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Preface

These lecture notes are an extended form of a course given at a CIMPA
master class held in LIMA, Perù, in the summer of 2008. The students that
followed these lectures were already introduced to Gevrey and k-summability
by Michèle Loday-Richaud, and to resurgence theory by David Sauzin, at an
elementary level. My aim was merely to show the resurgent methods acting on
an example and along that line, to extend the presentation of the resurgence
theory of Jean Ecalle provided that the need.

The present lecture notes reflect this plan and this pedagogical point of
view. The example that we follow along this course is the First Painlevé dif-
ferential equation, or Painlevé I for short. Besides its simplicity, there are
various reasons that justify this choice. One of them is the non-linearity,
which is the field where the resurgence theory reveals its power. Another rea-
son lies on the fact that resonances occur, a case which is scarcely found in
the literature. Last but not least, the Painlevé equations and their transcen-
dents appear today to be an inescapable knowledge in analysis for any young
mathematician. It was thus certainly worthy to detail the complete resurgent
structure for Painlevé I, a study that does not seem to have been performed
before on any Painlevé equation.

I have tried to be as self-contained as possible, aiming at graduate stu-
dents. Since this volume deals with ordinary non-linear differential equations,
one begins with definitions and phenomena linked to the non-linearity. Spe-
cial attention is then brought to Painlevé I and to its so-called tritruncated
and truncated solutions that are constructed by proving the summability of
the transseries solutions. One details the formal integral for Painlevé I and,
equivalently, the formal transform that brings Painlevé I to its normal form.
One analyzes the resurgent structure for Painlevé I through additional mate-
rial in resurgence theory. As a rule, each chapter ends with some comments
on possible extensions for which one provides references to the existing liter-
ature.
Acknowledgments: I warmly thank my student Julie Belpaume to whom I
borrowed some materials used in this volume.

Angers, Eric Delabaere
September 2014
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Chapter 1

Some elements about ordinary
differential equations

Abstract This chapter is merely devoted to recalling usual notations and
elementary results on ordinary differential equations (ODEs) in the complex
domain. We give the fundamental existence theorem for Cauchy problems
(Sect. 1.1). We detail the main differences between solutions of linear versus
nonlinear ODEs, when the question of their analytic continuation is consid-
ered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations
(Sect. 1.3).

1.1 Ordinary differential equations in the complex
domain

An ordinary differential equation (ODE) is a functional relation of the type

F
(
x,u(x),u′(x), · · · ,u(N)(x)

)
= 0, u(k)(x) =

dku

dxk
(x) ∈ Cm. (1.1)

We refer to m as the dimension of the ODE. The order N of the ODE
refers to the highest derivative considered in the equation.

This ODE of order N is said to be solved in his highest derivative if
it is written as

u(N) = F (x,u, · · · ,u(N−1)). (1.2)

1.1.1 The fundamental existence theorem

We recall the fundamental existence theorem for the Cauchy problem, for
analytic ODEs (see, e.g. [20, 18, 24, 19]). We note D(z, r) ⊂ C the open
disc centred on z and of radius r. For a given open domain U ⊂ Cm (i.e., a
connected open set) we denote by O(U) the complex linear space of functions
holomorphic in U .

A function f belongs to O(U) if f is continuous on U ⊂ Cm and holomorphic in each

complex variable (Osgood theorem). As a matter of fact, it is enough to assume only

the holomorphy in each complex variable without the continuity hypothesis (Hartogs
theorem).

1



2 1 Some elements about ordinary differential equations

Theorem 1.1 (Cauchy problem). Let U ⊂ C×Cm be an open domain and
F : U → Cm a holomorphic vector function, F ∈ Om(U). Then, for every
(x0,u0) ∈ U there exists a polydisc D(x0, ε0)

∏
1≤i≤mD(u0i, εi) ⊂ U such

that there exists a solution u : D(x0, ε0)→
∏

1≤i≤mD(u0i, εi) of the analytic
ODE of order 1 and of dimension m

du

dx
= F (x,u) (1.3)

which satisfies the initial value condition

u(x0) = u0 (1.4)

and this solution is unique. Moreover u belongs to O(D(x0, ε0)) and also
depends holomorphically on the initial value u0.

In what follows we shall consider essentially scalar ODEs, that it ODEs of
dimension 1 and of order N . The theorem 1.1 translates to this case as well,
since every ODE of order N and of dimension 1, once solved in his highest
derivative, is equivalent to an ODE of order 1 and of dimension N : if u = v0,
u′ = v1, · · · , u(N−1) = vN−1, the Cauchy problem{

u(N) = F (x, u, · · · , u(N−1))(
u(x0), · · · , u(N−1)(x0)

)
=
(
u0, · · · , u(N−1)

0

)
is equivalent to the Cauchy problem

d

dx


v0

...
vN−2

vN−1

 =


v1

...
vN−1

F (x, v0, · · · , vN−1)


 v0

...
vN−1

 (x0) =

 u0

...

u
(N−1)
0

 .

1.1.2 Some usual terminologies

The following terminologies are commonly used (see, e.g. [6]):

• The general solution of an ODE of order N and of dimension 1 is the
set of all solutions determined in application of the Cauchy theorem 1.1.
It depends on N arbitrary complex constants.

• A particular or special solution is a solution derived from the general
solution when fixing a particular initial data.

• A singular solution is a solution which is not particular.



1.2 On singularities of solutions of ordinary differential equations 3

1.1.3 Algebraic differential equations

In a moment we shall concentrate on algebraic differential equations, these
we define now.

For an open domain D ⊂ C we denote byM(D) the field of meromorphic
functions in D.

The ODE (1.1) of order N and of dimension 1 is said to be algebraic
on a domain D if F ∈ M(D)[u, u′, · · · , u(N)] that is, F is polynomial in
(u, u′, · · · , u(N)) with meromorphic coefficients in x.

An algebraic ODE is rational if it is of degree one in the highest derivative
u(N), and linear (homogeneous) if F is a linear form in (u, u′, · · · , u(N)).

1.2 On singularities of solutions of ordinary differential
equations

We fix some notations that will be used in a moment.

Definition 1.1. Let λ : [a, b] ⊂ R → C be a path starting at x1 = λ(a) and
ending at x2 = λ(b). If u is a (germ of) holomorphic function(s) at x1 that
can be analytically continued along λ, we note contλu the resulting (germ
of) holomorphic function(s) at x2.

Denote by O =
⊔
x∈C

Ox the set of all germs of holomorphic functions. We equip O

with its usual topology and with the projection q :
O → C

u ∈ Ox 7→ x ∈ C which associates

to a germ its support [12, 9]. The space O becomes an étalé space, that is q is a

local homeomorphism. The analytic continuation of the germ u ∈ Ox1 along λ, if
exists, is the image of the unique path Λ : [a, b]→ O such that Λ(a) = u and whose

projection by q is λ :

O
Λ↗ ↘ q
[a, b] −→ C

λ

. Wih this notation, contλu = Λ(b).

We now consider an ODE of order N and of dimension 1,

F
(
x, u(x), u′(x), · · · , u(N)(x)

)
= 0,

with F : U → C a holomorphic function on the open domain U ⊂ C×CN+1,

F ∈ O(U). Assume that
(
x0, u0, · · · , u(N)

0

)
∈ U and that{

F
(
x0, u0, · · · , u(N)

0

)
= 0

∂N+2F
(
x0, u0, · · · , u(N)

0

)
6= 0.

By the implicit function theorem, the Cauchy problem{
F
(
x, u(x), u′(x), · · · , u(N)(x)

)
= 0(

u(x0), · · · , u(N)(x0)
)

=
(
u0, · · · , u(N)

0

)
is locally equivalent to a Cauchy problem where the ODE is solved in its
highest derivative. Theorem 1.1 thus provides a holomorphic solution u near
x = x0. We consider a path γ : [a, b]→ C from x0 to x1 in C and for s ∈ [a, b]
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we denote γs : [a, s] → C the restriction to [a, s] of γ. Assume that u can
be analytically continued along the path γ and that for every s ∈ [a, b], the
value at γ(s) of the analytic continuation contγs

(
x, u, u′, · · · , u(N)

)
along γs

belongs to U . Then the analytic continuation contγu along γ of the solution u
still satisfies the differential equation, thanks to the uniqueness of the analytic
continuation.

This property raises the question of describing the singularities of the ana-
lytic continuations of solutions of analytic ODEs, for instance for an algebraic
differential equation defined on an open domain. As we shall see, appearance
of singularities is quite different whether one considers linear or nonlinear
ODEs.

1.2.1 Linear differential equations

For linear (homogeneous) ordinary differential equations, from the Cauchy
existence theorem for linear differential equations (see, e.g. [35, 24, 19, 21]),
the general solution has no other singularities than the so-called fixed sin-
gularities which arise from the coefficients of the ODE once solved for the
highest derivative.

1.2.1.1 Example 1

We start with an equation where x = 0 is an irregular singular point of
Poincaré rank 1,

x2u′ + u = 0, u(x) = Ce1/x, C ∈ C.

Here x = 0 is a fixed essential singularity for the general solution (but not
for the particular solution u(x) = 0), which arises from the equation itself.

If u ∈ O(D(0, r)?) is a holomorphic function in the punctured disc, then u can be

represented by its Laurent series expansion
∑
n∈Z

anx
n which converges in 0 < |x| < r.

One says that 0 is an essential singularity if and only if the Laurent series expansion

has an infinite number of n < 0 such that an 6= 0 or, equivalently, if u has no limit
(finite or infinite) when x→ 0. A typical example is provided by the function e1/x.

1.2.1.2 Example 2

We consider the Airy equation,

u′′ − xu = 0, u(x) = C1Ai(x) + C2Bi(x), C1, C2 ∈ C.

Here Ai and Bi are the Airy’s special functions of the first and second kind
respectively. These are entire functions. When considered on the Riemann
sphere C, x = ∞ appears as a fixed (essential) singularity for the general
solution (except again for the particular solution u(x) = 0) which arises from
the equation : x =∞ is an irregular singular point of Poincaré rank 3/2.

More generally, for a linear ordinary differential equation
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N∑
k=0

ak(x)u(k) = 0, ak(x) ∈ O(D), (1.5)

the general solution can be analytically continued as a multivalued function
on D \ S, S = {the zeros of aN}, or more precisely as a single valued holo-
morphic function once it is considered on a Riemann surface [12, 9] defined as

a covering space,
R
π ↓
D \ S

. In other words, the general solution is uniformis-

able (or also stable) [6] in the following sense : for any Cauchy data at
x0 ∈ D \ S that determined a unique local solution u of (1.5) on a domain
U ⊂ D\S, one can find a domain U ⊂ R such that π|U : U → U is a home-
omorphism, and a holomorphic function φ : R → C so that φ|U = u ◦ π|U .

Then, for any domain U ′ ⊂ R so that π|U ′ : U ′ → U ′ is a homeomorphism, the

function φ ◦ (π|U )−1 is still a holomorphic solution of (1.5) on U ′.

1.2.2 Nonlinear differential equations

When nonlinear ODEs are concerned, beside the possibly fixed singularities
arising from the equation, the general solution has as a rule other singularities
which depend on the arbitrary coefficients : these are movable singularities.

1.2.2.1 Example 1

We start with the following nonlinear ODE,

xu′ − u2 = 0,
general solution : u(x) =

1

C − log(x)
, C ∈ C.

singular solution : u(x) = 0

For the general solution, x = 0 is a fixed branch point singularity which
comes from the equation. The general solution u is uniformisable : it should
be considered as a function on the Riemann surface C

•
of the logarithm1,

C
•

= {x = reiθ | r > 0, θ ∈ R}, π : x ∈ C
•
7→ x

•

= reiθ ∈ C?.

One sees that the general solution u is meromorphic on C
•

, with poles at

π−1(eC) : these are movable singularities, depending on the chosen coeffi-
cient C.

1.2.2.2 Example 2

The above example is just a special case of a more general rational ODE of
order 1, the Riccati equation,

1 We keep a notation of Ecalle, see definition 3.10. Of course (C
•
, π) can be thought of as

the universal covering of the punctured space C?.
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u′ = a0(x) + a1(x)u+ a2(x)u2 ai ∈M(D), (1.6)

where D ⊂ C is a domain. By the change of unknown function

u = − 1

a2(x)

d

dx
log v

the Riccati equation (1.6) is linearisable into the following linear ODE,

v′′ +

(
a′2(x)

a2(x)
− a1(x)

)
v′ + a2(x)a0(x)v = 0.

The general solution for this linear equation has (fixed) singularities located

at the poles of
a′2(x)

a2(x)
−a1(x) and a2(x)a0(x). We note S ⊂ D this set of poles.

Then the general solution of the Riccati equation (1.6) is uniformisable since
it can be analytically continued as a meromorphic function on a Riemann
surface defined as a covering over D \ S.
When the ai belong to O(D), then the general solution of (1.6) is a mero-
morphic function on D [25].

1.2.2.3 Example 3

Another well known equation is the following algebraic nonlinear ODE of
order 1, of degree 2 in its highest derivative, namely the elliptic equation:

u′
2

= 4u3 − g2u− g3, (g2, g3) ∈ C. (1.7)

A particular solution is provided by the Weierstrass p-function ℘(x; g2, g3)
which can be obtained as the inverse function of the elliptic integral of the
first kind

x =

∫ u

∞

dq√
4q3 − g2q − g3

,

(
dx

du

)2

=
1

4u3 − g2u− g3
.

(Just apply the inverse function theorem).
When the discriminant D = g3

2 − 27g2
3 satisfies the condition D 6= 0, the

polynomial function 4u3 − g2u− g3 = 4(u− e1)(u− e2)(u− e3) has 3 simple
roots e1, e2, e3. In that case the elliptic function ℘(x; g2, g3) is a doubly peri-
odic meromorphic function with double poles at the period lattice mω1+nω2,

(n,m) ∈ Z2,
ω1

ω2
/∈ R.

The period lattice can be described as follows : consider the elliptic curve
L = {(q, p) ∈ C2, p2 = 4q3 − g2q − g3} for D 6= 0. The homology groupH1(L;Z)
is a free Z-module of rank 2 and we note γ1 and γ2 two cycles which gen-
erate H1(L;Z). Then the period lattice is generated by the period inte-

grals ω1 =

∫
γ1

dq

p
, ω2 =

∫
γ2

dq

p
(equivalently ω1 = 2

∫ e2

e1

dq√
4q3 − g2q − g3

,

ω2 = 2

∫ e3

e1

dq√
4q3 − g2q − g3

). The homology group H1(L;Z) can be seen as

a local system on C2 \ D (that is a locally constant sheaf of Z-modules on
C2 \D) from which one can deduce that ω1,2, viewed as functions of (g2, g3),
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Fig. 1.1 The ellip-

tic curve L viewed as
the Riemann surface of

p = (4u3 − g2u− g3)1/2.

The homology classes of
the cycles γ1 and γ2 drawn

generate H1(L;Z) γ
2

γ
1

can be analytically continued as “multivalued” analytic functions on C2 \D.
When D = 0 the solutions degenerate into simply periodic solutions, with a
string of poles instead of a double array.

Conversely, starting from the period lattice with
ω1

ω2
/∈ R, the Weierstrass

℘-function can be obtained as

℘(x; g2, g3) = x−2 +
∑
ω 6=0

{(x− ω)−2 − ω−2} = x−2 + g2
x2

20
+ g3

x4

28
+ · · ·

where the first summation extends over all ω = mω1 + nω2 6= 0, (n,m) ∈ Z2

while g2 = 60
∑
ω 6=0

ω−4, g3 = 140
∑
ω 6=0

ω−6.

The general solution of (1.7) is given by ℘(x − x0; g2, g3), since (1.7) is an
autonomous ODE.
To go further on the nice properties of elliptic functions see, e.g. [33].

1.2.2.4 Example 4

Notice that singularities of differential equations may be isolated singularities
such as poles, branch points of finite or infinite determinations, or essential
singular points. They may be also essential singular lines, or even perfect sets
of singular points. For instance, the general solution of the following Chazy
equation of class III,

u(3) − 2uu(2) + 3u′
2

= 0, (1.8)

is defined only inside or outside an open disc whose boundary is a natural
movable boundary determined by the initial data [3, 4].

1.3 The Painlevé program, Painlevé property and
Painlevé equations

At the end of the 19th century a list of special transcendental functions
was known, most of them being obtained as solutions of linear algebraic
differential equations.

An algebraic function u in one complex variable x is a solution of a polynomial
equation P (x, u) = 0, P ∈ C[x, u]. A transcendental function u is a function which

is not algebraic.
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A challenging problem in analysis was thus to discover new transcendental
functions defined by algebraic ODEs which cannot be expressed in term of so-
lutions of linear algebraic ODEs : these new functions should thus be defined
by non-linear algebraic differential equation [6, 8, 21].

For that purpose a systematic approach needs first to classify the ODEs
under convenient criters. This is the goal of the so-called Painlevé program
(see [6] and references therein) which consists in classifying all algebraic ODEs
of first order, then second order, etc ..., whose general solution can be analyt-
ically continued as a single valued function2. In other words, no branch point
is allowed. For instance the elliptic equation (1.7) or the Chazy equation (1.8)
are such equations.

According to what we have seen, the Painlevé program splits into two
problems:

• absence of fixed branch point for the general solution;
• absence of movable branch point for the general solution : this condition

is the so-called Painlevé property.

In the literature, the term “Painlevé property” is sometimes used for the stronger

property for the general solution of an ODE to be meromorphic, see [6]

Notice that the Painlevé property for an algebraic ODE F(x, u, u′, · · · , u(p)) = 0
defined on a domain D ⊂ C is preserved by:

• a holomorphic change of variable x ∈ D 7→ X = h(x), h ∈ O(D);
• a linear fractional change of the unknown with coefficient holomorphic in
D (action of the homographic group),

u 7→ U =
a(x)u+ b(x)

c(x)u+ d(x)
, U 7→ u =

d(x)U − b(x)

−c(x)U + a(x)
,

a, b, c, d ∈ O(D), ad − bc 6= 0. Therefore, the classification in the Painlevé
program is made up to these transformations.

Notice however that other actions preserving the Painlevé property can be consid-
ered, see [6, 7, 21].

1.3.1 ODEs of order one

We consider (nonlinear) ODEs of the form

F
(
x, u, u′

)
= 0, (1.9)

with F ∈M(D)[u, u′]. For that class of ODEs, the Painlevé program can be
considered as being achieved and we mainly refer to [20, 18, 6, 21] for the
classification.

In that case no essential movable singular point can appear ([20], Sect.
13.6). Therefore looking for ODEs of type (1.9) with the Painlevé property
reduces in asking that the movable singular points are just poles.

When (1.9) is a rational ODE, then the class of ODE we are looking for
is represented only by the Riccati equation (1.6). See [25], in particular the
Malmquist-Yosida-Steinmetz type theorems.

2 This condition can be weakened by asking the general solution to be only uniformisable.
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The ODEs of type (1.9) of degree ≥ 2 in the highest derivative and sat-
isfying the Painlevé property essentially reduce (up to the transformations
mentioned above) to the elliptic equation (1.7). See [6, 20] for more precise
statements.

1.3.2 ODEs of order two : the Painlevé equations

In contrast to what happens for algebraic ODEs of order one, essential mov-
able singular points may exist when the order is ≥ 2, making the analysis
more difficult. Nevertheless, the classification is known for at least algebraic
equations of order two

F
(
x, u, u′, u′′

)
= 0, F ∈M(D)[u, u′, u′′] (1.10)

which are rational, that is of degree one in u′′. Such equations enjoying the
Painlevé property reduce (up to transformation) to:

• equations which can be integrated by quadrature,
• or linear equations,
• or one of six ODEs known as the Painlevé equations, the first 3 being:

(PI) u′′ = 6u2 + x
(PII) u′′ = 2u3 + xu+ α

(PIII) u
′′ =

u′
2

u
− u′

x
+
αu2 + β

x
+ γu3 +

δ

u
· · · · · ·

(1.11)

For the complete list see, e.g. [20, 18, 6, 21]. In (1.11), α, β, γ, δ are arbi-
trary complex constants. Each Painlevé equation can be derived from the
“master equation” PV I by some limit processes [21].

The Painlevé equations have beautiful properties, see e.g. [5, 21, 16]. One
of them is the following one:

Theorem 1.2. The general solution of the Painlevé equation PJ , J = I, · · · , V I
admits no singular points except poles outside the set of fixed singularities.

So the Painlevé equations have the Painlevé property, but moreover the
general solution is free of movable essential singularities.
Notice that the Painlevé equation should be seen as defined on the Riemann
sphere C. The set of fixed singular points SJ of PJ is a subset of {0, 1,∞}.
For instance SI and SII are just {∞}, while SIII = {0,∞}. Theorem 1.2 thus
translates as follows : the general solution of PJ can be analytically continued
as a meromorphic function on the universal covering of C \ SJ .

Theorem 1.2 can be proved in various ways. An efficient one uses the rela-
tionship between Painlevé equations and monodromy-preserving deformation
of some Fuchsian differential equations [23, 22, 28, 21, 11].

The general (global) solutions of the Painlevé equations are called the
Painlevé transcendents. This refers to the fact that, for generic values
of the integration constants and of the parameters of the equations, these
solutions cannot be written with elementary or classical transcendental func-
tions, a question which has been completely solved only recently with the
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development of the modern nonlinear differential Galois theory (see [34] and
references therein).

1.3.3 Painlevé equations and related topics

The renewed interest in Painlevé equations mainly came from theoretical
physics in the seventies, with the study of PDEs of the soliton type (Boussi-
nesq equation, Korteweg-de Vries KdV and modified Korteweg-de Vries equa-
tion mKdV, etc..): when linearized by inverse scattering transform [1], these
PDEs give rise to ODEs with the Painlevé property. For instance, the Boussi-
nesq equation utt−uxx−6(u2)xx+uxxxx = 0 has a self-similar solution of the
form u(x, t) = w(x− t) where w is either an elliptic function or satisfies the
first Painlevé equation. In the same lines, the (m)KdV hierarchy introduced
by Lax in [27] (and already in substance in [26] after the work of Gardner et
al [13] on the KdV equation), will later give rise to various Painlevé hier-
archies which are thought of as higher-order Painlevé equations and much
studied since. See for instance [29] and references therein, for an asymptotic
study of the Jimbo-Miwa [22] and Flaschka-Newell [10] second Painlevé hi-
erarchies [15].
Discrete (analogues of the) Painlevé equations are today the matter of
an intensive research, after the pioneering work of Bessis et al [2] on the
study of partition functions in quantum gravity, see for instance [14, 17] and
references therein. Also non commutative extensions of integrable systems
have recently attracted the attention of the specialists, with non commuta-
tive (analogues of the) Painlevé equations and their hierarchies as main
examples, see e.g. [31]. Finally, we could hardly leave untold the important
group-theoretic interpretation of Painlevé equations in the line of the work
of Okamoto [30], see for instance [8] and references therein.

It is not our aim to say more about Painlevé equations in general except for
the first Painlevé equation which is used in this course as field of experiments
in asymptotic and resurgent analysis, and which is the matter for the next
chapter.
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Chapter 2

The first Painlevé equation

Abstract This chapter aims at introducing the reader to properties of the
first Painlevé equation and its general solution. The definition of the first
Painlevé equation is recalled (Sect. 2.1). We precise how the Painlevé prop-
erty translates for the first Painlevé equation (Sect. 2.2), a proof of which
being postponed to an appendix. We explain how the first Painlevé equation
arises also as a condition of isomonodromic deformations for a linear ODE
(Sect. 2.3 and Sect. 2.4). Some symmetry properties are mentioned (Sect.
2.5). We spend some times in describing the asymptotic behaviour at infinity
of the solutions of the first Painlevé equation and, in particular, we describe
the truncated solutions (Sect. 2.6). We eventually briefly comment the im-
portance of the first Painlevé transcendents for models in physics (Sect. 2.7).

2.1 The first Painlevé equation

We concentrate now on the first Painlevé equation,

(PI) u
′′ = 6u2 + x. (2.1)

We notice that for every x0 ∈ C and every (u0, u
′
0) ∈ C2, theorem 1.1 ensures

the existence of a unique solution of (2.1), holomorphic near x0, satisfying
the initial data

(
u(x0), u′(x0)

)
= (u0, u

′
0).

2.2 Painlevé property for the first Painlevé equation

As already mentioned, the first Painlevé equation satisfies the Painlevé prop-
erty. We have the following more precise result.

Theorem 2.1. Every solution of the Painlevé equation PI can be analytically
continued as a meromorphic function on C with only double poles.

This theorem will be shown in appendix. We add the following result for
completeness:

Theorem 2.2. Every solution of (2.1) is a transcendental meromorphic
function on C with infinitely many poles.

13
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Proof. We just give an idea of the proof. It is easy to see that every solution
u of the first Painlevé equation (2.1) is a transcendental function. Otherwise,
since u is meromorphic with double poles, u should be a rational function,

u(x) =
P (x)

Q(x)2
. Reasoning on the degrees of P and Q, one shows that this is

impossible. So every solution u is a transcendental meromorphic function. It
can be then derived from the Clunie lemma in Nevanlinna theory of mero-
morphic functions that necessarily u has an infinite set of poles [26, 13]. ut

The above properties were well-known since Painlevé [37]. The following
one was also known by Painlevé, however its complete proof has been given
only recently [34], see also [5].

Theorem 2.3. A solution of PI cannot be described as any combination of
solutions of first order algebraic differential equations and those of linear
differential equations on C.

2.3 First Painlevé equation and isomonodromic
deformations condition

Each Painlevé equation PJ is equivalent to a nonautonomous Hamiltonian
system [35]. Concerning the first Painlevé equation this Hamiltonian system
is given by the following first Painlevé system:

(HI)


du

dx
=
∂HI

∂µ
= µ

dµ

dx
= −∂HI

∂u
= 6u2 + x

, HI(u, µ, x) =
1

2
µ2 − 2u3 − xu. (2.2)

It is known [11, 36] that this Hamiltonian system arises as a condition of
isomonodromic deformations of the following (Schlesinger type) second
order linear ODE,

(SLI)


∂2Ψ

∂z2
= QI(z;u, µ, x)Ψ

QI(z;u, µ, x) = 4z3 + 2xz + 2HI(u, µ, x)− µ

z − u
+

3

4(z − u)2
,

(2.3)
In other words, u is solution of the first Painlevé equation (2.1) if and only
if the monodromy data of (2.3) do not depend on x. We explain this point.
Equation (2.3) has two fixed singularities z = u,∞, so that any solution of
(2.3) can be analytically continued on a Riemann surface over C \ {u,∞}.
The singular point z = u is a regular singular point, and a local analysis
easily shows that the monodromy at this point (see [33]) of any fundamental
system of solutions of (2.3) does not depend on x. The other singular point
z = ∞ is an irregular singular point. Thus the only nontrivial mondromy
data of (2.3) are given by the Stokes multipliers at z =∞.

The second order linear ODE (2.3) is equivalent to a first order linear ODE in

dimension two. Each Stokes matrix is a two by two univalent matrix [28, 33], and
thus depends on a sole complex coefficient called a Stokes multiplier.
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In general these Stokes multipliers depend on x, except when Ψ satisfies the
following isomonodromic deformation condition:

(DI)
∂Ψ

∂x
= AI

∂Ψ

∂z
− 1

2

∂AI
∂z

Ψ, AI =
1

2(z − u)
(2.4)

The first Painlevé system (2.2) ensures the compatibility between equations
(2.3) and (2.4) : solving a Painlevé equation is thus equivalent to solving an
inverse monodromy problem (Riemann-Hilbert problem) [33, 17, 16, 23, 24,
38, 22, 20, 10].

We add another property : we mentioned that the asymptotics of (2.3) at
z = ∞ are governed by some Stokes multipliers si = si(u, µ, x). It can be
shown that the space of Stokes multipliers makes a complex manifoldMI of
dimension 2. Also, for any point of MI there exists a unique solution of the
first Painlevé equation (2.1) for which the monodromy data of equation (2.3)
are equal to the corresponding coordinates of this point [23].

2.4 Lax formalism

There is another fruitful alternative to get the Painlevé equations, however re-
lated to the previous one, based on the linear representations of integrable sys-
tems through the Lax formalism [27]. We exemplify this theory for Painlevé I,
for which the so-called Lax pair A and B are the matrix operators given as
follows [16]:

A =

(
v(x) 4

(
z − u(x)

)
z2 + u(x)z + u(x)2 + x/2 −v(x)

)
, B =

(
0 2

z/2 + u(x) 0

)
.

To the matrix operator A one associates a first order ODE in the z variable,
whose time evolution (the x variable) is governed by another first order ODE
determined by the matrix operator B,

∂Ψ

∂z
= AΨ

∂Ψ

∂x
= BΨ

(2.5)

The compatibility condition
∂2Ψ

∂z∂x
=

∂2Ψ

∂x∂z
provides what is known as the

zero curvature condition (or also Lax equation), namely ∂A
∂x −

∂B
∂z = [B,A]

where [B,A] = BA−AB stands for the commutator. Expliciting this condi-

tion, one recovers the first Painlevé equation under the form


du

dx
= v

dv

dx
= 6u2 + x

.

From what we have previously seen, the zero curvature condition allows to
think of (2.5) as an isomonodromic deformations condition for its first equa-
tion.
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2.5 Symmetries

Here we would like to notice that the cyclic symmetry group of order five
acts on the set of solutions (2.1). Indeed, introducing

ωk = e
2iπ
5 k, k = 0, · · · , 4

then any solution u of (2.1) is mapped to another solution uk through the
transformation

uk(x) = ω2
ku
(
ωkx

)
, k = 0, · · · , 4.

In general u and uk will be different solutions, an obvious exception being
when u satisfies the initial data u(0) = u′(0) = 0.

2.6 Asymptotic at infinity

Our aim in this section is to describe all the possible behaviors at infinity of
the solutions of the first Painlevé equation (2.1).
We first notice that x = ∞ is indeed a fixed singularity for PI : making

the change of variable u(x) = u(t), t =
1

x
, equation (2.1) translates into

t5u′′ + 2t4u′ = 1 + 6tu2, where t = 0 appears as a (irregular) singular point.
We mention that, when analysing the asymptotics of solutions of differen-

tial equations at singular points, there are a great difference between linear
and nonlinear ODEs. When a linear ODE is concerned, the asymptotics of
every solution can be derived from the asymptotics of a fundamental sys-
tem of solutions. For non linear ODEs some care has to be taken, since as a
rule singular solutions may exist, which cannot be deduced from the general
solution.

The study of all possible behaviors at infinity was first made by Boutroux
[3, 4]. Various approaches can be used: a direct asymptotic approach in the
line of Boutroux as in [14, 18, 21], or another one based on the relationship
between the first Painlevé equation and a convenient Schlesinger type linear
ODE as described in Sect. 2.3, see [23] (see also [24, 38, 25] for a semiclassical
variant).

2.6.1 Dominant balance principle

Here we only want to give a rough idea of how to get the possible behaviors
and, in the spirit of this course, we follow the viewpoint of asymptotic as in
[14, 21, 18]. In this approach, for a given ODE, the first task is to determine
the terms in the equation which are dominant and of comparable size when
x→∞ along a path or a inside a sector. The reduced equation obtained by
keeping only in the ODE these dominant terms gives the leading behavior.
One usual trick so as to guess the asymptotics of solutions of ODEs is thus the
dominant balance principle [2]. A maximal dominant balance corresponds
to the case where there is a maximal set of dominant terms of comparable
size in the equation. As a rule, this gives rise to the general behavior. The
remaining cases are called subdominant balances.
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Here it is useful to introduce the following notations:

• f ' g when x→∞ along a path if lim
x→∞

f(x)

g(x)
= Cte, Cte ∈ C?.

• f � g when x→∞ along a path if lim
x→∞

f(x)

g(x)
= 0.

The unique maximal balance that is possible for PI consists in assuming that
all the three terms in (2.1) are of comparable size when x→∞. In particular
u2 and x have comparable size, so that

u(x) = x
1
2O(1), x→∞.

We thus assume that
u(x) = x

1
2 v
(
z(x)

)
with z(x) → ∞ and v

(
z(x)

)
= O(1) when x → ∞. If z(x) behaves like a

fractional power of x at infinity, then

z′(x)

z(x)
' z′′(x)

z′(x)
' 1

x

and this is what we will assume.
We also make the following remark : if v

(
z
)

is an analytic function with an

asymptotic expansion when z →∞, then one would have
v′′(z)

z2
� v′(z)

z
� v(z)

for z near infinity, that is
v′′
(
z(x)

)
z2(x)

�
v′
(
z(x)

)
z(x)

� v
(
z(x)

)
when x → ∞.

Here we will adjust the choice of z(x) by adding the demand that

v
(
z(x)

)
� z(x)v′

(
z(x)

)
� z(x)2v′′

(
z(x)

)
when x→∞.

These assumptions on v and z(x) imply that

u′(x) = x−
1
2 z(x)v′

(
z(x)

)
O(1)+o(1), u′′(x) = x−

3
2 z2(x)v′′

(
z(x)

)
O(1)+o(1).

Thus, if v
(
z(x)

)
= v′

(
z(x)

)
= v′′

(
z(x)

)
= O(1) and demanding that u′′ and

x have comparable size, one gets z(x) = x
5
4O(1) as a necessary condition.

This suggests with Boutroux [3, 4] to make the following transformation,

u(x) = αx
1
2 v(z), z = βx

5
4 , (2.6)

with α, β 6= 0 some constants, under which equation (2.1) becomes:

v′′ +
v′

z
− 4

25

v

z2
− 96α

25β2
v2 − 16

25αβ2
= 0.

With the following choice for α and β,

α =
e

iπ
2

√
6
, β = e

5iπ
4

24
5
4

30
, (2.7)

one finally gets:

v′′ =
1

2
v2 − 1

2
− v′

z
+

4

25

v

z2
. (2.8)
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Fig. 2.1 Left hand side : approximate period lattices in each quadrants Qi of z-plane.

Right hand side, their images in the x-plane through the transformation x 7→ z defined by

(2.6)-(2.7)

We now concentrate on this equation (2.8) and we examine the possible
balances.

2.6.2 Maximal balance, elliptic function-type behavior

We consider the maximal balance case, that is we assume that v and its
derivatives can be compared to unity. This means that equation (2.8) is
asymptotic to the equation

v′′ =
1

2
v2 − 1

2
.

The solutions of this equation1 are the functions v(z) = 12℘(z − z0;
1

12
, g3)

where ℘ is the Weierstrass p-function (cf. Sect. 1.2.2) while z0 and g3 are two
free complex parameters.
It can be shown [3, 4, 21] that this provides indeed the general behaviour of
the Painlevé transcendents near infinity : for |z| large enough in each open
quadrants

Qk = {z ∈ C, k
π

2
< arg z < (k + 1)

π

2
}, k = 0, 1, 2, 3 mod 4

the generic solution v of (2.8) has, for |z| large enough, an approximate period
lattice of poles, Fig. 2.1. In this domain, excluding small neighbourdhoods
of poles, the asymptotics of such a generic solution v of (2.8) is governed by
Weierstrassian elliptic functions. With Kruskal & Joshi [21] one can refer to
this behavior as an elliptic function-type behavior.

This asymptotic behaviour translates for the Painlevé I transcendents
through the transformation (2.6)-(2.7) into the asymptotics in the sectors

1 Just multiply both sides of the equality by v′, then integrate.
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Sk = {x ∈ C, −π+k
2π

5
< arg x < −π+(k+1)

2π

5
}, k = 0, 1, 2, 3, 4 mod 5.

(2.9)
We mention that when z approaches the real axis (resp. the imaginary

axis) then, for |z| large enough and in a small angular strip of width

O
(

(log |z|)/|z|
)

, the solution v displays a near oscillatory-type behaviour with

no poles, and one has v(z)→ −1 (resp. v(z)→ +1) when |z| → ∞, see [21].
This means that the five special rays arg x = −π + k 2π

5 , k = 0, · · · , 4
play an important role in the asymptotics of the solutions of Painlevé I, the
general solutions having lines of poles asymptotic to these rays.

2.6.3 Submaximal dominant balances, truncated
solutions

We now consider submaximal dominant balances, that is when v or one of
its derivatives differ from order unity. It can be shown [21] that the sole
consistent case occurs when

v ' 1, v′′ � 1.

This implies that equation (2.8) is now asymptotic to the equation

1

2
v2 − 1

2
= 0

that is v(z) = ±1 + o(1). Examining this case leads to the following result:

Theorem 2.4. The first Painlevé equation (2.1) has:

• five complex parameter families of solutions u, called intégrales tronquées
(truncated solutions) after Boutroux, such that u is free of poles in two
adjacent sectors Sk and Sk+1 for |x| large enough, with its asymptotics
governed by

u(x) =
(
−x

6

) 1
2
(

1 +O(x−
5
2 )
)

(for a convenient determination of the square root).
• among the truncated solutions, five special solutions, the intégrales tri-

tronquées (tritruncated solutions), each of them being free of poles in
four adjacent sectors Sk, Sk+1, Sk+2, Sk+3 for |x| large enough.

This theorem has various proofs (see for instance [19, 31, 32] for “noncon-
ventional” approaches). We will see in this course how the resurgent analysis
can be used to show theorem 2.4.

2.7 First Painlevé equation and physical models

As already said (Sect. 1.3.3), the Painlevé equations in general and the first
Painlevé equation in particular, appear by similarity reductions of integrable
PDEs. They play a significant role in others physical models, see e.g. [22]
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and references therein for the first Painlevé equation. This includes the de-
scription of asymptotic regime in transition layers and caustic-type domain.
We exemplify this fact with the focusing nonlinear Schrödinger equation

iεΨt + ε2

2 Ψxx + |Ψ |2Ψ = 0 (fNLS). It is shown in [9] that when considering
the (so-called) dispersionless limit ε→ 0, the solutions (of convenient Cauchy
problems) of (fNLS) are asymptotically governed by a tritruncated solution
of the first Painlevé equation. In the same work, theoretical and numerical
evidences led the authors to conjecture that tritruncated solutions of the first
Painlevé equation have the following property, shown in [7] under the naming
“the Dubrovin conjecture”:

Proposition 2.1. Each tritruncated solution of the first Painlevé equation

is holomorphic on a full sector of the form
•
s∞0 (I) with I an arc of aperture

|I| = 8π/5.

See definition 3.7 for what means the sector
•
s∞0 (I).

Recently, resurgence theory spectacularly enters the realm of string theory
and related models, as an efficient tool for making the connection between
perturbative and non-perturbative effects. In particular, the first Painlevé
equation was particularly adressed in [1] thanks of its physical interpretation
in the context of 2D quantum gravity, when the so-called double-scaling limit
is considered [8, 29, 30].

Appendix

The reader only interested in learning applications of resurgence theory may
skip this appendix, where we show theorem 2.1 for completeness. We follow
the proof given in [6]. See also [14, 15] and specially [13] with comments and
references therein. We start with two lemmas.

Lemma 2.1. If u is a solution of (2.1) which is holomorphic in a neighbour-
hood of x0 ∈ C, then the radius R of analyticity at x0 satisfies R ≥ 1/ρ
with

ρ = max
(∣∣∣u(x0)

∣∣∣1/2, ∣∣∣u′(x0)

2

∣∣∣1/3, ∣∣∣u2(x0) +
x0

6

∣∣∣1/4, ∣∣∣u(x0)u′(x0)

2
+

1

24

∣∣∣1/5).
Proof. If u(x) =

∞∑
k=0

ck(x− x0)k ∈ C{x− x0} is solution (2.1) then


c0 = u(x0), c1 = u′(x0)

c2 = 3c20 +
x0

2
, c3 = 2c0c1 +

1

6
(k + 1)(k + 2)ck+2 = 6

∑k
m=0 cmck−m, k ≥ 2

(2.10)

We note

ρ = max
(∣∣∣u(x0)

∣∣∣1/2, ∣∣∣u′(x0)

2

∣∣∣1/3, ∣∣∣u2(x0) +
x0

6

∣∣∣1/4, ∣∣∣u(x0)u′(x0)

2
+

1

24

∣∣∣1/5),
so that for 0 ≤ l ≤ 3
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|cl| ≤ (l + 1)ρl+2. (2.11)

Assume that (2.11) is satisfied for every 0 ≤ l ≤ k+1 for a given k ≥ 2. Then
by (2.10),

(k+1)(k+2)|ck+2| ≤ 6

k∑
m=0

(m+1)(k−m+1)ρk+4 ≤ (k+1)(k+2)(k+3)ρk+4.

The coefficients

k∑
m=0

(m+1)(k−m+1) are those of the taylor expansions of (1−x)−4

at the origin. Indeed, for |x| < 1,
1

1− x
=
∑
k≥0

xk so that
1

(1− x)2
=
∑
k≥0

(k + 1)xk.

Therefore

(
1

(1− x)2

)2

=
∑
k≥0

(
k∑

m=0

(m+ 1)(k −m+ 1)

)
xk.

We conclude that (2.11) is satisfied for every l ≥ 0 and this implies that

R ≥ 1

ρ
, where R is the radius of convergence of the series expansion u. ut

Lemma 2.2. In a neighbourhood of any given point x̃ ∈ C there exists a
one-parameter family of meromorphic solutions u of (2.1) having a pole at x̃.
Necessarily x̃ is a double pole and u is given by the Laurent-series expansions

u(x) =
1

(x− x̃)2
− x̃

10
(x− x̃)2 − 1

6
(x− x̃)3 + c4(x− x̃)4 +

∑
k≥6

ck(x− x̃)k

where c4 ∈ C is a free parameter.

Proof. We are looking for a Laurent-series expansion

u(x) =

∞∑
k=p

ck(x− x̃)k ∈ C{x− x̃}
[ 1

x− x̃

]
satisfying (2.1). Then necessarily

p ≥ −2, c−2 = 1 or 0, c−1 = 0. So either x̃ is a regular point, otherwise

u(x) =
1

(x− x̃)2
− x̃

10
(x− x̃)2 − 1

6
(x− x̃)3 + c4(x− x̃)4 +

∑
k≥6

ck(x− x̃)k

where c4 ∈ C is a free parameter, while for k ≥ 6 the coefficients are polyno-
mial functions of (x̃, α). Indeed one has

(k − 2)(k + 5)ck+2 = 6

k∑
m=0

cmck−m, k ≥ 2.

We can define ρ > 0 (depending (x̃, α)) such that, for 0 ≤ l ≤ 5,

|cl| ≤
1

3
(l + 1)ρl+2. (2.12)

Assume that this property is satisfied for every cl, 0 ≤ l ≤ k + 1 for a given
k ≥ 4. Then

(k−2)(k+5)|ck+2| ≤
2

3

k∑
m=0

(m+1)(k−m+1)ρk+4 ≤ 1

9
(k+1)(k+2)(k+3)ρk+4
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and we conclude that |ck+2| ≤
1

3
(k + 3)ρk+4. Therefore (2.12) is true for

every l ≥ 0 and the Laurent series expansion converges in the punctured dics
D(x̃, 1/ρ)?. ut

The following notations will now be used:

• Dx0 ⊂ C is an open disc, Ω is a discrete subset of Dx0 and x0 ∈ Dx0 \Ω.
• u is a solution of (2.1) defines by some initial data at x0 ∈ Dx0 \Ω and u

is meromorphic in Dx0
\Ω.

• λ(a, b) : [0, 1]→ Dx0
\Ω denotes a C∞-smooth path in Dx0

\Ω with end-
points λ(a, b)(0) = a and λ(a, b)(1) = b. When b ∈ ∂Dx0

it is assumed that
λ(a, b) is a path where b is removed (that is one considers the restriction
to [0, 1[ of λ(a, b)). Moreover we assume that the length of any subsegment
λ(c, d) of λ(a, b) is less that 2|c− d|.
We mention that we use the same notation λ(a, b) for the path and its
image.

• x̃ ∈ ∂Dx0
is a singular point for u.

Lemma 2.3. Assume that u(x) =

4∑
k=−2

ak(x− x̃)k +O(|x− x̃|5) when x→ x̃

along λ(x0, x̃), with a−2 6= 0. Then u is meromorphic at x̃ and u is uniquely
determined by (x̃, a4).

Proof. Since u is solution of (2.1) which is analytic at each point of the
smooth path λ(x0, x̃) one has

u′′(x) = 6u2(x) + x = 6

(
4∑

k=−2

ak(x− x̃)k +O(|x− x̃|5)

)2

+ x

when x → x̃ along λ(x0, x̃). This implies that the asymptotic expansion is
differentiable.

This is a consequence of the mean value theorem, u(x) = u(x0) +

∫ x

x0

u′(s) ds along

λ(x0, x̃) which is C∞-smooth, and the uniqueness of the asymptotic expansion.

The same calculus as the one made in the proof of lemma 2.2 shows that

u(x) =
1

(x− x̃)2
− x̃

10
(x− x̃)2 − 1

6
(x− x̃)3 + a4(x− x̃)4 +O(|x− x̃|5).

We note v the meromorphic solution of (2.1) obtained in lemma 2.2 with
c4 = a4. We set

w(x) = v(x)− (x− x̃)−2 = O(|x− x̃|2)
f(x) = u(x)− v(x) = O(|x− x̃|5)

and we want to show that f = 0. We have

f ′′ − 12

(x− x̃)2
f = g, g = 12wf + 6f2 = O(|x− x̃|7),

so that, integrating this linear equation,
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f(x) = C1(x− x̃)−3 + C2(x− x̃)4

− 7(x− x̃)−3

∫ x

x̃

(s− x̃)4g(s) ds+
(x− x̃)4

7

∫ x

x̃

(s− x̃)−3g(s) ds.

Since f(x) = O(|x− x̃|5) we get that f is solution of the fixed-point problem
f = N (f) with

N (f)(x) = −7(x− x̃)−3

∫ x

x̃

(s− x̃)4g(s) ds+
(x− x̃)4

7

∫ x

x̃

(s− x̃)−3g(s) ds.

For x1 ∈ λ(x0, x̃) we consider the normed vector space (B, ‖.‖),

B = {f ∈ C0(λ(x1, x̃)), f = O(|x− x̃|5}, ‖f‖ = sup
x∈λ(x1,x̃)

|(x− x̃)−5f(x)|.

We show later that (B, ‖.‖) is a Banach space (lemma 2.4). Now for x1 close
enough from x̃ (see lemma 2.4):

• the mapping N send the unit ball B of B into itself,
• the mapping N : B → B is contractive.

Therefore the fixed-point problem f = N (f) has a unique solution in B
by the contraction mapping theorem. Obviously this solution is f = 0 and
therefore u = v. ut

Lemma 2.4. With notations of the proof of lemma 2.3: (B, ‖.‖) is a Banach
space and the mapping N : B → B is contractive.

Proof.

1. (B, ‖.‖) is a Banach space.
Indeed, assume that (fp) is a Cauchy sequence in (B, ‖.‖),

∀ε, ∃p0 : ∀p, q > p0, ∀x ∈ λ(x1, x̃), |(x−x̃)−5(fp(x)−fq(x))| < ε . (2.13)

Writing gp(x) = (x − x̃)−5fp(x), condition (2.13) implies that for every
x ∈ λ(x1, x̃) the sequence (gp(x)) is a Cauchy sequence, hence gp(x)→ g(x)
in C. Now making q → +∞ in (2.13) one sees that gp → g uni-
formaly. Therefore g ∈ C0(λ(x1, x̃)) and is bounded on λ(x1, x̃). Thus
g = (x− x̃)−5f with f ∈ B.

2. The mapping N is contractive for x1 close enough from x̃.

We introduce N1(f)(x) = −7(x− x̃)−3

∫ x

x̃

(s− x̃)4g(s) ds and

N2(f)(x) =
(x− x̃)4

7

∫ x

x̃

(s− x̃)−3g(s) ds so that N (f) = N1(f) +N1(f).

One can assume that for s ∈ λ(x, x̃)), |s − x̃| ≤ |x − x̃|. Also there exist
r > 0 and a > 0 such that |w(x)| ≤ a|x − x̃|2 when |x − x̃| ≤ r. We now
assume that |x1 − x̃| ≤ r. For f1, f2 ∈ B and x ∈ λ(x1, x̃) one has :
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(
N1(f1)−N2(f2)

)∣∣∣
≤
∣∣∣∣−7(x− x̃)−8

∫ x

x̃

(s− x̃)4
(

12w(s)(f1(s)− f2(s)) + 6(f2
1 (s)− f2

2 (s))
)
ds

∣∣∣∣
≤ 7|x− x̃|−8

(
12a|x− x̃|11‖f1 − f2‖

+6|x− x̃|14‖f1 − f2‖‖f1 + f2‖
)

Length(λ(x, x̃))

≤ 14|x− x̃|4
(

12a+ 12|x− x̃|3
)
‖f1 − f2‖.

The other term of (x− x̃)−5
(
N2(f1)−N2(f2)

)
is worked in a similar way.

Choosing x1 close enough from x̃, one obtains the existence of a constant
0 < Cte < 1 such that for f1, f2 ∈ B, ‖N (f1)−N (f2)‖ ≤ Cte‖f1 − f2‖.
ut

Lemma 2.5. When x → x̃ along λ(x0, x̃) with x̃ ∈ ∂Dx0 a singular point
for u:

1. |u(x)|+ |u′(x)| → +∞,
2. u is unbounded.

Proof. • Point 1. The lemma 2.1 implies that |u(x)| or |u′(x)| has to be large
for x near x̃ which is a singular point.
• Point 2. If one multiplies (2.1) by u′ and integrates, one gets

(u′)2 = 4u3 + 2xu− 2

∫ x

x0

u(s) ds+ C (2.14)

where C ∈ C is a constant. Therefore if u is bounded x → x̃ along λ(x0, x̃)
then u′ is bounded as well, which contradicts Point 1. ut

Lemma 2.6. When x → x̃ along λ(x0, x̃), with x̃ ∈ ∂Dx0 a singular point
for u, then:

u−3(x)

∫ x

x0

u(s) ds→ 0, |u(x)| → +∞, |u′(x)| → +∞.

Proof. By lemma 2.5, we know that u is unbounded when x → x̃ along
λ(x0, x̃), so that

lim sup
x→x̃

|u(x)| = +∞, lim inf
x→x̃

|u−1(x)| = 0.

We remind that lim sup
x→x̃

f(x) = lim
ε→0

(
sup

{
f(x), x ∈ λ(x0, x̃) ∩D(x̃, ε)

})
while

lim inf
x→x̃

f(x) = lim
ε→0

(
inf
{
f(x), x ∈ λ(x0, x̃) ∩D(x̃, ε)

})
.

Also, since for x ∈ λ(x0, x̃) one has∣∣∣∣u−3(x)

∫ x

x0

u(s) ds

∣∣∣∣ ≤ |u−3(x)|. max
λ(x0,x)

|u|. Length(λ(x0, x)),

we get

lim inf
x→x̃

{∣∣∣∣u−3(x)

∫ x

x0

u(s) ds

∣∣∣∣} ≤ lim inf
x→x̃

{
|u−3(x)|. max

λ(x0,x)
|u|. Length(λ(x0, x))

}
.
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The right hand side term vanishes because u is unbounded when x→ x̃, thus

lim inf
x→x̃

{∣∣∣∣u−3(x)

∫ x

x0

u(s) ds

∣∣∣∣} = 0. (2.15)

In particular, for every γ > 0, for everyD(x̃, ε), there exists x ∈ λ(x0, x̃) ∩D(x̃, ε)
so that ∣∣∣∣u−3(x)

∫ x

x0

u(s) ds

∣∣∣∣ ≤ γ.
Assumption : assume that u−3(x)

∫ x

x0

u(s) ds → 0 is false, which trans-

lates into : there exists γ > 0 such that, for every D(x̃, ε), there exists
x ∈ λ(x0, x̃) ∩D(x̃, ε) so that∣∣∣∣u−3(x)

∫ x

x0

u(s) ds

∣∣∣∣ ≥ γ.
By continuity, we see that for any γ > 0 small enough, there exists a sequence
xn → x̃, xn ∈ λ(x0, x̃), such that∣∣∣∣∫ xn

x0

u(s) ds

∣∣∣∣ = γ
∣∣u3(xn)

∣∣ . (2.16)

The same arguments used in the proof of lemma 2.5 show that

lim sup
n
|u(xn)| = +∞.

This means that there exists a subsequence (xnk) of (xn) such that |u(xnk)| → +∞.
Therefore we can assume that

lim
n
|u(xn)| = +∞. (2.17)

From (2.16) we see that

lim
n

∣∣∣∣∫ xn

x0

u(s) ds

∣∣∣∣ = +∞ (2.18)

while (2.17), (2.16) with γ > 0 small enough, and (2.14) imply that

lim
n
|u′(xn)| = +∞ (2.19)

We will demonstrate that the assumption made implies a contradiction in
what follows
• We consider now the solution hn of the Cauchy problem (h′)2 = 4h3 + 2xnh+ C̃n with C̃n = C − 2

∫ xn

x0

u(s) ds

h(0) = u(xn), h′(0) = u′(xn)
(2.20)

where C is the constant given in (2.14). Notice by (2.18) that

lim
n
|C̃n| = +∞, (2.21)
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and by (2.16) then by (2.14) that
|hn(0)| = (2γ)−1/3

∣∣C̃n∣∣1/3(1 + o(1)
)

|h′n(0)| =
∣∣2γ−1eiφn + 1

∣∣1/2∣∣C̃n∣∣1/2(1 + o(1)
)
, φn ∈ R.

(2.22)

Writing

hn(t) = C̃1/3
n Hn(X), X = C̃1/6

n t, (2.23)

one obtains that Hn is solution of the following elliptic differential equation
(see (1.7)) with given initial data:

(H ′)2 = 4H3 + 2θnH + 1, with θn = xnC̃
−2/3
n

Hn(0) = C̃−1/3
n u(xn), |Hn(0)| = (2γ)−1/3

(
1 + o(1)

)
,

H ′n(0) = C̃−1/2
n u′(xn), |H ′n(0)| =

∣∣2γ−1eiφn + 1
∣∣1/2(1 + o(1)

) (2.24)

From the properties of elliptic functions, we know that Hn can be analytically
continued as a doubly periodic meromorphic function with double poles at
the period lattice an+mω1(θn) +nω2(θn), (n,m) ∈ Z2, for some an ∈ C and
ω1,2(θn) = Cte1,2 +O(θn).
• Next we consider the function Un defined by

u(x) = C̃1/3
n Un(X), X = C̃1/6

n (x− xn), (2.25)

so that (2.1) translates into the property that Un is solution of the ODE

U ′′ = 6U2 + θn + εnX, with εn = C̃−5/6
n , (2.26)

and, more precisely from (2.14), that (U ′)2 = 4U3 + 2θnU + 1 + 2εn

(
XU −

∫ X

0

U(S) dS

)
Un(0) = C̃−1/3

n u(xn), U ′n(0) = C̃−1/2
n u′(xn)

(2.27)

• We want to show that Un and Hn are locally holomorphically equivalent:
we look for a function Gn holomorphic near 0 such that

Un = Hn ◦Gn with Gn(X) = X + gn(X), gn(0) = 0, g′n(0) = 0.
(2.28)

We know from (2.24) that H ′′n = 6H2
n+θn, hence from (2.26) we deduce that

2g′nH
′′
n ◦Gn + (g′n)2H ′′n ◦Gn + g′′nH

′
n ◦Gn = εnX.

which is also

2g′n(H ′n ◦Gn)′ + g′′nH
′
n ◦Gn = εnX + (g′n)2H ′′n ◦Gn.

Multiplying both parts of this equality by H ′n ◦Gn and integrating, one gets:
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wn = (H ′n ◦Gn)−2

∫ X

0

H ′n ◦Gn(S)
[
εnS + w2

n(S).H ′′n ◦Gn(S)
]
dS = N (wn)

gn(X) =

∫ X

0

wn(S) dS, wn(0) = 0, Gn(X) = X + gn(X).

(2.29)

Let D(0,
|εn|−1/4

2
) be the disc centred at 0 of diameter |εn|−1/4. We note

˜
D(0,

|εn|−1/4

2
) the disc D(0,

|εn|−1/4

2
) without the discs of diameter d(γ)

around the poles and the zeros of H ′n.

We consider a path λ(0, X0) in
˜

D(0,
|εn|−1/4

2
). In (2.29) the integrals

∫ X

0
are considered along λ(0, X) ⊂ λ(0, X0). We can assume that the length of
any subsegment λ(0, X) of λ(0, X0) is less that 2|X|.
Let a ∈]1/4, 1/2[ and let (B, ‖.‖) be the Banach space

B = {f ∈ C0(λ(0, X0))}, ‖f‖ = sup
x∈λ(0,X0)

|f(x)|.

We consider also the ball B = {f ∈ B, ‖f‖ ≤ |εn|a}. If w ∈ B and

g(X) =

∫ X

0

w(S) dS, one has

‖g‖ ≤ sup
X∈λ(0,X0)

∣∣∣∣∣
∫ X

0

w(S) dS

∣∣∣∣∣ ≤ ‖w‖.Length(λ(0, X0)) ≤ |εn|a−1/4.

One can assume that d(γ) ≥ 3|εn|a−1/4 so that

‖N (w)‖ ≤ |εn|Cte1(γ)|εn|−1/2 + Cte2(γ)|εn|2a−1/4.

Therefore ‖N (w)‖ ≤ |εn|a for |εn| small enough. Quite similarly, for w1, w2 ∈ B,

‖N (w1)−N (w2)‖ = O(|εn|a−1/4)‖w1 − w2‖.

We conclude by the contraction mapping theorem that N has a unique fixed
point in B, for |εn| small enough.
• We have seen that, for |εn| small enough and a ∈]1/4, 1/2[, we have

Un(X) = Hn

(
X + gn(X)

)
, |g(X)| ≤ |εn|a−1/4, X ∈

˜
D(0,

|εn|−1/4

2
).

Therefore,

sup

X∈
˜

D(0,
|εn|−1/4

2 )

∣∣C̃−1/3
n u(xn + C̃−1/6

n X)−Hn(X)
∣∣ = O(|εn|a−1/4). (2.30)

We remind that when xn → x̃ one has |C̃n| → +∞ and |εn| = |C̃−5/6
n | → 0.

Now when X ∈
˜

D(0,
|εn|−1/4

2
) then C̃−1/6

n X belong to a disc of radius

|C̃n|1/24 without some discs of radius d(γ)|C̃n|−1/6. Consequently, for n large
enough,
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∀x ∈ Dx0 , ∃X ∈
˜

D(0,
|εn|−1/4

2
),
∣∣∣x− (xn + C̃−1/6

n X)
∣∣∣ ≤ d(γ)

2
|C̃n|−1/6.

Choosing x = x0, we see from (2.30) that u is unbounded near x0 which is a
regular point for u: contradiction.

Therefore, u−3(x)

∫ x

x0

u(s) ds → 0 when x → x̃ along λ(x0, x̃). It is now

an easy exercice by lemma 2.5 and (2.14) to see that min{|u|, |u′|} → +∞
necessarily when x→ x̃. (Just assume that u−1(x)→ 0 is false and see that
there is a contradiction.) ut
End of the Proof of theorem 2.1. What remains to show is that x̃ is a
second order pole. The substitution u = 1/v2 transforms (2.14) into

(v′)2 = 1 +
x

2
v4 − v6

2

∫ x

x0

ds

v2(s)
+
C

4
v6. (2.31)

We know from lemma 2.6 that
v6

2

∫ x

x0

ds

v2(s)
ds→ 0 and v → 0 along a path

λ(x0, x̃) which avoids the poles of u in Dx0
. Therefore

(v′)2 = 1 + o(1), then v2(x) = (x− x̃)2
(
1 + o(1)

)
.

Using this last equality in (2.31) one gets

(v′)2(x) = 1+
x̃

2
(x−x̃)4+o((x−x̃)4), then v2(x) = (x−x̃)2+

x̃

10
(x−x̃)6+o((x−x̃)6).

One uses (2.31) again and one concludes with lemma 2.3.
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Painlevé I. Int. Math. Res. Not. IMRN, 2012, no. 3, 561-606.

13. V. Gromak, I. Laine, S. Shimomura, Painlevé differential equations in the complex
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Chapter 3

Tritruncated solutions for Painlevé I

Abstract This chapter is devoted to the construction of the tritruncated
solutions for the first Painlevé equation, the existence of which being an-
nounced in Sect. 2.6. This example will introduce the reader to reasonings
that are common in resurgence theory. We construct a prepared form associ-
ated with the first Painlevé equation (Sec 3.1). This prepared form ODE has
a unique formal solution from which we deduce the existence of truncated
solutions by application of the “‘main asymptotic existence theorem” (Sect.
3.1.3). We then study the 1-summability property of the formal solution by
various methods (Sect. 3.3 and Sect. 3.4). By Borel-Laplace summation, one
deduces the existence of the tritruncated solutions for the first Painlevé equa-
tion (Sect. 3.5).

3.1 Normalization and formal series solution

Throughout this course, C[[z−1]] stands for the differential algebra of formal

power series of the form g̃(z) =
∑
n≥0

anz
−n, while C((z−1)) is the space of

formal Laurent series. The space of formal Laurent series is a valuation field
with the natural valuation

val :
C((z−1)) → Z ∪∞∑
n∈Z

anz
−n 7→ val w̃ = min{n ∈ Z / an 6= 0}. (3.1)

3.1.1 Normalization, prepared form

We have seen in Sect. 2.6 that the first Painlevé equation is equivalent to the
following differential equation,

v′′ +
v′

z
= −1

2
+

4

25

v

z2
+

1

2
v2, (3.2)

under the Boutroux’s transformation u(x) = e
iπ
2√
6
x

1
2 v(z), z = e

5iπ
4

24
5
4

30 x
5
4 .

The variable z is the so-called critical time.

31
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It is worth mentioning that the symmetries detailed in Sect. 2.5 translate
into the fact that any solution v of (3.2) is mapped into another solution vk
through the transformation

vk(z) = eiπkv
(
eiπk/2z

)
, k = 0, · · · , 3. (3.3)

From what we have seen at the end of Sect. 2.6, it is only natural to look for a

formal solution of (2.8) under the form: ṽ(z) =

∞∑
l=0

blz
−l ∈ C[[z−1]]. Plugging

this formal series expansion in (3.2) one gets that necessarily b20 = 1, b1 = 0

and b2 = − 4

25
. Thanks to the symmetries (3.3), there is no restriction in

assuming that b0 = 1. Also, it will be convenient in the sequel to make a new
transformation,

v(z) = 1− 4

25

1

z2
+

1

z2
w(z) (3.4)

which has the virtue to bring (3.2) into the following differential equation :

w′′ − 3

z
w′ − w =

392

625

1

z2
− 4

z2
w +

1

2z2
w2. (3.5)

Definition 3.1. The differential equation (3.5), which reads

P (∂)w +
1

z
Q(∂)w = F (z, w), (3.6)

with P (∂) = ∂2 − 1, Q(∂) = −3∂ and

F (z, w) =
392

625

1

z2
− 4

z2
w +

1

2z2
w2 = f0(z) + f1(z)w + f2(z)w2,

is called the prepared form equation associated with the first Painlevé
equation.

Remark 3.1. For general comments on normalization procedures see, e.g. [7]
and exercise 3.1. Notice that the prepared form is not unique.

3.1.2 Formal series solution

When replacing the formal series expansion

∞∑
l=0

alz
−l into (3.6), then identi-

fying the powers, one obtains the quadratic recursion relation:
a0 = a1 = 0, a2 = −392

625

al = l2al−2 −
1

2

l−2∑
p=0

a(p)a(l−2−p), l = 3, 4, · · ·
(3.7)

One easily deduces the following properties from (3.7).

Proposition 3.1. There exists a unique formal series
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w̃(z) =

∞∑
l=0

alz
−l ∈ C[[z−1]]. (3.8)

solution of (3.6). Moreover val w̃ = 2, the series expansion

w̃(z) = −392

625
z−2 − 6272

625
z−4 − 141196832

390625
z−6 + · · ·

is even and the coefficients al are all real negative.

Remark 3.2. 1. One infers from (3.7) that the series expansion w̃ diverges
since obviously |a2m| ≥ (m!)2|a2| for m ≥ 1. We expect w̃ to be 1-Gevrey
and this is what we will see in a moment, by considering its formal Borel
transform.

We recall (with, e.g. [16, 24]) that a series g̃(z) =
∑
n≥0

anz
−n ∈ C[[z−1]] is 1-

Gevrey when there exist constants C > 0, A > 0 so that |an| ≤ C(n!)An for all

n. The space C[[z−1]]1 of 1-Gevrey series expansions is a differential algebra.

2. The differential equation (3.6) can be written as a fixed point problem,

w = N (w), N (w) = −F (z, w)− 3

z
w′ + w′′.

We consider the differential operator N as acting on the ring C[[z−1]],
N : C[[z−1]]→ C[[z−1]]. When C[[z−1]] is seen as a complete metric space
(for the so-called Krull topology [24]), then N is a contractive map and
the formal solution w̃ given by lemma 3.1 is the unique solution of the
fixed point problem.
This way of demonstrating the existence of the formal solution w̃ is also
useful for pratical calculations. All the calculations in this course are pro-
duced that way under Maple 12.0 (released: 2008).

3.1.3 Towards truncated solutions

3.1.3.1 Main asymptotic existence theorem

We have previously seen that the ODE (3.6) is formally solved by a (unique)
formal series w̃ ∈ C[[z−1]].

Question 3.1. Can we associate to w̃ a holomorphic solution whose asymp-
totics are governed by this formal series ?

This question is the matter of the “main asymptotic existence theorem”.
This theorem is detailed in [16] for linear ODEs and extends to nonlinear
equations. We will here refer the reader to [26], theorems 12.1 and 14.1, see
also [23] for extension to Gevrey asymptotics.

In what follows, we refer to definition 3.6 for our notations for arcs, and to definition

3.7 for sectors of type
•
s∞(I).

Theorem 3.1 (main asymptotic existence theorem (M.A.E.T.)). Let
I be an open arc of S1 of aperture |I| ≤ π/(q + 1) where q is a nonnega-
tive integer. Let F (z,w) be a m-dimensional vector function subject to the
following conditions:
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1. F (z,w) is holomorphic in (z,w) on the domain of
•
s∞(I) × B(0, r) with

B(0, r) = {w ∈ Cm, ‖w‖ ≤ r} for some r > 0;
2. F (z,w) admits an asymptotic expansion in powers of z−1 at infinity in
•
s∞(I), uniformaly valid in w ∈ B(0, r);

3. the equation z−qw′ = F (z,w) is formally satisfied by a formal power series
solution w̃(z) ∈ Cm[[z−1]];

4. if Fj(z,w) denotes the components of F (z,w), the Jacobian matrix

lim
z→∞,z∈•s∞(I)

 ∂F1

∂w1
(z, 0) · · · ∂F1

∂wm
(z, 0)

· · · · · · · · ·
∂Fm
∂w1

(z, 0) · · · ∂Fm∂wm
(z, 0)

 has non zero eigenvalues.

Then there exists a solution w of the equation z−qw′ = F (z,w), holomorphic

in a domain of the form
•
s∞(I), whose (Poincaré) asymptotics at infinity in

every proper subsector of
•
s∞(I), is given by the formal solution w̃.

3.1.3.2 Application

Let us transform (3.6) into a one order ODE of dimension 2 : we introduce

w =

(
w1

w2

)
=

(
w
w′

)
and we obtain the companion system:

∂w =

(
0 1
1 3
z

)
w +

(
0

F (z, w1)

)
=

(
F1(z,w)
F2(z,w)

)
= F (z,w) ∈ C2[z−1,w].

(3.9)
We now fix an open arc I of S1, arbitrary but of aperture |I| ≤ π. We also

consider a domain of the form
•
s∞(I). We observe that:

1. F (z,w) is polynomial with respect to w, with coefficients belonging
to C[z−1]. Therefore F (z,w) is holomorphic in (z,w) on the domain
•
s∞(I)×B(0, r) with B(0, r) = {w ∈ C2, ‖w‖ ≤ r} for some r > 0;

2. again because F (z,w) ∈ C2[z−1,w], F (z,w) admits an asymptotic expan-

sion in powers of z−1 at infinity in
•
s∞(I), uniformaly valid in w ∈ B(0, r);

3. the equation(3.9) is formally satisfied by a formal power series solution

w̃(z) =

(
w̃
w̃′

)
∈ C2[[z−1]];

4. the Jacobian matrix

(
0 1
1 0

)
=

(
∂F1

∂w1
(∞, 0) ∂F1

∂w2
(∞, 0)

∂F2

∂w1
(∞, 0) ∂F2

∂w2
(∞, 0)

)
has non zero

eigenvalues µ1 = −1 and µ2 = 1.

These properties allow to apply the (M.A.E.T.) and this shows the following
proposition (see also [15]):

Proposition 3.2. For any open arc I of S1 of aperture |I| ≤ π, there exists

a solution w of (3.6), holomorphic in a domain of the form
•
s∞(I), whose

(Poincaré) asymptotics at infinity in every proper subsector of
•
s∞(I), is given

by the formal solution w̃ given by proposition 3.1.

Proposition 3.2 thus describes the minimal opening of sectors on which
holomorphic solutions w asymptotic to w̃ exist. Through the transformations
(3.4), (2.6) and (2.7), these solutions w corresponds to holomorphic functions
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u solutions of the first Painlevé equation, defined on opening sectors of aper-
ture 4π/5 : we thus get a first insight towards the truncated solutions for the
first Painlevé equation (theorem 2.4).

As a matter of fact, from the above informations and the property for any
solution of the first Painlevé equation to be a meromorphic function, one can
even show the existence of tritruncated solutions [15]. However, to get more
precise informations, we decide in what follows to turn to the question of the
Borel-Laplace summability of w̃.

3.2 Formal series solution and Borel transform

We denote by B̃w̃ the transform of w̃ through the formal Borel transform
B̃(z → ζ).

We denote by B̃ the formal Borel transform (instead of B like in [24, 16]). Given a

formal series g̃(x) =

∞∑
l=0

blx
l ∈ C[[x]], its formal Borel transform B̃g̃ is defined by

(
B̃g̃
)
(ζ) = b0δ + ĝ(ζ) where ĝ(ζ) =

∞∑
l=1

bl
ζl−1

Γ (l)
∈ C[[ζ]]. The series expansion ĝ is

the minor of g̃. The inverse map L̃ : Cδ ⊕ C[[ζ]] → C[[z−1]] is the formal Laplace
transform.

Since we know by proposition 3.1 that val w̃ > 0, the formal Borel transform
of w̃ just reduces to its minor ŵ. We now use the fact that w̃(z) is the unique
solution in C[[z−1]] of the differential equation (3.6). One gets the following
result from the general properties of the Borel transform.

Proposition 3.3. The formal series w̃(z) ∈ C[[z−1]] is a formal solution
of (3.6) if and only if its minor ŵ(ζ) ∈ C[[ζ]] is solution of the following
convolution equation:

P (∂)ŵ + 1 ∗
[
Q(∂)ŵ

]
= f̂0 + f̂1 ∗ ŵ + f̂2 ∗ ŵ ∗ ŵ,

P (∂) = ζ2 − 1, Q(∂) = 3ζ,

f̂0(ζ) =
392
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ζ, f̂1(ζ) = −4ζ, f̂2(ζ) =

1

2
ζ.

(3.10)

For g(ζ) =
∑
n

bnζ
n and h(ζ) =

∑
n

cnζ
n ∈ C[[ζ]], the convolution product g ∗ h is

given by the Hurwitz product, g∗h(ζ) =
∑
k

dkζ
k, dk =

∑
n+m+1=k

n!m!

(n+m+ 1)!
bncm,

which reads also g ∗ h(ζ) =

∫ ζ

0

g(η)h(ζ − η)dη. This formula provides the convolu-

tion product on O0. By formal Borel transform B̃(z → ζ), the derivation ∂ =
d

dz
is

transported into the operator ∂ of multiplication by (−ζ) while the usual product
becomes the convolution product. See, e.g. [24, 16, 4, 5] and Chapt. 7.
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3.3 Formal series solution and 1-summability : first
approach

We want to analyse the 1-summability of the formal solution w̃ of (3.6) de-
fined in proposition 3.1, this we do in this section by analysing its formal
Borel transform through a perturbation approach. This way of doing has the
advantage to give a first insight into the resurgent structure.

3.3.1 A perturbation approach

We will consider equation (3.10) as a perturbation of the equation

P (∂)ŵ = f̂0(ζ) (3.11)

which is quite easy to solve:

• either formally, in the space C[[ζ]], since P (∂) = ζ2−1 is invertible in that
space;

• or analytically, in the space of analyic functions, since P (∂) = ζ2 − 1 has
an inverse which is a meromorphic function with two simple poles.

In this approach, it is convenient to transform equation (3.10) into the
following one parameter family of convolution equations,

P (∂)ĥ = f̂0 + ε
(
− 1 ∗

[
Q(∂)ĥ

]
+ f̂1 ∗ ĥ+ f̂2 ∗ ĥ ∗ ĥ

)
, (3.12)

and to look for a solution under the form

ĥ(ζ, ε) =
∑
l≥0

ĥl(ζ)εl. (3.13)

When plugging (3.13) into (3.12) and identifying the same powers in ε, one
obtains a recursive system of convolution equations, namely:

P (∂)ĥ0 = f̂0,

P (∂)ĥ1 = −1 ∗
[
Q(∂)ĥ0

]
+ f̂1 ∗ ĥ0 + f̂2 ∗ ĥ0 ∗ ĥ0,

P (∂)ĥn = −1 ∗
[
Q(∂)ĥn−1

]
+ f̂1 ∗ ĥn−1 +

∑
n1+n2=n−1

f̂2 ∗ ĥn1 ∗ ĥn2 , n ≥ 1.

(3.14)

3.3.1.1 Formal analysis

Lemma 3.1. The system of equations (3.14) provides a unique sequence

(ĥl)l≥0 of solutions in C[[ζ]]. Furthermore ĥl ∈ ζ2l+1C[[ζ]] for every l ≥ 0.

Proof. Use the fact that P (∂) is invertible in C[[ζ]] and the general properties
of the convolution product. ut

The above lemma has the following consequence:



3.3 Formal series solution and 1-summability : first approach 37

Proposition 3.4. The series
∑
l≥0

ĥl(ζ) is well defined in C[[ζ]] and is for-

mally convergent to the unique formal solution ŵ(ζ) ∈ C[[ζ]] of the convolu-
tion equation (3.10).

We mention that proposition 3.4 has a counterpart by formal Laplace
transform L̃(ζ → z). Introducing h̃l = L̃ĥl, one gets from lemma 3.1 that the

sequence (h̃l)l≥0 solves in C[[z−1]] the following recursive system of linear
nonhomogeneous ODEs:

P (∂)h̃0 = f0(z)

P (∂)h̃1 = −1

z
Q(∂)h̃0 + f1(z)h̃0 + f2(z)h̃2

0

P (∂)h̃n = −1

z
Q(∂)h̃n−1 + f1(z)h̃n−1 + f2(z)

∑
n1+n2=n−1

h̃n1
h̃n2

, n ≥ 1.

(3.15)

One deduces from 3.1 again that h̃l ∈ z−2l−2C[[z−1]] for every l ≥ 0, thus:

Proposition 3.5. The series
∑
l≥0

h̃l(z) is well defined in C[[z−1]] and is for-

mally convergent to the unique formal solution w̃(z) ∈ C[[z−1]] of the differ-
ential equation (3.6).

3.3.1.2 Analytic properties

Instead of working in the space C[[ζ]], one can rather work in the space of
analytic functions. What we get from (3.14) is the following result.

Proposition 3.6. For every l ≥ 0, the formal series ĥl converges to a holo-
morphic function in the open disc D(0, 1) (and still denoted by ĥl). Moreover,

for any l ≥ 0, the holomorphic function ĥl can be analytically continued on
the universal covering of C \ {0,±1, · · · ,±l,±(l + 1)}.

As a consequence, for every l ∈ N, ĥl belongs to the space of functions R̂Z that will
be introduced later on, see definition 4.2.

Proof. We use (3.14) and the properties of the convolution product (see,
e.g. [24], or Chapt. 7). From the fact that the open disc D(0, 1) is a star-
shaped domain with respect to the origin, the space O

(
D(0, 1)

)
is stable

under convolution product. Since P (∂) = ζ2 − 1 is invertible in O
(
D(0, 1)

)
one easily infers by induction from (3.14) that ĥl ∈ O

(
D(0, 1)

)
for every

l ≥ 0.
We then use the fact that if ϕ̂, ψ̂ ∈ C{ζ} are such that ϕ̂, resp. ψ̂, can be
analytically continued to the universal covering of C \ {0,±1, · · · ,±p}, resp.

C \ {0,±1, · · · ,±q}, then ϕ̂ ∗ ψ̂ ∈ C{ζ} can be analytically continued to the
universal covering of C \ {0,±1, · · · ,±(p+ q)}. The result announced in the
proposition is thus shown by induction from (3.14). ut

The function ĥ0 is a meromorphic function with simples poles at ζ = ±1, thus ĥ0
belongs to R̂simp

Z , the space of resurgent functions with simple singularities (see
definition 7.54 and [24]). Since this space is a convolution algebra, the function

P (∂)ĥ1 given by (3.14) belongs also to R̂simp
Z , but this is no more the case for ĥl,

l ≥ 1, which present other types of singularities.
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3.3.2 Preparations

We have previously shown (proposition 3.4) that the formal Borel transform
ŵ(ζ) of the formal series w̃(z) solution of the prepared form equation (3.6),

can be written in the space C[[ζ]] as ŵ(ζ) =
∑
l≥0

ĥl(ζ), where the sequence

(ĥl)l≥0 solves the recursive system of equations (3.14).
To investigate the Borel-Laplace summability of ŵ one thus have to show:

• that the series of functions
∑
l≥0

ĥl(ζ) converges to a holomorphic function

near the origin and can be analytically continued in a convenient sector;
• that this holomorphic function has at most exponential growth of order 1

at infinity in this sector.

We know also by proposition 3.6 that each ĥl(ζ) can be analytically continued
to the universal covering of C \ Z. This is why we introduce the following
definition.

Definition 3.2. For 0 < ρ < 1 one defines the domain D(0)
ρ =

⋃
λ=±1

D(λ, ρ).

(D(a, r) is the open disc centred in a with radius r.) We denote by
•
R

(0)
ρ the

star-shaped domain defined by:

•
R(0)
ρ = C \

{
tζ | t ∈ [1,+∞[, ζ ∈ D(±1, ρ)

}
⊂ C \ D(0)

ρ .

(See Fig. 3.1). We note
•
R(0) =

⋃
0<ρ<1

•
R(0)
ρ = C \ ±[1,+∞[.

Definition 3.3. Assume that f(ζ) =
∑
l≥0

alζ
l is an analytic function on the

open disc D(0, r) centred at 0. One defines the function |f |, analytic on

D(0, r), by |f |(ξ) =
∑
l≥0

|al|ξl.

Lemma 3.2. For every ρ ∈]0, 1[, there exists Mρ,(0) > 0 such that, for every

ζ ∈ C \ D(0)
ρ and for p = 0, 1, one has

∣∣∣ ζp

P (−ζ)

∣∣∣ ≤ Mρ,(0). In particular, for

every polynom q ∈ C[ζ] of degree ≤ 1,
∣∣∣ q(ζ)

P (−ζ)

∣∣∣ ≤ Mρ,(0)|q|(1), for every

ζ ∈ C \ D(0)
ρ . Moreover, on can take Mρ,(0) =

1

ρ
.

Fig. 3.1 The domain
•
R

(0)
ρ .

0

ζ

−1−2−3−4 ρ
ρ

1 2 3
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Proof. We have P (−ζ) = (ζ − 1)(ζ + 1). By definition of D(0)
ρ one observes

that for every ζ ∈ C \D(0)
ρ ,

1

|ζ ± 1|
≤ 1

ρ
and

∣∣∣∣ ζ

ζ ± 1

∣∣∣∣ ≤ 1 +
1

ρ
. Therefore, for

p = 0, 1, 2,
∣∣∣ ζp

P (−ζ)

∣∣∣ ≤ 1

ρ2−p

(
1 +

1

ρ

)p
≤ 1

ρ2
(ρ+ 1)

p ≤ 2p

ρ2
, and this means

that one can take Mρ,(0) =
2

ρ2
.

As a matter of fact, one can be more precise. Suppose for instance that

<(ζ) ≥ 0. Then |ζ + 1| ≥ max{1, |ζ|}, thus
max{1, |ζ|}
|P (−ζ)|

≤ 1

ρ
. In a nutshell,

one can take Mρ,(0) =
1

ρ
. ut

As a rule, we will combined lemma 3.2 with the following lemma:

Lemma 3.3. Let U be a star-shaped domain from 0. Suppose that ϕ̂ and ψ̂
are two holomorphic functions in U and satisfy the conditions:

for every ζ ∈ U,
∣∣ϕ̂(ζ)

∣∣ ≤ F (|ζ|) and
∣∣ψ̂(ζ)

∣∣ ≤ G(|ζ|)
with F,G positive continuous functions on R+. Then, for every ζ ∈ U ,∣∣ϕ̂ ∗ ψ̂(ζ)

∣∣ ≤ F ∗G(|ζ|) and
∣∣∣(ζϕ̂) ∗ ψ̂(ζ)

∣∣∣ ≤ |ζ|(F ∗G(|ζ|)).
Proof. If ζ = |ζ| exp(iθ), then (since U is a star-shaped domain)

∣∣ϕ̂∗ψ̂(ζ)
∣∣ ≤ ∫ |ζ|

0

∣∣ϕ̂(reiθ)
∣∣∣∣ψ̂((|ζ|−r)eiθ

)∣∣ dr ≤ ∫ |ζ|
0

F (r)G(|ζ|−r) dr ≤ F∗G
(
|ζ|
)
.

The last statement is shown in a similar way. ut

3.3.3 Majorant functions

We have in mind to show that the series
∑
l≥0

ĥl(ζ) converges uniformaly on

any compact subset of
•
R(0). To do that we will use majorant functions.

3.3.3.1 Definition of the majorant functions

We consider, for any 0 < ρ < 1, the sequence of functions (ĥl)l≥0 recursively
defined by:
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1

Mρ,(0)
Ĥ0 = |f̂0|(ξ),

1

Mρ,(0)
Ĥ1 =

(
3 + |f̂1|

)
∗ Ĥ0 + |f̂2| ∗ Ĥ0 ∗ Ĥ0,

1

Mρ,(0)
Ĥn =

(
3 + |f̂1|

)
∗ Ĥn−1 +

∑
n1+n2=n−1

|f̂2| ∗ Ĥn1 ∗ Ĥn2 , n ≥ 1.

with |f̂0|(ξ) =
392

625
ξ, |f̂1|(ξ) = 4ξ, |f̂2|(ξ) =

1

2
ξ.

(3.16)
and Mρ,(0) given by lemma 3.2. (Compare this system with (3.14).) We claim

that for every l ∈ N, ĥl is a majorant function for ĥl. Precisely:

Lemma 3.4. We consider the sequence of functions (ĥl)l≥0 defined by (3.16).
For every 0 < ρ < 1 and for every l ∈ N, the following properties are satisfied:

1. ĥl(ξ) is a polynomial function and belongs to ξl+1C[ξ];
2. furthermore,

for every ζ ∈
•
R(0)
ρ ,

∣∣ĥl(ζ)
∣∣ ≤ Ĥl(ξ) with ξ = |ζ|. (3.17)

Proof. The fact that Ĥl(ξ) ∈ ξl+1C[ξ] is proved by induction from (3.16) and
from the properties of the convolution product. By (3.14) and lemma 3.2, for

every ζ ∈
•
R

(0)
ρ ,

∣∣ĥ0(ζ)
∣∣ ≤ ∣∣∣∣ 1

P (∂)

∣∣∣∣ ∣∣f̂0(ζ)
∣∣ ≤Mρ,(0)|f̂0|(ξ) with ξ = |ζ|,

so that (3.17) is true for l = 0. Assume now that (3.17) is true for
l = 0, · · · , (n− 1), for some n ∈ N?. By lemma 3.3 and the induction hy-

pothesis, for every ζ ∈
•
R

(0)
ρ ,∣∣∣∣ 1

P (∂)

∣∣∣∣ .∣∣∣1 ∗ [Q(∂)ĥn−1

]
(ζ)
∣∣∣ ≤ ∣∣∣∣ 1

P (∂)

∣∣∣∣ |Q|(|ζ|)(1 ∗ Ĥn−1(|ζ|)
)
,

where |Q|(ξ) = 3ξ. Therefore, by lemma 3.2,∣∣∣∣ 1

P (∂)

∣∣∣∣ .∣∣∣1 ∗ [Q(∂)ĥn−1

]
(ζ)
∣∣∣ ≤Mρ,(0) |Q|(1)

(
1 ∗ Ĥn−1(ξ)

)
with ξ = |ζ|. More generally, for similar reasons, still writing ξ = |ζ|,

1

Mρ,(0)

∣∣ĥn(ζ)
∣∣ ≤ (3 ∗ Ĥn−1(ξ)

)
+ |f̂1| ∗ Ĥn−1(ξ) +

∑
n1+n2=n−1

|f̂2| ∗ Ĥn1
∗ Ĥn2

(ξ).

Thus, for every ζ ∈
•
R

(0)
ρ ,

∣∣ĥn(ζ)
∣∣ ≤ Ĥn(ξ). This ends the proof. ut

3.3.3.2 Upper bounds for the majorant functions

Before keeping on studying the majorant functions, we state a property that
will be useful in the sequel. We first recall two notations.
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Definition 3.4. Let U ⊂ C be an open set. We denote by O(U) the space of
functions continuous on the closure U of U , and holomorphic in U .

For R0 > 0, we note D(∞, R0) = {z ∈ C, |z| > 1

R0
}.

Lemma 3.5. For R0 > 0, we suppose f ∈ O
(
D(∞, R0)

)
with f(z) = O(z−m)

at infinity, m ∈ N, and we note M = sup
z∈D(∞,R0)

|f(z)|. Then the formal Borel

transform B̃f = f0δ + f̂ of f satisfies the following properties:

1. f̂ ∈ O(C) and |f0| ≤
M

R0
.

2. for every ζ ∈ C, |f̂(ζ)| ≤
∣∣f̂ ∣∣(ξ) ≤ M

R0
e
ξ
R0 with ξ = |ζ| and, when m ≥ 2,

|f̂(ζ)| ≤ M

Rm0

ξm−2

(m− 2)!
∗ e

ξ
R0 , ξ = |ζ|.

Proof. We assume that f ∈ O(D(∞, R0)) with R0 > 0. Its Taylor series

expansion at infinity reads f(z) =
∑
k≥m

fkz
−k = z−(m−1)

∑
l≥1

fm+l−1z
−l, and

by the Cauchy inequalities, |fk| ≤
M

Rk0
for any k ∈ N. The formal Borel

transform of f reads B̃f = f0δ + f̂ with :

1. f̂(ζ) =
∑
l≥1

fl
ζl−1

(l − 1)!
as rule,

2. f̂(ζ) =
ζm−2

(m− 2)!
∗

∑
l≥1

fm+l−1
ζl−1

(l − 1)!

 when m ≥ 2.

Now, for any m ≥ 1, for every ζ ∈ C, writing ξ = |ζ|,

∑
l≥1

|fm+l−1|
|ζ|l−1

(l − 1)!
≤
∑
l≥1

M

Rm+l−1
0

ξl−1

(l − 1)!
≤ M

Rm0
e
ξ
R0 .

This ensures the uniform convergence on any compact set of C, thus f̂ ∈ O(C),
and this provides the upper bounds. ut

We now return to the majorant functions with the following lemma.

Lemma 3.6. For every l ∈ N, the majorant function Ĥl(ξ) is the Borel trans-

form of the function H̃l(z) which has the following properties:

• H̃l(z) belongs to C[z−1];

• for every 0 < ρ < 1, H̃l(z) is bounded in the domain |z| > 8

ρ
, precisely

sup
|z|> 8

ρ

|H̃l(z)| ≤
1

2l
.

Proof. To obtain more informations about the majorant functions, we con-
sider their generating function, namely we introduce the series:

Ĥ =

∞∑
l=0

Ĥl ε
l ∈ C[ξ][[ε]]. (3.18)
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From (3.16) we observe that this generating function formally solves the
convolution equation

1

Mρ,(0)
Ĥ = |f̂0|+ ε

[(
3 + |f̂1|

)
∗ Ĥ + |f̂2| ∗ Ĥ ∗ Ĥ

]
. (3.19)

This translates into the fact that the generating function Ĥ is the transform,
through the formal Borel transform B̃(z → ξ), of the solution

h̃ =

∞∑
l=0

H̃l ε
l ∈ C[z−1][[ε]] of the following second order algebraic equation:

1

Mρ,(0)
H̃ = |f0|(z) + ε

[(3

z
+ |f1|

)
H̃ + |f2|H̃2

]

with |f0|(z) =
392

625

1

z2
, |f1|(z) =

4

z2
, |f2|(z) =

1

2z2
.

(3.20)

This equation has two branches solutions, one of which being asymptotic to

the equation
1

Mρ,(0)
H̃ = |f0|(z) when ε goes to zero. We are interested in

that solution. Instead of using an explicit calculation, we rather use another
method which can be generalized. In (3.20) we make the change of variable

t =
1

z
. When writing H̃(z, ε) = H(t, ε), equation (3.20) becomes:

F(t, ε,H) = 0,

with F(t, ε,H) =
1

Mρ,(0)
H − |f0|(t−1)− ε

[(
3t+ |f1|(t−1)

)
H + |f2|(t−1)H2

]
.

(3.21)
Since

F(0, 0, 0) = 0 and
∂F
∂H

(0, 0, 0) =
1

Mρ,(0)
6= 0,

the implicit function theorem provides a unique holomorphic solution H(t, ε)
to (3.21), for |t| and |ε| small enough : there exist r1 > 0, r2 > 0, r3 > 0 and
a holomorphic function H : (t, ε) ∈ D(0, r1) ×D(0, r2) 7→ H(t, ε) ∈ D(0, r3)
such that

for every (t, ε,H) ∈ D(0, r1)×D(0, r2)×D(0, r3),
[
F(t, ε,H) = 0⇔ H = H(t, ε)

]
.

To get more precise informations about that solution H(t, ε) we are inter-
ested, we now view the implicit problem (3.21) as a fixed-point problem,

H = N (H), (3.22)

N (H) = Mρ,(0)

(
|f0|(t−1) + ε

[(
3t+ |f1|(t−1)

)
H + |f2|(t−1)H2

])
= Mρ,(0)

(
392

625
t2 + ε

[(
3t+ 4t2

)
H +

1

2
t2H2

])
.

We set Mρ,(0) =
1

ρ
(see lemma 3.2) and we introduce the space O(U) of func-

tions in (t, ε) which are holomorphic on the polydisc U = D(0, ρ8 )×D(0, 2)

and continuous on the closure U of U . We recall that
(
O(U), ‖ ‖

)
is a Banach

algebra where ‖ ‖ stands for the maximum norm.
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We have the following more general theorem : let U be a bounded open subset of Cn,

n ≥ 1, E be a Banach space and O(U) be the space of functions f : x 7→ f(x) ∈ E
which are continuous on U and holomorphic on U . With the the maximum norm

‖f‖ = sup
z∈U
|f(z)|, (O(U), ‖.‖) is a Banach algebra. See [25].

For a reason of homogeneity, we introduce the ballBρ = {H ∈ O(U), ‖H‖ ≤ ρ}.
For any H,H1, H2 ∈ Bρ,

‖N (H)‖ ≤ 1

ρ

(
392

625

ρ2

64
+ 2

[
7ρ

16
‖H‖+

ρ2

128
‖H‖2

])
≤ ρ

(remember that ρ < 1), while

‖N (H1)−N (H2)‖ ≤ 2

ρ

(
7ρ

16
‖H1 −H2‖+

ρ2

128
‖H1 −H2‖

(
‖H1‖+ ‖H2‖

))
≤ 29

32
‖H1 −H2‖.

The mapping N|Bρ : H ∈ Bρ 7→ N (H) ∈ Bρ is thus contractive. Since Bρ
is a close subset of a complete space, (Bρ, ‖.‖) is complete and the contrac-
tion mapping theorem can be applied. We deduce the existence of a unique
solution H in Bρ of the fixed-point problem (3.22).

This solution H(t, ε), thus holomorphic in U = D(0, ρ8 ) × D(0, 2), has a

Taylor expansion with respect to ε at 0, H(t, ε) =

∞∑
l=0

Hl(t) ε
l, where (Hl)l≥0

is a sequence of holomorphic functions in the disc D(0, ρ8 ). Moreover, by the
Cauchy inequalities and using the fact that sup

(t,ε)∈U
|H(t, ε)| ≤ ρ, one gets

the property: for every l ∈ N, sup
t∈D(0, ρ8 )

|Hl(t)| ≤
ρ

2l
. This ends the proof of

lemma 3.6. ut

Lemma 3.7. For every 0 < ρ < 1 and every l ∈ N, the majorant function

Ĥl(ξ) is a polynomial function and satisfies: for every ξ ∈ C, |Ĥl(ξ)| ≤
8

2l
e

8
ρ |ξ|.

Proof. Just a consequence of lemma 3.6 and lemma 3.5. ut

3.3.4 Formal series solution and Borel-Laplace
summability

We are ready to show the following theorem.

Theorem 3.2. The formal solution w̃(z) of the prepared equation (3.6) as-
sociated with the first Painlevé equation, belongs to the space C[[z−1]]1 of
1-Gevrey series and satisfies the following properties:

1. its formal Borel transform ŵ(ζ) belongs to the space ζC{ζ}, is odd and

can be analytically continued on the cut plane
•
R(0);

2. ŵ(ζ) has at most exponential growth of order 1 at infinity along non-
horizontal directions. More precisely, for every 0 < ρ < 1, there exist
A > 0 and τ > 0 such that
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for every ζ ∈
•
R(0)
ρ , |ŵ(ζ)| ≤ Aeτ |ζ|;

3. moreover in the above upper bounds one can choose A = 16 and τ =
8

ρ
.

Proof. Combining lemma 3.4 and lemma 3.7, we know that, for every

0 < ρ < 1, the functions ĥl(ζ), l ≥ 0 are all holomorphic on
•
R

(0)
ρ and satisfy:

for every R > 0,∑
l≥0

sup
UR

|ĥl(ζ)| ≤
∑
l≥0

Ĥl(R) ≤
∑
l≥0

8

2l
e

8
ρR ≤ 16e

8
ρR with UR = D(0, R)∩

•
R(0)
ρ .

This normal convergence ensures the uniform convergence on any compact

subset of
•
R(0) of the series

∑
l≥0

ĥl(ζ), which thus defines a holomorphic func-

tion on
•
R(0). We end the proof with proposition 3.4 from which we know

that the series
∑
l≥0

ĥl(ζ) is formally convergent to the formal Borel transform

ŵ(ζ) of the formal solution w̃(z) of the ODE (3.6). ut
Remark 3.3. Actually better estimates can be easily obtained, see corollary
3.1, see also exercise 3.3.

3.4 Formal series solution and 1-summability : second
approach

In this second approach, however related to the first one, we introduce a
Banach space (following [6, 7]) that will be convenient to demonstrate the
analyticity of ŵ, the formal Borel transform of the formal series w̃ solution of
the ODE (3.6). Then one introduces the reader to a “Grönwall-like lemma”,
which will give us the upper bounds we are looking for.

3.4.1 Convolution algebra and uniform norm

Definition 3.5. We assume that U = UR ⊂ C is an open neighbourdhood
of the origin, that U is a bounded star-shaped domain with R = sup

ζ∈U
|ζ| the

“radius” of U . We note
(
O(U),+, ., ∗

)
the convolution C-algebra (without

unit) of functions which are continuous on U and holomorphic on U . We note
MO(U) the maximal ideal ofO(U) defined byMO(U) = {f ∈ O(U), f(0) = 0}.
We define

∂ : f ∈ O(U) 7→ ∂f(ζ) = −ζf(ζ) ∈MO(U).

For ν ≥ 0 we introduce the norm ‖.‖ν defined by: for every f ∈ O(U),

‖f‖ν = R sup
ζ∈U

∣∣e−ν|ζ|f(ζ)
∣∣.

We extend this norm to O(U)⊕Cδ by defining, for every f ∈ O(U) and every
c ∈ C, ‖cδ + f‖ν = |c|+ ‖f‖ν , while ∂δ = 0.
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Proposition 3.7. With the above definitions,
(
O(U)⊕Cδ, ‖.‖ν

)
is a Banach

algebra. In particular, for every f, g ∈ O(U)⊕Cδ, ‖f ∗g‖ν ≤ ‖f‖ν‖g‖ν . Also
MO(U) is closed in the norm space

(
O(U), ‖.‖ν

)
. Moreover, for ν > 0:

1. for every n ∈ N, for every g ∈ O(U), ‖ζn ∗ g‖ν ≤
n!

νn+1
‖g‖ν ,

‖ζn+1‖ν ≤
n!

νn+1
R and ‖1‖ν = R.

2. for every f, g ∈ O(U), ‖fg‖ν ≤
1

R
‖f‖ν‖g‖0.

3. for every f ∈ O(UR), ν ≥ ν0 ≥ 0⇒ ‖f‖ν ≤ ‖f‖ν0 .
4. for every f ∈MO(UR), lim

ν→∞
‖f‖ν = 0.

5. the map ∂|O(U) : f ∈ O(U) 7→ ∂f ∈ MO(U) is a derivative in the con-

volution space O(U) and is invertible. Its inverse map ∂−1 satisfies: for
every f ∈ O(U), for every g ∈MO(U), ∂−1(f ∗ g) ∈MO(U) and

‖∂−1(f ∗ g)‖ν ≤
1

νR
‖f‖ν‖∂−1g‖0.

For every f ∈ O(U)⊕ Cδ, for every g ∈MO(U), ∂−1(f ∗ g) ∈ O(U) and

‖∂−1(f ∗ g)‖‖ν ≤ ‖f‖ν‖∂−1g‖ν .

Proof. Since Re−νR sup
ζ∈U

∣∣f(ζ)
∣∣ ≤ R sup

ζ∈U

∣∣e−ν|ζ|f(ζ)
∣∣ ≤ R sup

ζ∈U

∣∣f(ζ)
∣∣, we see

that ‖.‖ν is equivalent to the usual maximum norm on the vector space O(U)
and this normed vector space is complete. This shows the completeness of((
O(U),+, .

)
, ‖.‖ν

)
and of

(
O(U)⊕ Cδ, ‖.‖ν

)
as well.

For f, g ∈ O(U) we have, writing ζ = |ζ|eiθ ∈ U ,

Re−ν|ζ|f ∗ g(ζ) = Re−ν|ζ|
∫ |ζ|

0

f(seiθ)g
(
(|ζ| − s)eiθ

)
eiθds

= R

∫ |ζ|
0

f(seiθ)e−νsg
(
(|ζ| − s)eiθ

)
e−ν(|ζ|−s) eiθds.

Therefore R|e−ν|ζ|f ∗ g(ζ)| ≤ ‖f‖ν‖g‖ν
∫ |ζ|

0

1

R
ds ≤ ‖f‖ν‖g‖ν . We conclude

that for every f, g ∈ O(U), ‖f ∗ g‖ν ≤ ‖f‖ν‖g‖ν , hence
(
O(U), ‖.‖ν

)
is a

Banach algebra and
(
O(U)⊕ Cδ, ‖.‖ν

)
as well.

We now assume that ν > 0.

1. For the particular case f = ζn, we write for g ∈ O(U),

Re−ν|ζ|
∣∣(ζn ∗ g)(ζ)

∣∣ ≤ R ∫ |ζ|
0

e−νssn
∣∣∣g((|ζ| − s)eiθ

)∣∣∣e−ν(|ζ|−s) ds

≤ ‖g‖ν
∫ |ζ|

0

e−νssn ds

≤ ‖g‖ν
∫ ∞

0

e−νssn ds

This shows that ‖ζn ∗ g‖ν ≤
n!

νn+1
‖g‖ν . The other properties follow.
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2. It is obvious to show that ‖fg‖ν ≤ ‖f‖ν sup
U
|g| ≤ 1

R
‖f‖ν‖g‖0, for every

f, g ∈ O(U).
3. If f ∈ O(UR), it is straightforward to see that ν ≥ ν0 ≥ 0⇒ ‖f‖ν ≤ ‖f‖ν0 .
4. If f ∈MO(UR), then f = ζg with g ∈ O(U). From the previous property,

‖f‖ν ≤
1

R
‖ζ‖ν‖g‖0 ≤

1

ν
‖g‖0. Thus limν→∞ ‖f‖ν = 0.

5. If f ∈ O(U)⊕Cδ and g ∈MO(U) then obviously f ∗g ∈MO(U). Assume
now that f ∈ O(U) and g ∈MO(U). Then ∂−1(f ∗ g)(0) = 0 and writing
ζ = |ζ|eiθ ∈ U ,

Re−ν|ζ|f ∗ g(ζ) = Re−ν|ζ|
∫ |ζ|

0

g(seiθ)f
(
(|ζ| − s) eiθds (3.23)

= R

∫ |ζ|
0

seiθ(∂−1g)(seiθ)e−νsf
(
(|ζ| − s)eiθ

)
e−ν(|ζ|−s) eiθds.

On the one hand, from (3.23),

R|e−ν|ζ|f ∗ g(ζ)| ≤ 1

R
‖f‖ν‖∂−1g‖ν

∫ |ζ|
0

s ds ≤ |ζ|
2

2R
‖f‖ν‖∂−1g‖ν ,

so that

R|e−ν|ζ|∂−1(f ∗ g)(ζ)| ≤ |ζ|
2R
‖f‖ν‖∂−1g‖ν ≤ ‖f‖ν‖∂−1g‖ν .

Thus ‖∂−1(f ∗g)‖ν ≤ ‖f‖ν‖∂−1g‖ν . One easily extends this formula when
f ∈ O(U)⊕ Cδ. On the other hand, from (3.23),

R|e−ν|ζ|f ∗ g(ζ)| ≤ ‖f‖ν sup
U
|∂−1g|

∫ |ζ|
0

se−νs ds ≤ |ζ|
νR
‖f‖ν‖∂−1g‖0

hence R|e−ν|ζ|∂−1(f ∗ g)(ζ)| ≤ 1

νR
‖f‖ν‖∂−1g‖0, and thus

‖∂−1(f ∗ g)‖ν ≤
1

νR
‖f‖ν‖∂−1g‖0.

ut

3.4.2 A Grönwall-like lemma

We start with the following observation.

Lemma 3.8. Let be N ∈ N? and (F̂n)0≤n≤N a sequence of entire functions,
real and positive on R+, with at most exponential growth of order 1 at infinity.
We suppose a, b, c, d ≥ 0.
Then, the convolution equation

ŵ(ξ) = d+ [a+ bξ] ∗ ŵ(ξ) + c

(
F̂0(ξ) +

N∑
n=1

F̂n ∗ ŵ∗n(ξ)

)
(3.24)

has a unique solution in C[[ξ]], whose sum converges to an entire function
ŵd(ξ) with at most exponential growth of order 1 at infinity. The function
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ŵd(ξ) is real, positive and non-decreasing on R+ and, for every ξ ∈ C, the
mapping d 7→ ŵd(ξ) is continuous on R+.

Proof. Obviously, (3.24) has a unique solution ŵd ∈ R+[[ξ]]. Its formal
Laplace transform, w̃d = L̃(ŵd) ∈ R+[[z−1]], solves the algebraic equation

w̃(z) =
d

z
+

[
a

z
+

b

z2

]
w̃(z) + c

N∑
n=0

Fn(z)w̃n(z), (3.25)

where the Fn, 0 ≤ n ≤ N , are holomorphic functions on a neighbourhood of
infinity with Fn(z) = O(z−1). This shows (by a reasoning already done) that
w̃d = O(z−1) is a holomorphic function in (z, d) for d ∈ C and z on a neigh-
bourhood of infinity (independent on d). Therefore, ŵ defines a holomorphic
function in (ξ, d) ∈ C2, with at most exponential growth of order 1 at infinity
in ξ. The fact that, for d ≥ 0, ŵd is real, positive and non-decreasing on R+,
is evident. ut

Lemma 3.9 (Grönwall lemma). Let U be a star-shaped domain from 0

and N ∈ N?. Let (f̂n)0≤n≤N be a sequence of functions in O(U) so that there

exists a sequence (F̂n)0≤n≤N of entire functions, real and positive on R+,
such that, for every 0 ≤ n ≤ N ,

for every ζ ∈ U, |f̂n(ζ)| ≤ F̂n(ξ), ξ = |ζ|.

Let p, q, r ∈ C[ζ] be polynomial functions so that p does not vanish on U and
we assume that following upper bounds are valid:

a = sup
ζ∈U

|q|(|ζ|)
|p(ζ)|

<∞, b = sup
ζ∈U

|r|(|ζ|)
|p(ζ)|

<∞, c = sup
ζ∈U

1

|p(ζ)|
<∞.

We furthermore assume that ŵ ∈ O(U) solves the following convolution equa-
tion:

p(ζ)ŵ(ζ) + 1 ∗ [q(ζ)ŵ](ζ) = ζ ∗ [r(ζ)ŵ](ζ) + f̂0(ζ) +

N∑
n=1

f̂n ∗ ŵ∗n(ζ). (3.26)

Then for every d ≥ 0, for every ζ ∈ U ,

|ŵ(ζ)| ≤ ŵd(ξ), ξ = |ζ|,

where ŵd is the holomorphic solution of the convolution equation (3.24).

Proof. (Adapted from [17]). We assume that ŵ ∈ O(U) is a solution of the
convolution equation (3.24). We thus have, for every ζ ∈ U ,

p(ζ)ŵ(ζ) = f̂0(ζ)−
∫ ζ

0

q(η)ŵ(η) dη +

∫ ζ

0

(ζ − η)r(η)ŵ(η) dη

+

N∑
n=1

∫ ζ

0

f̂n(ζ − η)ŵ∗n(η) dη

Thus, writing ξ = |ζ| and ζ = ξeiθ,
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|ŵ(ζ)| ≤ 1

|p(ζ)|
F̂0(ξ) +

∫ ξ

0

[
|q|(ξ)
|p(ζ)|

+
|r|(ξ)
|p(ζ)|

(ξ − r)
]
|ŵ(reiθ)| dr

+

N∑
n=1

∫ ξ

0

1

|p(ζ)|
F̂n(ξ − r)|ŵ∗n(reiθ)| dr.

Therefore,

|ŵ(ζ)| ≤ cF̂0(ξ)+

∫ ξ

0

[a+ b(ξ − r)] |ŵ(reiθ)| dr+c
N∑
n=1

∫ ξ

0

F̂n(ξ−r)|ŵ∗n(reiθ)| dr.

We notice from (3.26) that |ŵ(0)| =
∣∣∣ f̂0(0)
p(0)

∣∣∣, while ŵd(0) = cF̂0(0) + d, where

ŵd solves (3.24). Notice that |ŵ(0)| ≤ cF̂0(0) by definition of c and by hy-

pothesis on F̂0.

Case 3.1. We assume ŵd(0) > |ŵ(0)|. We want to demonstrate that
|ŵ(ζ)| < ŵd(ξ) for ζ on the ray ζ = ξeiθ ∈ U .
Assume on the contrary that there exists ζ1 = ξ1eiθ ∈ U such that
|ŵ(ζ1)| ≥ ŵd(ξ1). Define χ = {ζ ∈ [0, ζ1] | |ŵ(ζ)| ≥ ŵd(|ζ|)}. This is a
non-empty closed set, bounded from below, and we note ζ2 its infimum.

• If |ŵ(ζ)| ≥ ŵd(|ζ|) for some ζ ∈]0, ζ2[, then ζ ∈ χ and this contradicts the
definition of ζ2. Thus, for every ζ ∈ [0, ζ2[, |ŵ(ζ)| < ŵd(|ζ|).

• If |ŵ(ζ2)| > ŵd(|ζ2|) then, by continuity of ŵ and ŵd, one can find α > 0
such that |ŵ

(
(|ζ2| − α)eiθ

)
| > ŵd(|ζ2| − α), but this this contradicts again

the definition of ζ2. Therefore |ŵ(ζ2)| = ŵd(|ζ2|).

Putting things together, one gets with ξ2 = |ζ2|:

|ŵ(ζ2)|

≤ cF̂0(ξ2) +

∫ ξ2

0

[a+ b(ξ2 − r)] |ŵ(reiθ)| dr + c

N∑
n=1

∫ ξ2

0

F̂n(ξ2 − r)|ŵ∗n(reiθ)| dr

≤ cF̂0(ξ2) +

∫ ξ2

0

[a+ b(ξ2 − r)] ŵd(r) dr + c
N∑
n=1

∫ ξ2

0

F̂n(ξ2 − r)ŵ∗nd (r) dr

≤ ŵd(ξ2)− d

and we get a contradiction. As a conclusion, for every d > 0, for every ζ ∈ U ,
|ŵ(ζ)| ≤ ŵd(ξ) with ξ = |ζ|.

Case 3.2. The case ŵd(0) = |ŵ(0)| (thus, in particular, d = 0) is deduced
from the above result. Indeed, for a given ζ ∈ U , one has by |ŵ(ζ)| ≤ ŵd(ξ)
for every d > 0. Since the mapping d 7→ ŵd(ξ) is continuous on R+ (cf. lemma
3.8), one gets the result by letting d→ 0.
ut

3.4.3 Applications

We demontrate the theorem 3.2 with the tools introduced in this section.
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ForR > 0 and ρ > 0 we introduce the star-shaped domain UR = D(0, R) ∩
•
R

(0)
ρ .

One defines Br = {v̂ ∈ O(UR), ‖v̂‖ν ≤ r}, for any r > 0 and ν > 0.
We now consider the convolution equation (3.10), viewed as a fixed-point
problem. Precisely, we consider the mapping

N : v̂ ∈ Br 7→
1

P (∂)

[
− 1 ∗

[
Q(∂)v̂

]
+ f̂0(ζ) + f̂1 ∗ v̂(ζ) + f̂2 ∗ v̂ ∗ v̂(ζ)

]
.

By lemmas 3.2 and proposition 3.7, one first gets:

‖N (v̂)‖ν ≤Mρ,(0)‖ − 1 ∗
[
Q(∂)v̂

]
+ f̂0 + f̂1 ∗ v̂ + f̂2 ∗ v̂ ∗ v̂‖ν .

By proposition 3.7 again, one easily obtains, since Q(∂) = 3ζ:

‖1 ∗
[
Q(∂)v̂

]
‖ν ≤

1

ν
‖Q(∂)v̂‖ν ≤

1

Rν
‖Q(∂)‖0‖v̂‖ν ≤

3

ν
‖v̂‖ν .

The functions f̂0, f̂1, f̂2 belong toMO(UR). This implies, by proposition 3.7,

that lim
ν→∞

‖f̂i‖ν = 0, i = 0, 1, 2. We then deduce that ‖N (v̂)‖ν ≤ r by taking

ν > 0 large enough.
By the same arguments, one easily sees that ‖N (v̂1)−N (v̂2)‖ν ≤ k‖v̂1− v̂2‖ν
with k < 1, for v̂1, v̂2 ∈ Br and for ν > 0 large enough.
This means that N is contractive in the closed set Br of the Banach space(
O(UR), ‖.‖ν

)
, for ν > 0 large enough. The contraction mapping theorem

provides a unique solution ŵ ∈ Br for the fixed-point problem v̂ = N (v̂).
Since R and ρ can be arbitrarily chosen, we deduce (by uniqueness) that
the formal Borel transform ŵ of the unique formal series w̃ solution of (3.6),

defines a holomorphic in
•
R(0).

One now turns to the Grönwall lemma to get upper bounds. Working in the

star-shaped domain
•
R

(0)
ρ , for any 0 < ρ < 1, one sees by lemma 3.2, lemma

3.3 and the Grönwall lemma 3.9, that for every ζ ∈
•
R

(0)
ρ , |ŵ(ζ)| ≤ ŵ(ξ),

ξ = |ζ|, where ŵ(ξ) solves the following convolution equation:

1

Mρ,(0)
ŵ = |f̂0|+

(
3 + |f̂1|

)
∗ ŵ + |f̂2| ∗ ŵ ∗ ŵ.

This is nothing but (3.19) with ε = 1. We adopt the notations and reasoning
made for the proof of lemma 3.6. We set w̃(z) the inverse Borel transform of
ŵ and we note w̃(z) = H(t), t = z−1. The function H solves the fixed-point
problem H = N (H) with

N (H) = Mρ,(0)

(
392

625
t2 +

(
3t+ 4t2

)
H +

1

2
t2H2

)
. (3.27)

We set Mρ,(0) =
1

ρ
, U = D(0,

ρ

4.22
), and Bρ = {H ∈ O(U), ‖H‖ ≤ ρ}. One

easily shows that for any H,H1, H2 ∈ B1,

N (H) ∈ Bρ and ‖N (H1)−N (H2)‖ ≤ 44150

44521
‖H1 −H2‖.

We conclude with the contraction mapping theorem that w̃(z) is holomorphic

on the domain |z| > 4.22

ρ
and is bounded by ρ there. Therefore, by lemma
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3.5, ŵ is an entire function and satisfies: for every ξ ∈ C, |ŵ(ξ)| ≤ 4.22e
4.22
ρ |ξ|.

To sum up:

Corollary 3.1. In theorem 3.2, one can take A = 4.22 and τ =
4.22

ρ
.

3.5 Tritruncated solutions for the first Painlevé equation

Theorem 3.2 shows that one can apply the Borel-Laplace summation scheme
to the unique formal series expansion w̃ ∈ C[[z−1]] which solves equation
(3.6). This is what we do in this section.

3.5.1 Formal series solution and Borel-Laplace
summation

3.5.1.1 Notations

We will use essentially common notations with [24, 16]. In particular:

Definition 3.6. We note S1 ⊂ C the circle of directions about 0 of half-lines
on C. We usually identify S1 with R/2πZ.

For a direction θ ∈ S1 and an open arc I of S1, we note θ̆ the open arc of S1

defined by θ̆ =]− π
2 − θ,−θ + π

2 [, and Ĭ =
⋃
θ∈I θ̆.

For an open arc I =]α, β[ of S1, we set Ī = [α, β] its closure, and we note
I? =]− β,−α[ the complex conjugate open arc.
For an arc I = (α, β), we note |I| = β − α its aperture.

Definition 3.7. For I an open arc of S1 and for 0 ≤ r < R ≤ ∞, we define

the open domain
•
sRr (I) = {ζ = ξeiθ ∈ C | θ ∈ I, r < ξ < R}.

For 0 < r < R < ∞, we set
•
sR0 (I) = {ζ = ξeiθ ∈ C | θ ∈ Ī , 0 < ξ ≤ R} and

•
s∞r (I) = {ζ = ξeiθ ∈ C | θ ∈ Ī , r ≤ ξ <∞}.
We note

•
s0(I),

•
s0(I),

•
s∞(I) and

•
s∞(I) when R or r is unspecified.

For a direction θ and τ ∈ R, we write
•
Πθ
τ for the following open half-plane,

bisected by the half-line e−iθR+ :
•
Π
θ
τ = {z ∈ C, <(zeiθ) > τ}.

For I an open arc of S1 of length |I| ≤ π and γ : I → R locally bounded, we
note

•
D(I, γ) =

⋃
θ∈I

•
Π
θ
γ(θ).

The domain is called a call sectorial neighbourhood of infinity.

3.5.1.2 Borel-Laplace summation

We start noticing that for any ρ such that 0 < ρ < 1, we can define

δ = sin−1(ρ) = arcsin(ρ) ∈]0,
π

2
[.
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From this remark, theorem 3.2 and corollary 3.1 have the following obvious
consequences:

Corollary 3.2. The Borel transform ŵ ∈ O(
•
R(0)) of the formal solution w̃

of equation (3.6) satisfies the following property.

For every δ ∈]0,
π

2
[, there exist Aδ > 0 and τδ > 0 so that

for every ζ ∈ •s∞0 (]δ, π − δ[), |ŵ(ζ)| ≤ Aδeτδ|ζ|. (3.28)

Moreover one can choose Aδ = 4.22, τδ =
4.22

sin(δ)
.

From corollary 3.2 and the general properties of the Laplace transform L
([24, 16, 7] and Chapt. 7), we see that for every δ ∈]0,

π

2
[, the Borel-Laplace

sum S θw̃ of w̃ in any direction θ ∈]δ, π − δ[,

S θw̃(z) = (Lθ ŵ)(z) =

∫ ∞eiθ

0

e−zζŵ(ζ)dζ,

is well-defined and is holomorphic in a half-plane of type
•
Πθ
τδ

with τδ =
4.22

sin(δ)
.

These holomorphic functions glue together to give the Borel-Laplace sum

S ]δ,π−δ[w̃ which is holomorphic in the domain
⋃

θ∈]δ,π−δ[

•
Π
θ
τδ

, or even

S ]0,π[w̃ ∈ O
( •
D(]0, π[, τ)

)
,

•
D(]0, π[, τ) =

⋃
θ∈]0,π[

•
Π
θ
τ(θ), τ(θ) =

4.22

sin(θ)
.

(See Fig. 3.2, see also exercise 3.4). Moreover, since w̃ formally solves equation
(3.6), then S ]0,π[w̃ is a holomorphic solution of equation (3.6) and is Gevrey

asymptotic of order 1 at infinity to w̃(z) =

∞∑
l=0

alz
−l on the sector

•
D(]0, π[, τ):

for every proper-subsector
•
s∞ b

•
D(]0, π[, τ), there exist constants C > 0 and

A > 0 such that for every N ∈ N and every z ∈
•
s∞,∣∣∣∣∣S ]0,π[w̃(z)−

N−1∑
l=0

alz
−l

∣∣∣∣∣ ≤ CN !AN |z|−N . (3.29)

Similarly, the formal series w̃ is 1-summable in the directions of the interval

]π, 2π[. This provides the Borel-Laplace sum S ]π,2π[w̃ ∈ O
( •
D(]π, 2π[, τ)

)
with τ(θ) =

4.22

sin(θ)
.

3.5.2 Fine Borel-Laplace summation

When using fine Borel-Laplace summation (see [16, 24]), it is possible to give
more precise estimates than those given by (3.29). This is what we do in this
subsection.
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Fig. 3.2 The (shaded)

domain
•
D(]0, π[, τ) for

τ(θ) =
4.22

sin(θ)
.

3.5.2.1 Fine Borel-Laplace summation and Nevanlinna theorem

Definition 3.8. We note Sr(θ) the open half-strip Sr(θ) =
⋃
s∈R+

D(seiθ, r),

for r > 0 and a direction θ.

The following lemma is the easy part of a theorem of Nevanlinna, [24, 16,
18, 12].

Proposition 3.8 (Nevanlinna). We consider ϕ̃(z) =

+∞∑
n=0

an
zn
∈ C[[z−1]]1

and we note B̃ϕ̃ = a0δ+ ϕ̂ ist formal Borel transform through B̃(z → ζ). We
assume θ ∈ R and r > 0, A > 0, τ > 0. Then property (1) implies property
(2) in what follows.

1. The minor ϕ̂ is analytically continuable on Sr(θ) and for every ζ ∈ Sr(θ),
|ϕ̂(ζ)| ≤ Aeτ |ζ|.

2. The Borel-Laplace sum S θϕ̃(z) is holomorphic in
•
Πθ
τ and for every p ≥ 0,

N ≥ 0 and z ∈
•
Πθ
τ :

∣∣∣dpS θϕ̃

dzp
(z)−

N∑
k=p

(−1)pak−p
(k − p) · · · (k − 1)

zk

∣∣∣ ≤ Ras(r,A, τ,N, zeiθ; p)

(3.30)
where

Ras(r,A, τ,N, z; p) = A
N !eτr

rN |z|N
p!

(<(z)− τ)p+1

p∑
l=0

(
r(<(z)− τ)

)l
l!

(3.31)

Proof. One can assume that θ = 0. We note ϕ̂p(ζ) = (−ζ)pϕ̂(ζ). Assuming
that property (1) is true, one gets by the Cauchy formula:

for every ζ ∈ R+,
∣∣ϕ̂(N)
p (ζ)

∣∣ ≤ N !

rN
sup
|η−ζ|<r

∣∣ϕ̂p(η)
∣∣ ≤ AN !

rN
(ζ + r)peτ(ζ+r).
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By integration by part we have, for z ∈
•
Π0
τ and N ≥ 0,

dpS 0ϕ̃

dzp
(z)−

N∑
k=p

(−1)pak−p
(k − p) · · · (k − 1)

zk
=

1

zN

∫ ∞
0

ϕ̂(N)
p (ζ)e−zζ dζ

so that∣∣∣dpS 0ϕ̃

dzp
(z)−

N∑
k=p

(−1)pak−p
(k − p) · · · (k − 1)

zk

∣∣∣
≤ A N !eτr

rN |z|N

∫ ∞
0

(ζ + r)pe−ζ(<(z)−τ) dζ.

We conclude with the identity:∫ ∞
0

(ζ + r)pe−ζ(<(z)−τ) dζ =
p!

(<(z)− τ)p+1

p∑
l=0

(
r(<(z)− τ)

)l
l!

.

ut

3.5.2.2 Applications

We return to theorem 3.2 and corollary 3.1. We consider a direction θ ∈]0, π[
and we choose r > 0 and 0 < ρ < 1 such that sin(θ) = r + ρ. This ensures

that the half-strip Sr(θ) is a subset of the domain
•
R

(0)
ρ and, by theorem 3.2,

there exist A > 0 and τ > 0 such that

for every ζ ∈ Sr(θ), |ŵ(ζ)| ≤ Aeτ |ζ|, with sin(θ) = r + ρ.

Also, from corollary 3.1, one can choose A = 4.22, τ =
4.22

ρ
. As a con-

sequence, proposition 3.8 can be applied. The reader will easily adapt the
previous considerations when the directions θ ∈]π, 2π[ are considered.

We now summarize what we have obtained.

Proposition 3.9. The 1-Gevrey series w̃ ∈ C[[z−1]]1, solution of the pre-
pared equation (3.6) associated with the first Painlevé equation, is 1-summable
in the directions of the arcs I0 =]0, π[, resp. I1 =]π, 2π[. This provides two
Borel-Laplace sums,

wtri,0 = S ]0,π[w̃ resp. wtri,1 = S ]π,2π[w̃.

These two sums wtri,0 and wtri,1 are holomorphic solutions of the differential
equation (3.6) and satisfy the following properties.
For every θ ∈ I0, resp. θ ∈ I1, for every r > 0 and ρ > 0 so that
| sin(θ)| = r + ρ, there exist τ > 0 and A > 0 such that :

• wtri,j ∈ O(
•
Πθ
τ ), j = 0 resp. j = 1;

• for every z ∈
•
Πθ
τ , for every N ∈ N, for j = 0 resp. j = 1,

∣∣∣wtri,j(z)− N∑
k=0

ak
zk

∣∣∣ ≤ A N !eτr

rN |z|N
1

<(zeiθ)− τ
; (3.32)



54 3 Tritruncated solutions for Painlevé I

∣∣∣dwtri,j
dz

(z) +

N∑
k=1

(k − 1)a(k−1)

zk

∣∣∣ ≤ A N !eτr

rN |z|N
1 + r(<(zeiθ)− τ)(
<(zeiθ)− τ

)2 (3.33)

where the coefficients ak are given by (3.7);

• morover one can take A = 4.22, τ =
4.22

ρ
. In particular wtri,0, resp. wtri,1,

is holomorphic in
•
D(I0, τ), resp. in

•
D(I1, τ), with τ(θ) =

4.22

| sin(θ)|
.

3.5.2.3 Remarks

1. We would like to make a link with 1-summability theory. We fix some
notations (these are classical notations [16, 18] but for the fact that we
consider asymptotics at infinity) and we recall the Borel-Ritt theorem for
which we refer to [16].

Definition 3.9. Let I ⊂ S1 be an open arc and
•
s∞ =

•
s∞(I) a sector.

• A(
•
s∞), resp. A(I), is the differential algebra of holomorphic functions

on the sector
•
s∞ admitting Poincaré asymptotics at infinity in this

sector, resp. asymptotics germs at infinity over I.

• A1(
•
s∞), resp. A1(I), is the differential algebra of holomorphic functions

on the sector
•
s∞ with 1-Gevrey asymptotics at infinity in this sector,

resp. 1-Gevrey asymptotics germs at infinity over I.

• A<0
(
•
s∞), resp. A<0

(I), is the space of flat functions on
•
s∞, resp. flat

germs at infinity over I.

• A≤−1
(
•
s∞), resp. A≤−1

(I), is the space of 1-exponentially flat functions

on
•
s∞, resp. 1-exponentially flat germs at infinity over I.

We recall that A<0
(
•
s∞) is a differential ideal of A(

•
s∞) and that A≤−1

(
•
s∞)

is a differential ideal of A1(
•
s∞).

• A is the sheaf over S1 of asymptotic functions at infinity associated
with the presheaf A. We denote by A1 the sheaf over S1 of 1-Gevrey
asymptotic functions at infinity associated with the presheaf A1. We
denote by A<0 the sheaf over S1 of flat germs at infinity associated

with the presheaf A<0
. Finally A≤−1 stands for the sheaf over S1 of

1-Gevrey flat germs at infinity associated with the presheaf A≤−1
.

Theorem 3.3 (Borel-Ritt). The quotient sheaf A/A<0, resp. A1/A≤−1,
is isomorphic via the Taylor map T , resp. the 1-Gevrey Taylor map T1, to

the constant sheaf C[[z−1]] and, resp. C[[z−1]]1.

We go back to proposition 3.9. The domain
•
D(I0, τ) is a “sectorial neigh-

bourhood of ∞” ([4] and [24]) with aperture Ĭ0 =] − 3

2
π,+

1

2
π[, while

•
D(I1, τ) = e−iπ

•
D(I0, τ) is a “sectorial neighbourhood of ∞” with aper-

ture Ĭ1 =] − 5

2
π,−1

2
π[. These two open arcs provide a good covering

{Ĭ0, Ĭ1} of the circle of directions S1. We note J0 =] − 1

2
π,

1

2
π[ and
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J1 =] − 3

2
π,−1

2
π[ the two intersection arcs. Both wtri,0 and wtri,1 can

be considered as defining sections of A1, namely wtri,0 ∈ Γ (Ĭ0,A1) and

wtri,1 ∈ Γ (Ĭ1,A1), and are asymptotic to the same 1-Gevrey formal series
w̃. The pair (wtri,0, wtri,1) defines a 0-cochain in the sense of Čech coho-
mology, and the 1-coboundary (wtri,0 − wtri,1, wtri,1 − wtri,0) belongs to
Γ (J0,A≤−1)× Γ (J1,A≤−1).

2. For any j ∈ Z and Ij = I0 + jπ =]0, π|+ jπ, one can of course consider the
Borel-Laplace sum wtri,j = S Ij w̃, which defines a holomorphic function

on the domain
•
D(Ij , τ), a sectorial neighbourhood of ∞ with aperture

Ĭj = Ĭ0 − jπ =]− 3

2
π,+

1

2
π[−jπ. Morever, for every j ∈ Z,

wtri,j+2(z) = wtri,j(z) for z ∈
•
D(Ij , τ) (3.34)

because w̃ ∈ C[[z−1]]1.
3. We mentioned in proposition 3.1 that the formal series w̃(z) is even. One

deduces that for any θ ∈]0, π[, for every z ∈
•
Ππ−θ
τ

S π−θ w̃(z) = S −θ w̃(−z).

Therefore, for every j ∈ Z,

for every z ∈
•
D(Ij , τ), wtri,j(z) = wtri,j+1(−z). (3.35)

4. We know by proposition 3.1 that w̃(z) actually belongs to R[[z−1]]. This

has the following consequence : for any θ ∈]0, π[, for z ∈
•
Πθ
τ ,

S θ w̃(z) = S −θ w̃(z)

(a stands for the complex conjugate of a ∈ C). In other words, for any
j ∈ Z, the two functions wtri,j and wtri,j+1 are complex conjugate,

for every z ∈
•
D(Ij , τ), wtri,j(z) = wtri,j+1(z). (3.36)

However, neither wtri,0 nor wtri,1 are real analytic functions, since this
would mean that the 1-coboundary wtri,0 − wtri,1 is zero which is not as
we shall see later on.

5. The properties (3.35) and (3.36) have the following consequences: for every
j ∈ Z, wtri,j is “ PT -symmetric” [10, 11, 13], in the sense that for every

z ∈
•
D(Ij , τ),

wtri,j(z) = wtri,j(−z). (3.37)

In particular, for r > 0 large enough,

wtri,0(re−iπ/2) ∈ R, w′tri,0(re−iπ/2) ∈ iR. (3.38)

6. By Stirling formula one has N ! ∼
√

2πNN+ 1
2 e−N for large N . Since for

a given z 6= 0 the function N 7→ NNe−N

(r|z|)N
reaches its minimal value at

n = r|z|, it turns out from formula (3.32) that one can estimates the
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value of wtri,0 or wtri,1 from the truncated series expansion

N∑
k=0

ak
zk

with

N =
[
r|z|
]

where
[
.
]

is the entire part. This gives rise to the summation
to the least term.

7. Along this state of mind, there are many ways of computing Borel-Laplace
sums approximatively in practice (see, e.g., [14, 3]). Among them, one
may quote the so-called hyperasymptotic methods [1] which have strong
links with resurgence theory. These methods, originally arising from (and
extending to) geometrical considerations on (multiple) singular integrals
[22, 9, 8], can be applied to a wide class of problems stemming from ap-
plied mathematics and physics, see [19, 20, 21] and references therein.
Other ways are available, for instance those based on the use of conformal
mappings [2] with realistic upper bounds. It is also theoretically possible to
calculate a 1-sum exactly by means of factorial series expansions [18, 12].

3.5.3 Tritruncated solutions

3.5.3.1 Tritruncated solutions

One can easily translate proposition 3.9 into properties for the first Painlevé
equation (2.1). However, to cope with the Boutroux’s transformations (2.6),
(2.7), it is worth to work on the Riemann surface of the logarithm and we
thus fix some notations.

Definition 3.10. We denote by C
•

the Riemann surface of the logarithm,

C
•

= {z = reiθ | r > 0, θ ∈ R}, π : z ∈ C
•
7→ •
z = reiθ ∈ C?.

For any z = reiθ ∈ C
•

, we refer to θ as to its argument, denoted by θ = arg z.

We denote by S1

•
(usually identified with R) the set of directions of half-lines

about 0 on C
•

. We note π̇ : S1

•
→ S1 the natural projection (π̇ = π|S1

•
),

which makes S1

•
an étalé space on S1 (and even a universal covering).

Definition 3.11. For a direction θ ∈ S1

•
and τ ∈ R, we define

Πθ
τ = {z = reiα ∈ C

•
| α ∈ θ̆ and π(z) ∈

•
Π
θ
τ}.

For I an open arc of S1

•
and γ : I → R locally bounded, we note

D(I, γ) =
⋃
θ∈I

Πθ
γ(θ) ⊂ C

•
.

One calls D(I, γ) a sectorial neighbourhood of ∞ on C
•

.

In order to define the transformations (2.6) and (2.7) properly, we intro-
duce a conformal mapping:
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Definition 3.12. The conformal mapping T is defined by:

C
•

T→ C
•
, z 7→ x = T (z) =

304/5

24
e−iπz4/5. (3.39)

For I an open arc of S1

•
and γ : I → R locally bounded, the domain D(I, γ)

is sent onto T
(
D(Ij , τ)

)
⊂ C
•

through the mapping T , and we set

S(I, γ) = T
(
D(I, γ)

)
,

•
S (I, γ) = π

(
S(I, γ)

)
. (3.40)

We will consider the domains D(Ij , τ), j ∈ Z, for Ij = I0 + jπ =]0, π|+ jπ

and τ(θ) =
4.22

| sin(θ)|
. Notice that D(Ij+1, τ) = e−iπD(Ij , τ) for any j ∈ Z.

The domain S(Ij , τ) (see Fig. 3.3 and Fig. 3.4) is a sectorial neighbourhood
of ∞ of aperture

Kj =]− 11

5
π,−3

5
π[−4

5
jπ

and we may notice that, for any j ∈ Z, S(Ij+1, τ) = e−4iπ/5S(Ij , τ). In

particular,
•
S (Ij+5, τ) =

•
S (Ij , τ).

We now think of wtri,j = S Ij w̃ as a holomorphic function on D(Ij , τ). By
(3.35) and (3.37), these functions satisfy relationships: for any j ∈ Z, for
every z ∈ D(Ij , τ),

wtri,j(z) = wtri,j+1(ze−iπ), (3.41)

wtri,j(z) = wtri,j(ze
−(2j+1)iπ),

with the convention z = re−iα ∈ C
•

for z = reiα ∈ C
•

.

This gives sense without ambiguity to (3.4), (2.6) and (2.7) with the trans-
formation

z ∈ D(Ij , τ)↔ x ∈ S(Ij , τ) (3.42)

wtri,j(z)↔ utri,j(x) =
eiπ/2

√
6
x1/2

(
1− 4

25
(
T −1(x)

)2 +
wtri,j

(
T −1(x)

)(
T −1(x)

)2
)
.

The functions utri,j are solutions for the first Painlevé equation (2.1) and, by
(3.41) and (3.42), they satisfy the following relationships: for any j ∈ Z, for
every x ∈ S(Ij , τ),

utri,j(x) = e2iπ/5utri,j+1(xe−4iπ/5), (3.43)

utri,j(x) = e
2
5 (2j+1)iπutri,j(xe−

2
5 (4j+7)iπ),

We recover here the symmetries discussed in Sect. 2.5.

By projection, utri,j becomes a holomorphic function on the domain
•
S (Ij , τ).

This provides five distinct holomorphic functions utri,j(x), j = 0, · · · , 4, the
so-called tri-truncated solutions.

Since wtri,j is a section on Ĭj of A1, we deduce that the tritruncated
solution utri,j(x) belongs to the space of holomorphic functions with Gevrey
asymptotic expansion of order 4/5 (or equivalently of level 5/4, see [16]) at

infinity in
•
Sj . One can thus recover utri,j(x) by its asymptotics through 5/4-
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Fig. 3.3 The projection
of the (shaded) domain

S(I0, τ), image by the

transformation (3.39),
of the domain D(I0, τ)

drawn on Fig. 3.2 for

τ(θ) =
4.22

| sin(θ)|
. The dash

lines recall the sectors (2.9).

summability.
It is also worth mentioning that, from property (3.43), utri,2(x) is a real
analytic function.

Proposition 3.10. We note
•
S (I0, τ) = π

(
T
(
D(I0, τ)

))
with τ(θ) =

4.22

| sin(θ)|
and, for j = 0, · · · , 4,

•
S (Ij , τ) = ω2

j

•
S (I0, τ) ωj = e−

2iπ
5 j .

The first Painlevé equation (2.1) has 5 tritruncated solutions utri,j(x), j =
0, · · · 4.

The tri-truncated solution utri,j(x) is holomorphic in
•
S (Ij , τ), a secto-

rial neighbourhood of ∞ of aperture Kj =] − 11
5 π,−

3
5π[− 4

5jπ, and has in
•
S (Ij , τ) a Gevrey asymptotic expansion of order 4/5 which determined

utri,j(x) uniquely. Moreover, for every x ∈
•
S (Ij , τ),

utri,j(x) = ωjutri,0
(
ω−2
j x

)
, ωj = e−

2iπ
5 j , j = 0, · · · , 4,

and utri,2 is a real analytic function.

Remark 3.4. It is shown in exercise 3.3 that for any j = 0, · · · , 4, the tri-

truncated solution utri,j can be analytically continued to the domain
•
S (Ij , τ)

with τ(θ) =
1.4

| sin(θ)|
. We will see later on that each tri-truncated solution

utri,j can be analytically continued to a wider domain than
•
S (Ij , τ).

Exercices

3.1. We consider an ordinary differential equation of the form



3.5 Tritruncated solutions for the first Painlevé equation 59

P (∂)w = G(z, w,w′, ..., w(n−1)) (3.44)

P (∂) =

n∑
m=0

αn−m∂
m ∈ C[∂], α0 6= 0, αn 6= 0

where G(z,y) is holomorphic in a neighbourhood of (z,y) = (∞,0) ∈ C×Cn,
n ∈ N?. We furthermore suppose that

• G(z,0) = O(z−1),

• ∂|l|G(z,0)

∂yl
= O(z−1) when |l| = 1.

1. Show that for every M ∈ N and up to making transformations of the type

w =

M∑
k=1

akz
−k + v, (3.45)

one can instead assume that G(z,0) = O(z−M−1).
2. We thus suppose that for someM ∈ N?,G(z,y) is such thatG(z,0) = O(z−1−M ).

Show that, up to making a (so called) shearing transformation of the form

w = z−Mv, (3.46)

one can rather assume that

• G(z,0) = O(z−1);

• ∂|l|G(z,0)

∂yl
= O(z−1) when |l| = 1;

• ∂|l|G(z,0)

∂yl
= O(z−M(|l|−1)) when |l| ≥ 2.

3. Deduce that, through transformations of the type (3.45) and (3.46), one
can put equation (3.44) under the prepared form:

P (∂)w +
1

z
Q(∂)w = F (z, w,w′, ..., w(n−1)) (3.47)

P (∂) =

n∑
m=0

αn−m∂
m ∈ C[∂] , Q(∂) =

n−1∑
m=0

βn−m∂
m ∈ C[∂]

where F (z,y) is holomorphic in a neighbourhood of (z,y) = (∞,0) ∈
C× Cn and such that

• F (z,0) = O(z−2−M0), M0 ∈ N;

• ∂|l|F (z,0)

∂yl
= O(z−2) when |l| = 1;

• ∂|l|F (z,0)

∂yl
= O(z−2−M|l|), M|l| ∈ N, when |l| ≥ 2.

4. Show that the shearing transform w = z−Mv, M ∈ N?, transforms equa-
tion (3.47) into an equation of the form

P (∂)v +
1

z
(Q(∂)−MP ′(∂)) v = g(z, v, v′, ..., v(n−1)).
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3.2. In this exercice we still consider the equation (3.10) and its unique so-

lution ŵ ∈ O(
•
R(0)).

1. Show that, for every ζ ∈ C \ D(0)
ρ , one has

max{1, |ζ|}
|P (−ζ)|

≤ 1

ρ
.

2. Show that, for any 0 < ρ < 1, for any ζ = ξeiθ ∈
•
R

(0)
ρ , ξ = |ζ|,

ρ|ŵ(ζ)| ≤ 392

625
+ 7

∫ ξ

0

|ŵ(reiθ)| dr +
1

2

∫ ξ

0

|ŵ∗2(reiθ)| dr.

3. for any 0 < ρ < 1, we consider the (unique) entire function ŵ solution of
the convolution equation

ρŵ(ξ) =
392

625
+ 7 ∗ ŵ(ξ) +

1

2
∗ ŵ ∗ ŵ(ξ).

We note w̃(z) the inverse Borel transform of ŵ.

Show that w̃(z) ∈ O

({
|z| > 203

25ρ

})
. (Consider the discriminant locus).

Show that for |z| > 203

25ρ
, w̃(z) =

784

625

(
(ρz − 7) +

(
(ρz − 7)2 − 784

625

)1/2
)−1

,

w̃(z) = O(z−1) at infinity, and that |w̃(z)| ≤ 784

625

1

|ρz − 7|
≤ 28

25
.

4. Show that, for every ξ ∈ C, |ŵ(ξ)| ≤ 5684

625ρ
e

203
25ρ |ξ|.

5. Deduce that for every 0 < ρ < 1 and for every ζ ∈
•
R

(0)
ρ , |ŵ(ζ)| ≤ 5684

625ρ
e

203
25ρ |ζ|.

3.3. In this exercice we consider the ODE

y′′ +
y′

z
− y =

392

625
z−4 +

1

2
y2. (3.48)

deduced from (3.2) by the transformation v(z) = 1 − 4

25z2
+ y(z) or, from

(3.6) through the transformation y(z) = z−2w(z). In particular there exists
a unique formal series ỹ(z) = z−2w̃(z) ∈ C[[z−1]] solution of (3.48). We thus

know that the formal Borel transform ŷ belongs to MO(
•
R(0)) and satisfies

the convolution equation associated with (3.48) by formal Borel transforma-
tion:

(ζ2 − 1)ŷ − 1 ∗ (ζŷ) =
392

625

ζ3

Γ (4)
+

1

2
ŷ ∗ ŷ. (3.49)

1. Assume that f ∈ C{ζ} with f(0) = 0. Show that the solutions g ∈ C{ζ}
of the convolution equation

(ζ2 − 1)g − 1 ∗ (ζg) = f

are given by

g(ζ) =
C

(1− ζ2)1/2
− f(ζ)

1− ζ2
+

1

(1− ζ2)1/2

∫ ζ

0

η

(1− η2)3/2
f(η) dη, C ∈ C.
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Fig. 3.4 The projection

of the (shaded) domain
S2(I2, τ), image of the

domain D(I2, τ) by the

conformal mapping (3.39),

for τ(θ) =
1.4

| sin(θ)|
. The

dash lines recall the sectors
(2.9).

(Hint : take g(ζ) = G(ζ)
1−ζ2 , differentiate the convolution equation to obtain

a nonhomogeneous linear differential equation of order 1, and solve this
equation).

2. Show that ŷ satisfies the convolution equation (3.49) in MO(
•
R(0)) if and

only if ŷ satisfies the following fixed-point problem:

ŷ = P

(
392

625

ζ3

Γ (4)

)
+

1

2
P
(
ŷ ∗ ŷ

)
with

(
Pg

)
(ζ) = − g(ζ)

1− ζ2
+

1

(1− ζ2)1/2

∫ ζ

0

η

(1− η2)3/2
g(η) dη,

(3.50)

3. Show that for any 0 < ρ < 1 and for any ζ ∈
•
R

(0)
ρ one has

max{1, |ζ|}
|P (−ζ)|

≤ 1

ρ

and

∣∣∣∣ ζ

(1− ζ2)3/2

∣∣∣∣ ≤ 1

ρ3/2
.

4. Show that for any 0 < ρ < 1 and for any ζ ∈
•
R

(0)
ρ , |ŷ(ζ)| ≤ Ŷ (ξ) with

ξ = |ζ|, where Ŷ is an entire function that solves the fixed-point problem:

Ŷ = Q

(
392

625

ξ3

Γ (4)

)
+

1

2
Q
(
Ŷ ∗ Ŷ

)
(3.51)

(
QG

)
(ξ) =

G(ξ)

ρ
+

1

ρ2

(
1 ∗G

)
(ξ)

5. For any 0 < ρ < 1, we note Ỹ (z) the inverse Borel transform of Ŷ .

Show that Ỹ (z) satisfies the algebraic equation

ρỸ =

(
392

625

1

z4
+

1

2
Ỹ 2

)(
1 +

1

ρz

)
, Ỹ (z) =

392

625

1

ρz4
+O(z−5). (3.52)

6. Show that the fixed-point problem (3.52) has a unique solution in

Bρ3/2 = {H ∈ O(U), ‖H‖ ≤ ρ3

2
}, for U = D(∞, ρ

1.4
).
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7. Deduce that the minor ŷ of the formal series ỹ solution of equation (3.48)

is holomorphic on
•
R(0) and that, for any 0 < ρ < 1, for every ζ ∈

•
R

(0)
ρ ,

one has
|ŷ(ζ)| ≤ 0.7ρ2e

1.4
ρ |ζ|. (3.53)

8. Deduce that for any j ∈ Z and Ij = I0 +jπ =]0, π|+jπ, the Borel-Laplace

sum ytri,j = S Ij ỹ defines a holomorphic function on the domain
•
D(Ij , τ)

with τ(θ) =
1.4

| sin(θ)|
.

9. Deduce that the tri-truncated solution utri,j , j ∈ Z, is holomorphic on the

domain S(Ij , τ) = T
(
D(Ij , τ)

)
with τ(θ) =

1.4

| sin(θ)|
. See Fig. 3.4.

3.4. We consider the domain
•
D(]0, π[, τ) for τ(θ) =

λ

sin(θ)
, λ > 0. We want

to describe the boundary ∂
•
D(]0, π[, τ) of this domain.

1. show that ∂
•
D(]0, π[, τ) is the envelope of the following family of line curves:

z = x+ iy, x cos(θ)− y sin(θ) =
λ

sin(θ)
, θ ∈]0, π[.

2. Deduce that ∂
•
D(]0, π[, τ) is the parabolic curve of equation y =

x2

4λ
− λ.
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Chapter 4

Beyond 1-summability

Abstract We have shown that the minor ŵ of the unique formal series so-
lution w̃ of the prepared ODE associated with the first Painlevé equation,
defines a holomorphic function on a convenient star-shaped domain. We fur-
ther analyze the analytic properties of ŵ. We show in Sect. 4.4 how ŵ can
be analytically continued onto a wider domain of a Riemann surface that we
define in Sect. 4.1. This question is related to the problem of “mastering”
the analytic continuations of a convolution product and, as a byproduct, of
getting upper bounds for on any compact set. This is what we will (partly)
do in Sect. 4.2 and Sect. 4.3, using only elementary geometric arguments.

4.1 Riemann surface and sheets

This section is devoted to defining the Riemann surface R = RZ and some
of its sheets. We do that in a way at first sight artificially complicated, but
needed to state one of the main results of this chapter, namely proposition
4.2 and its consequences developed in Sect. 4.3.

4.1.1 Riemann surface

4.1.1.1 About paths

In what follows, a path λ in a topological space X is any continuous function
λ : [a, a + l] → X, where [a, a + l] ⊂ R is a (compact) interval possibly
reduced to {a}. We often work with standard paths, that is paths defined on
[0, 1]. The path λ : t ∈ [0, 1] 7→ λ(a+ tl) is the standardized path of λ. For
two paths λ1 : [a, a + l] → X, λ2 : [b, b + k] → X so that λ1(a + l) = λ2(b),
one defines their product (or concatenation) by

λ1λ2 : t ∈ [a, a+ l + k] 7→
{
λ1(t), t ∈ [a, a+ l]
λ2(t− a− l + b), t ∈ [a+ l, a+ l + k]

When the two paths λ1, λ2 have same extremities, they are homotopic when
there exists a continuous map H : [0, 1]× [0, 1]→ X that realizes a homotopy
between the standardized paths λ1 and λ2.

65
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Sometimes one needs to use regular paths. We recall that any path can be
uniformaly approached by C∞-paths. For a piecewise C1-path λ, we denote

its length by length(λ) =

∫ 1

0

|λ′(t)|dt.

4.1.1.2 Riemann surface

Definition 4.1. We note R = R0 the set of paths λ that satisfies the condi-
tion: there exists t0 ∈ [0, 1] so that λ([0, t0]) = {0} and λ(]t0, 1]) ⊂ C \ Z. For
λ ∈ R, we note cl(λ) its equivalence class for the relation of homotopy ∼R

of paths in R with fixed extremities. We define

R = RZ = {ζ = cl(λ) | λ ∈ R} and p : ζ = cl(λ) 7→
•
ζ= λ(1) ∈

•
R

where
•
R = C \ Z?.

We precise the relation of homotopy ∼R. For two paths λ0, λ1 ending at the same

point, λ0 ∼R λ1 if there is a homotopy H : (s, t) ∈ [0, 1]× [0, 1] 7→ Ht(s) ∈ C so

that H0 = λ0, H1 = λ1 and Ht ∈ R for every t ∈ [0, 1].

Notice that the origin plays a singular role in this definition. In particular,
p−1(0) is reduced to a single point 0 = cl(0). This is why one usually considers
(R, 0) as a pointed space.

The space R shares many characteristics with C̃ \ Z, the universal covering
of C \ Z (see, e.g., [7, 3, 11]). In particular, by classical arguments, one can
endow R with a separated topology, a basis B = {U } of open sets defining
this topology being given as follows. Let us consider ζ ∈ R:

• assume that ζ = 0. For
•

U ⊂
•
R a connected and simply connected neigh-

bourhood of 0, one defines U ⊂ R as the set of all ξ = cl(λ) such that λ is

any path of R contained in
•

U and ending at
•
ξ. Notice that ξ is well-defined

since
•

U is simply connected.

• assume that ζ 6= 0. If
•

U ⊂
•
R \ {0} is a connected and simply connected

neighbourhood of
•
ζ, one defines U ⊂ R as the set of all ξ = cl(λ1λ2)

where λ1 ∈ R is so that ζ = cl(λ1), while λ2 is a path starting from
•
ζ,

ending at
•
ξ and contained in

•
U .

With this topology, it is straightforward to see that the projection p is a
continuous mapping and, even, a local homeomorphism : for every U ∈ B,

the mapping p|U →
•

U is a homeomorphism. One eventually gets the following
proposition.

Proposition 4.1. The pointed space (R, 0) is a topologically separated space,
arcconnected and simply connected. The projection p makes R an étalé space

on
•
R. By pulling back by p the complex structure of C, the space R becomes

a Riemann surface.

By “étalé space”, we mean that p : R →
•
R is a local homeomorphism. Notice that

p is not a covering map since the curve lifting property [7, 3] is not satisfied. For
instance, as a rule, a path starting from and ending at 0 cannot be lifted from 0 on

R with respect to p.
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We precise the “pull back” of the complex structure. If U1,U2, U1 ∩U2 6= ∅ are two

open sets of R such that the mappings p|U1
: U1 → p(U1) and p|U2

: U2 → p(U2)
are two homeomorphisms, then the chart transition

p|U2
◦ p|−1

U1
: p(U1 ∩U2)→ p(U1 ∩U2) is nothing but the identity map, thus is bi-

holomorphic. This makes R a Riemann surface, that is a connected one-dimensional
complex manifold [7, 3].

Definition 4.2. We note R̂ = R̂Z the space of germs ϕ̂ of analytic func-
tions at the origin that satisfies the property : there exists a neighbourhood

U ∈ B of 0 such that the mapping Φ : ζ ∈ U ⊂ R 7→ Φ(ζ) = ϕ̂(
•
ζ) ∈ C can

be analytically continued to R.

4.1.2 Sheets of the Riemann surface

4.1.2.1 Principal sheet

By the very construction of the Riemann surface R, there exists a unique
open set R(0) of R so that p|R(0) realises a homeomorphism between R(0)

and the simply connected domain
•
R(0). This open set R(0) is made of all the

classes cl(λ) of paths λ that are homotopic to segments [0,
•
ζ], with

•
ζ∈

•
R(0).

Definition 4.3. One refers to R(0) as to the principal sheet of the pointed
Riemann surface (R, 0).

For every 0 < ρ < 1, one defines R
(0)
ρ as the unique open subset of R(0) such

that p(R
(0)
ρ ) =

•
R

(0)
ρ . (See Fig. 4.1).

4.1.2.2 Other sheets

Definition 4.4. Let be m ∈ N?, ε = (ε1, · · · , εm−1) ∈ {+,−}m−1 a sequence
of m − 1 signs and n = (n1, · · · , nm−1) ∈ (N?)m−1 a sequence of positive
integers. Let be θ1 ∈ {0, π} ∈ S1 a given direction.
When m = 1, one says that the path γ ∈ R is of type γθ1() when γ closely

follows the segment eiθ1 ]0, 1[=]0, ω1[ toward ω1 = eiθ1 .
Otherwise, for m ≥ 2, on says that the γ ∈ R is of type type γθ1εn if γ connects
the segment ]0, ω1[ to the segment ]ωm−1, ωm[, ωm − ωm−1 = eiθm , through
the following steps:

−1−2−3 10 2

0−1−2
−3

1 2

Fig. 4.1 Above, the domain
•
R(0). Below, the domain

•
R

(0)
ρ .
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Fig. 4.2 A path of type

γθε for ε = (+,−,+) and
θ = 0. 0 1 2 3 4

Fig. 4.3 A path of

type γθεn for θ = 0,
ε = (−,+,+,+,−) and

n = (1, 2, 1, 1, 1). 0 1 2−1−2

• γ closely follows the segment ]0, ω1[ toward the direction θ1, makes n1 half-
turns around the point ω1, anti clockwise when ε1 = +, clockwise when
ε1 = −1, and finally closely follows the segment ]ω1, ω2[, ω2 − ω1 = eiθ2 ,
toward the direction θ2 = θ1 + ε1(n1 − 1)π;

• then, successively for k = 2, · · · ,m− 1, γ makes nk half-turns around the
point ωk, anti clockwise when εk = +, clockwise when εk = −1, and even-
tually closely follows the segment ]ωk, ωk+1[, ωk+1 − ωk = eiθk+1 , toward
the direction θk+1 = θk + εk(nk − 1)π.

When n = (1, · · · , 1) ∈ {1}m−1, we simply say that γ ∈ R is of type γθ1ε .
(See Fig. 4.2 and Fig. 4.3).

For instance, if γ is of type γθε , then someone standing at 0 ∈ C and looking
in the direction of the half-line ]0, eiθ∞[ will see the path γ avoiding the point

ωn = neiθ ∈ C? by swerving in the direction of his right hand when εn = +, of his

left hand when εn = −.

Definition 4.5. For m ∈ N?, ε ∈ {+,−}m, n ∈ (N?)m and a direction
θ ∈ {0, π}, we denote by Rεn,θ the sheet defined as the domain of R made of
points ζ = cl(γλ), where γ is a path of type γθεn ending at
•
ξ∈]p, (p+ 1)[=]ωm, ωm+1[, and λ is a path starting from

•
ζ, and contained

in the simply connected domain C \ {] − ∞, p] ∪ [p + 1,+∞[}, star-shaped

from
•
ξ. When n = (1, · · · , 1) ∈ {1}m, we simply write Rε,θ = Rεn,θ.

The set of sheets {R(0),Rεn,θ} provides an open covering of R, with the
following property: the restriction p|Rεn,θ realises a homeomorphism between
Rεn,θ and the simply connected domain C \ {]−∞, p] ∪ [p+ 1,+∞[} where
]p, (p+ 1)[=]ωm, ωm+1[, with ωm, ωm+1 as given by definition 4.4.

Remark that for every θ ∈ {0, π}, for every m ∈ N? and for every ε ∈ {+}m
or ε ∈ {−}m, R(0) and Rε,θ have a non-empty intersection (a half-plane on
projection). This justifies the following definitions.

Definition 4.6. For m ∈ N?, we define (+)m−1 = (+, · · · ,+) ∈ {+}m−1 and
(−)m−1 = (−, · · · ,−) ∈ {−}m−1. We denote by (±)m−1 any (m − 1)-tuple
of the form (±, · · · ,±) ∈ {+,−}m−1. Also, (+)0 = (−)0 = (±)0 = () is the
0-tuple.

Thus, the set of all (±)m is made of 2m elements.

Definition 4.7. One says that Rε,θ is a R(0)-nearby sheet when

ε ∈
⋃

m∈N?
{(+)m, (−)m}. One denotes by R(1) the domain of R defined as

the union of the principal sheet and the collection of nearby sheets:

R(1) = R(0)
⋃

θ∈{0,π},m∈N?
R(+)m,θ ∪R(−)m,θ.
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More generally, for any k ∈ N?, one defines

R(k+1) = R(k)
⋃

θ∈{0,π},m∈N?
n∈(N?)k

R((±)nk ,(+)m−1),θ ∪R((±)nk ,(−)m−1),θ.

Remark 4.1. Notice that

p(R(+)m,θ) = p(R(−)m,θ) = C \ eiθ{]−∞,m] ∪ [m+ 1,+∞[}

and that
⋃
k

R(k) = R.

Remark also that the R(k) are Riemann surfaces since they inherit from R
the structure of complex manifold and since they are open connected. We
will not be concerned by the Riemann surfaces R(k), k ≥ 2, until Chapt. 7.

4.1.3 Nearby sheets

Our aim in this subsection is to introduce other sheets of the Riemann surface,
that will be convenient for our purpose.

We start with the following remark: for 0 < ρ < 1 and m ∈ N?, the closed

discs D(m,mρ) and D(m+ 1, (m+ 1)ρ) are disjoint as soon as m <
ρ−1 − 1

2
.

Thus, now assuming that 0 < ρ ≤ 1

5
and introducing the integer part

M (ρ) + 1 = bρ
−1−1

2 c ≥ 2 (b.c] is the floor function), one observes that the

discs D(m, |m|ρ) do not overlap when with |m| ≤M (ρ) + 1.

Definition 4.8. We assume that 0 < ρ ≤ 1

5
and we note M (ρ) = bρ

−1 − 1

2
c − 1,

M (ρ) ∈ N?. For |m| ≤M (ρ) + 1 and m 6= 0, we note Dm = D(m, |m|ρ) the
closed disc centered at m with radius |m|ρ. We note D0 = {0}.
For θ ∈ {0, π}, we denote by Dθρ ⊂ C the closed subset defined by

Dθρ =
{
tζ | t ∈ [1,+∞[, ζ ∈ Deiθ(M+1)

} ⋃
0≤m≤M (ρ)

Deiθm.

We define the domains
•

P θ
ρ = C \ Dθρ and

•
Rρ =

( •
P 0

ρ∩
•

P π
ρ

)
∪ {0} (see

Fig. 4.4).

Remark 4.2. Notice that
•
R =

⋃
0<ρ≤1/5

•
Rρ.

0 1 2−1−2
−3

Fig. 4.4 The domain
•

Rρ when
1

9
< ρ ≤

1

7
(the scale is not correct).
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The domains
•

P θ
ρ satisfy the following property :

Lemma 4.1. We assume that
•
ζ belongs to

•
P θ

ρ. Then for every n ∈ [1,M (ρ)],

the set
•
ζ −Deiθn is included in

•
P θ

ρ.

Proof. The proof is easy and is left as an exercise. ut

Definition 4.9. With the hypotheses of definition 4.8, for 0 ≤ m ≤M (ρ)
and θ ∈ {0, π}, we define

Em,θρ =
⋃

(ζ,ξ)∈D
eiθm
×D

eiθ(m+1)

{
ξ + t(ξ − ζ), ζ + t(ζ − ξ) | t ∈ [0,+∞[

}

and
•
Qm,θ
ρ = C \ Eθρ,m. When m > M (ρ), we set

•
Qm,θ
ρ = ∅ .

For m ≥ 1 and ε = ±, we set
•
Q (ε)m,θ

ρ =
•
Q m,θ

ρ ∩ {ζ | εeiθ(=ζ) ≤ 0}. See
Fig. 4.5.

The domains
•
Qm,θ
ρ have been defined so as to enjoy the following property :

Lemma 4.2. We assume that
•
ζ belongs to

•
Q m,θ

ρ for some m ∈ [1,M (ρ)]

and some θ ∈ {0, π}. Then, for every n ∈ [1,m], the set
•
ζ −Deiθn is included

in
•
Qm−n,θ
ρ .

Proof. We only consider the case θ = 0 and we suppose
•
ζ ∈

•
Qm,0
ρ .

For n ∈ [1,m], we assume that there exists
•
ζn ∈ Dn such that

•
ζ −

•
ζn /∈

•
Qm−n,0
ρ .

This means that
•
ζ −

•
ζn ∈ Em−n,0ρ (see definition 4.9). Thus, there exist

•
ζm−n∈ Dm−n,

•
ζm−n+1∈ Dm−n+1 and t ∈ [0,+∞[ such that

•
ζ −

•
ζn=

•
ζm−n +t(

•
ζm−n −

•
ζm−n+1) or

•
ζ −

•
ζn=

•
ζm−n+1 +t(

•
ζm−n+1 −

•
ζm−n).

We look only at the first case, which we write as follows:

•
ζ= (

•
ζm−n +

•
ζn) + t

(
(
•
ζm−n +

•
ζn)− (

•
ζm−n+1 +

•
ζn)
)
.

We observe that
•
ζm−n +

•
ζn ∈ Dm and that

•
ζm−n+1 +

•
ζn ∈ Dm+1. Therefore

•
ζ ∈ Em,0ρ and this contradicts the fact that

•
ζ∈
•
Qm,0
ρ . ut

−3
2−2 −1 0 1

Fig. 4.5 The domain
•
Q

2,π
ρ . The set

•
Q

(−)2,π
ρ lies below the real axis, the domain

•
Q

(+)2,π
ρ

lies above the real axis.
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Definition 4.10. With the hypotheses of definition 4.8, for 1 ≤ m ≤M (ρ)
and θ ∈ {0, π}, we denote by Dm,θρ ⊂ C the closed subset defined by

Dm,θρ =
{
tζ | t ∈]−∞, 1], ζ ∈ Deiθm

}
∪
{
tζ | t ∈ [1,+∞[, ζ ∈ Deiθ(m+1)

}
.

We define the domain
•

P m,θ
ρ = C \ Dm,θρ . We set

•
P 0,θ

ρ =
•
Q 0,0

ρ while, for

m > M (ρ), we set
•

Pm,θ
ρ = ∅.

For ε = ± we note
•

P (ε)m,θ
ρ =

•
Pm,θ

ρ ∩ {ζ | εeiθ(=ζ) ≤ 0}. (See Fig. 4.6).

Definition 4.11. Under the hypotheses of definition 4.8, for θ ∈ {0, π},
ε = ± and m ∈ N, we define the domains

•
R(ε)m,θ
ρ =

•
P (ε)m,θ

ρ ∪
•
Q (−ε)m,θ
ρ

(see Fig. 4.7). We define as well the domains

•
Rm,θ =

⋃
0<ρ≤1/5

•
R(+)m,θ
ρ =

⋃
0<ρ≤1/5

•
R(−)m,θ
ρ = C\eiθ

{
]−∞,m]∪[m+1,+∞[

}
.

We have already noticed that for θ ∈ {0, π} and m ∈ N?, the restriction
p|R(+)m,θ and p|R(−)m,θ respectively, realises a homeomorphism between the
nearby sheet R(+)m,θ and R(−)m,θ respectively, and the simply connected
domain

p(R(+)m,θ) = p(R(−)m,θ) =
•
Rm,θ.

This justifies the following definition.

Definition 4.12. With the above notations, with ε = ± and 1 ≤ m ≤M (ρ),
one defines

R(ε)m,θ
ρ = p|−1

R(ε)m,θ

( •
R(ε)m,θ
ρ

)
.

One says that the domains R
(ε)m,θ
ρ are the R

(0)
ρ -nearby sheets .

One defines the connected and simply connected domains R
(1)
ρ ⊂ R(1) by

R(1)
ρ = R(0)

ρ

⋃
1≤m≤M (ρ)
θ∈{0,π},ε=±

R(ε)m,θ
ρ ,

and we denote by R
(1)
ρ the closure of R

(1)
ρ in R(1).

Observe that p
(
R

(1)
ρ

)
=
•

Rρ. In the same line, one has also the following

lemma which will be useful in a moment.

−3
2−2 −1 0 1

Fig. 4.6 The domain
•

P
2,π
ρ . The set

•
P

(−)2,π
ρ lies below the real axis, the set

•
P

(+)2,π
ρ

lies above the real axis.
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λ+

λ−

−1−2−3 10 2

−3
2−1 0 1−2

Fig. 4.7 Figure above, the domain
•
R

(+)2,π
ρ . Figure below, the domain

•
R2,π .

Lemma 4.3. We assume that ζ ∈ R
(ε)m,θ
ρ \ R

(0)
ρ for some m ∈ [1,M (ρ)],

some θ ∈ {0, π}, ε = ±. Then, for every n ∈ [1,m],
•
ζ −Deiθn is a subset of

•
Rρ and there exists a closed set U ζ,eiθn ⊂ R

(ε)m−n,θ
ρ such that U ζ,eiθn and

•
ζ −Deiθn are p-homeomorphic.

Proof. The lemma is a consequence of lemmas 4.1 and 4.2. ut

4.2 Symmetrically contractile paths

4.2.1 Geodesics

With the hypotheses of definition 4.8, we consider the closure
•

Rρ of the do-

main
•

Rρ. This space
•

Rρ can be thought of as a complete real 2-dimensional
Riemannian manifold with smooth C1-boundary embedded in the 2-dimensional
euclidean space. For such a space, the following result takes place.

Lemma 4.4. We note X =
•

Rρ. For every two points
•
ζ1,
•
ζ2 ∈ X, there exists

a geodesic in every homotopy class of curves from
•
ζ1 to

•
ζ2 in X, and this

geodesic may be chosen as a shortest curve in the homotopy class.

In this lemma, a geodesic is a locally shortest path for the metric. Lemma 4.4
can be seen as a consequence of the general Hopf-Rinow theorem [9] which
can be applied. As a matter of fact, the situation is quite simple here : inside
•

Rρ, a geodesic is nothing but a straight line, otherwise one just follows the

smooth boundary ∂
•

Rρ (see also [2]. See [1] and references therein for more
general cases).

Lemma 4.5. For every ζ ∈ R
(1)
ρ , there exists λ ∈ R ending at

•
ζ with the

following properties:

• λ can be lifted uniquely with respect to p on R
(1)
ρ into a path Λ starting

from 0 and ending at ζ.



4.2 Symmetrically contractile paths 73

Fig. 4.8 The geodesic

path λ for ζ = cl(λ) in

R
(+)3,θ
ρ \R

(0)
ρ .

0

ζ

1
2

3D

D
D

• λ is of class C1 and is the shortest path in the homotopy class of paths

in
•
Rρ.

Proof. we assume that ζ ∈ R
(1)

ρ . Then:

1. First case: either ζ belongs to R
(0)

ρ . In that case we take for λ the seg-

ment [0,
•
ζ] ⊂

•
R

(0)
ρ .

2. Second case: or ζ belongs to R
(ε)m,θ
ρ \R

(0)
ρ for some θ ∈ {0, π}, ε = ±

and some m ∈ [1,M (ρ)]. In that case we consider the path λ = γ0δγ1,
made as the product of the following geodesics (see Fig. 4.8) :

• γ0 is the segment [0,
•
ζ1] ⊂ ∂

( •
P

(ε)m,θ
ρ ∩

•
R

(0)
ρ

)
that circumvents the

segment eiθ[1,m] to the right when ε = + and to the left when ε = −;

• δ is the arc-curve

_
•
ζ1,
•
ζ2 that follows in

•
R

(ε)m,θ
ρ the boundary ∂Deiθm;

• γ1 is the segment [
•
ζ2,
•
ζ] in

•
R

(ε)m,θ
ρ (possibly reduced to the point

•
ζ).

In the two cases, the path λ can be lifted with respect to p from 0 on R
(1)
ρ ,

by the very construction of R
(1)
ρ . This lifting is unique from the uniqueness

of lifting (see [7]), because R is an étalé space on
•
R. Obviously λ is C1 and

is the shortest path in its homotopy class in
•

Rρ. ut

4.2.2 Symmetric Z-homotopy

We refer the reader to [12] for the definition of “symmetric Ω-homotopy”,
see also [4, 11, 13, 14].

4.2.2.1 Shortest length symmetric Z-homotopy

We are ready to show the following result.

Proposition 4.2 (Shortest length symmetric Z-homotopy). Let ζ = cl(λ)

be any point in R
(1)
ρ , with λ given by lemma 4.5.

There exists a unique continuous map H : (s, t) ∈ I × J 7→ H(s, t) = Ht(s) ∈
•
Rρ

where I = [0, 1] and J = [a, b] is a compact interval of R, such that H satisfies
the following properties:
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1. for each t ∈ J , the map Ht : s ∈ I 7→ Ht(s) = H(s, t) defines a path which
satisfies:

a. Ht belongs to R, is of class C1, and can be lifted uniquely from 0 with

respect to p on R
(1)
ρ into a path Ht : s ∈ I 7→ Ht(s);

b. the map H : (s, t) ∈ I × J 7→ H(s, t) = Ht(s) ∈ R
(1)
ρ thus defined is

continuous, and the following diagram commutes:

R
(1)
ρ

H ↗ ↓ p

I × J −→
•
Rρ

H

c. H−1
t (s) = Ht(1) − Ht(s) for every s ∈ I, where H−1

t is the inverse
path1;

d. Ht is the shortest path in the homotopy class of paths having the above

properties 1a, 1b, 1c and Ht is homotopic to λ|[0,T (t)] in
•
Rρ for some

0 ≤ T (t) ≤ 1;

2. the initial path Ha is a segment in
•
R

(0)
ρ ;

3. the final path Hb is so that ζ = cl(Hb). In other words, Hb(1) = ζ.

Proof. We assume that ζ ∈ R
(1)
ρ and we consider the path λ given by

lemma 4.5.

1. First case. When ζ belongs to R
(0)
ρ , we know that λ is the segment

[0,
•
ζ] ⊂

•
R

(0)
ρ . In this case we set J = {0} and define H0(s) = s

•
ζ for every

s ∈ I.
2. Second case: We now assume that ζ belongs to R

(ε)m,θ
ρ \R

(0)
ρ for some

θ ∈ {0, π}, ε = ± and some m ∈ [1,M (ρ)]. For simplicity we will assume

that θ = 0 and ε = +. In this case, the path λ : [0, 3]→
•

Rρ reads λ = γ0δγ1,

λ(t) =

γ0(t), t ∈ [0, 1]
δ(t− 1), t ∈ [1, 2]
γ1(t− 2), t ∈ [2, 3]

,

with γ0, δ, γ1 : [0, 1]→ C as described in the proof of lemma 4.5.

We define H1 to be the path γ0, that is we define H1(s) = s
•
ζ1, for s ∈ I.

Since the point ζ1 = cl(H1) belongs to R
(+)m,0
ρ \ R

(0)
ρ , we can applied

lemma 4.3. As a consequence, the path H1 can be seen as a geodesic

path (of shortest length) in X =
•
Rρ \

⋃
1≤n≤m

{
•
ζ1 −Dn}, by application of

lemma 4.4.

Still according to lemma 4.3, the space
•

Rρ \
⋃

1≤n≤m

{
•
ξ −Dn} remains in the

field of application of lemma 4.4, for every
•
ξ= p(ξ) with ξ ∈ R

(+)m,0
ρ \R

(0)
ρ .

In that way, one gets a local system
( •

Rρ \
⋃

1≤n≤m

{
•
ξ −Dn}

)
ξ

of Rieman-

1 That is H−1
t (s) = Ht(1− s)
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Fig. 4.9 The geodesic

path Hb for ζ = cl(Hb) in

R
+
ρ,(3,4) \R

(0)
ρ .

0

ζ
3D

2D
1D

1D
2D

3D

ζ− ζ− ζ−

nian manifolds with smooth boundary.
For t ∈ [1, 3], we consider the restriction λ|[0,t] of λ to [0, t]. For t ∈ [1, 3]

we note
•
ξt= p(cl(λ|[0,t]) and we continuously follow the class of H1 in

•
Rρ \

⋃
1≤n≤m

{
•
ξt −Dn} when t moves from 1 to 3. In this class cl(H1), we

note Kt the geodesic path of shortest length. Obviously, when each Kt

is viewed as a continuous functions in
•

Rρ, this gives rise to a continuous

map K : t ∈ [1, 3]→ C0
(
[0, 1],

•
Rρ

)
.

For t ∈ [1, 3], we finally define Ht : s ∈ I →
•

Rρ \
⋃

1≤n≤m{
•
ξt −Dn} to be

the path deduced from the product path Kt(δγ1|[1,t]) by standardization.
This defines the homotopy H we had in mind,

H : (s, t) ∈ I × J 7→ Ht(s) = H(s, t) ∈
•

Rρ \
⋃

1≤n≤m

{
•
ξt −Dn} ⊂

•
Rρ,

with J = [a, b] = [1, 3]. See Fig. 4.9.
By its very construction, for every t ∈ [1, 3], the path Ht is sym-
metric with respect to its midpoint. Thus, up to making a change of
parametrisation (arc-length parametrisation and standardization), one has
H−1
t (s) = Ht(1)−Ht(s) for every s ∈ I.

Also, as a consequence of lemma 4.3, for every t ∈ [1, 3], the path Ht

can be uniquely lifted from 0 with respect to p on R
(1)
ρ into a path

Ht : s ∈ I 7→ Ht(s). This induces a continuous map

H : (s, t) ∈ I × J 7→ H(s, t) = Ht(s) ∈ R
(1)
ρ as it follows from the lifting

theorem for homotopies [7, 3].
The fact that ζ = cl(H3) is obvious. The uniqueness of H comes from the
fact that any Ht is chosen as the shortest path.
ut

With the notation of [12], the map H given by proposition 4.2 is an ex-
ample of a “symmetric Z-homotopy” and the final path Hb has the property
of being a “symmetrically contractile path”, according to a terminology of
Ecalle [4].
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4.2.2.2 Length and L-points

Definition 4.13. For every ζ ∈ R
(1)
ρ , we note leng(ζ) = length(Hb) the

length of the associated symmetrically contractile path Hb given by proposi-
tion 4.2.

When returning to the very construction of the shortest length symmetric

Z-homotopy H, one sees that the mapping ζ ∈ R
(1)
ρ 7→ leng(ζ) is continuous.

This justifies the following definition:

Definition 4.14. For any L > 0, we note Uρ,L the open subset of R
(1)
ρ :

Uρ,L = {ζ ∈ R(1)
ρ | leng(ζ) < L}.

An element of Uρ,L is called a L-point.

Lemma 4.6. We assume ζ ∈ Uρ,L. We consider the shortest length sym-
metric Z-homotopy H of proposition 4.2 associated with ζ, and its lifting

H : (s, t) ∈ [0, 1]× [a, b] 7→ Ht(s) ∈ R
(1)
ρ . Then:

• Ht(s) belongs to Uρ,L, for every (s, t) ∈ [0, 1]× [a, b];
• equipping Hb with ist arc-length parametrisation, Hb : ` ∈ [0, leng(ζ)] 7→ Hb(`),

one has

– leng(Hb(`)) ≤ `.
– leng(H−1

b (`)) ≤ leng(ζ)− `.

Proof. For every (s, t) ∈ [0, 1]× [a, b], to the point Ht(s) ∈ R
(1)
ρ is associated

a (shortest length) symmetrically contractile path given by proposition 4.2,
whose length, leng(Ht(s)), is obviously less than the length of Ht|[0,s]. (Just
look at Fig. 4.9). Thus leng(Ht(s)) ≤ length(Ht|[0,s]).
Similarly, to the point H−1

t (s) ∈ R
(1)
ρ is associated a (shortest length) sym-

metrically contractile path and evidence shows that leng(H−1
t (s)) is less that

the length ofH−1
t |[0,s]. Therefore leng(H−1

t (s)) ≤ length(Ht)− length(Ht|[0,s]).
ut

We finally provide a result from [8], which gives an upper bound for the
length of the symmetrically contractile path we work with.

Lemma 4.7. For every ζ ∈ R
(1)
ρ ,

• either ζ ∈ R
(0)

ρ and then leng(ζ) = |
•
ζ |;

• or |
•
ζ | ≤ leng(ζ) ≤ 1

ρ
|
•
ζ |+ 1

ρ

(
1

ρ
− 2

)
.

Proof. The first case is obvious. The second case means that ζ ∈ R
(ε)m,θ
ρ \R(0)

ρ

for some θ ∈ {0, π}, ε = ± and some m ∈ [1,M (ρ)]. Let us assume that θ = 0
and ε = + for simplicity. We return to the construction of the final path Hb

of proposition 4.2, see also Fig. 4.9. The geodesic path Hb is made of :

• m+1 segments between ∂Dn and ∂
( •
ζ −Dm−n

)
, n ∈ [0,m]. Each of these

segments has length less than |
•
ζ −m|+mρ.

• m segments between ∂
( •
ζ −Dm−n

)
and ∂Dn+1, n ∈ [1,m]. Each of these

segments has length less than |
•
ζ −(m+ 1)|+ (m+ 1)ρ.
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• 2m arcs of circle, the total length of which being less than 2(1 + · · ·+m)2πρ.

Putting things together, one gets

leng(ζ) ≤ (2m+ 1)|
•
ζ |+ 2m(m+ 1)(1 + ρ) + 2m(m+ 1)πρ.

Since ρ ≤ 1

5
, one has |

•
ζ | ≤ leng(ζ) ≤ (2m+ 1)|

•
ζ |+ 4m(m+ 1). But since

M (ρ) + 1 = bρ
−1−1

2 c, one has m ≤ M (ρ) ≤ 1

2ρ
− 1 and we easily get the

result. ut

4.3 Convolution product and related properties

It is known that the space R̂ = R̂Z (definition 4.2) is a convolution alge-
bra without unit [12, 10]. Also, bounds for the convolution product can be
obtained [2, 11, 12], as demonstrated in [14].

Stability by convolution product is also valid for the space of germs of analytic
functions that are “endlessly continuable” [2, 11]

In this subsection, we will show that these properties remains true for a
larger space R̂(1), with more precise statements for the bounds.

4.3.1 Riemann surface and convolution

Definition 4.15. For k ∈ N?, we denote by R̂(k) the space of germs of
analytic functions at the origin ϕ̂ that can be analytically continued to
R(k) : there exists a neighbourhood U ∈ B of 0 such that the mapping

Φ : ζ ∈ U 7→ Φ(ζ) = ϕ̂(
•
ζ) ∈ C can be analytically continued to R(k).

The proposition 4.2 allows to show the following property:

Proposition 4.3. The space R̂(1) is a convolution algebra (without unit).

Moreover, suppose Φ̂, Ψ̂ in R̂(1) with the property:

for every ζ ∈ R(1)
ρ ,

∣∣Φ̂(ζ)
∣∣ ≤ F (leng(ζ)

)
,
∣∣Ψ̂(ζ)

∣∣ ≤ G(leng(ζ)
)

with F,G two positive, non-decreasing and continuous functions on R+. Then
the convolution product Φ̂ ∗ Ψ̂ satisfies the following property:

for every ζ ∈ R(1)
ρ ,

∣∣Φ̂ ∗ Ψ̂(ζ)
∣∣ ≤ F ∗G(leng(ζ)

)
.

Also,

for every ζ ∈ R(1)
ρ ,

∣∣(ζΦ̂) ∗ Ψ̂(ζ)
∣∣ ≤ leng(ζ)

(
F ∗G

(
leng(ζ)

))
.

Proof. The standard proof for proving that R̂ is a convolution algebra [12, 11]

can be copy as it stands for R̂(1). We sketch it here, essentially so as to fix
notations that will be used later on. Assume that ϕ̂ and ψ̂ are two functions in

O(
•
R(0)) and that they can be analytically continued to the Riemann surface
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R(1). This means that there exist two fonctions Φ̂ and Ψ̂ in R̂(1) such that

Φ̂(ζ) = ϕ̂(
•
ζ) and Ψ̂(ζ) = ψ̂(

•
ζ), for every ζ ∈ R(0). For ζ ∈ R(0), we note

χ̂(ζ) = Φ̂ ∗ Ψ̂(ζ) = ϕ̂ ∗ ψ̂(
•
ζ).

We assume that 0 < ρ ≤ 1

5
. For every

•
ζa ∈

•
R

(0)
ρ and every

•
ξ ∈ C with

|
•
ξ | < ρ

2
, one has

•
ζa +

•
ξ ∈

•
R(0), thus there exists a unique point ζa+

•
ξ ∈ R(0)

so that p(ζa+
•
ξ) =

•
ζ +

•
ξ, and the convolution product χ̂(ζa+

•
ξ) = ϕ̂ ∗ ψ̂(

•
ζa +

•
ξ)

reads :

χ̂(ζa+
•
ξ) =

∫ •ζa+
•
ξ

0

ϕ̂(η)ψ̂(
•
ζa +

•
ξ −η)dη

=

∫ •ζa
0

ϕ̂(η)ψ̂(
•
ζa +

•
ξ −η)dη +

∫ •ξ
0

ϕ̂(
•
ζa +η)ψ̂(

•
ξ −η)dη.

Now assume that
•
ζa is the endpointHa(1) of the pathHa given by proposition

4.2. The above equality reads :

χ̂
(
Ha(1)+

•
ξ
)

=

∫ 1

0

ϕ̂
(
Ha(s)

)
ψ̂
(
H−1
a (s)+

•
ξ
)
H ′a(s)ds

+
•
ξ

∫ 1

0

ϕ̂(Ha(1)+
•
ξ s)ψ̂

( •
ξ (1− s)

)
ds,

that is also

χ̂
(
Ha(1)+

•
ξ
)

=

∫ 1

0

Φ̂(Ha(s))Ψ̂(H−1
a (s)+

•
ξ)H ′a(s)ds

+
•
ξ

∫ 1

0

Φ̂(Ha(1)+
•
ξ s)ψ̂

( •
ξ (1− s)

)
ds.

The analytic continuation of χ̂ fromHa(1) along the path t ∈ [a, b] 7→ Ht(1) ∈ R
(1)
ρ

is thus given by

χ̂
(
Ht(1)+

•
ξ
)

=

∫ 1

0

Φ̂(Ht(s))Ψ̂(H−1
t (s)+

•
ξ)H ′t(s)ds

+
•
ξ

∫ 1

0

Φ̂(Ht(1)+
•
ξ s)ψ̂

( •
ξ (1− s)

)
ds.

(See the arguments given, e.g. in [12]). In particular, if ζ = Hb(1),

Φ̂ ∗ Ψ̂(ζ) =

∫ 1

0

Φ̂
(
Hb(s)

)
Ψ̂
(
H−1
b (s)

)
H ′b(s)ds. (4.1)

We remark that Φ̂∗ Ψ̂(ζ) does not depend on the chosen path Hb since R(1) is
simply connected. We now turn to bounds and we follow reasoning from [8].

We take ζ ∈ R
(1)
ρ and we note Hb its associated symmetrically contractile

path provided by proposition 4.2. We equip this path with its arc-length
parametrisation,
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Hb : s ∈ [0, leng(ζ)] 7→ Hb(s)

so that for s ∈ [0, leng(ζ)], the length of the restricted path Hb|[0,s] is s, while

the length of H−1
b |[0,s] is leng(ζ)− s. Therefore, (4.1) reads

Φ̂ ∗ Ψ̂(ζ) =

∫ leng(ζ)

0

Φ̂
(
Hb(s)

)
Ψ̂
(
H−1
b (s)

)
ds. (4.2)

Using lemma 4.6, we then get :

∣∣Φ̂ ∗ Ψ̂(ζ)
∣∣ ≤ ∫ leng(ζ)

0

|Φ̂
(
Hb(s)

)
|.|Ψ̂
(
H−1
b (s)

)
|ds.

≤
∫ leng(ζ)

0

F
(
s
)
G
(
leng(ζ)− s

)
ds

≤ F ∗G
(
leng(ζ)

)
.

The proof is complete. ut

4.3.2 Convolution space and uniform norm

We start this subsection with the following remark:

Proposition 4.4. For every ρ > 0 and L > 0, the space O(Uρ,L) of holo-
morphic functions on Uρ,L is a convolution algebra.

Proof. Just adapt the proof of proposition 4.3 by using lemma 4.6. ut

We introduce the following definition, analogous to definition 3.5.

Definition 4.16. We note U = Uρ,L the open set of L-points, for L > 0. We
note

(
O(U ), ∗

)
the convolution C-algebra (without unit) of functions which

are continuous on U and holomorphic on U . We noteMO(U ) the maximal
ideal of O(U )) defined by MO(U ) = {f ∈ O(U ), f(0) = 0}2.
For ν ≥ 0 we introduce the norm ‖.‖ν defined by: for every f ∈ O(U ),

‖f‖ν = L sup
ζ∈U

∣∣e−νleng(ζ)f(ζ)
∣∣.

We extend this norm to O(U ) ⊕ Cδ by defining, for every f ∈ O(U ) and
every c ∈ C, ‖cδ + f‖ν = |c|+ ‖f‖ν .

We now state an analogous to proposition 3.7.

Proposition 4.5. With the above definitions,
(
O(U )⊕Cδ, ‖.‖ν

)
is a Banach

algebra. In particular, for every f, g ∈ O(U ) ⊕ Cδ, ‖f ∗ g‖ν ≤ ‖f‖ν‖g‖ν .
The space MO(U ) is closed in the norm space

(
O(U ), ‖.‖ν

)
. Moreover, for

ν > 0:

1. for every n ∈ N, for every g ∈ O(U ), ‖ζn ∗ g‖ν ≤
n!

νn+1
‖g‖ν ,

‖ζn+1‖ν ≤
n!

νn+1
L and ‖1‖ν = L.

2 When writing f(0), we of course make reference to the origin of the pointed Riemann
surface (R(1), 0).
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2. for every f, g ∈ O(U ), ‖fg‖ν ≤
1

L
‖f‖ν‖g‖0.

3. for every f ∈ O(U ), ν ≥ ν0 ≥ 0⇒ ‖f‖ν ≤ ‖f‖ν0 .
4. for every f ∈MO(U ), lim

ν→∞
‖f‖ν = 0.

5. the map ∂|O(U ) : f ∈ O(U ) 7→ ∂f ∈ MO(U ) is a derivative in the

convolution space O(U ) and is invertible. Its inverse map ∂−1 satisfies:
for every f ∈ O(U ), for every g ∈MO(U ), ∂−1(f ∗ g) ∈MO(U ) and

‖∂−1(f ∗ g)‖ν ≤
1

νL
‖f‖ν‖∂−1g‖0.

For every O(U )⊕ Cδ, for every g ∈MO(U ), ∂−1(f ∗ g) ∈ O(U ) and

‖∂−1(f ∗ g)‖‖ν ≤ ‖f‖ν‖∂−1g‖ν .

Proof. Obviously, the norm ‖.‖ν is equivalent to the maximum norm on the
vector space O(U ). This shows the completeness of

(
O(U ), ‖.‖ν

)
and of(

O(U )⊕ Cδ, ‖.‖ν
)

as well.
We take ζ ∈ U and Hb its associated symmetrically contractile path (propo-
sition 4.2) equipped with its arc-length parametrisation. For f, g ∈ O(U ),

f ∗ g(ζ) =∫ leng(ζ)

0
eν[leng(Hb(s))+leng(H−1

b (s))]f
(
Hb(s)

)
e−νleng(Hb(s))g

(
H−1
b (s)

)
e−νleng(H−1

b (s))ds.

We know from lemma 4.6 that leng(Hb(s)) + leng(H−1
b (s)) ≤ leng(ζ). There-

fore

Le−νleng(ζ)|f ∗ g(ζ)| ≤ ‖f‖ν‖g‖ν
∫ leng(ζ)

0

1

L
ds ≤ ‖f‖ν‖g‖ν .

This shows that for every f, g ∈ O(U ), ‖f ∗ g‖ν ≤ ‖f‖ν‖g‖ν , hence(
O(U ), ‖.‖ν

)
is a Banach algebra and

(
O(U )⊕ Cδ, ‖.‖ν

)
as well.

The other properties are shown in quite similar way than in the proof of
proposition 3.7. ut

4.3.3 An extended Grönwall-like lemma

We want demonstrate in this subsection a Grönwall-like lemma, similar to
lemma 3.9.

Lemma 4.8 (Extended Grönwall lemma). Let be N ∈ N? and (f̂n)0≤n≤N

be a sequence of functions in R̂(1) so that there exists a a sequence (F̂n)0≤n≤N
of entire functions, real, positive and non-decreasing on R+, with at mots ex-
ponential growth of order 1 at infinity and such that, for every 0 ≤ n ≤ N ,

for every ζ ∈ R(1)
ρ , |f̂n(ζ)| ≤ F̂n

(
leng(ζ)

)
.

Let p, q, r be polynomial functions so that p does not vanish on R
(1)
ρ and we

suppose that the following upper bounds are valid:

a = sup
ζ∈R

(1)
ρ

|q|(leng(ζ))

|p(
•
ζ)|

<∞, b = sup
ζ∈R

(1)
ρ

|r|(leng(ζ))

|p(
•
ζ)|

<∞, c = sup
ζ∈R

(1)
ρ

1

|p(
•
ζ)|

<∞.
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We furthermore assume that ŵ ∈ O(R
(1)
ρ ) solves the following convolution

equation

p(ζ)ŵ(ζ) + 1 ∗ [q(ζ)ŵ](ζ) = ζ ∗ [r(ζ)ŵ](ζ) + f̂0(ζ) +

N∑
n=1

f̂n ∗ ŵ∗n(ζ). (4.3)

Then for every d ≥ 0, for every ζ ∈ R
(1)
ρ ,

|ŵ(ζ)| ≤ ŵd(ξ), ξ = leng(ζ),

where ŵd is the holomorphic solution of the convolution equation:

ŵ(ξ) = d+ [a+ bξ] ∗ ŵ(ξ) + c

(
F̂0(ξ) +

N∑
n=0

F̂n ∗ ŵ∗n(ξ)

)
. (4.4)

Proof. If ŵ ∈ O(R
(1)
ρ ) solves the convolution equation (3.24), then for every

ζ ∈ R
(1)
ρ :

p(ζ)ŵ(ζ) = f̂0(ζ)−
∫ leng(ζ)

0

q
(
Hb(s)

)
ŵ
(
Hb(s)

)
ds

+

∫ leng(ζ)

0

H−1
b (s)r

(
Hb(s)

)
ŵ
(
Hb(s)

)
ds+

N∑
n=1

∫ leng(ζ)

0

f̂n
(
H−1
b (s)

)
ŵ∗n

(
Hb(s)

)
ds.

where Hb stands for the symmetrically contractile path associated with ζ,
equipped with its arc-length parametrisation (proposition 4.2). We know by
lemma 4.6 that leng(Hb(s)) ≤ s and leng(H−1

b (s)) ≤ ξ − s with ξ = leng(ζ).
Using the hypotheses, one obtains:

|ŵ(ζ)| ≤ 1

|p(
•
ζ)|
F̂0(ξ) +

∫ ξ

0

 |q|(s)
|p(
•
ζ)|

+
|r|(s)

|p(
•
ζ)|

(ξ − s)

 |ŵ(Hb(s))| ds
+

N∑
n=1

∫ ξ

0

1

|p(
•
ζ)|
F̂n(ξ − s)|ŵ∗n

(
Hb(s)

)
| ds.

Therefore

|ŵ(ζ)| ≤ cF̂0(ξ) +

∫ ξ

0

[a+ b(ξ − s)] |ŵ
(
Hb(s)

)
| ds

+c

N∑
n=1

∫ ξ

0

F̂n(ξ − s)|ŵ∗n
(
Hb(s)

)
| ds.

(4.5)

We now remind the reader that the existence and properties of ŵd are
given by lemma 3.8. We adapt the proof of lemma 3.9. We first notice that
|ŵ(0)| ≤ cF̂0(0) by definition of c and by hypothesis on F̂0. Since ŵ(0) =

d+ cF̂0(0), we have |ŵ(0)| ≤ ŵ(0).

Case 4.1. We first assume |ŵ(0)| < ŵ(0).
One considers, for L > 0, the open set Uρ,L of L-points. We remark that,
once L0 > 0 is chosen small enough, then for every 0 < L ≤ L0, for very
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d > 0, for every ζ ∈ U ρ,L, |ŵ(ζ)| < ŵd(ξ) with ξ = leng(ζ). This is just a
consequence of lemma 3.9. (For L > 0 small enough, leng(ζ) = |ζ|).

We now assume that there exist L1 > 0 and ζ1 ∈ U ρ,L1
such that

|ŵ(ζ1)| ≥ ŵd(ξ1), ξ1 = leng(ζ1). Define

χ = {L ∈ [L0, L1] | there exists ζ ∈ U ρ,L, |ŵ(ζ)| ≥ ŵd(leng(ζ))}.

This closed set χ has an infimum L2, L0 < L2 < L1. We now recall that the

mapping ζ ∈ R
(1)
ρ 7→ leng(ζ) is continuous. This implies that:

• for every ζ ∈ U ρ,L2
, |ŵ(ζ)| ≤ ŵd(leng(ζ));

• there exists ζ2 ∈ U ρ,L2
such that |ŵ(ζ2)| = ŵd(ξ2), ξ2 = leng(ζ2) = L2.

We take such a ζ2 ∈ U ρ,L2 . By lemma (4.5),

|ŵ(ζ2)| ≤ cF̂0(ξ2) +

∫ ξ2

0

[a+ b(ξ2 − s)] |ŵ
(
Hb(s)

)
| ds

+ c

N∑
n=1

∫ ξ2

0

F̂n(ξ2 − s)|ŵ∗n
(
Hb(s)

)
| ds

where Hb is the symmetrically contractile path associated with ζ2, equipped
with its arc-length parametrisation (proposition 4.2). We know by lemma 4.6
that leng(Hb(s)) ≤ s ≤ ξ2, thus Hb(s) ∈ U ρ,L2

, and that ŵd is real, positive
and non-decreasing on R+. Therefore,

|ŵ(ζ2)| ≤ cF̂0(ξ2)+

∫ ξ2

0

[a+ b(ξ2 − s)] ŵd(s) ds+c
N∑
n=1

∫ ξ2

0

F̂n(ξ2−s)ŵ∗nd (s) ds.

This shows that |ŵ(ζ2)| ≤ ŵd(ξ2)− d and we get a contradiction.

Case 4.2. The case |ŵ(0)| = ŵ(0) (thus d = 0) is done by an argument of
continuity already used in the proof of proof of lemma 3.9.
ut

4.4 Applications to the first Painlevé equation

This section is essentially devoted to proving theorem 4.1, which completes
theorem 3.2.

4.4.1 Analytic continuation - statement

Theorem 4.1. The formal solution w̃ of the prepared equation (3.6) associ-
ated with the first Painlevé equation satisfies the following properties:

1. its formal Borel transform ŵ can be analytically continued to the Riemann
surface R(1);

2. ŵ has at most exponential growth of order 1 at infinity on R(1). More

precisely, for every 0 < ρ ≤ 1

5
, there exist A = A(ρ) > 0 and τ = τ(ρ) > 0

such that for every ζ ∈ R
(1)
ρ , |ŵ(ζ)| ≤ Aeτξ with ξ = leng(ζ).
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3. moreover leng(ζ) ≤ 1

ρ
|
•
ζ | + 1

ρ

(
1

ρ
− 2

)
and one can choose A = 4 and

τ = 4
ρ3 in the above upper bounds.

4.4.2 Analytic continuation - proof

To prove this theorem, we will essentially copy what we have done in
Sect. 3.4.3.

4.4.2.1 A lemma

We first state the following result which should be compared with lemma 3.2.

Lemma 4.9. There exists Mρ,(1) > 0 such that for every ζ ∈ R
(1)
ρ ,

for every ζ ∈ R(1)
ρ ,

leng(ζ)p

|P (−
•
ζ)|
≤Mρ,(1), p = 0, 1.

In particular, for every polynom q of degree ≤ 1,
|q|(leng(ζ))

|P (−
•
ζ)|
| ≤Mρ,(1)|q|(1),

for every ζ ∈ R
(1)
ρ . Moreover one can choose Mρ,(1) =

6

5ρ3

Proof. From lemma 3.2 we know that
∣∣∣ •

ζp

P (−
•
ζ)

∣∣∣ ≤ Mρ,(0) with Mρ,(0) =
1

ρ
,

for
•
ζ∈ D(0)

ρ and p = 0, 1. Using lemma 4.7 and since 0 < ρ ≤ 1

5
, one deduces

that
leng(ζ)

|P (−
•
ζ)|
≤
[

1

ρ
+

1

ρ

(
1

ρ
− 2

)]
Mρ,(0) ≤

6

5ρ3
.

This ends the proof. ut

4.4.2.2 Analyticity of ŵ on R(1)

For L > 0 and 0 < ρ ≤ 1/5, we introduce the domain U = Uρ,L. We note
Br = {v̂ ∈ O(U ), ‖v̂‖ν ≤ r}, for any r > 0 and ν > 0.
The convolution equation (3.10) is viewed as a fixed-point problem and we
set

N : v̂ ∈ Br 7→
1

P (∂)

[
− 1 ∗

[
Q(∂)v̂

]
+ f̂0(ζ) + f̂1 ∗ v̂(ζ) + f̂2 ∗ v̂ ∗ v̂(ζ)

]
.

By lemmas 4.9 and proposition 4.5,

‖N (v̂)‖ν ≤Mρ,(1)‖ − 1 ∗
[
Q(∂)v̂

]
+ f̂0 + f̂1 ∗ v̂ + f̂2 ∗ v̂ ∗ v̂‖ν .

By proposition 4.5, since Q(∂) = 3ζ:
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‖1 ∗
[
Q(∂)v̂

]
‖ν ≤

1

ν
‖Q(∂)v̂‖ν ≤

1

Lν
‖Q(∂)‖0‖v̂‖ν ≤

3L

ν
‖ŵ‖ν .

The functions f̂0, f̂1, f̂2 belong to MO(U ) and, by proposition 4.5, this im-

plies lim
ν→∞

‖f̂i‖ν = 0, i = 0, 1, 2. Therefore, ‖N (v̂)‖ν ≤ r for ν > 0 large

enough.
The same arguments shows that ‖N (v̂1)−N (v̂2)‖ν ≤ k‖v̂1− v̂2‖ν with k < 1,
for v̂1, v̂2 ∈ Br and for ν > 0 large enough.
Thus, N is contractive in the closed set Br of the Banach space

(
O(U ), ‖.‖ν

)
,

for ν > 0 large enough. The contraction mapping theorem gives a unique so-
lution ŵ ∈ Br for the fixed-point problem v̂ = N (v̂). Since L and ρ can be
arbitrarily chosen, we deduce (by uniqueness) that the formal Borel trans-
form ŵ of the unique formal series w̃ solution of (3.6), defines a holomorphic
in R(1).

4.4.2.3 Upper bounds

We use the Grönwall lemma 4.8 (with d = 0), which tells us that for every

ζ ∈ R
(1)
ρ ,

|ŵ(ζ)| ≤ ŵd(ξ), ξ = leng(ζ),

where ŵ(ξ) solves the following convolution equation

1

Mρ,(1)
ŵ = |f̂0|+

(
3 + |f̂1|

)
∗ ŵ + |f̂2| ∗ ŵ ∗ ŵ,

(just use lemma 4.9) where we can take Mρ,(1) =
6

5ρ3
. Let us get explicit

upper bounds. We consider ŵ as the Borel transform of the holomorphic
function w̃ solution of the second order algebraic equation,

1

Mρ,(1)
w̃ = |f0|(z) +

(3

z
+ |f1|

)
w̃ + |f2|w̃2, (4.6)

and asymptotic to |f0|(z) at infinity. Remember that |f0|(z) =
392

625

1

z2
,

|f1|(z) =
4

z2
, |f2|(z) =

1

2z2
. Setting w̃(z) = H(t), t = z−1, the above problem

reads as a fixed-point problem,

H = N (H), N (H) = Mρ,(1)

(
|f0|(t−1) +

(
3t+ |f1|(t−1)

)
H+ |f2|(t−1)H2

)
.

(4.7)
From homogeneity reasons, we introduce U = D(0, ρ3/4), the Banach al-
gebra

(
O(U), ‖ ‖

)
where ‖ ‖ stands for the maximum norm, and we note

Bρ3 = {H ∈ O(U), ‖H‖ ≤ ρ3}. It is easy to show that the mapping
N|Bρ3 : H ∈ Brho3 7→ N (H) ∈ Bρ3 is contractive (recall: 0 < ρ ≤ 1/5).

Therefore, the contraction mapping theorem implies the existence of a unique
solution H in Bρ3 of the fixed-point problem (4.7). In return we deduce that

ŵ is an entire function and |ŵ(ξ)| ≤ 4e
4
ρ3
|ξ|

, for every ξ ∈ C. (See lemma 3.5).
One ends with lemma 4.7.
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4.5 Supplements to the convolution product

We end this chapter with some supplements to the convolution product that
will be used later on.

Definition 4.17. For a direction θ ∈ {0, π}, for α ∈]0, π/2], for L > 0, we
denote by R(θ,α)(L) ⊂ R the set of paths λ with the condition:

• either λ is a path on the open disc D(0, 1), thus homotopic (in the sense
of ∼R) to a segment [0, ζ], ζ ∈ D(0, 1);

• or λ is a piecewise C1 paths λ with the following properties:

1. for every t ∈ [0, 1], the right and left derivatives λ′(t) do not vanish and
arg λ′(t) ∈]− α+ θ, θ + α[,

2. the length of λ satisfies : length(λ) < L+ 1.

We define R(θ,α)(L) = {ζ = cl(λ) | λ ∈ R(θ,α)(L)} ⊂ R.

The proof of the following lemma is left as exercise.

Lemma 4.10. For any L > 0, R(θ,α)(L) is an open and connected subset of

R and satisfied R(θ,α)(L) ⊂ R(0)
⋃

1≤j≤m

R(±)j ,θ with m = dLe. Also, for any

m ∈ N? and any path γ ∈ R of type γθε with ε ∈ {+,−}j, 1 ≤ j ≤ m, there
exists λ ∈ R(θ,α)(m) so that cl(λ) = cl(γ).

In the above lemma, d.e is the ceiling function.

Remark 4.3. Notice that R(θ,α)(L1) ⊂ R(θ,α)(L2) when L1 < L2. Also, since
R(θ,α)(L) is open and connected in R, R(θ,α)(L) inherits from R the struc-
ture of complex manifold, thus is a Riemann surface.

Definition 4.18. We denote R̂(θ,α)(L) ⊃ R̂ the space of germs of analytic
functions at the origin that can be analytically continued to R(θ,α)(L).

Example 4.1. The minor ŵ(0,0) associated with the formal solution w̃(0,0)

of the prepared equation (3.6), belongs to R̂(θ,π/2)(L), for any direction
θ ∈ {0, π} and any L ∈]0, 1]. This is a consequence of theorem 4.1.

Proposition 4.6. The space R̂(θ,α)(L) is a (non unitary) convolution alge-
bra.

0

2

3

α

1

Fig. 4.10 Two paths belonging to R(θ,α)(L) for θ = 0 and L ≥ 2.
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Proof. We just have to show the stability by convolution product and the
proof can be done in the same manner than this for R̂. Here we follow ideas
from [12]. The master piece is the existence, for any path γ : I = [0, 1]→ C\Z
with |γ(0)| < 1, of a symmetric Z-homotopy

H : (s, t) ∈ I × I 7→ H(s, t) = Ht(s) ∈
•
R

so that

1. for each t ∈ I, the path Ht belongs to R, thus can be lifted uniquely from
0 with respect to p on R into a path Ht;

2. H−1
t (s) = Ht(1)−Ht(s) for every s ∈ I, where H−1

t is the inverse path ;
3. the initial path H0 is H0(s) = sγ(0);
4. for every t ∈ I, Ht(1) = γ(t).

In particular, from the lifting theorem for homotopies, the map
H : (s, t) ∈ I × I 7→ H(s, t) = Ht(s) ∈ R is continuous, and the following di-
agram commutes:

R
H↗ ↓ p

I × I −→
•
R.

H

(4.8)

The symmetric Z-homotopy can be constructed as follows: one takes a C1

function η : C→ [0, 1] satisfying {ζ ∈ C | η(ζ) = 0} = Z (the exis-
tence of which is given in [12]), and one considers the non-autonomous

vector field X(ζ, t) =
η(ζ)

η(ζ) + η
(
γ(t)− ζ

)γ′(t). The path Ht is obtained by

deformation of the initial path H0 through the flow of the vector field
g : (t0, t, ζ) ∈ [0, 1]2 × C 7→ gt0,t(ζ) ∈ C of X, precisely Ht(s) = g0,t

(
H0(s)

)
.

We now take a point ζ ∈ R(θ,α)(L). We can assume that ζ = cl(λ) where
λ ∈ R(θ,α)(L) is the product λ = λ0γ with λ0(s) = sγ(0). Let us analyze the
above symmetric Z-homotopy constructed from γ and H0 = λ0. The path
Hs : t ∈ I 7→ Hs(t) = H(s, t) ∈ C\Z satisfies H0 ≡ 0 while for any s ∈]0, 1] :

1. Hs(0) = λ0(s),

2. dHs(t)
dt = X

(
Hs(t), t

)
, thus 0 <

∣∣∣dHs(t)dt

∣∣∣ ≤ |γ′(t)| and

arg dHs(t)
dt ∈]− α+ θ, θ + α[.

Denoting by λ0|[0,s] : s′ ∈ I 7→ λ0(s′s) the restriction path, we see that
the product of paths F s = λ0|[0,s]Hs has the following properties, for any
s ∈]0, 1]:

1. the path F s belongs to R,
2. length(F s) ≤ length(λ0|[0,s]) + length(Hs) ≤ length(λ) ≤ L+ 1,
3. for every t ∈ [0, 1], the right and left derivatives (F s)′(t) do not vanish and

arg(F s)′(t) ∈]− α+ θ, θ + α[.

Therefore, F s belongs R(θ,α)(L) and this means that the lifted map H given
by (4.8) sends I × I into the space R(θ,α)(L). We end the proof with the
arguments recalled in the proof of proposition 4.3. ut
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4.6 Comments

In resurgence theory, one has to deal as a rule with endlessly continuable
functions. This notion is defined in [2], a more general definition of which
being given by Ecalle in [5, 6]. The key point is the construction of endless
Riemann surfaces and this is done in [11] for a slightly weaker version of
endless continuablity. For such an endless Riemann surface, one can define
“nearby sheets” in the way we did in Sect. 4.1 and analogues of propositions
4.3 and 4.6 can be stated.
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Chapter 5

Transseries and formal integral for
Painlevé I

Abstract This chapter has two purposes. Our first goal is to construct the
so-called “formal transseries solutions” for the prepared form associated with
the first Painlevé equation, that will be used later on to get its truncated
solutions : this is done in Sect. 5.3, after some preliminaries in Sect. 5.1 and
some general nonsense on the “formal integrals” of Ecalle that we introduce in
Sect. 5.2. Our second goal is to build the formal integral for the first Painlevé
equation and this is what we do in Sect. 5.4. These informations will be used
in a next chapter to investigate the resurgent structure for the first Painlevé
equation.

5.1 Introduction

We return to the prepared form equation (3.6) associated with the first
Painlevé equation, that we recall here:

P (∂)w +
1

z
Q(∂)w = F (z, w), P (∂) = ∂2 − 1, Q(∂) = −3∂

and

F (z, w) =
392

625

1

z2
− 4

z2
w +

1

2z2
w2 = f0(z) + f1(z)w + f2(z)w2,

We have seen in chapter 3 that the equation (3.6) has a unique formal so-
lution, from now on denoted by w̃(0,0) ∈ C[[z−1]], that w̃(0,0) is 1-summable in
every directions apart from the directions kπ, k ∈ Z (theorem 3.2 and propo-
sition 3.9). To the intervals Ij =]0, π[+jπ, j ∈ Z, one associates the Borel-

Laplace sums, wtri,j(z) = S Ij w̃(0,0)(z) for z in
•
D(Ij , τ). The domain

•
D(Ij , τ)

is a sectorial neighbourhoods of ∞ with aperture Ĭj =] − 3

2
π,+

1

2
π[−jπ. As

said in Remarks 3.5.2.3, wtri,j ∈ Γ (Ĭj ,A1), j = 0, 1, 2 are sections of A1

that are asymptotic to the same 1-Gevrey series w̃(0,0). Therefore the 1-

coboundary wtri,1 − wtri,0 belongs to Γ (Ĭ1 ∩ Ĭ0,A≤−1), while wtri,2 − wtri,1
belongs to Γ (Ĭ2 ∩ Ĭ1,A≤−1). In other words, the 1-coboundaries

89
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W1,0(z) = wtri,1(z)− wtri,0(z), −3

2
π < arg(z) < −1

2
π, |z| large enough

W2,1(z) = wtri,2(z)− wtri,1(z), −5

2
π < arg(z) < −3

2
π, |z| large enough,

(5.1)
are exponentially flat functions of order 1 at infinity, and we deduce from
equation (3.6) that W(j+1),j , j = 0, 1, satisfies the linear ODE:

P (∂)W(j+1),j+
1

z
Q(∂)W(j+1),j = f1(z)W(j+1),j+f2(z)(wtri,j+1+wtri,j)W(j+1),j .

(5.2)

Question 5.1. Can we get more informations aboutW(j+1),j ? In other words,
can we analyze the Stokes phenonemon ?

Let us turn to the asymptotics. Denoting by T1 the 1-Gevrey Taylor map,
we set W̃(j+1),j = T1(Ĭj+1 ∩ Ĭj)W(j+1),j . We have W̃(j+1),j = 0 by construc-
tion but, more interestingly for our purpose and since T1 is a morphism of
differential algebras, we deduce from (5.2) that W̃(j+1),j solves the problem

P0W̃ = 0, where P0 stands for the second order linear differential operator

deduced from the operator P (∂) +
1

z
Q(∂)− F (z, ·) by linearisation at w̃(0,0):

P0 = P (∂) +
1

z
Q(∂)−

∂F (z, w̃(0,0))

∂w
(5.3)

= P (∂) +
1

z
Q(∂)− f1(z)− 2w̃(0,0)(z)f2(z)

= (∂2 − 1)− 3

z
∂ +O(z−2).

The formal invariants of this equation is be governed by its Newton polygon
at infinity N∞(P0), drawn on Fig. 5.1.

See, e.g. [31]. We mention that the valuation v∞ defined there is the opposite of our

valuation val defined by (3.1).

The polygon N∞(P0) has a single non-vertical side of slope −1: this corre-
sponds to the fact that W(j+1),j , j = 0, 1, are exponentially flat functions
of order 1 at infinity. The characteristic equation associated with this side is
nothing but the equation

P (µ) = 0, P (µ) = µ2 − 1.

The polynomial P (µ) has two simple roots, µ1 = −1 and µ2 = 1. Therefore,
from the theory of linear ODE [37, 31], we expect for W1,0 to behave like

Fig. 5.1 The Newton
polygon at infinityN∞(P0)
associated with the linear
operator (5.3).

10 2 3

−1

−2
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eµ2zz−τ2O(1) at infinity, and forW2,1 to behave like eµ1zz−τ1O(1) at infinity.
Pursuing in that direction, the coefficients τ1, τ2 can be easily found : the
W̃ = eµzz−τ w̃µ(z) solves the ODE (5.3) with P (µ) = 0 and w̃λ ∈ C[[z−1]],
only under the condition

τ =
Q(µ)

P ′(µ)
= −3

2
.

As a matter of fact, these behaviours are direct consequences of the analytic
properties of the minor ŵ(0,0) of w̃(0,0). In particular, λ1 = −µ1 and λ2 = −µ2

are precisely the seen singularities of ŵ(0,0).

The differential equation P0W̃ = 0 has thus its general formal solution
under the form W̃ = U1eµ1zz−τ1w̃µ1 + U2eµ2zz−τ2w̃µ2 and, as we will see
later on, both w̃µ1 and w̃µ2 are 1-Gevery series whose minors have the same
properties than ŵ(0,0).

However, the expectation thatW1,0 could be obtained from U1eµ1zz−τ1w̃µ1

by Laplace-Borel summation for some well-chosen U1 ∈ C is wrong. Indeed,
this would mean that wtri,1 = S I1

(
w̃(0,0) + U1eµ1zz−τ1w̃µ1

)
, thus w̃(0,0) +

U1eµ1zz−τ1w̃µ1 is a formal solution of (3.6). This is not the case because of
the nonlinearity of (3.6) and to the very nature of the Riemann surface R(1)

on which ŵ(0,0) can be analytically continued (theorem 4.1). This raises the
question : can we define an analogue of the general formal solution for the
non-linear equation (3.6) ? The answer is given by the notion of “formal
integral”.

5.2 Formal integral : setting

5.2.1 Notations

It will be useful in the sequel to fix customary notations.

Definition 5.1. We suppose n ∈ N?, k,h ∈ Nn, a, b ∈ Cn.

• If k = (k1, · · · , kn), we note |k| = k1 + · · ·+ kn.
• If a = (a1, · · · , an) or a = t(a1, · · · , an), we note ak = ak11 · · · aknn .
• If b = (b1, · · · , bn), we note a.b = a1b1 + · · ·+ anbn.
• We note ej the jth unit vector of Cn.

5.2.2 Setting

5.2.2.1 Single level 1 ODE

To introduce the reader to the notion of Ecalle’s formal integral [18], it will
be useful to skip a moment from the ODE (3.6) to a more general one1 with
the same kind of properties. Namely we introduce

1 Though far from the more general. For instance in (5.4) one could replace F (z, w) by

F (z, w, ∂w, · · · , ∂n−1w), with F holomorphic in a neighbourhood of (∞,0) in C× Cn−1,

see exercise 3.1. We refrain of doing that only for a matter of simplicity. See [18] for more
general results.
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P (∂)w +
1

z
Q(∂)w = F (z, w) (5.4)

P (∂) =

n∑
m=0

αn−m∂
m ∈ C[∂] , Q(∂) =

n−1∑
m=0

βn−m∂
m ∈ C[∂]

with n ∈ N?. We assume that P is a polynomial of degree n, that is α0 6= 0,
and that F (z, w) is holomorphic in a neighbourhood of (∞, 0) in C2 with the

condition
∂mF

∂wm
(z, 0) = O(z−2), m ∈ N. (See exercise 3.1). We will add other

assumptions to guarantee that the ODE (5.4) has a single level 1 at infinity.
When assuming furthermore that αn 6= 0, what have been said in Sect. 5.1

can be applied as well for (5.4). The equation (5.4) has a unique formal so-
lution w̃0 ∈ C[[z−1]] and val w̃0 ≥ 2. The Newton polygon at infinityN∞(P0)

associated with the linear differential operator P0 = P (∂) +
1

z
Q(∂)− ∂F

∂w
(z, w̃0)

deduced from the operator P (∂) +
1

z
Q(∂) − F (z, ·) by linearisation at w̃0,

has still a single non-vertical side of slope −1 and the characteristic equation
associated with this single side remains the equation P (µ) = 0.

Since αn 6= 0, the roots of the characteristic equation do not vanish. We
will also assume that the polynomial

µ 7→ P (µ) =

n∑
m=0

αn−mµ
m = α0(µ− µ1) · · · (µ− µn)

has only simple roots µ = µi, i = 1, · · · , n. In what follows, we adapt the
following definitions from [2, 18].

Definition 5.2. Let {µi} be the set of the roots of the polynomial P (µ) = 0,
and we note λi = −µi, i = 1, · · · , n. The complex numbers λ1, · · · , λn are
called the multipliers of the ODE (5.4).
The ODE (5.4) is said to have a single level 1 at infinity when the multi-
pliers are all nonzero.
One says that the multipliers are non-resonant when they are rationally
independent, that is linearly independent over Z. The multipliers are posi-
tively resonant when there exists kreson = (k1, · · · , kn) ∈ Nn \ {0} so that
λ.kreson = 0, where λ = (λ1, · · · , λn) ∈ (C?)n The number |kreson|+ 1 is the
order of the resonance, since the positive resonance brings semi-positively
resonances, that is relationships of the type λ.(kreson + ej) = λj for any
j ∈ [1, n].

We mention that the following constants are properly defined, since P has
only simple roots:

τi =
Q(−λi)
P ′(−λi)

, i = 1, · · · , n. (5.5)

From the theory of linear differential equations (see [31, 3, 37]), we notice

that the linear equation P (∂)w +
1

z
Q(∂)w = 0 has a formal general solution

under the form

w(z) =

n∑
i=1

vi(z)yi(z). (5.6)
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In (5.6), yi(z) = Uie
−λizz−τi , Ui ∈ C, stands for the general solution of the

differential equation y′i +
(
λi +

τi
z

)
yi = 0, while vi ∈ C[[z−1]] is invertible

and is determined uniquely up to normalization.

5.2.2.2 Companion system, prepared form

Formal integrals have more natural foundations when differential equations
of order one are considered. We therefore translate the ODE (5.4) into a one

order ODE of dimension n by introducing w =


w1

w2

...
wn

 =


w
w′

...
w(n−1)

. We

get the companion system

∂w +Aw = f(z,w), (5.7)

with A =


0 −1 · · · 0
...

. . .
. . .

...
... 0 −1

αn
α0

+ βn
zα0
· · · · · · α1

α0
+ β1

zα0

 and f(z,w) =


0
...
0

F (z, w1)/α0

.

Since (5.4) has a unique formal solution w̃0 ∈ C[[z−1]], val w̃0 ≥ 2, we may
remark that (5.7) has a unique formal solution w̃0 ∈ Cn[[z−1]] as well, and
in fact w̃0 ∈ z−2Cn[[z−1]].

Lemma 5.1. There exists T0(z) ∈ GLn(C{z−1}[z]) so that the meromorphic
gauge transform w = T0(z)v brings (5.7) into the prepared form

∂v +B0v = g(z,v), B0 =

λ1 + τ1
z · · · 0

...
. . .

...
0 · · · λn + τn

z

 , (5.8)

with g a Cn-valued function, holomorphic in a neighbourhood of (∞,0) and
g(z,v) = O(z−2) +O(‖v‖2) when z →∞ and v→ 0.
The prepared form (5.8) has a unique formal solution ṽ0 ∈ Cn[[z−1]] and
ṽ0 ∈ z−2Cn[[z−1]].

Proof. The proof is based on classical ideas for linear ODEs ([31, 3, 37], see
also [14]). Looking at (5.6), we compare (5.7) with the linear equation

∂u +B0u = 0, B0 =

λ1 + τ1
z · · · 0

...
. . .

...
0 · · · λn + τn

z

 = Λ+
1

z
L, (5.9)

whose general solution (holomorphic on C
•

) is given in term of the funda-

mental matrix solution z−Le−zΛ,

u(z) = z−Le−zΛU = ⊕ni=1z
−τie−zλiU , U ∈ Cn. (5.10)

We remark that
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e−λzz−τ

)(m)

= e−λzz−τ
m∑
j=0

(
m
j

)
(−λ)m−j

(−τ)j
zj

(5.11)

for (λ, τ) ∈ C2 and m ∈ N, where (−τ)j = j!

(
−τ
j

)
mimics the Pochhammer

symbol:

(−τ)0 = 1 and (−τ)j = (−1)jτ(τ + 1) · · ·
(
τ + j − 1

)
for j ≥ 1. (5.12)

We thus set the meromorphic gauge transform w = T0(z)v with T0(z) ∈ GLn(C{z−1}[z])
of the form:

T0(z) =


1 · · · 1

−λ1 − τ1
z · · · −λn − τn

z
...

...∑n−1
j=0

(
n− 1
j

)
(−λ1)n−1−j (−τ1)j

zj · · ·
∑n−1
j=0

(
n− 1
j

)
(−λn)n−1−j (−τn)j

zj

 .

(5.13)
By its very definition, this gauge transform brings (5.7) into the differential
equation:

∂v = −
[
T−1

0 (∂T0) + T−1
0 AT0

]
v + T−1

0 f(z, T0v) (5.14)

= −B0v + g(z,v)

where g has the properties described in the lemma. The fact that (5.8) has
a unique formal solution ṽ0 ∈ Cn[[z−1]] is obvious. ut

Example 5.1. We have already seen that the companion system associated

with (3.6) is (3.9). The gauge transform w = T0(z)v, T0(z) =

(
1 1

−1 + 3
2z 1 + 3

2z

)
,

brings (3.9) into the prepared form:

∂v +

(
1− 3

2z 0
0 −1− 3

2z

)
v =

15

8z2

(
−1 −1
1 1

)
v +

1

2

(
−F (z, v1 + v2)
F (z, v1 + v2)

)
.

(5.15)

Remark 5.1. Let us consider the action of the gauge transform y = T0(z)u
on the differential equation ∂u+B0u = 0. This differential equation is trans-
formed into the system ∂y + A0y = 0 with A0 = T0B0T

−1
0 − (∂T0)T−1

0

of the form A0 =


0 −1 · · · 0
...

. . .
. . .

...
... 0 −1

pn(z) · · · · · · p1(z)

 with pn, · · · , p1 ∈ C{z−1} satisfy-

ing pn(z) = αn
α0

+ βn
zα0

+O(z−2),· · · , p1(z) = α1

α0
+ β1

zα0
+O(z−2). The system

∂y+A0y = 0 is the companion system for the one-dimensional homogeneous
ODE of order n,

∂ny + p1(z)∂n−1y + · · · pn(z)y = 0, (5.16)

whose general solution is y(z) =
∑n
i=1 Uie

−λizz−τi , (U1, · · · , Un) ∈ Cn.
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5.2.2.3 Normal form, formal reduction

We have previously reduced the companion system (5.7) to a prepared form
through a meromorphic gauge transform. Under some conditions, one can go
further, but through formal transformations, in the spirit of the Poincaré-
Dulac theorem for vector fields [2].

Proposition 5.1. We consider the ODE (5.8) and we assume that the multi-
pliers λ1, · · · , λn are non-resonant. Then there exists a formal transformation
v = T̃ (z,u),

T̃ (z,u) =
∑
k∈Nn

ukṽk(z), ṽk(z) ∈ Cn[[z−1]], (5.17)

which formally transforms (5.8) into the linear normal form equation
∂u +B0u = 0. In (5.17), ṽ0 stands for the unique formal solution of (5.8);
for j = 1, . . . , n, ṽej is uniquely determined when one prescribes its constant
term to be equal to ej; then the formal series ṽk are unique for |k| > 1.

We will see in the sequel how this proposition can be shown. Here, we
rather concentrate on its consequences.

One can refer to, e.g., [30, 4] for a proof that extend to possibly nilpotent cases (but

with no resonances), and to [18] for a very general frame.

We know that the general solution of the normal form ∂u + B0u = 0 is
u(z) = ⊕ni=1z

−τie−zλi(tU), U = (U1, · · · , Un) ∈ Cn. Through the action of

the formal transformation v = T̃ (z,u), this provides the following general
formal solution for the ODE (5.8):

ṽ(z,U) =
∑

k=(k1,··· ,kn)∈Nn

n∏
i=1

(Uiz
−τie−zλi)ki ṽk(z) =

∑
k∈Nn

Uke−λ.kzz−τ.kṽk(z)

(5.18)
with λ = (λ1, · · · , λn) ∈ (C?)n and τ = (τ1, · · · , τn) ∈ Cn.

Definition 5.3. The formal series (5.18) is called the formal integral of
(5.8).

Of course, one can obtain the formal integral w̃(z,U) of (5.7) as well, by
the gauge transform w̃ = T0(z)ṽ, with T0(z) given by (5.13). When finally
returning to the n-th order ODE (5.4) of dimension 1 we started with, one
gets its formal integral.

Definition 5.4. We assume that the multipliers are non-resonant. The for-
mal integral w̃(z,U) of the ODE (5.4) is defined by:

w̃(z,U) =
∑
k∈Nn

Uke−λ.kzz−τ.kw̃k(z), w̃k(z) = ṽk(z).(1, · · · , 1) ∈ C[[z−1]],

= Φ̃(z, U1e−λ1zz−τ1 , · · · , Une−λnzz−τn) (5.19)

with Φ̃(z,u) =
∑
k∈Nn ukw̃k(z) ∈ C[[z−1,u]]. The formal transforma-

tion w = Φ̃(z,u) formally transforms (5.4) into the normal form equation
∂u +B0u = 0.
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The formal integral (5.19), thus depending on the maximal n free param-
eters U = (U1, · · · , Un) ∈ Cn, plays the role of the general formal solution
for the ODE (5.4) of order n. Formal integrals can be defined as well for
difference and differential-difference equations, see, e.g. [18, 30]. This notion
has been enlarged for nonlinear partial differential equations in [33].

Remark 5.2. Although working at the formal level, one may wonder what
is the chosen branch when we write z−τ.k. As a matter of fact, this is not
relevant at this stage since moving from a determination to another one just
translates into rescaling the free parameter U.

Remark 5.3. Introducing V k = Uke−λ.kzz−τ.k, we remark the identity:

∂z
(
V kw̃k

)
=

[(
∂z −

n∑
i=1

(λi +
τi
z

)ui∂ui

)(
ukw̃k

)]
|u=V .

Looking at the equality

w̃(z,U) = Φ̃(z, U1e−λ1zz−τ1 , · · · , Une−λnzz−τn) (5.20)

and since the formal integral (5.19) solves the differential equation (5.4), one

deduces that Φ̃ satisfies:

P
(
∂z−

n∑
i=1

(λi+
τi
z

)ui∂ui

)
Φ̃+

1

z
Q
(
∂z−

n∑
i=1

(λi+
τi
z

)ui∂ui

)
Φ̃ = F (z, Φ̃). (5.21)

5.2.3 Formal integral, general considerations

Under convenient hypotheses, we have previously introduced the formal in-
tegral for the ODE (5.4), that is a n-parameters formal expansion of the
form

w(z,U) =
∑
k∈Nn

Uke−λ.kzz−τ.kwk(z), λ, τ ∈ Cn, (5.22)

Let us start with (5.22) and investigate the conditions to impose on the
wk’s in order for (5.22) to be formally solution of (5.4).

We could start with (5.21) as well.

Using the identity (5.11) for m ∈ N, one obtains from (5.22):

w(m) =
∑
|k|≥0

Uk
m∑
p=0

(
m
p

)
(e−λ.kzz−τ.k)(p)w

(m−p)
k

=
∑
|k|≥0

Uke−λ.kzz−τ.kTk,m+1(wk)

where T(0,0),m+1(w0) = w
(m)
0 and, more generally for k ∈ N2,
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Tk,m+1(wk) =

m∑
p=0

(
m
p

)[ p∑
j=0

(
p
j

)
(−λ.k)p−j

(−τ.k)j
zj

]
w

(m−p)
k

=

m∑
j=0

(
m
j

)
(−τ.k)j
zj

[m−j∑
q=0

(
m− j
q

)
(−λ.k)m−j−qw

(q)
k

]
,

that is also

Tk,m+1(wk) =

m∑
j=0

(
m
j

)
(−τ.k)j
zj

[
(−λ.k + ∂)m−jwk

]
. (5.23)

In what follows we will simply write Tk,m+1 instead of Tk,m+1(wk). We in-
troduce the notation

V k = Uke−λ.kzz−τ.k.

and we notice that for every k1,k2 ∈ Nn, V k1V k2 = V k1+k1 .
On the one hand,

P (∂)w =

∞∑
k=0

V k
[ n∑
m=0

αn−mTk,m+1

]
=
∑
|k|≥0

V kpk(∂)wk (5.24)

where for |k| ≥ 0,

pk(∂) =

n∑
m=0

αn−m(−λ.k + ∂)m

+

n∑
m=1

αn−m

{ m∑
j=1

(
m
j

)
(−τ.k)j
zj

(−λ.k + ∂)m−j
}
.

In other words, for |k| ≥ 0,

pk(∂) = P (−λ.k + ∂) +

n∑
j=1

1

zj

(
−τ.k
j

)
P (j)(−λ.k + ∂). (5.25)

Similarly

Q(∂)w =
∑
|k|≥0

V kqk(∂)wk (5.26)

with

qk(∂) = Q(−λ.k + ∂) +

n−1∑
j=1

1

zj

(
−τ.k
j

)
Q(j)(−λ.k + ∂). (5.27)

On the other hand we consider the Taylor expansion of F (z, w(z,U)) at
w0, namely

F (z, w) = F (z, w0) +
∑
`≥1

(∑
|k|≥1 V

kwk

)`
`!

∂`F (z, w0)

∂w`
. (5.28)

We observe that for every ` ∈ N?,
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|k|≥1

V kwk

)`
=
∑
|p|≥`

V p
∑

p1+···+p`=p
|pi|≥1, 1≤i≤`

wp1
· · ·wp` . (5.29)

As a result, equation (5.28) reads

F (z, w) = F (z, w0) +
∑
`≥1
|p|≥`

V p
∑

p1+···+p`=p
|pi|≥1, 1≤i≤`

wp1
· · ·wp`
`!

∂`F (z, w0)

∂w`
.(5.30)

Finally, plugging the formal expansion (5.22) into the differential equation
(5.4), using the identities (5.24), (5.26), (5.30) and identifying the powers
V k, one gets the next lemma 5.2 which justifies the following definition.

Definition 5.5. For k ∈ Nn, we define

Pk(∂) = P (−λ.k + ∂), (5.31)

Qk(∂) = −τ.kP ′(−λ.k + ∂) +Q(−λ.k + ∂)

Rk(∂) =

n−2∑
j=0

1

zj

[(
−τ.k
j + 2

)
P (j+2)(−λ.k + ∂) +

(
−τ.k
j + 1

)
Q(j+1)(−λ.k + ∂)

]
.

(5.32)

For k ∈ Nn, we denote by Dk = Dk(w0) the linear differential operator

Dk = Pk(∂) +
1

z
Qk(∂) +

1

z2
Rk −

∂F (z, w0)

∂w

where w0 satisfies P (∂)w0 +
1

z
Q(∂)w0 = F (z, w0).

For k ∈ Nn, we denote by Pk = Pk(w0) the linear differential operator

Pk = P (−λ.k + ∂) +
1

z
Q(−λ.k + ∂)− ∂F (z, w0)

∂w
. (5.33)

Lemma 5.2. The n-parameters formal expansion

w(z,U) =
∑
k∈Nn

Uke−λ.kzz−τ.kwk(z) (5.34)

solves (5.4) if and only if :

P (∂)w0 +
1

z
Q(∂)w0 = F (z, w0), (5.35)

Deiwei = 0 (5.36)

with ei the i-th vector of the canonical base of Cn, and for |k| ≥ 2,

Dkwk =
∑

k1+···+k`=k
|ki|≥1, `≥2

wk1 · · ·wk`
`!

∂`F (z, w0)

∂w`
. (5.37)
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Remark 5.4. Notice that in lemma 5.2 we have neither supposed that
λ = (λ1, · · · , λn) are the multipliers, nor that τ = (τ1, · · · , τn) are such that

τi =
Q(−λi)
P ′(−λi)

, i = 1, · · · , n. However, these conditions will come in the next

section.

Example 5.2. We take equation (3.6) where n = 2, P (∂) = ∂2−1,Q(∂) = −3∂.
Then, for every k ∈ N2,

Pk(∂) = ∂2 − 2λ.k∂ + (λ.k)2 − 1, (5.38)

Qk(∂) = (3 + 2τ.k)(−∂ + λ.k),

Rk(∂) = τ.k(τ.k + 4).

In particular, taking λ = (1,−1) (the zeros of ζ 7→ P (−ζ)) and τ =

(
−3

2
,−3

2

)
(we take the values given by (5.5)), then writing k = (k1, k2):

Pk(∂) = ∂2 − 2(k1 − k2)∂ + (k1 − k2)2 − 1, (5.39)

Qk(∂) = 3(1− k1 − k2)(−∂ + k1 − k2),

Rk(∂) =
9

4
(k1 + k2)

(
k1 + k2 −

8

3

)
.

We eventually mention some identities for later purposes, the proof of
which being left as an exercise.

Lemma 5.3. The operators Pk and Dk given by definition 5.5 satisfy the
identities: for any k,k1,k2 ∈ Nn, e−λ.k1zPk1

eλ.k1z = e−λ.k2zPk2
eλ.k2z,

z−τ.kDk = Pkz
−τ.k and

(e−λ.k1zz−τ.k1)Dk1
(e−λ.k1zz−τ.k1)−1 = (e−λ.k2zz−τ.k2)Dk2

(e−λ.k2zz−τ.k2)−1.

Setting Wk = z−τ.kwk for k ∈ Nn and the wk given by lemma 5.2, one has
PeiWei = 0, i = 1, 2 while and for |k| ≥ 2,

PkWk =
∑

k1+···+k`=k
|ki|≥1, `≥2

Wk1
· · ·Wk`

`!

∂`F (z, w0)

∂w`
. (5.40)

5.3 Formal transseries for the first Painlevé equation

We partly describe in this section the contains of lemma 5.2 for the prepared
form equation (3.6) associated with the first Painlevé equation. Thus n = 2,
P (∂) = ∂2 − 1, Q(∂) = −3∂ and F (z, w) = f0(z) + f1(z)w + f2(z)w2. Also,
we will for the moment specialise our study to only one-parameter formal
expansions, that is we will assume that either U1 = 0 or U2 = 0 in (5.34).
This study will be enough to get the truncated solutions. We will keep on
our study of the formal integral associated with (3.6) in Sect. 5.4 where will
we see the effects of resonances.
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5.3.1 Transseries solution - statement

This section will be devoted to prove the following proposition.

Proposition 5.2. We consider the prepared ODE (3.6). We note
λ = (λ1, λ2) = (1,−1) where the λi’s are the multipliers, that is the roots of

the polynomial ζ 7→ P (−ζ). We introduce τ = (τ1, τ2) =

(
−3

2
,−3

2

)
, where

τi =
Q(−λi)
P ′(−λi)

, i = 1, 2. We note ei the i-th vector of the canonical base of C2

Then for each i = 1, 2, there exists a formal one-parameter solution of (3.6)

in the graded algebra
⊕
k∈N

z−τike−λikzC[[z−1]] of the form

w̃(z, Uei) =

∞∑
k=0

Uke−λikzz−τikw̃kei(z), w̃kei ∈ C[[z−1]]. (5.41)

This formal expansion is unique once one fixes the normalization of w̃ei to be
w̃ei(z) = 1 + O(z−1). Morever w̃kei ∈ R[[z−1]] and val w̃kei = 2(k − 1) with

w̃kei(z) =
k

12k−1
z−2(k−1)(1 +O(z−1)) for every k ≥ 1. Furthermore chang-

ing the normalization of w̃ei is equivalent in rescaling the parameter U ∈ C.
Eventually, w̃ke1(z) = w̃ke2(−z) for every k ≥ 0.

Definition 5.6. The expansion (5.41) is called a formal transseries. The
terms e−λikzz−τik are (log-free) transmonomials. The formal series w̃kei
are called the k-th series of the transseries. We denote W̃kei = z−τikw̃kei .

Remark 5.5. The term “transseries” is due to Ecalle [19]. These are objects
that are widely used in resurgence theory, see, e.g. [8, 34, 27, 28]. More
details on transseries can be founded in [18, 19], see also [6, 7]. Transseries
are also common objects in theoretical physics : these are the so-called “multi-
instanton expansions”, see, e.g. [38, 24, 25, 26, 32, 23, 1, 15, 16, 17].

In quantum mechanics or quantum field theory, an instanton action (the termi-

nology of which is due to Gerard ’t Hooft) is a classical solution of the equations of
motion, with a finite and non-zero action. A well-known instanton effect in quantum
mechanics is given by a particle in a double well potential. The tunneling effect

provides a non-zero probability that the particle crosses the potential barrier. This
gives rise to a tunneling amplitude proportionnal to the instanton e−S/~ where S
is the instanton action, ~ being the Planck constant or the coupling constant. For the

bound states, this translates into the fact that they can be described at a formal level
by a multi-instanton expansion, that is a transseries of the form

∑
k≥0 Ẽk(~)e−kS/~

where the perturbative fluctuations Ẽk(~) are formal expansions with respect to

~. The bound states are deduced from the multi-instanton expansion by (median)
Laplace-Borel summation, see [36, 9, 10, 11, 12, 13, 21, 22].

For later use, we mention a lemma that result from proposition 5.2 and
lemma 5.3.

Lemma 5.4. Under the conditions of proposition 5.2 and for any k ∈ N2,
the (so-called) general formal solution of the linear differential equation

Pk(w̃0)W̃ = 0 is W̃ = eλ.kz
(
C1e−λ1zW̃e1 + C2e−λ2zW̃e2

)
, C1, C2 ∈ C. For

any k ∈ N2 the (so-called) general formal solution of the linear differential

equation Dk(w̃0)w̃ = 0 is w̃(z) = eλ.kzzτ.k
(
C1e−λ1zW̃e1 + C2e−λ2zW̃e2

)
,

C1, C2 ∈ C.
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5.3.2 Transseries solutions - proof

5.3.2.1 A useful lemma

We start with the following lemma which will be useful in the sequel.

Lemma 5.5. We suppose n,N ∈ N?. We consider the ordinary differential
equation

P (∂)w +
1

z
R(∂)w = f̃(z), f̃(z) = fNz

−N (1 +O(z−1)) ∈ z−NC[[z−1]], fN 6= 0

with

P (∂) =

n∑
m=0

αn−m∂
m ∈ C[∂], αn 6= 0, R(∂) =

∑n−1
m=0 γn−m(z)∂m ∈ C[[z−1]][∂]

This ODE has a unique solution w̃ in C[[z−1]], moreover val w̃ = val f̃ and
w̃(z) = fN

P (0)z
−N (1 +O(z−1)).

Proof. In the valuation ring C[[z−1]] we consider the following map :

N : C[[z−1]]→ C[[z−1]]

w → 1

P (0)

[
f̃(z)−

(
P (∂)− P (0)

)
w − 1

z
R(∂)w

]
.

(Remember that P (0) = αn is nonzero). From the hypotheses made one easily
observes that N (C[[z−1]]) ⊂ z−1C[[z−1]] while, for every p ∈ N?,

if u, v ∈ z−pC[[z−1]], then N (u)−N (v) ∈ z−p−1C[[z−1]].

This means that N is contractive in C[[z−1]], thus the fixed point prob-
lem w = N (w) has a unique solution w̃ = lim

p→∞
N p(0) in C[[z−1]]. Since

N (0) = f̃(z)/P (0) one gets w̃(z) = fN
P (0)z

−N (1 +O(z−1)). ut

5.3.2.2 Proof of proposition 5.2

We precise at an introduction that the fact that w̃kei ∈ R[[z−1]] is just a con-
sequence of the realness of equation (3.6). The relationships w̃(0,k)(z) = w̃(k,0)(−z)
for every k ≥ 0, come from the property of equation (3.6) to be invariant un-
der the change of variable z 7→ −z and to the chosen normalization of w̃ei ,
i = 1, 2.

5.3.2.3 The return of the formal solution

We remark that w0 = w(0,0) has to solve (5.35) which is nothing but the
equation (3.6) one started with. In particular we know that this equation
has a unique formal solution w̃0 ∈ C[[z−1]] that has been investigated in the
previous chapters.
In what follows, one will always replace w0 by this formal solution w̃0.
We mention the following obvious fact, essentially due to the property that
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val w̃0 ≥ 2 and that for every ` = 0, 1, 2,
∂`F (z, 0)

∂w`
∈ z−2C{z−1}. (This is

one place where it is interesting to work with a “well-prepared” equation, see
what we have done in Sect. 3.1 to get (3.6) and exercise 3.1):

Lemma 5.6. If w̃0(z) =
∑
l≥2 a0,lz

−l ∈ C[[z−1]] is the formal solution of

(3.6), then for every ` = 0, 1, 2,
∂`F (z, w̃0)

∂w`
∈ C[[z−1]] has valuation 2, and

vanishes identically for every ` ≥ 3. Also:

1.
∂F (z, w̃0)

∂w
= −4z−2 + z−2w̃0 is even and its coefficients are all real nega-

tive;

2.
∂2F (z, w̃0)

∂w2
= z−2.

5.3.2.4 The cases |kei| = 1

Formula (5.36) with k = e1 provides

De1we1 = 0 (5.42)

where De1 = Pe1(∂) +
1

z
Qe1(∂) +

1

z2
Re1 −

∂F (z, w̃0)

∂w
with

Pe1(∂) = P (−λ1 + ∂) = P (−λ1) + P ′(−λ1)∂ +
P ′′(−λ1)

2!
∂2

Qe1(∂) = −τ1P ′(−λ1 + ∂) +Q(−λ1 + ∂)

Re1 = τ1(τ1 + 4)

Assuming that we1 ∈ C[[z−1]], one observes that the right-hand side of (5.42)
has a valuation less or equal to (valwe1)−2, because of lemma 5.6. In order to
get a non identically vanishing solution, one thus has to impose the condition
P (−λ1) = 0. Following our conventions, we take λ1 = 1.
The same reasoning leads to impose furthermore that−τ1P ′(−λ1) +Q(−λ1) = 0,

thus τ1 = −3

2
. Therefore,

Pe1(∂) = ∂2 − 2∂, Qe1(∂) = 0, Re1(∂) = −15

4
.

Symmetrically for k = e2, one gets λ2 = −1, τ2 = −3

2
as a necessary condi-

tion and
De2we2 = 0 (5.43)

where De2 = Pe2(∂) +
1

z
Qe2(∂) +

1

z2
Re2 −

∂F (z, w̃0)

∂w
whereas Pe2(∂) =

∂2 + 2∂, Qe2(∂) = 0, Re2(∂) = −15

4
.

Lemma 5.7. The linear homogeneous equations (5.42), (5.43) have both a
one-parameter family of formal solutions we1 = U1w̃e1 and we2 = U2w̃e2 in
C[[z−1]], where w̃e1 and w̃e2 are uniquely determined when normalized so that
w̃e1 = 1 +O(z−1), w̃e2 = 1 +O(z−1). Moreover w̃ei ∈ R[[z−1]] and w̃e2(z) =
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w̃e1(−z). Furthemore, if w̃0(z) =
∑
l≥0 a0,lz

−l and w̃e1(z) =
∑
l≥0 ae1,lz

−l,
the following quadratic recursion relation is valid:

ae1,0 = 1,

ae1,l =
1

8l

(
−(2l − 1)2ae1,l−1 + 4

l−1∑
p=0

ae1,pa0,l−p−1

)
, l = 1, 2, · · · (5.44)

Proof. We only examine (5.42). We look at this equation in the space of
normalized formal series C[[z−1]], namely (∂ − 2)∂we1 =

(
15

4

1

z2
+
∂F (z, w̃0)

∂w

)
we1

we1 ∈ C[[z−1]], we1 = 1 +O(z−1).
(5.45)

We remark that the restriction of the derivation operator ∂ to the maximal
ideal z−1C[[z−1]] is a bijective operator between z−1C[[z−1]] and z−2C[[z−1]];
we note ∂−1 the inverse operator,

∂→
z−1C[[z−1]] z−2C[[z−1]].←

∂−1

We transform (5.45) into the equation

−2∂we1 =

(
−∂2 +

15

4

1

z2
+
∂F (z, w̃0)

∂w

)
we1

and we see that the right-hand side of this equation belongs to z−2C[[z−1]]
once we1 belongs to C[[z−1]], because of lemma 5.6 and to the choice of the
coefficient τ1. This means that the map

N : C[[z−1]]→ C[[z−1]]

we1 → 1− 1

2
∂−1

(
−∂2 +

15

4

1

z2
+
∂F (z, w̃0)

∂w

)
we1

is well defined and the problem (5.45) is equivalent to the fixed-point prob-
lem we1 = N (we1). One easily sees that the map N is contractive in C[[z−1]]
so that the fixed point problem we1 = N (we1) has a unique solution w̃e1 in
C[[z−1]].
From the fact that (5.42) is a homogeneous equation, one immediately con-
cludes that U1w̃e1 , U1 ∈ C, provides a one-parameter family of formal solu-
tions.
The proof for the quadratic recursion relation (5.44) is left to the reader (see
also [23, 1]). ut

Remark 5.6. 1. The Newton polygon at infinity N∞(De1) drawn on Fig. 5.2,
has one horizontal side that corresponds to the operator −2∂. General
nonsense in asymptotic theory ([31], or [5, 29]) provides the existence of
the formal (normalized) series solution w̃e1 . The other (normalized) for-
mal solution associated with the side of slope −1 is e2zw̃e2 (see lemma
5.4) which, in our frame, is already incorporated in the other transseries
solution.
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Fig. 5.2 The Newton poly-

gon at infinity N∞(De1 )
associated with the linear

operator (5.45).

10 2 3

−1

−2

2. From lemma 5.6 or (5.44), one easily shows that

w̃e1(z) = 1− 1

8
z−1 +

9

128
z−2 − 341329

1920000
z−3 + · · ·

is a real formal expansion, with coefficients that alternate in sign.

5.3.2.5 The cases |kei| ≥ 2

Lemma 5.8. For any k = kei, i = 1, 2 and k ≥ 2, equation (5.37) has a
unique formal solution wkei = w̃kei in C[[z−1]]. Moreover val w̃kei = 2(k−1).
Furthermore, when considering Uw̃ei instead of w̃ei for the solution of
(5.36), then the unique solution of (5.37) at rank k = kei, k ≥ 2, is

Ukw̃kei . Also, w̃kei ∈ R[[z−1]], w̃kei(z) =
k

12k−1
z−2(k−1)(1 + O(z−1)) and

w̃(0,k)(z) = w̃(k,0)(−z) for every k ≥ 2.

Eventually, writing w̃ke1(z) =
∑
l≥0 ake1,lz

−l, one has the following quadratic
recursion relations, for every k ≥ 2:

ake1,0 = ake1,1 = 0,

(k2 − 1)ake1,l = k(3k − 2l − 1)ake1,l−1 − 1
4 (3k − 2l)2ake1,l−2

+
∑l−2
p=0

ake1,pa0,l−p−2 + 1
2

∑
k1+k2=k
k1≥1, k2≥1

ak1e1,pak2e1,l−p−2

 , l = 2, 3, · · ·

(5.46)

Proof. We only examine the case k = ke1, k ≥ 2.
The proof is done by induction on k. We first consider equation (5.37) for
k = 2:

D2e1w2e1 =
w̃2
e1

2!

∂2F (z, w̃0)

∂w2
, (5.47)

with D2e1 = P2e1(∂) +
1

z
Q2e1(∂) +

1

z2
R2e1 −

∂F (z, w̃0)

∂w
. By (5.31) one has

P2e1(∂) = P (−2λ1 + ∂) = ∂2 − 4∂ + 3, thus P2e1(0) = 3 is non zero. Using
lemma 5.6, one sees that lemma 5.5 can be applied to (5.47) and this provides
a unique solution w̃2e1 ∈ C[[z−1]]. Its valuation is 2, explicit calculation
giving, for instance:
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w̃2e1(z) =
1

6
z−2 − 11

72
z−3 +

53

192
z−4 + · · · , w̃2e2(z) = w̃2e1(−z).

One easily checks that replacing w̃e1 by Uw̃e1 implies changing w̃2e1 into
U2w̃2e1 .
We now assume that the properties of lemma 5.8 are true for every 2 ≤ k ≤ K − 1.
When considering equation (5.37) for K one gets :

DKe1wKe1 =
∑

k1+k2=K
k1≥1, k2≥1

w̃k1e1w̃k2e1
2!

∂2F (z, w̃0)

∂w2
, (5.48)

with DKe1 = PKe1(∂) +
1

z
QKe1(∂) +

1

z2
RKe1 −

∂F (z, w̃0)

∂w
and

PKe1(∂) = ∂2−2K∂+(K2−1). One deduces the conclusion of lemma 5.8 at
the rank K by the arguments used previously. For what concerns the valua-
tion, observe that when k1 +k2 = K, val w̃k1e1w̃k2e1 ≥ 2(k1 − 1) + 2(k2 − 1),
thus val w̃k1e1w̃k2e1 ≥ 2(K − 2). As a matter of fact, for every k ≥ 2,
w̃(k,0)(z) = bkz

−2(K−1)(1 +O(z−1)) with{
b1 = 1,

bk = 1
2(k−1)(k+1)

∑k−1
p=1 bpbk−p, k ≥ 2,

which easily provides bk = k
12k−1 by induction. The reader will easily check

that the recursive relations (5.46) are true. (See also [23, 1]). ut

Remark 5.7. Here again, we are not interested in the whole formal fundamen-
tal solutions of equations (5.47), (5.48), that incorporate the general solutions
(e−λ1kzz−τ1k)−1

(
C1e−λ1zz−τ1w̃e1 + C2e−λ2zz−τ2w̃e2

)
of the associated ho-

mogeneous linear ODEs D(k,0)w = 0 (cf. lemma 5.4). Taking into account
the term (· · · )w̃e1 would imply a rescaling on U1. The other term (· · · )w̃e2
concerns the other transseries.

5.4 Formal integral for the first Painlevé equation

We made general considerations on formal integrals in Sect. 5.2. We started
the study of the formal integral for the prepared equation (3.6) associated
with the first Painlevé equation in Sect. 5.3 : this gave us the transseries
described by proposition 5.2. When no resonances occur, one gets with quite
similar arguments the formal integral. However, this is not that simple for
the first Painlevé equation where we have to cope with resonances.

5.4.1 Notations and preliminary results

5.4.1.1 Notations

It will be useful for our purpose to introduce the following notations:

Definition 5.7. For any n ∈ N?, we note n = n(1, 1) and
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Ξn,0 = {k = (k1, k2) ∈ N2 \ {0} | k1 < n or k2 < n} ∪ {n}.

We also set Ξ0,0 = {(0, 0)}.

Example 5.3. • Ξ1,0 = (N? × {0}) ∪ ({0} × N?) ∪ {(1, 1)},
• Ξ2,0 = (N? × {0, 1}) ∪ ({0, 1} × N?) ∪ {(2, 2)}.

Notice that for every n ∈ N, Ξn+1,0 \Ξn,0 = n +Ξ1,0.

5.4.1.2 Resonances : first consequences

Equation (3.6) has the feature to have positively resonant multipliers λ1 = 1,
λ2 = −1 because λ.n = 0, for every n ∈ N? (see definition 5.2). This brings
semi-positively resonances, the cases of semi-positive resonances being all
described by λ1 = λ.(n + e1) and λ2 = λ.(n + e2), for every n ∈ N?.

We have already seen (proposition 5.2) that these properties have no conse-
quence for the transseries but, as we shall see, this produces new phenomena
when the formal integral is concerned, these being essentially consequences
of the following fact. (This derives from lemma 5.3).

Lemma 5.9. For every n ∈ N, k ∈ N2, the following identities are satisfied:

Pn+k = Pk, Dn+k = zτ.nDkz
−τ.n, τ.n = −3n.

5.4.1.3 Preliminary lemmas

In a moment, we will have to deal with formal expansions of the type
p∑
l=0

logl(z)f̃l(z), p ∈ N, with the f̃l’s in C[[z−1]].

Definition 5.8. We equip the graded algebra
⊕
l∈N

logl(z)C[[z−1]] with the

valuation val defined by: val

(∑
l

logl(z)f̃l

)
= min

l
{val f̃l}.

Lemma 5.10. We suppose n,N ∈ N? and p ∈ N. We consider the ordinary
differential equation

P (∂)w +
1

z
R(∂)w = f̃(z), f̃(z) ∈

p⊕
l=0

logl(z)C[[z−1]], (5.49)

P (∂) =

n∑
m=0

αn−m∂
m ∈ C[∂], αn 6= 0, R(∂) =

n−1∑
m=0

γn−m(z)∂m ∈ C[[z−1]][∂]

Then (5.49) has a unique solution w̃ ∈
p⊕
l=0

logl(z)C[[z−1]] and val w̃ = val f̃ .

Moreover, if f̃ =
∑p
l=0 logl(z)f̃l and w̃ =

∑p
l=0 logl(z)w̃l, then:

1. w̃p solves the ODE: P (∂)w +
1

z
R(∂)w = f̃p;

2. if val f̃p < val
∑p−1
l=0 logl(z)f̃l then val w̃p < val

∑p−1
l=0 logl(z)w̃l.
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Proof. One easily sees that the arguments used for the proof of lemma 5.5 can

be extended, when observing that val ∂

(∑
l

logl(z)f̃l

)
≤ val

(∑
l

logl(z)f̃l

)
+ 1.

ut

We have seen in lemma 5.7 that the operators Dei , i = 1, 2, have specific
behaviours. This is the purpose of the following lemma.

Lemma 5.11. We suppose p ∈ N and i ∈ {1, 2}. We assume that

f̃ =
∑p
l=0 logl(z)f̃l ∈

⊕p
l=0 logl(z)C[[z−1]] satisfies the conditions:

1. val f̃p = 1, f̃p = fp1z
−1(1 + 0(z−1)), fp1 6= 0

2. val
(∑p−1

l=0 logl(z)f̃l

)
≥ 2.

Then the equation Deiw = f̃ has a unique solution w̃ =
∑p+1
l=0 logl(z)w̃l in⊕p+1

l=0 logl(z)C[[z−1]] that satisfies the condition val
(∑p

l=0 logl(z)w̃l

)
≥ 1.

Moreover w̃p+1 =
fp1

(p+ 1)P ′(−λi)
w̃ei .

Otherwise, the general solution of the ODE Deiw = f̃ in
⊕p+1

l=0 logl(z)C[[z−1]]
is of the form w = w̃ + Uw̃ei where U ∈ C.

Proof. We examine the case i = 1 only. The ODE De1w = f̃ is equivalent to
the equation :

P ′(−λ1)∂w = f̃ +

(
−∂2 +

15

4

1

z2
+
∂F (z, w̃0)

∂w

)
w, P ′(−λ1) = −2.

By arguments already used in the proof of lemma 5.7, this problem amounts
to looking for a formal solution that satisfies the fixed-point problem

w = U(z) +
1

P ′(−λ1)
∂−1

(
−∂2 +

15

4

1

z2
+
∂F (z, w̃0)

∂w

)
w

where U(z) = ∂−1

(
f̃

P ′(−λ1)

)
=

fp1

(p+ 1)P ′(−λ1)
logp+1(z)+

p∑
l=0

logl(z)O(z−1).

Notice that we take the primitive with no constant term. This fixed-point
problem has a unique formal solution under the form

w̃ =
fp1

(p+ 1)P ′(−λ1)
w̃ei logp+1(z) +

p∑
l=0

logl(z)w̃l

and val
(∑p

l=0 logl(z)w̃l

)
≥ 1. Eventually one can add to this particular

solution any solution of the homogeneous equation Deiw = 0, that is any
term of the form Uw̃ei with U ∈ C. ut

5.4.2 Painlevé I, formal integral

We are now in position to detail the formal integral associated with the first
Painlevé equation.
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Theorem 5.1. We consider the ODE (3.6). Let be λ = (λ1, λ2) = (1,−1)

where the λi’s are the multipliers, and τ = (τ1, τ2) =

(
−3

2
,−3

2

)
,

τi =
Q(−λi)
P ′(−λi)

, i = 1, 2. We set V k = Uke−λ.kzz−τ.k for any k ∈ N2 and

any U = (U1, U2) ∈ C2. We write n = n(1, 1) for any n ∈ N.
There exists a two-parameter formal solution of (3.6), freely depending on
U ∈ C2, of the form

w̃(z,U) = w̃0(z) +

∞∑
n=0

∑
k∈Ξn+1,0\Ξn,0

V kw̃k(z), (5.50)

and uniquely determined by the following conditions:

1. w̃0 ∈ C[[z−1]];

2. w̃k =
n∑
l=0

logl(z)w̃
[l]
k ∈

n⊕
l=0

logl(z)C[[z−1]], for every k ∈ Ξn+1,0 \ Ξn,0,

n ∈ N;
3. for i = 1, 2, w̃ei satisfies w̃ei(z) = 1 +O(z−1);

4. for every n ∈ N? and i = 1, 2, w̃n+ei =
∑n
l=0 logl(z)w̃

[l]
n+ei satisfies

val w̃
[n]
n+e1 < val

(∑n−1
l=0 logl(z)w̃

[l]
n+ei

)
.

Moreover, the following properties are satisfied:

5. changing the normalization of w̃ei , i = 1, 2, is equivalent to rescaling the
parameter U ∈ C2;

6. for every n ∈ N and every k ∈ Ξn+1,0 \ Ξn,0, w̃k ∈
n⊕
l=0

logl(z)R[[z−1]].

Furthermore w̃
[l]
(k1,k2)(z) = w̃

[l]
(k2,k1)(−z) for every l ∈ [0, n];

7. for every n ∈ N? and every k ∈ Ξn+1,0 \Ξn,0,

w̃k =

n∑
l=0

1

l!
(κ.k)

l
zτ.l logl(z)w̃

[0]
k−l (5.51)

where κ = (κ1,κ2) = (
5

12
,− 5

12
) is defined by:

κi =
a2

P ′(−λi)

(
1

P (0)
+

1

2!

1

P (−2λi)

)
=

5

12
λi, i = 1, 2, (5.52)

whereas a is given by
∂2F (z, 0)

∂w2
= az−2 + o(z−2). As a consequence, for

every n ∈ N?, w̃n ∈ R[[z−1]] ;

8. for every k ∈ N2 \ {0}, val w̃
[0]
k = 2(|k| − 1).

Proof. Once for all:

• the property 5. is easily derived by an argument of homogeneity;
• the realness and eveness in property 6. are just consequences of the realness

of equation (3.6) and its property of being be invariant under the change
of variable z 7→ −z, and to the chosen normalizations.



5.4 Formal integral for the first Painlevé equation 109

In what follows, we investigate the terms under the form w̃k with k ∈ Ξn+1,0 \Ξn,0
and n ∈ N. We first look at what happens when n = 0 and n = 1, step by
step so as to draw some conclusions, then we complete the proof by induction
on n.

Case n = 0 and k = 1 This is the first case where a resonance appears.
However, this case yields no surprise. Indeed, equation (5.37) for k = 1 reads

P1(∂)w1 +
1

z
Q1(∂)w1 =

(
− 1

z2
R1 +

∂F (z, w̃0)

∂w

)
w1

+ w̃e1w̃e2
∂2F (z, w̃0)

∂w2
(5.53)

with P1(∂) = P0(∂) = ∂2 − 1. Therefore lemma 5.5 can be applied and
one gets a unique solution w̃1 ∈ C[[z−1]] with, moreover, val w̃1 = 2 and

w̃1(z) =
a

P (0)
z−2 + o(z−2) where a = 1 is given by: ∂

2F (z,0)
∂w2 = az−2+o(z−2).

Explicit calculation yields: w̃1(z) = −z−2 − 9

8
z−4 − 902139

80000
z−6 − · · ·.

Cases n = 1 and k ∈ Ξ2,0 \ Ξ1,0

Cases k = 1+ei, i = 1, 2 These are the first cases of semi-positive resonances
and are more serious.

Let us concentrate on the case k = 1 + e1 for which equation (5.37) is

D1+e1w1+e1 = (w̃1w̃e1 + w̃2e1w̃e2)
∂2F (z, w̃0)

∂w2
,

that is also, from lemma 5.9 and proposition 5.2,

De1(z3w1+e1) = g̃1+e1 , (5.54)

g̃1+e1 = z3 (w̃1w̃e1 + w̃2e1w̃e2)
∂2F (z, w̃0)

∂w2

=

(
1

P (0)
+

1

2!

1

P (−2λ1)

)
a2z−1 +O(z−2)

= −5

6
z−1 +O(z−2).

The conditions of application of lemma 5.11 are fulfilled: equation (5.54) has
a one-parameter family of formal solutions, depending on U[1],1 ∈ C, of the
form

w1+e1 = w̃1+e1 + U[1],1z
−3w̃e1 , w̃1+e1 = w̃

[1]
1+e1

log(z) + w̃
[0]
1+e1

,

w̃
[1]
1+e1

= κ1z
−3w̃e1 , val w̃

[0]
1+e1

≥ 4.

κ1 = a2

P ′(−λ1)

(
1

P (0) + 1
2!

1
P (−2λ1)

)
= 5

12 .

(5.55)

Explicitly,

w̃
[0]
1+e1

(z) =
11

72
z−4 − 197

576
z−5 +

23903

82944
z−6 − · · ·

Also remark that the property val w̃
[0]
1+e1

≥ 4 characterizes the particular
solution w̃1+e1 among the one-parameter family of solutions.
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The case k = 1+ei is deduced from the above result from the invariance of
(3.6) under the change of variable z 7→ −z. One gets a one-parameter family
of formal solutions, depending on U[1],2 ∈ C, of the form

w1+e2 = w̃1+e2 + U[1],2w̃e2 , w̃1+e2 = w̃
[1]
1+e2

log(z) + w̃
[0]
1+e2

,

w̃
[1]
1+e2

(z) = w̃
[1]
1+e1

(−z) = κ2z
−3w̃e2(z), w̃

[0]
1+e2

(z) = w̃
[0]
1+e1

(−z)
κ2 = a2

P ′(−λ2)

(
1

P (0) + 1
2!

1
P (−2λ2)

)
= − 5

12 .

(5.56)

In the sequel, we fix U[1],1 = U[1],2 = 0, that is we only consider the (well
and uniquely defined) particular solutions w̃1+ei , i = 1, 2.

We stress that adding terms of the form U[1],1w̃e1 and U[1],2w̃e2 has the effect to

rescaling the parameter (U1, U2). In particular, changing the branch of the log has
non consequence for the formal integral.

Cases k = 1 + kei One step further, we consider the case k = 1 + 2ei. We
take i = 1 only for simplicity. From (5.37) and lemma 5.9, we get:

(5.57)

D2e1(z3w1+2e1) = z3 (w̃1+e1w̃e1 + w̃2e1w̃1 + w̃3e1w̃e2)
∂2F (z, w̃0)

∂w2
.

By proposition 5.2 and the above result, the right-hand side of equation (5.57)

is a formal series expansion of the type f̃ = f̃ [1] log(z) + f̃ [0] with val f̃ [1] = 2

and val f̃ [0] = 3. Applying lemma 5.10, we get for (5.57) a unique formal

solution of the form w̃1+2e1 = w̃
[1]
1+2e1

log(z) + w̃
[0]
1+2e1

∈
⊕1

l=0 logl(z)C[[z−1]]

with val w̃
[1]
1+2e1

= 5 and val w̃
[0]
1+2e1

= 6. Moreover, w̃
[1]
1+2e1

solves the ODE

D2e1(z3w
[1]
1+2e1

) = z3w̃
[1]
1+e1

w̃e1
∂2F (z, w̃0)

∂w2

= κ1w̃
2
e1

∂2F (z, w̃0)

∂w2
.

Comparing to (5.47), one concludes that

w̃1+2e1 = w̃
[1]
1+2e1

log(z) + w̃
[0]
1+2e1

,

w̃
[1]
1+2e1

= 2κ1z
−3w̃2e1 , val w̃

[0]
1+2e1

= 6.

We now reason by induction, assuming that for every k ∈ [2,K − 1] with
K ≥ 3, one has

w̃1+ke1 = w̃
[1]
1+ke1

log(z) + w̃
[0]
1+ke1

,

w̃
[1]
1+ke1

= kκ1z
−3w̃ke1 , val w̃

[0]
1+ke1

= 2(k + 1).

Then, by (5.37) and lemma 5.9,
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DKe1(z3w̃1+Ke1) = z3
∑

k1+k2=1+Ke1
|k1|≥1, |k2|≥1

w̃k1
w̃k2

2

∂2F (z, w0)

∂w2
(5.58)

= z3
∑

k1+k2=K
k1≥1, k2≥1

w̃1+k1e1w̃k2e1
∂2F (z, w0)

∂w2

+ z3
(
w̃1w̃Ke1 + w̃(1+K)e1w̃e2

) ∂2F (z, w0)

∂w2

With the above reasoning, one gets a unique solution

w̃1+Ke1 = w̃
[1]
1+Ke1

log(z) + w̃
[0]
1+Ke1

∈
⊕1

l=0 logl(z)C[[z−1]] where w̃
[1]
1+Ke1

solves the ODE

DKe1(z3w̃
[1]
1+Ke1

) = κ1

∑
k1+k2=K
k1≥1, k2≥1

k1w̃k1e1w̃k2e1
∂2F (z, w0)

∂w2

= Kκ1

∑
k1+k2=K
k1≥1, k2≥1

w̃k1e1w̃k2e1
2

∂2F (z, w0)

∂w2

Comparing to (5.48), one concludes that

w̃1+Ke1 = w̃
[1]
1+Ke1

log(z) + w̃
[0]
1+Ke1

,

w̃
[1]
1+Ke1

= Kκ1z
−3w̃Ke1 , val w̃

[0]
1+Ke1

= 2(K + 1).

Case k = (2, 2) What remains to do when k ∈ Ξ2,0 \Ξ1,0 is to examine the
case k = (2, 2). By (5.37) and lemma 5.9,

D1(z3w2) =

z3
(
w̃1+e1w̃e2 + w̃1+e2w̃e1 + w̃2e1w̃2e2 + 1

2 w̃1w̃1

) ∂2F (z,w̃0)
∂w2 .

(5.59)

We observe from (5.55) and (5.56) that

w̃
[1]
1+e1

w̃e2 + w̃
[1]
1+e2

w̃e1 = κ1z
−3w̃e1w̃e2 + κ2z

−3w̃e2w̃e1 = 0.

Therefore the log-term disappears in the right-hand side of (5.59) as a con-
sequence of the symmetries of the problem. Moreover

val (w̃
[0]
1+e1

w̃e2 + w̃
[0]
1+e2

w̃e1 + w̃2e1w̃2e2 +
1

2
w̃1w̃1) ≥ 4.

By lemma 5.10, we get w̃2 ∈ C[[z−1]] with val w̃2 = 6. Explicit calculation

provides: w̃2(z) = −5

6

1

z6
− 2177

432

1

z8
− 5288521

54000

1

z10
+ · · · .

Induction We assume that N is an integer ≥ 2 and we suppose that the
properties announced in theorem 5.1 are true for any integer n ∈ [0, N − 1]
and any k ∈ Ξn+1,0 \Ξn,0.

We notice on the one hand that ΞN+1,0 \ΞN,0 = 1 +ΞN,0 \ΞN−1,0. On
the other hand, for every k ∈ ΞN,0 \ΞN−1,0,

D1+k(w̃1+k) =
∑

k1+k2=1+k
|k1|≥1, |k2|≥1

w̃k1
w̃k2

2

∂2F (z, w0)

∂w2
(5.60)
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We set X = log(z) and we consider X as an indeterminate. The right-hand

side of (5.60) is of the form f̃ =
∑
f̃ [l]X l with

∂X f̃ = ∂X
∑

k1+k2=1+k
|k1|≥1, |k2|≥1

w̃k1
w̃k2

2

∂2F (z, w0)

∂w2

=
∑

k1+k2=1+k
|k1|≥1, |k2|≥1

(∂Xw̃k1
)w̃k2

+ w̃k1
(∂Xw̃k2

)

2

∂2F (z, w0)

∂w2
.

Using the induction hypothesis, when 1 + k1 ∈ Ξn+1,0 \ Ξn,0, for any
n ∈ [0, N − 1],

∂X

(
n∑
l=1

w̃
[l]
1+k1

X l

)
= (κ.k1)z−3

n−1∑
l=0

w̃
[l]
k1
X l,

that is ∂Xw̃1+k1 = (κ.k1)z−3w̃k1 . Therefore:

∂X f̃ = z−3
∑

k1+k2=k
|k1|≥1, |k2|≥1

(κ.k1)w̃k1w̃k2

∂2F (z, w0)

∂w2

= (κ.k)z−3
∑

k1+k2=k
|k1|≥1, |k2|≥1

w̃k1
w̃k2

2

∂2F (z, w0)

∂w2
.

Thus ∂X f̃ = (κ.k)z−3Dk(w̃k) and (5.60) provides:

∂X

(
Dk(z3w̃1+k)

)
= (κ.k)Dk(w̃k).

Observing that ∂XDk∂
−1
X = Dk, one easily gets w̃1+k either from lemma

5.11 or lemma 5.10, with w̃1+k = (κ.k)z−3∂−1
X w̃k.

The property for w̃n+1 is easy and is left to the reader. This ends the proof
of theorem 5.1. ut

Definition 5.9. The two-parameter formal solution defined by theorem 5.1
is the formal integral of the prepared ODE (3.6) associated with the first
Painlevé equation. The coefficients λi, τi and κi, i = 1, 2, are the formal
invariants.
The formal series w̃

[0]
k are called the k-th series of the formal integral. We

denote W̃
[0]
k = z−τ.kw̃

[0]
k and W̃k = z−τ.kw̃k for any k ∈ N2.

Remark 5.8. Theorem 5.1 can be compared to [23] and specially to [1], where
the calculations made there translate into ours up to renormalization.

Definition 5.10. For any k ∈ N2, one denotes by Ek and Fk the following
operators:

Ek =
κ.k
z4

P ′(∂ − λ.k) +
κ.k
z5

(
Q′(∂ − λ.k)− τ.(2k − 1) + 1

2!
P ′′(∂ − λ.k)

)
= 2

κ.k
z4

(∂ − λ.k)− κ.k
z5

(τ.(2k − 1) + 4) ,

Fk =
1

2!

(κ.k)2

z8
P ′′(∂ − λ.k) =

(κ.k)2

z8
.
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We need hardly mention the analogue of lemma 5.9.

Lemma 5.12. For every n ∈ N, k ∈ N2,

En+k = zτ.nEkz
−τ.n, Fn+k = zτ.nFkz

−τ.n.

We finally give a corollary stemming from theorem 5.1.

Corollary 5.1. The formal integral (5.50) associated with the prepared ODE
(3.6) can be written under the form:

w̃(z,U) =
∑
k∈N2

V kw̃
[0]
k , V k = Uke−(λ.k)z+(κ.k)U1 log(z)z−τ.k. (5.61)

Equivalently,

w̃(z,U) = Φ̃(z, U1e−λ1z−(τ1−κ1U
1) log(z), U2e−λ2z−(τ2−κ2U

1) log(z))

where Φ̃(z,u) =
∑
k∈N2 ukw̃

[0]
k (z) ∈ C[[z−1,u]] is solution of the equation:

P
(
∂z−

2∑
i=1

(λi+
τi − κiu1

z
)ui∂ui

)
Φ̃+

1

z
Q
(
∂z−

2∑
i=1

(λi+
τi − κiu1

z
)ui∂ui

)
Φ̃ = F (z, Φ̃).

(5.62)

The formal series w̃
[0]
k ∈ z−2|k|+2R[[z−1]] satisfy:

• for any k ∈ Ξ1,0 \Ξ0,0, Dkw̃
[0]
k =

∑
k1+k2=k
|ki|≥1

w
[0]
k1
w

[0]
k2

2!

∂2F (z, w̃0)

∂w2
;

• for any k ∈ Ξ2,0 \Ξ1,0, Dkw̃
[0]
k +Ekw̃

[0]
k−1 =

∑
k1+k2=k
|ki|≥1

w
[0]
k1
w

[0]
k2

2!

∂2F (z, w̃0)

∂w2
;

• otherwise, Dkw̃
[0]
k + Ekw̃

[0]
k−1 + Fkw̃

[0]
k−2 =

∑
k1+k2=k
|ki|≥1

w
[0]
k1
w

[0]
k2

2!

∂2F (z, w̃0)

∂w2
;

Proof. Let us examine (5.50) more closely. The formal integral can be written
as follows:

w̃(z,U) =

∞∑
n=0

V nw̃n(z) +
∑
i=1,2

∞∑
k=1

∞∑
n=0

V n+keiw̃n+kei(z), (5.63)

that is we consider the sums along the direction given by the vector (1, 1)

that determines the resonance. We set T k = Uke−(λ.k)z+(κ.k)U1 log(z)z−τ.k.
For the first sum we know that each w̃n(z) belongs to C[[z−1]] and∑∞
n=0 V

nw̃n =
∑∞
n=0 T

nw̃n because κ.n = 0.
We now look at the other sums and we use the relations given by (5.51). We
get for i = 1, 2,
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∞∑
k=1

∞∑
n=0

V n+keiw̃n+kei =

∞∑
k=1

V kei

∞∑
n=0

V n
n∑
l=0

1

l!

(
κikz−3 log(z)

)l
w̃

[0]
n−l+kei

=

∞∑
n=0

V n
∞∑
k=1

V keie(κikU1 log(z))w̃
[0]
n+kei

.

=

∞∑
n=0

∞∑
k=1

T n+keiw̃
[0]
n+kei

.

The equation (5.62) is obtained by the arguments developed in remark 5.3.
The reader will check that equation (5.62) is equivalent to the given hierarchy
of equations. ut

Let us write u1(z) = U1e−λ1z−(τ1−κ1U
1) log(z), u2(z) = U2e−λ2z−(τ2−κ2U

1) log(z)

and observe that t(u1, u2) provides the general analytic solution for a non lin-
ear differential equation that only depends on the formal invariants:

∂

(
u1

u2

)
+

(
λ1 + τ1

z 0
0 λ2 + τ2

z

)(
u1

u2

)
=

( κ1

z4 u1u2 0
0 κ2

z4 u1u2

)(
u1

u2

)
. (5.64)

This means that corollary 5.1 can be written another way.

Corollary 5.2. There exists a formal transformation w = Φ̃(z,u) of the form

Φ̃(z,u) =
∑
k∈N2

ukw̃
[0]
k (z), w̃

[0]
k ∈ C[[z−1]], (5.65)

that formally transforms the prepared ODE (3.6) into the normal form equa-
tion:

∂u +B0(z)u = B1

(
z,u

)
u (5.66)

B0 =

(
λ1 + τ1

z 0
0 λ2 + τ2

z

)
, B1(z,u) =

u1

z4

(
κ1 0
0 κ2

)
, u1 = u1u2.

5.5 Comments

Analogues of proposition 5.1 can be stated for differential equations, resp.
difference equations, of of order 1 and dimension n, with one level and no
resonance, given in prepared form :

∂v +B0(z)v = g(z,v) (5.67)

with B0(z) =
⊕
j

(
λjInj + z−1Mj

)
,
∑
j nj = n, resp.

v(z + 1) = B0(z)v(z) + g(z,v) (5.68)

with B0(z) =
⊕
j

e−λjz(1 + z−1)Mj . In each case, there exists a formal trans-

formation of the type v = T̃ (z,u), T̃ (z,u) =
∑
k∈Nn ukṽk(z), ṽk(z) ∈ Cn[[z−1]]

that brings the equation to the linear normal form ∂u + B0(z)u = 0, resp.
u(z + 1) = B0(z)u(z).
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To be correct, the upshot for difference equations is more subtle.

This property is still valid for differential equations with more than one level,
see [30, 4, 7] and references therein. In particular, the whole set of formal
invariants are alreday given by the linear part (in Jordan form) of the equa-
tion.

When resonances occur and as we saw with the first Painlevé equation, the
normal form equation is nonlinear and new formal invariants appear. This is
essentially a consequence of the Poincaré-Dulac theorem [2]; for instance in
(5.66), one recognizes the effect of the positively resonance of order 3 with
the resonances monomials u2

1u2 and u1u
2
2. The classification is detailed in

[18], see also [20] where the notion of (so-called) moulds and arborification
are used (a good introduction of which is [35]).

Acknowledgements I am indebted to my student Julie Belpaume for helping me to
working out this chapter. I thank Jean Ecalle for interesting discussions on phenomena

induced by resonances.
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(1985).
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Chapter 6

Truncated solutions for Painlevé I

Abstract In the previous chapters, we studied the unique formal solution
of the first Painlevé equation then we introduced its formal integral. We
show that its formal series components are 1-Gevrey and their minors have
analytic properties quite similar to those for the minor of the formal series
solution we started with (Sect. 6.1). We then make a focus on the transseries
solution of the first Painlevé equation and show their Borel-Laplace summa-
bility (Sect. 6.2). This provides by Borel-Laplace summation the truncated
solutions (Sect. 6.4).

6.1 Formal integral : 1-summability of the k-th series
and beyond

We have described with theorem 5.1 and its corollary 5.1 the formal integral

w̃(z,U) =
∑
k∈N2 V

kw̃
[0]
k associated with the first Painlevé equation. Our

goal in this section is mainly to show that the following theorem.

Theorem 6.1. For every k ∈ N2, the k-th series w̃
[0]
k is 1-Gevrey, its minor

ŵ
[0]
k defines a holomorphic function on

•
R(0) with at most exponential growth

of order 1 at infinity. Moreover, ŵ
[0]
k can be analytically continued to the

Riemann surface R(1), with at most exponential growth of order 1 at infinity
on R(1).

We already know by theorem 3.2 and theorem 4.1 that ŵ0 = ŵ
[0]
0 enjoyes

the above properties. Our task comes down to studying the other k-th series.
This is what we do in what follows and we start with some preliminaries.

6.1.1 Preliminary results

In what follows we use a notation introduced in definition 5.5.

Lemma 6.1. We set P (∂) = ∂2−1 and for every k ∈ N2, Pk(∂) = P (−λ.k + ∂)

with λ = (λ1, λ2) = (1,−1). For i = 1, 2, we define P̃ei(∂) by Pei(∂) = P̃ei(∂)∂

so that P̃ei(−λi) 6= 0.

117
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Then, for any ρ ∈]0, 1[, there exists Mρ,(0) > 0 such that, for every

ζ ∈ C \
⋃
m∈Z?

D(m,mρ) :

1. for i = 1, 2,
∣∣∣ 1

P̃ei(−ζ)

∣∣∣ ≤Mρ,(0);

2. for every k ∈ Ξ1,0 with |k| ≥ 2, for m = 0, 1,
∣∣∣ (ζ + λ.k)m

Pk(−ζ)

∣∣∣ ≤ Mρ,(0)

|k| − 1

and, for k 6= (1, 1),
∣∣∣ 1

Pk(−ζ)

∣∣∣ ≤ M2
ρ,(0)

|k|2 − 1
.

Moreover one can take Mρ,(0) =
1

ρ
.

Proof. We only examine the case k ∈ Ξ1,0 \ {(1, 1)} with |k| > 1. With
no loss of generality, we can assume that k = (k, 0) with k ≥ 2. Thus
Pk(−ζ) = (ζ + k − 1)(ζ + k + 1), ζ + λ.k = ζ + k and we notice that

|ζ + k − 1| ≥ (k − 1)ρ and |ζ + k + 1| ≥ (k + 1)ρ for ζ ∈ C \
⋃
m∈Z?

D(m,mρ).

Therefore,
1

|Pk(−ζ)|
≤ 1

(k2 − 1)ρ2
for ζ ∈ C \

⋃
m∈Z?

D(m,mρ). Now:

• either <(ζ + k) ≥ 0, then |ζ + k + 1| ≥ max{1, |ζ + k|}. This implies that

max{1, |ζ + λ.k|}
|Pk(−ζ)|

≤ 1

(k − 1)ρ
.

• or <(ζ + k) ≤ 0, then |ζ + k − 1| ≥ max{1, |ζ + k|}. This implies that

max{1, |ζ + λ.k|}
|Pk(−ζ)|

≤ 1

(k + 1)ρ
.

ut

Lemma 6.2. Under the conditions of lemma 6.1, we note Q(∂) = −3∂ and

Qk(∂), Rk(∂) given by (5.31), (5.32) with τ =

(
−3

2
,−3

2

)
.

Then, for every k ∈ Ξ1,0 \ {(1, 1)} with |k| > 1, for every ζ ∈
•
R

(0)
ρ ,

|Qk|(|ζ|)
|Pk(−ζ)|

≤ 3Mρ,(0),
|Rk|(|ζ|)
|Pk(−ζ)|

≤ 9

4
M2
ρ,(0).

Proof. We note that lemma 6.1 can be applied for ζ ∈
•
R

(0)
ρ .

We have |Qk|(ξ) = 3(|k| − 1)
∣∣ξ +λ.k

∣∣ (see (5.39)), Therefore, by lemma 6.1,
|Qk|(|ζ|)
|Pk(−ζ)|

≤ 3Mρ,(0). In the same way, one easily sees that |Rk(∂)| ≤ 9

4
|k|(|k| − 1)

(cf. (5.39)), thus the result by lemma 6.1. ut

We eventually introduce the following notation that complements defini-
tion 3.3.

Definition 6.1. Assume that G(ζ,w) =
∑
|l|≥0

cl(ζ)wl is an analytic func-

tion on the open polydisc ∆r =
∏n
i=0D(0, ri). One defines the function |G|,

analytic on ∆r, by |G|(ξ,w) =
∑
l≥0

|cl|(ξ)wl.



6.1 Formal integral : 1-summability of the k-th series and beyond 119

6.1.2 The 1-st series

We start our proof of theorem 6.1 by paying special attention to w̃ei = w̃
[0]
ei .

Lemma 6.3. The 1-st series w̃ei is 1-Gevrey. Its formal Borel transform

reads B̃(w̃ei)(ζ) = δ + ŵei(ζ) and ŵei is holomorphic on
•
R(0) with at most

exponential growth of order 1 at infinity. More precisely, for every ρ ∈]0, 1[,
there exist A > 0 and τ > 0 such that

for every ζ ∈
•
R(0)
ρ , |ŵei(ζ)| ≤ Aeτ |ζ|.

In the above upper bounds one can choose A = τ =
5.81

ρ
.

Moreover, ŵei can be analytically continued to the Riemann surface R(1),
with at most exponential growth of order 1 at infinity on R(1).

Proof. It is enough to study w̃e1 since w̃e2(z) = w̃e1(−z). We know that w̃e1
solves the equation (5.45), namely:

∂P̃e1(∂)w̃e1 =

(
15

4

1

z2
+
∂F (z, w̃0)

∂w

)
w̃e1 , P̃ei = ∂ − 2. (6.1)

The formal Borel transform of w̃e1 reads B̃(w̃e1)(ζ) = δ + ŵe1(ζ), where the
minor ŵe1(ζ) ∈ C[[ζ]] satisfies the following convolution equation deduced
from (6.1):

∂P̃e1(∂)ŵe1 =

(
15

4
ζ +

∂F̂ (ζ, ŵ0)

∂w

)
∗ (δ + ŵe1). (6.2)

In this equation, we use the notation:

∂F̂ (ζ, ŵ0)

∂w
= f̂1(ζ) + 2f̂2 ∗ ŵ0(ζ) = −4ζ + ζ ∗ ŵ0(ζ). (6.3)

The equation (6.2) can be thought of as a linear differential equation with a
regular singular point at 0.

Instead of (6.2), consider the convolution equation ∂P̃e1 (∂)ŵ =
(
a1ζ + a2

ζ2

2!

)
∗ (δ + ŵ).

Set ĝ = ∂P̃e1 (∂)ŵ = ζ(ζ+2)ŵ. For ζ 6= 0, one gets ĝ =
(
a1ζ + a2

ζ2

2!

)
∗
(
δ +

ĝ

ζ(ζ + 2)

)
.

This implies by differentiation that ĝ(4) = a1

( ĝ

ζ(ζ + 2)

)(2)
+ a2

( ĝ

ζ(ζ + 2)

)(1)
where

ĝ(i) =
diĝ

dζi
. The last ODE has a regular singular point at 0. One can apply the same

trick to (6.2) but for the fact of getting an infinite order differential operator.

The equation (6.2) can be analyzed with the tools developed in Sect. 3.4. We

introduce Ĝ(ζ) =
15

4
ζ +

∂F̂ (ζ, ŵ0)

∂w
= −ζ

4
+ ζ ∗ ŵ0(ζ) and we remark that Ĝ

belongs to the maximal ideal MO(
•
R

(0)
ρ ) of O(

•
R

(0)
ρ ) for any 0 < ρ < 1, thus

∂−1Ĝ ∈ O(
•
R

(0)
ρ ) is well-defined. We set ŵe1 = P̃−1

e1 (∂)∂−1Ĝ+ v̂e1 and (6.2)
becomes

∂P̃e1(∂)v̂e1 = Ĝ ∗
(
P̃−1
e1 (∂)∂−1Ĝ

)
+ Ĝ ∗ v̂e1 . (6.4)
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Observe that Ĝ ∗
(
P̃−1
e1 (∂)∂−1Ĝ

)
belongs to MO(

•
R

(0)
ρ ). For R > 0, we

consider the star-shaped domain UR = D(0, R) ∩
•
R

(0)
ρ and we defines

Br = {v̂ ∈ O(UR), ‖v̂‖ν ≤ r}, for r > 0 and ν > 0. By proposition 3.7 and

lemma 6.1, ‖P̃−1
e1 (∂)∂−1

(
Ĝ ∗

(
P̃−1
e1 (∂)∂−1Ĝ

))
‖ν → 0 when ν →∞.

Explicitly

‖P̃−1
e1

(∂)∂−1
(
Ĝ ∗

(
P̃−1
e1

(∂)∂−1Ĝ
))
‖ν ≤

Mρ,(0)

R
‖∂−1

(
Ĝ ∗

(
P̃−1
e1

(∂)∂−1Ĝ
))
‖ν

≤
Mρ,(0)

νR2
‖∂−1Ĝ‖0‖P̃−1

e1
(∂)∂−1Ĝ‖ν .

Also, ‖P̃−1
e1 (∂)∂−1

(
Ĝ ∗ v̂e1

)
‖ν ≤

Mρ,(0)

νR2 ‖∂−1Ĝ‖0‖v̂e1‖ν , Thus equation (6.4)

translates into a fixed point problem v̂e1 = N (v̂e1) where N : Br → Br is
a contractive mapping for ν large enough. This ensures the existence and

uniquess of ŵe1 ∈ O(
•
R(0)). The same reasoning can be applied for showing

that ŵe1 can be analytically continued to
•
R(1), in application of lemma 4.5

and theorem 4.1.
To get upper bounds, we notice by (6.3) and lemma 3.3 that for every

ζ ∈
•
R

(0)
ρ ,

∣∣∣∂−1Ĝ(ζ)
∣∣∣ ≤ 1

4 + 1 ∗ ŵ0(|ζ|) where ŵ0(ξ) = Aeτξ stands for the

majorant function of ŵ0 given by theorem 3.2 and corollary 3.1, thus with

A = 4.22 and τ =
4.22

ρ
. Viewing the Grönwall-like lemma 3.9, one sees that

for every ζ ∈
•
R

(0)
ρ , |ŵe1(ζ)| ≤ ŵe1(|ζ|) where ŵe1 solves the convolution

equation:
1

Mρ,(0)
ŵe1 =

(
1

4
+ 1 ∗ ŵ0

)
∗ (δ + ŵe1). (6.5)

This means that ŵe1 has an analytic Laplace transform under the form1:

w̃e1(z) =
∑
n≥1

1

ρn

(
1

4z
+

1

z

A

z − τ

)n
, A = 4.22, τ =

4.22

ρ
.

When assuming |z| ≥ 5.81

ρ
, for instance, one gets

∣∣∣∣1ρ
(

1

4z
+

1

z

A

z − τ

)∣∣∣∣ ≤ 0.5

(since ρ < 1), thus |w̃e1(z)| ≤ 1. Therefore by lemma 3.5, for any 0 < ρ < 1,

for every ζ ∈
•
R

(0)
ρ , |ŵe1(ζ)| ≤ 5.81

ρ e
5.81
ρ |ξ|. One shows in the same way that

ŵe1 has at most exponential growth of order 1 at infinity on
•
R(1). ut

6.1.3 The k-th series

We now turn to the k-th series, that is the terms w̃kei = w̃
[0]
kei

of the
transseries, for k ≥ 2.

Lemma 6.4. For every integer k ≥ 2, the k-th series w̃kei ∈ z−2(k−1)C[[z−1]]

is 1-Gevrey, its minor ŵkei defines a holomorphic function on
•
R(0) with

1 We recall that B̃
(

A

z − τ

)
= Aeτξ.
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at most exponential growth of order 1 at infinity. Moreover, ŵkei can be
analytically continued to the Riemann surface R(1), with at most exponential
growth of order 1 at infinity on R(1).

Proof. Once again from the invariance of the equation (3.6) under the sym-
metry z 7→ −z, there is no loss of generality in studying only the k-th series
ŵke1 .

We know that ŵ0, ŵe1 are holomorphic on
•
R(0) and can be analytically con-

tinued to R(1). Moreover, for every 0 < ρ < 1,

for every ζ ∈
•
R(0)
ρ , |ŵ0(ζ)| ≤ ŵ0(ξ), |ŵe1(ζ)| ≤ ŵe1(ξ), ξ = |ζ|

and, for every 0 < ρ ≤ 1/5,

for every ζ ∈ R
(1)

ρ , |ŵ0(ζ)| ≤ ŵ0(ξ), |ŵe1(ζ)| ≤ ŵe1(ξ), ξ = leng(ζ),

where ŵ0 and ŵe1 are entire functions, real positive and non-decreasing on
R+, with at most exponential growth of order 1 at infinity.
We know from lemma 5.8 and (5.48) that, for every k ≥ 2,

w̃ke1(z) =
∑
l≥0

ake1,lz
−l ∈ z−2(k−1)C[[z−1]]

solves the differential equation

Dke1w̃ke1 =
∑

k1+k2=k
k1≥1, k2≥1

w̃k1e1w̃k2e1
2!

∂2F (z, w̃0)

∂w2
. (6.6)

We deduce that the formal Borel transform B̃(w̃ke1) = ake1,0δ+ŵke1 satisfies
the identity2:

Dke1ŵke1 =
∑

k1+k2=k
k1≥1, k2≥1

(ak1e1,0δ + ŵk1e1) ∗ (ak2e1,0δ + ŵk2e1)

2!
∗ ∂

2F̂ (ζ, ŵ0)

∂w2

(6.7)

where
∂2F̂ (ζ, ŵ0)

∂w2
= 2f̂2(ζ) = ζ, whereas

Dke1ŵke1 = Pke1(∂)ŵke1 + 1 ∗Qke1(∂)ŵke1 +

(
ζRke1 −

∂F̂ (ζ, ŵ0)

∂w

)
∗ ŵke1

(6.8)

with
∂F̂ (ζ, ŵ0)

∂w
given by (6.3).

These equations (6.7) can be seen as linear differential equations with a reg-
ular point at 0. They are all of the type

p(ζ)ŵ(ζ) + 1 ∗ [q(ζ)ŵ](ζ) = ζ ∗ [r(ζ)ŵ](ζ) +

N∑
n=0

f̂n ∗ ŵ∗n(ζ) (6.9)

2 Remember that ake1,0 = 0 as a rule, apart from the case k = 1 where ae1,0 = 1.
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that has been investigated in Sect. 3.4 and Sect. 4.4. We will use the meth-
ods introduced there and make a proof by induction on k, considering the
operators Nk defined as follows:

Nkv̂ =
1

P(k,0)(−ζ)

[
−1 ∗

[
Q(k,0)(−ζ)v̂

]
+

(
−ζR(k,0) +

∂F̂ (ζ, ŵ0)

∂w

)
∗ v̂

+
∑

k1+k2=K
k1≥1, k2≥1

(ak1e1,0δ + ŵk1e1) ∗ (ak2e1,0δ + ŵk2e1)

2!
∗ ∂

2F̂ (ζ, ŵ0)

∂w2

 .
Case 6.1. Case k = 2

• For R > 0 and 0 < ρ < 1, we consider the star-shaped domain

UR = D(0, R) ∩
•
R

(0)
ρ and we defines Br = {v̂ ∈ O(UR), ‖v̂‖ν ≤ r} for

r > 0 and ν > 0. We look at the mapping N2 : v̂ ∈ Br 7→ N2v̂. We

know that ŵ(1,0) ∈ O(
•
R(0)) while

∂F̂ (ζ, ŵ0)

∂w
and

∂2F̂ (ζ, ŵ0)

∂w2
belong to

MO(
•
R

(0)
ρ ). Using lemma 6.1 and arguments already used in Sect. 3.4.3,

one easily shows that N2 is a contractive map. Thus the equation (6.7)
for k = 1 has a unique solution in Br. This shows, by unicity, that ŵ2e1

defines a holomorphic function on
•
R(0).

When replacing UR by the open set of L-points U = Uρ,L ⊂ R(1) and ar-
guing like in Sect. 4.4.2, one shows that ŵ2e1 can be analytically continued
to the Riemann surface R(1).

• To get upper bounds, we notice that, for every ζ ∈
•
R

(0)
ρ ,∣∣∣∣∣∂F̂ (ζ, ŵ0)

∂w

∣∣∣∣∣ ≤
∣∣∣∣∣∂F̂∂w

∣∣∣∣∣ (ξ, ŵ0) and

∣∣∣∣∣∂2F̂ (ζ, ŵ0)

∂w2

∣∣∣∣∣ ≤
∣∣∣∣∣∂2F̂

∂w2

∣∣∣∣∣ (ξ, ŵ0)

with ξ = |ζ|,

∣∣∣∣∣∂F̂∂w
∣∣∣∣∣ (ξ, ŵ0) = |f̂1|(ξ) + 2|f̂2| ∗ ŵ0(ξ) = 4ξ + ξ ∗ ŵ0(ξ) and∣∣∣∣∣∂2F̂

∂w2

∣∣∣∣∣ (ξ, ŵ0) = 2|f2|(ξ) = ξ. Using lemma 6.2 and the Grönwall lemma

3.9, we sees that for every ζ ∈
•
R

(0)
ρ , |ŵ2e1(ζ)| ≤ ŵ2e1(ξ) with ξ = |ζ|, where

ŵ2e1 is the entire function, real positive on R+, with at most exponential
growth of order 1 at infinity, satisfying the linear equation:

1

Mρ,(0)
ŵ2e1 =

(
3 +

9

4
Mρ,(0)ξ +

∣∣∣∣∣∂F̂∂w
∣∣∣∣∣ (ξ, ŵ0)

)
∗ŵ2e1+

(δ + ŵe1)∗2

2!
∗

∣∣∣∣∣∂2F̂

∂w2

∣∣∣∣∣ (ξ, ŵ0)

(6.10)
When working on R(1), one rather argues with the Grönwall lemma 4.8

and one obtains that for every ζ ∈ R
(1)
ρ |ŵ2e1(ζ)| ≤ ŵ2e1(ξ) now with

ξ = leng(ζ), where ŵ2e1 is the entire function, real positive and non-
decreasing on R+, with at most exponential growth of order 1 at infinity,
satisfying the linear equation:
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1

Mρ,(1)
ŵ2e1 =

(
3 +

9

4
Mρ,(1)ξ +

∣∣∣∣∣∂F̂∂w
∣∣∣∣∣ (ξ, ŵ0)

)
∗ŵ2e1+

(δ + ŵe1)∗2

2!
∗

∣∣∣∣∣∂2F̂

∂w2

∣∣∣∣∣ (ξ, ŵ0).

(6.11)

Case 6.2. Induction We assume that for every integer k such that 0 ≤ k < K

with K ≥ 3, ŵke1 is holomorphic on
•
R

(0)
ρ , can be analytically continued to

R(1) and

for every ζ ∈
•
R(0)
ρ , |ŵke1(ζ)| ≤ ŵke1(ξ), ξ = |ζ|,

for every ζ ∈ R
(1)

ρ , |ŵke1(ζ)| ≤ ŵke1(ξ), ξ = leng(ζ),

where, in each case, ŵke1 is an entire function, real positive and non-
decreasing on R+, with at most exponential growth of order 1 at infinity.

• One easily shows that the mapping NK : v̂ ∈ Br 7→ NK v̂ is a contractive,
either working in O(UR), ‖v̂‖ν or in O(Uρ,L), ‖v̂‖ν . Thus, by unicity, ŵKe1

is holomorphic on
•
R(0) and can by analytically continued to R(1).

• We get upper bounds, either in
•
R

(0)
ρ with the Grönwall lemma 3.9, or

in R
(1)
ρ with the Grönwall lemma 4.8. We get that for every ζ ∈

•
R

(0)
ρ

|ŵKe1(ζ)| ≤ ŵKe1(ξ) with ξ = |ζ|, where ŵKe1 is the entire function, real
positive on R+, with at most exponential growth of order 1 at infinity,
satisfying the linear equation:

1

Mρ,(0)
ŵKe1 =

(
3 +

9

4
Mρ,(0)ξ +

∣∣∣∣∣∂F̂∂w
∣∣∣∣∣ (ξ, ŵ0)

)
∗ ŵKe1 (6.12)

+
∑

k1+k2=K
k1≥1, k2≥1

(ak1e1,0δ + ŵk1e1) ∗ (ak2e1,0δ + ŵk2e1)

2!
∗

∣∣∣∣∣∂2F̂

∂w2

∣∣∣∣∣ (ξ, ŵ0).

Also, for every ζ ∈ R
(1)

ρ , |ŵKe1(ζ)| ≤ ŵKe1(ξ) where ξ = leng(ζ), with
ŵKe1 an entire function, real positive and nondecreasing on R+, with at
most exponential growth of order 1 at infinity, satisfying the linear equa-
tion:

1

Mρ,(1)
ŵKe1 =

(
3 +

9

4
Mρ,(1)ξ +

∣∣∣∣∣∂F̂∂w
∣∣∣∣∣ (ξ, ŵ0)

)
∗ ŵKe1

+
∑

k1+k2=K
k1≥1, k2≥1

(ak1e1,0δ + ŵk1e1) ∗ (ak2e1,0δ + ŵk2e1)

2!
∗

∣∣∣∣∣∂2F̂

∂w2

∣∣∣∣∣ (ξ, ŵ0).

This ends the proof of lemma 6.4. ut

6.1.4 The other k-th series

Looking at (5.53), one easily see that the above methods can be applied to

study the minor ŵ1 = ŵ
[0]
1 of the (1, 1)-series w̃1. Thus, theorem 6.1 is shown

for k = 0 any k ∈ Ξn+1,0 \Ξn,0 and with n = 1. The rest of the proof is
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made by induction on n, using the hierarchy of equations given in corollary
5.1 and the reasoning made above. This part holds no surprise and is left to
the reader. This ends the proof of theorem 6.1.

6.2 Summability of the transseries for Painlevé I

We now restrict ourself to the transseries solution of Painlevé I, having in view
of analysing their 1-summability. From the invariance of the equation (3.6)
under the symmetry z 7→ −z, it is enough to focus only on the transseries
(5.41) associated with the multiplier λ1 = 1, namely:

w̃(z, Ue1) =

∞∑
k=0

V kw̃ke1(z), V k = Uke−λ1kzz−τ1k. (6.13)

6.2.1 A useful complement

We can complete lemma 6.4 with the following result.

Lemma 6.5. In lemma 6.4, for every 0 < ρ < 1, there exist A = A(ρ) > 0
and τ = τ(ρ) > 0 such that the following properties are satisfied for every
integer k ≥ 2:

• for every ζ ∈
•
R

(0)
ρ , |ŵke1(ζ)| ≤ ŵke1(ξ), ξ = |ζ|, where ŵke1 is an entire

function, real positive on R+, and ŵke1(ξ) = O(ξ2k−3);

• for every ξ ∈ C, for every ξ ∈ C, |ŵke1(ξ)| ≤
(

3
√
ρ

2

)k
Aeτ |ξ|, and for

every positive integer 1 ≤ m ≤ 2k − 3,

|ŵke1(ξ)| ≤
(

3
√
ρ

2

)k
Am+1

(
ζm−1

(m− 1)!
∗ eτζ

)
(|ξ|).

Moreover one can take A = τ =
27

4ρ
in the above upper bounds.

Proof. We know by theorem 3.2, lemma 6.3 and lemma 6.4 that, for every

integer k ∈ N, ŵke1 is holomorphic on
•
R(0). Also, for every 0 < ρ < 1,

for every ζ ∈
•
R(0)
ρ , |ŵke1(ζ)| ≤ ŵke1(ξ), ξ = |ζ|

where ŵ0(ξ) = A0eτ0ξ and ŵe1(ξ) = Ae1eτe1ξ are convenient majorant func-
tions while, for any integer k ≥ 2, ŵke1 solves the convolution equation (6.12).
One first shows that for any integer k ≥ 2, ŵke1(ξ) = O(ξ2k−3) and we reason

by induction. Indeed, for k = 2 and using the fact that
∣∣∣∂2F̂
∂w2

∣∣∣ (ξ, ŵ0) = O(ξ),

one sees that (δ + ŵe1)∗2 ∗

∣∣∣∣∣∂2F̂

∂w2

∣∣∣∣∣ (ξ, ŵ0) = O(ξ), thus ŵ2e1(ζ) = O(ζ).

Now by an induction hypothesis, for any k1, k2 ≥ 1 and k1 + k2 = k ≥ 3,
(ak1e1,0δ + ŵk1e1) ∗ (ak2e1,0δ + ŵk2e1) = O(ξ2k−5) (we recall that ake1,0 = 0
apart from ae1,0 = 1), thus ŵke1(ζ) = O(ξ2k−3) by (6.12).
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We now introduce the generating function ŵ(ξ, V ) =

∞∑
k=2

V kŵke1(ξ). One

deduces from (6.12) that ŵ satisfies the condition:

1

Mρ,(0)
ŵ =

(
3 +

9

4
Mρ,(0)ξ +

∣∣∣∣∣∂F̂∂w
∣∣∣∣∣ (ξ, ŵ0)

)
∗ ŵ

+

∞∑
k=2

V k
∑

k1+k2=k
k1≥1, k2≥1

(ak1e1,0δ + ŵk1e1) ∗ (ak2e1,0δ + ŵk2e1)

2!
∗

∣∣∣∣∣∂2F̂

∂w2

∣∣∣∣∣ (ξ, ŵ0).

This can be written also as follows (recall: ake1,0 = 0 apart from ae1,0 = 1):

1

Mρ,(0)
ŵ =(

3 +
9

4
Mρ,(0)ξ +

∣∣∣∣∣∂F̂∂w
∣∣∣∣∣ (ξ, ŵ0)

)
∗ ŵ +

(
V
(
δ + ŵe1

)
+ ŵ

)∗2
2!

∗

∣∣∣∣∣∂2F̂

∂w2

∣∣∣∣∣ (ξ, ŵ0).

Explicitly, one can take Mρ,(0) =
1

ρ
(by lemma 6.1), ŵ0(ξ) = 4.22e

4.22
ρ ξ

(by theorem 3.2), ŵe1(ξ) =
5.81

ρ
e

5.81
ρ ξ (by lemma 6.3), and we recall that∣∣∣∣∣∂F̂∂w

∣∣∣∣∣ (ξ, ŵ0) = 4ξ + ξ ∗ ŵ0(ξ) and

∣∣∣∣∣∂2F̂

∂w2

∣∣∣∣∣ (ξ, ŵ0) = ξ. Therefore, ŵ solves the

convolution equation:

ρŵ =

(
3 +

(
4 +

9

4ρ

)
ξ + 4.22ξ ∗ e

4.22
ρ ξ

)
∗ ŵ +

ξ

2!
∗
(
V
(
δ +

4.63

ρ
e

4.63
ρ ξ
)

+ ŵ

)∗2
.

The generating function ŵ(ξ, V ) is the Borel transform of w̃(ζ, V ), solution
of the algebraic equation

ρw̃ =

(
3

z
+

(
4 +

9

4ρ

)
1

z2
+

4.22

z2

1

z − 4.22
ρ

)
w̃

+
1

2z2

[
V

(
1 +

5.81

ρ

1

z − 5.81
ρ

)
+ w̃

]2

(6.14)
with

w̃(z, V ) ' 1

2ρ

[
V

z

(
1 +

5.81

ρ

1

z − 5.81
ρ

)]2

when V → 0 with |z| large enough.

We view (6.14) as a fixed point problem, w = N (w). We set
U = D(∞, 4ρ

27 )×D(0, 2
3
√
ρ ). We equip the space O(U) with the maximum

norm and we consider the closed ball B1 = {w ∈ O(U), ‖w‖ ≤ 1} of the Ba-
nach algebra

(
O(U), ‖ ‖

)
. One easily shows that N : B1 → B1 is a contractive

map (remember that ρ < 1), hence the fixed-point problem w = N (w) has a
unique solution w̃ = w̃(z, V ) in B1. Its Taylor expansion with respect to V at 0

reads w̃(z, V ) =

∞∑
k=2

V kw̃ke1(z), where (w̃ke1)k≥2 is a sequence of holomorphic
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functions on the disc D(∞, 4ρ
27 ) and, by the Cauchy inequalities, for every inte-

ger k ≥ 2, sup
|z|> 27

4ρ

|w̃ke1(z)| ≤
(

3
√
ρ

2

)k
. Moreover, since ŵke1(ξ) = O(ξ2k−3),

w̃ke1(z) = O(z−2(k−1)). We end the proof with lemma 3.5: w̃ke1 is an en-

tire function, for every ξ ∈ C, |w̃ke1(ξ)| ≤
(

3
√
ρ

2

)k
27

4ρ
e

27
4ρ |ξ| and for every

positive integer 1 ≤ m ≤ 2k − 3,

|w̃ke1(ξ)| ≤
(

3
√
ρ

2

)k (
27

4ρ

)m+1(
ζm−1

(m− 1)!
∗ e

27
4ρ ζ

)
(|ξ|).

This ends the proof. ut

6.2.2 Summability of the transseries

We start with a definition.

Definition 6.2. One says that the transseries w̃(z, V ) =

∞∑
k=0

V kw̃k(z) is

Borel-Laplace summable in a direction θ ∈ S1

•
if each w̃k is Borel-Laplace

summable in that direction and if the series of function

∞∑
k=0

V kS θw̃k(z) con-

verges on a domain in the usual sense (uniform convergence on every compact
subset of that domain). In that case, one denotes by S θw̃(z, V ) the Borel-
Laplace sum of the transseries.

We have of course in mind to consider the Borel-Laplace sums of the
transseries

w̃(z, Ue1) =

∞∑
k=0

(Ue−zz3/2)kw̃ke1(z) and w̃(z, Ue2) =

∞∑
k=0

(Uezz3/2)kw̃ke2(z)

given by proposition 5.2. Notice that the mapping z 7→ e±zz3/2 is well-defined
on C

•
and we remind the reader that the domain Πθ

τ of C
•

has been defined

in definition 3.11.

Definition 6.3. Let g : C
•
→ C and κ : R → R+? be two continuous func-

tions, and θ ∈ S1

•
, τ ∈ R. We define

fθ(g, τ, κ) =
⋃
c>τ

{z ∈ Πθ
c , |g(z)| < κ(c)}.

Let I ⊂ S1

•
be an arc, γ : I → R locally bounded and K : I → C0(R,R+?) a

continuous function. We note

V (I, g, γ,K) =
⋃
θ∈I

fθ
(
g, γ(θ),K(θ)

)
⊂ C
•
.

Theorem 6.2. The transseries
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w̃(z, Uei) =

∞∑
k=0

(
Vi(U)

)k
(z)w̃kei(z),

(
Vi(U)

)
(z) = Ue−λizz−τi , i = 1, 2,

(6.15)
of the prepared equation (3.6) associated with the first Painlevé equation,
are Borel-Laplace summable in any direction θ ∈ R \ πZ and any U ∈ C,
and their Borel-Laplace sum are holomorphic solutions of (3.6). More pre-
cisely, for any R > 0, for any open arc Ij =]jπ, (j + 1)π[, j ∈ Z,
wtru,j,i(z, U) = S Ij w̃(z, Uei) defines a holomorphic function with respect
to (z, U), on a domain of the form V (Ij , Vi(R), τ,K) × D(0, R). Moreover

one can choose τ(θ) =
27

4| sin(θ)|
and K(θ) : c ∈ R 7→ 2c2

3τ(θ)2
√

sin(θ)
.

Proof. The theorem is a consequence of theorem 3.2, lemma 6.3, lemma 6.4
and lemma 6.5. Let us precise the reasoning for i = 1 and the arc I0 =]0, π[.

We know from lemmas 6.4 and 6.5 (applied with m = 2k− 3) that for any

δ ∈]0,
π

2
[ and any integer k ≥ 2, for every ζ ∈ s∞0 (]δ, π−δ[) (cf. definition 7.1),

|ŵke1(ζ)| ≤

(
3
√

sin(δ)

2

)k
A2k−2
δ

(
ξ2k−4

(2k − 4)!
∗ eτδξ

)
(ξ), ξ = |ζ|, (6.16)

with Aδ = τδ =
27

4 sin(δ)
. We now fix a direction θ ∈ I0 and, for k ≥ 2, we

consider the Borel-Laplace sum

S θ w̃ke1(z) =

∫ ∞eiθ

0

e−zζŵke1(ζ) dζ =

∫ +∞

0

e−zξe
iθ

ŵke1(ξeiθ) eiθdξ.

For any c > τθ and any z ∈ Πθ

c , |e−zξe
iθ | ≤ e−cξ, for ξ ≥ 0. Therefore, for

z ∈ Πθ

c and ξ ≥ 0,

∣∣∣e−zξeiθ ŵke1(ξeiθ) eiθ
∣∣∣ ≤ (3

√
sin(θ)

2

)k
A2k−2
θ e−cξ

(
ξ2k−4

(2k − 4)!
∗ eτθξ

)
(ξ).

We deduce that S θ w̃ke1 is holomorphic on Πθ
c and, for every z ∈ Πθ

c ,

|S θ w̃ke1(z)| ≤

(
3
√

sin(θ)

2

)k (
Aθ
c

)2k−2
c

c− τθ
.

We turn to the series of function
∑
k≥2

(
Ue−zz3/2

)k
S θ w̃ke1(z). From what

precedes, for any R > 0, for any c′ > c > τθ, for every (z, U) ∈ Πθ
c′×D(0, R),

the series is normally convergent when |Re−zz3/2| ≤ 2c2

3A2
θ

√
sin(θ)

. We end

with theorem 3.2 and lemma 6.3: for any direction θ ∈ I0, for any c > τθ, the

series of function
∑
k≥0

(
Ue−zz3/2

)k
S θ w̃ke1(z) defines a holomorphic func-

tion on the domain fθ ×D(0, R) with
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Fig. 6.1 The (shaded)

domain V (I0, V1(0.5), τ,K)
on projection, for

τ(θ) =
27

4| sin(θ)|
,(

K(θ)
)
(c) =

2c2

3τ(θ)2
√

sin(θ)

and V1(U)(z) = Ue−zz3/2.

fθ =
⋃
c>τθ

{z ∈ Πθ
c , |Re−zz3/2| < 2c2

3A2
θ

√
sin(θ)

}.

Making θ varying on I0, these functions glue together to provide a holomor-
phic function S I0w̃(z, Ue1) on the domain V (I0, V1(R), τ,K)×D(0, R) with

τ(θ) =
27

4| sin(θ)|
and K(θ) : c ∈ R 7→ 2c2

3τ(θ)2
√

sin(θ)
(since Aθ = τθ), see

Fig. 6.1. ut

Remark 6.1. The theorem 6.2 can be shown by other means, see the comments
in Sect. 6.5.

6.2.3 Remarks

1. We know by proposition 5.2 that w̃ke2(z) = w̃ke1(−z) for every k ≥ 0.
One deduces that for any j ∈ Z, for any θ ∈ Ij , for every z ∈ Ππ−θ

τ(π−θ),

zeiπ ∈ Π−θτ(−θ) and S π−θ w̃ke2(z) = S −θ w̃ke1(zeiπ). Therefore, for any

θ ∈ Ij , for every z ∈ Ππ−θ
τ(π−θ),

S π−θw̃(z, Ue2) = S −θw̃(zeiπ, Ueiπ/2e1)

and, as a consequence, for any j ∈ Z,

for every z ∈ V (Ij , V2(U), τ,K), wtru,j,2(z, U) = wtru,j−1,1(zeiπ, Ueiπ/2)

for every z ∈ V (Ij , V1(U), τ,K), wtru,j,1(z, U) = wtru,j−1,2(zeiπ, Ueiπ/2)

(6.17)

2. Here we adopt the convention : for z = reiα ∈ C
•

, we note z = r−iα ∈ C
•

.

We know by proposition 5.2 that w̃kei(z) ∈ R[[z−1]] for any k ∈ N, i = 1, 2.
Thus, for any j ∈ Z and any θ ∈ Ij , for z ∈ Πθ

τ(θ),

S θ w̃kei(z) = S −θ w̃kei(z).
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Therefore, for any j ∈ Z, for every z ∈ V (Ij , Vi(U), τ,K),

wtru,j,i(z, U) = wtru,(−j−1),i(z, U)

and with (6.17) we deduce that, for every z ∈ V (Ij , V1(U), τ,K) and
z ∈ V (Ij , V2(U), τ,K) respectively,

wtru,j,1(z, U) = wtru,j,2
(
ze−(2j+1)iπ, Ue−(j+1/2)iπ

)
(6.18)

wtru,j,2(z, U) = wtru,j,1
(
ze−(2j+1)iπ, Ue−(j+1/2)iπ

)
.

6.2.4 Considerations on the domain

Viewing (6.17) and (6.18), it will be enough for our purpose to consider the
domain V (I0, V1, τ,K) with I0 =]0, π[,

(
V1(U)

)
(z) = Ue−zz3/2 with |U | > 0,

τ(θ) =
27

4| sin(θ)|
,
(
K(θ)

)
(c) =

2c2

3τ(θ)2
√

sin(θ)
. We would like to describe the

boundary of this domain. As a matter of fact, we will restrict ourself to
describing its subdomain fθ

(
V1(U), τ(θ),K(θ)

)
with θ = π/2. Considered

by projection on C, this domain reads: z = x + iy, (x, y) ∈ R2, belongs to
fπ

2

(
V1, τ(π2 ),K(π2 )

)
if and only if there exists λ > 1 so that

y < −27

4
λ

|U |e−x(x2 + y2)3/4 <
2

3
λ2.

(We take c = 27
4 λ > τ(π/2)). We now fix y = − 27

4 λ with λ > 1 and we
remark that z = x+ iy belongs to fπ

2

(
V1(U), τ(π2 ),K(π2 )

)
iff x > X with X

such that

|U |e−X(X2 + y2)3/4 =
2

3

(
4

27
y

)2

. (6.19)

Indeed, just see that the real mapping x 7→ e−x(x2 + y2)p is decreas-
ing when |y| ≥ p, and use an argument of continuity. With the implicit
function theorem, these arguments show the existence of a unique solution
X : y ∈]−∞,− 3

4 [7→ X(y) of (6.19), of class C∞ and increasing with y, which
can be described as follows. The above equality is equivalent to writing(

1 +
X2

y2

)3

= αy2e4X , α =

(
32

2187|U |

)4

. (6.20)

and we can remark that X(−α−1/2) = 0 if −α−1/2 < − 3
4 . When assuming

y2 � X2, we get X = − ln(αy2)

4
+ ε, ε = o(1) as a first approximation.

Plugging this in (6.20), one gets

X = − ln(αy2)

4
+ 3

ln2(αy2)

42y2
+ o(y−2)
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and one can keep on this way to get an asymptotic expansion at any order
of the solution3. To put it in a nutshell:

Corollary 6.1. In theorem 6.2, the sum wtru,0,1(z, U) = S I0w̃(z, Ue1)
defines, for any U ∈ C?, a holomorphic function with respect to z on
a domain which contains, by projection on C, a subdomain of the form{
z = x+ iy, y < −27

4
, x > X(y)

}
where X is an increasing C∞ function

on ]−∞,− 3
4 [, whose asymptotics when y → −∞ is given by:

X(y) = − ln(αy2)

4
+ 3

ln2(αy2)

42y2
+ o(y−2), α =

(
32

2187|U |

)4

(6.21)

and so that X(−α−1/2) = 0 if −α−1/2 < − 3
4 .

6.3 Summability of the formal integral

We saw with corollary 5.2 that the formal integral can be interpreted as a
formal transformation w = Φ̃(z,u),

Φ̃(z,u) =
∑
k∈N2

ukw̃
[0]
k (z), (6.22)

that formally transforms the prepared ODE (3.6) into the normal form equa-
tion (5.66). It is then natural to wonder whether this formal transformation
gives rise to an analytic transformations Φθ(z,u) by Borel-Laplace summa-
tion,

Φθ(z,u) = S θΦ̃(z,u) =
∑
k∈N2

ukS θw̃
[0]
k (z),

with a definition of the sum similar to that of definition 6.2. One could give
a positive answer to this question, for the price of some further effort.

One has to extend lemma 6.5 to the whole k-th series w̃
[0]
k . It is worth for this

matter to complete the Banach spaces detailed by proposition 3.7 by other “focusing

algebras” for which we refer to [6], in particular those based on L1
ν -norms.

This does not mean that the formal integral is Borel-Laplace summable,
which this is wrong, due to the effect of the exponentials. Only the restrictions
of the formal integral to convenient submanifolds is 1-summable, which means
here just considering one of the two the transseries. However, the sums of the
two transseries share no common domain of convergence and thus, the formal
integral cannot be summed by Borel-Laplace summation.

We do not pursue toward this direction and we conclude this chapter with
the truncated solutions.

3 One can also describe the solution in term of the Lambert function, the compositional
inverse of the function xex.
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6.4 Truncated solutions for the first Painlevé equation

We have demonstrated with theorem 6.2 that, for any j ∈ Z and i = 1, 2, the
sum wtru,j,i(z, U) = S Ij w̃(z, Uei) is a holomorphic solution of (3.6), for z
on a domain of the form V (Ij , Vi(U), τ,K) with Ij =]jπ, (j + 1)π[. From its
very definition and from corollary 6.1, the domain V (Ij , Vi(U), τ,K) contains

a sectorial neighbourhood of ∞ with aperture Ĭij where (see Fig. 6.1):

• when i = 1, Ĭ1
j =]− 1

2
π,+

1

2
π[−jπ for j even, Ĭ1

j =]− 3

2
π,−1

2
π[−jπ for j

odd;

• when i = 2, Ĭ2
j =]− 1

2
π,+

1

2
π[−jπ for j odd, Ĭ2

j =]− 3

2
π,−1

2
π[−jπ for j

even.

To go back to the the first Painlevé equation (2.1), we use the transformation
T of definition 3.12.

Definition 6.4. The conformal mapping T sends the domain V (I, g, γ,K)
onto the domain T

(
V (I, g, γ,K)

)
and we set

S(I, g, γ,K) = T
(
V (I, g, γ,K)

)
,

•
S (I, g, γ,K) = π

(
S(I, g, γ,K)

)
.

(6.23)

The domain S(Ij , Vi(U), τ,K) contains a sectorial neighbourhood of ∞ with
aperture Ki

j (see Fig. 6.2):

• when i = 1, K1
j =]− 7

5
π,−3

5
π[−4

5
jπ for j even, K1

j =]− 11

5
π,−7

5
π[−4

5
jπ

for j odd;

• when i = 2, K2
j =]− 7

5
π,−3

5
π[−4

5
jπ for j odd, K2

j =]− 11

5
π,−7

5
π[−4

5
jπ

for j even.

In any case, the domains S(Ij , Vi(U), τ,K) are in connection: for every j ∈ Z,

S(Ij+1, V2(U), τ,K) = e−4iπ/5S(Ij , V1(U), τ,K).

From (3.4), (2.6), (2.7), the transformation z ∈ V (Ij , Vi(U), τ,K)↔ x ∈ S(Ij , Vi(U), τ,K),

wtru,j,i(z, U)↔ utru,j,i(x, U) =
ei
π
2 x

1
2

√
6

(
1− 4

25
(
T −1(x)

)2 +
wtri,j,i

(
T −1(x), U

)(
T −1(x)

)2
)
.

provides the solutions utru,j,i(x, U) for the first Painlevé equation. These are
the truncated solutions.
The property (6.17) translates into the following relationships between trun-
cated solutions: for any j ∈ Z, for every x ∈ S(Ij , V1(U), τ,K), respectively
x ∈ S(Ij , V2(U), τ,K),

utru,j,1(x, U) = e2iπ/5utru,j+1,2(xe−4iπ/5, Ue−iπ/2) (6.24)

utru,j,2(x, U) = e2iπ/5utru,j+1,1(xe−4iπ/5, Ue−iπ/2)

These are the symmetries discussed in Sect. 2.5. In the same way from (6.18),
for any j ∈ Z, for every x ∈ S(Ij , V1(U), τ,K), respectively x ∈ S(Ij , V2(U), τ,K),
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Fig. 6.2 The (shaded) do-

main
•
S (I0, V1(U), τ,K)

for τ(θ) =
27

4| sin(θ)|
,(

K(θ)
)
(c) =

2c2

3τ(θ)2
√

sin(θ)
and

V1(U)(z) = Ue−zz3/2.

utru,j,1(x, U) = e
2
5 (2j+1)iπutru,j,2(xe−

2
5 (4j+7)iπ, Ue−(j+1/2)iπ), (6.25)

utru,j,2(x, U) = e
2
5 (2j+1)iπutru,j,1(xe−

2
5 (4j+7)iπ, Ue−(j+1/2)iπ).

6.5 Comments

We mentionned in Sect. 5.5 the existence of formal transforms of the type v =
T̃ (z,u), T̃ (z,u) =

∑
k∈Nn ukṽk(z), ṽk(z) ∈ Cn[[z−1]] that brings differential

and difference systems to their linear normal form, under some convenient
hypotheses. For differential equations of type (5.67), the series ṽk are in
general not 1-summable but multisummable [10]. The first results in that
direction, concerning the multisummability of the formal series solutions,
were obtained by Braaksma [1] then by Ramis & Sibuya [11]. A resurgent
approach for 1-level differential equations were undertaken by Costin [4],
with the proof of the 1-summability of the formal integral on restriction to
convenient submanifolds. These results were then generalized to differential
and difference equations, see e.g. [2, 9, 7, 5] and references therein, at least for
the cases where no resonance occurs. The question of the (multi)summability
of the above formal transforms may be delicate, even for 1-level differential
systems or ODEs, when quasi-resonance occur, giving rise to small divisors.

If λ = (λ1, · · · , λn) stands for the multipliers and in absence of resonance, it may

happen that λ.k comes close to one multiplier, for some k ∈ Nn. Thus, the con-
struction of the formal integral gives rise to division by small factors. One has

“quasi-resonance” when there exists an increasing sequence (kj ∈ Nn) such that
limj→∞ λ.kj = 0 fast enough, a condition that translates into diophantine relations
on the sequence.

More details on this subject can be found in [8].
We finally mention a general upshot, that of the formation of singularities

near the anti-Stokes rays. Considering the Borel-Laplace sum of a transseries
stemming from (resurgent) 1-level differential or difference equations, it is
possible, as shown in [7] (see also [6]) to analyze its behavior on the boundary
of its domain of convergence, by a suitable use of a multi-scale analysis. This
is detailed in [5] for the first Painlevé equation.
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Chapter 7

Supplements to resurgence theory

Abstract This chapter is devoted to some general nonsense in resurgence
theory that will be useful to study furthermore the first Painlevé equation
from the viewpoint of the resurgent analysis. We define sectorial germs of
analytic functions (Sect. 7.2) and we introduce the sheaf of microfunctions
(Sect. 7.3). This provides an approach to the notion of singularities : this
is the purpose of Sect. 7.4. We define the formal Laplace transform for mi-
crofunctions and for singularities and, conversely, the inverse formal Borel
transform acting on asymptotic classes (Sect. 7.5). We make some links with
the Borel-Ritt theorem. The main properties of the Laplace transform that
we need in this course are developed in Sect. 7.6. We finally introduce some
spaces of resurgent functions and define the alien operators (Sect. 7.7, 7.8
and 7.9).

7.1 Introduction

At its very root, one can rely the Borel-Laplace summation scheme to the
simple formula

1

zn
= Lθ

(
ζn−1

Γ (n)

)
=

∫ ∞eiθ

0

e−zζ
ζn−1

Γ (n)
dζ, n ∈ N?, z ∈

•
Π
θ
0.

Consider a holomorphic function ϕ̂ ∈ O(D(0, R)) with Taylor expansion∑
n≥1

an
ζn−1

Γ (n)
at the origin. We take an open arc I =]−α+θ, θ+α[, 0 < α ≤ π/2,

bisected by the direction θ, and we note I? =]−α− θ,−θ+α[⊆ θ̆. For some

r ≥ 0, we set
•
s∞ =

•
s∞r (I?). For any cut-off κ ∈]0, R[, the truncated Laplace

integral ϕκ(z) =

∫ κeiθ

0

e−zζϕ̂(ζ)dζ provides an element of A1(
•
s∞) whose

1-Gevrey asymptotics T
1,
•
s∞
ϕκ(z) (see [14]) is given by the 1-Gevrey series∑

n≥1

an
zn
∈ C[[z−1]]1 : this is essentially the Borel-Ritt theorem for 1-Gevrey

asymptotics. For two cut-off points κ1, κ2 ∈]0, R[, the difference ϕκ1
−ϕκ2

be-

longs to A≤−1
(
•
s∞), the differential ideal of A1(

•
s∞) made of 1-exponentially

flat functions on
•
s∞.

135
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One gets this way a morphism L̃(I) : ϕ̂ ∈ O0 7→ cl(ϕκ) ∈ A1(I?)/A≤−1(I?),
where here O0 stands for the constant sheaf (of convolution algebras) over
S1. By (obvious) compatibility with the restriction maps, one obtains1 a
morphism of sheaves of differential algebras, L̃ : O0 → A1/A≤−1, where the
quotient sheaf A1/A≤−1 over S1 is known to be isomorphic to the constant
sheaf C[[z−1]]1 (Borel-Ritt theorem 3.3, see [14, 17]). The formal Laplace
transfom L̃ is an isomorphism, the inverse morphism being the formal Borel
transform B̃ : C[[z−1]]1 → O0 (seen as a morphism of sheaves).

One can extend the theory by considering the properties of Laplace inte-
grals defined along Hankel contours. For instance, standard formulae provide

Γ (σ) =
1

1− e−2iπσ

∫
γ[−2π,0],ε

e−ζζσ−1dζ, σ ∈ C \ N, (7.1)

where the integration contour γ[−2π,0],ε is the (endless) Hankel contour drawn

on Fig. 7.1, while ζσ−1 = e(σ−1) log ζ and log ζ is the branch of the logarithm
so that arg(log ζ) ∈] − 2π, 0[. Performing a change of variable, one gets the
identity

1

zσ
= L0

∨
Iσ (z) =

∫
γ[−2π,0],ε

e−zζ
∨
Iσ (ζ)dζ, z ∈

•
Π

0
0, (7.2)

with zσ = eσ log z where this time log z is the branch of the logarithm so that
arg(log z) ∈]− π, π[, while

∨
Iσ (ζ) =


ζσ−1 log(ζ)

2iπΓ (σ)
for σ − 1 ∈ N

ζσ−1

(1− e−2iπσ)Γ (σ)
for σ − 1 ∈ C \ N.

The definition of
∨
Iσ that we give for σ − 1 ∈ C \N is well-defined when −σ /∈ N. It

can be analytically continued to the case −σ ∈ N by the reflection formula.

This example provides another one that will be used later on : for any

m ∈ N, any σ ∈ C \ N?, for z ∈
•
Π0

0, (−1)mz−σ(log z)m = L0
∨
Jσ,m,

∨
Jσ,m=

(
∂

∂σ

)m ∨
Iσ with the above convention for the log z. Remark how-

ever that L0
∨
Iσ= L0

( ∨
Iσ +hol

)
when hol is any holomorphic function on a

half-strip containing the origin, with at most exponential growth of order 1
at infinity. This justifies the introduction of the spaces of microfunctions and
singularities that we do in the next sections.

This chapter can be seen as a sequel of the resurgence theory developed
in [24]. For most of the materials presented here, we mainly refer to [7, 9, 10,
1, 24] for this chapter, see also [4, 23, 20].

Fig. 7.1 The Hankel con-

tour γ[θ−2π,θ],ε for θ = 0.

γ
[θ−2π,θ],ε

0

1 Modulo the quite innocent complex conjugation I → I?.
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7.2 Sectorial germs

7.2.1 Sectors

We remind that

C
•

= {ζ = reiθ | r > 0, θ ∈ R}, π : ξ ∈ C
•
7→
•
ζ= reiθ ∈ C?

is the Riemann surface of the logarithm (definition 3.10). We complete defi-
nition 3.7 by defining sectors on C

•
.

Definition 7.1. For an open arc I of S1

•
and 0 ≤ r < R ≤ ∞, sRr (I) denotes

the simply connected domain of C
•

of the form sRr (I) = {ζ = ξeiθ | θ ∈ I, ξ ∈]r,R[}.

We simply write s0(I) –resp. s∞(I)– for a domain of type sR0 (I) –resp. s∞r (I)–
for some 0 ≤ r < R ≤ ∞. We even write s0 and s∞ for such domains, when
there is no need to indicate the arc I.
For 0 < r < R < ∞, we set sR0 (I) = {ζ = ξeiθ ∈ C | θ ∈ Ī , 0 < ξ ≤ R} and
s∞r (I) = {ζ = ξeiθ ∈ C | θ ∈ Ī , r ≤ ξ <∞}.
For a continuous function R : R →]0,+∞[, we note sR

0 (S1

•
) the simply

connected domain sR
0 (S1

•
) = {ζ = reiθ, 0 < r < R(θ)} ⊂ C

•
. We simply write

s0(S1

•
) for such a domain, when there is no need to specify the function R.

7.2.2 Sectorial germs

Definition 7.2 (Sectorial germs-1). For I an open arc of S1, one says that

two functions ϕ1 ∈ O(
•
sR1

0 (I)), ϕ2 ∈ O(
•
sR2

0 (I)) define the same sectorial

germ
∨
ϕ of direction I at 0, when ϕ1 and ϕ2 coincide on a same domain of

type
•
s0(I). We note O0(I) = lim−→

R→0

O(
•
sR0 (I)) the space of germs of direction

I at 0, and O0 the sheaf over S1 associated with the presheaf O0.

As a rule in this paper for the (pre)sheafs one encounters, the restriction maps
are the usual restrictions of functions. We warn the reader that the presheaf O0

is not a sheaf over S1 (see for instance a counter example given in [14]) : for an

open arc I, a section
∨
ϕ∈ O0(I) = Γ (I,O0) is a collection of holomorphic functions

ϕi ∈ O(
•
sRi0 (Ii)) that glue together on their intersection domains, the set {Ii} being

an open covering of I

Example 7.1. We denote by C{ζ, ζ−1} the space of Laurent series
∑
n∈Z anζ

n

which converge on a punctured disc D(0, R)?. This space can also be seen as
a constant sheaf over S1 and the space O0(S1) of global sections of O0 on S1

coincides with C{ζ, ζ−1}.
For n ∈ N? and a given direction θ0 ∈ S1, we now consider the sectorial germ
∨
ϕθ0 (ζ) =

∨
In (ζ) =

ζn−1 log(ζ)

2iπΓ (n)
∈ O0

θ0 , for any given determination of the log.

Here O0
θ0

denotes the stalk at θ0 of the sheaf O0. When making θ varying

from θ0 on I =] − π + θ0, θ0 + π| on S1, the sectorial germs
∨
ϕθ∈ O0

θ glue
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together and defined a section
∨
ϕ∈ Γ (I,O0) which cannot be prolonged to a

global section.

This last example illustrates the need of defining sectorial germs for func-
tions defined on sectors of C

•
. The covering map π̇ : S1

•
→ S1 (see definition

3.10) allows to consider the sheaf π̇?O0 over S1

•
, that is the inverse image

by π̇ of the sheaf O0 (see [1, 12, 3]). For J an open arc of S1

•
, an element

∨
ϕ of π̇?O0(J) appears as an element of the space Γ (J,O0) of multivalued

sections of O0 on J , that is
∨
ϕ= s(J) where s is a continuous map such that

s ◦ p = π̇:

Õ0 =
⊔
θ∈S1 O0

θ

s↗ ↓ p
S1

•
−→ S1

π̇

We say that in another way in the following definition:

Definition 7.3 (Sectorial germs-2). For J an open arc of S1

•
, one says

that two functions ϕ1 ∈ O(sR1
0 (J)), ϕ2 ∈ O(sR2

0 (J)) define the same sectorial

germ
∨
ϕ of direction J at 0 when ϕ1 and ϕ2 coincide on a same domain of

type s0(J). We note Γ (J,O0) the space of multivalued sections of germs of
direction J .

Remark 7.1. For any ω ∈ C and by translation, one can of course define Oω,
the sheaf over S1 of sectorial germs at ω, associated with the presheaf Oω.

7.3 Microfunctions

In this section, we introduce the sheaf of microfunctions Cω at ω ∈ C, in
the spirit of [1] to whom we refer. Since Cω is deduced from C = C0 by
translation, we make the focus on the case ω = 0.

7.3.1 Microfunctions, definitions

We complete definition 3.6.

Definition 7.4. For a direction θ, for an open arc I =]α, β[ (of S1 or S1

•
),

we note:

1. θ∗ = −θ and I? =]− β,−α[ the complex conjugate arc;

2. θ̆ =]− π
2 − θ,−θ + π

2 [ and Ĭ =
⋃
θ∈I θ̆;

3. θ̌ =]θ − 3π/2, θ − π/2[ the “copolar” of θ;
4. Ǐ =]α− 3π/2, β − π/2[=

⋃
θ∈I θ̌ the “copolar” of I;

5. for |I| > π, Î =]α+π/2, β−π/2[; for |I| < π, Î =]β−π/2, α+π/2[. When
|I| = π, we set Î = {β − π/2}.
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We would like to define “microfunctions of codirection I at 0”. For an
open arc I of S1 of aperture ≤ π, we first notice that its copolar Ǐ is of
aperture ≤ π, thus can be seens as an arc of S1. For such an arc, we note

Ǒ0(I) = O0(Ǐ). We now remark that for two arcs I2 ⊆ I2 of S1, of aperture
≤ π, one has Ǐ2 ⊆ Ǐ1. The restriction map ρǏ2,Ǐ1 : O0(Ǐ1)→ O0(Ǐ2) gives rise

to a restriction map ρ̌I2,I1 = ρǏ2,Ǐ1 from Ǒ0(I1) into Ǒ0(I2). This justifies the
following definition.

Definition 7.5 (Microfunctions). For I an open arc of S1 of aperture ≤ π,

one calls Ǒ0(I) = O0(Ǐ) the space of germs of codirection I at 0, and Ǒ0 the
corresponding sheaf over S1.
Viewing O0 as a constant sheaf over S1, we set C = Ǒ0/O0. This quotient
sheaf over S1 is the sheaf of microfunctions at 0 and C (I) = Γ (I,C ) is the
space of sections of microfunctions of codirection I at 0.

The sheaf of microfunctions C and makes allusion to Sato’s microlocal analysis, see,

e.g. [22, 13, 18]. We mention that microfunctions depending on parameters can be
also defined, see for instance [4] for a resurgent context.

We mention that C (I) = Ǒ0(I)/O0, that is the quotient sheaf coincide
with the pre-quotient sheaf, because O0 is a constant sheaf.

In what follows, we transpose with some abuse the notations for singular-
ities (Sect. 7.4) to that for microfunctions.

Definition 7.6. For an open arc I of S1 of aperture ≤ π, we note
O
ϕ= singI0

∨
ϕ∈ C (I) the microfunction of codirection I at 0 defined by the

sectorial germ
∨
ϕ∈ Ǒ0(I) of codirection I.

When I is an arc of aperture > π, then Ǐ is of aperture larger than 2π

and should be seen as an arc of S1

•
. In that case, a microfunction

O
ϕ of C (I)

is represented by an element
∨
ϕ of Γ (Ǐ ,O0).

For I an arc of S1 of aperture > π, one can define the variation map,
var : C (I)→ Γ (Î ,O0) ,

var :
O
ϕ∈ C (I) 7→ ϕ̂ ∈ Γ (Î ,O0), ϕ̂(ζ) =

∨
ϕ (ζ)−

∨
ϕ (ζe−2iπ).

Example 7.2. 1. For n ∈ N, the sectorial germ
∨
I−n (ζ) =

(−1)n

2iπ

n!

ζn+1
can be

seen as a global section of the sheaf O0. The associated microfunction is

equally denoted by
O
I−n, δ(n) or sing0

∨
I−n.

Notice that for any holomorphic germ ϕ̂ ∈ O0, the sectorial germ ϕ̂
∨
I0

defines a microfunction sing0(ϕ̂
∨
I0) equal to ϕ̂(0)δ(0) = ϕ̂(0)δ.

2. More generally, the constant sheaf C{ζ, ζ−1} over S1 can be seen as a

subsheaf of C (of vector spaces). Any microfunction
O
ψ of C{ζ, ζ−1} can be

written as a sum
∑
n≥0 an

O
I−n=

∑
n≥0 anδ

(n), where the Laurent series
∨
ψ (ζ) =

∑
n≥0 an

(−1)n

2iπ
n!
ζn+1 converges for |ζ| > 0.

3. We assume that ϕ̂ ∈ O0 is a germ of holomorphic function. For a direction

θ0 ∈ S1, we consider the microfunction
O
φθ0= singθ00

(
ϕ̂ log

2iπ

)
∈ Cθ0 (where

Cθ0 is the stalk at θ0 of the sheaf C ), represented by the sectorial germ
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∨
φθ0= ϕ̂ log

2iπ of Ǒ0
θ0

= O0(θ̌0), for any given determination of the log (remark

that
O
φθ0 does not depend on the chosen determination). Making θ varying

from θ0 up to θ0 + 2π on S1, the microfunctions
O
φθ= singθ0

(
ϕ̂ log

2iπ

)
∈ Cθ

glue together and
O
φθ0=

O
φθ0+2π. This provides a global section denoted by

O
φ= sing0

(
ϕ̂ log

2iπ

)
∈ Γ (S1,C ) which does not depend of the chosen deter-

mination of the log one started with.
It can be shown (through the variation map) that the space of global
sections Γ (S1,C ) of the sheaf of microfunctions, is composed of micro-

functions of the form
O
ψ +sing0

(
ϕ̂ log

2iπ

)
, with

O
ψ∈ C{ζ, ζ−1} and ϕ̂ ∈ O0,

see [1].
4. We suppose σ − 1 ∈ C \ N. For a direction θ ∈ S1, the microfunction

O
φθ= singθ0

(
∨
Iσ

)
, represented by the sectorial germ

∨
Iσ (ζ) =

ζσ−1

(1− e−2iπσ)Γ (σ)
,

is well-defined once the determination of the log has been chosen. Let us
now fix the arc I =]0, 2π[, consider the arc Ǐ =] − 3π/2, 3π/2[ as an arc

of S1

•
and

∨
Iσ∈ Γ (Ǐ ,O0) as a (uniquely well-defined) multivalued section

of O0 on Ǐ. One can apply to its associated microfunction
O
Iσ∈ C (I) the

variation map and var(
O
Iσ) = Îσ ∈ Γ (Î ,O0), Î =]π/2, 3π/2[, is given by

Îσ(ζ) =
ζσ−1

Γ (σ)
.

7.3.2 Convolution product of microfunctions

This subsection is devoted to convolution products of microfunctions. We
start with some geometrical preliminaries.

7.3.2.1 Geometrical Preliminaries

Definition 7.7. For ε > 0, for an open sector I ⊂ S1 of aperture < π,

we set Sε(Î) =
⋃

η∈•s∞0 (Î)

D(η, ε), the “ε-neighbourhood” in C of the sector

•
s∞0 (Î). When the open arc I is of aperture = π, then Î = {θ} and we set

Sε(Î) =
⋃
s∈R+

D(seiθ, ε).

We set
•
Sε(I) = C \ Sε(Î) and we denote −∂

•
Sε(I) = ∂Sε(Î) the oriented

boundary.

We denote ΓI,ε,η1,η2 the path that follows the oriented boundary −∂
•
Sε(I)

from η1 to η2. We set ΓI,ε the endless path that follows the oriented boundary

−∂
•
Sε(I).

Lemma 7.1. We note ζ − Sε(Î) the convex domain deduced from Sε(Î)
by the point reflection centered on ζ/2 ∈ C. If dist(ζ, Sε(Î)) ≥ 2ε, then
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Fig. 7.2 The domain Sε(Î)
(left-hand side shaded do-

main), the domain ζ−Sε(Î)
(right-hand side shaded do-
main.

η
0

I

ζ

ζ/2

0

ε

ζ − Sε(Î) ⊂
•
Sε(I). In particular, for every ζ ∈

•
S2ε(I), for every η ∈ (−∂

•
Sε(I)),

one has ζ − η ∈
•
Sε(I).

Proof. We only consider the case where I ⊂ S1 is an open arc of aperture < π.

We take an open sector
•
s∞0 (Î) and ζ ∈ C \ •s∞0 (Î). Then ζ/2 ∈ C \ •s∞0 (Î) as

well. Denote by ζ−•s∞0 (Î) the convex domain deduced from
•
s∞0 (Î) by the point

reflection centered on ζ/2 ∈ C. One sees that for every ξ ∈ ζ − •s∞0 (Î), for ev-

ery η ∈ •s∞0 (Î), dist(ζ,
•
s∞0 (Î)) ≤ dist(ξ, η) (dist is the euclidean distance). In-

deed, by the projection theorem for convex sets, there exist a unique point η0

on the closure of
•
s∞0 (Î) so that dist(ζ, η0) = dist

(
ζ,
•
s∞0 (Î)

)
, see Fig. 7.2. One

easily shows that the perpendicular bisector of the segment [ζ, η0] separates

the two convex sets
•
s∞0 (Î) and ζ − •s∞0 (Î). Therefore, if dist(ζ, Sε(Î)) ≥ 2ε,

then ζ − Sε(Î) ⊂
•
Sε(I). ut

Lemma 7.2. Let I =]α, β[⊂ S1 be an open sector of aperture ≤ π and

ε > 0. We consider η1 ∈ (−∂
•
Sε(I)) and we note r = |η1|. We suppose that

(ε/r) < 1 and we set δ = arcsin(ε/r) ∈]0, π/2[.

1. if Ĵ =]β − π/2, α + π/2 + δ[ is an open sector of aperture < π, we set

h = r sin(Ĵ). Then, for any ζ ∈ D(0, h), ζ − η1 ∈
•
s∞0 (Ǐ).

Fig. 7.3 Picture asso-

ciated with the proof of
lemma 7.2.

ζ−η

ζ

h

I

η
1

J

1

ε

0

δ
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2. if Ĵ =]β− π/2, α+ π/2 + δ[ is an open sector of aperture ≤ π/2, then, for

any ζ ∈ D(0, r), ζ − η1 ∈
•
s∞0 (Ǐ).

Proof. Left as an easy exercise. Just look at Fig. 7.3. ut

7.3.2.2 Convolution product of microfunctions

We take two microfunctions
O
ϕ and

O
ψ of codirection I, where I is an open arc

of aperture < π. For any strict subarc I1 ⊂ I, these microfunctions can be

represented by functions
∨
ϕ and

∨
ψ belonging to O

(•
sR+r

0 (Ǐ1)
)

with R > r > 0

small enough. In what follows, we take ε ∈]0, r2 sin(π − |Î|)[.

We remark that both
•
S2ε(I) ∩D(0, r) and

•
Sε(I1) ∩D(0, R) are non empty

domains and that
•
Sε(I1) ∩D(0, R) ⊂

•
sR+r

0 (Ǐ1).
We consider a path Γ = ΓI1,ε,η1,η2 that follows the oriented boundary

−∂
•
Sε(I1) from η1 to η2 with r < |η1| < R, r < |η2| < R, drawn on Fig. 7.4.

For any η ∈ ΓI1,ε,η1,η2 and any ζ ∈
•
S2ε(I) ∩D(0, r), |ζ − η| < R + r and

we know by lemma 7.1 that ζ − η ∈
•
Sε(I). Therefore, the function

∨
ϕ ∗Γ

∨
ψ (ζ) =

∫
ΓI1,ε,η1,η2

∨
ϕ
(
η
) ∨
ψ (ζ − η)dη (7.3)

is well-defined for all ζ ∈
•
S2ε(I)∩D(0, r) and is holomorphic on this domain

(which is non empty since 2ε < r).

Notice that
∨
ϕ ∗Γ

∨
ψ can be analytically continued to

•
S2ε(I) ∪ D(0, r)

when
∨
ψ is holomorphic on D(0, R + r), because |ζ − η| < R + r for η

on the integration contour and ζ ∈ D(0, r). Thus, by linearity, adding to
∨
ψ an element of O

(
D(0, R + r)

)
results in the addition of an element of

O
(
D(0, r)

)
for

∨
ϕ ∗Γ

∨
ψ. Similarly when

∨
ϕ is holomorphic on D(0, R + r),

then
∨
ϕ ∗Γ

∨
ψ can be analytically continued to

•
S2ε(I) ∪ D(0, r) : by an ho-

motopy in D(0, R), just deform the contour ΓI1,ε,η1,η2 into an arc Γ ′ running

Fig. 7.4 The path of
integration ΓI1,ε,η1,η2 .

η
1

η
2

I1

ζ−η
2

ζ−η
1

I1 ,ε,η ,η 1 2
Γ

ε

0

R

r

ζ
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from η1 to η2 in {η = seiθ | s ∈]r,R[, θ ∈ ˆ̄I} ⊂ Sε(Î); by Cauchy, the two func-

tions

∫
ΓI1,ε,η1,η2

∨
ϕ
(
η
) ∨
ψ (ζ − η)dη and

∫
Γ ′

∨
ϕ
(
η
) ∨
ψ (ζ − η)dη coincide for

ζ ∈
•
S2ε(I) ∩D(0, r), while the second integral is holomorphic on D(0, r).

Replacing η1, η2 by η′1, η′2 on −∂
•
Sε(I1), with r < |η′1| < R, r < |η′2| < R,

results in modifying
∨
χI1,ε,η1,η2 by an element of O

(
D(0, h)

)
for h > 0 small

enough : writing Γ ′ = ΓI1,ε,η′1,η′2 , the difference

∨
ϕ ∗Γ

∨
ψ (ζ)−

∨
ϕ ∗Γ ′

∨
ψ (ζ) =

(∫ η′1

η1

+

∫ η2

η′2

)
∨
ϕ (η)

∨
ψ (ζ − η)dη (7.4)

can be analytically continued from
•
S2ε(I)∩D(0, r) to D(0, h). Indeed, using

the condition on ε and by lemma 7.2, we see that for η on the two seg-
ment contours and for ζ ∈ D(0, h) with 0 < h ≤ r sin(Î), ζ − η remains in
•
s∞0 (Ǐ1) ∩D(0, R+ r) where

∨
ψ is holomorphic.

Finally replacing ε by a another ε′ ∈]0, r2 sin(π − |Î|)[ yields the same

conclusion : for ζ on the intersection domain
•
S2ε(I)∩

•
S2ε′(I)∩D(0, r), one

can compare the two functions
∨
ϕ ∗Γ

∨
ψ and

∨
ϕ ∗Γ ′

∨
ψ, Γ ′ = ΓI1,ε′,η′1,η′2 . By

Cauchy, the difference reads like (7.4) with the same conclusion.
In particular, we can let ε → 0 in the above construction: the family of

functions
∨
ϕ ∗Γ

∨
ψ (ζ) glue together modulo the elements of O0, thus provid-

ing a microfunction of codirection I1. Making the arcs I1 ⊂ I recovering I,
one sees that these microfunctions glue together to give a microfunction of
codirection I.

Definition 7.8. Let be I an open arc I of aperture < π. We consider two

microfunctions of codirection I,
O
ϕ and

O
ψ, represented by the sectorial germ of

codirection I,
∨
ϕ and

∨
ψ respectively. For a covering of I by open arcs I1 ⊂ I,

the family of functions
∨
ϕ ∗Γ

∨
ψ (ζ) defined by (7.3) with Γ = ΓI1,ε,η1,η2 , glue

together modulo O0 and provide a microfunction of codirection I denoted by
O
ϕ ∗

O
ψ. It is called the convolution product of

O
ϕ and

O
ψ.

Proposition 7.1. The sheaf of microfunctions C is a sheaf of C-differential

convolution algebras, for the derivation ∂ : singI0(
∨
ψ) 7→ singI0(−ζ

∨
ψ). These

algebras are commutative, associative and with unit δ = sing0

(
1

2iπ
1
ζ

)
.

Proof. In what follows we use the previous notations :
O
ϕ and

O
ψ are the micro-

functions of codirection I, an open arc of aperture < π. One takes a subarc

I1 ⊂ I and the microfunctions can be represented by functions
∨
ϕ and

∨
ψ be-

longing to O
(•
sR+r

0 (Ǐ1)
)

with R > r > 0 small enough.

We consider the microfunction
O
ψ0= δ ∈ C (S1) that we represent by

∨
ψ0 (ζ) = ϕ̂0(ζ)

∨
I0 (ζ) = ϕ̂0(ζ)

2iπζ with ϕ̂0 ∈ O
(
D(0, R + r)

)
subject to the con-

dition ϕ̂0(0) = 1. Thus
∨
ϕ ∗Γ

∨
ψ0 reads:
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∨
ϕ ∗Γ

∨
ψ0 (ζ) =

1

2iπ

∫
ΓI1,ε,η1,η2

∨
ϕ (η)

ϕ̂0(ζ − η)

ζ − η
dη.

By Cauchy and the residue formula, one easily gets that for all ζ ∈
•
sR+r

0 (Ǐ1) ∩D(0, r),
∨
ϕ ∗Γ

∨
ψ0=

∨
ϕ +hol, where hol can be analytically continued to D(0, r). This

implies that
O
ϕ ∗δ =

O
ϕ.

We now consider the integral:

∨
ϕ ∗Γ×Γ ′

∨
ψ (ζ) =

1

2iπ

∫
Γ×Γ ′

ϕ̂0(ζ − (ξ1 + ξ2)

ζ − (ξ1 + ξ2)

∨
ϕ (ξ1)

∨
ψ (ξ2)dξ1dξ2, (7.5)

ϕ̂0 ∈ O
(
D(0, R+ r)

)
, ϕ̂0(0) = 1,

where Γ = ΓI1,ε,η1,η2 , Γ ′ = ΓI1,ε′,η′1,η′2 . We remark that for any (ξ1, ξ2) ∈ Γ × Γ ′

one has (ξ1 + ξ2) ∈ Sε+ε′(Î1) ∩D(0, 2R). Thus
∨
ϕ ∗Γ×Γ ′

∨
ψ defines a holomor-

phic function on the simply connected domain
•
Sε+ε′(I1) : just apply the

Lebesgue dominated convergence theorem for ζ on any connected compact

subset of
•
Sε+ε′(I1). This also allows to use the Fubini theorem:

∨
ϕ ∗Γ×Γ ′

∨
ψ (ζ) =

∫
Γ

(
1

2iπ

∫
Γ ′

ϕ̂0(ζ − (ξ1 + ξ2)

ζ − (ξ1 + ξ2)

∨
ψ (ξ2)dξ2

)
∨
ϕ (ξ1)dξ1

=

∫
Γ ′

(
1

2iπ

∫
Γ

ϕ̂0(ζ − (ξ1 + ξ2)

ζ − (ξ1 + ξ2)

∨
ϕ (ξ1)dξ1

)
∨
ψ (ξ2)dξ2.

From the previous considerations, we recognize
∨
ϕ ∗Γ×Γ ′

∨
ψ=
∨
ϕ ∗Γ

∨
ψ +hol for

the first equality,
∨
ϕ ∗Γ×Γ ′

∨
ψ=
∨
ψ ∗Γ ′

∨
ϕ +hol for the second equality, where hol

is a holomorphic function that can be analytically continued to a neighbour-
hood of 0. As a consequence,

O
ϕ ∗

O
ψ=

O
ψ ∗

O
ϕ,

that is the convolution product of microfunctions is commutative. One easily
shows in the same way that the convolution product of microfunctions is
associative. The fact that ∂ is a derivation is obvious. ut

We have previously seen two kind of integral representations,
∨
ϕ ∗Γ

∨
ψ

(equation (7.3)) and
∨
ϕ ∗Γ×Γ ′

∨
ψ (equation (7.5)) for the convolution product

O
ϕ ∗

O
ψ of two microfunctions. Other representations can be obtained under

convenient hypotheses as exemplified by the next proposition.

Proposition 7.2. One considers a
O
ψ a microfunction of codirection I, an

open arc I of aperture < π, represented by the sectorial germ
∨
ψ of codirection

I. Let be
O
ϕ∈ Γ (S1,C ) a microfunction of the form sing0

(
ϕ̂ log

2iπ

)
with ϕ̂ ∈ O0.

Then, the microfunction
O
ϕ ∗

O
ψ of codirection I can be represented modulo O0

by a family of functions of the form∫ η1

0

ϕ̂(η)
∨
ψ (ζ − η)dη and

∫ η2

0

ϕ̂(η)
∨
ψ (ζ − η)dη (7.6)
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Fig. 7.5 Decomposition of

the path ΓI1,ε,η1,η2 .
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with η1, η2 as for definition 7.8.

The proof is left as an exercise. (See [23]). Starting with the integral rep-
resentation (7.3), the idea is to decompose the path ΓI1,ε,η1,η2 as on Fig. 7.5
and to use the integrability of the log at the origin.

7.4 Space of singularities

We now turn to classical notions and notations in resurgence theory [9, 10,
24, 23, 20].

7.4.1 Singularities

Definition 7.9. For θ ∈ R and α > 0, we denote by ANAθ,α the space of
sections Γ (J̌ ,O0), where J̌ =]θ−α− 2π, θ+α[⊂ S1

•
, and ANA = Γ (S1

•
,O0).

Thus ANA is the space of sectorial germs at 0 that are represented by

functions
∨
ϕ holomorphic on a simply connected domain of the form s0(S1

•
).

Definition 7.10. One defines SINGθ,α = ANAθ,α/O0 and SING = ANA/O0.
The elements of these quotient spaces are called singularities at 0. One de-
notes by sing0 the canonical projection,

sing0 :

{
ANA→ SING
∨
ϕ 7→

O
ϕ

, sing0 :

{
ANAθ,α → SINGθ,α
∨
ϕ 7→

O
ϕ

.

If sing0(
∨
ϕ) =

O
ϕ, then

∨
ϕ is called a major of the singularity

O
ϕ.

In particular, with these notations:

Proposition 7.3. The space of singularities SINGθ,α can be identified with
the space Γ (J,C ) of multivalued sections of C by π̇, with J =]− π

2 − α+ θ, θ + α+ π
2 [.

Notice that SINGθ,α and SING are naturally O0-modules.
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Definition 7.11. One defines the spaces SINGω, resp. SINGω,θ,α of singu-
larities at ω ∈ C, by translation from SING, resp. SINGθ,α.

It is of course enough to study the spaces of singularities at O and this is
what we do in what follows.

Definition 7.12. For f ∈ O0 and
O
ϕ= sing0

∨
ϕ in SING or SINGθ,α, one

defines the product f
O
ϕ by f

O
ϕ= sing0(f

∨
ϕ).

Definition 7.13. One defines the variation map by

var :

{
SING → ANA
O
ϕ= sing0(

∨
ϕ) 7→ ϕ̂, ϕ̂(ζ) =

∨
ϕ (ζ)−

∨
ϕ (ζe−2iπ)

and ϕ̂ = var(
O
ϕ) is called the minor of the singularity

O
ϕ.

The variation map var operates similarly on every element
O
ϕ∈ SINGθ,α, with

ϕ̂ = var(
O
ϕ) in Γ (Ĵ ,O0), where Ĵ =]θ − α, θ + α[⊂ S1

•
.

A minor is said to be regular when it belongs to O0.

We illustrate the notion of singularities by the following examples. (The
reader will recognize sectorial germs used in the introduction of this chapter).

Definition 7.14. The singularities
O
Iσ,

O
Jσ,m∈ SING, σ ∈ C, m ∈ N are de-

fined as follows.

• For σ ∈ C \ N?,
O
Iσ= sing0(

∨
Iσ) where

∨
Iσ (ζ) = ζσ−1

(1−e−2iπσ)Γ (σ) .

In particular,
O
I−n= δ(n) = sing0

(
(−1)n

2iπ

n!

ζn+1

)
, n ∈ N.

• For n ∈ N?,
O
In= sing0(

∨
In) with

∨
In (ζ) = ζn−1 log(ζ)

2iπΓ (n) .

• For m ∈ N and σ ∈ C,
O
Jσ,m=

(
∂
∂σ

)m O
Iσ.

It is useful to define the following subspaces of “integrable singularities”,
SINGint ⊂ SING and SINGint

θ,α ⊂ SINGθ,α.

Definition 7.15. An integrable minor is a germ ϕ̂ ∈ ANA holomorphic in
the domain s0(S1

•
) ⊂ C

•
which has a primitive φ̂ such that φ̂→ 0 uniformaly

in any proper subsector s0 b s0(S1

•
). The space of integrable minors is

denoted by ANAint.

An integrable singularity is a singularity
O
ϕ∈ SING which admits a major

∨
ϕ holomorphic in the domain s0(S1

•
) ⊂ s0(S1

•
) such that lim

ζ→0
ζ
∨
ϕ (ζ) = 0

uniformaly in any proper subsector s0 b s0(S1

•
). One denotes by SINGint

the space of integrable singularities.

There is a natural injection O0 ↪→ ANAint from the space of germs of
holomorphic functions to the space ANAint of integrable minors. The space
ANAint can be equipped with a convolution product, by extending the usual
law convolution on O0.

It is not hard to show that integrable singularities satisfy the following
property:
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Proposition 7.4. By restriction, the variation map var induces a linear iso-
morphism SINGint → ANAint. The inverse map is denoted by
[ : ϕ̂ ∈ ANAint 7→ [ϕ̂ ∈ SINGint.

This allows to transports the convolution law from ANAint to SINGint by
the variation map.

Definition 7.16. The convolution product of ϕ̂1, ϕ̂2 ∈ ANAint is defined by

ϕ̂1 ∗ ϕ̂2(ζ) =
∫ ζ

0
ϕ̂1(η)ϕ̂1(ζ − η)dη.

The convolution of two integrable singularities
O
ϕ1= [ϕ̂1,

O
ϕ2= [ϕ̂2 ∈ SINGint

is given by :
O
ϕ1 ∗

O
ϕ2= [

(
ϕ̂1 ∗ ϕ̂2

)
.

Quite similarly:

Definition 7.17. A minor ϕ̂ holomorphic in the domain s0(Î) ⊂ C
•

is said to

be integrable if ϕ̂ has a primitive φ̂ such that φ̂→ 0 uniformaly in any proper
subsector s0 b s0(Î). One denotes by ANAint

θ,α the space of these integrable
minors.

An integrable singularity is a singularity
O
ϕ∈ SINGθ,α which has a major

∨
ϕ holomorphic in the domain s0(Ǐ) ⊂ C

•
and such that lim

ζ→0
ζ
∨
ϕ (ζ) = 0

uniformaly in any proper subsector s0 b s0(Ǐ). One denotes SINGint
θ,α the

space of these integrable singularities.

Proposition 7.5. By restriction, the variation map var induces a linear iso-
morphism SINGint

θ,α → ANAint
θ,α.

The inverse map is denoted by [ : ϕ̂ ∈ ANAint
θ,α 7→ [ϕ̂ ∈ SINGint

θ,α.

We end with further definitions.

Definition 7.18. Any singularity
O
ϕ of the form

O
ϕ= aδ +[ϕ̂ with ϕ̂ ∈ O0 is

said to be simple. The space of simple singularities is denoted by SINGsimp.
The space SINGs.ram of simply ramified singularities is the vector space

spanned by SINGsimp and the set of singularities {
O
I−n, n ∈ N}.

7.4.2 Convolution product of singularities at 0

The resurgence theory asserts that the space of singularities SING can be
equipped with a convolution product [7, 8, 24], see also [1, 21]. Since SINGθ,α

can be identified with the space Γ (J,C ) of multivalued sections of C by π̇,
with J =]− π

2 −α+ θ, θ+α+ π
2 [, the convolution product for microfunctions

(proposition 7.1) allows to transport this product to SINGθ,α : for any two

singularities
O
ϕ,

O
ψ ∈ SINGθ,α and any strict subarc I ⊂ J of aperture = π, one

can find two majors
∨
ϕ,
∨
ψ ∈ ANAθ,α that can be represented by holomorphic

functions on a sector s0(Ǐ). By projection on C, one can think of
∨
ϕ,
∨
ψ as

belonging to O(
•
s0(Ǐ)), that is sectorial germs of codirection I. By restriction,

O
ϕ,

O
ψ are seen as microfunctions of codirection I, whose convolution product

O
ϕ ∗

O
ψ∈ Γ (I,C ) can be represented either by
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∨
ϕ ∗Γ

∨
ψ (ζ) =

∫
Γ

∨
ϕ
(
η
) ∨
ψ (ζ − η)dη (7.7)

or by

∨
ϕ ∗Γ×Γ

∨
ψ (ζ) =

1

2iπ

∫
Γ×Γ

f(ζ − (ξ1 + ξ2))

ζ − (ξ1 + ξ2)

∨
ϕ (ξ1)

∨
ψ (ξ2)dξ1dξ2, (7.8)

with f ∈ O0 and f(0) = 1 (cf. (7.3) and (7.5)), where Γ = ΓI,ε,η1,η2 is as in
definition 7.7. Considering a covering of J by such intervals I, these sections

glue together to give the convolution product
O
ϕ ∗

O
ψ as a multivalued section

of C over J .

Proposition 7.6. The space SING can be equipped with a convolution prod-
uct ∗ that makes it a commutative convolution algebra, with unit

δ = sing0

(
1

2iπζ

)
=

O
I0. Moreover:

1. the linear operator, ∂ :
O
ϕ= sing0(

∨
ϕ) ∈ SING 7→ ∂

O
ϕ= sing0(−ζ

∨
ϕ) ∈ SING,

is a derivation.

2. if
O
ϕ and

O
ψ belong to SINGint, then

O
ϕ ∗

O
ψ belongs to SINGint and

[ϕ̂ ∗ [ϕ̂ =[ (ϕ̂ ∗ ϕ̂). In particular, the space of simple singularities SINGsimp

is a convolution subalgebra.

Theses properties remain true when one considers SINGθ,α instead of SING.

Proof. We have already demonstrated that SINGθ,α (thus SING) is a com-
mutative convolution algebra for the convolution product with unit δ. The
equality [ϕ̂ ∗ [ϕ̂ =[ (ϕ̂ ∗ ϕ̂) for integrable singularities, emerges from consid-
erations on integrals and is left as an exercise. (Start with proposition 7.2.
See [23]). ut

7.5 Formal Laplace transform, formal Borel transform

7.5.1 Formal Laplace transform for microfunctions
at 0

We start with the following definition.

Definition 7.19. For an open arc I ⊂ S1 and r ≥ 0, we note:

1. A≤0(
•
s∞r (I)) the C-differential algebra of holomorphic functions ϕ on

•
s∞r (I) that satisfy the property : for any proper subdomain

•
s∞ b

•
s∞r (I),

for any ε > 0, there exists C > 0 so that, for all z ∈
•
s∞, |ϕ(z)| ≤ Ceε|z|;

2. we set A≤0(I) = lim−→
r→∞

A≤0(
•
s∞r (I)). This defines a presheaf A≤0;

3. we denote by A≤0 the sheaf over S1 associated with the presheaf A≤0.

Remark 7.2. The fact that A≤0 is indeed a sheaf of differential algebras is an
exercise left to the reader. (We stress that the derivation considered is the
usual one for holomorphic functions).
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The sheaf A≤0 should not be confused with the sheaf A<0 of flat germs at
infinity (definition 3.9). As a matter of fact, A<0(I) ⊂ A(I) ⊂ A≤0(I) where
A stands for the presheaf of asymptotic functions (see definition 3.9 and
[14, 16, 17]).
We mention that our definition of A≤0 differs from that of Malgrange in [16]
whereA≤0 is defined as the sheaf of sectorial germs that admit an asymptotics

belonging to the formal Nilsson class, that is of the form
∑
w̃(z) logm(z)

zσ ,
σ ∈ C, m ∈ N, w̃ ∈ C[[z−1]]. Our sheaf A≤0 contains this sheaf as a subsheaf.
However, the constructions in the sequel resemble in much aspect to that of
Malgrange [16].

The following Lemma is left to the reader as an exercise. This will allow
us in a moment to properly define the quotient sheaf A≤0/A≤−1 over S1.

Lemma 7.3. The space A≤−1
(
•
s∞) –resp. A≤−1

(I)– of 1-exponentially flat

functions on
•
s∞ –resp. of 1-exponentially flat germs at infinity over I–, is a

differential ideal of A≤0(
•
s∞(I)) –resp. of A≤0.

Definition 7.20. For a direction θ (of S1 or S1

•
), we note Rθ the ray ]0, eiθ∞[.

For κ > ε ≥ 0, we note Rθ,ε =]εeiθ, eiθ∞[ and Rθ,ε;κ =]εeiθ, κeiθ[.
For a closed arc J̄ = [θ1, θ2], we denote by γJ̄,ε (resp. γJ̄,ε;κ), the Hankel
contour (resp. truncated Hankel contour) which consists in following:

1. Rθ1,ε, resp. Rθ1,ε;κ, backward,

2. then the circular arc δJ̄,ε = {εeiθ | θ ∈ J̄} oriented in the anti-clockwise
way,

3. finally Rθ2,ε, resp. Rθ2,ε;κ, forward.

We take an open arc I of S1 of aperture ≤ π, and a microfunction
O
ϕ∈ C (I) of codirection I, represented by the germ

∨
ϕ∈ Ǒ0(I). For any open

arc I1 =]α1, β1[ with Ī1 ⊂ I, one can find R > 0 so that the restriction of
∨
ϕ to Ǐ1 =]α1 − 3π/2, β1 − π/2[⊂ S1 is represented by a function (still de-

noted by
∨
ϕ) holomorphic in the sector sR0 (Ǐ1). We take another open arc

I2 =]α2, β2[, Ī2 ⊂ I1, so that Ǐ1 \ ˇ̄I2 has two connected components. We
take one arbitrary direction in each component, θ1 ∈]α1 − 3π/2, α2 − 3π/2[,
θ2 ∈]β2−π/2, β1−π/2[. ForR > κ > ε > 0, we consider the truncated Laplace

integral ϕθ1,θ2,κ(z) =

∫
γ[θ1,θ2],ε;κ

e−zζ
∨
ϕ (ζ)dζ, see Fig. 7.6.

The function ϕθ1,θ2,κ satisfies the following properties:

• ϕθ1,θ2,κ is an entire function, since one integrates on a (relatively) compact

path of the domain of holomorphy of
∨
ϕ.

• for ε > 0 chosen as small as we want, set M = supsκε (]θ1,θ2[) |
∨
ϕ | with

sκε (]θ1, θ2[) = {ζ = ξeiθ | θ ∈ [θ1, θ2], ξ ∈ [ε, κ]}. then:

– for all z ∈ C,

∣∣∣∣∣
∫
δ[θ1,θ2],ε

e−zζ
∨
ϕ (ζ)dζ

∣∣∣∣∣ ≤ ε|Ǐ1|Meε|z| where |Ǐ1| = β1 − α1 + π;

– we observe that for any r > 0, for every z ∈
•
Πθ1
r ,

∣∣∣∣∣
∫
Rθ1,ε;κ

e−zζ
∨
ϕ (ζ)dζ

∣∣∣∣∣ ≤ κMe−εr.

Similarly, for every z ∈
•
Πθ2
r ,

∣∣∣∣∣
∫
Rθ2,ε;κ

e−zζ
∨
ϕ (ζ)dζ

∣∣∣∣∣ ≤ κMe−εr.
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Fig. 7.6 Formal Laplace

transform. The open arcs
I1, I2, Ǐ1, ˇ̄I2, and the path

γ = γ[θ1,θ2],ε;κ.

0

I1
I2

I2I1

γ

1θ

2θ

– the domain
•
Πθ1
r contains any closed sector of the form

•
s∞r′ (J1) with J1

an open arc so that J̄1 ⊂]−π2−θ1,−θ1+π
2 [ and r′ > 0 large enough. Since

β2− π
2 < θ1 < α2 + π

2 , one deduces that
•
Πθ1
r contains any closed sector

of the form
•
s∞r′ (I

?
2 ) with r′ > 0 large enough. Similarly,

•
Πθ2
r contains

any closed sector of the form
•
s∞r′ (I

?
2 ) with r′ > 0 large enough.

From this analysis, since ε > 0 can be chosen arbitrarily small, we retain

that ϕθ1,θ2,κ belongs to the space A≤0(
•
s∞r (I?2 )), r > 0 large enough.

• Furthermore, looking at the above analysis and by Cauchy, we can observe
that for two cut-off points κ, κ′ ∈]ε,R[, for two directions
θ′1 ∈]α1 − 3π/2, α2 − 3π/2[, θ′2 ∈]β2 − π/2, β1 − π/2[ the difference

ϕθ1,θ2,κ − ϕθ′1,θ′2,κ′ belongs to A≤−1
(
•
s∞r (I?2 )) with r > 0 large enough.

We finally remark that adding to
∨
ϕ a function holomorphic on D(0, R)

only affects ϕθ1,θ2,κ(z) by the addition of an element of A≤−1
(
•
s∞r (I?2 )),

r > 0 large enough.

One thus obtains a morphism , L̃(I, I2) :
O
ϕ∈ C (I) 7→

M
ϕ∈ A≤0(I?2 )/A≤−1

(I?2 ),
ϕ̃ = cl(ϕθ1,θ2,κ), which is obviosuly compatible with the restriction maps.

This allows to move up to stalks, L̃α : Cα →
(
A≤0/A≤−1

)
α∗

and finally2 to

a morphism of sheaves L̃ : C → A≤0/A≤−1.

Definition 7.21. One calls formal Laplace transform for microfunctions
at 0, the morphism of sheaves L̃ : C → A≤0/A≤−1. The quotient sheaf
A≤0/A≤−1 over S1 is called the sheaf of asymptotic classes. An asymp-

totic class is usually denoted by
M
ϕ.

The term “sheaf of asymptotic classes” is borrowed from [1] where the sheaf A≤0 is

denoted by E0, and the sheaf A≤−1 is denoted by E−. The notation
M
ϕ is own.

Example 7.3. For (σ,m) ∈ C × N and I =] − π/2, π/2[∈ S1, we consider the

microfunction
O
Jσ,m= singI0

(
∨
Jσ,m

)
∈ C (I) represented by the sectorial germ

∨
Jσ,m=

(
∂

∂σ

)
∨
Iσ∈ Ǒ0(I) = O0(Ǐ), Ǐ =] − 2π, 0[ and the branch of the log

2 Modulo complex conjugation
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that arg(log ζ) ∈ Ǐ. By standard formulae recalled in Sect. 7.1, one readily

gets that its formal Laplace transform
M
Jσ,m= L̃(I)

O
Jσ,m is an asymptotic

class that can be represented by the (sectorial germ at infinity of) holo-

morphic function(s) (−1)m
logm(z)

zσ
∈ A≤0(I?), I? =] − π/2, π/2[ with the

determination of the log so that arg(log z) ∈ I?.

The following proposition is a straight consequence of the very construction
of the formal Laplace transform.

Proposition 7.7. The formal Laplace transform satisfies the identity : L̃∂ = ∂L̃.

7.5.2 Formal Borel transform for asymptotic classes

We take an open arc I? of S1 of aperture ≤ π, and a sectorial germ at infinity
ϕ ∈ A≤0(I?). For any open arc I?1 with Ī?1 ⊂ I?, one can find r > 0 so that the
restriction of ϕ to I?1 is (represented by) a holomorphic function (still denoted

by ϕ) on the domain
•
s∞r (I?1 ). For z1 ∈

•
s∞r (I?1 ) and a direction α ∈ I?1 , we note

∨
ϕz1,α (ζ) = − 1

2iπ

∫
Rα,z1

ezζϕ(z)dz, see Fig. 7.7. We can make the following

observations about this Laplace integral
∨
ϕz1,α:

• since ϕ ∈ A≤0(
•
s∞r (I?1 )), we know that for any proper subsector

•
s∞r1 (J?) b

•
s∞r (I?1 ),

for any ε > 0, there exists C > 0 so that, for all z ∈
•
s∞, |ϕ(z)| ≤ Ceε|z|.

Assume that z1 ∈
•
s∞r1 (J?) and take α ∈ J̄?. This implies that

∨
ϕz1,α belongs

to O(
•
Πα+π
ε ). Making α varying in J? and since ε > 0 can be chosen arbi-

trarily small, these functions glue together by Cauchy, and provide a holo-

morphic function
∨
ϕz1,J? on

•
D(J?, 0) =

•
s∞0 (J̌). Notice that for two points

z1, z2 ∈
•
s∞r1 (J?), the difference

∨
ϕz2,J? −

∨
ϕz1,J? defines an entire function

(with at most exponential growth of order 1 at infinity). Therefore, local-

ising near the origin, we get a sectorial germ
∨
ϕz1,I?∈ O(Ǐ) = Ǒ(I), defined

modulo the elements of O0, that is a microfunction of codirection I;
• when ϕ belongs to A≤−1(I?), one easily sees from the above analysis that
∨
ϕz1,I? is holomorphic on a domain containing a full neighbourhood of the
origin, thus by localisation, an element of O0.

To conclude, we have defined a morphism (of C-differential algebras),

B̃(I?) :
M
ϕ∈ A≤0(I?)/A≤−1(I?) 7→

O
ϕ= cl (

∨
ϕz1,I?) ∈ C (I) whose compatibility

with the restriction maps is easy to check.

Fig. 7.7 Formal Borel

transform. The open arcs
I?, and the path Rα,z1 .

I*
1z

0

α
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Definition 7.22. One calls formal Borel transform the morphism of
sheaves B̃ : A≤0/A≤−1 → C .

The formal Laplace transform for microfunctions and the formal Borel
transform for asymptotic classes are isomorphisms of sheaves, as shown in [1]:

Proposition 7.8. The morphisms L̃ : C → A≤0/A≤−1 and B̃ : A≤0/A≤−1 → C
are isomorphisms of sheaves and L̃ ◦ B̃ = Id, B̃ ◦ L̃ = Id.

Remark 7.3. We have seen that we have an injective morphism of sheaves,

ϕ̂ ∈ O0 7→
O
ϕ= singI0

(
ϕ̂ log

2iπ

)
∈ C (I), and the following commutative diagram

makes a link between the formal Laplace transform for regular minor –resp.
formal Borel transform for 1-Gevrey formal series– and the formal Laplace
transform for microfunctions –resp. formal Borel transform for asymptotic

classes:

O0 ↪→ C
L̃ ↓↑ B̃ B̃ ↑↓ L̃
A1/A≤−1 ↪→A≤0/A≤−1.

7.5.3 Formal Laplace transform for singularities and
back to convolution product

In the sequel, we translate to singularities what have obtained so far for
microfunctions.

7.5.3.1 Formal Laplace transform for singularities at 0

We start with two definitions.

Definition 7.23. Let be θ ∈ S1

•
and α > 0. We denote by ASYMPθ,α the

space of asymptotic classes defined as multivalued sections of A≤0/A≤−1 on
J? =]− π/2− α− θ,−θ + α+ π/2[. We denote by ASYMP the space of
asymptotic classes given by global sections of A≤0/A≤−1 on S1

•
.

Definition 7.24. Let be σ ∈ C and m ∈ N. We denote by
M
Iσ∈ ASYMP

the asymptotic class represented by 1/zσ. We denote
M
Jσ,m∈ ASYMP the

asymptotic class represented by (−1)m
logm(z)

zσ
. We often simply write 1/zσ

instead of
M
Iσ and similarly for

M
Jσ,m.

We have already said that the space of singularities SINGθ,α can be
identified with the space Γ (J,C ) of multivalued sections of C by π̇, with
J =]− π

2 − α+ θ, θ + α+ π
2 [. The formal Laplace transform for microfunc-

tions thus extends to singularities, by inverse image:

L̃⊔
β̇∈S1 Cβ̇ →

⊔
β̇?∈S1

(
A≤0/A≤−1

)
β̇?

s↗ ↓ p ↓ p
S1

•
⊃ J 3 β −→ S1 3

•
β → S1 3

•
β?

π̇ ?
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When returning to the very construction of the formal Laplace transform

(Sect. 7.5.1), one sees that for a singularity
O
ϕ∈ SINGθ,α, for any direction

β ∈ Ĵ =]− α+ θ, θ + α[ and for β̆? =] − π
2 + β, β + π

2 [, the formal Laplace

transform L̃(β̆?)
O
ϕ is given as the class

M
ϕ= cl(ϕβ−2π,β,κ) ∈ A≤0(β̆)/A≤−1(β̆),

β̆ =]− π
2 −β,−β+ π

2 [, where ϕβ−2π,β,κ(z) =

∫
γ[β−2π,β],ε;κ

e−zζ
∨
ϕ (ζ)dζ, with

∨
ϕ

any major of
O
ϕ. This introduces the following definition. (Notice that

˘̂
J = J?).

Definition 7.25. The morphism L̃β = L̃(β̆?) : SINGθ,α → A≤0(β̆)/A≤−1(β̆)

is called the formal Laplace transform in the direction β ∈ Ĵ =]− α+ θ, θ + α[.

For any singularity
O
ϕ∈ SINGθ,α, one denotes by L̃Ĵ

O
ϕ∈ ASYMPθ,α the

asymptotic class given by the collection
(
L̃β

O
ϕ
)
β∈Ĵ .

Example 7.4. We continue the example 7.3 but for the fact that we now

consider
O
Jσ,m as a singularity in SING0,π. The formal Laplace transform

L̃]−π,π[
O
Jσ,m is the asymptotic class

M
Jσ,m∈ ASYMP0,π seen by restriction as

an element of Γ (]− 3π/2, 3π/2[,A≤0/A≤−1).

Let us linger for a moment to the cases of singularities of the form
O
ϕ= [ϕ̂ ∈ SINGint

θ,α. For any direction β ∈]− α+ θ, θ + α[, the formal Laplace

transform
M
ϕ= L̃β

O
ϕ∈ A≤0(β̆)/A≤−1(β̆) can be represented by the function

ϕβ−2π,β,κ(z) =

∫
γ[β−2π,β],ε;κ

e−zζ
∨
ϕ (ζ)dζ =

∫
Rβ,0;κ

e−zζϕ̂(ζ)dζ, (7.9)

and we thus recover the “usual” formal Laplace transform (see Sect. 7.1). In
particular, we recall that we have extended the convolution law to SINGint

θ,α

by the variation map: for
O
ϕ1= [ϕ̂1,

O
ϕ2= [ϕ̂2 ∈ SINGint

θ,α,
O
ϕ1 ∗

O
ϕ2= [

(
ϕ̂1∗ϕ̂2

)
.

The above remark (7.9) shows that

L̃β(
O
ϕ1 ∗

O
ϕ2) = (L̃β

O
ϕ1)(L̃β

O
ϕ2),

by the properties of the “usual” formal Laplace transform.

We now assume that
O
ϕ is a simple singularity,

O
ϕ= aδ + [ϕ̂ ∈ SINGsimp

with ϕ̂ ∈ O0. For any arc Ĵ =] − α + θ, θ + α[, the formal Laplace trans-

form
M
ϕ= L̃Ĵ(aδ+

O
ϕ) is an asymptotic class that belongs, more precisely, to

Γ (J?,A1/A≤−1). This again comes from (an analogue of) the identity (7.9)
and classical arguments recalled in the introduction of this chapter.

Definition 7.26. One denotes by ASYMPsimp the subspace of asymptotic
classes obtained by injection of the global sections Γ (S1

•
,A1/A≤−1) into

ASYMP.

Proposition 7.9. The restriction of the formal Laplace transform L̃ to
SINGsimp has ASYMPsimp for its range.

Remark 7.4. Consider a formal series expansion ϕ̃ ∈ C[[z−1]] and an open
arc of the form J? =]− π/2− α− θ,−θ + α+ π/2[⊂ S1

•
. By the Borel-Ritt
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theorem, there are infinitely many ϕ ∈ A(J?) whose Poincaré asymptotics
T (J?)ϕ is given by ϕ̃ on J?. These various ϕ differ by flat germs, that is
elements of A<0(J?). Therefore as a rule, these germs ϕ represent different

asymptotic classes
M
ϕ∈ ASYMPθ,α.

Now suppose that ϕ̃ is 1-Gevrey and choose a (good) covering (Ii) of J? where
each Ii is an open arc of aperture less than π. By the Borel-Ritt theorem for 1-
Gevrey asymptotics and for each subscript i, there exists ϕi ∈ A1(Ii) whose
1-Gevrey asymptotics T1(Ii)ϕi is ϕ. Moreover, each ϕi is uniquely defined
this way up to 1-exponentially flat germs, that is up to elements of A≤−1(Ii).

One thus gets a uniquely defined section
M
ϕ∈ Γ (J?,A1/A≤−1) that can be

thought of as an asymptotic class. One can characterize another way this

asymptotic class
M
ϕ∈ ASYMPsimp by settling

M
ϕ= L̃(aδ+

O
ϕ) where

O
ϕ= [ϕ̂ with

ϕ̂ the minor of ϕ̃ while a is its constant term.

Definition 7.27. The mapping \ : ϕ̃ ∈ C[[z−1]]1 7→
M
ϕ= \ϕ̃ ∈ ASYMPsimp is

defined by
M
ϕ= L̃(aδ+

O
ϕ) where

O
ϕ= [ϕ̂, whereas ϕ̂ stands for the minor of ϕ̃

and a its constant term.

Obviously, the mapping \ is an isomorphism, the inverse map being the
(1-Gevrey) Taylor map. This allows to merge \ϕ̃ with ϕ̃ in practice.

7.5.3.2 Back to convolution product

We have said without proof that L̃ and B̃ are morphisms of sheaves of alge-
bras. Thus it is certainly worthy to prove the following proposition.

Proposition 7.10. For any two singularities
O
ϕ1,

O
ϕ2∈ SINGθ,α and any di-

rection β ∈]− α+ θ, θ + α[, (L̃β
O
ϕ1)(L̃β

O
ϕ1) = L̃β(

O
ϕ1 ∗

O
ϕ2). Moreover,

L̃β(∂
O
ϕ) = ∂L̃β

O
ϕ.

Proof. (Adapted from [1]). We take two singularities
O
ϕ1,

O
ϕ2∈ SINGθ,α with

major
∨
ϕ1,

∨
ϕ2. Choosing a direction β ∈ Ĵ =]− α+ θ, θ + α[, we can consider

the formal Laplace transforms
M
ϕ1= L̃β

O
ϕ1 and

M
ϕ2= L̃β

O
ϕ2. These are elements

of A≤0(β̆)/A≤−1(β̆) which can be represented respectively by

ϕ1(z) =

∫
γ1

e−zζ
∨
ϕ1 (ζ)dζ ∈ A≤0(

•
s∞r (β̆)), ϕ2(z) =

∫
γ2

e−zζ
∨
ϕ2 (ζ)dζ ∈ A≤0(

•
s∞r (β̆)),

with γ1 = γ[β−2π,β],ε1;κ1
, γ2 = γ[β−2π,β],ε2;κ2

and some r > 0 large enough.

The product
M
ϕ1

M
ϕ2∈ A≤0(β̆)/A≤−1(β̆) is thus represented by

ϕ1ϕ2(z) =

∫
γ1×γ2

e−z(ζ1+ζ2) ∨ϕ1 (ζ1)
∨
ϕ2 (ζ2)dζ1dζ2 ∈ A≤0(

•
s∞r (β̆)).

Let us look at the formal Borel transform B̃(β̆)(
M
ϕ1

M
ϕ2) ∈ C (β̆?). This Borel

transform can be represented by the integral
∨

(ϕ1ϕ2)z1,α1
(ζ) = − 1

2iπ

∫
Rα1,z1

ezζϕ1ϕ2(z)dz, with z1 ∈
•
s∞r1 (β̆?), for r1 > r,
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and for any direction α1 ∈ β̆?. The function
∨

(ϕ1ϕ2)z1,α1
(ζ) is holomor-

phic on
•
Π
α1+π
0 (go back to the construction of the formal Borel transform,

Sect. 7.5.2). Taking ζ ∈
•
Π
α1+π
2ε with ε > ε1 + ε2, we can apply Fubini.

Remark that ζ1 + ζ2 (or rather
•
ζ1 +

•
ζ2) remains in the bounded strip

{ζ ∈ C | dist(ζ, eiβ [0, κ]) ≤ ε1 + ε2}, for (ζ1, ζ2) ∈ γ1 × γ2. Thus ζ − (ζ1 + ζ2)

remains in the domain
•
Π
α1+π
ε for ζ ∈

•
Π
α1+π
2ε and this ensures the integrability

conditions.

This way, we get:

∨
(ϕ1ϕ2)z1,α1

(ζ) = − 1

2iπ

∫
Rα1,z1

ezζ
(∫

γ1×γ2
e−z(ζ1+ζ2) ∨ϕ1 (ζ1)

∨
ϕ2 (ζ2)dζ1dζ2

)
dz

=

∫
γ1×γ2

ez1(ζ−ζ1−ζ2)

2iπ(ζ − ζ1 − ζ2)

∨
ϕ1 (ζ1)

∨
ϕ2 (ζ2)dζ1dζ2

=

∫
γ1

(∫
γ2

ez1(ζ−ζ1−ζ2)

2iπ(ζ − ζ1 − ζ2)

∨
ϕ2 (ζ2)dζ2

)
∨
ϕ1 (ζ1)dζ1

Returning to the very construction of the convolution product for sin-

gularities, we see that
∨

(ϕ1ϕ2)z1,α1
is nothing but a major of the singu-

larity sing0

(
ez1ζ

2iπζ

)
∗

O
ϕ1 ∗

O
ϕ2. But sing0

(
ez1ζ

2iπζ

)
= δ and therefore

sing0

( ∨
(ϕ1ϕ2)z1,α1

)
=

O
ϕ1 ∗

O
ϕ2. From Proposition 7.8, we know that B̃◦L̃ = Id

(when considering B̃ and L̃ as morphisms of sheaves), thus the conclusion.
The last statement as been already seen. ut

Example 7.5. We know by theorem 3.2 that the formal series w̃(0,0) solution
of the prepared ODE (3.6) associated with the first Painlevé equation, is
1-Gevrey. Its formal Borel transform ŵ(0,0) = B̃w̃(0,0) is thus a germ of holo-

morphic functions at the origin and we set
O
w(0,0)=

[ŵ(0,0) ∈ SINGsimp. We

now consider the singularity
O
Iσ ∗

O
w(0,0)∈ SING, for any σ ∈ C. By propo-

sition 7.10, for an arbitrary direction β ∈ S1

•
, the formal Laplace transform

L̃β
( O
Iσ ∗

O
w(0,0)

)
∈ A≤0(β̆)/A≤−1(β̆) is the asymptotic class of direction β̆

which also reads:

L̃β
( O
Iσ ∗

O
w(0,0)

)
= L̃β

( O
Iσ
)
L̃β
( O
w(0,0)

)
.

On the one hand, L̃β
O
Iσ is the asymptotic class

M
Iσ∈ Γ (β̆,A≤0/A≤−1). On

the other hand, L̃β O
w(0,0)=

\w̃(0,0). Therefore, L̃β
( O
Iσ ∗

O
w(0,0)

)
=

M
Iσ

\w̃(0,0)

that can be identified with
1

zσ
w̃(0,0) with the branch of zσ determined by the

condition arg z ∈ β̆.

Example 7.6. We now use the notations of Sect. 3.5.2.3 but for the fact that
we consider arcs on S1

•
. We write Î0 =]0, π[ and I?0 =]− 3π/2, π/2[⊂ S1

•
and

in what follows with think of the Laplace-Borel sum wtri,0 = S Î0w̃(0,0) as

(representing) a multivalued section of A1 on I?0 . Similarly, we set Î1 =]π, 2π[
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and I?1 =]− 5π/2,−π/2[⊂ S1

•
and think of wtri,1 = S Î1w̃(0,0) as an element

of Γ (I?1 ,A1). Notice that I?0∩I?1 =]−3π/2,−π/2[ on S1

•
. Since both wtri,0 and

wtri,1 are asymptotic to the 1-Gevrey series w̃(0,0), we know that the difference
wtri,0−wtri,1 is a multivalued section of A≤−1 on I?0 ∩ I?1 . Therefore, for any

σ ∈ C,
1

zσ
wtri,0 and

1

zσ
wtri,1 glue together to give a multivalued section

of A1/A≤−1 on I?0 ∪ I?1 , that can be identified with the asymptotic class
M
Iσ

\w̃(0,0) ∈ ASYMPπ,π. The formal Borel transform B̃(I?0 )
( M
Iσ

\w̃(0,0)

)
is the

multivalued section of C on I0 =]− π/2, 3π/2[ which can be thought of as a

singularity in SINGπ/2,π/2, and is given by B̃(I?0 )
( M
Iσ

\w̃(0,0)

)
=

O
Iσ ∗

O
w(0,0).

Similarly, the formal Borel transform B̃(I?1 )
( M
Iσ

\w̃(0,0)

)
is the multivalued

section of C on I1 =]π/2, 5π/2[ which provides a singularity in SING3π/2,π/2,

of the form B̃(I?1 )
( M
Iσ

\w̃(0,0)

)
=

O
Iσ ∗

O
w(0,0). These two singularities glue

together as the element
O
Iσ ∗

O
w(0,0) of SINGπ,π.

7.5.3.3 Formal Laplace transform for singularities at ω

The spaces SINGω, resp. SINGω,θ,α of singularities at ω ∈ C are the trans-
lated of SING, resp. SINGθ,α. (See definition 7.11). By its very construction,
the formal Laplace transform transforms the translation into the multilplica-
tion by an exponential.

Definition 7.28. The formal Laplace transform L̃ sends SINGω, resp. SINGω,θ,α,
onto the space denoted by e−ωzASYMP, resp. e−ωzASYMPθ,α, made of
asymptotic classes with support based at ω.

We mention the following result that can be thought of as an analogue of
the Watson’s lemma [14].

Lemma 7.4. For any ω ∈ C?, the sum of the C-vector spaces ASYMPθ,α
and e−ωzASYMPθ,α is direct.

Proof. We consider an asymptotic class
M
ϕ∈ ASYMPθ,α. By definition, one

can find a (good) open covering (Jj) of J? =]− π/2− α− θ,−θ + α+ π/2[
and a “0-cochain”

(
ϕj ∈ A≤0(Jj)

)
j

with associated “1-coboundary”(
ϕj+1 − ϕj ∈ A≤−1(Jj+1 ∩ Jj)

)
j

that represents
M
ϕ. Now assume that

M
ϕ also

belongs to e−ωzASYMPθ,α. Considering a refinement of (Jj) if necessary, one
deduces that ϕj ∈ A≤−1(Jj) for at least one j, since J? is an arc of aperture

> π. This implies that the formal Borel transform
O
ϕ∈ SINGθ,α has a major

∨
ϕ that can be analytically continued to 0, thus

O
ϕ= 0 and as a consequence

M
ϕ= 0. ut

7.6 Laplace transforms

We develop here only matters convenient for this course. For more general
nonsense on Laplace transforms in the framework of resurgent analysis, see
[1, 2, 7, 8, 16].
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7.6.1 Laplace transforms

Definition 7.29. For an open arc I ⊂ S1 and r ≥ 0, we note:

1. E≤1(I) the C-differential algebra of holomorphic functions ϕ on
•
s∞0 (I)

with 1-exponential growth at infinity on the direction I : for any proper

subsector
•
s∞ b

•
s∞0 (I), there exist C > 0 and τ > 0 so that, for all z ∈

•
s∞,

|ϕ(z)| ≤ Ceτ |z|;
2. for any open arc I ⊂ S1 of aperture ≤ π, we set Ě≤1(I) = E≤1(Ǐ), the

space of holomorphic functions ϕ on
•
s∞0 (Ǐ), with 1-exponential growth at

infinity on the codirection I.
3. we note E≤1 –resp. Ě≤1 – the sheaf over S1 corresponding to the family(
E≤1(I)

)
–resp. Ě≤1(I)–;

4. we note O(C)≤1 the space of entire functions with 1-exponential growth
at infinity on every direction.

We take an open arc I of S1 of aperture ≤ π, and a function
∨
ϕ∈ Ě≤1(I).

Thus
∨
ϕ is holomorphic on

•
s∞0 (Ǐ) and for any open arc I1 so that Ī1 ⊂ I,

for any ε > 0, there exist C > 0 and τ > 0 so that, for all ζ ∈
•
s∞ε (Ǐ1),

|
∨
ϕ (ζ)| ≤ Ceτ |ζ|. We consider the Laplace integral,

ϕI1(z) =

∫
γ[θ1,θ2],ε

e−zζ
∨
ϕ (ζ)dζ =

(
−
∫
Rθ1,ε

+

∫
δ[θ1,θ2],ε

+

∫
Rθ2,ε

)
∨
ϕ (ζ)dζ

where Ǐ1 =]θ1, θ2[. This Laplace integral can be decomposed as follows:

• by classical arguments, the integral

∫
Rθ1,ε

e−zζ
∨
ϕ (ζ)dζ defines a holo-

morphic function on
•
Πθ1
τ and we observe that for any r > τ , for every

z ∈
•
Πθ1
r ,∣∣∣∣∣
∫
Rθ1,ε

e−zζ
∨
ϕ (ζ)dζ

∣∣∣∣∣ ≤
∫ ∞
ε

e−srCeτsds ≤ C

r − τ
e−ε(r−τ).

In the same way, the integral

∫
Rθ2,ε

e−zζ
∨
ϕ (ζ)dζ defines a holomorphic

function on
•
Πθ2
τ and for any r > τ , for every z ∈

•
Πθ2
r ,∣∣∣∣∣

∫
Rθ2,ε

e−zζ
∨
ϕ (ζ)dζ

∣∣∣∣∣ ≤ C

r − τ
e−ε(r−τ);

• the integral

∫
δ[θ1,θ2],ε

e−zζ
∨
ϕ (ζ)dζ defines an entire function and∣∣∣∣∣

∫
δ[θ1,θ2],ε

e−zζ
∨
ϕ (ζ)dζ

∣∣∣∣∣ ≤ C|Ǐ1|εeτεeε|z|.
• by arguments already encounter (see Sect. 7.5.1), both

•
Πθ1
τ and

•
Πθ2
τ con-

tains any proper subsector
•
s∞ of

•
s∞r (I?1 ), once r > 0 is chosen large

enough.
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Therefore, ϕI1 belongs to the space A≤0(
•
s∞r1 (I?1 )) for r1 > 0 large enough,

because ε > 0 can be chosen arbitrarily small.

It is easy to see that adding to
∨
ϕ any element of O(C)≤1, does not affect the

function ϕI1 (just deform the contour of integration, by Cauchy).
The family of functions (ϕI1)I1⊂I obtained this way glue together analyti-
cally, by Cauchy.
The above construction gives a morphism, L(I) : Ě≤1(I)/O(C)≤1 → A≤0(I?),
compatible with the restriction maps, which provides a morphism of sheaves3.

Definition 7.30. The morphism of sheaves L : Ě≤1/O(C)≤1 → A≤0 is
called the strict Laplace transform4.

We now return to the construction we did to get the formal Borel trans-
form, Sect. 7.5.2. We take an open arc I? of S1 of aperture ≤ π and

ϕ ∈ A≤0(I?). For z1 ∈
•
s∞r (I?), r > 0 large enough, for a direction α ∈ I?,

we consider
∨
ϕz1,α (ζ) = − 1

2iπ

∫
Rα,z1

ezζϕ(z)dz. We have seen that, mak-

ing α varying, one gets an element of Ě≤1(I), while
∨
ϕz1,α depends on z1

only modulo an element of O(C)≤1. We thus get a morphism of sheaves
B : A≤0 → Ě≤1/O(C)≤1 which has the following property (we refer to [1] for
the proof):

Proposition 7.11. The morphisms L : Ě≤1/O(C)≤1 → A≤0 and
B : A≤0 → Ě≤1/O(C)≤1 are isomorphisms of sheaves of C-differential alge-
bras, and L ◦ B = Id, B ◦ L = Id. Moreover, L∂ = ∂L.

7.6.2 Singularities and Laplace transform

7.6.2.1 Summable singularities

We remind that SINGθ,α can be identified with the space Γ (J,C ) of multival-
ued sections of C over J =]− π/2− α+ θ, θ + α+ π/2[⊂ S1

•
. In particular,

any singularity
O
ϕ∈ SINGθ,α can be represented by a major

∨
ϕ∈ ANAθ,α = Γ (J̌ ,O0),

with J̌ =]θ − α− 2π, θ + α[⊂ S1

•
.

Definition 7.31. An element
∨
ϕ∈ ANAθ,α = Γ (J̌ ,O0) is said summable in

the direction β ∈ Ĵ =]−α+θ, θ+α[ if there exists a neighbourhood Ĵ1 ⊂ Ĵ of

β so that the two restrictions
∨
ϕ1∈ Γ (Ĵ1,O0) and

∨
ϕ2∈ Γ (Ĵ2,O0) of

∨
ϕ over Ĵ1

and Ĵ2 = −2π+ Ĵ1 respectively, can be represented by elements of Γ (Ĵ1, E≤1)
and Γ (Ĵ2, E≤1) respectively.

A singularity
O
ϕ∈ SINGθ,α is summable in the direction Ĵ if for any β ∈ Ĵ ,

O
ϕ has a major

∨
ϕ∈ ANAθ,α which summable in the direction β.

We note SINGsum
θ,α the space of singularities

O
ϕ∈ SINGθ,α that are summable

in the direction Ĵ .

3 As usual, modulo complex conjugation
4 We abide a notation of [1], although the construction therein slightly differs from ours.
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7.6.2.2 Laplace transforms of summable singularities

We take a singularity
O
ϕ∈ SINGsum

θ,α and we consider a direction β ∈ Ĵ . We

note
∨
ϕ a major of

O
ϕ which is summable in the direction β. Using the notations

of the definition 7.31, we consider the following Laplace integral

ϕβ(z) =

∫
γ[β−2π,β],ε

e−zζ
∨
ϕ (ζ)dζ (7.10)

=

∫
δ[β−2π,β],ε

e−zζ
∨
ϕ (ζ)dζ −

∫
Rβ−2π,ε

e−zζ
∨
ϕ2 (ζ)dζ +

∫
Rβ,ε

e−zζ
∨
ϕ1 (ζ)dζ

=

∫
δ[β−2π,β],ε

e−zζ
∨
ϕ (ζ)dζ +

∫
Rβ,ε

e−zζϕ̂(ζ)dζ

(ε > 0 small enough. In the last equality, ϕ̂ = var
O
ϕ). From the arguments

used in Sect. 7.6.1, we see ϕβ defines an element of A≤0(β̆). Moreover, if
∨
ψ is another major of

O
ϕ which is summable in the direction β (for instance

∨
ϕ −

∨
ψ∈ O(C)≤1), then its Laplace integral ψβ coincide with ϕβ as elements

of A≤0(β̆). Thus ϕβ is independent of the chosen summable major and only

depends on
O
ϕ∈ SINGsum

θ,α . This allows us to write ϕβ = Lβ
O
ϕ.

Making β varying in Î, the functions Lβ
O
ϕ obviously glue together ana-

lytically (by Cauchy and using the independence of Lβ
O
ϕ with respect to the

chosen summable major), to give and element LĴ
O
ϕ of Γ (J?,A≤0).

Definition 7.32. The morphism Lβ : SINGsum
θ,α → A≤0(β̆) is called the

Laplace transform in the direction β ∈ Ĵ =] − α + θ, θ + α[. The morphism

LĴ : SINGsum
θ,α → Γ (J?,A≤0) is called the Laplace transform in the direction

Ĵ =]− α+ θ, θ + α[.

We recover with the following proposition the examples given in the intro-
duction of the chapter, see also [24].

Proposition 7.12. The singularities
O
Iσ and

O
Jσ,m belong to SINGsum

θ,α for any

direction θ and any α > 0. Moreover, for any direction β ∈ S1

•
,

Lβ
O
Iσ (z) =

1

zσ
, Lβ

O
Jσ,m (z) = (−1)m

logm(z)

zσ
, z ∈ Πβ

0 ⊂ C
•
.

This has the following consequences:

Proposition 7.13. For all σ1, σ2 ∈ C, for all m1,m2 ∈ N
O
Iσ1
∗

O
Iσ2

=
O
Iσ1+σ2

and
O
Jσ1,m1

∗
O
Jσ2,m2

=
O
Jσ1+σ2,m1+m2

.

Proof. From proposition 7.12, we deduce that L̃
O
Iσ1

=
1

zσ1
and L̃

O
Iσ2

=
1

zσ2
.

Thus by proposition 7.10, L̃
O
Iσ1
∗

O
Iσ2

=
1

zσ1+σ2
and one concludes by formal

Borel transform. Same proof for the other equality. ut
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In definition 7.32, we meant morphisms of vector spaces. As a matter of
fact, these are morphisms of C-differential algebras. This is the matter of the
following proposition.

Proposition 7.14. The space SINGsum
θ,α is a commutative and associative al-

gebra with unit δ. The Laplace transform Lβ : SINGsum
θ,α → A≤0(β̆) is com-

patible with the convolution of singularities: Lβ
O
ϕ ∗

O
ψ=

(
Lβ

O
ϕ
)(
Lβ

O
ψ
)
.

Moreover, Lβ(∂
O
ϕ) = ∂Lβ

O
ϕ.

Proof. We go back to the very definition of the convolution product of micro-

functions and singularities. For
O
ϕ,

O
ψ∈ SINGθ,α, for any β ∈ Ĵ =]−α+θ, θ+α[,

the convolution product
O
ϕ ∗

O
ψ can be represented, for ζ ∈

•
S2ε(]β − 2π, β[)

with ε > 0 as small as we want, by

∨
ϕ ∗Γ×Γ

∨
ψ (ζ) =

1

2iπ

∫
Γ×Γ

eν(ζ−(ξ1+ξ2))

ζ − (ξ1 + ξ2)

∨
ϕ (ξ1)

∨
ψ (ξ2)dξ1dξ2, (7.11)

(see 7.8), where Γ = Γβ,ε,η1,η2 is as in definition 7.7 and where
∨
ϕ,
∨
ψ are

thought of as belonging to O(
•
s0(]β − 2π, β[)). In (7.11), ν ∈ C is a free pa-

rameter which can be chosen at our convenience.

We now assume that
O
ϕ,

O
ψ∈ SINGsum

θ,α and that
∨
ϕ,
∨
ψ are summable majors in

the direction β. In that case, choosing ν = |ν|e−ıβ with |ν| large enough to en-

sure the integrability, one can rather consider the convolution product
O
ϕ ∗

O
ψ

as represented by (7.11), but this time with an endless path Γ = Γβ,ε (see

definition 7.7). This construction gives a major of
O
ϕ,

O
ψ which is summable in

the direction β. Moreover, the arguments used in the proof of the proposition

7.10 show that Lβ
O
ϕ ∗

O
ψ=

(
Lβ

O
ϕ
)(
Lβ

O
ψ
)
. ut

Example 7.7. We consider the formal Borel transform ŵ(0,0) = B̃w̃(0,0) where
w̃(0,0) is the formal series solution of the prepared ODE (3.6) associated
with the first Painlevé equation. We know by theorem 3.2 that ŵ(0,0)

can be analytically continued to the star-shaped domain
•
R(0) with at

most exponential growth of order 1 at infinity along non-horizontal di-

rections. We set
O
w(0,0)=

[ŵ(0,0) ∈ SINGint. Then
O
w(0,0)∈ SINGsum

π/2,π/2 (or
O
w(0,0)∈ SINGsum

−π/2,π/2) : just consider the major
∨
w(0,0) (ζ) = ŵ(0,0)(ζ) log(ζ)

2iπ .

The Laplace transform L]0,π[ O
w(0,0) is well-defined and gives a section of A≤0

on ]− 3π/2, π/2[. As a matter of fact,

L]0,π[ O
w(0,0)= L]0,π[ŵ(0,0) = S ]0,π[w̃(0,0)

and L]0,π[ O
w(0,0) can be thought of as belonging to the space of sections

Γ (]− 3π/2, π/2[,A1).

We now consider the singularity
O
Iσ ∗

O
w(0,0), for any σ ∈ C. Using propositions

7.12 and 7.14, this singularity belongs (for instance) to SINGsum
π/2,π/2 and

L]0,π[
O
Iσ ∗

O
w(0,0)=

(
L]0,π[

O
Iσ
)(
L]0,π[ O

w(0,0)

)
=

1

zσ
S ]0,π[w̃(0,0),



7.7 Spaces of resurgent functions 161

this time viewed as a multivalued section A≤0 on ]− 3π/2, π/2[⊂ S1

•
.

7.7 Spaces of resurgent functions

7.7.1 Preliminaries

We refer the reader to [1] (Pré I.3, lemme 3.0) for the proof of the following
key-lemma, the idea of which being due to Ecalle.

Lemma 7.5 (Key-lemma). Let Γ ⊂ C be an embedded curve, transverse
to the circles |ζ| = R for all R ≥ R0 > 0. Let Φ be a holomorphic function
on a neighbourhood of Γ . Then, for any continuous function m : R+ → R+

so that inf{m([0, ξ])} > 0 for all ξ > 0, there exists Ψ ∈ O(C) such that, for
all ζ ∈ Γ , |Φ(ζ) + Ψ(ζ)| ≤ m(|ζ|).

In what follows, we use the notations introduced in definition 7.7. We also

remind that C̃ \ Z stands for the universal covering of C \ Z. One may also

think of C̃ \ Z as the universal covering of C
•
\

⋃
θ=πk, k∈Z

{meiθ | m ∈ N?}.

Lemma 7.6. Let
O
ϕ∈ SING be a singularity which can be determined by a

major that can be analytically continued to C̃ \ Z. Then, for any direction

θ and any ε > 0 small enough, the singularity
O
ϕ has a major

∨
ϕ with the

following properties:

1. the restriction of
∨
ϕ as a sectorial germ of codirection I =]− π/2 + θ, θ + π/2[,

can be represented by a function Φ holomorphic on the cut plane

C \ [0, eiθ∞[=
•
s∞0 (Ǐ), Ǐ =]− 2π + θ, θ[;

2. Φ is bounded on
•
Sε′(I), for every ε′ > ε.

3. Φ can be analytically continued to C̃ \ Z.

Proof. Let
∨
ϕ1 be a major of

O
ϕ that can be analytically continued to C̃ \ Z.

This major can be represented by a function Φ1 holomorphic on
•
sR0 (Ǐ) ∪ S2ε(Î) \ [0, eiθ∞[, for R > 0 and ε > 0 small enough, and Φ1 can

be analytically continued to C̃ \ Z. The boundary ΓI,ε = −∂
•
Sε(I) can

be seen as an embedded curve H0 : R → C that fulfills the condition
of lemma 7.5 : one can find a function Ψ1 ∈ O(C) so that Φ2 = Φ1 + Ψ1

satisfies |Φ2(η)| ≤ exp(−|η|) for all η ∈ ΓI,ε. One can also assume that
|H ′0(s)| is bounded and these conditions ensure the integrability for the inte-

gral Φ(ζ) =
1

2iπ

∫
H0

Φ2(η)

ζ − η
dη which thus, defines a holomorphic function on

•
Sε(I). Moreover, one easily sees by Cauchy that Φ = Φ2 + Ψ2 where Ψ2 ∈ O0.

One observes that |ζ − η| ≥ ε′ − ε for (ζ, η) ∈
•
Sε′(I) × ΓI,ε, with ε′ > ε.

Thus Φ is bounded on
•
Sε′(I). Notice that Φ2 inherit from Φ1 the property

of being analytically continuable on C̃ \ Z. Thus one can analytically con-
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Fig. 7.8 Deformation of the contour ΓI,ε by an isotopy equal to the identity in a neigh-

bourhood of infinity, for θ = 0.

tinue Φ on C̃ \ Z by Cauchy, by deformation of the contour by isotopies5

H : (s, t) ∈ R× [0, 1] 7→ H(s, t) = Ht(s) ∈ C \ Z that are equal to the iden-
tity in a neighbourhood of infinity, Fig. 7.8.

Finally, from the fact that Φ = Φ1 + Ψ with Ψ1 + Ψ2 ∈ O0, we see that Φ

defines a sectorial germ
∨
ϕ of codirection I =]− π/2 + θ, θ+ π/2[ whose asso-

ciated microfunction coincides with the restriction of
O
ϕ to the codirection I.

ut

Lemma 7.7. Let
O
ϕ∈ SING be a singularity which can be determined by a

major that can be analytically continued to C̃ \ Z. Then, for any direction θ

and for any ε > 0 small enough, the singularity
O
ϕ has a major

∨
ϕ with the

following properties:

1. the restriction of
∨
ϕ as a sectorial germ of codirection I =]− π/2 + θ, θ + π/2[,

can be represented by a function Φ holomorphic on the cut plane

C \ [0, eiθ∞[=
•
s∞0 (Ǐ), Ǐ =]− 2π + θ, θ[;

2. |Φ(η)| ≤ exp(−|η|) for all η ∈ ΓI,ε, where ΓI,ε = −∂
•
Sε(I) ⊂ •s∞0 (Ǐ);

3. Φ can be analytically continued to C̃ \ Z.

Proof. Just consider first the function Φ1 given by lemma 7.6, then use lemma
7.5 to define Φ from Φ1. ut

The above lemmas 7.6 and 7.7 motivate the introduction of new Riemann
surfaces that will be used in a moment.

Definition 7.33. Let θ ∈ S1 be a direction and ζ0 ∈ C \ [0, eiθ∞[. We note
Rθ
ζ0

the set of paths of the form λ = λ1λ2 where λ1 : [0, 1] → C \ [0, eiθ∞[
with λ(0) = ζ0, and λ2 : [0, 1]→ C \ Z.
For λ ∈ Rθ

ζ0
, we note cl(λ) its equivalence class for the relation of homotopy

∼Rθζ0
of paths in Rθ

ζ0
with fixed extremities. We set

Rθζ0 = {ζ = cl(λ) | λ ∈ Rθ
ζ0} and p : ζ = cl(λ) 7→

•
ζ= λ(1) ∈ C?.

5 That is H is a homotopy and for each t ∈ [0, 1], Ht is an embedding. We remind that we
see ΓI,ε as an embedded curve H0 : R→ C.
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Proposition 7.15. The space Rθζ0 can be equipped with a separated topology

that makes (Rθζ0 , p) an étalé space. The space Rθζ0 is arcconnected and simply
connected, thus defines a Riemann surface by pulling back by p the complex
structure of C. Moreover, for two points ζ0, ζ1 ∈ C\[0, eiθ∞[, the two Riemann
surfaces Rθζ0 and Rθζ1 are isomorphic.

The proof of proposition 7.15 is left as an exercise. We complete the above
proposition with a definition.

Definition 7.34. We note Rθ for the equivalent class of Riemann surfaces

Rθζ0 given by proposition 7.15. We note
•
Rθ,(0) = C \ [0, eiθ∞[. We call

“principal sheet” the unique domain Rθ,(0) ⊂ Rθ so that the resctriction
p|Rθ,(0) realizes a homeomorphism between Rθ,(0) and the simply connected

domain
•
Rθ,(0).

7.7.2 Resurgent functions

Various spaces of so-called resurgent functions can be defined and used ac-
cording to the context. We start with the notion of resurgent singularities.

7.7.2.1 Resurgent singularities, resurgent asymptotic classes

Definition 7.35. A singularity
O
ϕ∈ SING is said to be Z-resurgent when

it can be determined by a major
∨
ϕ∈ ANA that can be analytically contin-

ued to C̃ \ Z. We denote by RESZ or simply RES the space of Z-resurgent
singularities.

A Z-resurgent singularity is often simply called a Z-resurgent function. Throughout
this course we will usually write “resurgent singularity” in place of Z-resurgent

singularity.

Remark 7.5. It is important to keep in mind that the minor ϕ̂ of any resurgent

singularity
O
ϕ∈ RES, can be analytically continued to C̃ \ Z, since the minor

ϕ̂ does not depend on the chosen major.

Definition 7.36. One says that
O
ϕ∈ RES is a resurgent constant when

O
ϕ

has a major which can be analytically continued to C
•

. The space of resurgent

constants is denoted by CONS.

Definition 7.37. An asymptotic class
M
ϕ∈ ASYMP is called a Z-resurgent

asymptotic class, resp. a resurgent constant, when its formal Borel trans-

form
O
ϕ is a Z-resurgent singularity, resp. a resurgent constant. We denote by

R̃ESZ or simply R̃ES the space made of Z-resurgent asymptotic classes. We

denote by C̃ONS the sub-space of resurgent constants.

A Z-resurgent asymptotic class is often simply called a Z-resurgent function or even
a resurgent function.

Example 7.8. The singularities
O
Iσ and

O
Jσ,m are resurgent constants, as well

as their associated asymptotic classes
M
Iσ and

M
Jσ,m.
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7.7.2.2 Resurgent functions, resurgent series

We remind the following simple definition, for objects much discussed in [24].

Definition 7.38. The C-differential commutative and associative convolu-
tion algebra Cδ ⊕ R̂Z with unit δ, is called a space of Z-resurgent functions.

We denote by
O
RZ⊂ RES the C-differential commutative and associative con-

volution algebra made of resurgent singularities of the form
O
ϕ= aδ +[ϕ̂ with

ϕ̂ ∈ R̂Z.

Since Cδ⊕ R̂Z is a convolution algebra, the identity [ϕ̂ ∗ [ϕ̂ =[ (ϕ̂ ∗ ϕ̂) (proposition

7.6) implies that
O
RZ is indeed a convolution algebra. One usually uses abridged

notation
O
R in this course.

Definition 7.39. A series expansion ϕ̃ ∈ C[[z−1]] is a Z-resurgent series
when its formal Borel transform B̃ϕ̃ is a Z-resurgent function or, equivalently,
when the asymptotic class \ϕ̃ belongs to R̃ESZ. We denote by R̃Z the C-
differential commutative and associative algebra made of Z-resurgent series.

Throughout this course we usually simply write “resurgent functions” or “resurgent

series” instead of Z-resurgent functions or Z-resurgent series, since there is no risk

of misunderstanding.

7.7.2.3 Resurgent singularities and convolution

Theorem 7.1. The space RES is a C-differential commutative and associa-
tive convolution algebra with unit δ, and CONS ⊂ RES is a subalgebra. There-
fore, the space R̃ES is a C-differential commutative and associative algebra

and C̃ONS ⊂ R̃ES is a subalgebra.

Proof. (Adapted from [8, 1]. The reader should look before at the reasoning
made for the proof of proposition 4.6).
It is enough to only show that RES is a convolution space. We take two

singularities
O
ϕ,

O
ψ ∈ RES, we choose a direction θ and we suppose 0 < ε� 1.

By lemma 7.7 –resp. lemma 7.6–
O
ϕ –resp.

O
ψ– has a major such that its

restriction as a sectorial germ of codirection I =]− π/2 + θ, θ+ π/2[, can be

represented by a function
∨
ϕ –resp.

∨
ψ–, holomorphic on

•
Rθ,(0), that can be

analytically continued to the Riemann surface (Rθ, p) and moreover, satisfies
the condition:

1. |
∨
ϕ(η)| ≤ exp(−|η|) for all η ∈ ΓI,ε, where ΓI,ε = −∂

•
Sε(I) ⊂

•
Rθ,(0);

2.
∨
ψ is bounded on

•
Sε(I).

We know by lemma 7.1 that ζ − ΓI,ε ⊂
•
Sε(I) for every ζ ∈

•
S2ε(I). We

also think of ΓI,ε as an embedded curve H0 : R → C with |H ′0(s)| bounded.
Therefore, the above properties and the dominated Lebesgue theorem, ensure
that the integral

χ(ζ) =
∨
ϕ ∗H0

∨
ψ(ζ) =

∫
H0

∨
ϕ
(
η
)∨
ψ(ζ − η)dη (7.12)
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defines a holomorphic function on
•
S2ε(I) ⊂

•
Rθ,(0) which by (7.7), represents

the convolution product
O
ϕ ∗

O
ψ. We want to show that χ can be analytically

continued onto the Riemann surface (Rθ, p) (thus to C̃ \ Z as well).

We choose a point ζ0 ∈
•
S2ε(I) so that {ζ0 − H0} ∩ Z = ∅, and we

view χ as a germ of holomorphic functions at ζ0: for ξ ∈ C close to 0,

χ(ζ0 + ξ) =

∫
H0

∨
ϕ
(
η
)∨
ψ(ξ + ζ0 − η)dη. We take a smooth path γ : [0, 1]→ C \ Z

starting from ζ0 = γ(0). We fix R� ε so that γ([0, 1]) ⊂ D(0, R) and
length(γ) < R. We will get the analytic continuation of χ along γ by continu-
ously deformingH0 through an isotopyH : (s, t) ∈ R× [0, 1] 7→ Ht(s) ∈ C \ Z
that is equal to the identity for |s| large enough. One introduces a C1 func-
tion η : C→ [0, 1] satisfying {ζ ∈ C | η(ζ) = 0} = Z. We also set a C1 function
ρ : C→ [0, 1] with compact support so that the conditions ρ|D(0,5R) = 1 and
ρ|C\D(0,6R) = 0 are fulfilled. In what follows, we see H0 as an embedded curve
R→ C and there is no loss of generality in supposing the existence of s0 > 0
so that H0(s) ∈ D(0, 3R) for |s| < s0, else H0(s) ∈ C \D(0, 3R).

One considers the non-autonomous vector fieldX(ζ, t) =
η(ζ)ρ(ζ)

η(ζ) + η
(
γ(t)− ζ

)γ′(t).
We note g : (t0, t, ζ0) ∈ [0, 1]2 × C 7→ g(t0, t, ζ0) = gt0,t(ζ0) ∈ C the (well-
defined global) flow of the vector field, that is t ∈ [0, 1] 7→ ζ(t) = gt0,t(ζ0)

is the unique integral curve satisfying both
dζ

dt
= X(ζ, t) and the datum

ζ(t0) = ζ0. One finally notes φt(ζ) = g0,t(ζ).
Notice that any integral curve ζ(t) of X has length less than length(γ) < R,
since |X(ζ, t)| ≤ |γ′(t)|. With this remark and arguments detailed in [24], we
can observe the following properties, for every t ∈ [0, 1]:

1. φt(γ(0)) = γ(t), that is γ is an integral curve. (Notice that ρ
(
γ(t)

)
= 1

because γ([0, 1]) ⊂ D(0, R)).
2. φt(C \ Z) ⊂ C \ Z. (One has φt(ω) = ω for any ω ∈ Z since η(ω) = 0).
3. φt(ζ) = ζ for any ζ ∈ C \D(0, 6R) (since ρ|C\D(0,6R) = 0).

4. for every ζ ∈ D(0, 3R), φt
(
γ(0)−ζ

)
= γ(t)−φt

(
ζ
)
. Indeed, if t 7→ ζ(t) is an

integral curve starting from ζ(0) ∈ D(0, 3R), then ζ(t) ∈ D(0, 4R) for ev-
ery t ∈ [0, 1] (the integral curve have length < R), thus
dζ

dt
=

η(ζ)

η(ζ) + η
(
γ(t)− ζ

)γ′(t). Consider ξ(t) = γ(t) − ζ(t); one has

dξ

dt
=

η(ξ)

η(ξ) + η
(
γ(t)− ξ

)γ′(t) =
η(ξ)ρ(ξ)

η(ξ) + η
(
γ(t)− ξ

)γ′(t) because |ξ(t)| < 5R

for every t ∈ [0, 1], thus ξ is an integral curve of X.
5. for every ζ ∈ C\D(0, 3R), |γ(t)−φt

(
ζ
)
| > R. As a matter of fact, observe

that if t 7→ ζ(t) is an integral curve starting from ζ(0) ∈ C\D(0, 3R), then
|ζ(t)| > 2R for every t ∈ [0, 1] and therefore |γ(t)− φt

(
ζ
)
| > R.

We define the isotopy H : (s, t) ∈ R× [0, 1] 7→ H(s, t) = Ht(s) by setting
Ht(s) = φt

(
H0(s)

)
. Since H0 avoids Z, one has Ht(s) ∈ C \ Z by prop-

erty 2. By property 3, we remark that for |s| large enough, H is a con-

stant map. Notice also that H0 ⊂
•
Rθ,(0) can be lifted uniquely with respect

to p on the principal sheet Rθ,(0) of Rθ. We note H0 this lifting. We can
use the lifting theorem for homotopies [11, 5] to get the continuous map-
ping H : (s, t) ∈ R× [0, 1] 7→ H(s, t) = Ht(s) ∈ Rθ which makes commuting
the following diagram:
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Rθ
H↗ ↓ p

R× [0, 1] −→ C.
H

(7.13)

We now setK : (s, t) ∈ R× [0, 1] 7→ K(s, t) = Kt(s) = γ(t)−Ht(s). We know

that K0(s) = γ(0)−H0(s) ∈
•
Sε(I) ⊂

•
Rθ,(0) for every s ∈ R. In particular,

one can lift K0 uniquely with respect to p into an embedded curve K0 on the
principal sheet Rθ,(0) of Rθ. Moreover K0(s) ∈ C \ Z, for every s ∈ R. Prop-

erty 5 ensures that Kt(s) stays in
•
Sε(I) for |s| ≥ s0, otherwise by property

4, Kt(s) belongs to C\Z. This implies that Kt can be lifted uniquely with re-
spect to p into an embedded curve Kt which lies on the principal sheet Rθ,(0)

of Rθ for |s| ≥ s0. Applying again the lifting theorem for homotopies, one
obtains a continuous mapping K : (s, t) ∈ R× [0, 1] 7→ H(s, t) = Ht(s) ∈ Rθ
that makes commuting the following diagram:

Rθ
K↗ ↓ p

R× [0, 1] −→ C.
K

(7.14)

We finally introduce the two holomorphic functions Φ, Ψ ∈ O(Rθ) such that

Φ(ζ) =
∨
ϕ
(
p(ζ)

)
, Ψ(ζ) =

∨
ψ
(
p(ζ)

)
for ζ ∈ Rθ,(0). With these notations, the

germ of holomorphic functions χ at ζ0 = γ(0) reads

χ(γ(0) + ξ) =

∫
R
Φ
(
H0(s)

)
Ψ(ξ +K0(s))H ′0(s)ds

and its analytic continuation along γ is obtained by

χ(γ(t) + ξ) =

∫
R
Φ
(
Ht(s)

)
Ψ(ξ +Kt(s))H ′t(s)ds. (7.15)

Indeed, remark that for |s| large enough, Φ
(
Ht(s)

)
=

∨
ϕ
(
Ht(s)

)
and

|
∨
ϕ
(
Ht(s)

)
| ≤ exp(−|Ht(s)|). Also, for |s| ≥ s0, Ψ

(
ξ + Kt(s)

)
=
∨
ψ
(
Kt(s)

)
which is bounded since Kt(s) ∈

•
Sε(I). Thus the integral (7.15) is well-

defined. The fact that (7.15) provides the analytic continuations comes from
the Cauchy formula, see analogous arguments in, e.g. [24]. ut

7.7.2.4 Supplements

One often uses other spaces in practice as we now exemplify.

The space RES(θ,α)(L) The space R̂(θ,α)(L) was introduced by definition

4.18 and we know by proposition 4.6 that Cδ ⊕ R̂(θ,α)(L) is a convolution
algebra. The following definition thus makes sense.

Definition 7.40. We denote by
O
R(θ,α)(L) ⊃

O
R the C-differential commuta-

tive and associative convolution algebra made of singularities of the form
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O
ϕ= aδ+[ϕ̂ ∈ SING with ϕ̂ ∈ R̂(θ,α)(L). The associated space of formal series

is denoted by R̃(θ,α)(L).

By its very definition, any element ϕ̂ ∈ R̂(θ,α)(L) is a germ of holomorphic
functions at 0 that can be analytically continued to the Riemann surface

R(θ,α)(L). This means that any
O
ϕ∈

O
R(θ,α)(L) is a simple singularity that

has a major
∨
ϕ which can be analytically continued to a Riemann surface

R
•

(θ,α)(L) constructed from R(θ,α)(L) \ {0} as an étalé space above C
•

that

makes commuting the diagram:

R
•

(θ,α)(L)

↓ ↘
R(θ,α)(L) \ {0} C

•
↓ ↙

C?

. (The construction of

R
•

(θ,α)(L) is obvious and is left to the reader).

Since
O
R(θ,α)(L) is a convolution algebra, we know that for any two singu-

larities
O
ϕ,

O
ψ∈

O
R(θ,α)(L), their convolution product

O
ϕ ∗

O
ψ belongs to

O
R(θ,α)(L)

as well, thus has a major that can be analytically continued to R
•

(θ,α)(L).

In substance, this comes from the property that [ϕ̂ ∗ [ϕ̂ =[ (ϕ̂ ∗ ϕ̂) for two
integrable singularities (proposition 7.6). Now, what about the convolution

product
O
ϕ ∗

O
ψ of two singularities

O
ψ∈

O
R(θ,α)(L) and

O
ϕ∈ RES ? To give the

answer, we prefer to shift to a more general case and we introduce a new
definition.

Definition 7.41. Let be θ ∈ {0, π} ⊂ S1, α ∈]0, π/2] and L > 0. We denote

by RES(θ,α)(L) the space made of singularities that have majors that can
be analytically continued to the Riemann surface R

•
(θ,α)(L). The associated

space of asymptotic classes is denoted by R̃ES
(θ,α)

(L) ⊂ ASYMP.

Proposition 7.16. The space RES(θ,α)(L) is a C-differential commutative

and associative convolution algebra with unit δ, contained RES and
O
R(θ,α)(L)

as subalgebras.

Proof. The proof follows that of theorem 7.16 but for the fact that one adds
the arguments used at the end of the proof of proposition 4.6.

The spaces RES(k) The spaces R̂(k) were introduced by definition 4.15.
They provide new spaces of singularities that are worthy of attention.

Definition 7.42. For k ∈ N?, we denote by
O
R(k) the space of singularities of

the form
O
ϕ= aδ +[ϕ̂ ∈ SING with ϕ̂ ∈ R̂(k). The associated space of formal

series is denoted by R̃(k).

Remark 7.6. Notice that the set of spaces (
O
R(k))k∈N provides an inverse sys-

tem of spaces whose inverse limit lim
←

O
R(k) =

⋂
k

O
R(k) is

O
R. This is why we

sometimes write
O
R(∞) =

O
R.

The space
O
R(1) is of particular interest since, from propositions 4.3 and 7.6,

O
R(1) makes a convolution algebra.
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The space
O
R(k) is made of simple singularities that have majors that

can be analytically continued to a Riemann surface R
•

(k) above C
•

obvi-

ously deduced from R(k) \ {0} and that makes commuting the diagram:
R
•

(k)

↓ ↘
R(k) \ {0} C

•
↓ ↙

C?

. (The details are left to the reader).

We now consider larger spaces of singularities.

Definition 7.43. We denote by RES(k) the space of singularities that have
majors that can be analytically continued to the Riemann surface R

•
(k), for

k ∈ N?. We denote by R̃ES(k) ⊂ ASYMP the space of asymptotic classes
whose formal Borel transform belongs to RES(k).

Remark 7.7. Notice again that lim
←

RES(k) =
⋂
k

RES(k) = RES, and we some-

times write RES(∞) = RES.

We will have a special interest in RES(1) because of the following analogous
to proposition 7.16.

Proposition 7.17. The space RES(1) is a C-differential commutative and

associative convolution algebra with unit δ. It contains RES and
O
R(1) as

subalgebras.

We omit the (rather lengthy) proof of this proposition. The main idea is
to consider the integral representation (7.12) used in the proof of theorem
7.1 and to adapt the construction made in Sect. 4.2.

Conjecture 7.1. We conjecture that any space RES(k) makes a convolution
algebra as well.

7.8 Alien operators

Alien operators are powerful tools for analysing the singularities of resur-
gent functions. These operators are carefully defined and discussed in [24],

especially when they operate on the algebra Cδ ⊕ R̂simp of simple resurgent
functions. Most of the arguments there can be easily adapted for alien oper-
ators acting on RESZ, once the study of singularities had been made. This is
the reason why we introduce the alien operators in a rather sketchy manner
in what follows.

7.8.1 Alien operators associated with a triple

7.8.1.1 Mains definitions

We consider two directions θ1, θ2 ∈ S1, a point ω ∈ Z and a sectorial germ
∨
ϕ∈ O0

θ1
of direction θ1. We can think of

∨
ϕ as a sectorial germ on a sector
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•
sR1

0 (I1) for 0 < R1 < 1 and I1 ⊂ S1 an open arc bisected by θ1, and this is
what we do in what follows.

We now assume that
∨
ϕ can be analytically continued to C̃ \ Z. We consider

a path γ : J → C \ Z starting from ζ1 ∈
•
sR1

0 (I1) and ending at ζ2 close to ω

so that ζ2 − ω ∈
•
sR2

0 (I2) with 0 < R2 < 1 and I2 ⊂ S1 an open arc bisected
by θ2. See Fig. 7.9.

By hypotheses, the analytic continuation (contγ
∨
ϕ) of

∨
ϕ along γ is a well-

defined germ of holomorphic functions at ζ2 that only depends on the ho-
motopy class of γ (for the relation of homotopy of paths in C \ Z with fixed

extremities). Moreover, if
∨
ψ∈ Oζ2−ω stands for the germ of holomorphic func-

tions at ζ2 − ω defined by
∨
ψ (ξ) =

(
contγ

∨
ϕ
)
(ω + ξ) then, still by analytic

continuations,
∨
ψ determines a unique sectorial germ on

•
sR2

0 (I2) and thus, by

restriction, a unique sectorial germ
∨
ψ∈ O0

θ2
.

This justifies the following definition adapted from [24].

Definition 7.44. Let be θ1, θ2 ∈ S1, ω ∈ Z and
∨
ϕ∈ O0

θ1
a sectorial germ of

direction θ1 that can be analytically continued to C̃ \ Z. Let γ : J → C \ Z
be a path starting from a sufficiently small sector

•
s0(I1) bisected by θ1 and

ending close to ω in a sufficiently small sector of the form ω +
•
s0(I2) where

I2 bisects θ2. Then, one denotes by
•
Aγω(θ2, θ1)

∨
ϕ∈ O0

θ2
the sectorial germ of

direction θ2 represented by
∨
ψ (ξ) =

(
contγ

∨
ϕ
)
(ω + ξ) for ξ ∈ •s0(I2).

We now consider two directions θ1, θ2 ∈ S1

•
and a singularity

O
ϕ∈ RESZ.

Thinking of
O
ϕ as a singularity of SINGθ1,α1

(for some α1 > 0), its mi-
nor ϕ̂ can be seen as representing a sectorial germ ϕ̂ ∈ O0

θ̇1
of direction

θ̇1 = π̇(θ1) ∈ S1 that can be analytically continued to C̃ \ Z. Therefore, un-

der the conditions of definition 7.44, the sectorial germ
∨
ψθ̇2=

•
Aγω(θ̇2, θ̇1)ϕ̂ of

direction θ̇2 = π̇(θ2) ∈ S1 is well-defined. Even, by analytic continuations, one

can deduce from
∨
ψθ̇2 a sectorial germ of direction Iθ̇2 =]−π+ θ̇2, θ̇2 +π[⊂ S1

that we denote by
∨
ψIθ̇2
∈ Γ (Iθ̇2 ,O

0). By inverse image by π̇ of the sheaf O0,

this sectorial germ
∨
ψIθ̇2

determined a uniquely defined sectorial germ of di-

rection Iθ2 =]− π+ θ2, θ2 + π[⊂ S1

•
that we denote by

∨
ψIθ2

. Still by analytic

continuations, this sectorial germ gives rise to a (multivalued) section on any

2

1

1

2

θ

θ

ζ

ζ

γ

0 1 2 3−2 −1

Fig. 7.9 A triple (γ, θ1, θ2) defining the operator Aγω(θ1, θ2) at ω = −2.
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arc of the form ] − α − 2π + (θ2 + π), (θ2 + π) + α[∈ S1

•
, α > 0, that is to

an element
∨
ψ of ANA =

⋂
α>0 ANA(θ2+π),α, whose singularity

O
ψ belongs to

RESZ.

Definition 7.45. Let be θ1, θ2 ∈ S1

•
and ω ∈ Z. Let γ : J → C \Z be a path

starting from a sufficiently small sector
•
s0(I1) bisected by θ̇1 = π̇(θ1) and

ending close to ω in a sufficiently small sector of the form ω+
•
s0(I2) where I2

bisects θ̇2 = π̇(θ2). For any singularity
O
ϕ∈ RESZ, one denotes by Aγω(θ2, θ1)

O
ϕ

the singularity
O
ψ that can be represented by a major

∨
ψ∈ ANA = Γ (S1

•
,O0)

whose restriction
∨
ψθ2∈ O

0
θ2

is the sectorial germ of direction θ2 determined

by
∨
ψθ̇2=

•
Aγω(θ̇2, θ̇1)ϕ̂, where ϕ̂ is the minor of

O
ϕ.

The linear operator Aγω(θ2, θ1) : RESZ → RESZ is called the alien operator
at ω associated with the triple (γ, θ1, θ2).

The alien operators have their counterparts on asymptotic classes through
formal Borel and Laplace transforms.

Definition 7.46. The alien operator Aγω(θ2, θ1) at ω associated with the
triple (γ, θ1, θ2) is defined on asymptotic classes by making the following

diagram commuting:

RES
Aγω(θ2,θ1)−→ RES

L̃ ↓↑ B̃ L̃ ↓↑ B̃
R̃ES

Aγω(θ2,θ1)−→ R̃ES

.

7.8.1.2 The spaces RES(θ̇,α)(L) and RES(k)

Alien operators acting on RES(θ̇,α)(L) We would like to define alien

operators acting on the space RES(θ̇,α)(L). We take θ ∈ {πk, k ∈ Z} ⊂ S1

•
,

α ∈]0, π/2], L > 0 and m ∈ {1, · · · , dLe}. We set θ̇ = π̇(θ) ∈ {0, π}, we con-

sider a singularity
O
ϕ∈ RES(θ̇,α)(L) whose minor is ϕ̂. By the very definition

7.41 of the space RES(θ̇,α)(L), the sectorial germ
∨
ψθ̇2=

•
Aγω(θ̇2, θ̇)ϕ̂ ∈ O0

θ̇2
is

well defined under the following conditions:

1. ω = meiθ̇ and the path γ is of type γθ̇ε with ε = (±)m−1 ∈ {+,−}m−1. In
that case, θ̇2 should be θ̇ − π;

2. however, starting from
∨
ψθ̇−π and be analytic continuations, one can con-

sider as well sectorial germs
∨
ψθ̇2 with θ̇2 ∈ Iθ̇ =]− 2π + θ̇, θ̇[⊂ S1.

By a construction already done, the various sectorial germs
∨
ψθ̇2 glue together

and provide a sectorial germ
∨
ψIθ̇∈ Γ (Iθ̇,O0) of direction Iθ̇. Still by analytic

continuations and moving to multivalued sectorial germs by inverse image by

π̇ of the sheaf O0, one eventually gets an element
∨
ψ of ANAθ,α with π̇(θ) = θ̇.

This gives sense to the following definition.
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Definition 7.47. Let be θ ∈ {πk, k ∈ Z} ⊂ S1

•
, α ∈]0, π/2] and L > 0. We

write θ̇ = π̇(θ) ∈ {0, π} ⊂ S1. We pick m ∈ {1, · · · , dLe}, we set ω = meiθ̇

and we assume that the path γ is of type γθ̇(±)m−1
.

For any singularity
O
ϕ∈ RES(θ̇,α)(L), one denotes by Aγω(θ, θ)

O
ϕ the singu-

larity
O
ψ∈ SINGθ,α that can be represented by a major

∨
ψ∈ ANAθ,α whose

restriction
∨
ψθ−π∈ O0

θ−π is the sectorial germ of direction θ − π determined

by
∨
ψθ−π=

•
Aγω(θ̇ − π, θ̇)ϕ̂ where ϕ̂ stands for the minor of

O
ϕ.

This gives rise to a linear operator Aγω(θ, θ) : RES(θ̇,α)(L) → SINGθ,α, still
called the alien operator at ω associated with the triple (γ, θ, θ).

Alien operators acting on RES(k) We now work on the spaces RES(k)

given by definition 7.43. We want to demonstrate that alien operators can be
defined on RES(k), associated with triples of the form (γ, θ, θ) with γ of type

γθ̇(+)m
or γθ̇(−)m

.

We start with RES(1). Let be θ1 ∈ {πk, k ∈ Z} ⊂ S1

•
and set ω1 = eiθ̇1

with θ̇1 = π̇(θ1). The very definition of RES(1) and the above reasoning lead
straight to the following linear operators, for any integer m1 ≥ 2 and any
ε ∈ {−,+}:

A
γ
θ̇1
()
ω1 (θ1, θ1) : RES(1) → SINGθ1,π, A

γ
θ̇1
(ε)m1−1
m1ω1 (θ1, θ1) : RES(1) → SINGθ1+π/2,π/2

(7.16)
Let us now move to the next case k = 2, that is we consider the space

RES(2) ⊂ RES(1). Of course the above operators (7.16) still act on RES(2)

but, however, their ranges can be made more precise. By the very definition

of RES(2), the minor ϕ̂ of any singularity
O
ϕ∈ RES(2), when considered as a

sectorial germ, can be analytically continued along any path γ of type γθ̇1εn1

with

εn1 ∈ {
(
(±)n1 , (+)m1−1

)
,
(
(±)n1 , (−)m1−1

)
| (n1,m1) ∈ (N?)2}.

Moreover, introducing θ̇2 = θ̇1 + (n− 1)π, ω1 = eiθ̇1 , and ω2 − ω1 = eiθ̇2 , the
analytic continuation contγ ϕ̂ of ϕ̂ along γ is a germ of holomorphic func-
tions that can be analytically continued onto the simply connected domain

p(Rεn1 ,θ̇) = C \ {]−∞, p] ∪ [p+ 1,+∞[} where ]p, (p+ 1)[=]ω1, ω2[ when
m1 = 1, ]p, (p+ 1)[=](m1 − 1)ω2,m1ω2[ when m1 ≥ 2. Considering only odd
values for n1 (thus θ̇2 = θ̇1 on S1), one immediately sees that (7.16) becomes:

A
γ
θ̇1
()
ω1 (θ1, θ1) : RES(2) → RES(1), (7.17)

A
γ
θ̇1
(ε)1

2ω1
(θ1, θ1) : RES(2) → SINGθ1,π

A
γ
θ̇1
(ε)m1−1
m1ω1 (θ1, θ1) : RES(2) → SINGθ1+π/2,π/2, m1 ≥ 3.

Notice in particular that the operator A
γ
θ̇1
()
ω1 (θ2, θ1) now acts on RES(2) as

well, for any direction θ2 ∈ S1

•
.

The reasoning generalizes and we give the result.
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Lemma 7.8. Let be θ1 ∈ {πk, k ∈ Z} ⊂ S1

•
. For any integer k ≥ 1, any

ε ∈ {−,+} and any m1 ∈ N?, setting ω1 = eiθ̇1 , the alien operator A
γ
θ̇1
(ε)m1−1
m1ω1 (θ1, θ1)

is well defined on RES(k) with the range:

A
γ
θ̇1
(ε)m1−1
m1ω1 (θ1, θ1) : RES(k) → RES(k−m1), 1 ≤ m1 ≤ k − 1 (7.18)

A
γ
θ̇1
(ε)m1−1
m1ω1 (θ1, θ1) : RES(k) → SINGθ1,π, m1 = k

A
γ
θ̇1
(ε)m1−1
m1ω1 (θ1, θ1) : RES(k) → SINGθ1+π/2,π/2, m1 ≥ k + 1.

7.8.1.3 Miscellaneous properties

We start with a simple result which is a consequence of the very definitions.

Proposition 7.18. For any alien operator of the form

Aγω(θ2, θ1) : RESZ → RESZ, acting on RESZ, RES(θ̇,α)(L) or RES(k), for

any singularity
O
ϕ :

Aγω(θ2, θ1)
(
∂

O
ϕ
)

= (∂ − ω)Aγω(θ2, θ1)
O
ϕ . (7.19)

In other words, [Aγω(θ2, θ1), ∂] = −ωAγω(θ2, θ1).

We introduce new definitions before keeping on.

Definition 7.48. For any k ∈ Z, one denotes by %k ∈ Aut(π) the deck
transformation of the cover (C

•
, π), defined by:

%k : ζ = reiθ ∈ C
•
7→ %k(ζ) = reiθ+2iπk ∈ C

•
.

For any singularity of the form
O
ϕ = sing0

∨
ϕ ∈ SING,

∨
ϕ ∈ ANA, we write

%k.
O
ϕ = sing0 (

∨
ϕ ◦ %k) ∈ SING.

More generally, for any r ∈ R, one defines

%r : ζ = reiθ ∈ C
•
7→ %r(ζ) = reiθ+2iπr ∈ C

•

and %r.
O
ϕ = sing0 (

∨
ϕ ◦ %r) ∈ SING.

Remark 7.8. With this notation, the variation map var : SING→ ANA reads
var = id− %−1..

The alien operators associated with a triple satisfy some identities as can
be easily observed:

Proposition 7.19. For any given alien operator Aγω(θ2, θ1) : RESZ → RESZ
and for any k ∈ Z,

Aγω(θ2, θ1 + 2πk) = Aγω(θ2, θ1)%k. , Aγω(θ2 + 2πk, θ1) = %−k.Aγω(θ2, θ1).
(7.20)
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λ ω
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θ
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ζ

ζ

γ

0 1 2−2 −1

Fig. 7.10 Two triples (γ, θ1, θ2) and (γλω , θ1, θ2) for the point ω = −2, with λω a closed
path of winding number windω(λω) = 1 at ω.

Let us now consider a point ω ∈ Z and a given triple (γ, θ1, θ2). One
can prolongs the path γ into the path γλkω where λkω is a closed path
near ω that surrounds that point like on Fig. 7.10, with winding num-
ber windω(λkω) = k ∈ Z at that point. One can as well consider the path
λk0γ where λk0 is a closed path surrounding the origin with winding number
windω(λk0) = k ∈ Z. A little thought provides the following result.

Proposition 7.20. We consider a triple (γ, θ1, θ2) defining alien operator
Aγω(θ2, θ1) : RESZ → RESZ at ω. We assume that γλkω, resp. λk0γ is a product

of paths so that λkω, resp. λk0 , is a closed path surrounding ω,resp. 0, and close

to that point, with winding number windω(λkω) = k, resp. wind0(λk0) = k,
k ∈ Z. Then,

Aλ
k
0γ
ω (θ2, θ1) = Aγω(θ2, θ1)%k. , Aγλ

k
ω

ω (θ2, θ1) = %k.Aγω(θ2, θ1). (7.21)

In particular,

Aγω(θ2, θ1+2πk) = Aλ
k
0γ
ω (θ2, θ1), Aγω(θ2+2πk, θ1) = Aγλ

−k
ω

ω (θ2, θ1). (7.22)

We end with the following property.

Proposition 7.21. For any alien operator of the form

Aγω(θ, θ) acting on RESZ or RES(θ̇,α)(L), for any singularity
O
ϕ and any resur-

gent constant
O

const∈ CONS,

Aγω(θ, θ)
( O

const ∗
O
ϕ
)

=
O

const ∗
(
Aγω(θ, θ)

O
ϕ
)
. (7.23)

We stress that in proposition 7.21, only alien operators of the form
Aγω(θ2, θ1) with θ1 = θ2 are considered. We omit the proof of this propo-
sition which relies on a careful reading of what have been done for showing
theorem 7.1.

7.8.2 Composition of alien operators

7.8.2.1 Alien operators on RESZ

The following definition is adapted from [24].

Definition 7.49. One calls alien operator at ω ∈ Z associated with the
couple (θ1

1, θ
m
2 ) any linear combination of composite operators of the form
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Fig. 7.11 The triple (γ1, θ11 , θ
1
2) for the point ω1 = −2, the triple (γ2, θ12 , θ

2
2) for the point

ω2 − ω1 = 4, with θ21 = θ12 + π.

Aγmωm−ωm−1
(θm2 , θ

m
1 ) ◦ · · · ◦ Aγ2ω2−ω1

(θ2
2, θ

2
1) ◦ Aγ1ω1

(θ1
2, θ

1
1) : RESZ → RESZ

where (ω1, · · · , ωm) ∈ Zm, m ∈ N? with ω = ωm =
∑m
j=1 ωj − ωj−1 and the

convention ω0 = 0.

Example 7.9. We exemplify the above definition. We take ω1 = −2 and
ω2 = 2. The alien operatorAγ1ω1

(θ1
2, θ

1
1) at the point ω1 = −2 is associated with

the triple (γ1, θ
1
1, θ

1
2) drawn on Fig. 7.11. The alien operator Aγ1ω2−ω1

(θ2
2, θ

2
1)

at the point ω2 − ω1 = 4 is associated with the triple (γ1, θ
1
1, θ

1
2) drawn on

Fig. 7.11. We furthemore assume that θ2
1 − θ1

2 ∈ [0, 2π[ to fix our mind.
From the very definitions of the alien operators and of a minor, one easily

checks that the composite alien operator Aγ2ω2−ω1
(θ2

2, θ
2
1) ◦ Aγ1ω1

(θ1
2, θ

1
1) at ω2,

can be written as the difference of two simple alien operators, namely

Aγ2ω2−ω1
(θ2

2, θ
2
1) ◦ Aγ1ω1

(θ1
2, θ

1
1) = AΓ

+

ω2
(θ2

2, θ
1
1)−AΓ

−

ω2
(θ2

2, θ
1
1).

In this equality, Γ+ and Γ−1 stands for the (homotopy class of the) product
of paths Γ+ = γ1λ

+
ω1

(ω1 + γ2) and Γ− = γ1λ
−
ω1

(ω1 + γ2) respectively, where
the paths λ+

ω1
and λ−ω1

drawn on Fig. 7.12, are homotopic to small arcs so
that (λ−ω1

)−1λ+
ω1

makes a loop around ω1 counterclockwise.

Typically, the end point of γ1 is ζ12 = ω1 + reiθ̇
1
1 while the starting point of γ2

is ζ21 = reiθ̇
2
1 with 0 < r � 1. Then, λ+ω1 : θ̇ ∈ [θ̇12 , θ̇

2
1 ] 7→ ω1 + reiθ̇ while

(λ−ω1 )−1 : θ̇ ∈ [−2π + θ̇21 , θ̇
1
2 ] 7→ ω1 + reiθ̇.

From this result, one deduces from proposition 7.20 that for any k ∈ Z,

Aγ2ω2−ω1
(θ2

2, θ
2
1 + 2πk) ◦ Aγ1ω1

(θ1
2, θ

1
1) = AΓ

+
k
ω2 (θ2

2, θ
1
1)−AΓ

−
k
ω2 (θ2

2, θ
1
1).

2
1

1
1

2
2

1
2

1
1

1
2

1
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2
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θ
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ζ
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ζ−2+

γ−2+
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λ+

γ
0 1−2 −1

2

Fig. 7.12 The paths Γ+ = γ1λ
+
ω1 (ω1 + γ2) and Γ+ = γ1λ−(ω1 + γ2), ω1 = −2.
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with Γ+
k = γ1λ

k
ω1
λ+
ω1

(ω1 + γ2) and Γ−k = γ1λ
k
ω1
λ−ω1

(ω1 + γ2) respectively,
where λkω1

stands for a closed path around ω1 = −2 with winding number
windω1

(λkω1
) = k at that point.

What have been done in the above example can be generalized. This is
the matter of the next proposition.

Proposition 7.22. We consider the two alien operators Aγ1ω1
(θ1

2, θ
1
1), Aγ2ω2−ω1

(θ2
2, θ

2
1)

and we assume that θ2
1 − θ1

2 ∈ [0, 2π[. Then, for any k ∈ Z,

Aγ2ω2−ω1
(θ2

2, θ
2
1 + 2πk) ◦ Aγ1ω1

(θ1
2, θ

1
1) = AΓ

+
k
ω2 (θ2

2, θ
1
1)−AΓ

−
k
ω2 (θ2

2, θ
1
1).

with Γ+
k = γ1λ

k
ω1
λ+
ω1

(ω1+γ2) and Γ−k = γ1λ
k
ω1
λ−ω1

(ω1+γ2) respectively, where
λkω1

stands for a closed path around ω1 with winding number windω1
(λkω1

) = k
at that point, whereas λ+

ω1
and λ−ω1

follows small arcs so that (λ−ω1
)−1λ+

ω1

makes a loop around ω1 counterclockwise.
As a consequence, any alien operator at a point ω ∈ Z associated with the
couple (θ1, θ2) can be written as a linear combination of alien operators at ω
associated with triples of the form (γ, θ1, θ2).

We now focus on paths of type γθ̇εn . For m ∈ N?, we take a (m−1)-tuple of
signs ε = (ε1, · · · , εm−1) ∈ {+,−}m−1 and n = (n1, · · · , nm−1) ∈ (N?)m−1.
We choose a direction θ1 ∈ {πk, k ∈ Z}. Following definition 4.4, to a path of

type γθ̇1εn one associates a sequence of points and directions defined as follows :

θ̇j+1 = θ̇j + εj(nj − 1)π 1 ≤ j ≤ m− 1 (7.24)

ωj+1 − ωj = eiθ̇j+1 0 ≤ j ≤ m− 1

ω0 = 0.

These data thus provide a uniquely defined alien operator Aγ
θ̇1
εn
ωm (θm, θ1), once

the direction θm ∈ S1

•
, θ̇m = π̇(θm) is chosen.

Theorem 7.2. Let m ∈ N? be a positive integer, ε ∈ {+,−}m−1, n ∈ (N?)m−1

and θ1 ∈ {πk, k ∈ Z}. Let γ be a path of type γθ̇1εn , ωm and θ̇m given by (7.24),
and θm ∈ S1

•
so that θ̇m = π̇(θm). Then the alien operator Aγωm(θm, θ1) at ωm

associated with the triple (γ, θ1, θm) can be written as a Z-linear combination
of composite operators of the form

Aγkω′k−ω′k−1
(θm, θ

′
k) ◦ · · · ◦ Aγ2ω′2−ω′1(θ′2, θ

′
2) ◦ Aγ1ω′1(θ′1, θ

′
1)

that satisfy the properties:

• (ω′1, · · · , ω′k) ∈ Zk, k ∈ N? and ω′k = ωm;

• θ̇m = θ̇′k;

• for every j = 1, · · · , k, the path γj is of type γ
θ̇′j
(+)mj−1

, mj ∈ N?;

•
∑k
j=1mj ≤ m.

This theorem is of a purely geometric nature. We omit its proof (see
[1] Sect. Rés II-2, see also [24, 21]) and we rather produce two examples
that explain the algorithm.
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Example 7.10. We consider a path γ of type γθ̇1ε for ε = (+,−,+) and we
take θ̇1 = 0, see Fig. 4.2. To the path γ one associates by (7.24) the se-

quence of points and directions:

{
θ̇j = 0, 1 ≤ j ≤ 4
ω0 = 0, ωj+1 − ωj = 1 0 ≤ j ≤ 3

. One

takes θj = θ′ = 0 for any j ∈ [1, 4]. We want to decompose the alien operator
Aγω4

(θ4, θ1). From the very definition of the alien operators, one observes that

A
γ
θ̇3
(+)

ω4−ω2
(θ4, θ3) ◦ A

γ
θ̇1
(+)
ω2 (θ2, θ1) = A

γ
θ̇1
(+)3
ω4 (θ4, θ1)−A

γ
θ̇1
(+,−,+)
ω4 (θ4, θ1),

and therefore

A
γ
θ̇1
(+,−,+)
ω4 (θ4, θ1) = A

γθ̇
′

(+)3
ω4 (θ′, θ′)−Aγ

θ̇′
(+)

ω4−ω2
(θ′, θ′) ◦ Aγ

θ̇′
(+)
ω2 (θ′, θ′)

Example 7.11. A bit more difficult, we consider a path γ of type γθ̇1εn for
ε = (+,−,+), n = (1, 3, 1) and θ̇1 = 0, see Fig. 7.13. The algorithm (7.24)

still provides

{
θ̇j = 0, 1 ≤ j ≤ 4
ω0 = 0, ωj+1 − ωj = 1 0 ≤ j ≤ 3

. One takes again θj = θ′ = 0

for any j ∈ [1, 4]. Since

A
γ
θ̇3
(+)

ω4−ω2
(θ4, θ3 − 2π) ◦ A

γ
θ̇1
(+)
ω2 (θ2, θ1) = A

γ
θ̇1
(+,−,+)
ω4 (θ4, θ1)−A

γ
θ̇1
(+,−2,+)
ω4 (θ4, θ1),

one deduces with the first example that

A
γ
θ̇1
(+,−2,+)
ω4 (θ4, θ1) = Aγ

θ̇′
(+,−,+)
ω4 (θ′, θ′)−Aγ

θ̇′
(+)

ω4−ω2
(θ′, θ′ − 2π) ◦ Aγ

θ̇′
(+)
ω2 (θ′, θ′)

= A
γθ̇
′

(+)3
ω4 (θ′, θ′)−Aγ

θ̇′
(+)

ω4−ω2
(θ′, θ′) ◦ Aγ

θ̇′
(+)
ω2 (θ′, θ′)

− Aγ
θ̇′
(+)

ω4−ω2
(θ′, θ′ − 2π) ◦ Aγ

θ̇′
(+)
ω2 (θ′, θ′).

Example 7.12. A step further, we consider a path γ of type γθ̇1εn for
ε = (−,+,+,+,−), n = (1, 2, 1, 1, 1) and take θ1 = 0, see Fig. 4.3. Using
(7.24), we define: 

θ̇1 = θ̇2 = 0

θ̇3 = · · · = θ̇6 = π
ω0 = 0, ω1 − ω0 = ω2 − ω1 = 1
ω3 − ω2 = · · · = ω6 − ω5 = −1.

We set θ1 = θ2 = θ′1 = 0, θ3 = · · · = θ6 = θ′2 = π. We start with the identity:

A
γ
θ̇6
()

ω6−ω5
(θ6, θ6) ◦ A

γ
θ̇1
(−,+2,+,+)
ω5 (θ5, θ1) = A

γ
θ̇1
(−,+2,+,+,+)
ω6 (θ6, θ1)−Aγω6

(θ6, θ1).

Next, a little thought yields:

Fig. 7.13 A path of type

γθ̇1εn for ε = (+,−,+),

n = (1, 3, 1) and θ̇1 = 0. 0 1 3 42



7.8 Alien operators 177

A
γ
θ̇3
(+,+,+)

ω6−ω2
(θ6, θ3) ◦ A

γ
θ̇1
(−)
ω2 (θ2, θ1) = A

γ
θ̇1
(−,+2,+,+,+)
ω6 (θ6, θ1)−A

γ
θ̇5
(+)
ω6 (θ6, θ5),

A
γ
θ̇3
(+,+)

ω5−ω2
(θ5, θ3) ◦ A

γ
θ̇1
(−)
ω2 (θ2, θ1) = A

γ
θ̇1
(−,+2,+,+)
ω5 (θ5, θ1)−A

γ
θ̇5
()
ω5 (θ5, θ5).

Finally, A
γ
θ̇2
()

ω2−ω1
(θ2, θ2) ◦ A

γ
θ̇1
()
ω1 (θ1, θ1) = A

γ
θ̇1
(+)
ω2 (θ2, θ1)−A

γ
θ̇1
(−)
ω2 (θ2, θ1). Putting

things together, one concludes:

Aγω6
(θ6, θ1) = A

γ
θ̇′2
(+)
ω6 (θ′2, θ

′
2)

+ A
γ
θ̇′2
(+,+,+)

ω6−ω2
(θ′2, θ

′
2) ◦ A

γ
θ̇′1
(+)
ω2 (θ′1, θ

′
1)−A

γ
θ̇′2
()

ω6−ω5
(θ′2, θ

′
2) ◦ A

γ
θ̇′2
()
ω5 (θ′2, θ

′
2)

− A
γ
θ̇′2
(+,+,+)

ω6−ω2
(θ′2, θ

′
2) ◦ A

γ
θ̇′1
()

ω2−ω1
(θ′1, θ

′
1) ◦ A

γ
θ̇′1
()
ω1 (θ′1, θ

′
1)

− A
γ
θ̇′2
()

ω6−ω5
(θ′2, θ

′
2) ◦ A

γ
θ̇′2
(+,+)

ω5−ω2
(θ′2, θ

′
2) ◦ A

γ
θ̇′1
(+)
ω2 (θ′1, θ

′
1)

+ A
γ
θ̇′2
()

ω6−ω5
(θ′2, θ

′
2) ◦ A

γ
θ̇′2
(+,+)

ω5−ω2
(θ′2, θ

′
2) ◦ A

γ
θ̇′1
()

ω2−ω1
(θ′1, θ

′
1) ◦ A

γ
θ̇′1
()
ω1 (θ′1, θ

′
1).

7.8.2.2 Alien operators on RES(k)

We have seen with lemma 7.8 that the alien operators associated with triples

of the form (γ, θ1, θ1) act on RES(k) for γ of type γθ̇1(+)m
and γθ̇1(−)m

. We keep

on this study according to the guiding line of this section.
We assume θ̇1 ∈ {0, π} and take two integers l, k subject to the condition

2 ≤ l ≤ k. By the very definition of RES(k), the minor ϕ̂ of any singularity
O
ϕ∈ RES(k), once considered as a sectorial germ, can be analytically continued

along any path γ of type γθ̇1εnl with

εnl ∈ {
(
(±)nll−1, (ε)ml−1

)
| ε ∈ {+,−},nl = (n1, · · · , nl−1) ∈ (N?)l−1,ml ∈ N?}.

With the notations of (7.24), the analytic continuation contγ ϕ̂ of ϕ̂ along γ is
a germ of holomorphic functions that can be analytically continued onto the

simply connected domain p(Rεnl ,θ̇) = C \ {]−∞, p] ∪ [p+ 1,+∞[} where
]p, (p+ 1)[=]ωl−1, ωl[ when ml = 1, ]p, (p+ 1)[=](ml − 1)ωl,mlωl[ otherwise.
These properties translate into the next statement (the details are left to the
reader).

Proposition 7.23. Let be θ1 ∈ {πk, k ∈ Z} ⊂ S1

•
and (l, k) ∈ N with the

condition 1 ≤ l ≤ k. The following alien operators are well-defined, for any
ε ∈ {−,+}, any nl ∈ Nl−1 and any ml ∈ N?. Setting θ̇l, ωl by (7.24) and
θl ∈ S1

•
with θ̇l = π̇(θl),

A
γ
θ̇1

((±)
nl
l−1

(ε)ml−1)

mlωl (θl, θ1) : RES(k) → RES(k−l−ml+1), 1 ≤ ml ≤ k − l

A
γ
θ̇1

((±)
nl
l−1

(ε)ml−1)

mlωl (θl, θ1) : RES(k) → SINGθ1,π, ml = k − l + 1

A
γ
θ̇1

((±)
nl
l−1

(ε)ml−1)

mlωl (θl, θ1) : RES(k) → SINGθ1+π/2,π/2, m1 ≥ k − l + 2.

(7.25)
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Equivalently, A
γ
θ̇l
(ε)ml−1

mlωl−ωl−1
(θl, θl) ◦ · · · A

γ
θ̇2
()

ω2−ω1
(θ2, θ2) ◦ A

γ
θ̇1
()
ω1 (θ1, θ1) are well-

defined alien operators, with θ̇j , ωj given by (7.24) and θj ∈ S1

•
with

θ̇j = π̇(θj), with the following ranges:

A
γ
θ̇l
(ε)ml−1

mlωl−ωl−1
(θl, θl) ◦ · · · ◦ A

γ
θ̇1
()
ω1 (θ1, θ1) : RES(k) → RES(k−l−ml+1), 1 ≤ ml ≤ k − l

A
γ
θ̇l
(ε)ml−1

mlωl−ωl−1
(θl, θl) ◦ · · · ◦ A

γ
θ̇1
()
ω1 (θ1, θ1) : RES(k) → SINGθ1,π, ml = k − l + 1

A
γ
θ̇l
(ε)ml−1

mlωl−ωl−1
(θl, θl) ◦ · · · ◦ A

γ
θ̇1
()
ω1 (θ1, θ1) : RES(k) → SINGθ1+π

2 ,
π
2
, m1 ≥ k − l + 2.

(7.26)

We would like now to discuss a kind of converse of proposition 7.23 with
the next two propositions.

Proposition 7.24. Let k ∈ N? be a positive integer and
O
ϕ∈ RES(k). We

suppose that for any θ ∈ {πk, k ∈ Z} ⊂ S1

•
one has Aγ

θ̇
()
ω (θ, θ)

O
ϕ∈ RES(k),

with ω = eiθ̇, θ̇ = π̇(θ). Then
O
ϕ belongs to RES(k+1).

Proof. There will be no loss of generality in assuming that
O
ϕ is a simple

singularity and this assumption is easier to handle :
O
ϕ= aδ +[ϕ̂ ∈

O
R(k) with

ϕ̂ ∈ R̂(k).

We consider a singularity
O
R(1). Thus, ϕ̂ can be analytically continued to

R(1). Equivalently, for any θ1 ∈ {πk, k ∈ Z}, ϕ̂ can be analytically continued

along any path γ1 of type γθ̇1(ε)m−1
, m ∈ N?, ε ∈ {−,+} and contγ1 ϕ̂ is a germ

that can be analytically continued to the star-shaped domain p
(
R(ε)m−1,θ̇1

)
.

Let us assume that for any θ1 ∈ {πk, k ∈ Z}, A
γ
θ̇1
()
ω (θ1, θ1)

O
ϕ belongs to

RES(1), where ω1 = eiθ̇1 . We claim that
O
ϕ belongs to RES(2).

Our assumption results in the following property : for any n1 ∈ N? and

any path γ of type γθ̇1
(±)

n1
1

, denoting by λ−ω1
a clockwise loop around ω1,

the difference
(
contγ − contγλ−ω1

)
ϕ̂ is a sectorial germ that can be analyt-

ically continued along any path γ2 of type γθ̇2(ε)m−1
, m ∈ N?, ε ∈ {−,+},

θ̇2 = θ̇1 + (n1 − 1)π. Moreover contγ2
(
contγ − contγλ−ω1

)
ϕ̂ is a germ of holo-

morphic functions that can be analytically continued to the star-shaped do-

main p
(
R((±)

n1
1 ,(ε)m−1),θ̇1

)
.

Start with n1 = 1 and a path γ of type γθ̇1(+)1
, resp. γθ̇1(−)1

. Take a path γ2 of

type γθ̇2(+)m−1
, θ̇2 = θ̇1, resp. γθ̇2(−)m−1

. Notice that γ1 = γγ2 is a path of type

γθ̇1(ε)m
. Therefore from the above property, contγ2

(
contγϕ̂

)
= contγ1 ϕ̂ is well-

defined and gives a germ that can be analytically continued to the domain

p
(
R(+)m,θ̇1

)
= p
(
R((+)1,(+)m−1),θ̇1

)
, resp p

(
R(−)m,θ̇1

)
= p
(
R((−)1,(−)m−1),θ̇1

)
.

But this implies that contγ2
(
contγλ−ω1

ϕ̂
)

= contγλ−ω1
γ2
ϕ̂ is also well-defined

and provides a germ that can be analytically continued to the domain

p
(
R(+)m,θ̇1

)
= p
(
R((−)1,(+)m−1),θ̇1

)
, resp p

(
R(−)m,θ̇1

)
= p
(
R((−)31,(−)m−1),θ̇1

)
.

(Notice that the path γλ−ω1
γ2 is a path of type γθ̇1((−)1,(+)m−1), resp γθ̇1

((−)31,(−)m−1)
).
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Of course, one could have chosen a path γ of type γθ̇1(+)1
and a path γ2 of type

γθ̇1(−)m−1
. The path γ1 = γλ−ω1

γ2 is a path of type γθ̇1(−)m
and we conclude for

the analytic continuation of ϕ̂ along the path γγ2 of type γθ̇1((+)1,(−)m−1).

One can pursue this way by induction on n1 to show our claim. Here, we
just add the case n1 = 2 so as to deal with a subtlety. We thus consider

a path γ of type γθ̇1
(+)21

and a path γ2 of type γθ̇2(ε)m−1
, θ̇2 = θ̇1 + π. Notice

that the path γλ−ω1
γ2 is homotopic to a path of type γθ̇1() when m = 1, of

type γθ̇2(ε)m−2
when m ≥ 2. Therefore, contγ2

(
contγλ−ω1

ϕ̂
)

is well-defined and

one concludes that ϕ̂ can be analytically continued along the path γ1 = γγ2

of type γθ̇1
((+)21,(ε)m−1)

and moreover the germ contγ1 ϕ̂ can be analytically

continued to the star-shaped domain p
(
R((+)21,(ε)m−1),θ̇1

)
.

The same reasoning can be generalized and give the proposition. ut

A quite similar (and even simpler) reasoning gives the next result.

Proposition 7.25. Let be k ∈ N? and
O
ϕ∈ RES(k). We suppose that for any

θ1 ∈ {πk, k ∈ Z} ⊂ S1

•
and any n ∈ Nk−1, the singularity A

γ
θ̇1
((±)n

k−1
)

ωk (θk, θ1)
O
ϕ

belongs to RES(1), where ωk is given by (7.24). Then
O
ϕ belongs to RES(k+1).

We eventually use theorem 7.2 to reformulate proposition 7.25.

Corollary 7.1. Let k ∈ N? be a positive integer and
O
ϕ∈ RES(k). We suppose

that Aγkωk−ωk−1
(θk, θk) ◦ · · · ◦ Aγ2ω2−ω1

(θ2, θ2) ◦Aγ1ω1
(θ1, θ1)

O
ϕ belongs to RES(1)

for any composite operator that satisfies the properties:

• for every j = 1, · · · , k, the path γj is of type γ
θ̇j
(+)mj−1

, mj ∈ N?;

•
∑k
j=1mj = k.

Then
O
ϕ belongs to RES(k+1).

7.8.3 Alien derivations

We now specialize to some alien operators.

7.8.3.1 Definitions

Definition 7.50. Let be θ ∈ {πk, k ∈ Z} ⊂ S1

•
, α ∈]0, π/2] and L > 0. We

denote θ̇ = π̇(θ) ∈ {0, π} ⊂ S1. We set ω = meiθ ∈ C
•

for m ∈ {1, · · · , dLe},
resp. m ∈ N?. The so-called alien operators at ω,

∆+
ω , ∆ω : RES(θ̇,α)(L)→ SINGθ,α, resp. ∆+

ω , ∆ω : RES→ RES,

are defined by (7.27),
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Fig. 7.14 Symmatrically

contractile path Hb and
contributions to ∆+

ω

(
ϕ̂ ∗ ψ̂

)
for ω = 3. Pinchings occur

between 1 and ζ − 2, and
between 2 and ζ − 1.

0 1 2 3

ζ−3 ζ−2 ζ−1 ζ

∆+
ω

O
ϕ = A

γθ̇(+)m−1
•
ω

(θ, θ)
O
ϕ (7.27)

∆ω

O
ϕ =

∑
ε=(ε1,··· ,εm−1)∈{+,−}m−1

p(ε)!q(ε)!

m!
Aγ

θ̇
ε
•
ω

(θ, θ)
O
ϕ,

where p(ε), resp. q(ε) = m−1−p(ε), denotes the number of “+” signs, resp.
“−” signs in the sequence ε.

Definition 7.51. The alien operators ∆+
ω , ∆ω : R̃ES → R̃ES for asymp-

totic classes are defined by making the following diagrams commuting:

RES
∆+
ω ,∆ω−→ RES

L̃ ↓↑ B̃ L̃ ↓↑ B̃

R̃ES
∆+
ω ,∆ω−→ R̃ES

.

7.8.3.2 Properties

Theorem 7.3. Under the hypotheses of definition 7.50, the alien operators

∆+
ω : RES(θ̇,α)(L)→ SINGθ,α, resp. ∆+

ω : RES→ RES, satisfy the identity:

∆+
ω (

O
ϕ ∗

O
ψ) = (∆+

ω

O
ϕ)∗

O
ψ +

∑
ω1+ω2=ω

(
∆+
ω1

O
ϕ
)
∗
(
∆+
ω2

O
ψ
)
+

O
ϕ ∗
(
∆+
ω

O
ψ
)

(7.28)
where the sum runs over all ω1 = m1eiθ, ω2 = m2eiθ, with m1,m2 ∈ N? such
that m1 +m2 = m.

The alien operators ∆ω : RES(θ̇,α)(L) → SINGθ,α, resp. ∆ω : RES → RES,

satisfy the Leibniz rule, ∆ω

(O
ϕ ∗

O
ψ
)

=
(
∆ω

O
ϕ
)
∗

O
ψ +

O
ϕ ∗

(
∆ω

O
ψ
)
. Moreover,

∆ω(∂
O
ϕ) = (∂− •

ω)(∆ω

O
ϕ). Eventually, ∆+

ω

O
cons= ∆ω

O
cons= 0 for any

resurgent constant
O

cons.

Proof. We give the proof for the identity (7.28) only, so as to exemplify the

use of singularities. Moreover we work on the space
O
R(θ̇,α)(L).

The reader is invited to compare with the proof made in [24] for simple resurgent
functions.

There is no loss of generality in assuming that
O
ϕ= [ϕ̂,

O
ψ= [ψ̂ with ϕ̂, ψ̂ ∈ R̂(θ,α)(L).

By proposition 7.6 one has [ϕ̂ ∗ [ϕ̂ =[ (ϕ̂ ∗ ϕ̂), therefore we can use argu-
ments developed in chapter 4 (see in particular the proof of proposition 4.3),
which allow us some abuse of notations.

The analytic continuation of the convolution product ϕ̂ ∗ ψ̂ along a path

γ of type γθ̇(+)m−1
= π(γθ(+)m−1

), ending at ζ = ω+
•
ξ0 near ](m− 1)eiθ̇,meiθ̇[,

is the germ of holomorphic function defined as follows:
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(contγ ϕ̂∗ψ̂)(ω+
•
ξ) =

∫
Hb

ϕ̂(η1)ψ̂(η2+
•
ξ−
•
ξ0)+

∫ •ξ−•ξ0
0

ϕ̂(ζ+η)ψ̂(
•
ξ−
•
ξ0−η)dη.

Here Hb is a symmatrically contractile path deduced from γ,

ϕ̂(η1) = contHb|[0,s]ϕ̂
(
Hb(s)

)
, ψ̂(η2+

•
ξ−
•
ξ0) = contH−1

b |[0,s]
ψ̂
(
H−1
b (s)+

•
ξ−
•
ξ0

)
and ϕ̂(ζ + η) = contHb ϕ̂

(
Hb(1) + η

)
. To get the associated singularity, that

is ∆+
ω (

O
ϕ ∗

O
ψ), one only needs to consider the restrictions:

1. of the first integral near the “pinching points” (see Fig. 7.14), where one
easily recognizes convolution products for majors and these provide the

contribution
∑
ω1+ω2=ω

(
∆+
ω1

O
ϕ
)
∗
(
∆+
ω2

O
ψ
)

to the singularity ∆+
ω (

O
ϕ ∗

O
ψ);

2. of the two integrals near the end points, which provide the missing contri-
butions (use proposition 7.2).

This ends the proof. ut

Definition 7.52. The linear operators ∆ω are called alien derivations and
RES is called a resurgent algebra (since stable under alien derivations).

We refer to [24, 1] for the proof of the next statements.

Theorem 7.4. For any θ ∈ { kπ, k ∈ Z}, ω ∈ C
•

with arg(ω) = θ,

∆ω =
∑
s∈N?

(−1)s−1

s

∑
arg(ω1)=···=arg(ωs−1)=θ

0≺ω1≺···≺ωs≺ω

∆+
ω−ωs−1

◦ · · · ◦∆+
ω2−ω1

◦∆+
ω1
,

(7.29)

∆+
ω =

∑
s∈N?

1

s!

∑
arg(ω1)=···=arg(ωs−1)=θ

0≺ω1≺···≺ωs≺ω

∆ω−ωs−1
◦ · · · ◦∆ω2−ω1

◦∆ω1
, (7.30)

In the above theorem, ≺ stands for the total order on [0, ω] induced by t ∈ [0, 1] 7→
tω ∈ [0, ω].

The alien derivations own the property of generating the whole set of alien
operators. We precise this claim with the following upshot from theorem 7.2
and theorem 7.4.

Theorem 7.5. Let m ∈ N? be a positive integer, ε ∈ {+,−}m−1, n ∈ (N?)m−1

and θ1 ∈ {πk, k ∈ Z}. Let γ be a path of type γθ̇1εn ,
•
ωm and θ̇m given by (7.24),

and θm ∈ S1

•
so that θ̇m = π̇(θm). Then the alien operator Aγ•

ωm
(θm, θ1) at

•
ωm associated with the triple (γ, θ1, θm) can be written as a Z-linear, resp.
Q-linear combination of composite operators of the form

%kn .
(
∆+
ωn ◦ · · · ◦∆

+
ω2
◦∆+

ω1

)
, resp. %kn .

(
∆ωn ◦ · · · ◦∆ω2

◦∆ω1

)
,

that satisfy the properties:

• (
•
ω1, · · · ,

•
ωn) ∈ (Z?)n, n ∈ N? and π

(∑n
j=1 ωj

)
=
•
ωm;

• θ̇m = arg(ωn) + 2πkn, kn ∈ Z;
•
∑n
j=1 |ωj | ≤ m.
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Example 7.13. We continue the example 7.10. The path γ is of type γ0
ε for

ε = (+,−,+) and we know that

Aγ
0
(+,−,+)

4 (0, 0) = ∆+
4 −∆

+
2 ◦∆

+
2 .

(On the right-hand side of the equality, (4, 2) stands for (4ei0, 2ei0)). Using
theorem 7.4, one gets:

Aγ
0
(+,−,+)

4 (0, 0) = ∆4 + 1
2!

(
∆3 ◦∆1 +∆2 ◦∆2 +∆1 ◦∆3

)
+ 1

3!

(
∆2 ◦∆1 ◦∆1 +∆1 ◦∆2 ◦∆1 +∆1 ◦∆1 ◦∆1

)
+ 1

4!∆1 ◦∆1 ◦∆1 ◦∆1

−
(
∆2 + 1

2!∆1 ◦∆1

)
◦
(
∆2 + 1

2!∆1 ◦∆1

)
.

(We do not simplify).

Example 7.14. We continue the example 7.11. The path γ is of type γθ̇1εn for
ε = (+,−,+), n = (1, 3, 1) and we have shown the identity:

A
γ0
(+,−2,+)

4 (0, 0) = ∆+
4 −∆

+
2 ◦∆

+
2 − %−1.∆

+
2e−2iπ ◦∆+

2 .

This can be expressed in term of alien derivatives as well.

We end with an observation. By its very definition, any singularity
O
ϕ∈

O
R(θ,α)(L) has a regular minor. This property involves the following rela-

tionships for the action of the alien operators. (These are essentially conse-
quences of propositions 7.19 and 7.20).

Proposition 7.26. We suppose α ∈]0, π/2], L > 0 and m ∈ {1, · · · , dLe}.
The following equalities hold for any k ∈ Z:

• for any
O
ϕ∈

O
R(0,α)(L),

∆+
meiπ2k

O
ϕ= %−k.

(
∆+
meiπ0

O
ϕ
)
, ∆meiπ2k

O
ϕ= %−k.

(
∆meiπ0

O
ϕ
)
;

• for any
O
ϕ∈

O
R(π,α)(L),

∆+
meiπ(2k+1)

O
ϕ= %−k.

(
∆+
meiπ

O
ϕ
)
, ∆meiπ(2k+1)

O
ϕ= %−k.

(
∆meiπ

O
ϕ
)
;

• moreover, if
O
ϕ∈

O
R(0,α)(L) ∩

O
R(π,α)(L) and if its minor ϕ̂ is even, then

∆+
eiπ

O
ϕ= %−1/2.

(
∆+

1

O
ϕ
)
, ∆eiπ

O
ϕ= %−1/2.

(
∆1

O
ϕ
)

with 1 = ei0, while if ϕ̂ is odd, then

∆+
eiπ

O
ϕ= −%−1/2.

(
∆+

1

O
ϕ
)
, ∆eiπ

O
ϕ= −%−1/2.

(
∆1

O
ϕ
)

Example 7.15. We take ϕ̂(ζ) =
ζ

e2iπζ − 1
∈ R̂. This is a meromorphic func-

tion with simple poles at Z? whose residue at m ∈ Z? is resmϕ̂ = m. Intro-

ducing the singularity
O
ϕ= [ϕ̂, one easily deduces that for every k ∈ Z and

every m ∈ N?,
∆meiπk

O
ϕ= ∆+

meiπk

O
ϕ= (−1)kmδ. (7.31)
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The formal Laplace transform L̃
O
ϕ is an asymptotic class

M
ϕ= \ϕ̃ that can be

representend by a Z-resurgent series ϕ̃ ∈ R̃Z and (7.31) translates into

∆meiπk
M
ϕ= ∆+

meiπk

M
ϕ= (−1)km. (7.32)

We now look at the singularity
O
ψσ,n=

O
Jσ,n ∗

O
ϕ for (σ, n) ∈ C × N. By the

Leibniz rule and since
O
Jσ,n is a resurgent constant,

∆meiπk

O
ψσ,n=

O
Jσ,n ∗∆meiπk

O
ϕ= (−1)km

O
Jσ,n ∈

⋂
α>0

SINGπk,α. (7.33)

The asymptotic class associated to
O
ψσ,n by formal Laplace transform is

M
ψσ,n=

M
Jσ,n

M
ϕ∈ R̃ES. The identity (7.33) provides:

∆meiπk

M
ψσ,n= (−1)km

M
Jσ,n ∈

⋂
α>0

ASYMPπk,α. (7.34)

7.8.3.3 The spaces RES(k)

We have already describe the action of the alien operators on the spaces
RES(k). We can draw some consequences from theorem 7.3.

Corollary 7.2. Let be k ∈ N? and ω ∈ C
•

so that
•
ω is an integer and |ω| ≤ k.

The alien operator ∆ω acts on RES(k) and

∆ω : RES(k) → RES(k−|ω|), when 1 ≤ |ω| ≤ k − 1

∆ω : RES(k) → SINGarg(ω),π, when |ω| = k.
(7.35)

Moreover for any
O
ϕ,

O
ψ ∈ RES(k) :

• ∆ω(∂
O
ϕ) = (∂− •ω)(∆ω

O
ϕ);

• ∆ω

(O
ϕ ∗

O
ψ
)

belongs to RES(1) when 1 ≤ |ω| ≤ k − 1 and to SINGarg(ω),π

when | •ω| = k and furthermore ∆ω

(O
ϕ∗

O
ψ
)

=
(
∆ω

O
ϕ
)
∗
O
ψ+

O
ϕ∗
(
∆ω

O
ψ
)

(Leibniz
rule).

Proof. The identity (7.35) is a consequence of proposition 7.23. The com-

mutation formula [∆ω, ∂] = − •
ω ∆ω ensues from proposition 7.18. No-

tice now that for any k ∈ N?, any L ∈]k − 1, k] and any α ∈]0, π/2], one

has RES(θ̇,α)(L) ⊃ RES(k). Take two singularities
O
ϕ,

O
ψ ∈ RES(k) and con-

sider them as belonging to RES(θ̇,α)(L). One can apply theorem 7.3 to get:

∆ω

(O
ϕ ∗

O
ψ
)

=
(
∆ω

O
ϕ
)
∗

O
ψ +

O
ϕ ∗

(
∆ω

O
ψ
)
∈ SINGθ,α. Also, we know that ∆ω

O
ϕ

and ∆ω

O
ψ belong to RES(k−m) or SINGθ,π depending on |ω|. Finally when

1 ≤ |ω| ≤ k − 1, one can work in RES(1) ⊃ RES(k−m) which is a convolution
algebra by proposition 7.17 and this provides the conclusion. ut
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Definition 7.53. The alien operators ∆+
ω , ∆ω : R̃ES(k) → R̃ES(k−|ω|) for

1 ≤ |ω| ≤ k − 1, resp. ∆+
ω , ∆ω : R̃ES(k) → ASYMParg(ω),π, for |ω| = k, for

asymptotic classes are defined by making the following diagrams commuting:

RES(k) ∆
+
ω ,∆ω−→ RES(k−|ω|)

L̃ ↓↑ B̃ L̃ ↓↑ B̃

R̃ES(k) ∆
+
ω ,∆ω−→ R̃ES(k−|ω|).

, resp.

RES(k) ∆
+
ω ,∆ω−→ SINGarg(ω),π

L̃ ↓↑ B̃ L̃ ↓↑ B̃

R̃ES(k) ∆
+
ω ,∆ω−→ ASYMParg(ω),π.

We add a property that will be useful in the sequel.

Corollary 7.3. Let k ∈ N? be a positive integer and
O
ϕ∈ RES(k). We suppose

that for any n ∈ N?, ∆ωn ◦ · · · ◦ ∆ω2 ◦ ∆ω1

O
ϕ belongs to RES(1) for any

composite operator that satisfies the properties: (
•
ω1, · · · ,

•
ωn) ∈ (Z?)n and∑n

j=1 |ωj | = k. Then
O
ϕ belongs to RES(k+1).

Proof. This is a direct consequence of both corollary 7.1 and theorem 7.2.
ut

7.9 Ramified resurgent functions

As already said, one uses various spaces of resurgent functions, accordingly
to the problem under consideration. We introduce some of them.

7.9.1 Simple and simply ramified resurgent functions

We start with the resurgent algebra of simple resurgent singularities [24, 1, 7]
and we make use of proposition 7.6.

Definition 7.54. A Z-resurgent singularity
O
ϕ∈ RES is said to be a simple

resurgent singularity when
O
ϕ= aδ +[ϕ̂ ∈ SINGsimp and, for any alien op-

erator Aγω(θ2, θ1), Aγω(θ2, θ1)
O
ϕ belongs to SINGsimp. The minor ϕ̂, resp. the

1-Gevrey series ϕ̃ = a+ L̃ϕ̂, associated with a simple Z-resurgent singularity
is a simple resurgent function, resp. a simple resurgent series, and one

denotes by R̂Z
simp, resp. R̃Z

simp the space of simple Z-resurgent functions.,
resp. series. The resurgent subalgebra made of simple resurgent singularities

is denoted by RESsimp
Z and the corresponding space of asymptotic classes is

denoted by R̃ES
simp

Z .

As usual in this course, we use abridged notations. One can make acting
the alien operators on the space R̃simp.

Definition 7.55. The alien operators ∆+
ω , ∆ω : R̃simp → R̃simp are defined

by making the following diagrams commuting:
R̃ES

simp ∆+
ω ,∆ω−→ R̃ES

simp

T1 ↓↑ \ T1 ↓↑ \

R̃simp ∆+
ω ,∆ω−→ R̃simp

.
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Obviously (from proposition 7.26), for any ϕ̃ ∈ R̃simp, the alien derivation

∆ωϕ̃ only depends on
•
ω, thus one could define ∆+

ω , ∆ω : R̃simp → R̃simp for
ω ∈ Z?.

Before introducing the simply ramified resurgent functions, we need to
state the following straightforward consequence of proposition 7.13.

Lemma 7.9. The space SINGs.ram of simply ramified singularities
O
ϕ=

∑N
n=0 an

O
I−n +[ϕ̂, ϕ̂ ∈ O0, is a convolution subalgebra.

Definition 7.56. One denotes by ASYMPs.ram the space of asymptotic
classes associated with SINGs.ram. The restriction of the Taylor map to
ASYMPs.ram is denoted by T s.ram

1 . One denotes by \ s.ram its composition
inverse, that is the natural extension of the mapping \ to C[z]⊕ C[[z−1]]1.

Definition 7.57. A Z-resurgent singularity
O
ϕ∈ RES is a simply ramified

resurgent singularity if
O
ϕ=

∑N
n=0 a−n

O
I−n +[ϕ̂ ∈ SINGs.ram and if, for

any alien operator Aγω(θ2, θ1), Aγω(θ2, θ1)
O
ϕ belongs to SINGs.ram. The resur-

gent subalgebra made of simply ramified resurgent singularities is denoted

by RESs.ram
Z to which corresponds the space of asymptotic classes R̃ES

s.ram
.

The space of the associated formal series ϕ̃(z) =
∑∞
n=−N anz

−n is denoted

by R̃Z
s.ram

One can define the the alien operators ∆+
ω , ∆ω : R̃s.ram → R̃s.ram in the

same manner than in definition 7.55 and, again, for any ϕ̃ ∈ R̃s.ram, the alien

derivation ∆ωϕ̃ only depends on
•
ω.

7.9.2 Ramified resurgent functions

The following definition makes sense by propositions 7.6 and 7.13.

Definition 7.58. We denote by SINGram ⊂ SING the convolution sub-
algebra generated by the simple singularities and the set of singularities

{
O
Jσ,m, (σ,m) ∈ C × N}. An element of

O
ϕ∈ SINGram is called a rami-

fied singularity and reads as a finite sum
O
ϕ=

∑
(σ,m)

O
Jσ,m ∗

O
ϕ(σ,m) with

O
ϕ(σ,m)∈ SINGsimp. The associated space of asymptotic classes is denoted by
ASYMPram ⊂ ASYMP.

To a ramified singularity
O
ϕ=

∑
(σ,m)

O
Jσ,m ∗

O
ϕ(σ,m) is associated, by for-

mal Laplace transform, an asymptotic class
M
ϕ∈ ASYMPram of the form

M
ϕ=

∑
(σ,m)

M
Jσ,m

M
ϕ(σ,m) with

M
ϕ(σ,m)=

\ϕ̃(σ,m) ∈ ASYMPsimp. This asymptotic

class provides a formal expansion of the type

ϕ̃ =
∑

(σ,m)

(−1)m
logm(z)

zσ
ϕ̃(σ,m) ∈

⊕
(σ,m)

logm(z)

zσ
C[[z−1]]1
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through the Taylor map, for any given arc of S1

•
.

We have encountered such formal expansions when we considered the formal integral

for Painlevé I (theorem 5.1).

In the same way that C[[z−1]]1 can be thought of as a constant sheaf on

S1, the space
⊕

(σ,m)
logm(z)
zσ C[[z−1]]1 can be seen as a constant sheaf on S1

•
.

This justifies the following definition.

Definition 7.59. Let be θ ∈ S1

•
and α > 0. We denote by Ñils1, resp.

Ñils1,(θ,α). the space of global sections of the sheaf
⊕

(σ,m)
logm(z)
zσ C[[z−1]]1,

resp. section on J? =]− π/2− α− θ,−θ + α+ π/2[. We call Ñils1 the differ-
ential algebra of 1-Gevrey Nilsson series.

The restriction of the Taylor map to ASYMPram is denoted by T s.ram
1 . One

denotes by

\ ram :
Ñils1 → ASYMPram

ϕ̃ =
∑

(σ,m) J̃σ,mϕ̃(σ,m) → \ ramϕ̃ =
∑

(σ,m)

M
Jσ,m

\ϕ̃(σ,m)

its composition inverse, where J̃σ,m(z) = (−1)m logm(z)
zσ .

One can define the space Ñils as well, made of formal expansions of the
form ϕ̃ =

∑
(σ,m) J̃σ,mϕ̃(σ,m) with ϕ̃(σ,m) ∈ C[[z−1]]. Let us consider an ele-

ment ϕ̃ ∈ Ñils under the form ϕ̃ =
∑n
i=1

ϕ̃i
zσi , ϕ̃i ∈ C[[z−1]]. We can of course

assume that for any i 6= j, σi−σj /∈ Z. We denote ωi = e−2iπσi and we remark
that ωi − ωj 6= 0 for any i 6= j. We set %.ϕ̃(z) = ϕ̃(ze2iπ) and more generally

%k.ϕ̃(z) = ϕ̃(ze2iπk) for any k ∈ Z. We notice that %k.ϕ̃ =

n∑
i=1

ωki
ϕ̃i
zσi

. There-

fore, t(ϕ̃, %1.ϕ̃, · · · , %n.ϕ̃) = At
(
ϕ̃1

zσ1
,
ϕ̃2

zσ2
, · · · , ϕ̃n

zσn

)
where A stands for the

n× n invertible Vandermonde matrix A =


1 · · · 1
ω1 · · · ωn
...

...
ωn1 · · · ωnn

. This implies that

for each integer i ∈ [1, n],
ϕ̃i
zσi

is a linear combination of ϕ̃, %.ϕ̃, · · · , %n.ϕ̃.

This observation can be generalized:

Lemma 7.10. Let ϕ̃ =
∑
i

∑ri−1
m=0 J̃σi,mϕ̃(σi,m) be an element of Ñils. Then

the series ϕ̃(σi,m) ∈ C[[z−1]] are uniquely determined by ϕ̃ and its mon-
odromy (that is %.ϕ̃, %2.ϕ̃, etc.) once one imposes that σi − σj /∈ Z whenever
ϕ̃(σi,m).ϕ̃(σj ,m) 6= 0.

Proof. This is a well-known fact and we follow a reasoning from [19]. We only
show how ϕ̃ determines the series ϕ̃(σi,m) since we will use this result in a
moment.

If ω = e−2iπσ, observe that (%−ω)

(
logm(z)

zσ

)
= ω

m−1∑
l=0

(
m
l

)
(2iπ)m−l

logl(z)

zσ

and therefore (%−ω)m
(

logm(z)

zσ

)
= m!

ωm

zσ
while (%− ω)m+1

(
logm(z)

zσ

)
= 0.
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As a consequence, for any ϕ̃ ∈ Ñils one has P (%)ϕ̃ ∈ Ñils for any polynomial
P ∈ C[X], and there exists a polynomial P ∈ C[X] such that P (%)ϕ̃ = 0. We
denote by d(ϕ̃) the degree of the minimal polynomial of the action of % on ϕ̃.
We then make a reasoning by induction on d(ϕ̃).
Suppose that d(ϕ̃) = 1. This means that there exists ω = e−2iπσ ∈ C such

that (%−ω)ϕ̃ = 0, thus % (zσϕ̃) = zσϕ̃. Therefore ϕ̃ is of the form ϕ̃ =
ϕ̃(σ1,0)

zσ1

with ϕ̃(σ1,0) ∈ C[[z−1]] and a convenient choice of σ1 ∈ C so that σ1− σ ∈ Z.
(Thus ϕ̃(σ1,0) = % (zσ1 ϕ̃)).

Suppose now that for any ϕ̃ ∈ Ñils such that d(ϕ̃) ≤ d, its decomposition is
(uniquely) determined by ϕ̃, %.ϕ̃, · · · , %d.ϕ̃.

Take ϕ̃ ∈ Ñils with d(ϕ̃) = d + 1. The minimal polynomial of the ac-
tion of % on ϕ̃ is P (X) =

∏
i(X − ωi)

ri with
∑
i ri = d + 1. Write

P̃ (X) = (X − ω1)r1−1
∏
i6=1(X − ωi)ri = (X − ωi)r1−1Q(X). From the fact

that (ρ − ω1)P̃ (ρ)ϕ̃ = 0, we deduce the identity P̃ (ρ)ϕ̃ =
φ̃

zσ1
with

φ̃ ∈ C[[z−1]]1 and a convenient σ1 ∈ C such that ω1 = e−2iπσ1 . Since

P̃ (%)

(
logr1−1(z)

zσ1

)
= Q(%)

(
(r1 − 1)!

ωr1−1
1

zσ1

)
= Q(ω1)(r1 − 1)!

ωr1−1
1

zσ1
,

we see that necessarily P̃ (%)
(
J̃σ1,r1−1ϕ̃σ1,r1−1

)
= (−1)r1−1 φ̃

zσ1
and

ϕ̃σ1,r1−1 = (−1)r1−1 φ̃

(r1 − 1)!ωr1−1
1 Q(ω1)

.

We finally observe that P̃ (%)
(
φ̃− J̃σ1,r1−1ϕ̃σ1,r1−1

)
= 0 and we can apply

the induction hypothesis on φ̃− J̃σ1,r1−1ϕ̃σ1,r1−1. This ends the proof. ut

We are in good position to define the ramified resurgent functions [23, 7, 8],
see also [15].

Definition 7.60. A Z-resurgent singularity
O
ϕ∈ RESZ is a ramified resur-

gent singularity when
O
ϕ∈ SINGram whereas, for any alien operatorAγω(θ2, θ1),

Aγω(θ2, θ1)
O
ϕ belongs to SINGram. The space of ramified resurgent singular-

ities makes a resurgent subalgebra denoted by RESram
Z . The corresponding

space of asymptotic classes, resp. formal expansions, is denoted by R̃ES
ram

Z ,

resp. R̃Z
ram.

We state a result that derives directly from lemma 7.10

Proposition 7.27. The formal expansion ϕ̃ =
∑

(σ,m) J̃σ,mϕ̃(σ,m) ∈ Ñils be-

longs to R̃ram if and only if each of its component ϕ̃(σ,m) belongs to R̃ram.

Definition 7.61. The alien operators ∆+
ω , ∆ω : R̃ram → R̃ram are defined by

making the following diagrams commuting:
R̃ES

ram ∆+
ω ,∆ω−→ R̃ES

ram

T ram
1 ↓↑ \ ram T ram

1 ↓↑ \ ram

R̃ram ∆+
ω ,∆ω−→ R̃ram

.

We eventually lay down a direct consequence of proposition 7.19. (We warn
to the change of sign).
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Proposition 7.28. Let ϕ̃ be an element of R̃ram. Then, for any ω ∈ C
•

with

•
ω ∈ Z?, for any k ∈ Z,

∆ωe2iπk ϕ̃ = %k.
(
∆ω%−k.ϕ̃

)
, ∆ωeiπ ϕ̃ = %1/2.

(
∆ω%−1/2.ϕ̃

)
.

Example 7.16. Suppose that ϕ̃ ∈ C[[z−1]]1 belongs to R̃ram with∆ωϕ̃ = log(z)
zσ ψ̃,

ψ̃ ∈ C[[z−1]]. For k ∈ Z, %−k.ϕ̃(z) = ϕ̃(z), then ∆ωe2iπk ϕ̃(z) = log(z+2πk)
zσe2iπkσ

ψ̃(z).
Suppose furthermore that ϕ̃ is even, so that %−1/2.ϕ̃(z) = ϕ̃(z). On deduces

that ∆ωeiπ ϕ̃(z) = log(z+π)
zσeiπσ ψ̃(−z).

7.10 Comments

We mentionned in Sect. 4.6 the generalisation of the resurgence theory with
the notion of “endlessly continuable functions”. The whole constructions
made in this chapter can be extend as well to this context.

We of course owe the main ideas presented here from the work of Ecalle,
who started his theory in the 1970’s [6]. We have borrowed most of the materi-
als to Pham et al. [1], in particular the microfunctions and the sheaf approach.
To compare with other written papers devoted to resurgence theory, we have
paid more attention to the sheaf and associated spaces of asymptotic classes.
Finally, the possible mistakes are own.
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Chapter 8

Resurgent structure for Painlevé I

Abstract We show the resurgence property for the formal series solution of
the prepared form associated with the first Painlevé equation. The detailled
resurgent structure is given in Sect. 8.1. Its proof is given using the so-called
bridge equation (Sect. 8.4), after some preliminaries (Sect. 8.3). The Stokes
phenomena is briefly analyzed in Sect. 8.2.

8.1 The main theorem

8.1.1 Some recalls

The formal integral of the prepared form (3.6) associated with the first
Painlevé equation was described with theorem 5.1 and its corollary 5.1. It
can be written under the following equivalent form:

w̃(z,U) = W̃0(z) +

∞∑
n=0

∑
k∈Ξn+1,0\Ξn,0

Uke−λ.kzW̃k(z), (8.1)

where W̃0 = w̃0 = w̃
[0]
0 and for any n ∈ N and any k ∈ Ξn+1,0 \Ξn,0,

W̃k =

n∑
l=0

1

l!
(κ.k)

l
logl(z)W̃

[0]
k−l, W̃

[0]
k = z−τ.kw̃

[0]
k . (8.2)

The formal series w̃0 ∈ C[[z−1]] solves (3.6), namely

P (∂)w̃0 +
1

z
Q(∂)w̃0 = F (z, w̃0) = f0 + f1w̃0 + f2w̃

2
0, (8.3)

P (∂) = ∂2− 1, Q(∂) = −3∂, f0(z) =
392

625
z−2, f1(z) = −4z−2, f2(z) =

1

2
z−2,

while the W̃k satisfy a hierarchy of equations given by lemma 5.3 that we
recall:

191
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PkW̃k =
∑

k1+k2=k
|ki|≥1

W̃k1W̃k2

2!

∂2F (z, w̃0)

∂w2
, (8.4)

Pk = Pk(w̃0) = P (−λ.k + ∂) +
1

z
Q(−λ.k + ∂)− ∂F (z, w̃0)

∂w
.

To what concerns the k-th series w̃
[0]
k ∈ C[[z−1]], we have a result that ensues

directly from theorem 6.1:

Proposition 8.1. For any k ∈ N2, the k-th series w̃
[0]
k belongs to R̃(1),

the asymptotic class
M
Wk= \ ramW̃k belongs to R̃ES

(1)
and the singularity

O
Wk= B̃

M
Wk belongs to RES(1).

Notice that Ĩ−τ.kW̃k =

n∑
l=0

1

l!
(−κ.k)l J̃−τ.l,lw̃

[0]
k−l. for any n ∈ N and any

k ∈ Ξn+1,0 \ Ξn,0. Therefore,
O
Wk=

n∑
l=0

1

l!
(−κ.k)l

O
J−τ.l,l ∗

O
wk−l

[0] where
O
w[0]
ei = δ +[ŵei

for i =, 1, 2, otherwise
O
w[0]
k = [ŵ

[0]
k .

8.1.2 The main theorem

We now formulate the main result of this chapter.

Theorem 8.1. The formal integral w̃(z,U) of the prepared form (3.6) asso-
ciated with the first Painlevé equation, is resurgent. More precisely, for any
k ∈ N2, W̃k belongs to the space R̃Z

ram of ramified resurgent formal expan-
sions.
We set ωj1 = e2iπj (

•
ωj1 = λ1) and ωj2 = e2iπ(j+1/2) (

•
ωj2 = λ2) for any j ∈ Z.

Then, for every ω ∈ C
•

of the form ω = k0ω
j
1, resp. ω = k0ω

j
2, with k0 ∈ N?,

there exist two sequences of complex numbers
(
An(ω)

)
n∈N and

(
Bn(ω)

)
n∈N,

uniquely defined and only depending on ω such that, for any k = (k1, k2) ∈ N2

and any n ∈ N,

∆ωW̃k+n =
n∑

m=−1

(
(k1 +m+ k0)An−m(ω) + (k2 +m)Bn−m(ω)

)
W̃k+m+k0e1 ,

resp. (8.5)

∆ωW̃k+n =

n∑
m=−1

(
(k2 +m+ k0)An−m(ω) + (k1 +m)Bn−m(ω)

)
W̃k+m+k0e2 ,

where by convention W̃(k1,k2) = 0 if k1 < 0 or k2 < 0.

The sequences
(
An(ω)

)
n∈N and

(
Bn(ω)

)
n∈N are subject to the conditions:

An(ω) = 0 when |ω| ≥ n + 2 and Bn(ω) = 0 when |ω| ≥ n + 1. Also,(
An(ω)

)
n∈N and

(
Bn(ω)

)
n∈N are known for every ω ∈ C

•
once they are

known for argω = 0 only. In particular, A0(ωji ) = (−1)jA0(ω0
i ) while

A0(ωj2) = −iA0(ωj1).

The proof of this theorem will be given in Sect. 8.4.
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Remark 8.1. We detail (8.5) for n = 0. For For any j ∈ Z and any k0 ∈ N?,

∆k0ω
j
1
w̃0 = A0(k0ω

j
1)W̃e1 = A0(k0ω

j
1)z3/2w̃e1 (8.6)

∆k0ω
j
2
w̃0 = A0(k0ω

j
2)W̃e2 = A0(k0ω

j
2)z3/2w̃e2

and A0(k0ω
j
i ) = 0 when k0 ≥ 2.

When k ∈ Ξ1,0, we use abridged notations w̃k = w̃
[0]
k .

By proposition 7.28, ∆ωji
w̃0 = %j .

(
∆ω0

i
%−j .w̃0

)
, i = 1, 2. Therefore,

A0(ωji ) = (−1)jA0(ω0
i ). Remember that w̃0 is even, thus w̃0 = %−1/2.w̃0,

while w̃e2 = %1/2.w̃e1 . By proposition 7.28 again,∆ωj2
w̃0 = %1/2.

(
∆ωj1

%−1/2.w̃0

)
and we deduce that A0(ωj2) = −iA0(ωj1).

Now for any k1 ∈ N?,

∆k0ω
j
1
W̃k1e1 = (k1 + k0)A0(k0ω

j
1)W̃(k1+k0)e1 (8.7)

∆k0ω
j
2
W̃k1e1 = k0A0(k0ω

j
2)W̃k1e1+k0e2 + (k1 − 1)B1(k0ω

j
2)W̃k1e1+k0e2−1.

and B1(k0ω
j
2) = 0 when k0 ≥ 2. We have in particular ∆ωj2

W̃e1 = A0(ωj2)W̃1,

thus ∆ωj2
w̃e1 = A0(ωj2)z3/2w̃1. Also, for k1 ≥ 2,

∆ωj2
W̃k1e1 = A0(ωj2)W̃(k1−1)e1+1 + (k1 − 1)B1(ωj2)W̃(k1−1)e1

and using (8.2),

∆ωj2
w̃k1e1 = A0(ωj2)

(
(k1 − 1)κ1 log(z)z−3/2w̃(k1−1)e1 + z3/2w̃

[0]
(k1−1)e1+1

)
+ (k1 − 1)B1(ωj2)z−3/2w̃(k1−1)e1 .

By proposition 7.28, ∆ωj2
w̃2e1 = %j .

(
∆ω0

i
%−j .w̃2e1

)
, therefore

∆ωj2
w̃2e1 = (−1)jA0(ω0

2)
(
κ1 log(z + 2iπj)z−3/2w̃e1 + z3/2w̃

[0]
e1+1

)
+ (−1)jB1(ω0

2)z−3/2w̃e1

and one deduces: B1(ωj2) = (−1)j
(
B1(ω0

2) + 2iπjκ1A0(ω0
2)
)

. Of course, by

symmetry: B1(ωj1) = (−1)j
(
B1(ω0

1) + 2iπjκ2A0(ω0
1)
)

.

In the same way, ∆ωj2
w̃2e1 = %1/2.

(
∆ωj1

%−1/2.w̃2e1

)
and we know that

%−1/2.w̃2e1 = w̃2e2 , %1/2.w̃e2 = w̃e1 , %1/2.w̃
[0]
e2+1 = w̃

[0]
e1+1. Thus,

∆ωj2
w̃2e1 = −iA0(ωj1)

(
− κ2 log(z + iπ)z−3/2w̃e1 + z3/2w̃

[0]
e1+1

)
+ iB1(ωj1)z−3/2w̃e1

and B1(ωj2) = i
(
B1(ωj1) + iπκ2A0(ωj1)

)
.
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Definition 8.1. The coefficents An(ω) and Bn(ω) given by theorem 8.1 are
called the resurgence cofficients for the first Painlevé equation. The coef-
ficient A0(ω0

1) and A0(ω0
2) are the Stokes cofficients.

As a rule and apart from some integrable equations, the resurgence coffi-
cients are seldom known by closed formulas but can be calculed numerically :
see for instance [9] and specifically [23] for hyperasymptotic methods, see also
[1]. For the first Painlevé equation and its Stokes cofficients, an explicit ex-
pression has been obtained by Kapaev [17, 18] using isomonodromic methods,
see also [31] for an exact WKB offspring. This result has also been founded by
Costin et al. [8] by means of resurgent analysis and we give this expression.

Proposition 8.2. In theorem 8.1, the Stokes coefficients are A0(ω0
1) = −i

√
6

5π

and A0(ω0
2) = −

√
6

5π
.

The Stokes coefficients are also known for the second Painlevé equations. See [15]
and references therein. It is likely that the method of Costin et al. [8] can be used

to get the other resurgence cofficients for the first Painlevé equation.

8.1.2.1 Resurgence coefficients and analytic classification

We saw with corollary 5.2 that the formal integral can be interpreted as a

formal transformation w̃ = Φ̃(z,u), Φ̃(z,u) =
∑
k∈N2 ukw̃

[0]
k (z) ∈ C[[z−1,u]]

that formally conjugates the prepared equation (3.6) to its normal form (5.66).
We mentionned (without proof) in Sect. 6.3 that this formal transformation
gives rise to analytic transformations through Borel-Laplace summation. In
other words, equation (3.6) and the normal form (5.66) are analytically con-
jugated.

It can be shown (see for instance the arguments given in [3]) that for
any two differential equations that are formally conjugated to (5.66), then
these differential equations are analytically conjugated if and only if their
resurgence coefficients are the same. Therefore in this way, the resurgence
coefficients are also called the holomorphic invariants of Ecalle. See [11]
for further details.

8.2 Painlevé I and the Stokes phenomenon

Knowing the Stokes coefficients A0(ω) provides a complete description for
the Stokes phenomena. In what follows, we use the notations of theorem 8.1
and we denote θji = arg(ωji ), i = 1, 2, j ∈ Z. We simply refer to [28] for
the notion of “symbolic Stokes automorphism” ∆/ +

θji
and of “symbolic Stokes

infinitesimal generator” ∆/
θji

, for a given direction θ. We only recall their

expressions and relationships, in our frame:
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∆/ +

θji
,∆/

θji
:
⊕
k∈N

e−kλizR̃Z
ram →

⊕
k∈N

e−kλizR̃Z
ram,

∆/ +

θji
= Id +

∑
k0∈N?

•
∆

+

k0ω
j
i

, ∆/
θji

=
∑
k0∈N?

•
∆k0ω

j
i

∆/ +

θji
= exp

(
∆/
θji

)
= Id +

∑
`∈N?

e−k0λiz

`!

∑
k1+···+k`=k0

ki≥1

∆k`ω
j
i
◦ · · · ◦∆k1ω

j
i
.

(8.8)

Let us consider the formal series w̃0. From theorem 8.1, one sees that

∆/ +

θji
w̃0 = w̃0 +

∑
k∈N?

A0(ωji )
ke−kλizW̃kei (8.9)

where, on the right-hand side, on recognizes the transseries solutions. This
action allows to compare left and right Borel-Laplace summation: in their
intersection domain of convergence,

S θji
−
w̃0 = S θji

+

w̃0 +
∑
k∈N?

A0(ωji )
ke−kλizS θji

+

W̃kei . (8.10)

This allows, in particular to analytically continue the sum S θji
−
w̃0, thus the

tritruncated solutions, onto a wider domain.
The same calculation can be made for the (convenient) transseries as well,

and one easily gets, for i = 1, 2:

S θji
−

(
w̃0 +

∑
k∈N?

Uki e−kλizW̃kei

)
= S θji

+

(
w̃0 +

∑
k∈N?

(
Ui +A0(ωji )

)k
e−kλizW̃kei

)
.

(8.11)
Once again, this provides analytic continuations of the the truncated solutions
onto a wider domain.

It is a good place to mention medianization, since the k-th series w̃kei are
all real formal series. For instance, since w̃0 belongs to R[[z−1]], its left and

right Borel-Laplace sum are complex conjugate: S θ01
+

w̃0(z) = S θ01
−
w̃0(z).

However, neither S θ01
+

w̃0 nor S θ01
−
w̃0 are real analytic functions, because

of the Stokes phenomenon. The question is therefore the following one : can
we construct from w̃0 a real analytic function by a suitable morphism of
differential algebras ?

The naive idea of taking their mean does not work (why ?).

The answer is “yes”, by medianization or good averages, and is not unique.
We refer to [21, 14] for this question and its subtleties, see also [6].

Remark 8.2. The fact that the Stokes coefficient A0(ω0
1) is nonzero can be de-

duced from the identity (8.10) : if A0(ω0
1) = 0, then necessary the associated

trituncated solution is holomorphic on C \K where K is a compact domain.
This would mean that this trituncated solution has only a finite number of
poles and that contradicts theorem 2.2. The fact that A0(ω0

1) is pure imagi-
nary can be seen also from (8.10) and from the realness of w̃0. For arg(z) = 0
and |z| large enough, one can write

S θ01
+

w̃0(z) = S θ01
+

w̃0(z) +
∑
k∈N?

A0(ω0
1)ke−kλizS θ01

+

W̃kei(z), (8.12)
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and A0(ω0
1) = −A0(ω0

1) comes as an upshot.

8.3 The alien derivatives for the seen singularities

The idea that leads to theorem 8.1 relies on the following observations. We

know by proposition 8.1 that the singularity
O
Wk belongs to RES(1), for any

k ∈ N2, and we can apply corollary 7.2 : for any ω ∈ C
•

so that
•
ω = ±1 (the

so-called seen singularities), the alien derivative ∆ω

O
Wk is well-defined. If

these alien derivatives belong to RES(1), then we see with corollary 7.3 that

the singularities
O
Wk belongs to RES(2). A reasoning by induction allow to

conclude.
In this section, we explain how to calculate these alien derivatives with

various methods and we direct our efforts towards w̃0.

8.3.1 Preparations

The formal series w̃0 being solution of the equation (8.3), we introduce by

proposition 7.4 the singularities
O
w0= [ŵ0,

O
f0= [f̂0,

O
f1= [f̂1 and

O
f2= [f̂2.

Notice that
O
f0,

O
f1 and

O
f2 obviously belong to

O
CONS.

Equation (8.3) translates into the fact that
O
w0 satisfies the following convo-

lution equation:

P (∂)
O
w0 +

O
I1 ∗

[
Q(∂)

O
w0

]
=

O
F (ζ,

O
w0) (8.13)

=
O
f0 +

O
f1 ∗

O
w0 +

O
f2 ∗

O
w
∗2
0 .

One can rather introduce the asymptotic class
M
w0= \w̃0 ∈ ASYMPsimp (cf.

Definition 7.27) and equation (8.3) becomes:

P (∂)
M
w0 +

1

z
Q(∂)

M
w0 = F (z,

M
w0) (8.14)

= f0 + f1
M
w0 +f2

M
w

2

0

As already said, we know that
O
w0 belongs to RES(1), resp.

M
w0 belongs to

R̃ES
(1)

, and corollary 7.2 can be applied : with the notations of theorem 8.1,
O
W= ∆ω0

1

O
w0 is a well-defined singularity of SING0,π, resp.

M
W= ∆ω0

1

M
w0 is a

well-defined asymptotic class of ASYMP0,π.

The singularities
O
f0,

O
f1,

O
f2 and

O
I1 are all constant of resurgence. There-

fore, they vanish under the action of any alien derivation. Adding to this
remark the fact that ∆ω0

1
satisfies the Leibniz rule and the commutation rule

[∆ω0
1
, ∂] = −∆ω0

1
(corollary 7.2 and remember that

•
ω0

1 = 1), one deduces from

(8.13) that
O
W solves in SING0,π the following associated linear convolution



8.3 The alien derivatives for the seen singularities 197

equation:

P (∂ − 1)
O
W +

O
I1 ∗

[
Q(∂ − 1)

O
W
]

=
∂

O
F (ζ,

M
w0)

∂w
∗

O
W (8.15)

=

(
O
f1 +2

O
f2 ∗

O
w0

)
∗

O
W .

For the same reasons, the asymptotic class
M
W is solution in ASYMP0,π of a

linear ODE:

P (∂ − 1)
M
W +

1

z
Q(∂ − 1)

M
W=

∂F (z,
M
w0)

∂w

M
W . (8.16)

Of course, (8.16) can be deduced also from (8.15) by formal Laplace transform
(definition 7.25 and proposition 7.10).

The differential equation (8.16) is nothing but the equation

Pe1(
M
w0)

M
W= 0 (8.17)

where Pe1 is the linear operator recalled in (8.4). We know by lemma 5.4

that the differential equation Pe1(w̃0)W̃ = 0, that is (8.17) through the
Taylor map, has its general formal solution that belongs to the direct sum

Ñils1 ⊕ e2zÑils1, under the form

W̃(z) = C1z
3
2 w̃e1(z) + C2e2zz

3
2 w̃e2(z) (8.18)

= C1W̃e1(z) + C2e2zW̃e2(z),

where W̃e1 and W̃e2 belong to the space Ñils1 of 1-Gevrey Nilsson series.
One should precise what we mean by “general formal solution”. The linear op-
erator Pe1 is of order 2 in z and the particular solutions W̃e1 and e2zW̃e2 are

two independent formal solutions : their wronskian is

∣∣∣∣∣ W̃e1 e2zW̃e2

∂W̃e1 ∂(e2zW̃e2)

∣∣∣∣∣ = 2z3e2z.

Thus, if W̃ belongs to a differential algebra that contains Ñils1 ⊕ e2zÑils1 as

sub-vector space, for instance the direct sum
∏
k∈Z

e−kzÑils1 and if

Pe1(w̃0)W̃ = 0, then W̃ is of the form (8.18) with C1, C2 ∈ C given by the

Kramer’s formulas: C2 = − z
−3e−2z

2

∣∣∣∣∣ W̃ W̃e1

∂W̃ ∂W̃e1

∣∣∣∣∣, C1 = z−3e−2z

2

∣∣∣∣∣ W̃ e2zW̃e2

∂W̃ ∂(e2zW̃e2)

∣∣∣∣∣.
We claim that the general solution of equation (8.17) in

∏
k∈Z e

−kzASYMP0,π

is a linear combination of
M
W e1∈ ASYMPram and e2z

M
W e2∈ e2zASYMPram

with
M
W ei=

\ ramW̃ei . Consequently:

Lemma 8.1. There exists A0(ω0
1) ∈ C such that the singularity ∆ω0

1

O
w0∈ SING0,π

is of the form

∆ω0
1

O
w0= A0(ω0

1)
O
I− 3

2
∗ O
we1= A0(ω0

1)
O
W e1 ,

thus can be extended uniquely to an element of SING. In other equivalent

words, ∆ω0
1

M
w0= A0(ω0

1)
M
W e1∈ ASYMPram, ∆ω0

1
w̃0 = A0(ω0

1)W̃e1 ∈ Ñils1.
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As promised, we show proposition 8.1 by two different approaches in the
sequel.

8.3.2 Alien derivations, first approach

We follow here ideas developed in [16, 24], see also [27, 26, 22].
We start with the following results that come from general nonsense in

1-Gevrey theory and its proof is saved for an exercise.

Lemma 8.2. Let w̃ ∈ z−1C[[z−1]]1 be a 1-Gevrey series with vanishing con-
stant term, and ŵ ∈ O0 its minor. The following properties are satisfied.

1. The formal series (1 + w̃) ∈ C[[z−1]]1 is invertible. Its inverse (1 + w̃)−1

is 1-Gevrey and has a formal Borel transform B̃(1 + w̃)−1 ∈ Cδ ⊕ O0 of
the form (δ + ŵ)∗−1 = δ +

∑
n≥1(−1)nŵ∗n.

2. The formal series log(1+w̃) =
∑
n≥1

(−1)n+1

n w̃n is a 1-Gevrey with vanish-

ing constant term, whose minor is given by log∗(δ+ŵ) :=
∑
n≥1

(−1)n+1

n ŵ∗n.
3. The formal series w̃ is exponentiable in the sense that its exponen-

tial ew̃ =
∑
n≥1

1
n! w̃

n is a 1-Gevrey series, whose minor is of the form

exp∗(ŵ) := δ +
∑
n≥1

1
n! ŵ
∗n. Moreover, log ◦ exp = exp ◦ log = Id.

Remark 8.3. More general results along that line in resurgence theory can be
obtained, see [3, 28] and specially [30].

We are now ready to calculate the alien derivative
O
W= ∆ω0

1

O
w0∈ SING0,π.

We consider the 1-Gevrey Nilsson series W̃e1 = z3/2w̃e1 ∈ Ñils1 solution of
(8.16) (more precisely its transform through the Taylor map), and its associ-

ated singularity
O
W e1=

O
I− 3

2
∗ O
we1∈ SING, where

O
we1= δ+ [ŵe1 . (Remember

that w̃e1 has 1 for its constant term). Since w̃e1 is invertible in C[[z−1]], so

does
O
we1 in SING, its inverse being given by

O
w
∗−1

e1 = δ+ [
(∑

n≥1(−1)nŵ∗ne1

)
.

Accordingly,
O
W e1 is invertible in SING and

O
W
∗−1

e1 =
O
I 3

2
∗ O
w
∗−1

e1 . We now in-

troduce the singularity
O
S∈ SING0,π defined by

O
W=

O
S ∗

O
W e1 (8.19)

and we want to show that
O
S= A0(ω0

1)δ for some A0(ω0
1) ∈ C. Plugging

(8.19) into (8.15), using the property that ∂ is a derivation in SING0,π (cf.

proposition 7.6) and that
O
W e1 solves (8.15), one easily gets for

O
S the following

equation:(
(∂2 − ∂)

O
S
)
∗

O
W e1 +2

(
∂

O
S
)
∗
(
∂

O
W e1

)
− 3

O
I1 ∗

(
∂

O
S
)
∗

O
W e1= 0. (8.20)

Since ∂
O
W e1= 3

2

O
I− 1

2
∗ O
we1 +

O
I− 3

2
∗
(
∂

O
we1

)
, equation (8.20) reduces to the

equation

∂2
O
S=

[
δ − 2

O
χ
]
∗ ∂

O
S,

O
χ=

O
w
∗−1

e1 ∗
(
∂

O
we1

)
, (8.21)
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where
O
χ = [χ̂ is the singularity associated with the minor χ̂(ζ) of

χ̃(z) =
∂w̃e1
w̃e1

∈ z−2C[[z−1]]1.

The formal series χ̃ has a unique primitive χ̃0(z) = ∂−1χ̃(z) = log
(
w̃e1(z)

)
in the maximal ideal z−1C[[z−1]]1 of C[[z−1]]1 and, thus, χ̂0 as well as its

associated singularity
O
χ0 is exponentiable in SING. (Lemma 8.2)

More simply, exp∗(
O
χ0) = δ + [ŵe1 , thus exp∗(2

O
χ0) = δ + [(2ŵe1 + ŵ∗2e1 ).

We introduce
O
S0∈ SING0,π given by the identity:

∂
O
S=

O
S0 ∗ exp∗(−2

O
χ0). (8.22)

By construction, ∂ exp∗(−2
O
χ0) = −2

O
χ ∗ exp∗(−2

O
χ0). One deduces from

(8.21) that
O
S0 solves the convolution equation ∂

O
S0 −

O
S0= 0. This trans-

lates into the fact that (ζ+1)
∨
S0 is holomorphic near ζ = 0, where

∨
S0 stands

for any major of
O
S0. Therefore

∨
S0 is holomorphic as well near ζ = 0, thus

O
S0= 0. From (8.22), this means that ∂

O
S= 0, that is ζ

∨
S(ζ) is holomorphic

near ζ = 0 for any major
∨
S of

O
S. This allows to conclude that there exists

a constant A0(ω0
1) ∈ C such that

O
S= A0(ω0

1)δ. Thus, ∆ω0
1

O
w0= A0(ω0

1)
O
W e1

which implies that ∆ω0
1

O
w0 can be continued to an element of SING. This

ends the proof of proposition 8.1 with the first appoach.

8.3.3 Alien derivations, second approach

The second approach We now propose another approach, based on the no-
tion of asymptotic classes, that uses tools akin to Gevrey and 1-summability
theories.

We know that
M
W= ∆ω0

1

M
w0∈ ASYMP0,π satisfies the condition Pe1(

M
w0)

M
W= 0.

We look at the equation Pe1(w̃0)W̃ = 0. The operator Pe1(w̃0) is of order two

in z and has two linearly independent formal solutions W̃e1 = z
3
2 w̃e1 ∈ Ñils1

and e2zW̃e2 = e2zz
3
2 w̃e2 ∈ e2zÑils1.

Let us represent the asymptotic classes
M
w0= \w̃0,

M
we1= \w̃e1 and

M
we2= \w̃e2

on restriction to ASYMP0,π. We pick a (good) open covering (Ii) of
J? =]− 3π/2, 3π/2[ with open arcs Ii of aperture less than π. We use
the Borel-Ritt theorem for 1-Gevrey asymptotics to get, for each sub-
script i: w0,i, we1,i, we2,i,∈ A1(Ii) whose 1-Gevrey asymptotics is given by
w̃0, w̃e1 , w̃e2 respectively. We know that each of these 1-Gevrey germ is
uniquely defined up to 1-exponentially flat germs, that is up to elements
of A≤−1(Ii). As a consequence, the collections (w0,i), (we1,i), (we2,i) repre-
sent the asymptotic classes we have in mind.
For each subscript i, observe that

T1(Ii)
(
De1(w0,i)we1,i

)
= De1(w̃0)w̃e1 = 0
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with De1 the linear operator given by definition 5.5, because the 1-Gevrey
Taylor map T1(Ii) is a morphism of differential algebras. This ensures that
De1(w0,i)we1,i belongs to A≤−1(Ii).

We draw a first conclusion : De1 (
M
w0)

M
we1= 0 in ASYMP0,π and thus, Pe1 (

M
w0)

M
We1= 0

as well with
M
We1= z3/2

M
we1∈ ASYMP0,π .

We add a property that ensues from an analogue of the M.A.E.T. (theorem
3.1) and for which we refer to [14, 16]: one can even find hi,e1 ∈ A≤−1(Ii)
so that De1(w0,i)(we1,i − he1,i) vanishes exactly, for each subscript i. Thus,

one can find a representative we1,i ∈ A1(Ii) of
M
we1 so that De1(w0,i)we1,i = 0

and thus, Pe1(w0,i)We1,i = 0 as well with We1,i = z
3
2we1,i.

The same reasoning yields: one can find a representative we2,i ∈ A1(Ii) of
M
we2 so that De2(wi,0)we2,i = 0, thus Pe1(w0,i)e

2zwe2,i = 0 withWe2,i = z
3
2we2,i.

Therefore De2 (
M
w0)

M
we2= 0 in ASYMP0,π and thus Pe1 (

M
w0)e2z

M
We2= 0. The key

point if that e2z
M
We2 belongs to e2zASYMP0,π which is a vector space in direct

sum with ASYMP0,π .

Putting things together, keeping the same notations, we see that the kernel
of the linear differential operator Pe1(wi,0) in the space of sectorial germs of
direction Ii is spanned by We1,i and e2zWe2,i.

We now go back to the asymptotic class
M
W∈ ASYMP0,π that satisfies

Pe1(
M
w0)

M
W= 0. Considering a refinement of (Ii) if necessary, one can find

for each subscript i a representative Wi ∈ A≤0(Ii) of
M
W and a 1-exponentially

flat germ bi ∈ A≤−1(Ii) such that Pe1(w0,i)Wi = bi. To get Wi, we apply
the usual variation of constants method. One gets Wi under the form

Wi = Bi(z) + C1We1,i + C2e2zWe2,i, C1, C2 ∈ C, (8.23)

2Bi(z) = We2,i

∫
z−3We1,i.bi −Wei,i

∫
z−3We2,i.bi.

It is a simple exercise to show that Bi belongs to A≤−1(Ii) and one easily
concludes that Wi has to be equal to C1We1,i modulo A≤−1(Ii).

Depending on the arc, the term C2e2zWe2,i either belongs to A≤−1(Ii) (so one can

take C2 = 0) or escape from Wi ∈ A≤0(Ii) (thus one has to impose C2 = 0).

This ends the second proof of proposition 8.1: the general solution of the linear

equation Pe1(
M
w0)

M
W= 0 in ASYMP0,π is C1

M
W e1 and, consequently, there

exists a constant A0(ω0
1) ∈ C so that ∆ω0

1

M
w0= A0(ω0

1)
M
W e1 in ASYMP0,π.

Thus, ∆ω0
1

M
w0 can be uniquely continued to an element of ASYMP.

Conclusion What we have shown amounts to the following upshot. The so-

lutions of the equation Pe1(w̃0)W̃ = 0 in the differential algebra
∏
k∈Z

e−kzÑils1

are spanned by the independent solutions W̃e1 ∈ Ñils1 and e2zW̃e2 ∈ e2zÑils1.

This implies that the solutions of the equation Pe1(
M
w0)

M
W= 0 in the differen-

tial algebra
∏
k∈Z

e−kzASYMP, resp.
∏
k∈Z

e−kzASYMP0,π, are spanned by the

independent solutions
M
W e1∈ ASYMP and e2z

M
W e2∈ e2zASYMP, resp. their
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restrictions. in ASYMP0,π and e2zASYMP0,π respectively. This result can be
generalized as follows.

Lemma 8.3. For k ∈ N2, we denote by
M
Wk∈ ASYMPram the asympotic class

defined by
M
Wk= \ ramW̃k where W̃k ∈ Ñils1 satisfies (8.4). Let θ ∈ S

•
be any

direction, α > 0 and k ∈ N2 \ {0}.
If

M
W∈

∏
`∈Z e

−`zASYMPθ,α solves the linear differential equation

Pk
M
W =

∑
k1+k2=k
|ki|≥1

M
Wk1

M
Wk2

2!

∂2F (z,
M
w0)

∂w2
, Pk = Pk(

M
w0), (8.24)

then there exist uniquely determined constants C1, C2 ∈ C so that

M
W=

M
Wk +eλ.kz

(
C1e−λ1z

M
W e1 +C2e−λ2z

M
W e2

)
. (8.25)

Proof. The general formal solution for the equation (8.4) is of the form

W̃ = W̃k + eλ.kz
(
C1e−λ1zW̃e1 + C2e−λ2zW̃e2

)
. We already know that

eλ.kz
(
C1e−λ1z

M
W e1 +C2e−λ2z

M
W e2

)
provides the general solution for the

homogeneous equation Pk(
M
w0)

M
W= 0 in

∏
`∈Z e

−`zASYMPθ,α. This asymp-

totic class
M
Wk is of the form (8.2), namely

M
Wk=

∑
l

1

l!
(κ.k)

l
logl(z)z−τ.k

M
w

[0]

k ,
M
w

[0]

k = \ w̃
[0]
k ,

with w̃
[0]
k ∈ C[[z−1]]1 satisfying as linear differential equation given in corol-

lary 5.1. This allows to conclude that
M
Wk is a particular solution for the

equation (8.24) and one ends the proof in the same way.

8.3.4 A step further

What have been previously done works as well for the other alien derivatives

∆ωji

O
w0= A0(ωji )

O
W ei , resp. ∆ωji

M
w0= A0(ωji )

M
W ei , for any i = 1, 2 and

j ∈ Z. Since
M
W e1 and

M
W e2 belong to R̃ES

(1)
(proposition 8.1), one infers

from corollary 7.3 that w̃0 belongs to R̃(2). In particular, the alien derivatives

∆2ωj1

O
w0∈ SING2πj,π, resp. ∆2ωj1

M
w0∈ ASYMP2πj,π and

∆2ωj2

O
w0∈ SING2π(j+1/2),π, resp. ∆2ωj2

M
w0∈ ASYMP2π(j+1/2),π, are well-

defined. As a matter of fact, these alien derivatives are quite simple !

Lemma 8.4. For any ω ∈ C
•

so that
•
ω = ±2, one has ∆ω

O
w0= 0. Equiva-

lently, ∆ω
M
w0= 0, ∆ωw̃0 = 0.



202 8 Resurgent structure for Painlevé I

Proof. We only calculate
M
W= ∆2ωj1

M
w0. Through the alien derivation ∆2ωj1

,

equation (8.3) is transformed into the linear ODE

P (∂ − 2)
M
W +

1

z
Q(∂ − 2)

M
W=

∂F (z,
M
w0)

∂w

M
W (8.26)

as a consequence of corollary 7.2. We recognize the equation P2e1(
M
w0)

M
W= 0.

By lemma 5.4, the general formal solution for the linear equation
P2e1(w̃0)W̃ = 0 is of the form C1ezW̃e1 + C2e3zW̃e2 and we either conclude

with the reasoning made in Sect. 8.3.2 (still write
O
W under the form

O
W=

O
S

∗
O
W e1 and show that

O
S= 0) or rather directly with lemma 8.3 : the solutions

of the equation P2e1(
M
w0)

M
W= 0 in

∏
k∈Z

e−kzASYMP is C1ez
O
W e1 +C2e3z

O
W e2

and one concludes that ∆2ωj1

M
w0= 0 since the alien derivative belongs to

ASYMP2πj,π. ut

We can keep on that way to get the complete resurgent structure for w̃0

and, at the same time, to analytically continued its minor ŵ0. Let us see
what happens a step further.

To show that w̃0 belongs to R̃(3), we have to complete the informations
given by lemma 8.4. Following corollary 7.3, we would like to show that

∆ω2 ◦∆ω1

M
w0 belongs to R̃ES

(1)
for any ω1, ω2 ∈ C

•
so that

•
ω1 = ±1 and

•
ω2 = ±1. From what we know, this amount to showing that the alien deriva-

tives ∆ω2

M
W ei belong to R̃ES

(1)
.

Let us look at
M
W= ∆ω0

1

M
W e1∈ ASYMP0,π. From the identity Pe1(

M
w0)

M
W e1= 0

(equation (8.16)) and corollary 7.2, we draw:

P (∂ − 2)
M
W +

1

z
Q(∂ − 2)

M
W=

∂F (z,
M
w0)

∂w

M
W +

M
W e1 ∆ω0

1

M
w0

∂2F (z,
M
w0)

∂w2
,

that is

P2e1(
M
w0)

M
W= A0(ω0

1)
M
W

2

e1

∂2F (z,
M
w0)

∂w2
. (8.27)

where A0(ω0
1) is the resurgent constant given in lemma 8.1. Observe that the

general formal solution for the equation P2e1(w̃0)W̃ = A0(ω0
1)W̃ 2

e1
∂2F (z,w̃0)

∂w2 ,
deduced from (8.27) through the Taylor map, reads:

W̃ = 2A0(ω0
1)W̃2e1 + C1ezW̃e1 + C2e3zW̃e2 ∈

∏
k∈Z

e−kzÑils1

with C1, C2 ∈ C. By lemma 8.3 one gets ∆ω0
1

M
W e1= 2A0(ω0

1)
M
W 2e1 , which

thus belongs to R̃ES
(1)

by proposition 8.1.
Of course, one can keep on that way, by induction. However, a lesson has

to be learned from what precedes : the resurgent structure is closely coupled
with the formal integral and it is much time to introduce the bridge equation.
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8.4 The bridge equation and proof of the main theorem

We go back to the formal integral

w̃(z,U) =
∑
k∈N2

Uke−λ.kzW̃k ∈
∏
k∈Z

e−kzÑils1[[U ]] (8.28)

and we consider its derivatives with respect to the indeterminate Ui, i = 1, 2:

∂w̃

∂Ui
(z,U) =

∑
k∈N2

k.eiU
k−eie−λ.kzW̃k ∈

∏
k∈Z

e−kzÑils1[[U ]] (8.29)

= W̃ei +O(U1, U2).

Since the formal integral w̃ solves the differential equation
P (∂)w̃ + 1

zQ(∂)w̃ = F (z, w̃), one deduces that the following identity holds
for i = 1, 2:(

P (∂) +
1

z
Q(∂)− ∂F (z, w̃)

∂w

)
∂w̃

∂Ui
= 0, i.e. P0(w̃)

∂w̃

∂Ui
= 0. (8.30)

The formal solutions for the equation P0(w̃0)W̃ = 0 is spanned by e−λ1zW̃e1

and e−λ2zW̃e2 . Therefore,
∂w̃

∂U1
and

∂w̃

∂U2
are two linearly independent solu-

tions for the order two linear differential equation P0(w̃)W̃ = 0 , explicitly
(wronsk stands for the wronskian):

wronsk

(
∂w̃

∂U1
,
∂w̃

∂U2

)
= wronsk

(
e−λ1zW̃e1 , e

−λ2zW̃e2

)
= 2z3.

Lemma 8.3 translates into the fact that for any series of the form

M
W (z,U) =

∑
k∈N2

Uk
M
Wk,

M
Wk∈

∏
k∈Z

e−kzASYMPθ,α,

that satisfies the second order equation P0(
M
w)

M
W= 0, there exist uniquely

determined constants A(ω,U) ∈ C[[U ]] and B(ω,U) ∈ C[[U ]] such that

M
W (z,U) = A(ω,U)

∂
M
w

∂U1
+B(ω,U)

∂
M
w

∂U2
,

∂
M
w

∂Ui
= \ ram ∂w̃

∂Ui
(8.31)

To the formal integral w̃(z,U), one associates its analogue through the map-
ping \ ram :

M
w (z,U) =

∑
k∈N2

Uke−λ.kz
M
Wk,

M
Wk= \ ramW̃k. (8.32)

We take ω ∈ C
•

and we assume for the moment that
•
ω = ±1. By proposition

8.1 and corollary 7.2, the alien derivation ∆ω acts on the formal integral
M
w (z,U). As a matter of fact, it will be easier to use the dotted alien

derivation,
•
∆ω = e−ωz∆ω which has the virtue of commuting with the

derivation ∂. Therefore,
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•
∆ω

M
w (z,U) =

∑
k∈N2

Uke−λ.kz
•
∆ω

M
Wk,

•
∆ω

M
Wk∈ e−ωzASYMParg(ω),π

and

P0(
M
w)
•
∆ω

M
w = 0.

We deduce that the decomposition (8.31) holds for
•
∆ω

M
w. This decomposi-

tion
•
∆ω

M
w= A(ω,U)

∂
M
w

∂U1
+ B(ω,U)

∂
M
w

∂U2
is the so-called bridge equation

of Ecalle, that is a link between alien derivatives and the usual partial deriva-
tives.
Let Ξ ⊂ N2 be the set defined by Ξ = Ξ0 = {ke1, ke2 | k ∈ N} and set
Ξn = n + Ξ for any n ∈ N?. With these notations, the formal integral can
be written as follows:

w̃(z,U) =

∞∑
n=0

∑
k∈Ξn

Uke−λ.kzW̃k(z) =

∞∑
n=0

∑
k∈Ξ

Uk+ne−λ.kzW̃k+n(z)

(8.33)

To fix the idea, suppose that
•
ω = k0λ1 with k0 = 1 at the moment. We get

from the decomposition (8.31) the identity:

∞∑
n=0

∑
k∈Ξ

Uk+ne−λ.(k+k0e1)z∆ω

M
Wk+n=

A(ω)

∞∑
n=0

∑
k∈Ξ

(k + n).e1U
k+n−e1e−λ.kz

M
Wk+n

+B(ω)

∞∑
n=0

∑
k∈Ξ

(k + n).e2U
k+n−e2e−λ.kz

M
Wk+n

(8.34)

Each componentUk+ne−λ.(k+k0e1)z∆ω

M
Wk+n∈ e−λ.(k+k0e1)zASYMParg(ω),π

has its counterpart on the right-hand side of the equality. Necessarily,

A(ω,U) = U (1−k0)e1
∑
n≥0

An(ω)Un (8.35)

B(ω,U) = Ue2−k0e1
∑
n≥0

Bn(ω)Un.

This implies on the one hand hand that An(ω) = 0 when |ω| ≥ n + 2 while
Bn(ω) = 0 when |ω| ≥ n+ 1. On the other hand,

∆ω

M
Wk+n =

n∑
m=−1

An−m(ω)(k + m + k0e1).e1

M
Wk+m+k0e1 (8.36)

+

n∑
m=−1

Bn−m(ω)(k + m + k0e1).e2

M
Wk+m+k0e1

with the convention use in theorem 8.1. The case
•
ω = k0λ2 with k0 = 1 is

obtained by symmetry.

This result implies that the asymptotic class
M
Wk= \ ramW̃k belongs to

R̃ES
(2)

, as a consequence of corollary 7.3. An easy induction on k0 ∈ N? allows
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then to conclude that the W̃k belong to R̃Z
ram. The rest of the theorem is

shown by arguments used in remark 8.1. This ends the proof of theorem 8.1.

8.5 Comments

For differential systems of level 1 of the type (5.67), the resurgent study of
the Stokes phenomenon and of the action of the symbolic Stokes automor-
phism ∆/ +

θ on transseries solutions were first done by Costin [4], under some
conditions. This work was later extended to more general differential equa-
tions (with no resonance), and also for difference equations of the type (5.68),
in particular by Braaksma and his students (see [2, 19]). These works make
use of (so-called) “staircase distributions” [4, 6] and do not make appeal to
alien derivations. The method explained in this chapter is closer to the ideas
of Ecalle, leading to the bridge equation. Also, as we saw on the particular
example of the first Painlevé equation, this method provides (theoretically)
the whole set of holomophic invariants of Ecalle and passes the resonance
cases under some conditions (no quasi-resonance, no nihilence [11]).
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13. J. Écalle, Six lectures on transseries, Analysable functions and the Constructive proof
of Dulac’s conjecture, Bifurcations and periodic orbits of vector fields (Montreal, PQ,

1992), 75-184, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 408, Kluwer Acad.
Publ., Dordrecht, 1993.
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map, Ann. Inst. Fourier (Grenoble) 51 (2001), no 2, 513-567.
17. A. Kapaev, Asymptotic behavior of the solutions of the Painlevé equation of the first
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