 f pk;k 2 Zg � eS1 and (l ;k) 2 N with the condition
1 � l � k. The following alien operators are well-de�ned, for anye 2 f� ;+ g, any

nl 2 Nl � 1 and any ml 2 N?. Setting
�
q l ;wl by (7.23) andql 2 eS1 with

�
q l = p(ql ),
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A
g

�
q1
(( � )

nl
l � 1(e)ml � 1)

ml wl (ql ;q1) : RES(k) ! RES(k� l � ml + 1) ; 1 � ml � k � l

A
g

�
q1
(( � )

nl
l � 1(e)ml � 1)

ml wl (ql ;q1) : RES(k) ! SINGq1;p ; ml = k� l + 1

A
g

�
q1
(( � )

nl
l � 1(e)ml � 1)

ml wl (ql ;q1) : RES(k) ! SINGq1+ p=2;p=2; m1 � k � l + 2:

(7.24)

Equivalently,A
g

�
ql
(e)ml � 1

ml wl � wl � 1
(ql ;ql ) � � � � A

g
�
q2
()

w2� w1
(q2;q2) � A

g
�
q1
()

w1 (q1;q1) are well-de�ned

alien operators, with
�
q j ;w j given by (7.23) andq j 2 eS1 with

�
q j = p(q j ), with the

following ranges:

A
g

�
ql
(e)ml � 1

ml wl � wl � 1
(ql ;ql ) � � � � � A

g
�
q1
()

w1 (q1;q1) : RES(k) ! RES(k� l � ml + 1) ; 1 � ml � k � l

A
g

�
ql
(e)ml � 1

ml wl � wl � 1
(ql ;ql ) � � � � � A

g
�
q1
()

w1 (q1;q1) : RES(k) ! SINGq1;p ; ml = k� l + 1

A
g

�
ql
(e)ml � 1

ml wl � wl � 1
(ql ;ql ) � � � � � A

g
�
q1
()

w1 (q1;q1) : RES(k) ! SINGq1+ p
2 ; p

2
; m1 � k � l + 2:

(7.25)

We would like now to discuss a kind of converse of proposition 7.23 with the
next two propositions.

Proposition 7.24.Let k 2 N? be a positive integer and
O
j 2 RES(k) . We suppose

that for anyq 2 f pk;k 2 Zg � eS1 one hasA
g

�
q
()

w (q;q)
O
j 2 RES(k) , with w = ei

�
q ,

�
q = p(q). Then

O
j belongs toRES(k+ 1) .

Proof. There will be no loss of generality in assuming that
O
j is a simple singularity

and this assumption is easier to handle :
O
j = ad + [ bj 2

O
R (k) with bj 2 R̂ (k) .

We consider a singularity
O
R (1) . Thus, bj can be analytically continued toR (1) .

Equivalently, for anyq1 2 f pk;k 2 Zg, bj can be analytically continued along any

pathg1 of type g
�
q1
(e)m� 1

, m 2 N?, e 2 f� ;+ g and contg1
bj is a germ which can be

analytically continued to the star-shaped domainp
�
R (e)m� 1;

�
q1

�
.

Let us assume that for anyq1 2 f pk;k 2 Zg, A
g

�
q1
()

w (q1;q1)
O
j belongs to RES(1) ,

wherew1 = ei
�
q1. We claim that

O
j belongs to RES(2) .

Our assumption results in the following property : for anyn1 2 N? and any

pathg of type g
�
q1

(� )
n1
1

, denoting byl �
w1

a clockwise loop aroundw1, the difference
�

contg � contgl �
w1

�
bj is a sectorial germ which can be analytically continued along

any pathg2 of type g
�
q2
(e)m� 1

, m 2 N?, e 2 f� ;+ g,
�
q2 =

�
q1 + ( n1 � 1)p. Moreover

contg2

�
contg � contgl �

w1

�
bj is a germ of holomorphic functions which can be ana-
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lytically continued to the star-shaped domainp
�
R (( � )

n1
1 ;(e)m� 1);

�
q1

�
.

Start withn1 = 1 and a pathgof typeg
�
q1
(+) 1

, resp.g
�
q1
(� )1

. Take a pathg2 of typeg
�
q2
(+) m� 1

,
�
q2 =

�
q1, resp.g

�
q2
(� )m� 1

. Notice thatg1 = gg2 is a path of typeg
�
q1
(e)m

. Therefore from

the above property, contg2

�
contg bj

�
= contg1

bj is well-de�ned and gives a germ that

can be analytically continued to the domainp
�
R (+) m;

�
q1

�
= p

�
R ((+) 1;(+) m� 1);

�
q1

�
,

resp. p
�
R (� )m;

�
q1

�
= p

�
R (( � )1;(� )m� 1);

�
q1

�
. But this implies that

contg2

�
contgl �

w1
bj

�
= contgl �

w1
g2

bj is also well-de�ned and provides a germ that can

be analytically continued to the domainp
�
R (+) m;

�
q1

�
= p

�
R (( � )1;(+) m� 1);

�
q1

�
, resp.

p
�
R (� )m;

�
q1

�
= p

�
R (( � )3

1;(� )m� 1);
�
q1

�
. (Notice that the pathgl �

w1
g2 is a path of type

g
�
q1
(( � )1;(+) m� 1) , resp.g

�
q1
(( � )3

1;(� )m� 1)
).

Of course, one could have chosen a pathg of typeg
�
q1
(+) 1

and a pathg2 of typeg
�
q1
(� )m� 1

.

The pathg1 = gl �
w1

g2 is a path of typeg
�
q1
(� )m

and we conclude for the analytic con-

tinuation of bj along the pathgg2 of typeg
�
q1
((+) 1;(� )m� 1) .

One can pursue this way by induction onn1 to show our claim. Here, we just
add the casen1 = 2 so as to deal with a subtlety. We thus consider a pathg of

type g
�
q1
(+) 2

1
and a pathg2 of type g

�
q2
(e)m� 1

,
�
q2 =

�
q1 + p. Notice that the pathgl �

w1
g2

is homotopic to a path of typeg
�
q1
() when m = 1, of type g

�
q2
(e)m� 2

when m � 2.

Therefore, contg2

�
contgl �

w1
bj

�
is well-de�ned and one concludes thatbj can be

analytically continued along the pathg1 = gg2 of type g
�
q1
((+) 2

1;(e)m� 1)
and more-

over the germ contg1
bj can be analytically continued to the star-shaped domain

p
�
R ((+) 2

1;(e)m� 1);
�
q1

�
.

The same reasoning can be generalized and gives the proposition.ut

A quite similar (and even simpler) reasoning gives the next result.

Proposition 7.25.Let be k2 N? and
O
j 2 RES(k) . We suppose that for any

q1 2 f pk;k 2 Zg � eS1 and anyn 2 Nk� 1, the singularityA
g

�
q1
(( � )nk� 1)

wk (qk;q1)
O
j be-

longs toRES(1) , wherewk is given by (7.23). Then
O
j belongs toRES(k+ 1) .

We eventually use theorem 7.2 to reformulate proposition 7.25.

Corollary 7.1. Let k2 N? be a positive integer and
O
j 2 RES(k) . We suppose that

A gk
wk� wk� 1

(qk;qk) � � � � � A g2
w2� w1

(q2;q2) � A g1
w1(q1;q1)

O
j belongs toRES(1) for any

composite operator that satis�es the properties:

� for every j= 1; � � � ;k, the pathgj is of typeg
�
q j
(+) mj � 1

, mj 2 N?;

� å k
j= 1mj = k.

Then
O
j belongs toRES(k+ 1) .
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7.8.3 Alien derivations

We now specialize our analysis to some particularly interesting alien operators.

7.8.3.1 De�nitions

De�nition 7.50. Let be q 2 f pk;k 2 Zg � eS1, a 2]0;p=2] and L > 0. We set
�
q = p(q) 2 f 0;pg � S1. Let bew = meiq 2 eC for m2 f 1; � � � ;dLeg, resp. m2 N?.
The alien operatorsD+

w andDw atw,

D+
w ;Dw : RES(

�
q;a )(L) ! SINGq;a ; resp. D+

w ;Dw : RES! RES;

are de�ned as follows:

D+
w

O
j = A

g
�
q
(+) m� 1
�
w

(q;q)
O
j (7.26)

Dw
O
j = å

e=( e1;��� ;em� 1)2f + ;�g m� 1

p(e)!q(e)!
m!

A g
�
q
e
�
w

(q;q)
O
j ;

wherep(e), resp. q(e) = m� 1� p(e), denotes the number of “+ ” signs,resp.“ � ”
signs in the sequencee.

De�nition 7.51. The alien operatorsD+
w ;Dw : gRES! gRES for asymptotic classes

are de�ned by making the following diagrams commuting:
RES

D+
w ;Dw�! RES

L #" B L #" B

gRES
D+

w ;Dw�! gRES

.

7.8.3.2 Properties

Theorem 7.3.Under the hypotheses of de�nition 7.50, the alien operators

D+
w : RES(

�
q;a )(L) ! SINGq;a , resp.D+

w : RES! RES, satisfy the identity:

D+
w (

O
j �

O
y ) = ( D+

w
O
j )�

O
y + å

�
w1+

�
w2=

�
w

�
D+

w1

O
j

�
�

�
D+

w2

O
y

�
+

O
j �

�
D+

w
O
y

�
(7.27)

where the sum runs over allw1 = m1eiq , w2 = m2eiq , with m1;m2 2 N? such that
m1 + m2 = m.

The alien operatorsDw : RES(
�
q;a )(L) ! SINGq;a , resp.Dw : RES! RES, satisfy

the Leibniz rule, Dw
� O
j �

O
y

�
=

�
Dw

O
j

�
�

O
y +

O
j �

�
Dw

O
y

�
. Moreover,

Dw(
O
¶

O
j ) = (

O
¶ �

�
w)(Dw

O
j ). Eventually,D+

w
O

cons= Dw
O

cons= 0 for any resurgent

constant
O

cons.

Proof. We give the proof for the identity (7.27) only, so as to exemplify the use of

singularities. Moreover we work on the space
O
R (

�
q;a )(L).

The reader is invited to compare with the proof made in [18] for simple resurgent functions.
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There is no loss of generality in assuming that
O
j = [ bj ,

O
y = [ by with bj ; by 2 R̂ (q;a )(L).

By proposition 7.6 one has[ bj � [ bj = [ ( bj � bj ), therefore we can use arguments de-
veloped in chapter 4 (see in particular the proof of theorem 4.1), which allow us
some abuse of notations.

The analytic continuation of the convolution productbj � by along a pathg of type

g
�
q
(+) m� 1

= p(gq
(+) m� 1

), ending atz = w +
�
x0 near](m� 1)ei

�
q ;mei

�
q [, is the germ of

holomorphic functions de�ned as follows:

(contg bj � by )(w+
�
x) =

Z

H1

bj (h1) by (h2+
�
x �

�
x0)+

Z �
x �

�
x0

0
bj (z + h ) by (

�
x �

�
x0 � h )dh :

Here H1 (= p � H 1) is a symmatrically contractile path deduced fromg,

bj (h1) = contH1j[0;s] bj
�
H1(s)

�
, by (h2 +

�
x �

�
x0) = contH � 1

1 j[0;s] by
�
H � 1

1 (s) +
�
x �

�
x0

�

and bj (z + h ) = contH1
bj

�
H1(1) + h

�
. To get the associated singularity, that is

D+
w (

O
j �

O
y ), one only needs to consider the restrictions:

1. of the �rst integral near the “pinching points” (see Fig. 7.14), where one easily
recognizes convolution products for majors and these provide the contribution

å �
w1+

�
w2=

�
w

�
D+

w1

O
j

�
�

�
D+

w2

O
y

�
to the singularityD+

w (
O
j �

O
y );

2. of the two integrals near the end points, which provide the missing contributions
(use proposition 7.2).

This ends the proof. ut

De�nition 7.52. The linear operatorsDw are called alien derivations and RES is
called a resurgent algebra (since stable under alien derivations).

We refer to [18] (see also [1]) for the proof of the next statements.

Theorem 7.4.For anyq 2 f kp;k 2 Zg, w 2 eC with arg(w) = q,

Dw = å
s2N?

(� 1)s� 1

s å
arg(w1)= ���= arg(ws� 1)= q

0�
�
w1�����

�
ws�

�
w

D+
w� ws� 1

� � � � � D+
w2� w1

� D+
w1

; (7.28)

D+
w = å

s2N?

1
s! å

arg(w1)= ���= arg(ws� 1)= q
0�

�
w1�����

�
ws�

�
w

Dw� ws� 1 � � � � � Dw2� w1 � Dw1; (7.29)

In the above theorem,� stands for the total order on[0;w] induced byt 2 [0;1] 7! tw 2 [0;w].

The alien derivations own the property of generating the whole set of alien oper-
ators. We precise this claim with the following upshot from theorem 7.2 and theo-
rem 7.4.

Fig. 7.14 Symmetrically con-
tractile pathH1 and contribu-
tions toD+

w
�

bj � by
�

for w = 3.
Pinchings occur between 1
andz � 2, and between 2 and
z � 1.
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Theorem 7.5.Let m2 N? be a positive integer,e 2 f + ; �g m� 1, n 2 (N?)m� 1 and

q1 2 f pk;k 2 Zg. Let g be a path of typeg
�
q1
en ,

�
wm and

�
qm given by (7.23), and

qm 2 eS1 so that
�
qm = p(qm). Then the alien operatorA g

�
wm

(qm;q1) at
�
wm associated

with the triple(g;q1;qm) can be written as aZ-linear, resp.Q-linear combination
of composite operators of the form

r kn:
�
D+

wn
� � � � � D+

w2
� D+

w1

�
; resp. r kn:

�
Dwn � � � � � Dw2 � Dw1

�
;

that satisfy the properties:

� (
�
w1; � � � ;

�
wn) 2 (Z?)n, n2 N? andp

�
å n

j= 1w j

�
=

�
wm;

�
�
qm = arg(wn) + 2pkn, kn 2 Z;

� å n
j= 1 jw j j � m.

Example 7.13.We continue the example 7.10. The pathg is of typeg0
e for e = (+ ; � ;+)

and we know thatA
g0
(+ ;� ;+)

4 (0;0) = D+
4 � D+

2 � D+
2 . (On the right-hand side of the

equality,(4;2) stands for(4ei0;2ei0)). Using theorem 7.4, one gets:

A
g0
(+ ;� ;+)

4 (0;0) = D4 + 1
2!

�
D3 � D1 + D2 � D2 + D1 � D3

�

+ 1
3!

�
D2 � D1 � D1 + D1 � D2 � D1 + D1 � D1 � D1

�
+ 1

4!D1 � D1 � D1 � D1

�
�
D2 + 1

2!D1 � D1
�

�
�
D2 + 1

2!D1 � D1
�
:

Example 7.14.We continue the example 7.11. The pathg is of typeg
�
q1
en for e = (+ ; � ;+) ,

n = ( 1;3;1) and we have shown the identity:

A
g0
(+ ;� 2;+)

4 (0;0) = D+
4 � D+

2 � D+
2 � r � 1:D+

2e� 2ip � D+
2 :

This can be expressed in term of alien derivatives as well.

We end with an observation. By its very de�nition, any singularity
O
j 2

O
R (q;a )(L)

has aregular minor. This property involves the following relationships for the ac-
tion of the alien operators. (These are essentially consequences of propositions 7.19
and 7.20).

Proposition 7.26.We supposea 2]0;p=2], L > 0 and m2 f 1; � � � ;dLeg. The fol-
lowing equalities hold for any k2 Z:

� for any
O
j 2

O
R (0;a )(L), D+

meip2k

O
j = r � k:

�
D+

meip0

O
j

�
, Dmeip2k

O
j = r � k:

�
Dmeip0

O
j

�
;

� for any
O
j 2

O
R (p;a )(L), D+

meip(2k+ 1)

O
j = r � k:

�
D+

meip

O
j

�
, Dmeip(2k+ 1)

O
j = r � k:

�
Dmeip

O
j

�
;

� moreover, if
O
j 2

O
R (0;a )(L) \

O
R (p;a )(L) and if its minor bj is even, then

D+
eip

O
j = r � 1=2:

�
D+

1

O
j

�
, Deip

O
j = r � 1=2:

�
D1

O
j

�
with 1 = ei0, while if bj is odd,

thenD+
eip

O
j = � r � 1=2:

�
D+

1

O
j

�
, Deip

O
j = � r � 1=2:

�
D1

O
j

�
.

Example 7.15.We considerbj (z ) =
z

e2ipz � 1
2 R̂ . This is a meromorphic function

with simple poles atZ? whose residue atm 2 Z? is resmbj = m. Introducing the

singularity
O
j = [ bj , one easily deduces that for everyk 2 Z and everym2 N?,
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Dmeipk

O
j = D+

meipk

O
j = ( � 1)kmd: (7.30)

The formal Laplace transformL
O
j is an asymptotic class

M
j = \ ej that can be repre-

sentend by aZ-resurgent seriesej 2 eR Z and (7.30) translates into

Dmeipk

M
j = D+

meipk

M
j = ( � 1)km: (7.31)

We now look at the singularity
O
y s ;n=

O
Js ;n �

O
j for (s ;n) 2 C � N. By the Leibniz

rule and since
O
Js ;n is a resurgent constant,

Dmeipk

O
y s ;n=

O
Js ;n � Dmeipk

O
j = ( � 1)km

O
Js ;n2

\

a > 0

SINGpk;a : (7.32)

The asymptotic class associated to
O
y s ;n by formal Laplace transform is

M
y s ;n=

M
Js ;n

M
j 2 gRES. The identity (7.32) provides:

Dmeipk

M
y s ;n= ( � 1)km

M
Js ;n2

\

a > 0

ASYMPpk;a : (7.33)

7.8.3.3 The spacesRES(k)

We have already describe the action of the alien operators on the spaces RES(k) . We
can draw some consequences from theorem 7.3.

Corollary 7.2. Let be k2 N? andw 2 eC such that
�
w is an integer andjwj � k. The

alien operatorDw acts onRES(k) and

Dw : RES(k) ! RES(k�j wj) ; when 1 � j wj � k � 1
Dw : RES(k) ! SINGarg(w);p ; when jwj = k:

(7.34)

Moreover for any
O
j ;

O
y 2 RES(k) :

� Dw(
O
¶

O
j ) = (

O
¶ �

�
w)(Dw

O
j );

� Dw
� O
j �

O
y

�
belongs toRES(1) when1 � j wj � k � 1 and toSINGarg(w);p when

j
�
wj = k and furthermoreDw

� O
j �

O
y

�
=

�
Dw

O
j

�
�

O
y +

O
j �

�
Dw

O
y

�
(Leibniz rule).

Proof. The identity (7.34) is a consequence of proposition 7.23. The commutation

formula [Dw ;
O
¶] = �

�
w Dw ensues from proposition 7.18. Notice now that for any

k 2 N?, anyL 2]k� 1;k] and anya 2]0;p=2], one has RES(
�
q;a )(L) � RES(k) . Pick

two singularities
O
j ;

O
y 2 RES(k) and consider them as belonging to RES(

�
q;a )(L).

One can apply theorem 7.3 to get:Dw
� O
j �

O
y

�
=

�
Dw

O
j

�
�

O
y +

O
j �

�
Dw

O
y

�
2 SINGq;a .

Also, we know thatDw
O
j andDw

O
y belong to RES(k� m) or SINGq;p depending on

jwj. Finally when 1� j wj � k � 1, one can work in RES(1) � RES(k� m) which is a
convolution algebra by proposition 7.17 and this provides the conclusion.ut
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De�nition 7.53. The alien operators D+
w ;Dw : gRES(k) ! gRES(k�j wj) for

1 � j wj � k � 1, resp.D+
w ;Dw : gRES(k) ! ASYMParg(w);p , for jwj = k, for asymp-

totic classes are de�ned by making the following diagrams commuting:

RES(k) D+
w ;Dw�! RES(k�j wj)

L #" B L #" B

gRES(k) D+
w ;Dw�! gRES(k�j wj) :

, resp.
RES(k) D+

w ;Dw�! SINGarg(w);p
L #" B L #" B

gRES(k) D+
w ;Dw�! ASYMParg(w);p :

We add a property that will be useful in the sequel.

Corollary 7.3. Let k2 N? be a positive integer and
O
j 2 RES(k) . We suppose that for

any n2 N?, Dwn � � � � � Dw2 � Dw1

O
j belongs toRES(1) for any composite operator that

satis�es the properties:(
�
w1; � � � ;

�
wn) 2 (Z?)n andå n

j= 1 jw j j = k. Then
O
j belongs to

RES(k+ 1) .

Proof. This is a direct consequence of both corollary 7.1 and theorem 7.2.ut

7.9 Rami�ed resurgent functions

As already said, one uses various spaces of resurgent functions, accordingly to the
problem under consideration. We introduce some of them.

7.9.1 Simple and simply rami�ed resurgent functions

We start with the resurgent algebra of simple resurgent singularities, much discussed
in [18] (see also [1, 7]) and we make use of proposition 7.6.

De�nition 7.54. A Z-resurgent singularity
O
j 2 RES is said to be asimple resurgent

singularity when
O
j = ad + [ bj 2 SINGsimp and, for any alien operatorA g

w(q2;q1),

A g
w(q2;q1)

O
j belongs to SINGsimp. The minor bj , resp. the 1-Gevrey series

ej = a+ L bj , associated with a simpleZ-resurgent singularity is asimple resurgent
function, resp.a simple resurgent series, and one denotes bŷR Z

simp, resp. eR Z
simp

the space of simpleZ-resurgent functions,resp.series. The resurgent subalgebra
made of simple resurgent singularities is denoted by RESsimp

Z and the corresponding

space of asymptotic classes is denoted bygRES
simp
Z .

As usual in this course, we use abridged notations. One can make acting the alien
operators on the spaceeR simp.

De�nition 7.55. The alien operatorsD+
w ;Dw : eR simp ! eR simp are de�ned by making

the following diagrams commuting:

gRES
simp D+

w ;Dw�! gRES
simp

T1 #" \ T1 #" \

eR simp D+
w ;Dw�! eR simp

.

Obviously (from proposition 7.26), for anyej 2 eR simp, the alien derivativeDw ej

only depends on
�
w, thus one could de�neD+

w ;Dw : eR simp ! eR simp for w 2 Z?.
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Before introducing the simply rami�ed resurgent functions, we need to state the
following straightforward consequence of proposition 7.13.

Lemma 7.9.The space SINGs:ram of simply rami�ed singularities
O
j = å N

n= 0an
O
I � n + [ bj , bj 2 O0, is a convolution subalgebra.

De�nition 7.56. One denotes by ASYMPs:ram the space of asymptotic classes asso-
ciated with SINGs:ram. The restriction of the Taylor map to ASYMPs:ram is denoted
by Ts:ram

1 . One denotes by\ s:ram its composition inverse, that is the natural extension
of the mapping\ to C[z] � C[[z� 1]]1.

De�nition 7.57. A Z-resurgent singularity
O
j 2 RES is asimply rami�ed resurgent

singularity if
O
j = å N

n= 0a� n
O
I � n + [ bj 2 SINGs:ram and if, for any alien operator

A g
w(q2;q1), A g

w(q2;q1)
O
j belongs to SINGs:ram. The resurgent subalgebra made

of simply rami�ed resurgent singularities is denoted by RESs:ram
Z to which corre-

sponds the space of asymptotic classesgRES
s:ram

. The space of the associated formal
seriesej (z) = å ¥

n= � N anz� n is denoted byeR Z
s:ram

One can de�ne the alien operatorsD+
w ;Dw : eR s:ram ! eR s:ram in the same manner

than in de�nition 7.55 and, again, for anyej 2 eR s:ram, the alien derivativeDw ej only

depends on
�
w.

7.9.2 Rami�ed resurgent functions

The following de�nition makes sense by propositions 7.6 and 7.13.

De�nition 7.58. We denote by SINGram � SING the convolution subalgebra gener-

ated by the simple singularities and the set of singularitiesf
O
Js ;m; (s ;m) 2 C � Ng.

An element of
O
j 2 SINGram is called arami�ed singularityand reads as a �nite sum

O
j = å

(s ;m)

O
Js ;m �

O
j (s ;m) with

O
j (s ;m)2 SINGsimp. The associated space of asymptotic

classes is denoted by ASYMPram � ASYMP.

To a rami�ed singularity
O
j = å

(s ;m)

O
Js ;m �

O
j (s ;m) is associated, by formal Laplace

transform, an asymptotic class
M
j 2 ASYMPram of the form

M
j = å

(s ;m)

M
Js ;m

M
j (s ;m) with

M
j (s ;m)= \ ej (s ;m) 2 ASYMPsimp. This asymptotic class provides a formal expansion
of the type

ej (z) = å
(s ;m)

(� 1)m logm(z)
zs

ej (s ;m) 2
M

(s ;m)

logm(z)
zs C[[z� 1]]1

through the Taylor map, for any given arc ofeS1.

We have encountered such formal expansions when we considered the formal integral for
Painlev́e I (theorem 5.1).
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In the same way thatC[[z� 1]]1 can be thought of as a constant sheaf onS1, the
space

L
(s ;m)

logm(z)
zs C[[z� 1]]1 can be seen as a constant sheaf oneS1. This justi�es

the following de�nition.

De�nition 7.59. Let beq 2 eS1 anda > 0. We denote bygNils1, resp. gNils1;(q;a ) .

the space of global sections of the sheaf
L

(s ;m)
logm(z)

zs C[[z� 1]]1, resp.section on

J? =] � p=2� a � q; � q + a + p=2[. We call gNils1 the differential algebra of1-
Gevrey Nilsson series.

The restriction of the Taylor map to ASYMPram is denoted byTram
1 . One denotes

by

\ ram :
gNils1 ! ASYMPram

ej = å (s ;m)
eJs ;mej (s ;m) ! \ ramej = å (s ;m)

M
Js ;m

\ ej (s ;m)

its composition inverse, whereeJs ;m(z) = ( � 1)mlogm(z)
zs .

One can de�ne the spacegNils as well, made of formal expansions of the form
ej = å (s ;m)

eJs ;mej (s ;m) with ej (s ;m) 2 C[[z� 1]]. Let us consider an elementej 2 gNils

under the formej = å n
i= 1

ej i
zsi , ej i 2 C[[z� 1]]. We can of course assume that for

any i 6= j, s i � s j =2 Z. We denotewi = e� 2ips i and we remark thatwi � w j 6= 0
for any i 6= j. We setr :ej (z) = ej (ze2ip ) and more generallyr k:ej (z) = ej (ze2ipk)

for any k 2 Z. We notice thatr k:ej =
n

å
i= 1

wk
i

ej i

zs i
. Therefore,t ( ej ; r 1:ej ; � � � ; r n:ej ) =

At
�

ej 1

zs1
;

ej 2

zs2
; � � � ;

ej n

zsn

�
whereA stands for then� n invertible Vandermonde ma-

trix A =

0

B
B
B
@

1 � � � 1
w1 � � � wn
...

...
wn

1 � � � wn
n

1

C
C
C
A

. This implies that for each integeri 2 [1;n],
ej i

zs i
is a linear

combination ofej ; r :ej ; � � � ; r n:ej . This observation can be generalized:

Lemma 7.10.Let ej = å i å
r i � 1
m= 0

eJs i ;mej (s i ;m) be an element ofgNils. Then the series
ej (s i ;m) 2 C[[z� 1]] are uniquely determined byej and its monodromy (that isr :ej ,
r 2:ej , etc.) once one imposes thats i � s j =2 Z wheneverej (s i ;m) :ej (s j ;m) 6= 0.

Proof. This is a well-known fact and we follow a reasoning from [20]. We only
show howej determines the seriesej (s i ;m) since we will use this result in a moment.

If w = e� 2ips , observe that(r � w)
�

logm(z)
zs

�
= w

m� 1

å
l= 0

�
m
l

�
(2ip)m� l logl (z)

zs and

therefore(r � w)m
�

logm(z)
zs

�
= m!

wm

zs while (r � w)m+ 1
�

logm(z)
zs

�
= 0. As a

consequence, for anyej 2 gNils one hasP(r ) ej 2 gNils for any polynomialP 2 C[X],
and there exists a polynomialP 2 C[X] such thatP(r ) ej = 0. We denote byd( ej )
the degree of the minimal polynomial of the action ofr on ej . We then make a rea-
soning by induction ond( ej ).
Suppose thatd( ej ) = 1. This means that there existsw = e� 2ips 2 C such that

(r � w) ej = 0, thusr (zs ej ) = zs ej . Thereforeej is of the form ej =
ej (s1;0)

zs1 with
ej (s1;0) 2 C[[z� 1]] and a convenient choice ofs1 2 C so thats1 � s 2 Z. (Thus
ej (s1;0) = r (zs1 ej )).

Suppose now that for anyej 2 gNils such thatd( ej ) � d, its decomposition is
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(uniquely) determined byej ; r :ej ; � � � ; r d:ej .
Let be ej 2 gNils with d( ej ) = d + 1. The minimal polynomial of the action ofr on
ej is P(X) = Õi(X � wi)r i with å i r i = d+ 1. Write:

eP(X) = ( X � w1)r1� 1Õ
i6= 1

(X � wi)r i = ( X � wi)r1� 1Q(X):

From the fact that(r � w1) eP(r ) ej = 0, we deduce the identityeP(r ) ej =
ef

zs1
with

ef 2 C[[z� 1]]1 and a convenients1 2 C such thatw1 = e� 2ips1. Since

eP(r )
�

logr1� 1(z)
zs1

�
= Q(r )

 

(r1 � 1)!
wr1� 1

1

zs1

!

= Q(w1)( r1 � 1)!
wr1� 1

1

zs1
;

we see that necessarily eP(r )
�

eJs1;r1� 1 ej s1;r1� 1

�
= ( � 1)r1� 1

ef
zs1

and

ej s1;r1� 1 = ( � 1)r1� 1
ef

(r1 � 1)!wr1� 1
1 Q(w1)

.

We �nally observe thateP(r )
�

ef � eJs1;r1� 1 ej s1;r1� 1

�
= 0 and we can apply the in-

duction hypothesis onef � eJs1;r1� 1 ej s1;r1� 1. This ends the proof. ut

We are in good position to de�ne the rami�ed resurgent functions [24, 7, 8], see
also [15].

De�nition 7.60. A Z-resurgent singularity
O
j 2 RESZ is arami�ed resurgentsingu-

larity when
O
j 2 SINGram whereas, any alien operatorA g

w(q2;q1), A g
w(q2;q1)

O
j

belongs to SINGram. The space of rami�ed resurgent singularities makes a resur-
gent subalgebra denoted by RESram

Z . The corresponding space of asymptotic classes,
resp.formal expansions, is denoted bygRES

ram
Z , resp. eR Z

ram.

We state a result that derives directly from lemma 7.10

Proposition 7.27.The formal expansionej = å (s ;m)
eJs ;mej (s ;m) 2 gNils belongs to

eR ram if and only if each of its componentsej (s ;m) belongs to eR ram.

De�nition 7.61. The alien operatorsD+
w ;Dw : eR ram ! eR ram are de�ned by making

the following diagrams commuting:

gRES
ram D+

w ;Dw�! gRES
ram

Tram
1 #" \ ram Tram

1 #" \ ram

eR ram D+
w ;Dw�! eR ram

.

We eventually lay down a direct consequence of proposition 7.19. (We warn to
the change of sign).

Proposition 7.28.Let ej be an element ofeR ram. Then, for anyw 2 eC with
�
w 2 Z?,

for any k2 Z,

Dwe2ipk ej = r k:
�

Dwr � k:ej
�

; Dweip ej = r 1=2:
�

Dwr � 1=2:ej
�

:

Example 7.16.Suppose thatej 2 C[[z� 1]]1 belongs to eR ram with Dw ej = log(z)
zs ey ,

ey 2 C[[z� 1]]. Fork 2 Z, r � k:ej (z) = ej (z), thenDwe2ipk ej (z) = log(z+ 2pk)
zs e2ipks ey (z).
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Suppose furthermore thatej is even, so thatr � 1=2:ej (z) = ej (z). On deduces that

Dweip ej (z) = log(z+ p)
zs eips ey (� z).

7.10 Comments

We mentioned in Sect. 4.7 the generalisation of the resurgence theory with the no-
tion of “endlessly continuable functions” [1, 8]. The whole constructions made in
this chapter can be extended as well to this context.

We of course owe the main ideas presented here from the work of Ecalle, who
started his theory in the 1970's [6]. We have borrowed most of the materials to Pham
et al. [1], in particular the microfunctions and the sheaf approach. To compare with
other written papers devoted to resurgence theory, we have paid more attention to
the sheaf and associated spaces of asymptotic classes. Finally, the responsability for
possible mistakes is ours.
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