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Preface

These lecture notes are an extended form of a course given at a CIMPA
master class held in LIMA, Pert, in the summer of 2008. The students that
followed these lectures were already introduced to Gevrey and k-summability
by Michele Loday-Richaud, and to resurgence theory by David Sauzin, at an
elementary level. My aim was merely to show the resurgent methods acting on
an example and along that line, to extend the presentation of the resurgence
theory of Jean Ecalle provided that the need.

The present lecture notes reflect this plan and this pedagogical point of
view. The example that we follow along this course is the First Painlevé dif-
ferential equation, or Painlevé 1 for short. Besides its simplicity, there are
various reasons that justify this choice. One of them is the non-linearity,
which is the field where the resurgence theory reveals its power. Another rea-
son lies on the fact that resonances occur, a case which is scarcely found in
the literature. Last but not least, the Painlevé equations and their transcen-
dents appear today to be an inescapable knowledge in analysis for any young
mathematician. It was thus certainly worthy to detail the complete resurgent
structure for Painlevé I, a study that does not seem to have been performed
before on any Painlevé equation.

I have tried to be as self-contained as possible, aiming at graduate stu-
dents. Since this volume deals with ordinary non-linear differential equations,
one begins with definitions and phenomena linked to the non-linearity. Spe-
cial attention is then brought to Painlevé I and to its so-called tritruncated
and truncated solutions that are constructed by proving the summability of
the transseries solutions. One details the formal integral for Painlevé I and,
equivalently, the formal transform that brings Painlevé I to its normal form.
One analyzes the resurgent structure for Painlevé I through additional mate-
rial in resurgence theory. As a rule, each chapter ends with some comments
on possible extensions for which one provides references to the existing liter-
ature.

Acknowledgments: 1 warmly thank my student Julie Belpaume to whom 1
borrowed some materials used in this volume.

Angers, Eric Delabaere
September 2014
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Chapter 1

Some elements about ordinary
differential equations

Abstract This chapter is merely devoted to recalling usual notations and
elementary results on ordinary differential equations (ODESs) in the complex
domain. We give the fundamental existence theorem for Cauchy problems
(Sect. 1.1). We detail the main differences between solutions of linear versus
nonlinear ODEs, when the question of their analytic continuation is consid-
ered (Sect. 1.2). Finally we provide a short introduction to Painlevé equations
(Sect. 1.3).

1.1 Ordinary differential equations in the complex
domain

An ordinary differential equation (ODE) is a functional relation of the type

B dFu
-~ dzk
We refer to m as the dimension of the ODE. The order N of the ODE
refers to the highest derivative considered in the equation.

This ODE of order N is said to be solved in his highest derivative if
it is written as

F(z,u(@), (), ,uM(z) =0, uF(z) (z) e C™.  (1.1)

u™) = F(z,u,- -, uMY), (1.2)

1.1.1 The fundamental existence theorem

We recall the fundamental existence theorem for the Cauchy problem, for
analytic ODEs (see, e.g. [20, 18, 24, 19]). We note D(z,7) C C the open
disc centred on z and of radius r. For a given open domain U C C™ (i.e., a
connected open set) we denote by O(U) the complex linear space of functions
holomorphic in U.

A function f belongs to O(U) if f is continuous on U C C™ and holomorphic in each
complex variable (Osgood theorem). As a matter of fact, it is enough to assume only
the holomorphy in each complex variable without the continuity hypothesis (Hartogs
theorem).
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Theorem 1.1 (Cauchy problem). Let U C CxC™ be an open domain and
F : U — C™ a holomorphic vector function, F € O™(U). Then, for every
(o, u0) € U there exists a polydisc D(xo,€0) [[1<;<, D(woi,€i) C U such
that there exists a solution w : D(xg,€0) = [ <i<, D(W0i, €;) of the analytic
ODE of order 1 and of dimension m o

du

= = Flru) (1.3)

which satisfies the initial value condition
u(zg) = ug (1.4)

and this solution is unique. Moreover u belongs to O(D(zg,¢€)) and also
depends holomorphically on the initial value wug.

In what follows we shall consider essentially scalar ODEs, that it ODEs of
dimension 1 and of order N. The theorem 1.1 translates to this case as well,
since every ODE of order NV and of dimension 1, once solved in his highest
derivative, is equivalent to an ODE of order 1 and of dimension N : if u = vy,
W =wvy, -, uN"Y =yy_1, the Cauchy problem

u(N) — F(x’u’ “e ’u(N_l))
(u(mo)’ “e ’u(Nfl)(xO)) g <u0’ o e 7u(()N_1))

is equivalent to the Cauchy problem

Vo U1
d
dz | yy_ UN—1
UN-1 F(x,vg, -+ ,on_1)
Vo Ug
(z0) = :
N-1
UN-1 ué )

1.1.2 Some usual terminologies

The following terminologies are commonly used (see, e.g. [6]):

e The general solution of an ODE of order N and of dimension 1 is the
set of all solutions determined in application of the Cauchy theorem 1.1.
It depends on N arbitrary complex constants.

e A particular or special solution is a solution derived from the general
solution when fixing a particular initial data.

e A singular solution is a solution which is not particular.
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1.1.3 Algebraic differential equations

In a moment we shall concentrate on algebraic differential equations, these
we define now.

For an open domain D C C we denote by M(D) the field of meromorphic
functions in D.

The ODE (1.1) of order N and of dimension 1 is said to be algebraic
on a domain D if F € M(D)[u,«,--- ,u™)] that is, F is polynomial in

(w,u',--- ,u™)) with meromorphic coefficients in z.
An algebraic ODE is rational if it is of degree one in the highest derivative
u™), and linear (homogeneous) if F is a linear form in (u, v/, --- ,ut)).

1.2 On singularities of solutions of ordinary differential
equations

We fix some notations that will be used in a moment.

Definition 1.1. Let A : [a,b] C R — C be a path starting at x; = A(a) and
ending at xo = A(b). If w is a (germ of) holomorphic function(s) at z; that
can be analytically continued along A, we note contyu the resulting (germ
of) holomorphic function(s) at xs.

Denote by O = |_| O, the set of all germs of holomorphic functions. We equip O
zeC
with its usual topology and with the projection q : 0=C which associates
u€ Oy —zeC

to a germ its support [12, 9]. The space O becomes an étalé space, that is q is a

local homeomorphism. The analytic continuation of the germ u € Oy, along A, if

exists, is the image of the unique path A : [a,b] — O such that A(a) = v and whose
@]

AN\

[a,b] — C~
A

projection by q is A : Wih this notation, contyu = A(b).

We now consider an ODE of order N and of dimension 1,
F(z,u(z),u (), - ,u) (z)) =0,

with F : U — C a holomorphic function on the open domain U C C x CN*1,
F € O(U). Assume that (:zzo,uo, e ,uéN)) € U and that

f(a:o,uo, . ,u(()N)) =0
ONt2F (w0, ug, - - ’UéN)) # 0.
By the implicit function theorem, the Cauchy problem

F(z,u(z), v/ (z), - ,u™M(z)) =0
(U(Io),“' 7U(N)(x0)> - (uO,~-~ 7uéN))
is locally equivalent to a Cauchy problem where the ODE is solved in its

highest derivative. Theorem 1.1 thus provides a holomorphic solution u near
x = x9. We consider a path v : [a,b] — C from z¢ to 21 in C and for s € [a, ]
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we denote v : [a,s] — C the restriction to [a, s] of v. Assume that u can
be analytically continued along the path v and that for every s € [a,b], the
value at y(s) of the analytic continuation cont.,, (x, w, - ,u(N)) along ;s
belongs to U. Then the analytic continuation cont,u along vy of the solution u
still satisfies the differential equation, thanks to the uniqueness of the analytic
continuation.

This property raises the question of describing the singularities of the ana-
lytic continuations of solutions of analytic ODEs, for instance for an algebraic
differential equation defined on an open domain. As we shall see, appearance
of singularities is quite different whether one considers linear or nonlinear
ODEs.

1.2.1 Linear differential equations

For linear (homogeneous) ordinary differential equations, from the Cauchy
existence theorem for linear differential equations (see, e.g. [35, 24, 19, 21]),
the general solution has no other singularities than the so-called fixed sin-
gularities which arise from the coefficients of the ODE once solved for the
highest derivative.

1.2.1.1 Example 1

We start with an equation where x = 0 is an irregular singular point of
Poincaré rank 1,

22 +u=0, wu(z)=Ce* CeC.

Here © = 0 is a fixed essential singularity for the general solution (but not
for the particular solution u(z) = 0), which arises from the equation itself.

If w € O(D(0,7)*) is a holomorphic function in the punctured disc, then u can be

represented by its Laurent series expansion Z anx™ which converges in 0 < |z| < r.
nez

One says that 0 is an essential singularity if and only if the Laurent series expansion

has an infinite number of n < 0 such that a, # 0 or, equivalently, if u has no limit

(finite or infinite) when z — 0. A typical example is provided by the function el/e,

1.2.1.2 Example 2

We consider the Airy equation,
u'—au=0, w(z)=C1Ai(x)+ CyBi(xz), C1,Cse€C.

Here Ai and Bi are the Airy’s special functions of the first and second kind

respectively. These are entire functions. When considered on the Riemann

sphere C, z = oo appears as a fixed (essential) singularity for the general

solution (except again for the particular solution u(x) = 0) which arises from

the equation : = oo is an irregular singular point of Poincaré rank 3/2.
More generally, for a linear ordinary differential equation
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N
> ap(zu® =0, a(x) € O(D), (1.5)
k=0

the general solution can be analytically continued as a multivalued function
on D\ S, S = {the zeros of ax}, or more precisely as a single valued holo-
morphic function once it is considered on a Riemann surface [12, 9] defined as
R
a covering space, mJ . In other words, the general solution is uniformis-
D\ S

able (or also stable) [6] in the following sense : for any Cauchy data at
xo € D\ S that determined a unique local solution u of (1.5) on a domain
U C D\ S, one can find a domain % C R such that 7|4 : Z — U is a home-
omorphism, and a holomorphic function ¢ : R — C so that ¢|gy = uo m|g.

Then, for any domain %’ C R so that 7w|q : %' — U’ is a homeomorphism, the
function ¢ o (7|4 )~ is still a holomorphic solution of (1.5) on U’.

1.2.2 Nonlinear differential equations

When nonlinear ODEs are concerned, beside the possibly fixed singularities
arising from the equation, the general solution has as a rule other singularities
which depend on the arbitrary coeflicients : these are movable singularities.

1.2.2.1 Example 1

We start with the following nonlinear ODE,

1
general solution : u(z) = Clog(@)’ CeC
— log(z

singular solution : u(x) =0

zu' —u? =0,

For the general solution, x = 0 is a fixed branch point singularity which
comes from the equation. The general solution « is uniformisable : it should
be considered as a function on the Riemann surface C of the logarithm®,

C={z=ré? | r>0,0cR}, w:2€Ca=rdcC

One sees that the general solution u is meromorphic on C, with poles at
L[]

7 1(e“) : these are movable singularities, depending on the chosen coeffi-
cient C.

1.2.2.2 Example 2

The above example is just a special case of a more general rational ODE of
order 1, the Riccati equation,

1 We keep a notation of Ecalle, see definition 3.10. Of course (C, ) can be thought of as
L]

the universal covering of the punctured space C*.
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!

u' = ap(x) + a1 (2)u + az(z)u®  a; € M(D), (1.6)
where D C C is a domain. By the change of unknown function

_ Ay
“= as(z) dz &Y

the Riccati equation (1.6) is linearisable into the following linear ODE,

v+ (“/2(95) - al(x)) V' + as(z)ag(z)v = 0.

az(z)

The general solution for this linear equation has (fixed) singularities located
/

GQ(IS —ay(x) and as(z)ap(x). We note S C D this set of poles.

a2(xT

Then the general solution of the Riccati equation (1.6) is uniformisable since

it can be analytically continued as a meromorphic function on a Riemann

surface defined as a covering over D \ S.

When the a; belong to O(D), then the general solution of (1.6) is a mero-

morphic function on D [25].

at the poles of

1.2.2.3 Example 3

Another well known equation is the following algebraic nonlinear ODE of
order 1, of degree 2 in its highest derivative, namely the elliptic equation:

u? = 4u® — gou— g3, (g2,93) € C. (1.7)

A particular solution is provided by the Weierstrass p-function p(x;gs,93)
which can be obtained as the inverse function of the elliptic integral of the
first kind

/“ dq (dx)2 1
T = , =) =— .
oo V4G — g2q — g3 du 4u? — gru — g3

(Just apply the inverse function theorem).
When the discriminant D = g3 — 27¢g3 satisfies the condition D # 0, the
polynomial function 4u® — gou — g3 = 4(u — e1)(u — e2)(u — e3) has 3 simple
roots eq, ez, e3. In that case the elliptic function p(x; ga,g3) is a doubly peri-
odic meromorphic function with double poles at the period lattice mw; +nws,

2 Wi
(n,m) € Z*, — ¢ R.

w

The period latztice can be described as follows : consider the elliptic curve
L ={(q,p) € C%, p*> = 4¢> — goq — g3} for D # 0. The homology group H;(L;7Z)
is a free Z-module of rank 2 and we note 7; and v two cycles which gen-
erate Hy(L;Z). Then the period lattice is generated by the period inte-

d d ez d
grals wy = —q, wo :/ o (equivalently wy = 2 d ,
" 2 er V4G — g2q — g3

€3 d
wy = 2/ d ). The homology group Hy(L;Z) can be seen as
er V4G — g2 — g3
a local system on C? \ D (that is a locally constant sheaf of Z-modules on
C?\ D) from which one can deduce that w; 2, viewed as functions of (g2, g3),
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Fig. 1.1 The ellip-

tic curve £ viewed as

the Riemann surface of

p = (4ud — gou — g3)/2.
The homology classes of
the cycles v and 2 drawn
generate H1(L;7Z)

can be analytically continued as “multivalued” analytic functions on C?\ D.
When D = 0 the solutions degenerate into simply periodic solutions, with a
string of poles instead of a double array.

w
Conversely, starting from the period lattice with =1 ¢ R, the Weierstrass
w2
p-function can be obtained as

2 354

. _ 2 -2 -2 _ -2 X
o(r;92,93) = +§){(mw) —w =12 +92270+93%+...

where the first summation extends over all w = mw; + nwy # 0, (n,m) € Z2
while g5 = 60 Z w4, gz = 140 Z w S,

w#0 w#0
The general solution of (1.7) is given by @(z — xo; g2, g3), since (1.7) is an
autonomous ODE.
To go further on the nice properties of elliptic functions see, e.g. [33].

1.2.2.4 Example 4

Notice that singularities of differential equations may be isolated singularities
such as poles, branch points of finite or infinite determinations, or essential
singular points. They may be also essential singular lines, or even perfect sets
of singular points. For instance, the general solution of the following Chazy
equation of class III,

u® — 2uu® + 3u” =0, (1.8)

is defined only inside or outside an open disc whose boundary is a natural
movable boundary determined by the initial data [3, 4].

1.3 The Painlevé program, Painlevé property and
Painlevé equations

At the end of the 19th century a list of special transcendental functions
was known, most of them being obtained as solutions of linear algebraic
differential equations.

An algebraic function u in one complex variable z is a solution of a polynomial
equation P(z,u) = 0, P € C[z,u]. A transcendental function u is a function which
is not algebraic.
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A challenging problem in analysis was thus to discover new transcendental
functions defined by algebraic ODEs which cannot be expressed in term of so-
lutions of linear algebraic ODEs : these new functions should thus be defined
by non-linear algebraic differential equation [6, 8, 21].

For that purpose a systematic approach needs first to classify the ODEs
under convenient criters. This is the goal of the so-called Painlevé program
(see [6] and references therein) which consists in classifying all algebraic ODEs
of first order, then second order, etc ..., whose general solution can be analyt-
ically continued as a single valued function?. In other words, no branch point
is allowed. For instance the elliptic equation (1.7) or the Chazy equation (1.8)
are such equations.

According to what we have seen, the Painlevé program splits into two
problems:

e absence of fixed branch point for the general solution;
e absence of movable branch point for the general solution : this condition
is the so-called Painlevé property.

In the literature, the term “Painlevé property” is sometimes used for the stronger
property for the general solution of an ODE to be meromorphic, see [6]

Notice that the Painlevé property for an algebraic ODE F(z,u, v/, - ,uP)) =0
defined on a domain D C C is preserved by:

e a holomorphic change of variable z € D — X = h(z), h € O(D);
e a linear fractional change of the unknown with coefficient holomorphic in
D (action of the homographic group),

a(z)u + b(x) U s 0 — d(z)U — b(x)

wm= c(r)u+d(z)’ —c(z)U + a(x)’

a,b,c,d € O(D), ad — be # 0. Therefore, the classification in the Painlevé
program is made up to these transformations.

Notice however that other actions preserving the Painlevé property can be consid-
ered, see [6, 7, 21].

1.3.1 ODEs of order one

We consider (nonlinear) ODEs of the form
F(z,u,u’) =0, (1.9)

with F € M(D)[u,v']. For that class of ODEs, the Painlevé program can be
considered as being achieved and we mainly refer to [20, 18, 6, 21] for the
classification.

In that case no essential movable singular point can appear ([20], Sect.
13.6). Therefore looking for ODEs of type (1.9) with the Painlevé property
reduces in asking that the movable singular points are just poles.

When (1.9) is a rational ODE, then the class of ODE we are looking for
is represented only by the Riccati equation (1.6). See [25], in particular the
Malmquist-Yosida-Steinmetz type theorems.

2 This condition can be weakened by asking the general solution to be only uniformisable.
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The ODEs of type (1.9) of degree > 2 in the highest derivative and sat-
isfying the Painlevé property essentially reduce (up to the transformations
mentioned above) to the elliptic equation (1.7). See [6, 20] for more precise
statements.

1.3.2 ODEs of order two : the Painlevé equations

In contrast to what happens for algebraic ODEs of order one, essential mov-
able singular points may exist when the order is > 2, making the analysis
more difficult. Nevertheless, the classification is known for at least algebraic
equations of order two

Flzu,u/ ,u") =0, FeM(D)uu, vl (1.10)

which are rational, that is of degree one in u”. Such equations enjoying the
Painlevé property reduce (up to transformation) to:

e equations which can be integrated by quadrature,
e or linear equations,
e or one of six ODEs known as the Painlevé equations, the first 3 being:

(Pr) u' =6u*+ux
(Prp) o =2u® 4 zu+ o

u w  au+p

5 (1.11)
(Prr) ' = — = — 4+ ——= 4 qu’ +
X u

For the complete list see, e.g. [20, 18, 6, 21]. In (1.11), «, 3,7, d are arbi-
trary complex constants. Each Painlevé equation can be derived from the
“master equation” Py by some limit processes [21].

The Painlevé equations have beautiful properties, see e.g. [5, 21, 16]. One
of them is the following one:

Theorem 1.2. The general solution of the Painlevé equation Py, J =1,--- VI
admits no singular points except poles outside the set of fived singularities.

So the Painlevé equations have the Painlevé property, but moreover the

general solution is free of movable essential singularities.
Notice that the Painlevé equation should be seen as defined on the Riemann
sphere C. The set of fixed singular points S; of P; is a subset of {0, 1, 00}.
For instance St and Syr are just {oo}, while Sy = {0, 00}. Theorem 1.2 thus
translates as follows : the general solution of P; can be analytically continued
as a meromorphic function on the universal covering of C\ S.

Theorem 1.2 can be proved in various ways. An efficient one uses the rela-
tionship between Painlevé equations and monodromy-preserving deformation
of some Fuchsian differential equations [23, 22, 28, 21, 11].

The general (global) solutions of the Painlevé equations are called the
Painlevé transcendents. This refers to the fact that, for generic values
of the integration constants and of the parameters of the equations, these
solutions cannot be written with elementary or classical transcendental func-
tions, a question which has been completely solved only recently with the
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development of the modern nonlinear differential Galois theory (see [34] and
references therein).

1.3.3 Painlevé equations and related topics

The renewed interest in Painlevé equations mainly came from theoretical
physics in the seventies, with the study of PDEs of the soliton type (Boussi-
nesq equation, Korteweg-de Vries KdV and modified Korteweg-de Vries equa-
tion mKdV, etc..): when linearized by inverse scattering transform [1], these
PDEs give rise to ODEs with the Painlevé property. For instance, the Boussi-
nesq equation g — Uz — 6(4?) 4z +Upzre = 0 has a self-similar solution of the
form u(x,t) = w(x — t) where w is either an elliptic function or satisfies the
first Painlevé equation. In the same lines, the (m)KdV hierarchy introduced
by Lax in [27] (and already in substance in [26] after the work of Gardner et
al [13] on the KdV equation), will later give rise to various Painlevé hier-
archies which are thought of as higher-order Painlevé equations and much
studied since. See for instance [29] and references therein, for an asymptotic
study of the Jimbo-Miwa [22] and Flaschka-Newell [10] second Painlevé hi-
erarchies [15].

Discrete (analogues of the) Painlevé equations are today the matter of
an intensive research, after the pioneering work of Bessis et al [2] on the
study of partition functions in quantum gravity, see for instance [14, 17] and
references therein. Also non commutative extensions of integrable systems
have recently attracted the attention of the specialists, with non commuta-
tive (analogues of the) Painlevé equations and their hierarchies as main
examples, see e.g. [31]. Finally, we could hardly leave untold the important
group-theoretic interpretation of Painlevé equations in the line of the work
of Okamoto [30], see for instance [8] and references therein.

It is not our aim to say more about Painlevé equations in general except for
the first Painlevé equation which is used in this course as field of experiments
in asymptotic and resurgent analysis, and which is the matter for the next
chapter.
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Chapter 2
The first Painlevé equation

Abstract This chapter aims at introducing the reader to properties of the
first Painlevé equation and its general solution. The definition of the first
Painlevé equation is recalled (Sect. 2.1). We precise how the Painlevé prop-
erty translates for the first Painlevé equation (Sect. 2.2), a proof of which
being postponed to an appendix. We explain how the first Painlevé equation
arises also as a condition of isomonodromic deformations for a linear ODE
(Sect. 2.3 and Sect. 2.4). Some symmetry properties are mentioned (Sect.
2.5). We spend some times in describing the asymptotic behaviour at infinity
of the solutions of the first Painlevé equation and, in particular, we describe
the truncated solutions (Sect. 2.6). We eventually briefly comment the im-
portance of the first Painlevé transcendents for models in physics (Sect. 2.7).

2.1 The first Painlevé equation

We concentrate now on the first Painlevé equation,
(Pr) v = 6u® + . (2.1)

We notice that for every x¢ € C and every (ug, uy) € C2, theorem 1.1 ensures
the existence of a unique solution of (2.1), holomorphic near xg, satisfying
the initial data (u(2o), v (z0)) = (uo,uj).

2.2 Painlevé property for the first Painlevé equation

As already mentioned, the first Painlevé equation satisfies the Painlevé prop-
erty. We have the following more precise result.

Theorem 2.1. Fvery solution of the Painlevé equation Py can be analytically
continued as a meromorphic function on C with only double poles.

This theorem will be shown in appendix. We add the following result for
completeness:

Theorem 2.2. Every solution of (2.1) is a transcendental meromorphic
function on C with infinitely many poles.

13



14 2 The first Painlevé equation

Proof. We just give an idea of the proof. It is easy to see that every solution
u of the first Painlevé equation (2.1) is a transcendental function. Otherwise,
since u is meromorphic with double poles, u should be a rational function,
P(x)

Q)
impossible. So every solution w is a transcendental meromorphic function. It
can be then derived from the Clunie lemma in Nevanlinna theory of mero-
morphic functions that necessarily u has an infinite set of poles [26, 13]. O

u(z) = Reasoning on the degrees of P and @), one shows that this is

The above properties were well-known since Painlevé [37]. The following
one was also known by Painlevé, however its complete proof has been given
only recently [34], see also [5].

Theorem 2.3. A solution of Py cannot be described as any combination of
solutions of first order algebraic differential equations and those of linear
differential equations on C.

2.3 First Painlevé equation and isomonodromic
deformations condition

Each Painlevé equation Pj is equivalent to a nonautonomous Hamiltonian
system [35]. Concerning the first Painlevé equation this Hamiltonian system
is given by the following first Painlevé system:

du - aH[ o
de  Op 1
(Hr) , Hr(u, p,x) = §u2 —2u® —zu. (2.2
dp = _oH; =6u’+zx
dz ou

It is known [11, 36] that this Hamiltonian system arises as a condition of
isomonodromic deformations of the following (Schlesinger type) second
order linear ODE,

0w
92 Qr(z;u, p, x)¥

(SLr) ;
Qr(zu, p,x) = 42° + 222 + 2H  (u, pu, ) — . f " + TEEEAER

(2.3)
In other words, u is solution of the first Painlevé equation (2.1) if and only
if the monodromy data of (2.3) do not depend on x. We explain this point.
Equation (2.3) has two fixed singularities z = u, 00, so that any solution of
(2.3) can be analytically continued on a Riemann surface over C \ {u,oc}.
The singular point z = u is a regular singular point, and a local analysis
easily shows that the monodromy at this point (see [33]) of any fundamental
system of solutions of (2.3) does not depend on x. The other singular point
z = oo is an irregular singular point. Thus the only nontrivial mondromy
data of (2.3) are given by the Stokes multipliers at z = oo.

The second order linear ODE (2.3) is equivalent to a first order linear ODE in
dimension two. Each Stokes matrix is a two by two univalent matrix [28, 33], and
thus depends on a sole complex coefficient called a Stokes multiplier.
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In general these Stokes multipliers depend on x, except when ¥ satisfies the
following isomonodromic deformation condition:

ov ov 10A; 1

=Y v My 24

(Pr) 2(z —u)

The first Painlevé system (2.2) ensures the compatibility between equations
(2.3) and (2.4) : solving a Painlevé equation is thus equivalent to solving an
inverse monodromy problem (Riemann-Hilbert problem) [33, 17, 16, 23, 24,
38, 22, 20, 10].

We add another property : we mentioned that the asymptotics of (2.3) at
z = oo are governed by some Stokes multipliers s; = s;(u, u, ). It can be
shown that the space of Stokes multipliers makes a complex manifold M of
dimension 2. Also, for any point of M there exists a unique solution of the
first Painlevé equation (2.1) for which the monodromy data of equation (2.3)
are equal to the corresponding coordinates of this point [23].

2.4 Lax formalism

There is another fruitful alternative to get the Painlevé equations, however re-
lated to the previous one, based on the linear representations of integrable sys-
tems through the Lax formalism [27]. We exemplify this theory for Painlevé I,
for which the so-called Lax pair A and B are the matrix operators given as
follows [16]:

o(x) 4(2—1;(1:)))73:( 0 2>.

A= <22 +u(@)z +u(z)? +2/2  —v(z) z/2 +u(zx) 0

To the matrix operator A one associates a first order ODE in the z variable,
whose time evolution (the x variable) is governed by another first order ODE
determined by the matrix operator B,

ov
— =AY
Jo - (2.5)
dr
. L. 0% oW . :
The compatibility condition = provides what is known as the
0z0x  O0x0z )
zero curvature condition (or also Lax equation), namely ‘g—’;l — %—f = [B, 4]
where [B, A] = BA — AB stands for the commutator. Expliciting this condi-
du
T
tion, one recovers the first Painlevé equation under the form 333 .
Ry +

x
From what we have previously seen, the zero curvature condition allows to
think of (2.5) as an isomonodromic deformations condition for its first equa-
tion.
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2.5 Symmetries

Here we would like to notice that the cyclic symmetry group of order five
acts on the set of solutions (2.1). Indeed, introducing

then any solution u of (2.1) is mapped to another solution uj through the
transformation
up(z) = wiu(wz), k=0, 4.

In general u and wug will be different solutions, an obvious exception being
when u satisfies the initial data «(0) = «/(0) = 0.

2.6 Asymptotic at infinity

Our aim in this section is to describe all the possible behaviors at infinity of
the solutions of the first Painlevé equation (2.1).
We first notice that x = oo is indeed a fixed singularity for P; : making

1
the change of variable u(z) = u(t), ¢t = —, equation (2.1) translates into
x

tou” + 2t*u’ = 1 + 6tu?, where t = 0 appears as a (irregular) singular point.

We mention that, when analysing the asymptotics of solutions of differen-
tial equations at singular points, there are a great difference between linear
and nonlinear ODEs. When a linear ODE is concerned, the asymptotics of
every solution can be derived from the asymptotics of a fundamental sys-
tem of solutions. For non linear ODEs some care has to be taken, since as a
rule singular solutions may exist, which cannot be deduced from the general
solution.

The study of all possible behaviors at infinity was first made by Boutroux
[3, 4]. Various approaches can be used: a direct asymptotic approach in the
line of Boutroux as in [14, 18, 21], or another one based on the relationship
between the first Painlevé equation and a convenient Schlesinger type linear
ODE as described in Sect. 2.3, see [23] (see also [24, 38, 25] for a semiclassical
variant).

2.6.1 Dominant balance principle

Here we only want to give a rough idea of how to get the possible behaviors
and, in the spirit of this course, we follow the viewpoint of asymptotic as in
[14, 21, 18]. In this approach, for a given ODE, the first task is to determine
the terms in the equation which are dominant and of comparable size when
x — oo along a path or a inside a sector. The reduced equation obtained by
keeping only in the ODE these dominant terms gives the leading behavior.
One usual trick so as to guess the asymptotics of solutions of ODEs is thus the
dominant balance principle [2]. A maximal dominant balance corresponds
to the case where there is a maximal set of dominant terms of comparable
size in the equation. As a rule, this gives rise to the general behavior. The
remaining cases are called subdominant balances.
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Here it is useful to introduce the following notations:

e f~ g when z — oo along a path if lim @ = Cte, C'te € C*.
oo f(@)
e f < g when x — oo along a path if lim —= = 0.

The unique maximal balance that is possible for P; consists in assuming that
all the three terms in (2.1) are of comparable size when x — oo. In particular
u? and z have comparable size, so that

u(z) = 95%0(1)7 T — 00.

‘We thus assume that )
u(z) = 51}(,2(;10))

x
with z(z) — oo and v(z(z)) = O(1) when x — oo. If z(z) behaves like a
fractional power of = at infinity, then

and this is what we will assume.
We also make the following remark : if v(z) is an analytic function with an

v(z)  v(2)

asymptotic expansion when z — oo, then one would have —— < —— < v(z)
z z

) i

Here we will adjust the choice of z(z) by adding the demand that

for z near infinity, that is < v(z(x)) when z — oo.

v(z(z)) < z(2)v' (2(2)) < 2(2)*v" (2(z)) when 1z — oo.

These assumptions on v and z(x) imply that

1 3

u(z) =27 22(2)0 (2(2))O(1)+o(1), u(z) =2 22*(z)v" (2(z))O(1)+o(1).

Thus, if v(z(z)) = v'(2(z)) = v"(2(z)) = O(1) and demanding that «” and
x have comparable size, one gets z(x) = x%O(l) as a necessary condition.
This suggests with Boutroux [3, 4] to make the following transformation,

1

u(z) = ax?v(z), z= Bat, (2.6)
with «, 8 # 0 some constants, under which equation (2.1) becomes:

v 4 v 96 V2 16
2522 2532 25032

With the following choice for v and £,

ez sin 241
- — 1 2.7
a=So eIl (27)
one finally gets:
1 " 4w
Ly 2.8
s R TP (28)
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Fig. 2.1 Left hand side : approximate period lattices in each quadrants @; of z-plane.
Right hand side, their images in the z-plane through the transformation x — z defined by
(2.6)-(2.7)

We now concentrate on this equation (2.8) and we examine the possible
balances.

2.6.2 Maximal balance, elliptic function-type behavior

We consider the maximal balance case, that is we assume that v and its
derivatives can be compared to unity. This means that equation (2.8) is
asymptotic to the equation

1

57 93)
where p is the Weierstrass p-function (cf. Sect. 1.2.2) while zy and g3 are two
free complex parameters.

It can be shown [3, 4, 21] that this provides indeed the general behaviour of
the Painlevé transcendents near infinity : for |z| large enough in each open
quadrants

The solutions of this equation! are the functions v(z) = 12p(z — 20;

Qu={z€C, kg <argz < (k:+1)g}, k=0,1,2,3 mod4

the generic solution v of (2.8) has, for |z| large enough, an approximate period
lattice of poles, Fig. 2.1. In this domain, excluding small neighbourdhoods
of poles, the asymptotics of such a generic solution v of (2.8) is governed by
Weierstrassian elliptic functions. With Kruskal & Joshi [21] one can refer to
this behavior as an elliptic function-type behavior.

This asymptotic behaviour translates for the Painlevé I transcendents
through the transformation (2.6)-(2.7) into the asymptotics in the sectors

1 Just multiply both sides of the equality by v/, then integrate.
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2 2

Sp = {z €C, —7r+k:§ <argr < —7r+(k:+1)§}, k=0,1,2,3,4 mod 5.
(2.9)
We mention that when z approaches the real axis (resp. the imaginary
axis) then, for |z| large enough and in a small angular strip of width
O|( (log|z|)/|z| ), the solution v displays a near oscillatory-type behaviour with
no poles, and one has v(z) — —1 (resp. v(z) — +1) when |z| — oo, see [21].
This means that the five special rays argz = —7m + k%’r, k=20,---,4
play an important role in the asymptotics of the solutions of Painlevé I, the

general solutions having lines of poles asymptotic to these rays.

2.6.3 Submaximal dominant balances, truncated
solutions

We now consider submaximal dominant balances, that is when v or one of
its derivatives differ from order unity. It can be shown [21] that the sole
consistent case occurs when

vl <.

This implies that equation (2.8) is now asymptotic to the equation

1, 1
5’0 *5—0

that is v(z) = £1 + o(1). Examining this case leads to the following result:

Theorem 2.4. The first Painlevé equation (2.1) has:

e five complex parameter families of solutions u, called intégrales tronquées
(truncated solutions) after Boutroux, such that u is free of poles in two
adjacent sectors Sy and Sgy1 for |x| large enough, with its asymptotics

governed by )
u(z) = (f%)é (1 + O(:rf%))

(for a convenient determination of the square root).

e among the truncated solutions, five special solutions, the intégrales tri-
tronquées (tritruncated solutions), each of them being free of poles in
four adjacent sectors Sk, Sk+1,Sk+2, Sk+s for |z| large enough.

This theorem has various proofs (see for instance [19, 31, 32] for “noncon-
ventional” approaches). We will see in this course how the resurgent analysis
can be used to show theorem 2.4.

2.7 First Painlevé equation and physical models

As already said (Sect. 1.3.3), the Painlevé equations in general and the first
Painlevé equation in particular, appear by similarity reductions of integrable
PDEs. They play a significant role in others physical models, see e.g. [22]
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and references therein for the first Painlevé equation. This includes the de-
scription of asymptotic regime in transition layers and caustic-type domain.
We exemplify this fact with the focusing nonlinear Schrédinger equation
iel; + %Wm + |@|*¥ =0 (fNLS). It is shown in [9] that when considering
the (so-called) dispersionless limit € — 0, the solutions (of convenient Cauchy
problems) of (fNLS) are asymptotically governed by a tritruncated solution
of the first Painlevé equation. In the same work, theoretical and numerical
evidences led the authors to conjecture that tritruncated solutions of the first
Painlevé equation have the following property, shown in [7] under the naming
“the Dubrovin conjecture”:

Proposition 2.1. Fach tritruncated solution of the first Painlevé equation

is holomorphic on a full sector of the form s5°(I) with I an arc of aperture
|I| = 87/5.

L]
See definition 3.7 for what means the sector 55° (/).

Recently, resurgence theory spectacularly enters the realm of string theory
and related models, as an efficient tool for making the connection between
perturbative and non-perturbative effects. In particular, the first Painlevé
equation was particularly adressed in [1] thanks of its physical interpretation
in the context of 2D quantum gravity, when the so-called double-scaling limit
is considered [8, 29, 30].

Appendix

The reader only interested in learning applications of resurgence theory may
skip this appendix, where we show theorem 2.1 for completeness. We follow
the proof given in [6]. See also [14, 15] and specially [13] with comments and
references therein. We start with two lemmas.

Lemma 2.1. If u is a solution of (2.1) which is holomorphic in a neighbour-
hood of xg € C, then the radius R of analyticity at z¢ satisfies R > 1/p
with

)

e s

) xo [1/4 ‘u(ato)u’(ato) i‘1/5
2 “<x0)+6‘ ’ o )

2

p = max (‘u(wo)

o0
Proof. T u(z) = ch(a: — 20)* € C{x — x0} is solution (2.1) then

k=0
co = u(zo), c1 = u' () .
cy = 30(2) + %, c3 = 2cpcy + 6 (2.10)
(k+1)(k+2)crro =63 _ Cmchm, k>2
‘We note
B 12 ! (z) |13 | 4 xo |14 ju(zo)u/(zg) 1 |1/5
p = max ([u(ao)| |52 ulao) + 2| L [FEEEE  ,

so that for 0 <1< 3
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ler] < (1+1)p 2 (2.11)

Assume that (2.11) is satisfied for every 0 < < k+1 for a given k > 2. Then
by (2.10),

k
(k+1)(k+2)|crsal <6 (m+1)(k—m+1)p"* < (k+1)(k+2)(k+3)p" .
m=0

k
The coefficients Z (m+41)(k—m+-1) are those of the taylor expansions of (1 —xz)~*
m=0

1 1
at the origin. Indeed, for |z| < 1, —— = z" so that ——— = k+ 1ak.
g ol <1, ,;o T k;)( )

k
<Z(m+1)(km+1)> P

m=0

1 2
Therefore (m) = Z

k>0
We conclude that (2.11) is satisfied for every [ > 0 and this implies that

R > =, where R is the radius of convergence of the series expansion w. 0O
p

Lemma 2.2. In a neighbourhood of any given point * € C there exists a
one-parameter family of meromorphic solutions u of (2.1) having a pole at T.
Necessarily T is a double pole and u is given by the Laurent-series expansions

1 Foo_, 1, _ _
u(z) = (z—2)2 0@ =" - g(x—$)3+C4($—$)4+k2>66k(9€—x)k

where ¢y € C is a free parameter.

Proof. We are looking for a Laurent-series expansion
o0
~ ~ 1 e .
u(z) = E cx(z —7T)F e C{z — 7} {74 satisfying (2.1). Then necessarily
T—z
k=p

p>—2co=1o0r0,c_y =0.So either T is a regular point, otherwise

1 ¥, 1, . _
u(x):m—l—o(x—m) —g(a:—x)3+04(x—a?) +k2260k(x—m)k

where ¢4 € C is a free parameter, while for k£ > 6 the coefficients are polyno-
mial functions of (Z, ). Indeed one has

k
(k—2)(k+5)chsa =6 CmChom, Kk >2.

m=0
We can define p > 0 (depending (Z, o)) such that, for 0 <1 <5,
1
o < 30+ 1)t (2.12)
Assume that this property is satisfied for every ¢;, 0 <1 < k + 1 for a given

k > 4. Then

k
(k=2)(k-+5)]cnya] < % S (m+1) (b—me+1)pt+ <

m=0

(k+1)(k42)(k+3)pF T

Ny
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1
and we conclude that |cii2| < g(k + 3)p**4. Therefore (2.12) is true for

every [ > 0 and the Laurent series expansion converges in the punctured dics
D(z,1/p)*. O

The following notations will now be used:

e D,, C Cisan open disc, {2 is a discrete subset of Dy, and xg € Dy, \ £2.

e 1w is a solution of (2.1) defines by some initial data at xg € Dy, \ 2 and u
is meromorphic in Dy, \ {2.

e A(a,b):[0,1] = Dy, \ §2 denotes a C*°-smooth path in D, \ 2 with end-
points A(a, b)(0) = a and A(a,b)(1) = b. When b € D, it is assumed that
A(a,b) is a path where b is removed (that is one considers the restriction
to [0, 1] of A(a,b)). Moreover we assume that the length of any subsegment
Ac,d) of A(a,b) is less that 2|c — d|.

We mention that we use the same notation A(a,b) for the path and its
image.

e 7 € 0D,, is a singular point for w.

4
Lemma 2.3. Assume that u(z) = Z ap(z — )" +0(|z —Z|°) when z — T
k=—2
along Ao, ), with a_o # 0. Then u is meromorphic at T and u is uniquely
determined by (T, a4).

Proof. Since u is solution of (2.1) which is analytic at each point of the
smooth path A(zg,Z) one has

4

2
u'(z) = 6u*(z) +x = 6 < > ar(@—B)F+0(|z - ?c'l"’>> +a

k=-2

when ¢ — T along A\(zo,Z). This implies that the asymptotic expansion is
differentiable.

-
This is a consequence of the mean value theorem, u(z) = u(zo) + / u’(s) ds along
zo
A(zo, 7) which is C*°-smooth, and the uniqueness of the asymptotic expansion.
The same calculus as the one made in the proof of lemma 2.2 shows that

1 T JUPT| 3 ~ s
U(z):m—ﬁ(x—x) —g(x—x) +ag(z —T)* + O(Jz — T°).

We note v the meromorphic solution of (2.1) obtained in lemma 2.2 with
cq = ay. We set

= () — (¢ = 7)* = O(|z — 7)
f(@) = u(w) - v(z) = O(Jz — )

and we want to show that f = 0. We have

- ﬁf =g, g=12wf+6f>=0(z "),

so that, integrating this linear equation,
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fl@) = Ci(z = 2)7% + Co(a — 7)*

(x = @)

—T(x—2)73 /Nx(s —7)*g(s)ds + — /NI(S —2)3g(s) ds.

Since f(z) = O(]Jz — Z|®) we get that f is solution of the fixed-point problem
[ =N(f) with

z x—T)* [° .
N(f)(x):—?(x—ff)fs/ (s—f)‘lg(s)ds—&—%/ (s —T)3g(s) ds.

x

For 21 € A(zg, %) we consider the normed vector space (B, ||.||),

B={feC(Mz1,7)), f=0(z 2P}, |fll= sup |(x—2)""f(z)].

TEN(z1,T)

We show later that (B, ||.]|) is a Banach space (lemma 2.4). Now for z; close
enough from Z (see lemma 2.4):

e the mapping A send the unit ball B of B into itself,
e the mapping N : B — B is contractive.

Therefore the fixed-point problem f = N(f) has a unique solution in B
by the contraction mapping theorem. Obviously this solution is f = 0 and
therefore u =v. 0O

Lemma 2.4. With notations of the proof of lemma 2.3: (B, ||.||) is « Banach
space and the mapping N : B — B is contractive.

Proof.

1. (B, ||.|)) is a Banach space.
Indeed, assume that (f,) is a Cauchy sequence in (B, ||.|),

Ve, 3po : ¥p,q > po, Vo € Aw1, @), [(2=7) 7 (fo(2)—fy(@)| < . (2.13)

Writing g,(z) = (z — Z) 7’ f,(x), condition (2.13) implies that for every
x € Mx1, ) the sequence (gp(z)) is a Cauchy sequence, hence g,(z) — g(x)
in C. Now making ¢ — +oo in (2.13) one sees that g, — g uni-
formaly. Therefore g € C°(A\(z1,7)) and is bounded on A(z1,Z). Thus
g=(x—7)"°f with f € B.

2. The mapping N is contractive for x; close enough from 7.
x

We introduce N1 (f)(z) = =T(z — i)*‘S/~ (s —2)*g(s) ds and

x—m)t [° —

No(f)(z) = %/N (s — ) 3g(s)ds so that N(f) = N1 (f) + Ni(f).
One can assume that for s € Mz, 7)), |s — x| < |z —Z|. Also there exist
r > 0 and a > 0 such that |w(z)| < alz — Z|* when |z — 7| < r. We now
assume that |21 — Z| < r. For f1, fa € B and « € A(z1,%) one has :

T
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(x— 5)_5(N1(f1) - Nz(fz))’
M=) [ 5= D (1200)(A(6) - () + 6(72(5) - () s

T

<

< Tl — 37 (12af2 = 3|11 f1 — fol
6z — F"Lf1 — folllfy + foll ) Length(A(z, 7))
< e - 31 (120 + 1212 = 7P | fall

The other term of (z —Z)~° (Nz(fl) — N> (fg)) is worked in a similar way.
Choosing x1 close enough from Z, one obtains the existence of a constant
0 < Cte < 1 such that for f1, fo € B, [N (f1) = N(f2)|| < Ctellf1 — fo]|-
O

Lemma 2.5. When x — T along A(zo, %) with T € 0D, a singular point
for u:

1. Ju(@)] + [u'(2)] — +o0,
2. u is unbounded.

Proof. e Point 1. The lemma 2.1 implies that |u(z)| or |u/(z)| has to be large
for x near = which is a singular point.
e Point 2. If one multiplies (2.1) by «’ and integrates, one gets

(u')? = 4u® + 22u — 2/ u(s)ds+C (2.14)

Zo

where C € C is a constant. Therefore if u is bounded x — = along A(zo, 7)
then v’ is bounded as well, which contradicts Point 1. O

Lemma 2.6. When x — T along M «xo,T), with T € 0D, a singular point
for u, then:

u_?’(:v)/ u(s)ds — 0, |u(x)| = +oo, |u'(x)| = +oo.
Zo
Proof. By lemma 2.5, we know that w is unbounded when z — Z along

Ao, T), so that

limsup |u(z)| = 400, liminf |u~!(x)| = 0.

We remind that limsup f(z) = lim (sup {f(@), z € Mzo,Z) N D(%,e)}) while
T =0

liminf f(z) = lim (inf{f(a:), € Mo, ) N D(&, 5)}).

Also, since for x € A(zo,Z) one has

< |u=3(x)|. max |u|. Length(\(zo,z)),

A(zo,x)

u 3 (x) /: u(s)ds

0

we get

} < liminf {|u3(x)| max |u|. Length(A(zo, z))

T=T Azo,z)

u 3 (x) /: u(s)ds

0

r—x

lim inf {
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The right hand side term vanishes because u is unbounded when = — Z, thus

lim inf {

r—x

w3 (x) /: u(s)ds

0

} = 0. (2.15)

In particular, for every v > 0, for every D(z, ¢), there exists € A(zo,Z) N D(Z,¢)

so that "
u*‘s(:z)/ u(s) ds

Zo

<7.

x

Assumption : assume that u*?’(x)/ u(s)ds — 0 is false, which trans-
zo
lates into : there exists v > 0 such that, for every D(Z,¢), there exists

x € AMzo,2) N D(Z,¢€) so that

u3(x) /1’ u(s) ds

Zo

> 1.

By continuity, we see that for any v > 0 small enough, there exists a sequence
Ty = T, T € AT, T), such that

The same arguments used in the proof of lemma 2.5 show that

=7 |u®(xn)|. (2.16)

lim sup |u(z,)| = +o0.
n

This means that there exists a subsequence (2, ) of (2, ) such that |u(z,, )] = +o0.
Therefore we can assume that

lim |u(z,)| = +o0. (2.17)

From (2.16) we see that

lim = 400 (2.18)

/g:n u(s)ds

while (2.17), (2.16) with v > 0 small enough, and (2.14) imply that

lim v/ (2,)] = +00 (2.19)
n
We will demonstrate that the assumption made implies a contradiction in

what follows
e We consider now the solution h,, of the Cauchy problem

(h')? = 413 + 22,h + C,, with C,, = C — 2/ " u(s)ds

. (2.20)
h(0) = u(@y), W(0) =u'(zn)

where C' is the constant given in (2.14). Notice by (2.18) that

lim |C,| = 400, (2.21)
n
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and by (2.16) then by (2.14) that

1B (0)] = (2) 73| G| (1 + 0(1))
(2.22)
B(0)] = [27 e +1)2|Cu 2 (1 4+ 0(1)),  ¢n € R.

Writing
ho(t) = CY3H, (X), X = CL/6¢, (2.23)

one obtains that H,, is solution of the following elliptic differential equation
(see (1.7)) with given initial data:

(H')? = 4H® + 20, H + 1, with 0,, = z,,C;;*/?

n

H,(0) = O Pulan),  [Ha(0)] = (29) 2 (1 +0(1)), (2.24)

H.(0) = C 2 (), [HL(0)] = |2y e +1]7%(1 4 0(1))

From the properties of elliptic functions, we know that H,, can be analytically
continued as a doubly periodic meromorphic function with double poles at
the period lattice a,, +mw (0,) +nw2(0,), (n,m) € Z2, for some a,, € C and
w172(9n) = Ct61,2 + O(gn)

e Next we consider the function U,, defined by

u(z) = Ch3UL(X), X = CY/%(z — ay), (2.25)
so that (2.1) translates into the property that U, is solution of the ODE
U" =6U%+0, +e, X, withe, =C; %6, (2.26)

and, more precisely from (2.14), that
X
(U2 =4U3 +20,U + 1+ 2¢,, | XU — / U(S)dS
) (2.27)
Un(0) = é;l/Su(In), U,(0) = 5;1/21/@”)

e We want to show that U,, and H,, are locally holomorphically equivalent:
we look for a function G,, holomorphic near 0 such that

Up=H,oG, with G,(X)=X+g,(X), ¢.(0)=0, g,(0)=0.
(2.28)
We know from (2.24) that H! = 6 H?2 +6,,, hence from (2.26) we deduce that

29, H!' o G, + (¢/)?H! o G, + g'H!, 0 G, = £, X.
which is also

29/ (H! 0 G,) +gl'H! oG, =e,X + (¢/,)°H! 0 G,.

Multiplying both parts of this equality by H] o G,, and integrating, one gets:
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X
wy, = (H), o Gn)*Q/ H! 0G,(S)|enS +w?(S).H" 0 Gn(S)| dS = N (wy,)
0

gn(X):/O wa(S)dS,  wa(0) =0, Gn(X) =X + gn(X).

(2.29)
|€n —1/4
Let D(0, ) be the disc centred at 0 of diameter |e,|~'/%. We note
Teal 4 o el o
D(0, ) the disc D(0, ) without the discs of diameter d(v)

around the poles and the zeros of H},.

—_~—

|5n|71/4

X
We consider a path A(0, Xo) in D(0, ). In (2.29) the integrals /

0
are considered along A\(0, X) C A(0, Xo). We can assume that the length of
any subsegment A(0, X) of A(0, Xo) is less that 2|X]|.

Let a €]1/4,1/2[ and let (B, ||.||) be the Banach space

B={feC’(M0,X0))}, [Ifll= sup [f(a).

z€X(0,X0)
We consider also the ball B = {f € B, ||f|| < |en|*}. If w € B and
X
9(X) = / w(S) dS, one has
0

/OX w(S)dS

One can assume that d(y) > 3|e,|*"'/* so that

ol < sup < [lwl|-Length(A(0, Xo)) < [en|* /4

XeX(0,Xo)

IV (w)I| < len|Cter(v)len] /2 + Ctea(y)lenl** /.
Therefore ||V (w)]| < |en]* for |e,,| small enough. Quite similarly, for wq,ws € B,
IV (w1) = N (ws)[| = O(leal**)llw1 — w2

We conclude by the contraction mapping theorem that N has a unique fixed
point in B, for |,| small enough.
e We have seen that, for |e,| small enough and a €]1/4,1/2[, we have

Un(X) = H(X + ga(X)),  |9(X)| < Jen]* M4, X e Do, ”'2 ).
Therefore,
sup ‘6‘;1/311(9571 + 5;1/6)() — Hn(X)| — O(|5n\a_1/4), (2.30)
XeD(o,leml 1Y)

We remind that when #,, — # one has |C,,| — 400 and |e,| = |5;5/6| — 0.

‘€n|_1/4

Now when X € D(0, ) then 5;1/6X belong to a disc of radius

|C,n|1/24 without some discs of radius d(v)|C,|~2/6. Consequently, for n large
enough,
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T i} o
Va2 € D,,, 3X € D(0, |€|7), x— (zn, + C;Y0X)| < %mrl/ﬁ.
Choosing x = xg, we see from (2.30) that u is unbounded near xy which is a

regular point for u: contradiction.
xr

Therefore, u*?’(x)/ u(s)ds — 0 when x — 7 along A(zo,T). It is now
zo

an easy exercice by lemma 2.5 and (2.14) to see that min{|ul, |u'|} — 400

necessarily when x — 7. (Just assume that u=1(z) — 0 is false and see that

there is a contradiction.) O

End of the Proof of theorem 2.1. What remains to show is that = is a
second order pole. The substitution u = 1/v* transforms (2.14) into

6 1% (s C
=1 £4J‘L/ ~ . 2.31
W) =1+4350" -3 2 4 (231)

6 z q
We know from lemma 2.6 that %/ TS) ds — 0 and v — 0 along a path
2o V(8

Ao, @) which avoids the poles of u in D, . Therefore
(v')? =1+4o0(1), then v*(z) = (z —)*(1 + o(1)).

Using this last equality in (2.31) one gets

(v)?() = 145 (a=8)"+o((@~7)"), then v*(x) = (£-F)*+ 15 (2-2) +o((x-F)").

One uses (2.31) again and one concludes with lemma 2.3.
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Chapter 3
Tritruncated solutions for Painlevé 1

Abstract This chapter is devoted to the construction of the tritruncated
solutions for the first Painlevé equation, the existence of which being an-
nounced in Sect. 2.6. This example will introduce the reader to reasonings
that are common in resurgence theory. We construct a prepared form associ-
ated with the first Painlevé equation (Sec 3.1). This prepared form ODE has
a unique formal solution from which we deduce the existence of truncated
solutions by application of the “‘main asymptotic existence theorem” (Sect.
3.1.3). We then study the 1-summability property of the formal solution by
various methods (Sect. 3.3 and Sect. 3.4). By Borel-Laplace summation, one
deduces the existence of the tritruncated solutions for the first Painlevé equa-
tion (Sect. 3.5).

3.1 Normalization and formal series solution

Throughout this course, C[[z71]] stands for the differential algebra of formal

power series of the form g(z) = Zanz*”, while C((271)) is the space of
n>0

formal Laurent series. The space of formal Laurent series is a valuation field

with the natural valuation

C((z7h) — ZU oo
val : Z anz~ " — valw = min{n € Z / a,, # 0}. (3.1)
nez

3.1.1 Normalization, prepared form

We have seen in Sect. 2.6 that the first Painlevé equation is equivalent to the
following differential equation,

v 1 40 1

" 2

N 3.2

+ z 2 + 25 22 + 2 (3-2)
im i 5

under the Boutroux’s transformation u(z) = i/%x%v(z), z=e' = zi.

The variable z is the so-called critical time.

31



32 3 Tritruncated solutions for Painlevé I

It is worth mentioning that the symmetries detailed in Sect. 2.5 translate
into the fact that any solution v of (3.2) is mapped into another solution vy
through the transformation

vp(2) = ™o (e™F/22), k=0, 3. (3.3)

From what we have seen at the end of Sect. 2.6, it is only natural to look for a
(oo}

formal solution of (2.8) under the form: v(z) = Z biz~! € C[[z7"]]. Plugging
1=0

this formal series expansion in (3.2) one gets that necessarily b3 = 1, by = 0
4
and b = ——. Thanks to the symmetries (3.3), there is no restriction in

assuming that by = 1. Also, it will be convenient in the sequel to make a new

transformation,
4 1 1
v(z)=1-— %2 + Z—2w(z) (3.4)

which has the virtue to bring (3.2) into the following differential equation :

3 392 1 4 1
" / 2

= ——— = — —= -~ o . 3-5
v 625 22 2’2w 22’2w ( )

Definition 3.1. The differential equation (3.5), which reads
1
P@)w + QO = F(z,u), (3.6)

with P(9) = 0% — 1, Q(d) = —30 and

321 A Lt — o)+ A+ ()

Flew) = Gos 2~ 2W+ 5.2

is called the prepared form equation associated with the first Painlevé
equation.

Remark 3.1. For general comments on normalization procedures see, e.g. [7]
and exercise 3.1. Notice that the prepared form is not unique.

3.1.2 Formal series solution

o0
When replacing the formal series expansion Z a;z~ ! into (3.6), then identi-

1=0
fying the powers, one obtains the quadratic recursion relation:

392
ap=ar =0, a2y = ~ o
= (3.7)
a=Pa_s — 3 pz:(:)a(p)a(l72fp)7 =34,

One easily deduces the following properties from (3.7).

Proposition 3.1. There exists a unique formal series
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(o]

w(z) = Zalz_l € Cllz Y. (3.8)
=0

solution of (3.6). Moreover val w = 2, the series expansion

392 _, 6272 _, 141196832276

w(z)=——=z2 z
625 625 390625

is even and the coefficients a; are all real negative.

Remark 3.2. 1. One infers from (3.7) that the series expansion w diverges
since obviously |az,,| > (m!)?|az| for m > 1. We expect @ to be 1-Gevrey
and this is what we will see in a moment, by considering its formal Borel
transform.

We recall (with, e.g. [16, 24]) that a series g(z) = Zanz_n € Cl[z7Y] is 1-
n>0

Gevrey when there exist constants C' > 0, A > 0 so that |a,| < C(n!)A™ for all

n. The space C[[z71]]1 of 1-Gevrey series expansions is a differential algebra.

2. The differential equation (3.6) can be written as a fixed point problem,

w = N(w), N(w):—F(z,w)—gw/—i—w".

We consider the differential operator N as acting on the ring C[[z71]],
N : C[[z71]] — C[[z7!]]. When C[[z7!]] is seen as a complete metric space
(for the so-called Krull topology [24]), then N is a contractive map and
the formal solution w given by lemma 3.1 is the unique solution of the
fixed point problem.

This way of demonstrating the existence of the formal solution w is also
useful for pratical calculations. All the calculations in this course are pro-
duced that way under Maple 12.0 (released: 2008).

3.1.3 Towards truncated solutions

3.1.3.1 Main asymptotic existence theorem

We have previously seen that the ODE (3.6) is formally solved by a (unique)
formal series w € C[[z1]].

Question 3.1. Can we associate to w a holomorphic solution whose asymp-
totics are governed by this formal series ?

This question is the matter of the “main asymptotic existence theorem”.
This theorem is detailed in [16] for linear ODEs and extends to nonlinear
equations. We will here refer the reader to [26], theorems 12.1 and 14.1, see
also [23] for extension to Gevrey asymptotics.

In what follows, we refer to definition 3.6 for our notations for arcs, and to definition

3.7 for sectors of type §o° I).

Theorem 3.1 (main asymptotic existence theorem (M.A.E.T.)). Let
I be an open arc of St of aperture |I| < 7/(q + 1) where q is a nonnega-
tive integer. Let F(z,w) be a m-dimensional vector function subject to the
following conditions:
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1. F(z,w) is holomorphic in (z,w) on the domain of §°°(I) x B(0,r) with
B(0,r) ={w € C™, ||lw|| < r} for somer > 0;

2. F(z,w) admits an asymptotic expansion in powers of z~ % at infinity in
§°°(I), uniformaly valid in w € B(0,7);

3. the equation z~ 9w’ = F(z,w) is formally satisfied by a formal power series
solution w(z) € C™[[z~Y];
4. if Fj(z,w) denotes the components of F(z,w), the Jacobian matriz
%(Zv O) e B (Za 0)

Ow1 Owm,

lim T e e has non zero eigenvalues.
z—00,2€5°(I) IF,, (Z O) . OFm (Z 0)
Y Y

Owm,

8w1

Then there exists a solution w of the equation z~%w’ = F(z,w), holomorphic
in a domain of the form %OO(I), whose (Poincaré) asymptotics at infinity in

every proper subsector of §% (I), is given by the formal solution w.

3.1.3.2 Application

Let us transform (3.6) into a one order ODE of dimension 2 : we introduce

w = (;Ul) = (;5,) and we obtain the companion system:
2

. 01 0 o Fl(Z,w) o 2r —1
ow = (1 2) w + (F(z,wl)) = (Fg(z,w) =F(z,w) € C*[z7 ", w].
(3.9)
We now fix an open arc I of S!, arbitrary but of aperture |I| < 7. We also

consider a domain of the form §°° (I). We observe that:

1. F(z,w) is polynomial with respect to w, with coefficients belonging
to C[z7!]. Therefore F(z,w) is holomorphic in (z,w) on the domain
§°°(I) x B(0,r) with B(0,r) = {w € C2, ||w|| < r} for some r > 0;

2. again because F(z,w) € C?[z71, w], F(z, w) admits an asymptotic expan-
sion in powers of z~! at infinity in §%° (I), uniformaly valid in w € B(0,7);

3. the equation(3.9) is formally satisfied by a formal power series solution

w:) = () € Ol

2L (00,0 ,0
4. the Jacobian matrix <(1) é) = (%(2’0) ‘gﬁ‘%g(z’o;> has non zero
eigenvalues p; = —1 and po = 1.

These properties allow to apply the (M.A.E.T.) and this shows the following
proposition (see also [15]):

Proposition 3.2. For any open arc I of St of aperture |I| < 7, there exists
a solution w of (3.6), holomorphic in a domain of the form ;"O(I), whose
(Poincaré) asymptotics at infinity in every proper subsector 0f§°° (I), is given
by the formal solution w given by proposition 3.1.

Proposition 3.2 thus describes the minimal opening of sectors on which
holomorphic solutions w asymptotic to w exist. Through the transformations
(3.4), (2.6) and (2.7), these solutions w corresponds to holomorphic functions
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u solutions of the first Painlevé equation, defined on opening sectors of aper-
ture 47 /5 : we thus get a first insight towards the truncated solutions for the
first Painlevé equation (theorem 2.4).

As a matter of fact, from the above informations and the property for any
solution of the first Painlevé equation to be a meromorphic function, one can
even show the existence of tritruncated solutions [15]. However, to get more
precise informations, we decide in what follows to turn to the question of the
Borel-Laplace summability of w.

3.2 Formal series solution and Borel transform

We denote by B@ the transform of @ through the formal Borel transform

B(z — ().
We denote by B the formal Borel transform (instead of B like in [24, 16]). Given a
(e o)

formal series g(z) = Z biz! € Cl[z]], its formal Borel transform By is defined by
=0

. o -1
(B3)(¢) = bod + g(¢) where g(¢) = Zbl% € C[[¢]]. The series expansion g is
1=1

the minor of §. The inverse map £ : C§ @ C[[¢]] — C[[z7]] is the formal Laplace
transform.

Since we know by proposition 3.1 that val w > 0, the formal Borel transform
of @ just reduces to its minor w. We now use the fact that w(z) is the unique
solution in C[[z7!]] of the differential equation (3.6). One gets the following
result from the general properties of the Borel transform.

Proposition 3.3. The formal series w(z) € C[[z!]] is a formal solution
of (3.6) if and only if its minor w(¢) € C[[C]] is solution of the following
convolution equation:

P@)D + 1% [Q)D] = fo+ f1 %@ + fo x @ * @,

P(a) = CZ -1, Q(a) =3¢, (3.10)
~ 392 ~ ~ 1
fo(C)*@Q f1(¢Q) = —4¢, f2(C)*§C~
For g(¢) = anC" and h(¢) = chcn € C[[¢]], the convolution product g * h is
given by the Hurwitz product, gxh(¢) = Xk: dpCF, dy, = n+m2+:1:k %bncm,

<
which reads also g * h(¢) = / g(n)h(¢ — n)dn. This formula provides the convolu-
0

= d
tion product on Og. By formal Borel transform B(z — (), the derivation 0 = s is

z
transported into the operator 0 of multiplication by (—¢) while the usual product
becomes the convolution product. See, e.g. [24, 16, 4, 5] and Chapt. 7.
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3.3 Formal series solution and 1-summability : first
approach

We want to analyse the 1-summability of the formal solution w of (3.6) de-
fined in proposition 3.1, this we do in this section by analysing its formal
Borel transform through a perturbation approach. This way of doing has the
advantage to give a first insight into the resurgent structure.

3.3.1 A perturbation approach

We will consider equation (3.10) as a perturbation of the equation

P@)d = fo(¢) (3.11)
which is quite easy to solve:

e cither formally, in the space C[[(]], since P(9) = ¢ —1 is invertible in that
space;

e or analytically, in the space of analyic functions, since P(9) = (? — 1 has
an inverse which is a meromorphic function with two simple poles.

In this approach, it is convenient to transform equation (3.10) into the
following one parameter family of convolution equations,

.mmﬁ:ﬁ+f(—1*mwﬁ]+ﬁ*ﬁ+ﬁ*ﬁ*@, (3.12)
and to look for a solution under the form

n(¢e) =Y hi(Q)e" (3.13)

1>0

When plugging (3.13) into (3.12) and identifying the same powers in €, one
obtains a recursive system of convolution equations, namely:

P(a)/h\o = fl(h
P(8)hy = —1 % [Q(d)ho] + f1 * ho + fa * ho * ho,

P(@)En = 1% [Q(@)ﬁn_l} + fll * Byt + Z fg */i\znl *ﬁnz, n> 1.
nit+ns=n—1

(3.14)

3.3.1.1 Formal analysis

Lemma 3.1. The system of equations (3.14) provides a unique sequence
(h1)i>0 of solutions in C[[(]]. Furthermore hy € (*F1CJ[C]] for every | > 0.

Proof. Use the fact that P(0) is invertible in C[[¢]] and the general properties
of the convolution product. 0O

The above lemma has the following consequence:
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Proposition 3.4. The series Zﬁl(ﬁ) is well defined in C[[C]] and is for-
1>0

mally convergent to the unique formal solution wW(¢) € C[[C]] of the convolu-

tion equation (3.10).

We mention that proposition 3.4 has a counterpart by formal Laplace
transform £({ — z). Introducing h; = Lhy, one gets from lemma 3.1 that the

sequence (711)120 solves in C[[z71]] the following recursive system of linear
nonhomogeneous ODEs:

P(d)ho = fo(2)
P(d)hy = *%Q(a)ﬁo + f1(2)ho + fa(2)h2

PO = Qs+ (&ha + £(2) Y Fuday n2 1

ni+ns=n—1

(3.15)
One deduces from 3.1 again that h; € z=2=2C[[27!]] for every [ > 0, thus:

Proposition 3.5. The series Z?Ll(z) is well defined in C[[z1]] and is for-
1>0

mally convergent to the unique formal solution w(z) € C[[z7]] of the differ-

ential equation (3.6).

3.3.1.2 Analytic properties

Instead of working in the space C][[(]], one can rather work in the space of
analytic functions. What we get from (3.14) is the following result.

Proposition 3.6. For every l > 0, the formal series iAzl converges to a holo-
morphic function in the open disc D(0,1) (and still denoted by h;). Moreover,
for any 1 > 0, the holomorphic function ﬁl can be analytically continued on
the universal covering of C\ {0,£1,--- ,+l,+(I+1)}.

As a consequence, for every | € N, ﬁl belongs to the space of functions @Z that will
be introduced later on, see definition 4.2.

Proof. We use (3.14) and the properties of the convolution product (see,
e.g. [24], or Chapt. 7). From the fact that the open disc D(0,1) is a star-
shaped domain with respect to the origin, the space (’)(D(O7 1)) is stable
under convolution product. Since P(9) = ¢? — 1 is invertible in O(D(0,1))

one easily infers by induction from (3.14) that h € O(D(0,1)) for every
[ >0.

We then use the fact that if @JZ € C{¢} are such that @, resp. ¥, can be
analytically continued to the universal covering of C\ {0, £1,--- ,+p}, resp.
C\{0,+£1,---,£q}, then @ = Ve C{¢} can be analytically continued to the
universal covering of C\ {0,%1,---,%+(p + ¢)}. The result announced in the
proposition is thus shown by induction from (3.14). O

The function 7}0 is a meromorphic function with simples poles at ¢ = 41, thus ﬁo
belongs to ﬁilmp, the space of resurgent functions with simple singularities (see
definition 7.54 and [24]). Since this space is a convolution algebra, the function
P(8)h1 given by (3.14) belongs also to ,@zimp, but this is no more the case for hy,
[ > 1, which present other types of singularities.
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3.3.2 Preparations

We have previously shown (proposition 3.4) that the formal Borel transform

w(¢) of the formal series w(z) solution of the prepared form equation (3.6),

can be written in the space C[[¢]] as W( Z hi(¢), where the sequence
1>0

(El)lzo solves the recursive system of equations (3.14).

To investigate the Borel-Laplace summability of @ one thus have to show:

e that the series of functions Zﬁl(c ) converges to a holomorphic function
1>0
near the origin and can be analytically continued in a convenient sector;
e that this holomorphic function has at most exponential growth of order 1
at infinity in this sector.

We know also by proposition 3.6 that each /i\u (¢) can be analytically continued
to the universal covering of C\ Z. This is why we introduce the following
definition.

Definition 3.2. For 0 < p < 1 one defines the domain DI()O) = U D\, p).
A=+1

(D(a,r) is the open disc centred in a with radius r.) We denote by ,@E)O) the
star-shaped domain defined by:

@ =C\ {1 | t€[1,+o0], ¢ € DL, p)} < C\ D).

(See Fig. 3.1). We note 29 = U ,/;ZE,O) =C\ %£[1, +o0[.
0<p<1

Definition 3.3. Assume that f({) = Z a;¢! is an analytic function on the
1>0

open disc D(0, r) centred at 0. One defines the function |f|, analytic on

D(0,7), by [F](€) = >_lal€"

1>0

Lemma 3.2. For every p €)0, 1], there exists M, 0y > 0 such that, for every

¢eC\ D,()O) and for p = 0,1, one has ‘ < M, (o). In particular, for

7

every polynom q € C[(] of degree < 1, M, 0ylql(1), for every

P
1

é_ cC \ D( ) M07’€0’U€7" on can take M ,(0) = ;

. . *(0)
Fig. 3.1 The domain %, .
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Proof. We have P(—() = (¢ — 1)(¢ + 1). By definition of DE,O) one observes

1 1 ¢ 1
that for every ¢ € C D(O), < - and ‘ < 1+ —. Therefore, for
VDol eET <, (+1 p
p=0,1,2 ¢ ’< ! (1+1)p<1(p+1)p<2p and this means
K ) 9, P(_C) —_ p2_p p —_ p2 —_ pg’

that one can take M, () = —.

As a matter of fact, one can be more precise. Suppose for instance that

R(¢) > 0. Then |¢ + 1| > max{1,|¢|}, thus M < 1 In a nutshell,
. [P(=¢) p

one can take M, oy = —. O
p

As a rule, we will combined lemma 3.2 with the following lemma:

Lemma 3.3. Let U be a star-shaped domain from 0. Suppose that ¢ and 1/&
are two holomorphic functions in U and satisfy the conditions:

for every ¢ € U, |3(Q)] < F(I¢|) and |4(C)] < G(¢])

with F, G positive continuous functions on RY. Then, for every ¢ € U,

PO S F=G(Cl) and |(¢7) +B(O)| < I¢I(F+G(<)))-
Proof. 1f ¢ = |(|exp(if), then (since U is a star-shaped domain)
- LI , !
B00] < [ [Be][B((¢-re)] dr < [ FIG(C 1) dr < PxG(c]).
0 0

The last statement is shown in a similar way. O

3.3.3 Majorant functions

We have in mind to show that the series ZE;(C ) converges uniformaly on
1>0

L]
any compact subset of %2(°). To do that we will use majorant functions.

3.3.3.1 Definition of the majorant functions

We consider, for any 0 < p < 1, the sequence of functions (Bl)lzo recursively
defined by:



40 3 Tritruncated solutions for Painlevé I

1

Hy = ol (€),
M, 0)
1 - —~ ~ - A~
i Hy = (3+|f1]) * Ho + | f2| * Ho = Ho,
p,(0)
i Hy=@3+|A)«Hor+ Y |fol % Hy x Hyyo 0> 1
p,(0) ni+no=n—1
. -~ 392 -~ ~ 1
with [1(6) = =€, 1fil©) =46 1519 = 3¢

(3.16)
and M, o) given by lemma 3.2. (Compare this system with (3.14).) We claim

that for every [ € N, h; is a majorant function for 711. Precisely:

Lemma 3.4. We consider the sequence of functions (ﬁl)lzo defined by (3.16).
For every 0 < p < 1 and for everyl € N, the following properties are satisfied:

1. ﬁl(f) is a polynomial function and belongs to &F1C[¢];
2. furthermore,

for every ¢ € é,g)o)’ |7LZ(C)| < Hy(¢) with €= (3.17)

Proof. The fact that H;(¢) € €+1C[¢] is proved by induction from (3.16) and
from the properties of the convolution product. By (3.14) and lemma 3.2, for

every ( € é;}o)’

N 1 |~ N
GIE ‘p@)’ 7O < My olfol(€) with € =1c],

so that (3.17) is true for I = 0. Assume now that (3.17) is true for

1=0,---,(n—=1), for some n € N*. By lemma 3.3 and the induction hy-

. 2,(0)
pothesis, for every ¢ € #, ",

’P(la)‘ 1+ [QE@)Rn 1] ()] < ‘P(l@)‘ Q10D (1= aa(6D).

where |Q|(§) = 3¢. Therefore, by lemma 3.2,

‘P(la)‘ [+ [Qh1)(©)] < Mooy 10ID) (15 1 (6))

with & = |¢]. More generally, for similar reasons, still writing & = |(],

1

m‘hn(cn S <3 * Hn—l(ﬁ)) + |f1| * Hn—l(g) + Z |f2| * Hn1 *Hn2(§).

ni+ns=n—1

Thus, for every ¢ € é(po), fALn(C)| < H,(¢). This ends the proof. 0O

3.3.3.2 Upper bounds for the majorant functions

Before keeping on studying the majorant functions, we state a property that
will be useful in the sequel. We first recall two notations.
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Definition 3.4. Let U C C be an open set. We denote by O(U) the space of
functions continuous on the closure U of U, and holomorphic in U.

1
For Ry > 0, we note D(o0, Rg) ={z € C, |z| > R—}
0

Lemma 3.5. For Ry > 0, we suppose f € O(D(o0, Ry)) with f(z) = O(z™™)

at infinity, m € N, and we note M = sup  |f(2)|. Then the formal Borel
ZGD(OO,R())
transform Bf = fod + ]? of [ satisfies the following properties:
~ M
1. f € O(C) and |fo] < —.
Ry

2. for every ¢ € C, |f )| < |ﬂ < —eRo with £ = |¢| and, when m > 2,

N M €m72 s
< —_— R = |(]-
FOIS gy o™ €=k
Proof. We assume that f € (9( (00, Ry)) With Ry > 0. Its Taylor series
expansion at infinity reads f(z Z frz 7k = =z~ (m=1) Z fm+l_1z*l, and
k>m 1>1

M
by the Cauchy inequalities, |fi| < o for any k € N. The formal Borel
0
transform of f reads B f = fod + f with :

Z fl as rule,

>1
l 1

2. f(() = meH 1 when m > 2.

>1 )

Now, for any m > 1, for every ¢ € C, writing & = ||,

Mgt M <
Z|fm+l 1| ) ZRm+l 1([_1)' S Rm e Ro |

>1

This ensures the uniform convergence on any compact set of C, thus f € 0(0),
and this provides the upper bounds. O

We now return to the majorant functions with the following lemma.

Lemma 3.6. For everyl € N, the majorant function ﬁl(é) is the Borel trans-
form of the function H;(z) which has the following properties:

o H(z) belongs to C[z71];

~ 8
o for every 0 < p < 1, Hi(z) is bounded in the domain |z| > —, precisely
p

sup |Hi(z)] <

|z|>2

1
2

Proof. To obtain more informations about the majorant functions, we con-
sider their generating function, namely we introduce the series:

Z H ' e ClE][[e]). (3.18)
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From (3.16) we observe that this generating function formally solves the
convolution equation

ﬁz|f0|+5[(3+|f1|)*ﬁ+|fg|*ﬁ*ﬁ (3.19)
Mp.(0)

This translates into the fact that the generating function H is the transform,
through the formal Borel transform B(z — &), of the solution

h= Z H, e e Clz~"[[]] of the following second order algebraic equation:

=0
B = |fol() <[ (S 1D + |l B
M), (0) z 520
392 1 4
with [fol(s) = 52—, 1AlG) = o5 1al(e) = 55

This equation has two branches solutions, one of which being asymptotic to

H = |fo|(z) when & goes to zero. We are interested in

the equation

P,
that solution. Instead of using an explicit calculation, we rather use another
method which can be generalized. In (3.20) we make the change of variable

1 ~
t = —. When writing H(z,e) = H(t,¢), equation (3.20) becomes:
z

‘F(t7€7H) = 07
. 1 _ _ _
with F(t, e, H) = i H — | fo|(t 1)—5[(3t+|f1|(t D) H + ||t H?|.
p,(0)

(3.21)

Since oF )

F(0,0,0) =0 and ——(0,0,0) = 0,
( ) 50 ¢ ) M0 #

the implicit function theorem provides a unique holomorphic solution H (¢, )
to (3.21), for |¢| and || small enough : there exist 1 > 0, ro > 0, r3 > 0 and
a holomorphic function H : (t,e) € D(0,7r1) x D(0,r2) — H(t,e) € D(0,r3)
such that

for every (t,, H) € D(0,71)xD(0,72)xD(0,73), []—"(t,e, H)=0e H=H(te)]|.

To get more precise informations about that solution H(t,e) we are inter-
ested, we now view the implicit problem (3.21) as a fixed-point problem,

H = N(H), (3.22)
N (H) = My, o) (1ol (£71) + [ (3¢ + A1) H + |l H?)])

2 1
= M, 0) <2g5t2 + 6[(31& +4t*)H + QtszD .

1 _
We set M), gy = — (see lemma 3.2) and we introduce the space O(U) of func-
p

tions in (t,e) which are holomorphic on the polydisc U = D(0, £) x D(0,2)
and continuous on the closure U of U. We recall that (O(U), || ||) is a Banach
algebra where || || stands for the maximum norm.
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We have the following more general theorem : let U be a bounded open subset of C™,
n > 1, E be a Banach space and O(U) be the space of functions f : x + f(z) € E
which are continuous on U and holomorphic on U. With the the maximum norm
I£]l = sup |[f(2)], (O(T),||.|l) is a Banach algebra. See [25].

zeU

For a reason of homogeneity, we introduce the ball B, = {H € O(U), ||H| < p}.
For any H, H{,H> € B,,,

1 /392 p? p p? 9
H|<-|—==—4+2|—=|H —||H <
W < 5 (528 42 | L+ S| ) <o

(remember that p < 1), while

2 (7 2
)~ N < 2 (T2 — il + Lol — (10 + el

<
- 32

The mapping N|p, : H € B, — N(H) € B, is thus contractive. Since B,
is a close subset of a complete space, (B,,|.]|) is complete and the contrac-
tion mapping theorem can be applied. We deduce the existence of a unique
solution H in B, of the fixed-point problem (3.22).

This solution H(t,e), thus holomorphic in U = D(0, £) x D(0,2), has a

oo
Taylor expansion with respect to € at 0, H(t,e) = Z Hi(t) €', where (H)i>0
1=0

is a sequence of holomorphic functions in the disc 5(0, g). Moreover, by the

Cauchy inequalities and using the fact that sup |H(t,e)| < p, one gets
(t,e)eU

the property: for every I € N, sup |H(t)] < % This ends the proof of
teD(0,%

lemma 3.6. O

Lemma 3.7. For every 0 < p < 1 and every |l € N, the majorant function

~ ~ 8
H; (&) is a polynomial function and satisfies: for every & € C, |Hy ()| < ?e%m.

Proof. Just a consequence of lemma 3.6 and lemma 3.5. O

3.3.4 Formal series solution and Borel-Laplace
summabzility

We are ready to show the following theorem.

Theorem 3.2. The formal solution w(z) of the prepared equation (3.6) as-
sociated with the first Painlevé equation, belongs to the space C[[z7]]1 of
1-Gevrey series and satisfies the following properties:

1. its formal Borel transform w(¢) belongs to the space (C{(}, is odd and

can be analytically continued on the cut plane é’(o) ;

2. w(¢) has at most exponential growth of order 1 at infinity along non-
horizontal directions. More precisely, for every 0 < p < 1, there exist
A >0 and T > 0 such that
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for every ¢ € é;}o% |B(¢)| < AeTlél

8
3. moreover in the above upper bounds one can choose A =16 and T = —.

Proof. Combining lemma 3.4 and lemma 3.7, we know that, for every

0 < p < 1, the functions ﬁl(C), 1 > 0 are all holomorphic on é’(po) and satisfy:
for every R > 0,

~ -~ 8 8R 38R . ° 0
> sup[m(Q)] <Y Hi(R) <) gier " <16e0™ with Up = D(0, RNz,
1>0 Ur 1>0 >0

This normal convergence ensures the uniform convergence on any compact

subset of é(o) of the series Zﬁl(( ), which thus defines a holomorphic func-
1>0

tion on é,(o). We end the proof with proposition 3.4 from which we know

that the series Z hi(€) is formally convergent to the formal Borel transform

>0
w(¢) of the formal solution w(z) of the ODE (3.6). O

Remark 3.3. Actually better estimates can be easily obtained, see corollary
3.1, see also exercise 3.3.

3.4 Formal series solution and 1-summability : second
approach

In this second approach, however related to the first one, we introduce a
Banach space (following [6, 7]) that will be convenient to demonstrate the
analyticity of @, the formal Borel transform of the formal series @ solution of
the ODE (3.6). Then one introduces the reader to a “Grénwall-like lemma”,
which will give us the upper bounds we are looking for.

3.4.1 Convolution algebra and uniform norm

Definition 3.5. We assume that U = U C C is an open neighbourdhood

of the origin, that U is a bounded star-shaped domain with R = sup |(| the
Ceu

“radius” of U. We note (O(U),+,.,) the convolution C-algebra (without

unit) of functions which are continuous on U and holomorphic on U. We note

MO(U) the maximal ideal of O(U) defined by MO(U) = {f € O(U), f(0) = 0}.

We define

9: f€O(U)— 9f(Q) = —¢f() € MOU).
For v > 0 we introduce the norm ||.||,, defined by: for every f € O(U),

I f]l, = Rsup|e ¢l £(¢)].
ceu

We extend this norm to O(U)@®C§ by defining, for every f € O(U) and every
ce€C, 6+ fllv = le| + [ f[l, while 96 = 0.
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Proposition 3.7. With the above definitions, (O(U)®Cd, ||.||,) is a Banach
algebra. In particular, for every f,g € O(U)®CS, ||f*gll, < | fll. gl Also

MO(U) is closed in the norm space (O(U), ||.|l,). Moreover, for v > 0:

— n!
1. for every n € N, for every g € O(U), |I€" *g|l, < WHQHV’

n!
VnJrl

— 1
2. for every f,9 € OU), |Ifgllv < Fll£llllgllo-
3. for every f € (’)(@LV >vo > 0= |Ifll < Ifllve-
4. for every f € MO(Ug), ILm IlfIl. = 0.
5. the map 0o : [ € O@) — 0f € MO(U) is a derivative in the con-

volution spacg@(ﬁ) and is invertible. Its inverse map a_isatisﬁes: for
every f € O(U), for every g € MOU), 0~ 1(f xg) € MO(U) and

lg™ ) <

R and ||1]|, = R.

1

107 (f * 9l < = Il 107 gllo-

For every f € O(U) & C4, for every g € MO(U), 071 (f *g) € OU) and
1072(f * Dl < [1F1 1107 gl
Proof. Since Re "% sup |f(§)| < Rsup ’e_”mf(C)’ < Rsup |f(()|, we see
ceu CeU ¢ceu

that ||.||,, is equivalent to the usual maximum norm on the vector space O(U)
and this normed vector space is complete. This shows the completeness of

((©@),+,.).I1ll,) and of (OT) & C5,1|,) as well.
For f,g € O(U) we have, writing ¢ = |(|e'? € U,

!
Re !¢l f 4 g(¢) = Re Il /0 F(se)g((I¢] = 5)e”) e¥ds

el 77 , .
=R [ f(se®)e *g((|¢| — s)e®)eUcI=) el s,
0

I<h 1
Therefore Rle "¢l f x g(¢)] < Hf||l,HgH,,/ = ds < |1 fllvlgll- We conclude
0

that for every f,g € OT), £+ gllv < [flullgll hence (O@), 1) is a

Banach algebra and (O(U) @ C4, |.||,) as well.
We now assume that v > 0.

1. For the particular case f = (", we write for g € O(U),

1§
Re™I<l(¢" % 9)(¢)| < R / e s"
°
<lall [ eesnas
0

oo
<loll [ eesds
0

!
This shows that ||" * g||, < :—HHgHV The other properties follow.
v

9((|C\ - S)ei‘g) ‘e_”(|C|—s) ds
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1
2. Tt is obvious to show that || fg|., < || f]l.sup|g] < EHfHVHgHO, for every
U

f,9€0().
3. If f € O(Ur), it is straightforward to see that v > v > 0 = || f|l, < [|f]|u,-
4. If f € MO(Ug), then f = (g with g € O(U). From the previous property,

1 1 .
£l < EHCHV”QHO < ;”9”0- Thus lim, . || f[|, = 0.

5. If f € O(U)®C6 and g € MO(U) then obviously fxg € MO(U). Assume
now that f € O(U) and g € MO(U). Then 0~ 1(f * g)(0) = 0 and writing
¢=Ice? €U,

<]
Re_l’ldf xg(¢) = Re~ V¢l / g(seiG)f((Kl — ) RUER (3.23)
0
1§
= R/ seiG(aflg)(seiQ)erSf(ﬂq o s)eie)e*”(m*s) ei"d&
0

On the one hand, from (3.23),

¢

1 <]
—v|¢| < = -1 < -1
R (0] < ol [ sas < KL s 1071,

so that

Rl 071 (£ = 9)(O < L1710~ gl < 1010 gl

Thus [0~ (f*g)ll, < [f]l.10~"gll,. One easily extends this formula when

f € OU) @ Co. On the other hand, from (3.23),
—v|¢] -1 <l —vs |C| -1
Rle™"1f xg(Q) < Ifllosup 0~ gl | se™"*ds < =S| fll.107 gllo
U 0 VR

1
hence Rle™"1071 (f * 9)(Q)] < —= 1119 gllo, and  thus

1
28‘10“ 9w < —= 1l 107 gllo-

3.4.2 A Gronwall-like lemma

We start with the following observation.

~

Lemma 3.8. Let be N € N* and (F,)o<n<n @ Sequence of entire functions,
real and positive on RT, with at most exponential growth of order 1 at infinity.
We suppose a,b,c,d > 0.

Then, the convolution equation

N
W(E) = d+ [a+ be] *W(E) + ¢ (ﬁo(f) +Y F,x w*n(g)> (3.24)
n=1

has a unique solution in C[[£]], whose sum converges to an entire function
Wq(§) with at most exponential growth of order 1 at infinity. The function
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Wq(€) is real, positive and non-decreasing on RY and, for every € € C, the
mapping d — Wq(€) is continuous on RT.

Proof. Obviously, (3.24) has a unique solution wyg € RT[[¢]]. Its formal
Laplace transform, wg = £(Wg) € R*[[27!]], solves the algebraic equation

N
w(z) = 4, B + :2} W(z) + ¢ Fu(2)W"(2), (3.25)
n=0

where the F,, 0 <n < N, are holomorphic functions on a neighbourhood of
infinity with F,,(z) = O(z™!). This shows (by a reasoning already done) that
wg = O(z7!) is a holomorphic function in (2,d) for d € C and z on a neigh-
bourhood of infinity (independent on d). Therefore, W defines a holomorphic
function in (¢, d) € C?, with at most exponential growth of order 1 at infinity
in €. The fact that, for d > 0, Wy is real, positive and non-decreasing on RT,
is evident. 0O

Lemma 3.9 (Gronwall lemma). Let U be a star-shaped domain from 0
and N € N*. Let (fn)o<n<n be a sequence of functions in O(U) so that there

exists a sequence (ﬁn)OSnSN of entire functions, real and positive on RT,
such that, for every 0 <n < N,

for every ¢ € U, |fu(Q)] < Fn(€), €=

Let p,q,r € C[(] be polynomial functions so that p does not vanish on U and
we assume that following upper bounds are valid:

lal(Ich) Irl(I¢))
= b=
R P o T ot

b O] T T ER O T

We furthermore assume that W € O(U) solves the following convolution equa-
tion:

N
P(QB(C) + 1% [g(QB)(C) = ¢+ OB + Fo(Q) + 3 Fux 57(C). (3.26)
n=1

Then for every d > 0, for every ¢ € U,

[@(Q)] < wa(§),  €=ICl,

where Wy is the holomorphic solution of the convolution equation (3.24).

Proof. (Adapted from [17]). We assume that w € O(U) is a solution of the
convolution equation (3.24). We thus have, for every ¢ € U,

~

¢ ¢
pOBC) = FolC) — / a(m) () d + / (¢ — n)r(m)@(n) dn
N ¢
+§_j/0 Fu¢ = )@ (n) di

Thus, writing ¢ = |¢| and ¢ = &e'?,
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I Tlall©) 11O T oo
(01 < e PO+ | [p<<>|+|p<<>(5 )]' (re®ld

N

14 (1)
+ 3 [ e e

Therefore,

130 < cFo(€)+ / la + b(E — )] [B(re |dr+cZ / B, (6—r)|@™ (re®)| dr.

0

We notice from (3.26) that |@w(0)| = ]2)((?) , Wa(0) = cFy(0) + d, where

Wy solves (3.24). Notice that |@(0)| < cFy(0) by definition of ¢ and by hy-
pothesis on Fj.

Case 3.1. We assume wg(0) > |@W(0)]. We want to demonstrate that
|@(¢)] < Wg(€) for ¢ on the ray ¢ = e € U.
Assume on the contrary that there exists ¢ = &€ € U such that

[0(¢1)[ = Wa(&1)- Define x = {¢ € [0,G] | |w(C)| = Wq(|C])}. This is a
non-empty closed set, bounded from below, and we note (o its infimum.

o If |W(C)| > wa(|C]) for some ¢ €]0, (2], then ¢ € x and this contradicts the
definition of (5. Thus, for every ¢ € [0, (2, |W(¢)] < Wq(|C])-

o If |W((2)| > Wa(|C2]) then, by continuity of @ and Wg, one can find a > 0
such that |@((|¢2| — a)e'?)| > Wq(|¢2| — a), but this this contradicts again
the definition of (3. Therefore |@W((2)| = wa(|C2])-

Putting things together, one gets with & = |(s]:

- & .
§6F0(§2)+/0 [a + b(&s — 7)) |W(re? |dr—|—cZ/ (&g — 1)@ " (rel?) | drr

=R &2
§0F0(§2)+/ l[a+b(& — 7)) Wa(r dr+cZ/ (& — )W (r) dr
0
< Wq(§2) —d

and we get a contradiction. As a conclusion, for every d > 0, for every ¢ € U,

[w(¢)] < Wa(§) with & = |].

Case 3.2. The case wg(0) = |w(0)| (thus, in particular, d = 0) is deduced
from the above result. Indeed, for a given ¢ € U, one has by |0(¢)| < wq(§)
for every d > 0. Since the mapping d — Wg(€) is continuous on R (cf. lemma
3.8), one gets the result by letting d — 0.

O

3.4.3 Applications

We demontrate the theorem 3.2 with the tools introduced in this section.
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For R > 0 and p > 0 we introduce the star-shaped domain Ur = D(0, R) N ég)o)'
One defines B, = {v € O(Ug), ||0||, < r}, for any r > 0 and v > 0.
We now consider the convolution equation (3.10), viewed as a fixed-point
problem. Precisely, we consider the mapping

N i€ B o o[ =14 [Q)T) + o) + i +3(0) + Fo 5470

By lemmas 3.2 and proposition 3.7, one first gets:

IN@)w < M, 0)ll = 1% [QO)D] + fo + 1 ¥ D+ fox T %D,

By proposition 3.7 again, one easily obtains, since Q(9) = 3¢:

1 1 3
I+ [QE)D]Il, < ~ 1)Vl < - lIQ@)lolIBll, < 13,

The functions fo, f1, f> belong to MO(Ug). This implies, by proposition 3.7,
that UILIIolO Iill, =0, i=0,1,2. We then deduce that |N'(?)||, < r by taking
v > 0 large enough.

By the same arguments, one easily sees that ||N(01) =N (D2)], < k||U1 — 02l
with k < 1, for ¥1,02 € B, and for v > 0 large enough.

This means that A is contractive in the closed set B, of the Banach space
(O(UR),|I-Il), for v > 0 large enough. The contraction mapping theorem
provides a unique solution w € B, for the fixed-point problem v = N (7).
Since R and p can be arbitrarily chosen, we deduce (by uniqueness) that
the formal Borel transform @ of the unique formal series w solution of (3.6),

defines a holomorphic in 20
One now turns to the Gronwall lemma to get upper bounds. Working in the

star-shaped domain é(po), for any 0 < p < 1, one sees by lemma 3.2, lemma

3.3 and the Gronwall lemma 3.9, that for every ¢ € 9'?20)’ |w(Q)| < w(€),
& = ||, where w(¢) solves the following convolution equation:

W= |fol + B+ |A]) « W+ |fo] * @ = w.
M), (0 ( )

This is nothing but (3.19) with e = 1. We adopt the notations and reasoning
made for the proof of lemma 3.6. We set w(z) the inverse Borel transform of
w and we note w(z) = H(t), t = z~'. The function H solves the fixed-point
problem H = N'(H) with

392 1
N(H) = M, <625t2 + (3t +4t*)H + 2t2H2) : (3.27)

1 _
We set M), o) = i U = D(0, é), and B, = {H € O(U), ||H|| < p}. One
easily shows that for any H, Hy, Hs € Bj,

44150
N(H)€B, and  [N(H) = N(Ha)| £ T2 [ Hy — Hall.

We conclude with the contraction mapping theorem that w(z) is holomorphic

4.22
on the domain |z| > —— and is bounded by p there. Therefore, by lemma
p
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3.5, W is an entire function and satisfies: for every £ € C, |w(&)| < 4.22¢ 181,
To sum up:

4.22
Corollary 3.1. In theorem 3.2, one can take A =4.22 and 7 = —.
p

3.5 Tritruncated solutions for the first Painlevé equation

Theorem 3.2 shows that one can apply the Borel-Laplace summation scheme
to the unique formal series expansion w € C[[z7!]] which solves equation
(3.6). This is what we do in this section.

3.5.1 Formal series solution and Borel-Laplace
summation

3.5.1.1 Notations

We will use essentially common notations with [24, 16]. In particular:

Definition 3.6. We note S' C C the circle of directions about 0 of half-lines
on C. We usually identify S' with R/27Z.

For a direction § € S and an open arc I of S!, we note 0 the open arc of S
defined by § =] — % — 0, —0 + Z[, and [ = [J,, 0.

For an open arc I =]a, B[ of S, we set I = [, 3] its closure, and we note
I* =] — 8, —a[ the complex conjugate open arc.

For an arc I = (o, 8), we note |I| = § — « its aperture.

Definition 3.7. For I an open arc of S' and for 0 < r < R < oo, we define
the open domain s¥(I) = {( =&Y € C | 0 eI, r <& <R}
ForO<r<R<oo,weseté§’(I):{C:feiaE(C | 6€1,0<¢< R} and
o) ={C=¢eC | fel,r<t<oco)

We note 8o(I), %0 (I), $°(I) and 5% (I) when R or r is unspecified.

For a direction 6 and 7 € R, we write I.] 9 for the following open half-plane,
bisected by the half-line e YR+ : ].]f ={z€C, R(z") > 7}.

For I an open arc of S! of length |I| < 7 and v : I — R locally bounded, we
note

2(1,7) = U 1T (9)-

ocl

The domain is called a call sectorial neighbourhood of infinity.

3.5.1.2 Borel-Laplace summation

We start noticing that for any p such that 0 < p < 1, we can define

[.

§ = sin"!(p) = arcsin(p) €]0, g
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From this remark, theorem 3.2 and corollary 3.1 have the following obvious
consequences:

Corollary 3.2. The Borel transform @ € (’)(é’(o)) of the formal solution w
of equation (3.6) satisfies the following property.

For every § €]0, g[, there exist As > 0 and 75 > 0 so that

for every ¢ € §5(J6, 7 — 8]), |@(C)] < Age™!¢. (3.28)
2

Moreover one can choose As = 4.22, 75 =

sin(9)

From corollary 3.2 and the general properties of the Laplace transform £
([24, 16, 7] and Chapt. 7), we see that for every ¢ €]0, g[, the Borel-Laplace

sum .#%w of w in any direction 0 €]6,  — 4],

i0

S5 = (£ D)) = | T e agd,

4.22
sin(§)
These holomorphic functions glue together to give the Borel-Laplace sum
1085 which is holomorphic in the domain U II f_é, or even

6€]6,m—3[

is well-defined and is holomorphic in a half-plane of type ].7 25 with 75 =

Al e 0(00.717),  F00rlT) = | . T0)=
0€]0, |

(See Fig. 3.2, see also exercise 3.4). Moreover, since @ formally solves equation
(3.6), then 19714 is a holomorphic solution of equation (3.6) and is Gevrey

o0
asymptotic of order 1 at infinity to w(z) = Z a;z~" on the sector 2(]0, [, 7):
1=0
for every proper-subsector §° € %(]0, 7[, 7), there exist constants C' > 0 and
L]
A > 0 such that for every N € N and every z € 5,
N

A0 G(2) — Z a2z | < CNAN |2~ (3.29)
1=0

—

Similarly, the formal series w is 1-summable in the directions of the interval
Jm, 2r[. This provides the Borel-Laplace sum 1™ v € O(g(]r,2x[, 1))

. 4.22
with 7(0) = S0 (0)

3.5.2 Fine Borel-Laplace summation

When using fine Borel-Laplace summation (see [16, 24]), it is possible to give
more precise estimates than those given by (3.29). This is what we do in this
subsection.
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Fig. 3.2 The (shaded)
domain _0}(]0,71’[,7') for

4.22
7(0) = sin(9)
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3.5.2.1 Fine Borel-Laplace summation and Nevanlinna theorem

Definition 3.8. We note S,.() the open half-strip S,.(0) = U D(se 1),

seERT
for r > 0 and a direction 6.

The following lemma is the easy part of a theorem of Nevanlinna, [24, 16,
18, 12].

+oo
Proposition 3.8 (Nevanlinna). We consider ¢(z) = Z a—z € Cllz"
n=0
and we note By = ayd + @ ist formal Borel transform through B(z — (). We
assume 6 € R and r > 0, A >0, 7 > 0. Then property (1) implies property
(2) in what follows.

1. The minor ¢ is analytically continuable on S,.(68) and for every ¢ € S,.(6),
2(0)] < AeTlel.

2. The Borel-Laplace sum .#°3(2) is holomorphic in ]:[f and for every p > 0,
N>0 ande].Yf_ :

AT (k—p)---(k—1) i0
dap (Z) — kz:;)(—].)pakfp Zk ’ S Ras(raAvTv Na ze 7p)
(3.30)
where

Nle™

! P o(r(R(z) — 7 !
Ras(r, A, 7, N, z;p) =ATN|Z|N (%(Z)]iﬂp“ > (r R l)! ) (3.31)
=0

Proof. One can assume that 6§ = 0. We note ¢,(¢) = (—¢)?@(¢). Assuming
that property (1) is true, one gets by the Cauchy formula:

! N!
for every ¢ € RY, |GV < 7 sup [@o(m)] < A (C+r)en,
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By integration by part we have, for z € I.Y 9 and N >0,

S0 (k—p)--(k—1) 1 [% Ny —x
() LW, = | aoea
so that

G, _i(_l)pakfp@—p)'--(k— 1>‘

dzP

We conclude with the identity:

b Pe—CRE) =) g — p! L (r(R(z) — 7))’
/0 (C+r) d¢ (%(z)—r)p“; g :

3.5.2.2 Applications

We return to theorem 3.2 and corollary 3.1. We consider a direction 6 €]0, 7|
and we choose r > 0 and 0 < p < 1 such that sin(f) = r + p. This ensures

that the half-strip S,.(6) is a subset of the domain égo) and, by theorem 3.2,
there exist A > 0 and 7 > 0 such that

for every ¢ € S.(0), |@(¢)] < Ae™l¢l, with sin(@) = r + p.

4.22
Also, from corollary 3.1, one can choose A = 4.22, 7 = ——. As a con-
p
sequence, proposition 3.8 can be applied. The reader will easily adapt the
previous considerations when the directions 6 €], 27| are considered.
We now summarize what we have obtained.

Proposition 3.9. The 1-Gevrey series w € C[[z71]]1, solution of the pre-
pared equation (3.6) associated with the first Painlevé equation, is 1-summable
in the directions of the arcs Iy =|0, x|, resp. Iy =|m,2xw[. This provides two
Borel-Laplace sums, -

wirio = LOTG resp. wipin = ST,

These two sums Wir;,0 and w1 are holomorphic solutions of the differential
equation (3.6) and satisfy the following properties.

For every 0 € Iy, resp. 0 € Iy, for every r > 0 and p > 0 so that
|sin(0)| = r + p, there exist T >0 and A > 0 such that :

L]
o wy; €O(IY), j=0resp. j =1;
o for every z € 1.72, for every N € N, for j =0 resp. j =1,

tre.g P 2k T TN 2N R(zel) — 17 '
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g ) $ = Doty NI L) =)
Pt N2V (?R(zeie)—T)2

where the coefficients ay are given by (3.7);

(3.33)

4. )
e morover one can take A = 4.22, 1 = ——. In particular Wey; 0, T€SP. Wiri 1,
P 1E5p

. o 4.22
is holomorphic in 9(ly, T), resp. in @(I1,7), with 7(6) = Tsn(@)]’
— sin

3.5.2.3 Remarks

1. We would like to make a link with 1-summability theory. We fix some
notations (these are classical notations [16, 18] but for the fact that we
consider asymptotics at infinity) and we recall the Borel-Ritt theorem for
which we refer to [16].

Definition 3.9. Let I C S! be an open arc and §°° = 5%(I) a sector.

. j(goo), resp. A(I), is the differential algebra of holomorphic functions

on the sector §% admitting Poincaré asymptotics at infinity in this
sector, resp. asymptotics germs at infinity over I.

o A (goo), resp. A (I), is the differential algebra of holomorphic functions

on the sector § with 1-Gevrey asymptotics at infinity in this sector,
resp. 1-Gevrey asymptotics germs at infinity over I.

—<0 —<0 . . e
o« A° (§°), resp. A° (I), is the space of flat functions on s, resp. flat

germs at infinity over I.
—<— <
o A~ 1(3‘”), resp. A~ 1(I), is the space of 1-exponentially flat functions

on goo, resp. l-exponentially flat germs at infinity over I.

L(5%)

We recall that j<0(;°°) is a differential ideal of j(;oo) and that A=~
is a differential ideal of A3 (;"O)

e A is the sheaf over S' of asymptotic functions at infinity associated
with the presheaf A. We denote by A; the sheaf over S! of 1-Gevrey
asymptotic functions at infinity associated with the presheaf A;. We
denote by A<? the sheaf over S! of flat germs at infinity associated
with the presheaf a’. Finally AS~! stands for the sheaf over S' of
1-Gevrey flat germs at infinity associated with the presheaf T

Theorem 3.3 (Borel-Ritt). The quotient sheaf A/ A<, resp. Ay JAS™1,

is isomorphic via the Taylor map T, resp. the 1-Gevrey Taylor map T}, to

the constant sheaf C[[z~]] and, resp. C[[z~"]];.

We go back to proposition 3.9. The domain é([o, 7) is a “sectorial neigh-
9 3 1

bourhood of co” ([4] and [24]) with aperture Iy =] — §7T7+§7T[7 while

é([lﬂ') = e’i“é(lon') is a “sectorial neighbourhood of co” with aper-

o 1
ture Iy =] — 5#,—571'[. These two open arcs provide a good covering

v v 1 1
Iy, I} of the circle of directions S!. We note J; =] — =, —7[ and
272
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1
J1 =] — =, —§7r[ the two intersection arcs. Both wy.;0 and w1 can

2
be considered as defining sections of Ay, namely wy.;0 € I'(lp, A1) and

Wiri1 € F(fl, Ai), and are asymptotic to the same 1-Gevrey formal series
w. The pair (w0, Wiri,1) defines a 0-cochain in the sense of Cech coho-
mology, and the 1-coboundary (w0 — Weri,1, Wiri1 — Wiri0) belongs to
F(Jo,.AS_l) X F(Jl,.AS_l).

2. For any j € Z and I; = Iy + jm =]0, 7| + j, one can of course consider the
Borel-Laplace sum wy; ; = % Tiw, which defines a holomorphic function

L]
on the domain (I}, 7), a sectorial neighbourhood of co with aperture

fj =Iy—jr=]— §7T7+§7T[—j71'. Morever, for every j € Z,

Wepi j2(2) = Weri(2) for z € H(I;,7) (3.34)

because w € C[[z7]];.
3. We mentioned in proposition 3.1 that the formal series w(z) is even. One

deduces that for any 6 €]0, x|, for every z € ].7270
ST w(2) = S0 w(—2).
Therefore, for every j € Z,
for every z € é(Ij,T), Wiri i (2) = Wiri j41(—2). (3.35)
4. We know by proposition 3.1 that w(z) actually belongs to R[[z~!]]. This
has the following consequence : for any 6 €]0, 7|, for z € ].727
LO0(z) =7 W(2)
(@ stands for the complex conjugate of a € C). In other words, for any
J € Z, the two functions wy,; ; and wyr; ;41 are complex conjugate,
for every z € é(lj,TL Wirij(2) = Weri j4+1(2)- (3.36)

However, neither wg.; 0 nor wy,;1 are real analytic functions, since this
would mean that the 1-coboundary w0 — w1 is zero which is not as
we shall see later on.

5. The properties (3.35) and (3.36) have the following consequences: for every
J € L, Wiy is ¢ PT-symmetric” [10, 11, 13], in the sense that for every

zZ € é(ljﬂ—)a

’Ll)tm'yj(Z) = wm-,j(—E). (337)
In particular, for r > 0 large enough,
Wi o(re™™?) € R, wéri’o(re_i”m) € iR. (3.38)
6. By Stirling formula one has N! ~ v/ 2rNNT2eN for large N. Since for
N,—N
a given z # 0 the function N +— ﬁ reaches its minimal value at
r|z

n = r|z|, it turns out from formula (3.32) that one can estimates the
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N
value of wyp; 0 or wyr; 1 from the truncated series expansion Z Z—: with
k=0
N = [r\z” where H is the entire part. This gives rise to the summation
to the least term.

7. Along this state of mind, there are many ways of computing Borel-Laplace
sums approximatively in practice (see, e.g., [14, 3]). Among them, one
may quote the so-called hyperasymptotic methods [1] which have strong
links with resurgence theory. These methods, originally arising from (and
extending to) geometrical considerations on (multiple) singular integrals
[22, 9, 8], can be applied to a wide class of problems stemming from ap-
plied mathematics and physics, see [19, 20, 21] and references therein.
Other ways are available, for instance those based on the use of conformal
mappings [2] with realistic upper bounds. It is also theoretically possible to
calculate a 1-sum exactly by means of factorial series expansions [18, 12].

3.5.3 Tritruncated solutions

3.5.3.1 Tritruncated solutions

One can easily translate proposition 3.9 into properties for the first Painlevé
equation (2.1). However, to cope with the Boutroux’s transformations (2.6),
(2.7), it is worth to work on the Riemann surface of the logarithm and we
thus fix some notations.

Definition 3.10. We denote by C the Riemann surface of the logarithm,
C={z=re’ |r>0,0cR}, m:z2€Cwrz=reecC"

For any z = re'? € C, we refer to 6 as to its argument, denoted by 0 = arg z.
L]
We denote by S! (usually identified with R) the set of directions of half-lines
L]

about 0 on C. We note 7« : S' — S! the natural projection (& = 7T|Sl ),
L]

which makes S! an étalé space on S! (and even a universal covering).
L]

Definition 3.11. For a direction 6 € S' and 7 € R, we define

I ={z=re“ec C | aecl and n(z) € 1%}
For I an open arc of S' and v : I — R locally bounded, we note

ol

One calls 2(I,v) a sectorial neighbourhood of oo on C.

In order to define the transformations (2.6) and (2.7) properly, we intro-
duce a conformal mapping:
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Definition 3.12. The conformal mapping 7 is defined by:

304/5

y —
((.:%((.:, z=ax=9(2) 71

eTim A5, (3.39)

For I an open arc of S' and v : I — R locally bounded, the domain Z(I,~)
is sent onto 9(@(1j77)) C C through the mapping 7, and we set

Sy =7(2(17), &Ly =r(sT7). (3.40)

We will consider the domains Z(I;, 1), j € Z, for I; = Iy + jm =]0, 71|+ j=
4.22 .
and 7(6) = Tsin(@)]’ Notice that Z(Ij41,7) = e " 2(1;,7) for any j € Z.
sin
The domain S(I;,7) (see Fig. 3.3 and Fig. 3.4) is a sectorial neighbourhood
of 0o of aperture

and we may notice that, for any j € Z, S(Ij41,7) = e_4i”/58(lj,7'). In
particular, S (Lj45,7) =S (I;,7).

We now think of wy; ; = i as a holomorphic function on 2(I;,7). By
(3.35) and (3.37), these functions satisfy relationships: for any j € Z, for
every z € 9(1;,1),

Weri j(2) = U)tri’jJrl(Ze_iTr), (3.41)
Wiri g (2) = wipi j(Ze~ T,

with the convention z = re '@ € C for z = re® € C.

This gives sense without ambiguity to (3.4), (2.6) and (2.7) with the trans-
formation

ZE.@(I]',T)HIES(I]‘,T) (342)
eiﬂ"/2

Weri,j «7_1(@)
wtri,j(z) Um‘,j(l“) = —z!/? <1 - : 7t ( 2 ) :
< V6 25(7~1(x)) (7-1(2))

The functions u,; ; are solutions for the first Painlevé equation (2.1) and, by
(3.41) and (3.42), they satisfy the following relationships: for any j € Z, for
every x € S(I;,7),

= MOy i (we M0, (3.43)

2(2j4+1)i = 2(4547)i
s 2+ )”Tutm',j(xe 245+ )m)7

Utri ()
Ui j (T) =

We recover here the symmetries discussed in Sect. 2.5.

By projection, uy,; ; becomes a holomorphic function on the domain é (I, 7).
This provides five distinct holomorphic functions ws,; (), 7 = 0,--- , 4, the
so-called tri-truncated solutions.

Since wyyi; is a section on fj of Ai, we deduce that the tritruncated
solution uy,; j(x) belongs to the space of holomorphic functions with Gevrey
asymptotic expansion of order 4/5 (or equivalently of level 5/4, see [16]) at

infinity in S;. One can thus recover u; ;(x) by its asymptotics through 5/4-



58 3 Tritruncated solutions for Painlevé I

Fig. 3.3 The projection
of the (shaded) domain
S(Ip, ), image by the
transformation (3.39),
of the domain Z(ly, )

drawn on Fig. 3.2 for

4.22
0) = —°_ The dash
7(0) [sin(g)] "

lines recall the sectors (2.9).

summability.
It is also worth mentioning that, from property (3.43), wri2(z) is a real
analytic function.

4.22

Proposition 3.10. We note S (Io, ) = W(g(.@(loﬂ'))> with 7(0) = T ()]

and, for j =0,--- .4,

hd 2iw

S (I, 1) :wf é (Ip,7) wj=e 5

j.
The first Painlevé equation (2.1) has 5 tritruncated solutions ur; (), j =

0,---4.

The tri-truncated solution g j(x) is holomorphic in S (I;,7), a secto-

rial neighbourhood of oo of aperture K; =| — %T(,—%ﬂ'[—%jﬂ', and has in

é’ (I;,7) a Gevrey asymptotic expansion of order 4/5 which determined
Uty j () uniquely. Moreover, for every x Eé‘ (I, 1),

2im ;

—92 _ 2in .
Utri,j(T) = Wjtkeri0 (wj x)7 wj=e 57 j=0,---,4,
and Ui 2 45 a real analytic function.

Remark 3.4. 1t is shown in exercise 3.3 that for any 7 = 0,--- ,4, the tri-

L]
truncated solution u,; ; can be analytically continued to the domain S (I;, )

with 7(6) = ————. We will see later on that each tri-truncated solution

[sin(6)

Ugri,; can be analytically continued to a wider domain than S (I;, 7).

Exercices

3.1. We consider an ordinary differential equation of the form
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P(O)w = G(z,w,w', ..., w"™ V) (3.44)

P@) =Y tn_md™ €Cl0], ag #0, an #0
m=0

where G(z, y) is holomorphic in a neighbourhood of (z,y) = (c0,0) € CxC™,
n € N*. We furthermore suppose that

o G(z0)=0(=""),

IG(z,0) _
. oyl = 0O(z7') when |I| = 1.

1. Show that for every M € N and up to making transformations of the type
M

w= Zakz_k + v, (3.45)
k=1

one can instead assume that G(z,0) = O(z~M~1).
2. We thus suppose that for some M € N*, G(z, y) is such that G(z,0) = O(z~1~M).
Show that, up to making a (so called) shearing transformation of the form

w=z"My, (3.46)

one can rather assume that

o G(2,0)=0(z"1);

IMG(z,0) _

(] T = O(Z 1) when ‘l| = 1,
MG(z,0) —M(|1|—

o TLRD) oMU when ] > 2.

3. Deduce that, through transformations of the type (3.45) and (3.46), one
can put equation (3.44) under the prepared form:

1
P@)w + —Q()w = F(z,w,w', ..., w™ D) (3.47)
n n—1
P) =Y onmd™ €CA] , Q)= Bumd™ € C[0]
m=0 m=0
where F(z,y) is holomorphic in a neighbourhood of (z,y) = (00,0) €

C x C™ and such that
e F(2,0)=0(:"2"M) M, eN;

[
. aggﬁf’o) = 0(272) when |I| = 1;
2]
. 851(;’0) = O(z72"Mu), My € N, when || > 2.

4. Show that the shearing transform w = z~Mv, M € N*, transforms equa-
tion (3.47) into an equation of the form

P@)v+ 1 (Q(0) ~ MP/(2))v = glz,v,, ., o).
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3.2. In this exercice we still consider the equation (3.10) and its unique so-

lution @ € (’)(é’(o)).

max{l,[¢[} _ 1
1. Show that, for every ¢ € C D(O), one has < -
VP POl <o
2. Show that, for any 0 < p < 1, for any ¢ = &ei? € %\, € = |¢],

A*g
plw(¢) |*625+7/ |@(re'®)| dr + = /| N\ dr.

3. for any 0 < p < 1, we consider the (unique) entire function w solution of
the convolution equation

N 392 1
pw(§) = 625 " Txw() + 5w * W(E).
We note w(z) the inverse Borel transform of w.
~ 203

Show that w(z) € O ({z| > 25}) (Consider the discriminant locus).

—1
203 _ 784 784\ /2
Show that for |z| > 35, w(z) = 65 ((pz -7+ ((pz —-7)? - 625) ) ,

- 784 1 28
w(z) = O(z71) at infinity, and that |w(z)| < 625 pz =7 < %

. 5684 203
4. Show that, for every & € C, [W(¢)| < 2o—e35 ¢!
625p

P 5684

5. Deduce that for every 0 < p < 1 and for every ( € %(0) |[w(¢)| < 6355 e3¢,
0
3.3. In this exercice we consider the ODE
/
n Y 392 _, 1,
= —y= ~1°. 4
YL TV et Ty (3.48)

4
T + y(z) or, from
(3.6) through the transformation y(z) = 2~2w(z). In particular there exists
a unique formal series 7(z) = 2~ 2w(z) € C[[z~1]] solution of (3.48). We thus

know that the formal Borel transform y belongs to MO(Q(O)) and satisfies
the convolution equation associated with (3.48) by formal Borel transforma-
tion:

deduced from (3.2) by the transformation v(z) = 1 —

B B 392 (3 1. 5
(=171 = g5z 7oy + 57+ (3.49)

1. Assume that f € C{¢} with f(0) = 0. Show that the solutions g € C{¢}
of the convolution equation

(P =1)g—1x(C9)=f
are given by

C f(¢ 1 ¢
9(¢)= 1-¢)2 1 —( <)2+(1 — ()12 /0 (1- Z%Wﬂn) @h Gt
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Fig. 3.4 The projection
of the (she.mded) domain \\\\\“I

e e
conformal mapping (3.39), '\‘\\“m]’,’, i

Nt

Wil
for 7(0) = - - The \ \\\\\\\\\\\“‘\"‘““u',‘!/
| sin(0)| \
dash lines recall the sectors
(2.9).

i
M

N

\\\\\\\\‘

A

/|

(Hint : take g(¢) = GO differentiate the convolution equation to obtain

- 17€27

a nonhomogeneous linear differential equation of order 1, and solve this

equation).

2. Show that ¥ satisfies the convolution equation (3.49) in M(’)(é(o)) if and

only if 7 satisfies the following fixed-point problem:

61

7= <292§1§(1)) + %9@* y) with
; (3.50)
(29)(C) = _1g(€<)2 + 1- 22)1/2 /0 1- 22)3/29(77) dn,
3. Show that for any 0 < p < 1 and for any ¢ € é,go) one has Hw < %
o (= | <

4. Show that for any 0 < p < 1 and for any ¢ € égo)’ [9(O)] < ?(f) with

¢ =|¢|, where Y is an entire function that solves the fixed-point problem:

~ 3 ~ ~
Y—Q(Eﬁf@)) +%£Z(Y*Y) (3.51)
G

(26)© = T2+ 5 (1+6)©

5. For any 0 < p < 1, we note ?(z) the inverse Borel transform of Y.
Show that Y'(z) satisfies the algebraic equation

pY = <392 Ly ;172> <1+ 1), Y(z) = 392 1 +0(z7%. (3.52)

625 2* pz T 625 p2t

6. Show that the fixed-point problem (3.52) has a unique solution
3
p

By ={H € O(T), |H| < %}7 for U = D(o0, 15).

in
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7.
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Deduce that the minor 7 of the formal series y solution of equation (3.48)

is holomorphic on é(o) and that, for any 0 < p < 1, for every ¢ € é(po),
one has »
B(0)] < 0.7p% 75 <], (3.53)

. Deduce that for any j € Z and I; = Iy+jm =|0, 7|+ jm, the Borel-Laplace

sum Y4, = -1y defines a holomorphic function on the domain é(Ij, T)

with 7(0) = MT(GH

. Deduce that the tri-truncated solution wu,; 5, j € Z, is holomorphic on the

domain S(I;,7) = 7 (2(I;,7)) with 7(f) = . See Fig. 3.4.

1.4
| sin(0)]
A

3.4. We consider the domain é(]O,w[, T) for 7(0) = ——, A > 0. We want

to

1.

2.

sin(0)
describe the boundary 8@(]0, 7[,7) of this domain.

show that 0 é (0, [, 7) is the envelope of the following family of line curves:

A
sin(6)’

z=x+1y, xcos(d)—ysin(h) = 0 €]0, 7.

,132

Deduce that 6@(]0, 7[,7) is the parabolic curve of equation y = o A
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Chapter 4
Beyond 1-summability

Abstract We have shown that the minor @ of the unique formal series so-
lution w of the prepared ODE associated with the first Painlevé equation,
defines a holomorphic function on a convenient star-shaped domain. We fur-
ther analyze the analytic properties of w. We show in Sect. 4.4 how w can
be analytically continued onto a wider domain of a Riemann surface that we
define in Sect. 4.1. This question is related to the problem of “mastering”
the analytic continuations of a convolution product and, as a byproduct, of
getting upper bounds for on any compact set. This is what we will (partly)
do in Sect. 4.2 and Sect. 4.3, using only elementary geometric arguments.

4.1 Riemann surface and sheets

This section is devoted to defining the Riemann surface Z = %7 and some
of its sheets. We do that in a way at first sight artificially complicated, but
needed to state one of the main results of this chapter, namely proposition
4.2 and its consequences developed in Sect. 4.3.

4.1.1 Riemann surface

4.1.1.1 About paths

In what follows, a path A in a topological space X is any continuous function
A a,a+ 1] - X, where [a,a + 1] C R is a (compact) interval possibly
reduced to {a}. We often work with standard paths, that is paths defined on
[0,1]. The path A:¢ € [0,1] = A(a + tl) is the standardized path of A. For
two paths A1 : [a,a + 1] = X, A2 : [b,b+ k] = X so that A\ (a+1) = A2(b),
one defines their product (or concatenation) by

Ai(t), t € [a,a+1]

)‘1/\2:t€[a7a+l+k]'_>{)\2(tal+b),t€[a+laa+l+k]

When the two paths A1, Ao have same extremities, they are homotopic when
there exists a continuous map H : [0, 1] x [0, 1] — X that realizes a homotopy
between the standardized paths \; and A,.

65
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Sometimes one needs to use regular paths. We recall that any path can be
uniformaly approached by C*-paths. For a piecewise C!'-path ), we denote
1

its length by length(\) = / |\ (¢)|dt.
0

4.1.1.2 Riemann surface

Definition 4.1. We note R = R the set of paths A that satisfies the condi-
tion: there exists to € [0, 1] so that A([0,to]) = {0} and A(]to, 1]) C C\ Z. For
A € R, we note cl(\) its equivalence class for the relation of homotopy ~x
of paths in R with fixed extremities. We define

B= Ty = {C=c(N) | AeR) and p: ¢ =cl()) (= A1) € @

where é’ =C\Z".

We precise the relation of homotopy ~sz. For two paths Ao, A1 ending at the same
point, Ao ~s, A1 if there is a homotopy H : (s,t) € [0,1] x [0,1] — Hy(s) € C so
that Ho = Ay, H1 = A, and H; € R for every t € [0,1].

Notice that the origin plays a singular role in this definition. In particular,
p~1(0) is reduced to a single point 0 = cl(0). This is why one usually considers
(£,0) as a pointed space.

The space # shares many characteristics with C \ Z, the universal covering
of C\ Z (see, e.g., [7, 3, 11]). In particular, by classical arguments, one can
endow #Z with a separated topology, a basis 8 = {Z } of open sets defining
this topology being given as follows. Let us consider { € Z:

e assume that ¢ = 0. For GZ}C é’ a connected and simply connected neigh-
bourhood of 0, one defines % C Z as the bet of all £ = cl(\) such that A is
any path of R contained in 9/ and ending at 5 Notice that £ is well-defined
since 52/ is simply connected.

e assume that ¢ # 0. If ?}C é \ {0} is a connected and simply connected
neighbourhood of Q.“ , one defines % C Z as the set of all £ = cl(A\)2)

where A\; € R is so that ¢ = cl(\1), while Ay is a path starting from (,

L] °
ending at £ and contained in 7.

With this topology, it is straightforward to see that the projection p is a
continuous mapping and, even, a local homeomorphism : for every % € 4,
L]

the mapping p|9, —% is a homeomorphism. One eventually gets the following
proposition.

Proposition 4.1. The pointed space (%,0) is a topologically separated space,
arcconnected and simply connected. The projection p makes Z an étalé space

on fé’ By pulling back by p the complex structure of C, the space Z becomes
a Riemann surface.

By “étalé space”, we mean that p : Z — é is a local homeomorphism. Notice that
p is not a covering map since the curve lifting property [7, 3] is not satisfied. For
instance, as a rule, a path starting from and ending at 0 cannot be lifted from 0 on
% with respect to p.
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We precise the “pull back” of the complex structure. If %4, %, % N % # B are two
open sets of # such that the mappings p|a, : %1 — p(%1) and ploy, : % — p(%)
are two homeomorphisms, then the chart transition
pla, © p|;;1 s p(2% N %) — p(%41 N %) is nothing but the identity map, thus is bi-
holomorphic. This makes % a Riemann surface, that is a connected one-dimensional
complex manifold [7, 3].

Definition 4.2. We note # = %y, the space of germs @ of analytic func-

tions at the origin that satisfies the property : there exists a neighbourhood
L]

U € P of 0 such that the mapping &:{ € % C Z — &(¢) = ¢(¢) € C can
be analytically continued to Z.

4.1.2 Sheets of the Riemann surface

4.1.2.1 Principal sheet

By the very construction of the Riemann surface Z#, there exists a unique
open set Z) of % so that p|y ) realises a homeomorphism between Z(°)

and the simply connected domain 3.?(0). This open set Z(©) is made of all the
classes cl(A) of paths A that are homotopic to segments [0, (], with (€ 2.

Definition 4.3. One refers to Z(?) as to the principal sheet of the pointed
Riemann surface (£, 0).

For every 0 < p < 1, one defines %’F()O) as the unique open subset of Z(9) such
that p(%,()o)) = égo). (See Fig. 4.1).

4.1.2.2 Other sheets

Definition 4.4. Let bem € N*, & = (e1, -+ ,em—1) € {+,—}™ ! a sequence
of m — 1 signs and n = (ny, - ,Mm_1) € (N*)™~1 a sequence of positive
integers. Let be 6; € {0,7} € S! a given direction.

When m = 1, one says that the path v € R is of type '7(9)1 when v closely
follows the segment €'1]0, 1[=]0, w; [ toward w; = e'¥1.

Otherwise, for m > 2, on says that the v € R is of type type vg,% if v connects
the segment ]0,w;[ to the segment Jwy, 1, wWm[, Wm — Wm_1 = €% through
the following steps:

Fig. 4.1 Above, the domain é(o). Below, the domain é&,o),
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Fig. 4.2 A path of type Yo\

~¢ for e = (4, —,+) and * \&/ * &/ *
0 =0. 0 1 2 3 4
Fig. 4.3 A path of

type ’ygn for 6 = 0,

e = (= +++~) and ° & ° fo °

n=(1,2,1,1,1). -2 -1 0 1 2

e ~ closely follows the segment |0, wq [ toward the direction 6, makes n; half-
turns around the point wp, anti clockwise when 1 = 4, clockwise when
e1 = —1, and finally closely follows the segment Jw,ws|, wy — w; = €2,
toward the direction 0y = 01 +e1(ny — 1)7;

e then, successively for k = 2,--- ,m — 1, v makes ny half-turns around the
point wg, anti clockwise when ¢, = +, clockwise when ¢, = —1, and even-
tually closely follows the segment Jwy,wp 1], wri1 — wip = e%%+1, toward
the direction 011 = 0 + e (ng — 1)7.

When n = (1,---,1) € {1}™!, we simply say that v € R is of type 721
(See Fig. 4.2 and Fig. 4.3).

For instance, if v is of type 72 , then someone standing at 0 € C and looking
in the direction of the half-line ]0,e'?oco[ will see the path « avoiding the point
wn = ne? € C* by swerving in the direction of his right hand when e, = +, of his
left hand when g, = —.

Definition 4.5. For m € N*, e e {+,-}", n € (N*)" and a direction
0 € {0, 7}, we denote by 22" ? the sheet defined as the domain of % made of
points ¢ =cl(y\), where ~ is a path of type ~%. ending at

&€lp, (p+ 1)[=]wm, wWm+1], and A is a path starting from ¢, and contained
in the simply connected domain C\ {] — oo,p] U [p + 1, +o0[}, star-shaped

from £&. When n = (1,---,1) € {1}, we simply write 2°¢ = %" .

The set of sheets {%(0),%5n’9} provides an open covering of %, with the
following property: the restriction p|zen o realises a homeomorphism between
2°"% and the simply connected domain C \ {] — oo, p] U [p + 1, +oo[} where
Ip, (p + 1)[=]wm, Wm+1[, With wyy, w1 as given by definition 4.4.

Remark that for every 6 € {0, 7}, for every m € N* and for every € € {+}™
ore € {=}" 2 and % have a non-empty intersection (a half-plane on
projection). This justifies the following definitions.

Definition 4.6. For m € N*, we define (+),,—1 = (+,--+ ,+) € {+}™ ! and
(“)m-1=(—,-+,—) € {~ }m 1. We denote by (i) any (m — 1)-tuple
of the form (:|:,~ ,x) e {+,— }m L Also, (+)o = (— ) (£)o = () is the
0-tuple.

Thus, the set of all (£)., is made of 2™ elements.

Definition 4.7. One says that %5 is a Z("Y-nearby sheet when
€€ U {(+)m, (=)m}. One denotes by Z") the domain of % defined as

meN*
the union of the principal sheet and the collection of nearby sheets:

2 = 50 U R H)mib |y (=m0

0€{0,7}, meN*
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More generally, for any k € N*, one defines

g+ — gp(k) U Z( B H)m-1):0 | p(B)E(=)m-1).0
0€{0,7},meN*
ne(N*)*
Remark 4.1. Notice that
p(A D) = p( ) = C\ (] — o0, m] U m + 1, oo}
and that U%(k) =4Z.
k

Remark also that the Z2() are Riemann surfaces since they inherit from %
the structure of complex manifold and since they are open connected. We
will not be concerned by the Riemann surfaces Z*), k > 2, until Chapt. 7.

4.1.3 Nearby sheets

Our aim in this subsection is to introduce other sheets of the Riemann surface,
that will be convenient for our purpose.
We start with the following remark: for 0 < p < 1 and m € N*, the closed
-1 _ 1

discs D(m, mp) and D(m+ 1, (m +1)p) are disjoint as soon as m < 2 5

1
Thus, now assuming that 0 < p < 5 and introducing the integer part

M(p)+1= Lp7;71J > 2 (|.]] is the floor function), one observes that the
discs D(m, |m|p) do not overlap when with |m| < .#(p) + 1.
-1

1 -1
Definition 4.8. We assume that 0 < p < R and we note . (p) = Lp 5 | -1,

A (p) € N*. For |m| < .#(p) + 1 and m # 0, we note D,,, = D(m, |m|p) the
closed disc centered at m with radius [m|p. We note Do = {0}.
For 6 € {0, 7}, we denote by Dz C C the closed subset defined by

DY = {tg | te[l,+o0], (€ bcie(Mﬂ)} U  Deom
0<m<.A4 (p)

We define the domains ,@i =C\ 52 and %, = (gzgm @Z) U {0} (see
Fig. 4.4).

Remark 4.2. Notice that 2 = | ) %,
0<p<1/5

] 1 1
Fig. 4.4 The domain %, when N <p< z (the scale is not correct).
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The domains ?;7’/9) satisfy the following property :

Lemma 4.1. We assume that ¢ belongs to 57’19). Then for everyn € (1, .# (p)],
the set ( —Dgis,, is included in é?’f).
Proof. The proof is easy and is left as an exercise. O

Definition 4.9. With the hypotheses of definition 4.8, for 0 < m < .Z(p)
and 6 € {0, 7}, we define

g = U {e+Ue=0.c+u¢—9) | teo,+oolf

(€.6)€D,i6,, XD i6 (1)
om0 _ C\ g ymo _
and 27" =C\ &, .. Whenm?///(p), W(.e set 277 =10 .
For m > 1 and € = &, we set fo)m’e =9 :,”’9 N{¢ | e?(3¢) < 0}. See
Fig. 4.5.

The domains :@ T’e have been defined so as to enjoy the following property :

Lemma 4.2. We assume that ¢ belongs to :02 T’o for some m € [1, .4 (p)]
and some 0 € {0,7}. Then, for everyn € [1,m], the set { —D.gio,, is included

% m—n,0
mQP 7

Proof. We only consider the case § = 0 and we suppose 5 € :@:,"’0.

For n € [1,m], we assume that there exists 5n € D,, such that g.“ - 5n ¢ :@?‘"’0.
This means that (:“ - 5n € &m0 (see definition 4.9). Thus, there exist
5m_n€ D, 5m_n+1€ D.y—p+1 and t € [0, +oo[ such that

C - Cn:<m—n +t(<m—n - Cm—n—i—l) or C - Cn:Cm—n—i-l +t(<m—n+1 - Cm—n)'
We look only at the first case, which we write as follows:

(= G+ G (G + C) = o + G-

We observe that (,,_,, + ¢, € Dy, and that (,,_,, 11 + (,, € Dyt1. Therefore
¢ &7 and this contradicts the fact that ¢ 6:02;"’0. O

. . %on e (=)2,m 1. . s 2 ()2,
Fig. 4.5 The domain 2,". The set 2, lies below the real axis, the domain 2,
lies above the real axis.
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Definition 4.10. With the hypotheses of definition 4.8, for 1 <m < .# (p)
and 0 € {0, 7}, we denote by DZ””’Q C C the closed subset defined by

Dy = {1 | t €] = 00.1]. ¢ € D f U{tC | £ € [1,+00], ¢ € Doy |-

We define the domain 3.2 :)"’9 =C\ 5;”9. We set (é‘ 2’9 ::@ 2’0 while, for
m > M (p), we set é?’e = 0.
For ¢ = + we note ?;7126)’"’9 — ;”79 N{¢ | €' (3¢) < 0}. (See Fig. 4.6).

Definition 4.11. Under the hypotheses of definition 4.8, for 8 € {0,7},
e =+ and m € N, we define the domains

%ge)mﬂ :gzge)m,@ U Qg—e)mﬁ

(see Fig. 4.7). We define as well the domains

0 = U éifr)m"): U é‘ﬁ,’)m’e:C\eia{]—oo,m]u[m+1,+oo[}.

0<p<1/5 0<p<L1/5

We have already noticed that for § € {0, 7} and m € N*, the restriction
Plzm.0 and p|pm.0 respectively, realises a homeomorphism between the
nearby sheet Z2(T)m? and 2(—)m¢ respectively, and the simply connected
domain

p(@ ) = p(# ) = .
This justifies the following definition.

Definition 4.12. With the above notations, with e = & and 1 < m < . (p),
one defines

A =B ().

One says that the domains l%’,(f)m’e are the %’,()O)-nearby sheets .
One defines the connected and simply connected domains %’;(,1) c #Y by

1) 0 €) im0
T V0

1<m< A (p)
0€{0,7},e==+

and we denote by @gl) the closure of 9?,9) in 2.

Observe that p (%’é”) =%,. In the same line, one has also the following

lemma which will be useful in a moment.

L] L] L]
Fig. 4.6 The domain 9,2)’”. The set 9’;7)2’7r lies below the real axis, the set WSJHZ‘”
lies above the real axis.
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Fig. 4.7 Figure above, the domain é’gf)?’ﬂ, Figure below, the domain éQ’".

Lemma 4.3. We assume that ¢ € %ff)’"’o \%’,()0) for some m € [1,.#(p)],
some 0 € {0,7}, e = £. Then, for every n € [1,m], 5 —Dyio,, is a subset of
g:p and there exists a closed set @C’eien C %5,6)"""’9 such that @C’eien and
5 —D.ie,, are p-homeomorphic.

Proof. The lemma is a consequence of lemmas 4.1 and 4.2. O

4.2 Symmetrically contractile paths

4.2.1 Geodesics

With the hypotheses of definition 4.8, we consider the closure #,, of the do-

d —_—
main %,. This space %, can be thought of as a complete real 2-dimensional
Riemannian manifold with smooth C!'-boundary embedded in the 2-dimensional
euclidean space. For such a space, the following result takes place.

hd o o
Lemma 4.4. We note X ;@p. For every two points (;,(s € X, there exists
L[] L[]
a geodesic in every homotopy class of curves from ¢y to (5 in X, and this

geodesic may be chosen as a shortest curve in the homotopy class.

In this lemma, a geodesic is a locally shortest path for the metric. Lemma 4.4
can be seen as a consequence of the general Hopf-Rinow theorem [9] which
can be applied. As a matter of fact, the situation is quite simple here : inside

%, a geodesic is nothing but a straight line, otherwise one just follows the

smooth boundary 8 %, (see also [2]. See [1] and references therein for more
general cases).

Lemma 4.5. For every ¢ € @E}), there exists A € R ending at { with the
following properties:

e )\ can be lifted uniquely with respect to p on @E,l) into a path A starting
from 0 and ending at C.
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Fig. 4.8 The geodesic (;
path X for ¢ = cl(\) in

= 0\ (0

253N\,

o )\ is of class C' and is the shortest path in the homotopy class of paths
inZ,.

Proof. we assume that ¢ € @,(31). Then:

1. First case: either ¢ belongs to @f,o). In that case we take for A the seg-

ment [0, 5] C@f,o).

2. Second case: or ¢ belongs to 2% \ Z for some 0 € {0,7}, e = +
and some m € [1,.#(p)]. In that case we consider the path A = ~dv1,
made as the product of the following geodesics (see Fig. 4.8) :

e 7 is the segment [0,¢;] C 9( @Ef)m’gﬂ @;0)) that circumvents the
segment e'[1,m] to the right when ¢ = + and to the left when ¢ = —;

e ¢ is the arc-curve (;, (5 that follows in @Ef)m’a the boundary dD.o,,;

e 7 is the segment [(,,(] in @Ef)"“e (possibly reduced to the point ().

In the two cases, the path A can be lifted with respect to p from 0 on @(pl),
by the very construction of g(pl). This lifting is unique from the uniqueness

of lifting (see [7]), because Z is an étalé space on é’ Obviously A is C! and

is the shortest path in its homotopy class in @F,. ]

4.2.2 Symmetric Z-homotopy

We refer the reader to [12] for the definition of “symmetric 2-homotopy”,
see also [4, 11, 13, 14].

4.2.2.1 Shortest length symmetric Z-homotopy

We are ready to show the following result.

Proposition 4.2 (Shortest length symmetric Z-homotopy). Let ( = cl())
be any point in @5,1), with A\ given by lemma 4.5.
There exists a unique continuous map H : (s,t) € I x J = H(s,t) = Hy(s) €%,

where I = [0,1] and J = [a, b] is a compact interval of R, such that H satisfies
the following properties:
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1. for each t € J, the map Hy : s € I — Hy(s) = H(s,t) defines a path which
satisfies:

a. Hy belongs to R, is of class C', and can be lifted uniquely from 0 with
respect to p on @E, into a path Hy : s € I — Hq(s);

b. the map H : (s,t) € I x J — H(s,t) = Hyi(s) € %’E’) thus defined is
continuous, and the following diagram commutes:

7
H L

IxJ— %,
H

c. H7'(s) = Hy(1) — Hy(s) for every s € I, where H; " is the inverse
path!;
d. Hy is the shortest path in the homotopy class of paths having the above
L]

properties 1a, 1b, Ic and Hy is homotopic to o 1) in Qp for some
0<T(t)<1;

2. the initial path H, is a segment in @20);
3. the final path Hy is so that ¢ = cl(Hy). In other words, Hy(1) = C.

Proof. We assume that ( € @E,l) and we consider the path A given by
lemma 4.5.

1. First case. When ( belongs to @E)O), we know that A is the segment
[0, (] C@SJO). In this case we set J = {0} and define Hy(s) = s ¢ for every
sel.

2. Second case: We now assume that ¢ belongs to # Y \%(0) for some
0 € {0,7}, e = £ and some m € [1,.#(p)]. For 51mphc1ty we will assume

that @ = 0 and € = +. In this case, the path X : [0, 3] =%, reads A\ = 4071,

70(t>7 te [ ]
At) =4 6t — 1), t [1 9
1(t—2),1t [ 73]

with 70,d,71 : [0,1] — C as described in the proof of lemma 4.5.

We define H; to be the path 7, that is we define Hy(s) = s (4, for s € I.
Since the point ¢; = cl(H;) belongs to @H)m’o \@po , we can applied
lemma 4.3. As a consequence, the path H; can be seen as a geodesic
path (of shortest length) in X %’ \ U {Cl —D,}, by application of

1<n<m
lemma 4.4.

Still according to lemma 4.3, the space %, \ U {¢ —D,,} remains in the
1<n<m

field of application of lemma 4.4, for every f p(&) with & € @(H""’O \ ggo).
In that way, one gets a local system (%’ \ U {§ -D }) of Rieman-

1<n<m

1 That is H; *(s) = He(1 — s)
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Fig. 4.9 The geodesic
path H; for ¢ = cl(Hp) in
—+ 20

‘%ﬂ,(3,4) \‘%_)P :

nian manifolds with smooth boundary.
For ¢ € [1,3], we consider the restriction g4 of A to [0,t]. For ¢ € [1, 3]

we note ;= p(cl(Aj0,)) and we continuously follow the class of H; in

X, \ U {&, —D,} when t moves from 1 to 3. In this class cl(Hy), we
1<n<m
note K; the geodesic path of shortest length. Obviously, when each K}

is viewed as a continuous functions in Z%,, this gives rise to a continuous

map K :t € [1,3] = C°([0,1],Z, ).

For ¢ € [1,3], we finally define Hy : s € I %, \U;<, <,,{& —Dn} to be
the path deduced from the product path Kt(571|[1,t]_) by standardization.
This defines the homotopy H we had in mind,

H:(s,t)EIxJHHt(s):H(&t)eﬁjp\ U (€, -D,} cép,

1<n<m

with J = [a,b] = [1, 3]. See Fig. 4.9.

By its very construction, for every ¢t € [1,3], the path H; is sym-
metric with respect to its midpoint. Thus, up to making a change of
parametrisation (arc-length parametrisation and standardization), one has
H;'(s) = Hy(1) — Hy(s) for every s € I.

Also, as a consequence of lemma 4.3, for every ¢t € [1,3], the path H;
can be uniquely lifted from 0 with respect to p on @21) into a path
Hy s €1 Hy(s). This induces a continuous map
H:(s,t) €I xJ— H(s, t)=Hi(s) € g(pl) as it follows from the lifting
theorem for homotopies [7, 3].

The fact that ¢ = cl(H3) is obvious. The uniqueness of H comes from the
fact that any H; is chosen as the shortest path.

O

With the notation of [12], the map H given by proposition 4.2 is an ex-
ample of a “symmetric Z-homotopy” and the final path H, has the property
of being a “symmetrically contractile path”, according to a terminology of
Ecalle [4].
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4.2.2.2 Length and L-points

Definition 4.13. For every ( € @E,l), we note leng(¢) = length(H}) the
length of the associated symmetrically contractile path Hy given by proposi-
tion 4.2.

When returning to the very construction of the shortest length symmetric
Z-homotopy H, one sees that the mapping ¢ € @21) — leng(() is continuous.
This justifies the following definition:

Definition 4.14. For any L > 0, we note %, 1, the open subset of %’,(,1):
Uy ={C € Z | leng(() < L}.
An element of %, 1 is called a L-point.

Lemma 4.6. We assume ( € %, 1. We consider the shortest length sym-
metric Z-homotopy H of proposition 4.2 associated with ¢, and its lifting

H: (s,t) € [0,1] x [a,b] — Hy(s) € Y. Then:

o H(s) belongs to %, 1., for every (s,t) € [0,1] X [a,b];
o equipping Hy with ist arc-length parametrisation, Hy : £ € [0,leng(C)] — Hy(£),
one has

— leng(Hs(£)) < £.
~ leng(H, ' (¢)) < leng(¢) — £.

Proof. For every (s,t) € [0,1] X [a, b], to the point H,(s) € @E)l) is associated
a (shortest length) symmetrically contractile path given by proposition 4.2,
whose length, leng(#;(s)), is obviously less than the length of H|g 4. (Just
look at Fig. 4.9). Thus leng(H;(s)) < length(H|jo q)-

Similarly, to the point H; *(s) € @21) is associated a (shortest length) sym-
metrically contractile path and evidence shows that leng(#; *(s)) is less that
the length of H; '|jo 5. Therefore leng(H; ' (s)) < length(H;) — length(Hy|[o,s)-
O

We finally provide a result from [8], which gives an upper bound for the
length of the symmetrically contractile path we work with.

Lemma 4.7. For every ¢ € @g),

o cither C€ 72" and then leng(¢) = | C |;

° 0r|5§leng(§)§1|5|+1(1_2>'
p P \P

Proof. The first case is obvious. The second case means that ¢ € @(pe)"’"g\ﬁ(po)

for some 0 € {0, 7}, e = & and some m € [1,.#(p)]. Let us assume that § = 0

and € = + for simplicity. We return to the construction of the final path H,

of proposition 4.2, see also Fig. 4.9. The geodesic path H} is made of :

e m+ 1 segments between 0D,, and 3( ¢ —ﬁm,n), n € [0, m]. Each of these
segments has length less than | { —m/| + mp.

e m segments between 8( ¢ —ﬁm,n) and 0D, 41, n € [1,m]. Each of these

segments has length less than | ( —(m + 1)| + (m + 1)p.
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e 2m arcs of circle, the total length of which being less than 2(1 + - - - + m)2mp.
Putting things together, one gets

leng(¢) < (2m +1)| 5 | +2m(m+1)(1 + p) + 2m(m + L)mp

1 . .
Since p < 5 one has | ¢ | <leng(¢) < (2m +1)| ( | +4m(m + 1). But since

1
M(p)+1= |2 (p) < — — 1 and we easily get the
result. O

2p

4.3 Convolution product and related properties

It is known that the space # = % (definition 4.2) is a convolution alge-
bra without unit [12, 10]. Also, bounds for the convolution product can be
obtained [2, 11, 12], as demonstrated in [14].

Stability by convolution product is also valid for the space of germs of analytic
functions that are “endlessly continuable” [2, 11]

In this subsection, we will show that these properties remains true for a
larger space 21, with more precise statements for the bounds.

4.3.1 Riemann surface and convolution

Definition 4.15. For £ € N*, we denote by #*) the space of germs of
analytic functions at the origin @ that can be analytically continued to
Z*) : there exists a neighbourhood U € % of 0 such that the mapping

b:(eU—P)= (() € C can be analytically continued to Z2®*).
The proposition 4.2 allows to show the following property:

Proposition 4.3. The space ZW is a convolution algebra (without unit).
Moreover, suppose @, W in #Y) with the property:

for every ¢ € ), |@(¢)] < F(leng(C)), |[¥(¢)| < G (leng(())

with F, G two positive, non-decreasing and continuous functions on R*. Then
the convolution product O satisfies the following property:

for every C € %(1) A(C)’ < Fx G(leng(()).

Also,
for every ¢ € @(pl), |(<5) * @(C)| < leng(¢) (F * G(leng(())) .

Proof. The standard proof for proving that Z is a convolution algebra [12, 11]
can be copy as it stands for #1Y . We sketch it here, essentially so as to fix
notations that will be used later on. Assume that @ and w are two functions in

O(%(O)) and that they can be analytically continued to the Riemann surface
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7408 This. means that there exist two fonctions @ and ¥ in 2 such that

~

B(¢) = 3(C) and FT(¢) = (), for every ¢ € Z2©). For ¢ € #©), we note

FT(C) = 5+ (0.

S

X(¢) =

We assume that 0 < p < —. For every (, 6@20) and every £ € C with

ot =

[ €] < g, onehas(, + &€ %0), thus there exists a unique point (4 & € 2

so that p({,+ é) :E + 5, and the convolution product X (¢, + 5) = J(Ea + é)
reads :

Now assume that ¢, is the endpoint H, (1) of the path H, given by proposition
4.2. The above equality reads :

R(Ha()+ &) = / B(Ha () D(H 7 (s)+ € ) HY (s)ds

The analytic continuation of  from H, (1) along the path ¢ € [a, b] — H.(1) € @fjl)
is thus given by

RO+ E) = / B(H, (5))F (H; (s)+ E)H](5)ds
+é / BH(1)+ € ) (€ (1— 5))ds.
0

(See the arguments given, e.g. in [12]). In particular, if ¢ = H(1),
1
Px¥(() = / D (Hy(s)) W (M ' (s)) Hy(s)ds. (4.1)
0

We remark that & * @(C ) does not depend on the chosen path #;, since 21 is
simply connected. We now turn to bounds and we follow reasoning from [8].
We take ¢ € @E,l) and we note Hj its associated symmetrically contractile
path provided by proposition 4.2. We equip this path with its arc-length
parametrisation,
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Hy : s €]0,1eng(¢)] — Hp(s)

so that for s € [0,leng(()], the length of the restricted path Hylg s is s, while
the length of Hb_1|[0’s] is leng(¢) — s. Therefore, (4.1) reads

A leng(¢) R
Bei(Q) = [ D) D (" (5))ds, (42)
0
Using lemma 4.6, we then get :
-~ - leng(¢) ~ .
B (0)| < /O B (Hy(3)) 1B (H; 1 (5)) lds.

leng(¢)
< / F(s)G(leng(¢) — s)ds
0
< F x G(leng(Q)).

The proof is complete. O

4.3.2 Convolution space and uniform norm

We start this subsection with the following remark:

Proposition 4.4. For every p > 0 and L > 0, the space O(%,,1,) of holo-
morphic functions on %, 1 is a convolution algebra.

Proof. Just adapt the proof of proposition 4.3 by using lemma 4.6. O
We introduce the following definition, analogous to definition 3.5.

Definition 4.16. We note % = %,,1. the open set of L-points, for L > 0. We
note (O(% ), ) the convolution C-algebra (without unit) of functions which
are continuous on % and holomorphic on % . We note MO(% ) the maximal
ideal of O(%)) defined by MO(%) = {f € O(% ), f(0) = 0}2.

For v > 0 we introduce the norm ||.||, defined by: for every f € O(%),

IFl = L sup |71l £ (Q)).
cew

We extend this norm to O(%) @ C§ by defining, for every f € O(%) and
every c € C, |lcd + fll, = le| + || f]o-

We now state an analogous to proposition 3.7.

Proposition 4.5. With the above definitions, (O(%)®C§, ||.|,) is a Banach

algebra. In particular, for every f,g € O(%) © Co, ||f * gl < [Ifll 19l

The space MO(%) is closed in the norm space (O(%), ||.||,). Moreover, for
v>0:

_ n!
1. for every n € N, for every g € O), ||<" * g|, < WHQHW

n!

el < =

L and ||1]|, = L.

2 When writing f(0), we of course make reference to the origin of the pointed Riemann
surface (Z(1,0).
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2. for every f,g € O(%), | fglls < Hf||uH9H0~

3. for every f € O(% ), V=19 >0 : WAl < IF e -

4. for every f € MO(%), li_>m 71l = 0.

5. the map 0oz : | € OU) — Of € MO(%) is a derivative in the

convolution space (’)(7) and is invertible. Its inverse map O~ satisfies:

for every f € O(%), for every g € MO(%), O~ (f *g) € MO(%) and

—1 1 —1
< — .
07(F # )l < 1171110 gl
For every O(% ) ® C45, for every g € MO(%), 071 (f xg) € O(%) and

107 * DIl < IF1 107 gl

Proof. Obviously, the norm |||, is equivalent to the maximum norm on the
vector space O(%). This shows the completeness of (O(%),].|l,) and of
(O(%) @ Cs,||.||,) as well.

We take ¢ € % and H, its associated symmetrically contractile path (propo-
sition 4.2) equipped with its arc-length parametrisation. For f,g € O(%),

fxg(¢) =

féeng(o z/[leng(’;’-[b(s))+leng(7-lb (s))] f (Hb(s)) efuleng(?-[b(s))g (Hb—l (s))efuleng(”ﬁb—l () ds.

We know from lemma 4.6 that leng(H(s)) + leng(H; ' (s)) < leng(¢). There-
fore

o) leng(¢) |
Lo Vieng ¢ |f*g(C)| < Hf”yHgHV/ ZdS < ||f||u||g||1/

This shows that for every f,g € O%), |If * gll. < |Ifll.llgll,, hence
( (%), H||l,) is a Banach algebra and (O(%) ® C4, ||.||,,) as well.

The other properties are shown in quite similar way than in the proof of
proposition 3.7. O

4.3.3 An extended Gronwall-like lemma

We want demonstrate in this subsection a Gronwall-like lemma, similar to
lemma 3.9.

Lemma 4.8 (Extended Grénwall lemma). Let be N € N* and (fn)0<n<N
be a sequence of functions in AN so that there exists a a sequence (F Jo<n<N
of entire functions, real, positive and non-decreasing on RY, with at mots ex-
ponential growth of order 1 at infinity and such that, for every 0 <n < N,

for every ¢ € @21)7 |J?n(§)| < ﬁn(leng(O)

Let p,q,r be polynomial functions so that p does not vanish on @21) and we
suppose that the following upper bounds are valid:

g/ (leng(¢)) |r|(leng(¢)) 1

a= sup —————~> <00, b= sup ———%> <00, c= sup —p— < 0.
ez’ Ip(Q)] ez’ |p(Q) cez” [p(C)]
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We furthermore assume that @ € (9(@21)) solves the following convolution
equation

P(QOB(C) + 1 [q(Q)D)(C) = ¢ * [r(Q)B](¢ Zf «0(C). (4.3)

Then for every d > 0, for every ¢ € @5,1)

[0(Q)] < wa(§), & = leng(Q),

where Wq is the holomorphic solution of the convolution equation:
A~ N ~
w(§) =d+[a+bE] «w(§) + ¢ <F0(§) + Z F, * W*"(f)) . (4.4)
n=0

Proof. f w € O(Q(pl)) solves the convolution equation (3.24), then for every
s @E}):

leng(¢)
POBO = 1@ = [ aPu@)B() ds
N

leng(¢)
[ O ) (o) s+ Y

n=1

leng(¢)
/0 Fo (1 () @77 (Hy(9)) s,

where H, stands for the symmetrically contractile path associated with ¢,
equipped with its arc-length parametrisation (proposition 4.2). We know by
lemma 4.6 that leng(H;(s)) < s and leng(H; '(s)) < & — s with & = leng(().
Using the hypotheses, one obtains:

~ € s r|(s
501 < ——Fale)+ [ al) | IM16) (¢ _ )| @(20(s))  ds

p(0)| POl IpQ)l
N 13 1 N

+ 3 [ Ful€ — 9)l@™ (Ha(s)) | ds.
=/ p(O)]

Therefore
N 13
B(0)] < cBole) + / [a+ b€ — )] | (Hy(5)) | ds
+CZ/ € — 8)|[@*" (Hy(s))] ds.

We now remind the reader that the existence and properties of wy are
given by lemma 3.8. We adapt the proof of lemma 3.9. We first notice that
|w(0)] < ¢Fp(0) by definition of ¢ and by hypothesis on Fy. Since w(0) =
d + cFy(0), we have |@(0)] < W(0).

(4.5)

Case 4.1. We first assume |w(0)| < w(0).
One considers, for L > 0, the open set %, ; of L-points. We remark that,
once Ly > 0 is chosen small enough, then for every 0 < L < Ly, for very
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d > 0, for every ( € U .1, |0(¢)] < Wg(€) with & = leng(¢). This is just a
consequence of lemma 3.9. (For L > 0 small enough, leng(¢) = |¢]).
We now assume that there exist L; > 0 and (; € %, 1, such that

|W(C1)| = Wa(&1), &1 = leng(C1). Define

x = {L € [Lo, L1] | there exists ( € Z .1, |W(¢)| > Wa(leng(¢))}.
This closed set x has an infimum Ly, Lo < Ly < L;. We now recall that the
mapping ¢ € @,(31) — leng(() is continuous. This implies that:

o for every ¢ € % p 1y, [6(¢)] < Wa(leng(());
e there exists (2 € % p,1., such that |@((2)| =

We take such a (3 € % ,,1,,. By lemma (4.5),

wa(£2), §2 = leng((2) =

N &2
1B(Ga)| < cBo(6a) + / [0+ b(& — 9)] [@(H(5)) | ds

+CZ/ F§2—3|A*"( b(s))| ds

where Hj is the symmetrically contractile path associated with (s, equipped
with its arc-length parametrisation (proposition 4.2). We know by lemma 4.6
that leng(Hp(s)) < s < &, thus Hy(s) € % p,1,, and that Wy is real, positive
and non-decreasing on R*. Therefore,

R &2
D)) < R+ | fa+ blea o)) s ds+cz / (Ea—s) W2 (5) ds.

This shows that |w((2)] < wgq(&2) — d and we get a contradiction.

Case 4.2. The case |@W(0)] = w(0) (thus d = 0) is done by an argument of
continuity already used in the proof of proof of lemma 3.9.
O

4.4 Applications to the first Painlevé equation

This section is essentially devoted to proving theorem 4.1, which completes
theorem 3.2.

4-4.1 Analytic continuation - statement

Theorem 4.1. The formal solution w of the prepared equation (3.6) associ-
ated with the first Painlevé equation satisfies the following properties:

1. its formal Borel transform w can be analytically continued to the Riemann
surface ZV);
2. W has at most exponential growth of order 1 at infinity on #Y). More

1
precisely, for every 0 < p < 3 there exist A = A(p) >0 and 7 = 7(p) > 0
such that for every ¢ € @E,l), |©(¢)] < Ae™ with &€ = leng(().
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1 1/1
3. moreover leng(¢) < —| { |+ — < - 2> and one can choose A = 4 and
p p\p

4

T = = in the above upper bounds.

i)

4.4.2 Analytic continuation - proof

To prove this theorem, we will essentially copy what we have done in
Sect. 3.4.3.
4.4.2.1 A lemma

We first state the following result which should be compared with lemma 3.2.

Lemma 4.9. There exists M, 1y > 0 such that for every ¢ € @(pl),

len p
leng(©O" _ ap) ) p=o,1.

[P(= Q)

for every ( € @(pl),

1
In particular, for every polynom q of degree < 1, M\ < M, 1ylql(1),

[P(=¢)l

for every ¢ € @g). Moreover one can choose M, (1) = 57

(=2}

%

P(=¢)

. 1
for ¢€ D[()o) and p = 0,1. Using lemma 4.7 and since 0 < p < 5 one deduces
that leng(€) _[1 1/1 6
en
T A o R
[P(= Q)

This ends the proof. O

1
Proof. From lemma 3.2 we know that ’ ‘ < M, 0y with M, ) = —,
p

4.4.2.2 Analyticity of @ on (1)

For L > 0and 0 < p < 1/5, we introduce the domain % = %, .. We note
B, ={veO),|v|, <r}, for any r >0 and v > 0.

The convolution equation (3.10) is viewed as a fixed-point problem and we
set

~

N:ﬁEBTH%[—l* [Q(O)0] + fo(¢) + f1 % D(C) + fo x D% D(C)|.

By lemmas 4.9 and proposition 4.5,
V@I < M0l = 1% [Q(O)0] + fo + Fr+ 0+ fax 0%l

By proposition 4.5, since Q(9) = 3(:
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s 1 . 1 . _ 3L, .
I+ Q@3] < ~1Q©@)0ll, < 7 1R@)llolI?], < — @

-~ Lv
The functions fo, fl, fg belong to MO(%) and, by proposition 4.5, this im-
plies Vli_)rgo Ifill, =0, i = 0,1,2. Therefore, [N (@)|, < r for v > 0 large
enough.
The same arguments shows that |N(01) =N (02)], < k|[o1 — 02|, with k < 1,
for 01,02 € B, and for v > 0 large enough.
Thus, AV is contractive in the closed set B, of the Banach space (O(%), |||+,
for v > 0 large enough. The contraction mapping theorem gives a unique so-
lution @ € B, for the fixed-point problem v = N(?). Since L and p can be
arbitrarily chosen, we deduce (by uniqueness) that the formal Borel trans-
form @ of the unique formal series w solution of (3.6), defines a holomorphic

in Z2W.

4.4.2.3 Upper bounds

We use the Gronwall lemma 4.8 (with d = 0), which tells us that for every
ce,
[w(Q)] < wa(§), &= leng((),

where w(&) solves the following convolution equation

r . - TN L~ T~ o~
w = + (3 + * W+ * Wk W,
A= Wl (1A ea I
. 6 .
(just use lemma 4.9) where we can take M, 1) = —. Let us get explicit

503
upper bounds. We consider w as the Borel transform of the holomorphic
function w solution of the second order algebraic equation,

1
M, (1)

W= 1ol(2)+ (5 + 1fl)+ | I (1.6

302 1
. ) 625 22’
[f1](z) = =t |f2](2) = 2.2 Setting w(z) = H(t), t = 2~ !, the above problem

reads as a fixed-point problem,

and asymptotic to |fo|(z) at infinity. Remember that |fo|(z) =

H=N(H),  N(H) = My 0 (1fol () + B+ Al ) H o+ 1l (47 H2).

(4.7)
From homogeneity reasons, we introduce U = D(0,p?/4), the Banach al-
gebra (O(U),||||) where ||| stands for the maximum norm, and we note

By ={H € O(U), ||H| <p*}. It is easy to show that the mapping
Nip, : H € Bypor = N(H) € By is contractive (recall: 0 < p < 1/5).
Therefore, the contraction mapping theorem implies the existence of a unique
solution H in B,s of the fixed-point problem (4.7). In return we deduce that

w is an entire function and |w(&)| < 4eﬁ%|§|, for every ¢ € C. (See lemma 3.5).
One ends with lemma 4.7.
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4.5 Supplements to the convolution product

We end this chapter with some supplements to the convolution product that
will be used later on.

Definition 4.17. For a direction 6 € {0, 7}, for o €]0,7/2], for L > 0, we
denote by R (L) C R the set of paths A with the condition:

e cither A is a path on the open disc D(0, 1), thus homotopic (in the sense

of ~g) to a segment [0, (], ¢ € D(0,1);
e or )\ is a piecewise C! paths A with the following properties:

1. for every t € [0,1], the right and left derivatives \'(t) do not vanish and

arg X' (t) €] —a+ 0,0 +af,
2. the length of X satisfies : length(\) < L + 1.

We define %) (L) = {¢ = dl(3) | A€ RO (L)} 2.
The proof of the following lemma is left as exercise.

Lemma 4.10. For any L >0, Z0 ( ) is an open and connected subset of

# and satisfied % (L) ¢ %) U R H)i0 with m = [L]. Also, for any
1<j<m

m € N* and any path v € R of type 7¢ with e € {+, -}, 1 < j < m, there

exists A € Z%%) (m) so that cl(\) = cl(v).

In the above lemma, [.] is the ceiling function.

Remark 4.3. Notice that 2 (L) € 29 (Ly) when L; < L. Also, since
%) (L) is open and connected in Z, 2% (L) inherits from Z the struc-
ture of complex manifold, thus is a Riemann surface.

Definition 4.18. We denote %(%:®) (L) D A the space of germs of analytic
functions at the origin that can be analytically continued to Z(¢-®) (L).

Example 4.1. The minor @) associated with the formal solution wg g

of the prepared equation (3.6), belongs to Z®™/2) (L), for any direction
0 € {0,7} and any L €]0, 1]. This is a consequence of theorem 4.1.

Proposition 4.6. The space 2% (L) is a (non unitary) convolution alge-
bra.

« e

Fig. 4.10 Two paths belonging to R(?>%) (L) for § = 0 and L > 2.
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Proof. We just have to show the stability by convolution product and the
proof can be done in the same manner than this for %. Here we follow ideas
from [12]. The master piece is the existence, for any path v : I = [0,1] — C\Z
with |y(0)| < 1, of a symmetric Z-homotopy

H:(s,t) €I x I+ H(s,t) = Hy(s) ER

so that

1. for each t € I, the path H; belongs to fR, thus can be lifted uniquely from
0 with respect to p on Z into a path Hy;

H;'(s) = Hy(1) — Hy(s) for every s € I, where H; ' is the inverse path ;
the initial path Hy is Ho(s) = sv(0);

for every t € I, Hy(1) = ~(t).

-

In particular, from the lifting theorem for homotopies, the map
H:(s,t) € I x I H(s,t)=H(s) € Z is continuous, and the following di-
agram cominutes:

X
HA Ly

IxT—s 2.
H

(4.8)

The symmetric Z-homotopy can be constructed as follows: one takes a C!
function n:C — [0,1] satisfying {¢ € C | n(¢{) = 0} = Z (the exis-
tence of which is given in [12]), and one considers the non-autonomous

(<) / : :

vector field X ((,t) = ~'(t). The path H; is obtained by
() +n(v(t) = ¢)

deformation of the initial path Hj through the flow of the vector field

g (to,t,¢) € [0,1]* x C = g*(¢) € C of X, precisely Hy(s) = g (Ho(s)).
We now take a point ¢ € Z(*)(L). We can assume that ¢ = cl(\) where
X € RO (L) is the product A = Aoy with Ag(s) = 57(0). Let us analyze the
above symmetric Z-homotopy constructed from v and Hy = A\g. The path
H®:telw H%(t) = H(s,t) € C\Z satisfies H° = 0 while for any s €]0, 1] :
1. H*(0) = Xo(s),

2 MO X(H(1)1), thus 0 < [0

arg%et(t) €l—a+6,0+ .

< () and

Denoting by Aolj,s] : 8° € I = Xg(s's) the restriction path, we see that
the product of paths F'* = Ao|jg,H*® has the following properties, for any
s €]0,1]:

1. the path F*® belongs to ‘R,

2. length(F*) <length(Xoljo,s)) + length(H?®) < length(A) < L + 1,

3. for every t € [0, 1], the right and left derivatives (F*)’(¢) do not vanish and
arg(F*) (t) €] —a+ 6,0+ «af.

Therefore, F* belongs |(?*) (L) and this means that the lifted map H given
by (4.8) sends I x I into the space Z(%*)(L). We end the proof with the
arguments recalled in the proof of proposition 4.3. O
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4.6 Comments

In resurgence theory, one has to deal as a rule with endlessly continuable
functions. This notion is defined in [2], a more general definition of which
being given by Ecalle in [5, 6]. The key point is the construction of endless
Riemann surfaces and this is done in [11] for a slightly weaker version of
endless continuablity. For such an endless Riemann surface, one can define
“nearby sheets” in the way we did in Sect. 4.1 and analogues of propositions
4.3 and 4.6 can be stated.
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Chapter 5

Transseries and formal integral for
Painlevé 1

Abstract This chapter has two purposes. Our first goal is to construct the
so-called “formal transseries solutions” for the prepared form associated with
the first Painlevé equation, that will be used later on to get its truncated
solutions : this is done in Sect. 5.3, after some preliminaries in Sect. 5.1 and
some general nonsense on the “formal integrals” of Ecalle that we introduce in
Sect. 5.2. Our second goal is to build the formal integral for the first Painlevé
equation and this is what we do in Sect. 5.4. These informations will be used
in a next chapter to investigate the resurgent structure for the first Painlevé
equation.

5.1 Introduction

We return to the prepared form equation (3.6) associated with the first
Painlevé equation, that we recall here:

PO)w + %Q(E))w —F(sw), PO) =8 -1, Q@) =-30

and

321 et Lt = )+ A+ fa(2e?,

F _ 2
(zw) = G552~ 2 22

We have seen in chapter 3 that the equation (3.6) has a unique formal so-
lution, from now on denoted by w0, € C[[z~"]], that @) is 1-summable in
every directions apart from the directions km, k € Z (theorem 3.2 and propo-
sition 3.9). To the intervals I; =|0, n[+jm, j € Z, one associates the Borel-

Laplace sums, wyr; j(2) = 1w 0)(2) for z in _é(]j7 7). The domain é(lj, T)

o 3 1
is a sectorial neighbourhoods of co with aperture I; =] — 2™ +§7r[—j77. As

said in Remarks 3.5.2.3, wy;; € F(fj,Al), j = 0,1,2 are sections of A;
that are asymptotic to the same 1-Gevrey series w (). Therefore the 1-
coboundary w1 — Wiri,0 belongs to F(fl N Io, AS71Y)) while w2 — Wi 1
belongs to I'(Iy N I;, AS™1). In other words, the 1-coboundaries

89
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3 1
Wi 0(2) = Weri1(2) — wirio(2), —=m <arg(z) < —-m, |z| large enough

Wa.1(2) = Weri2(2) — Wiri1(2), f§7r < arg(z) < f§7r, |z| large enough,

(5.1)
are exponentially flat functions of order 1 at infinity, and we deduce from
equation (3.6) that W;11),;, j = 0,1, satisfies the linear ODE:

1
POW+1),5+- QO G+1),5 = FL(2IWVian) 5+ F2(2) Weri gt wers i )W) 5
(5.2)

Question 5.1. Can we get more informations about W1 ; 7 In other words,
can we analyze the Stokes phenonemon 7

Let us turn to the asymptotics. Denoting by 17 the 1-Gevrey Taylor map,
we set W1),; =11 (fj+1 N fj)W(jH),j. We have W;11),; = 0 by construc-
tion but, more interestingly for our purpose and since T} is a morphism of
differential algebras, we deduce from (5.2) that W1y ; solves the problem
‘BOW = 0, where B stands for the second order linear differential operator

1
deduced from the operator P(d) + —Q(d) — F(z,-) by linearisation at w g,
z

o 1 8F(Z, 1])/(0’0))
Po = P(0) +-Q(0) — 500 (53)
1

= P(9) + - Q(9) — f1(2) = 2W(0,0)(2) f2(2)
=@ -1~ 20+ 067).

The formal invariants of this equation is be governed by its Newton polygon
at infinity N (Po), drawn on Fig. 5.1.

See, e.g. [31]. We mention that the valuation veo defined there is the opposite of our
valuation val defined by (3.1).

The polygon N4 (o) has a single non-vertical side of slope —1: this corre-
sponds to the fact that W, 1) ;, j = 0,1, are exponentially flat functions
of order 1 at infinity. The characteristic equation associated with this side is
nothing but the equation

P(p)=0, P(u)=p*—-1.

The polynomial P(u) has two simple roots, u; = —1 and ps = 1. Therefore,
from the theory of linear ODE [37, 31], we expect for W o to behave like

Fig. 5.1 The Newton
polygon at infinity Noo (Po)
associated with the linear
operator (5.3).
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et2#z=72((1) at infinity, and for W5 1 to behave like e#1#2~7 O(1) at infinity.
Pursuing in that direction, the coefficients 71,75 can be easily found : the
W = el*z277w,(z) solves the ODE (5.3) with P(u) = 0 and wy € C[[z]],
only under the condition

Lo Qw3

Plu) 2
As a matter of fact, these behaviours are direct consequences of the analytic
properties of the minor (g, g) of w(g,0). In particular, A\; = —p; and Ay = —po

are precisely the seen singularities of @ g ).

The differential equation Bo)V = 0 has thus its general formal solution
under the form W = Ujet** 27w, + Use#??27 2w, and, as we will see
later on, both w,, and w,, are 1-Gevery series whose minors have the same
properties than @ q).

However, the expectation that W o could be obtained from U e/ * 2~ w,,
by Laplace-Borel summation for some well-chosen U; € C is wrong. Indeed,
this would mean that w1 = Fh (1’5(0,0) + Ule“lzz’“f[[)m), thus w(g,0) +
Urett#27 1w, is a formal solution of (3.6). This is not the case because of
the nonlinearity of (3.6) and to the very nature of the Riemann surface %"
on which @0 can be analytically continued (theorem 4.1). This raises the
question : can we define an analogue of the general formal solution for the
non-linear equation (3.6) ? The answer is given by the notion of “formal
integral”.

5.2 Formal integral : setting

5.2.1 Notations

It will be useful in the sequel to fix customary notations.
Definition 5.1. We suppose n € N*, k,h € N*, a,b € C".

If k= (ki, - ,kn), we note |k| =k + - + kp.

Ifa=(a, - ,a,) or a="1%ay, - ,a,), we note ak:allcln.a :
If b= (by,---,by), we note a.b =aiby +--- + anby.

We note e; the jth unit vector of C™.

3>
3

5.2.2 Setting

5.2.2.1 Single level 1 ODE

To introduce the reader to the notion of Ecalle’s formal integral [18], it will
be useful to skip a moment from the ODE (3.6) to a more general one! with
the same kind of properties. Namely we introduce

I Though far from the more general. For instance in (5.4) one could replace F(z,w) by
F(z,w,0w,---,0" lw), with F holomorphic in a neighbourhood of (oo, 0) in C x C*~1,
see exercise 3.1. We refrain of doing that only for a matter of simplicity. See [18] for more
general results.
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P(O)w + %Q(ﬁ)w = F(z,w) (5.4)

P(d) = Zn: Qn_md™ € C[D] , Q(0) = i Bumd™ € C[0]

m=0 =

with n € N*. We assume that P is a polynomial of degree n, that is ag # 0,
and that F(z,w) is holomorphic in a neighbourhood of (oo, 0) in C? with the

™m

F
condition g—m(z,()) = 0(27?), m € N. (See exercise 3.1). We will add other
w

assumptions to guarantee that the ODE (5.4) has a single level 1 at infinity.

When assuming furthermore that «,, # 0, what have been said in Sect. 5.1
can be applied as well for (5.4). The equation (5.4) has a unique formal so-
lution wo € C[[z~!]] and val wg > 2. The Newton polygon at infinity Ny (Bo)

1 F,
associated with the linear differential operator PBo = P(9) + ;Q(@) - a—w(z, Wo)

1
deduced from the operator P(0) + —Q(9) — F(z,-) by linearisation at wp,
z

has still a single non-vertical side of slope —1 and the characteristic equation
associated with this single side remains the equation P(u) = 0.

Since a,, # 0, the roots of the characteristic equation do not vanish. We
will also assume that the polynomial

ps P(p) = apemp™ = ao(p— ) -+ (1t = fin)

m=0

has only simple roots u = p;, ¢ = 1,--- ,n. In what follows, we adapt the
following definitions from [2, 18].

Definition 5.2. Let {u;} be the set of the roots of the polynomial P(u) = 0,
and we note \; = —p;, ¢ = 1,--- ,n. The complex numbers Ay, -+, A\, are
called the multipliers of the ODE (5.4).

The ODE (5.4) is said to have a single level 1 at infinity when the multi-
pliers are all nonzero.

One says that the multipliers are non-resonant when they are rationally
independent, that is linearly independent over Z. The multipliers are posi-
tively resonant when there exists kyeson = (k1, -, kn) € N™\ {0} so that
Akroson = 0, where A = (A1, -+, Ay) € (C*)™ The number |Kyeson| + 1 is the
order of the resonance, since the positive resonance brings semi-positively
resonances, that is relationships of the type A.(kyeson + €;) = A; for any
Jj€[l,n].

We mention that the following constants are properly defined, since P has
only simple roots:
Q(=\i)

R AN =1 -
TZ Pl(—A,L)’ 7 )

From the theory of linear differential equations (see [31, 3, 37]), we notice

, M. (5.5)

1
that the linear equation P(0)w + —Q(9)w = 0 has a formal general solution
z

under the form .

w(z) = Zvi(z)yi(z)- (5.6)

i=1
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In (5.6), y;(2) = Uje™**27" U, € C, stands for the general solution of the
differential equation y, + ()\i + E) yi = 0, while v; € C[[z71]] is invertible
z

and is determined uniquely up to normalization.

5.2.2.2 Companion system, prepared form

Formal integrals have more natural foundations when differential equations
of order one are considered. We therefore translate the ODE (5.4) into a one

w1 w
Wo w’
order ODE of dimension n by introducing w = ) = : . We
wy, ,w(T;—l)
get the companion system
ow + Aw = f(z,w), (5.7)
0 —1--- 0 0
with A = - ' and f(z,w) = :
; 0 -1 0
Qn 4 Bn oL @ 4 B F(z,w1) /a0

g zag ag zag
Since (5.4) has a unique formal solution wg € C[[z1]], valwp > 2, we may
remark that (5.7) has a unique formal solution wo € C"[[27}]] as well, and
in fact wo € 27 2C"[[271]].

Lemma 5.1. There exists To(2) € GL,(C{z71}[z]) so that the meromorphic
gauge transform w = To(z)v brings (5.7) into the prepared form
A+ 0
Ov+ Bov =g(z,v), By= ; : ) (5.8)
0 A+
with g a C™-valued function, holomorphic in a neighbourhood of (00, 0) and
g(z,v) = 0(272) + O(||v||*) when z — 0o and v — 0.

The prepared form (5.8) has a unique formal solution Vo € C"[[27]] and
vo € 27 2C"[[z71]).

Proof. The proof is based on classical ideas for linear ODEs ([31, 3, 37], see
also [14]). Looking at (5.6), we compare (5.7) with the linear equation
Ar+ e 0 )
ou+ Bpu=0, By= : : =A+-L, (5.9)
: : >
0 A+
whose general solution (holomorphic on C) is given in term of the funda-

mental matrix solution z~Le=%4,

u(z) =z Fe AU =@,z e MU, U eCm (5.10)

We remark that
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(e_)‘zZ_T> (m) R zm: (T) (—A)m—d (_Z:)J (5.11)

=0

for (A, 7) € C? and m € N, where (—7); = j! (;T) mimics the Pochhammer
symbol:

(—7)o=1 and (—7); = (=1)7(r+1)--- (T+j - 1) forj >1. (5.12)

We thus set the meromorphic gauge transform w = Ty(z)v with Ty(z) € GL,, (C{z~}[z])
of the form:

To(z) =

n-1 (n—1 n—1—j (=11); n-1(n—1 n—1—j (=Tn)j
ijo < ; )(_)\1) 1 J% Zj:o ( i )(—)\n) 1-5( zi)
(5.13)
By its very definition, this gauge transform brings (5.7) into the differential
equation:

Ov = — [Ty 1 (0Ty) + Ty ' ATy ] v + Ty (2, Tov) (5.14)
= —Byv+g(z,v)
where g has the properties described in the lemma. The fact that (5.8) has
a unique formal solution v € C"[[z71]] is obvious. O
Ezample 5.1. We have already seen that the companion system associated
with (3.6) is (3.9). The gauge transform w = Ty(2)v, To(z) = L 3 ! 3 |,
“1+35 143

brings (3.9) into the prepared form:

1-2 0 15 /-1 -1 1 (—F(z,v1 4+ v2)
2z — _ ’
8V+( 0 —1—23Z>V 832(1 1)v+2(F(z,v1+U2) ’
(5.15)

Remark 5.1. Let us consider the action of the gauge transform y = Tp(z)u
on the differential equation du+ Bou = 0. This differential equation is trans-
formed into the system dy + Agy = 0 with Ay = TOBOTJ1 — (8TO)T(;1

0 —1--- 0
of the form Ay = : R with p,,, -+ ,p1 € C{z7'} satisfy-
: 0 -1
pn(z) ...... pl(z)
ing pp(2) = 5 + z%o +0(z72%), -, pi(z) = o+ 5710 +O(272). The system

Jy + Agy = 0 is the companion system for the one-dimensional homogeneous
ODE of order n,

0"y +p1(2)0" 'y + - pa(2)y =0, (5.16)

whose general solution is y(z) = Y1, Uje™*#2~", (Uy,--- ,U,) € C™.
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5.2.2.3 Normal form, formal reduction

We have previously reduced the companion system (5.7) to a prepared form
through a meromorphic gauge transform. Under some conditions, one can go
further, but through formal transformations, in the spirit of the Poincaré-
Dulac theorem for vector fields [2].

Proposition 5.1. We consider the ODE (5.8) and we assume that the multi-

pliers A1, -+ -, A are non-resonant. Then there exists a formal transformation
v =T(zu),
T(zu)= Y u*¥e(z), Ve(z) €C[[z71]], (5.17)
keN™

which formally transforms (5.8) into the linear normal form equation
du+ Bou=0. In (5.17), Vo stands for the unique formal solution of (5.8);
for j=1,...,n, Ve, is uniquely determined when one prescribes its constant
term to be equal to e;; then the formal series Vi, are unique for |k| > 1.

We will see in the sequel how this proposition can be shown. Here, we
rather concentrate on its consequences.

One can refer to, e.g., [30, 4] for a proof that extend to possibly nilpotent cases (but
with no resonances), and to [18] for a very general frame.

We know that the general solution of the normal form du + Byu = 0 is
u(z) = @,z e i (*U), U = (Uy,--- ,U,) € C". Through the action of

the formal transformation v = T'(z,u), this provides the following general
formal solution for the ODE (5.8):

v(z,U) = Z H(Uizfﬂefz&)ki?k(z) = Z Uke M k2 ,7mkG, (2)
k=(k1, kn)EN" i=1 keNn
(5.18)
with A= (A1, , ) € (CH" and 7 = (74, -+ ,7) € C™.

Definition 5.3. The formal series (5.18) is called the formal integral of
(5.8).

Of course, one can obtain the formal integral w(z, U) of (5.7) as well, by
the gauge transform w = Ty(z)v, with Tp(z) given by (5.13). When finally
returning to the n-th order ODE (5.4) of dimension 1 we started with, one
gets its formal integral.

Definition 5.4. We assume that the multipliers are non-resonant. The for-
mal integral w(z,U) of the ODE (5.4) is defined by:

w(z,U) = Z Uke k27 mkG(2), @r(2) = Vi(2).(1,---,1) € C[[z7Y]],

keNn
= B(z,Upe M%7 o Uye Az (5.19)
with &(z,u) = > kene WFk(2) € C[lz7*, u]]. The formal transforma-

tion w = P(z,u) formally transforms (5.4) into the normal form equation
ou + Bou = 0.



96 5 Transseries and formal integral for Painlevé I

The formal integral (5.19), thus depending on the maximal n free param-
eters U = (Uy,--- ,U,) € C", plays the role of the general formal solution
for the ODE (5.4) of order n. Formal integrals can be defined as well for
difference and differential-difference equations, see, e.g. [18, 30]. This notion
has been enlarged for nonlinear partial differential equations in [33].

Remark 5.2. Although working at the formal level, one may wonder what
is the chosen branch when we write 2=7*. As a matter of fact, this is not
relevant at this stage since moving from a determination to another one just
translates into rescaling the free parameter U.

Remark 5.3. Introducing V* = U*e=2k22-7* we remark the identity:

0. (V*y,) = [(az - En:(xi + %)uﬁui) (ukfﬁk)} [

i=1
Looking at the equality
W(2,U) = &(z,Upe M2z oo Upe MnZz77n) (5.20)

and since the formal integral (5.19) solves the differential equation (5.4), one
deduces that ¢ satisfies:

P(@Z—Xn:(/\i—i—%)uiaui)@—kéQ(82—271:()\1-4—%)%8%)5 = F(2,®). (5.21)

i=1 =1

5.2.3 Formal integral, general considerations

Under convenient hypotheses, we have previously introduced the formal in-
tegral for the ODE (5.4), that is a n-parameters formal expansion of the
form
w(z,U) = Z Uke 2k TRy (2), A TeCt, (5.22)
keNn

Let us start with (5.22) and investigate the conditions to impose on the
wg’s in order for (5.22) to be formally solution of (5.4).

We could start with (5.21) as well.

Using the identity (5.11) for m € N, one obtains from (5.22):

(m) _ k - m) ~Akz —1.k\(p),, (m=—p)
w (§ z w
> oY (1) )Pu

|k|>0 p=0

— E Ukefk.kzzf‘r.ka7m+1(wk)
|k|=0

where T(0,0),m+1(wo) = w(()m) and, more generally for k € N2,
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T m+1(wg) = z’”: <T;) [zp: (?) (_)\,k)p*j%}wl(cmfp)

p=0 =0
— ji:o <7;1) (—;k)j [1: (mq J> (=X Ic)mfﬂqu(cn}’

that is also

wg) = (™ ﬂ - I |- .
The 1 (wie) ;(g) = [(Ak+0)" ] (5.23)

In what follows we will simply write Ty 41 instead of T 41 (wk). We in-
troduce the notation
Vk = ke—Akz ,—Tk

and we notice that for every ki, ks € N”, vkiyk: — ykitkn
On the one hand,

PO)w = Z Vk{ Z an_mTk,m_H} = Z Vkpk(a)wk (5.24)
k=0 m=0

|k|>0

where for |k| > 0,

Pe(@) =Y on_m(-Ak+0)™"

m=0
+ mi_l an-m{ 2: (T) %(—A.k +oymi ).

In other words, for |k| > 0,

Pr(9) = P(=X.k + 9) + ; Zij <_;k) PO (—Ak+d). (5.25)
Similarly
QYW= VFaqi(@)uwy (5.26)
P
with

ar(8) = Q(=A.k +0) + i: Zi] <_;k> QU (=Xk+0). (5.27)

On the other hand we consider the Taylor expansion of F'(z,w(z,U)) at
wg, namely

¢
(Z|k\21 kak) 0'F(z,wo)

7 B (5.28)

F(z,w) :F(z,w0)+z
£>1

We observe that for every £ € N*,
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( Z kak)Z = Z \ % Z Wp, W, (5.29)

> > P+ +p,=P
k[>1 P PSTRR

As a result, equation (5.28) reads

w p, OF (2, w
F(z,w) = F(z,wp) Z VP Z Py E! 8<w 0)’5 30)

Finally, plugging the formal expansion (5.22) into the differential equation
(5.4), using the identities (5.24), (5.26), (5.30) and identifying the powers
V*, one gets the next lemma 5.2 which justifies the following definition.

Definition 5.5. For k € N", we define

P(d) = P(—A\k + ), (5.31)
Qr(0) = —T.kP' (~=Ak +8) + Q(—A.k + )

n—2

Z Zi] K‘ > PO (- Ak +0) + (;i'f) QU (=Ak +0)

" (5.32)

For k € N™, we denote by ©j = Dg(wo) the linear differential operator

OF (z,wp)

1 1
D = Pk(ﬁ) —+ ;Qk(a) + ?Rk, — o0

1
where wg satisfies P(0)wo + —Q(0)we = F(z,wo).
z
For k € N™, we denote by By, = Pr(wo) the linear differential operator

1 F
T = P(-Ak+9) + LQ(-Ak 4 9) — 2 w0), (5.33)
z ow
Lemma 5.2. The n-parameters formal expansion
w(z,U) = Z Uke MRz 7 TRy (2) (5.34)
keNn
solves (5.4) if and only if :
1
P(@)wo + ;Q(a)wo = F’(Z:7 wo), (535)
De,we, = 0 (5.36)
with e; the i-th vector of the canonical base of C™, and for |k| > 2,
.. U
Dywy, = Why -+ Wiy O F (2 w0) (5.37)

1 7
Kyt Tho—k 4l ow
ki |>1, 0>2
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Remark 5.4. Notice that in lemma 5.2 we have neither supposed that

A= (A1, -+, An) are the multipliers, nor that 7 = (71, -+ ,7,) are such that

T = ﬁ, i =1,---,n. However, these conditions will come in the next
—Ai

section.

Ezample 5.2. We take equation (3.6) where n = 2, P(9) = §°—1, Q(9) = —30.
Then, for every k € N2,

Pi(0) = 9% — 22A.k0 + (A\.k)* — 1, (5.38)

Qr(0) = (34 21.k)(—0 + A.k),
Ry (0) = T.k(T.k+4).

In particular, taking A = (1, —1) (the zeros of  — P(—()) and 7 = —g, —g)
(we take the values given by (5.5)), then writing k = (k1, k2):
P(0) = 0% — 2(k1 — k)0 + (k1 — ko) — 1, (5.39)
Qr(9) = 3(1 — k1 — k2)(—=0 + k1 — k),
Ri(@) = 3 (k1 + ko) <k1 k- 2) |

We eventually mention some identities for later purposes, the proof of
which being left as an exercise.

Lemma 5.3. The operators Bg and Dy given by definition 5.5 satisfy the
identities: for any k,ki,ky € N7, e Mkiz3, eXkiz — o= Akazqyy oA-kaz
27TRD Y = Prz ™ and

(ef}\.klzzf‘r.kl)gk (efA.klzsz.kl)fl — (efA.kgzsz.kg)gk (efk.kQszT.kQ)fl.

1 2

Setting Wy, = 2z~ "Rwy, for k € N™ and the wy, given by lemma 5.2, one has
PBe,We, =0, i = 1,2 while and for |k| > 2,

PBeWi = Wi, - Wk, 66F(z, wo)
Kyt Tho=k a ow'
i | >1, £>2

(5.40)

5.3 Formal transseries for the first Painlevé equation

We partly describe in this section the contains of lemma 5.2 for the prepared
form equation (3.6) associated with the first Painlevé equation. Thus n = 2,
P(9) = 0% -1, Q(0) = =30 and F(z,w) = fo(z) + f1(2)w + fa(2)w?. Also,
we will for the moment specialise our study to only one-parameter formal
expansions, that is we will assume that either U3 = 0 or Uz = 0 in (5.34).
This study will be enough to get the truncated solutions. We will keep on
our study of the formal integral associated with (3.6) in Sect. 5.4 where will
we see the effects of resonances.
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5.3.1 Transseries solution - statement

This section will be devoted to prove the following proposition.

Proposition 5.2. We consider the prepared ODE (3.6). We note
A= (A1, \2) = (1, —1) where the \;’s are the multipliers, that is the roots of

the polynomial { — P(—(). We introduce T = (11,72) = (3, 2), where
L QA

K3 P/(—A,L) b
Then for each i = 1,2, there exists a formal one-parameter solution of (3.6)

in the graded algebra @ 2 TikeT AR C[[27Y)] of the form
keN

i =1,2. We note e; the i-th vector of the canonical base of C?

w(z,Ue;) Z Ure ™ kz =Tk 0. (2),  Wke, € C[[z71]). (5.41)

This formal expansion is unique once one fizes the normalization of We, to be
We,(2) = 14+ O(271). Morever wye, € R[[z7Y]] and val Wye, = 2(k — 1) with
Whe, (2) = 12]671,2_2(16_1)(1 +0(z7Y) for every k > 1. Furthermore chang-

ing the normalization of we, is equivalent in rescaling the parameter U € C.
Eventually, Wke, (2) = We, (—%) for every k > 0.

Definition 5.6. The expansion (5.41) is called a formal transseries. The

terms e %227k are (log-free) transmonomials. The formal series W,

are called the k-th series of the transseries. We denote Wkei = z’“kﬂ?kei.

Remark 5.5. The term “transseries” is due to Ecalle [19]. These are objects
that are widely used in resurgence theory, see, e.g. [8, 34, 27, 28]. More
details on transseries can be founded in [18, 19], see also [6, 7]. Transseries
are also common objects in theoretical physics : these are the so-called “multi-
instanton expansions”, see, e.g. [38, 24, 25, 26, 32, 23, 1, 15, 16, 17].

In quantum mechanics or quantum field theory, an instanton action (the termi-
nology of which is due to Gerard 't Hooft) is a classical solution of the equations of
motion, with a finite and non-zero action. A well-known instanton effect in quantum
mechanics is given by a particle in a double well potential. The tunneling effect
provides a non-zero probability that the particle crosses the potential barrier. This
gives rise to a tunneling amplitude proportionnal to the instanton e~5/% where S
is the instanton action, / being the Planck constant or the coupling constant. For the
bound states, this translates into the fact that they can be described at a formal level
by a multi-instanton expansion, that is a transseries of the form 3, - Ek (hye=kS/h

where the perturbative fluctuations Ek(h) are formal expansions with respect to
h. The bound states are deduced from the multi-instanton expansion by (median)
Laplace-Borel summation, see [36, 9, 10, 11, 12, 13, 21, 22].

For later use, we mention a lemma that result from proposition 5.2 and
lemma 5.3.

Lemma 5.4. Under the conditions of proposition 5.2 and for any k € N2,
the (so- called) geneml formal solution of the linear differential equation
P (wo)W =0 is W = X kz(C’ e‘AlZW .+ Cge_MZWeQ) C1,Cy € C. For
any k € N2 the (so-called) general formal solution of the linear differential
equation Dg(wo)w =0 is w(z) = e>"’“z""’“(C’le_hz/V[v/e1 + C’ge_)‘”/ﬂv/@),
Ch,Cy € C.
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5.3.2 Transseries solutions - proof

5.3.2.1 A useful lemma

We start with the following lemma which will be useful in the sequel.

Lemma 5.5. We suppose n, N € N*. We consider the ordinary differential
equation

PO+ L ROw = J(2), F2) = =" (1 +0(1) € = NC[l=), fv #0

with

P(d) = an-md™ € ClO], ay # 0, R() = Y0, Ya—m(2)0™ € C[lz"][0]

m=0

This ODE has a unique solution @ in C[[z~]], moreover val@ = val f and

w(z) = £ N (1 +0(=).

Proof. In the valuation ring C[[z71]] we consider the following map :
N Cllz™] = Cllz71]]

1 7~ 1
> B [f(z) - (P(a) - P(O))w - ;R(@)w]
(Remember that P(0) = «,, is nonzero). From the hypotheses made one easily
observes that N'(C[[z71]]) € 27C][[z71]] while, for every p € N*,

if u,v € 27PC[[z7"]], then N(u) —N(v) € 27?7 1C[[z"1]].

This means that N is contractive in C[[z7!]], thus the fixed point prob-
lem w = N(w) has a unique solution @ = lim N?(0) in C[[z!]]. Since
p—r00

N(0) = f(2)/P(0) one gets @(z) = %Z*N(l +0(z™1)). O

5.3.2.2 Proof of proposition 5.2

We precise at an introduction that the fact that wye, € R[[27]] is just a con-
sequence of the realness of equation (3.6). The relationships w(g,x)(2) = W(k,0)(—2)
for every k > 0, come from the property of equation (3.6) to be invariant un-

der the change of variable z — —z and to the chosen normalization of we,,
i=1,2.

5.3.2.3 The return of the formal solution

We remark that wo = wg,g) has to solve (5.35) which is nothing but the
equation (3.6) one started with. In particular we know that this equation
has a unique formal solution wg € C[[27!]] that has been investigated in the
previous chapters.

In what follows, one will always replace wg by this formal solution wg.
We mention the following obvious fact, essentially due to the property that
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~ 0'F(z,0
valwg > 2 and that for every ¢ = 0,1, 2, # € 272C{z7'}. (This is
one place where it is interesting to work with a “well-prepared” equation, see
what we have done in Sect. 3.1 to get (3.6) and exercise 3.1):

Lemma 5.6. If wo(z) = > /5, ao 2=t € C[[z7Y]] is the formal solution of

lF ~
(5.6), then for every £ =0,1,2, L’Z}U’O)

€ C[[z™ Y]] has valuation 2, and
w
vanishes identically for every £ > 3. Also:

OF (z,w ~
1. w = —4272 4+ 272wy is even and its coefficients are all real nega-
w
tive;
O*’F(z, W
2. 7(2’,100) =272,
ow?

5.3.2.4 The cases |ke;| =1

Formula (5.36) with k = e; provides

Deste, =0 (5.42)
= L 1 OF (z,W0) .
where De, = Pe, (9) + ;Qe1 (9) + ;Rel T ow with
P"(—\
Pel(a) = P(—)\l +a) = P(_)\l) + Pl(_>\1)a+ %82

Qe,(0) = =T P (=M1 +0) + Q(—\1 + 9)
Re1 = Tl(Tl —|—4)

Assuming that we, € C[[z71]], one observes that the right-hand side of (5.42)
has a valuation less or equal to (val we, ) —2, because of lemma 5.6. In order to

get a non identically vanishing solution, one thus has to impose the condition
P(—)\1) = 0. Following our conventions, we take A\; = 1.

The same reasoning leads to impose furthermore that —7 P'(—=X1) + Q(—X1) = 0,

3
thus 71 = —5 Therefore,

15
PEl (6) = 82 - 287 QE1 (a) = 0’ Rel (a) = _Z'

. 3 .
Symmetrically for k = ey, one gets A = —1, 75 = —= as a necessary condi-
tion and

De,We, =0 (5.43)
1 1 OF (z,wo)
where D, = Pe,(0) + ;QEQ (8);; Z—QRE2 - TO whereas Pe,(0) =
0% + 20, Qe,(0) =0, Re,(0) = 1

Lemma 5.7. The linear homogeneous equations (5.42), (5.43) have both a
one-parameter family of formal solutions we, = U1We, and we, = UsWe, in
C[[z7Y]], where We, and We, are uniquely determined when normalized so that
We, = 14+ 0(z71), We, = 1+0(271). Moreover we, € R[[z71]] and e, (2) =
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We, (—2). Furthemore, if wWo(z) = > 15 ao, 1zt and We, (2) = 2150 ey 127!,
the following quadratic recursion relation is valid:

ey ,0 = 1,
1 - (5.44)
Qe 1 = g <—(2l —1)%ae, 11 +4p2_:0aehpao,lp1> L 1=1,2,--

Proof. We only examine (5.42). We look at this equation in the space of
normalized formal series C[[z7!]], namely

. 151 OF (z,wo)
(0 — 2)0we, = (42’2 + “ow ) Wer (5.45)
We, € (C[[Zil]]? We, = 1 + O(Zil)'

We remark that the restriction of the derivation operator 9 to the maximal

ideal 27!C[[z1]] is a bijective operator between z~*C[[z7!]] and 2 2C[[z1]];
we note 0! the inverse operator,
—l(c -1 ﬁ) _2(C —1

2 Cllz7]] - 2 Cllz7)-

We transform (5.45) into the equation

151 F(z. W
—20we, = <—82 + 157 + Mﬂm)) We,

z ow

and we see that the right-hand side of this equation belongs to z~2C[[z]]
once we, belongs to C[[z7]], because of lemma 5.6 and to the choice of the
coefficient 77. This means that the map

N Cllz™M] = Cllz7]]

1./ . 151  OF(z, o)
We, —1- 58 <—8 + Z; + 76’10 We,

is well defined and the problem (5.45) is equivalent to the fixed-point prob-
lem we, = N (we, ). One easily sees that the map A is contractive in C[[z71]]
so that the fixed point problem we, = N (we,) has a unique solution we, in
Cllz="])-

From the fact that (5.42) is a homogeneous equation, one immediately con-
cludes that Uywe,, Uy € C, provides a one-parameter family of formal solu-
tions.

The proof for the quadratic recursion relation (5.44) is left to the reader (see
also [23,1]). O

Remark 5.6. 1. The Newton polygon at infinity N (De, ) drawn on Fig. 5.2,
has one horizontal side that corresponds to the operator —20. General
nonsense in asymptotic theory ([31], or [5, 29]) provides the existence of
the formal (normalized) series solution we,. The other (normalized) for-
mal solution associated with the side of slope —1 is e**W,, (see lemma
5.4) which, in our frame, is already incorporated in the other transseries
solution.
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Fig. 5.2 The Newton poly-

gon at infinity Noo(De,) T |
associated with the linear 0 1
operator (5.45).

2. From lemma 5.6 or (5.44), one easily shows that

1 4132
{1761 (Z) =1- 77«'71 + i272 — 73 329 273
8 128 1920000

is a real formal expansion, with coefficients that alternate in sign.

5.3.2.5 The cases |ke;| > 2

Lemma 5.8. For any k = ke;, i = 1,2 and k > 2, equation (5.37) has a
unique formal solution wie, = Wie, in C[[27]]. Moreover val Wye, = 2(k—1).
Furthermore, when considering Uwe, instead of we, for the solution of
(5.86), then the unique solution of (5.87) at rank k = ke;, k > 2, is

Uk@ke’w AZSO, {Ekei € R[[Zil]]} {Ekei(z) = Zﬁ2(k71)(1 + 0(271)) and
w(O,k)(Z) = @(k,o)(—z) for every k > 2.

Eventually, writing Wye, (2) = Y150 ke, 12", one has the following quadratic
recursion relations, for every k > 2:

12k—1

Gke;,0 = Qke;,1 = 0,

(k’2 — 1)akehl = k(?)k — 2l — 1)akel’l_1 — %(3,1{: — 2[)2ake171_2

-2 1
+ szo Gkey,p@o,l—p—2 + 2 QAkyey,pQkaer,l—p—2 | » =23,

(5.46)

Proof. We only examine the case k = keq, k > 2.

The proof is done by induction on k. We first consider equation (5.37) for

k=2

w3, 9*F (2, wWo)

2! ow?

6F(Z, ’L’LVI())
ow

@251 Woe, = (547)

1 1
with @231 = P2e1 (8) + ;QQel (8) + ;Rgel — . By (531) one has

Poe,(0) = P(—2)\1 + 0) = 9% — 40 + 3, thus Pae, (0) = 3 is non zero. Using
lemma 5.6, one sees that lemma 5.5 can be applied to (5.47) and this provides
a unique solution wye, € C[[z71]]. Its valuation is 2, explicit calculation
giving, for instance:
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~ 1 _ 11 _ 53 _ - ~

w2€1(’z):62 2_Ez 3+@Z 4+"'7 w2€2(’z):w261(_z)'
One easily checks that replacing we, by Uw,, implies changing wse, into
U?Wse, -
We now assume that the properties of lemma 5.8 are true for every 2 < k < K — 1.
When considering equation (5.37) for K one gets :

ﬁklelﬁk2el 82F(Zv{[)0)

QKeleel = y (548)
ki K 21 Ow?
k1>1,k2>1
1 1 OF (2,
with Dke, = Pre,(9) + _Qrei(d) + Rier — % and

Pke, (0) = 0> —2K0+ (K* —1). One deduces the conclusion of lemma 5.8 at
the rank K by the arguments used previously. For what concerns the valua-
tion, observe that when k1 + ko = K, val Wy, e, Wiye, > 2(k1 — 1) + 2(k2 — 1),
thus val Wk, e, Wiye, > 2(K —2). As a matter of fact, for every k > 2
W(r, 0)(2) = bz 2E=D(1+ O(271)) with

b =1,
k—1
b = s=nFD Lyt UVhpy k22,
which easily provides b, = 12’&% by induction. The reader will easily check
that the recursive relations (5.46) are true. (See also [23, 1]). O

Remark 5.7. Here again, we are not interested in the whole formal fundamen-
tal solutions of equations (5.47), (5.48), that incorporate the general solutions
(em k=) =1 (Cre™ 22 Mg, + Coe 27271, ) of the associated ho-
mogeneous linear ODEs D, oyw = 0 (cf. lemma 5.4). Taking into account
the term (---)We, would imply a rescaling on U;. The other term (- - )W,
concerns the other transseries.

5.4 Formal integral for the first Painlevé equation

We made general considerations on formal integrals in Sect. 5.2. We started
the study of the formal integral for the prepared equation (3.6) associated
with the first Painlevé equation in Sect. 5.3 : this gave us the transseries
described by proposition 5.2. When no resonances occur, one gets with quite
similar arguments the formal integral. However, this is not that simple for
the first Painlevé equation where we have to cope with resonances.

5.4.1 Notations and preliminary results

5.4.1.1 Notations

It will be useful for our purpose to introduce the following notations:

Definition 5.7. For any n € N*, we note n = n(1,1) and
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En0=1{k=(k,ko) € N?Z\ {0} | k1 <mn or k2 <n}U{n}.
We also set =g = {(0,0)}.

Example 5.3. ¢ E1o=(N*x{0})U ({0} x N )U{(1,1)},
e Zo0=(N*x{0,1})U({0,1} x N )U{(2,2)}.
Notice that for every n € N, Z,,410\ Eno =n+ 1.

5.4.1.2 Resonances : first consequences

Equation (3.6) has the feature to have positively resonant multipliers \; = 1,
A2 = —1 because A.n = 0, for every n € N* (see definition 5.2). This brings
semi-positively resonances, the cases of semi-positive resonances being all
described by A; = A.(n 4 e1) and A2 = A.(n + e2), for every n € N*.

We have already seen (proposition 5.2) that these properties have no conse-
quence for the transseries but, as we shall see, this produces new phenomena
when the formal integral is concerned, these being essentially consequences
of the following fact. (This derives from lemma 5.3).

Lemma 5.9. For every n € N, k € N2, the following identities are satisfied:

T.n —T.n
PBotk = PBr, Pnpe=2""Dkz 7", T.n=-3n

5.4.1.3 Preliminary lemmas

In a moment, we will have to deal with formal expansions of the type

Zlog , p €N, with the f;’s in C[[z~1]].

Definition 5.8. We equip the graded algebra @logl(z)C[[z_l]} with the
leN

valuation val defined by: val (Z logl(z)ﬁ> = mlin {val f;}.
1

Lemma 5.10. We suppose n, N € N* and p € N. We consider the ordinary
differential equation

PO)w + %R(@)w — ), @ og ()C[="Y]],  (5.49)

=3 apomd™ € ClA], an £0, Z Yn-m(2)0™ € C[[z71]][0]

m=0

P
Then (5.49) has a unique solution W € @logl(z)C[[z_l]] and valw = val f.
1=0
Moreover, if f = 3°7_ log!(2) fi and @ = 3°7_ log' (2) @y, then:
1 ~
1. w, solves the ODE: P(0)w + fR(a)w = fp;
2. if val fp <val Y7, ! og! (= fl then valw, < val Y 1_ logl(z)ﬁl
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Proof. One easily sees that the arguments used for the proof of lemma 5.5 can

be extended, when observing that val 9 ( E 1ogl(z)ﬁ) < val ( g logl(z)fl> +1
1 1
O

We have seen in lemma 5.7 that the operators De,, ¢ = 1,2, have specific
behaviours. This is the purpose of the following lemma.

Lemma 5.11. We suppose p € N and i € {1,2}. We assume that
f=>r, log!(z) f; € ®, log! (2)C[[z~Y]] satisfies the conditions:

Lvalfy =1, fp = fp2 1+ 0(z7Y), f #0
2. val ( f;ol logl(z)fl> >2

Then the equation De,w = f has a unique solution © = Zfiol log! (2)w; in
@V log (2)C[[27 Y]] that satisfies the condition val ( Yo logl(z)@l> > 1.
Lﬁe..

P+1)P(=N)

Otherwise, the geneml solution of the ODE D, w = f in @pﬂ log! (2)C[[z~1]]
is of the form w = w + Uwe, where U € C.

Moreover wp1 =

Proof. We examine the case ¢ = 1 only. The ODE D, w = fis equivalent to
the equation :

Pl(=\) = —

~ 151 OF(z,w
Pl(—\)dw=f+ (82 <o+ (“‘"’)> w,

ow

By arguments already used in the proof of lemma 5.7, this problem amounts
to looking for a formal solution that satisfies the fixed-point problem

T 151 OF(z @
w:U(Z)+P/(_>\1)61(—82 42_’_(32“)“)()))“}
where U(z) = 07! i = Joy og”( +Zlo
P'(=A) ]~ (p+1)P' (=) &

Notice that we take the primitive with no constant term. Th1s fixed-point
problem has a unique formal solution under the form

~ fpl ~ p+1
= ————We., 1
= P (A e *Z o8'(

and val ( P o logl(z)@l) > 1. Eventually one can add to this particular

solution any solution of the homogeneous equation D, w = 0, that is any
term of the form Uw,, with U € C. O
5.4.2 Painlevé I, formal integral

We are now in position to detail the formal integral associated with the first
Painlevé equation.
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Theorem 5.1. We consider the ODE (3.6). Let be A = (A1, A2) = (1,—1)
where the M\;’s are the multipliers, and T = (11,72)= (3 3),

27 2
-\i) .
T, = 15“’ i=1,2. We set Vk = Uke-Akzy -7k for any k € N? and
any U = (Uy,Usy) € C?. We write n = n(1,1) for any n € N.
There exists a two-parameter formal solution of (3.6), freely depending on

U € C?, of the form

W(z,U) =wo(2)+ Y Y,  VFag(2), (5.50)

n=0keZ,11,0\En0

and uniquely determined by the following conditions:

1. @o € C[=~1];

n

2. Wy = Zlogl(z)@,[i] € @logl(z)((:[[z_l]], for every k € Zpt10 \ SEno,
1=0 1=0
n €N;
3. fori=1,2, We, satisfies We,(2) =1+ O(z71);
4. for every n € N* and i = 1,2, Wnie, = .1 logl 2ol satisfies
+e; =0 n+e;

Eﬂel < val ( o logl(z)@ghei).

Moreover, the following properties are satisfied:

val w

5. changing the normalization of we,, © = 1,2, is equivalent to rescaling the
parameter U € C2;
n
6. for every n € N and every k € Zp410 \ Eno, Wk € @logl(z)R[[z_l]],

1=0
oy [l
Furthermore wuhkz)(z) = wgllg,kl)(_z) for every | € [0,n];

7. for every n € N* and every k € Zp410\ Zno,

~ — 1 I ~0
W = E ﬁ(%kz) z llog;l(z)w,[c]_l (5.51)
1=0
where x = (311, 303) = (i —E) is defined by:
- 1,22) — 127 12 Y:
o L L 1 )5 (5.52)
TP \PO) T2AP(—2N) ) 127 T '
0?F(z,0
whereas a is given by % =az 2+ 0(z7%). As a consequence, for
w

every n € N*, wy, € R[[z7Y]] ;
8. for every k € N2\ {0}, valzﬁ,[i)] =2(|k| - 1).

Proof. Once for all:

e the property 5. is easily derived by an argument of homogeneity;

e the realness and eveness in property 6. are just consequences of the realness
of equation (3.6) and its property of being be invariant under the change
of variable z — —z, and to the chosen normalizations.
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In what follows, we investigate the terms under the form wy withk € =110\ Zn0
and n € N. We first look at what happens when n = 0 and n = 1, step by
step so as to draw some conclusions, then we complete the proof by induction
on n.

Case n = 0 and kK = 1 This is the first case where a resonance appears.
However, this case yields no surprise. Indeed, equation (5.37) for k = 1 reads

8F(Z, ’IEQ) w
ow !

. 0*F(z,w

Pu(@)us + LQa(@)us = (- R+
(5.53)

with P;(0) = Po(0d) = 0% — 1. Therefore lemma 5.5 can be applied and
one gets a unique solution w; € C[[z7!]] with, moreover, valw; = 2 and

w1(z) = P0) 272 + 0(27?) where a = 1 is given by: % =az"?+0(z7?).
. 9 902139
Explicit calculation yields: @ (z) = —22 — gz_4 ~ 20000 275 —

Casesn=1and k € 529\ E1,0

Cases k = 1+e;, i = 1,2 These are the first cases of semi-positive resonances
and are more serious.
Let us concentrate on the case k = 1 + e; for which equation (5.37) is

. . L O0’F(z,w
©1+e1w1+€1 = (wlwel + w2€1w€2) #7

that is also, from lemma 5.9 and proposition 5.2,

De1 (23w1+€1) = §1+81a (554)
aQF(Z, ’lﬂo)
ow?
_ (.t 11 2 1 2
- <P<o> T P<—2A1>) v o)
5

—62_1 +0(272).

~ 3 ~ ~ ~ ~
Jite, = 2° (W1We, + Wae, We,)

The conditions of application of lemma 5.11 are fulfilled: equation (5.54) has
a one-parameter family of formal solutions, depending on U1 € C, of the
form

(1] [0]

’LU1+€1 = ’[1714,61 + U[1]712_3’[Eel, @1‘5’61 = @14’61 IOg(Z) + &;1+317
ol =20, val@ll,, > 4. (5.55)
_ _ a? 1 1 1 _ 5
i =i\ P T APy ) T 1
Explicitly,
0] 11 4, 197 _5 23903 _4

w zZ)=—2 —z z
the (2) = 73 576 82944
Also remark that the property val @[lojrel > 4 characterizes the particular
solution Wiy, among the one-parameter family of solutions.
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The case k = 1+e; is deduced from the above result from the invariance of
(3.6) under the change of variable z — —z. One gets a one-parameter family
of formal solutions, depending on Uy 2 € C, of the form

_ ~ ~ _[1 [0

w[llJ]rez = w1+e[21]+ UnjoWey,  Wite, = w[lle[a]log(z) + w[[}ﬁ]re?,

17}1-‘,—22 (2) 2: 77’1+e1 (=2) = %227315@(2)7 iDl—i—eQ (2) = wl-‘,—el (—2) (5.56)
a 1 11 5

72 = P (PO T 2Py ) T 12

In the sequel, we fix Upyj,1 = Upy,2 = 0, that is we only consider the (well
and uniquely defined) particular solutions wy te,, i = 1,2.
We stress that adding terms of the form U[l],1{5e1 and U[1]721'1782 has the effect to

rescaling the parameter (Ui, Usz). In particular, changing the branch of the log has
non consequence for the formal integral.

Cases k = 1 + ke; One step further, we consider the case k =1 + 2e;. We
take ¢ = 1 only for simplicity. From (5.37) and lemma 5.9, we get:

(5.57)

~ - JU . (O’F(z,w
Dae, (753wl+2el> =2 (W1+e,We, + Wae, W1 + W3e, We, ) #'

By proposition 5.2 and the above result, the right-hand side of equation (5.57)
is a formgl series expansion of the type f = fM1og(z) + £ with val fll =2
and val fl°! = 3. Applying lemma 5.10, we get for (5.57) a unique formal
solution of the form w1y 9e, = @:[11]+2e1 log(z) + ﬁﬂ%l € @ll:o log! (2)C[[z~"]]

with val @[11_1_261 =5 and val @[ﬂ_gel = 6. Moreover, @ﬂQel solves the ODE

p 1 3 ~[1 ~ 82F(z,@0)
9261 (Zdw:[l_-]i-2el) = Zdw:[l.-]i-elwel w2
0?F(z,w0)
_ ~2 )
= %1’[1)21 7811)2 .
Comparing to (5.47), one concludes that
- [ [0
W1+2e, = w[lJ]rZel log(z) + wi[b]ﬂe )
S s a9 g
Wy yoe, = 2712 “Wae,, ValWy, g, = 6.

We now reason by induction, assuming that for every k € [2, K — 1] with
K > 3, one has

~ ~[1 ~[0
w11+k€1 = w:[[a]}k;el log(z) + wi[lJ]rkeO )
a[lJ]rkel = kj%lzfg'[[)kel, val a[lJrkel =2(k+1).

Then, by (5.37) and lemma 5.9,
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3 wklka GQF(Z,U}O)

5 53 (5.58)

3~
Die (W1 Ke,) = 2
ki1+ko=1+Ke;
[k1]>1, |k2|>1
2
3 _ . 0°F(z,wo)
=z E w1+klelwk2€1T
Ny g w
k12>1,k2>1
3~ _ _ O?°F(z,wo)
+ 2 (wlee1 + w(1+K)elwez) T owr

With  the above reasoning, one gets a unique solution
~ ~[1 [0 1 _ 1
W1tKe, = w[H]-Kel log(z) + w[H}_Ke1 e P, logl(z)C[[z 1] where w[H]_Kel
solves the ODE

i - ~ 0?F(z,wo)
DK61 (Zgw[l—]i-Km) = Z klwklel Wkyey T

Wiy ey Whye, O2F (2, wo)
= K%l E 2
2 ow
ki1+ko=K
k121, k22>1

Comparing to (5.48), one concludes that

~ 1 [0

Wi+Ke, = w[lj—Kel IOg(Z) + w[l—]s-KeN

O e, = Koz P ge,,  valoy] o, = 2(K +1).
Case k = (2,2) What remains to do when k € =5 \ =10 is to examine the
case k = (2,2). By (5.37) and lemma 5.9,

D(ztwz) = 5.5
3 [~ ~ ~ ~ ~ 1~ ~ \ 0?F(z,@0) (5.59)
23 (W14e, Wey + Wite,We, + Wae, Wae, + 3W1W1) —552

We observe from (5.55) and (5.56) that

~[1 ~ ~[1 ~ 3~ ~ 3~ ~

w:[llelw62 + w[ljrezwel =z 3welw62 + oz ?’u),5211/e1 =0.
Therefore the log-term disappears in the right-hand side of (5.59) as a con-
sequence of the symmetries of the problem. Moreover

val (03], Wey + W) o, We, + Wi, Wae, + S T101) > 4.

By lemma 5.10, we get wp € C[[z7!]] with valwy = 6. Explicit calculation
51 2177 1 5288521 1

626 432 25 54000 20
Induction We assume that N is an integer > 2 and we suppose that the
properties announced in theorem 5.1 are true for any integer n € [0, N — 1]
and any k € Zj,41,0 \ Sno-

We notice on the one hand that En410\Eno=1+Zn0\EN-1,0- On
the other hand, for every k € En 0\ En_1,0,

provides: wa(z) =

Uf}k1{5k2 82F(sz0)
2 ow?

D14k(Wrtk) = (5.60)

ki+ko=1+k
|k1]>1, [k2|>1
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We set X = log(z) and we consider X as an indeterminate. The right-hand
side of (5.60) is of the form f =3 fI1X! with

@kl ﬁkz 62F(2, wo)

Ox [ = 0x 5 902
k1 +ko=1+k w
[k1]|>1, |k2|>1
=\ = = 2
. (wakl)wk2 + W, (BkaQ) 0 F(Z, U)o)
= o .
kit+ko=1+k 2 ow
|k1]|>1, [k2|>1

Using the induction hypothesis, when 1 + k1 € Z,410 \ Sno, for any
n €0, N —1],

n n—1
[l _: [l
Ox (Zw[li_le? = (se.kp)z 3 ZwL]IXl,
=1 1=0
that is Ox W1k, = (2c.k1)z~ wkl Therefore:
~ _ . 9°F(z,wo)
oxf=2"° . Jrzk: (%'kl)wk1wk2T
2
oy |>1, \k2|>1
= (k)2 ? By Ty FF (21 wo)
k) Sk 2 ow
[k1]|>1, |k2|>1

Thus dx f = (s.k)2 D (i) and (5.60) provides:
dx (@k(z3a1+k)) = (50 k) Dy ().

Observing that 8X©k8;(1 = Dy, one easily gets wy g either from lemma
5.11 or lemma 5.10, with wq4, = (%.k)z*?’a;(liﬁk.

The property for wy,41 is easy and is left to the reader. This ends the proof
of theorem 5.1. 0O

Definition 5.9. The two-parameter formal solution defined by theorem 5.1
is the formal integral of the prepared ODE (3.6) associated with the first
Painlevé equation. The coefficients \;, 7; and »¢;, i = 1,2, are the formal
invariants.

The formal series {ELO ] are called the k-th series of the formal integral. We

denote W,LO] = z_""kzﬁ,[f] and Wy, = 2~ 7*@y, for any k € N2

Remark 5.8. Theorem 5.1 can be compared to [23] and specially to [1], where
the calculations made there translate into ours up to renormalization.

Definition 5.10. For any k € N2, one denotes by & and §} the following
operators:

& = ZEP (0 - a) + ZE (@0 - k) - PEEZD L pro )
:2—(8 Ak)—};—k( (2k—1)+4)
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We need hardly mention the analogue of lemma 5.9.

Lemma 5.12. For every n € N, k € N2,

T.n —T.n T.n —T.n
Chyr = 2" "€z v Btk = 27" 8k2 .

We finally give a corollary stemming from theorem 5.1.

Corollary 5.1. The formal integral (5.50) associated with the prepared ODE
(3.6) can be written under the form:

_ Z Vk@l[co]’ vk — Uk:e—(/\.k)z+(x.k)U1 log(z) ,—T.k_ (5.61)
keN?

FEquivalently,

’lE(Z, U) _ 5(27 Ule—)\lz—(n—%lUl) log(z)’ Uze—/\zz—(rg—uzUl) log(z))

where &(z,u) = Y kene ukwk (2) € C[[z71,u]] is solution of the equation:
2 7; — mul ~ 1 2 7i — x;ut ~ ~
p(az—;(AﬁZ)uiaui)sz(az—;(A#Z)uiau,.)gzs = F(z,8).
(5.62)

The formal series @,[3] € 2z 2RI 2R[[27 Y]] satisfy:

0 ~
wklw’[@j O*F (vao) .

o foranyk e S0\ Zop, ’Dkﬁf] = Z

ki+ko=k 2! ow? ’
[ki| =1
(0] [0] 49 ~
0 0 Wy, Wy, O2F (2, Wo)
o foranyk € Z20\ 510, DWWy, + Wy, = k1+zkz:=k 12! : ow?
[ei|>1
~[0] 5 wy, wl[c?] 9*F (2, Wo)
e otherwise, C‘Dkwk + €Epwy,_; + Skw = Z : : ’
X 8 2! Oow?
1+ka=k
[ki|>1

Proof. Let us examine (5.50) more closely. The formal integral can be written
as follows:

=D V2i(2)+ > D> > VG, e (2), (5.63)
n=0

i=1,2 k=1 n=0

that is we consider the sums along the direction given by the vector (1,1)
that determines the resonance. We set T® = UFe~(Ak)z+(ek)U log(2) ; 7k
For the first sum we know that each wy(z) belongs to C[[z7}!]] and
Yool o Vi = Y00 T™ Wy because s.n = 0.

We now look at the other sums and we use the relations given by (5.51). We
get for i = 1,2,
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oo oo o oo n 1 .
Z Z Vo s ke, = Z yhes Z \ % Z i (s¢ikz""log(z)) ﬁl[f]_l+kei
k=1n=0 k=1 n=0 1=0 "
_ Z v Z yvkei (kU log(z))wgz]rk&.
n=0 k=1
=> o> T
n=0 k=1

The equation (5.62) is obtained by the arguments developed in remark 5.3.
The reader will check that equation (5.62) is equivalent to the given hierarchy
of equations. O

Let us write ui(z) = Ule*Alz*(ﬁ*%lUl) 108(2) 45(2) = UQe*)\zz*(TszzUl) log(z)
and observe that *(u1,us) provides the general analytic solution for a non lin-
ear differential equation that only depends on the formal invariants:

U1 )\1+T71 0 (51 _ %UﬂLQ 0 Ul
o0+ (50t 2) () - (0 ) (32)- 009

This means that corollary 5.1 can be written another way.

Corollary 5.2. There exists a formal transformation w = ®(z,u) of the form
B(zu) = Y wra(z), @, €=, (5.65)
keN?

that formally transforms the prepared ODE (3.6) into the normal form equa-
tion:

Ou+ By(z)u = Bi(z,u)u (5.66)
(+ 0 a0 1
BO—( 0 )\2+T;), Bl(z’u)_z‘l(() sy ) u = uus.

5.5 Comments

Analogues of proposition 5.1 can be stated for differential equations, resp.
difference equations, of of order 1 and dimension n, with one level and no
resonance, given in prepared form :

Ov + Bo(z)v = g(z,v) (5.67)

with By(z) = @ (A\jILn, + 27" M), >_jMj =M, resp.

v(z+1) = Bo(2)v(z) + g(z,v) (5.68)

with By(z) = EB e %1427 1)Mi In each case, there exists a formal trans-

J
formation of the type v = T(z,u), T'(z,u) = 3 cpn W*Vi(2), Vie(2) € C"[[z71]]
that brings the equation to the linear normal form du 4 By(z)u = 0, resp.
u(z + 1) = Bo(z)u(z).
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To be correct, the upshot for difference equations is more subtle.

This property is still valid for differential equations with more than one level,
see [30, 4, 7] and references therein. In particular, the whole set of formal
invariants are alreday given by the linear part (in Jordan form) of the equa-
tion.

When resonances occur and as we saw with the first Painlevé equation, the
normal form equation is nonlinear and new formal invariants appear. This is
essentially a consequence of the Poincaré-Dulac theorem [2]; for instance in
(5.66), one recognizes the effect of the positively resonance of order 3 with
the resonances monomials uus and wju3. The classification is detailed in
[18], see also [20] where the notion of (so-called) moulds and arborification
are used (a good introduction of which is [35]).

Acknowledgements I am indebted to my student Julie Belpaume for helping me to
working out this chapter. I thank Jean Ecalle for interesting discussions on phenomena
induced by resonances.
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Chapter 6
Truncated solutions for Painlevé 1

Abstract In the previous chapters, we studied the unique formal solution
of the first Painlevé equation then we introduced its formal integral. We
show that its formal series components are 1-Gevrey and their minors have
analytic properties quite similar to those for the minor of the formal series
solution we started with (Sect. 6.1). We then make a focus on the transseries
solution of the first Painlevé equation and show their Borel-Laplace summa-
bility (Sect. 6.2). This provides by Borel-Laplace summation the truncated
solutions (Sect. 6.4).

6.1 Formal integral : 1-summability of the k-th series
and beyond

We have described with theorem 5.1 and its corollary 5.1 the formal integral
w(z,U) = Y pene Vkﬁl[f] associated with the first Painlevé equation. Our
goal in this section is mainly to show that the following theorem.

Theorem 6.1. For every k € N2, the k-th series {ELO] is 1-Gevrey, its minor

L[]
@,[3] defines a holomorphic function on %% with at most exponential growth

of order 1 at infinity. Moreover, @,[f] can be analytically continued to the

Riemann surface 2V, with at most exponential growth of order 1 at infinity
on ZW.

We already know by theorem 3.2 and theorem 4.1 that wg = @gﬂ enjoyes
the above properties. Our task comes down to studying the other k-th series.
This is what we do in what follows and we start with some preliminaries.

6.1.1 Preliminary results

In what follows we use a notation introduced in definition 5.5.

Lemma 6.1. We set P(0) = 0°—1 and for every ke N2, P(0) = P(=A.k+0)
with A = (A1, A2) = (1, —1). Fori = 1,2, we define Pe,(0) by Pe,(0) = Pe,(9)0
s0 that Pe,(—\;) # 0.

117
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Then, for any p €]0,1[, there ewists M,y > 0 such that, for every
¢eC\ U D(m,mp) :

mezZ*
1. fori=1,2 1 ‘<M
SJort = 1,4, | = = ,(0);
Pei(_c) ! N k
2. for every k € E1 with |k| > 2, for m = 0,1, (C+ ’ < p(O)
, Pre(— k| -
1 M0
and, for k # (1,1), ‘ < 22
U IRl = w1
1
Moreover one can take M, o) = —.
p

Proof. We only examine the case k € Z1 \ {(1,1)} with |k| > 1. With
no loss of generality, we can assume that k = (k,0) with & > 2. Thus
Pe(=Q)=C+k-1)(C+k+1), (+ Ak = ¢+ k and we notice that
C+Ek—-1>(k—-1pand [(+Ek+1 > (k+1)pfor (€ C\ U D(m,mp).
1 1 mezL*
Therefore, < for (e C\ (m,mp). Now:
PO = (212 ur

o cither R(¢ + k) > 0, then |¢ + k + 1] > max{1, |¢ + k|}. This implies that

max{1, ¢ + A.k|} < 1
[Pe(=Q)1  ~ (k=1)p

e or R(C+ k) <0, then |¢ + %k — 1] > max{1, |¢ + k|}. This implies that

max{1, | + A.k|} < 1
[Pe(=Q)l  ~ (k+1)p

O
Lemma 6.2. Under the conditions of lemma 6.1, we note Q(9) = —30 and
Qk(0), Bu(d) given by (5.31), (5.52) with T = (-3 —3>.

27 2
Then, for every k € Z10\ {(1,1)} with |k| > 1, for every ¢ € %(0)
1Qk[(I<h [Bel(C) _ 9,0
< 3M, (o), < M
[Pa(=0) =20 Ry(=q)] = 10

Proof. We note that lemma 6.1 can be applied for ¢ € %(0).
We have |Qg|(€) = 3(|k| — 1)|€ + A.k| (see (5.39)), Therefore, by lemma 6.1,

9
||gk((|<|)) < 3M,, (o) In the same way, one easily sees that | R (9)| < Z|k|(|k\ -1)
o (—

(cf. (5.39)), thus the result by lemma 6.1. O

We eventually introduce the following notation that complements defini-
tion 3.3.

Definition 6.1. Assume that G({,w) = Z a(Qw' is an analytic func-
[1]=0

tion on the open polydisc A, = [[;_, D(0,7;). One defines the function |G|,

analytic on A, by |G|(&,w) = 3 |al(§)w'.

1>0
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6.1.2 The 1-st series

We start our proof of theorem 6.1 by paying special attention to we, = 1]7,[2].

Lemma 6.3. The 1-st series we, s 1-Gevrey. Its formal Borel transform

reads B(We,)(¢) = 8 + e, (C) and @, is holomorphic on é(o) with at most
exponential growth of order 1 at infinity. More precisely, for every p €]0, 1],
there exist A > 0 and T > 0 such that

for every ¢ € égo), |We, (€)] < AeTl6l,

581

p
Moreover, We, can be analytically continued to the Riemann surface 08

with at most exponential growth of order 1 at infinity on BV .

In the above upper bounds one can choose A =71 =

Proof. Tt is enough to study we, since We,(z) = We, (—2). We know that we,
solves the equation (5.45), namely:

wilwmlz(l“ 0F<@>>~ .

- .. P, —0-2 1
422+ ow Wes g (6.1)

The formal Borel transform of @, reads B(we, )(¢) = & + @e, (¢), where the

minor e, (¢) € C[[¢]] satisfies the following convolution equation deduced
from (6.1):

OP, (0)le, = <145<+ W) % (0 4 We, ) (6.2)

In this equation, we use the notation:

6ﬁ(Ca {EO)

oo = FQ) 2 # Wo(¢) = —AC+ Cx Bo(0)- (63)

The equation (6.2) can be thought of as a linear differential equation with a
reqular singular point at 0.

~ ¢?
Instead of (6.2), consider the convolution equation 8 Pe, (8)W = <a1§ + az a) * (8 +w).

~ 2 ~
Set g = OPe, (0)w = ¢(¢+2)w. For ¢ # 0, one gets g = <a1( +as %) * ((5 + ﬁ)

This implies by differentiation that g(*) ( 9 >(2) + ( 9 )(1) h
is implies by differentiation that g** = a1 a2 where
¢(¢+2) ¢(¢+2)

~(i dg
g(l) = d—g The last ODE has a regular singular point at 0. One can apply the same

trick to (6.2) but for the fact of getting an infinite order differential operator.

The equation (6.2) can be analyzed with the tools developed in Sect. 3.4. We
15 OF(¢,@o) ¢
T4 ow T4
belongs to the maximal ideal MO(é(po)) of (9(&’5)0)) for any 0 < p < 1, thus
071G e O(,é’,(oo)) is well-defined. We set W, = ﬁ—ll(a)a—lé + Ve, and (6.2)

e
becomes

introduce G(¢) ¢+ + (% Wo(¢) and we remark that G

9P, (9)0e, = G * (P;l(a)aflé) + G 7e,. (6.4)
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€1

Observe that G x (13_1(8)8_1@> belongs to MO(%(O)) For R > 0, we
consider the star-shaped domain Ur = D(0,R) N %p) and we defines
B, ={v € O(Ug),||9||, <r}, for r > 0 and v > 0. By proposition 3.7 and
lemma 6.1, ||136_11(8)8_1 (é * (}3;1(3)3_16)) |, = 0 when v — .

Explicitly

1B L (0)0 (é* (13;11(8)8*1@)) I < P(O) o1 (G’*( 511(8)8’1@» Il

My (0) 10174 - 1A
— L0~ Gllo || Poy (9)0 Gl

Also, || Pz 1(9)01 (é*a) o < 229 191G o|Be, ||, Thus equation (6.4)

translates into a fixed point problem Ve, = N(Ve,) where N : B, — B, is
a contractive mapping for v large enough. This ensures the existence and

uniquess of We, € (9(&7’(0)). The same reasoning can be applied for showing

that we, can be analytically continued to é(l), in application of lemma 4.5
and theorem 4.1.
To get upper bounds, we notice by (6.3) and lemma 3.3 that for every

¢ e ,%’ () ‘8‘1@(0 ) < 4+ 1% Wo([¢]) where Wo(§) = Ae™ stands for the
majorant function of @Wg given by theorem 3.2 and corollary 3.1, thus with
4.22
A =4.22 and T = ——. Viewing the Gronwall-like lemma 3.9, one sees that
p

for every ¢ € éﬁ,‘)), |We, (C)] < We, (|¢]) where W, solves the convolution

equation:
1 1
—We, = [~ +1xw 0+ We, ). 6.5
Mo & <4+ *WO)*( + Weu) (65)

This means that We, has an analytic Laplace transform under the form!:

1 1 1 A \" 4.22
e (2) =3 — (= += A=422 7= 222,
We (2) o (4z+zz—7') ’ TT T,

n>1
1/1 1 A
p\dz zz-—T

(since p < 1), thus |we, (2)] < 1. Therefore by lemma 3.5, for any 0 < p < 1,
for every ¢ € 525, e, (¢)] < 581e™%"

5.81
When assuming |z| > ——, for instance, one gets

%>~ 1¢l. One shows in the same way that

We, has at most exponential growth of order 1 at infinity on %’(1). O

6.1.3 The k-th series

We now turn to the k-th series, that is the terms wge, = iuv,[coii of the

transseries, for k > 2.

Lemma 6.4. For every integer k > 2, the k-th series e, € z~2*DC[[z7Y]]

is 1-Gevrey, its minor Wke, defines a holomorphic function on é,(o) with

A
):AeTé.
z—T

1 We recall that B (
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at most exponential growth of order 1 at infinity. Moreover, Wke, can be
analytically continued to the Riemann surface Z1Y), with at most exponential
growth of order 1 at infinity on Z™).

Proof. Once again from the invariance of the equation (3.6) under the sym-
metry z — —z, there is no loss of generality in studying only the k-th series
We, -

We know that wp, We, are holomorphic on !é;(o) and can be analytically con-
tinued to 2. Moreover, for every 0 < p < 1,

for every ¢ € %), [@o(C)] < Wo(€),  [@e, () < Wey(€),  E=1(|

and, for every 0 < p <1/5,

for every ¢ € 2., [@0(C)] < Wo(€),  [Tey ()] < Wey (€), € = lemg(Q),

where Wo and We, are entire functions, real positive and non-decreasing on
R+, with at most exponential growth of order 1 at infinity.
We know from lemma 5.8 and (5.48) that, for every k > 2,

We, (2) = Zakel,zzfl € 27207 1]
1>0

solves the differential equation

wklel wkgel aQF(Z, ’lﬂo)
2! Oow?

Die, Wke, = . (6.6)

We deduce that the formal Borel transform l";’(@kel) = Qfe;,00 +Wre, satisfies
the identity?:

(a’kleho(S + &}\’ﬁel) * (alﬁzeho(S + {U\kzel) % 82ﬁ<<a 7:U\O)
2! ow?

:Dk:elwkel =

ki1+ko=k
k1>1,k2>1

s =

(6.7)

82F (C, Wo)

D2 = 2]'?2(0 = (, whereas

where

_ _ _ OF (¢, @ _
gkelwkel = Pkel (a)wkel + 1% lel (a)wkel + (CRkel - (84-111())) * Wke,

(6.8)

aﬁ(Ca {EO)

with given by (6.3).

w
These equations (6.7) can be seen as linear differential equations with a reg-
ular point at 0. They are all of the type

N
PQB(Q) + 1 [g(QB)(C) = ¢+ Q@) + Y Fux 0 (C) (6.9)
n=0

2 Remember that ake,,0 = 0 as a rule, apart from the case k = 1 where ae,,0 = 1.
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that has been investigated in Sect. 3.4 and Sect. 4.4. We will use the meth-
ods introduced there and make a proof by induction on k, considering the
operators N}, defined as follows:

_ 1 . OF(C,Wo)\ -
Np= —— | —1x% —Ov| + | =¢R 4+ —22 2| %D
Ny [Qk,0)(—¢)7] ( CR k0 0
+ (ak1€1,05 + ,&)\klel) * (ak251,06+ ﬁ}/@el) % 82ﬁ(<a@0)
kitko=K 2! ow?
k121, ko>1

Case 6.1. Case k = 2

e For R > 0 and 0 < p < 1, we consider the star-shaped domain
Ur = D(0,R) 0%20) and we defines B, = {0 € O(Ug), |0, < r} for
r > 0 and v > 0. We look at the mapping N5 : © € B, — N3v. We
OF (¢, @ 2F (¢,
(@) | O°F(C o)
. ow ow?
MO(%E,O)). Using lemma 6.1 and arguments already used in Sect. 3.4.3,
one easily shows that A5 is a contractive map. Thus the equation (6.7)
for k = 1 has a unique solution in B,. This shows, by unicity, that Wae,

know that w0 € (’)(é’(o)) while

belong to

defines a holomorphic function on é(o)'
When replacing Ur by the open set of L-points % = %, C V) and ar-
guing like in Sect. 4.4.2, one shows that Wse, can be analytically continued
to the Riemann surface Z(1). .

e To get upper bounds, we notice that, for every ¢ € %’E,O),

OF((, Wo)| _ |OF| = PF(C,@o)| _|0?F|,
Two = 9w (§,Wo) and ‘ 6w2w0 = w2 (€, Wo)
. oF | ~ ~ A
with § = [C], 0 (€, Wo) = [f1l(§) + 2[fa] x Wo(§) = 4€ + & * Wo () and
9*F

el (&, Wo) = 2|f2|(§) = & Using lemma 6.2 and the Gronwall lemma
w

L]
3.9, we sees that for every ¢ € ,%E)O), |Wae, (C)] < Wae, (&) with & = |C]|, where
Wae, is the entire function, real positive on RT, with at most exponential
growth of order 1 at infinity, satisfying the linear equation:

1 9 OF| N . (6+We,)? |02F|,
Mp’(O)WQtzl = <3+4MP,(0)5+ 8U)|(57W0)> *Woe, + 91 % w2 (€, Wo)
(6.10)

When working on %Z(!), one rather argues with the Gronwall lemma 4.8
and one obtains that for every ¢ € @f}) |Wae, (C)] < Wae, (§) now with
¢ = leng(¢), where Wge, is the entire function, real positive and non-
decreasing on R*, with at most exponential growth of order 1 at infinity,
satisfying the linear equation:
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Lo 9 OF R N (8 + We, )*2 92F R
Mpv(l)W2el - <3 + ZMP,(l)g + au)‘ (§7W0)> *W231+ ol L * w2 (g’wo).
(6.11)

Case 6.2. Induction We assume that for every integer k such that 0 < k < K

with K > 3, Wge, is holomorphic on cé,;)o)’ can be analytically continued to
Z#1) and

for every ¢ € 2, |Wre, (Q)] < Wre, (€), € =C],

for every ¢ € @S), |Wke, (Q)| < Wge, (§), & = leng((),

where, in each case, Wge, i an entire function, real positive and non-
decreasing on RT, with at most exponential growth of order 1 at infinity.

e One easily shows that the mapping N : v € B, +— N7 is a contractive,
either working in O(Ug), ||0]|,, or in O(%,,1.), ||0||,,. Thus, by unicity, Wke,

is holomorphic on é(o) and can by analytically continued to Z2(1).
e We get upper bounds, either in %(po) with the Gronwall lemma 3.9, or
J— L]
in %(pl) with the Gronwall lemma 4.8. We get that for every ¢ € %’E)O)
[Wke, ()] < Wke, (§) with £ = |(|, where W, is the entire function, real
positive on R*, with at most exponential growth of order 1 at infinity,
satisfying the linear equation:

1 9 oF |, _
o = M e, . 12
M, o e <3+ 1Mo &+ |51 (€ Wo)) * WKe, (6.12)
+ (a’lﬁehoa +\/’\V7€161) * (ak231,05 + \/A\Ik2el) a2ﬁ (§ W )
o 2! dw? | > O
k121, k22>1

—(1) |~ N .
Also, for every ¢ € %2 ), |Wke, (€)] < Wke, (&) where & = leng((), with
Wke, an entire function, real positive and nondecreasing on R*, with at
most exponential growth of order 1 at infinity, satisfying the linear equa-
tion:

~

1 9 oF ~ ~
Mp7(1)WKe1 = <3+ ZMp,(l)fJ'_ % (€7W0)> *WKe
1,00 + W e er.00 + Wiye,) |02F|
+ (akl 1,00 + Wi, 1);(a‘kz 1,00 + W, 1) oo (f;WO)«
k1+ko=K : w
k1>1,k22>1

This ends the proof of lemma 6.4. O

6.1.4 The other k-th series

Looking at (5.53), one easily see that the above methods can be applied to

study the minor wy = {0[10] of the (1,1)-series wy. Thus, theorem 6.1 is shown

for Kk =0 any k€ =110\ Zn,0 and with n = 1. The rest of the proof is
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made by induction on n, using the hierarchy of equations given in corollary
5.1 and the reasoning made above. This part holds no surprise and is left to
the reader. This ends the proof of theorem 6.1.

6.2 Summability of the transseries for Painlevé I

We now restrict ourself to the transseries solution of Painlevé I, having in view
of analysing their 1-summability. From the invariance of the equation (3.6)
under the symmetry z — —z, it is enough to focus only on the transseries
(5.41) associated with the multiplier A\; = 1, namely:

w(z,Uey) Z Whe, (2 VF = ke bz ok, (6.13)
k=0

6.2.1 A useful complement

We can complete lemma 6.4 with the following result.

Lemma 6.5. In lemma 6.4, for every 0 < p < 1, there exist A = A(p) > 0
and T = 7(p) > 0 such that the following properties are satisfied for every
integer k > 2:

L]

o for every ¢ € %po s | Wkey (C)] < Wie, (£), € = ||, where Wie, is an entire
function, real positive on R, and Wye, (£) = O(£2F73);
(

3 k
o for every & € C, for every £ € C, |Wge, (§)] < <\2/ﬁ) A"l and for

every positive integer 1 < m < 2k — 3,

e, (€)] < (?“;ﬁ)kAm“ () deh.

27
Moreover one can take A =1 = s in the above upper bounds.
p

Proof. We know by theorem 3.2, lemma 6.3 and lemma 6.4 that, for every
integer k € N, We, is holomorphic on 29 . Also, for every 0 < p < 1,

for every ¢ € 29, |@e, (O)] < Wre, (6), €=

where Wo (&) = Age™¢ and We, () = Ae,e1¢ are convenient majorant func-
tions while, for any integer k > 2, Wy, solves the convolution equation (6.12).

One first shows that for any integer k > 2, Wy, (£) = O(£2#73) and we reason

by induction. Indeed, for & = 2 and using the fact that ‘81”2 } (&, W) = O(8),
e |O%F . .

one sees that (0 + We, )™ * Dl (&,Wo) = O(&), thus Wae, () = O(().

Now by an induction hypothesis, for any ki,ks > 1 and k1 + ko = k > 3,
(Ahyer.00 + Wiye,) * (@hyer 00 + Wiye, ) = O(E275) (we recall that ake, o = 0
apart from ae, o = 1), thus Wge, (¢) = O(£2¢73) by (6.12).
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oo
We now introduce the generating function w(¢, V) Z Wge, (£). One

k=2
deduces from (6.12) that w satisfies the condition:

1 9
w = <3 + 7Mp,(0)§ +

oF| _
I (&Wo)) * W

M, 0) 4
> Uk e .05+Wke * (Akye ,06—’_\7\\/166 82F ~
+ka Z ( 1€1, 1 1)2'( 2€e1 2 1) % 53 (€7WO)~
ky o=k : w
k1>1,ka2>1

This can be written also as follows (recall: age,,0 = 0 apart from ae, g = 1):

1
M, (0)

9
<3 + ZMp7(0)f +

\//\V:

” o |eeF

(V(0+We,) +W)
ow?

2| (57\7\\/0)

oF | N
M}’(E’WO)> * W+

1 ~ 4.22
Explicitly, one can take M, ) = 5 (by lemma 6.1), wo(§) = 4.22¢7%°¢
—~ ]. 5
(by theorem 3.2), We, (§) = ﬁe e (by lemma 6.3), and we recall that
aF 0*F

1 (§Wo) = 4¢ + £+ Wo(¢) and

convolutlon equation:
_ 9 _ 4.63 -2
pw:<3—|—<4—|— >§+422£*e 32>*w+2§'*<V(5+e4p€35)+ ) .
4p : P

The generating function w(&, V') is the Borel transform of w(¢, V'), solution
of the algebraic equation

w2y (ar )L 22 1L G
=G 4p ) 22 22 5 — 422

T2 (&, Wg) = . Therefore, W solves the

1 5.81 1
+ﬁ V<1+,OZ 551>+W
(6.14)

with

1|V 5.81 1 ’
Wz, V)~ — | = [14+ ———=%1 when V' — 0 with |z| large enough.

2p | 2 poz—= =
We view (6 14) as a fixed point problem, w = AN(w). We set

U= D(c0 ,ﬁ) x D(0, 3\[) We equip the space O(U) with the maximum

norm and we consider the closed ball By = {w € O(U), ||w|| < 1} of the Ba-
nach algebra (O(U), || ||). One easily shows that A" : B; — B; is a contractive
map (remember that p < 1), hence the fixed-point problem w = A/(w) has a
unique solution v~v = w(z, V) in B;. Its Taylor expansion with respect to V at 0

reads w(z, V) Z V*Whe, (2), where (Whe, ) k>2 is a sequence of holomorphic
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4p

, 52) and, by the Cauchy inequalities, for every inte-

functions on the disc D (o0

_ 3v0\" R

ger k > 2, \Slul; Wie, (2)] < <\2/ﬁ) . Moreover, since Wy, (£) = O(£2+73),
z >E

Whe, (2) = O(z72=1). We end the proof with 1emma 3.5: Wge, is an en-

- 3
tire function, for every & € C, |Wge, (§)] < ( f) e4o‘5‘ and for every
4p

positive integer 1 <m < 2k — 3,

e @1 < (B2) ()" (£ e89) o

This ends the proof. O

6.2.2 Summability of the transseries

We start with a definition.

Definition 6.2. One says that the transseries w(z,V) Zkak ) is

Borel-Laplace summable in a direction § € S! if each wy, is Borel Laplace

o0
summable in that direction and if the series of function Z V*. %%, (2) con-
k=0
verges on a domain in the usual sense (uniform convergence on every compact
subset of that domain). In that case, one denotes by .#%@(z, V) the Borel-
Laplace sum of the transseries.

We have of course in mind to consider the Borel-Laplace sums of the

transseries
oo

w(z,Uey) = Z(Ue 2232 e, (2) and @(z, Ues) = Z(Uezzg/Q) Whe, (2)
k=0 k=0

given by proposition 5.2. Notice that the mapping z — e*?23/2 is well-defined

on C and we remind the reader that the domain I7¢ of C has been defined

in definition 3.11.
Definition 6.3. Let g : C — C and x : R — R™ be two continuous func-
tions, and 6 € S', 7 € R. We define

O(g,7,r) = (J{z € I, 9(2)] < K(0)}-
c>T
Let I € S' be an arc, v : I — R locally bounded and K : I — C°(R,R**) a

continuous function. We note

V(1,9,7,K) = | J 0% (9.7(6),K(6)) C C.

.
oeI

Theorem 6.2. The transseries
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(oo}
B(z,Ue) = > (ViU) (2)he, (), (Vi(0))(2) = Ue ™77, =12,
k=0
(6.15)
of the prepared equation (3.6) associated with the first Painlevé equation,
are Borel-Laplace summable in any direction § € R\ 7Z and any U € C,
and their Borel-Laplace sum are holomorphic solutions of (8.6). More pre-
cisely, for any R > 0, for any open arc I; =ljm,(j + Dn[, j € Z,
Wiru,j,i(2,U) = Siw(z,Ue;) defines a holomorphic function with respect
to (2,U), on a domain of the form ¥ (I;,V;(R),7,K) x D(0,R). Moreover

2
_277 and K(0) :ce R — 2;
4|sin(6)] 37(0)2+/sin(6)

one can choose T(0) =

Proof. The theorem is a consequence of theorem 3.2, lemma 6.3, lemma 6.4
and lemma 6.5. Let us precise the reasoning for ¢ = 1 and the arc Iy =]0, 7[.
We know from lemmas 6.4 and 6.5 (applied with m = 2k — 3) that for any

d €]0, g[ and any integer k > 2, for every ¢ € 58°(]0, m—9[) (cf. definition 7.1),

k
sin 2k—4
|wkel<<>§<32“)> a2 (g o) @ €=, (019

2
with As = 75 = 77 We now fix a direction 6 € Iy and, for k > 2, we
48in(9)

consider the Borel-Laplace sum

6

0 ~ oc! —2( e —2£el? ~ 0\ _i0
S We, (Z) = € T Wke, (O a¢ = € Wke, (§e ) e dg.
0 0

—0 i
For any ¢ > 19 and any 2z € II_, |e_zfee < e, for £ > 0. Therefore, for

zeﬁﬁandﬁZO,

§2k—4

k
—2£elf ~ i i 3 Sll’l(a) 9 _¢ -
o5 e, () | < (2) A (G ) ©
We deduce that .7 Wy, is holomorphic on IT¢ and, for every z € ﬁz,

] k 2k—2
9 e ()] < (@) ()"

c c—Ty

k
We turn to the series of function Z (Uefzzg/Q) % We, (). From what
k>2
precedes, for any R > 0, for any ¢ > ¢ > 7y, for every (z,U) € II% x D(0, R),
< 3A2/sin(0)
with theorem 3.2 and lemma 6.3: for any direction 6 € Iy, for any ¢ > 7y, the
k
series of function Z (Ue_zzg/ 2) % We, () defines a holomorphic func-
k>0
tion on the domain 0% x D(0, R) with

2¢?
the series is normally convergent when |Re™? 22 < — = Weend
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Fig. 6.1 The (shaded) 40-
domain ¥ (I, V1(0.5), 1, K)
on projection, for
27

)= —— 20

™0 = s’
2¢2

(KO)() = —Fr—
37(0)24/sin(6)
and V1 (U)(z) = Ue™%23/2, -0

~20

-404

-60-

22
SAg sin(6)

0’ = U {ze Il |Re*2%/%| <

c>To

}.

Making @ varying on I, these functions glue together to provide a holomor-
phic function .7 (2, Ue;) on the domain ¥ (Iy, V1 (R),7,K) x D(0, R) with

27 22
7)) = ——— and K(#) : c € R — ———————— (since Ay = 79), see
©) 4|sin(0)] ©) 37(0)2+/sin(6) ( ’ 2
Fig. 6.1. O

Remark 6.1. The theorem 6.2 can be shown by other means, see the comments
in Sect. 6.5.

6.2.3 Remarks

1. We know by proposition 5.2 that Wke,(2) = Wge, (—2) for every k > 0.
One deduces that for any j € Z, for any 6 € I;, for every z € Hf(;e_e),

zel™ € H_e_e) and .7 % Wye, (2) = .70 Wpe, (2¢'™). Therefore, for any

(

0 € I;, for every z € H:(;e_o),
ST O00(z, Uey) = . 0w(2e™, Ue™ %e)
and, as a consequence, for any j € Z,

for every z € Af/(Ij’ %(U)v T, IC)7 wtru,j,Q(zv U) = wtru,j—l,l(zeiwy Uem/z)
for every z € ¥ (1;, Vi(U), 7, K), Wiru j1(2,U) = Wiru j—1,2(26'™, Ue™?)
(6.17)

2. Here we adopt the convention : for z = re’® € C, we note z =7""“ € C.
L[] L]

We know by proposition 5.2 that Wie, (z) € R[[z7!]] for any k € N, i =1,2.
Thus, for any j € Z and any 6 € I;, for z € Hf(e)’

I Wpe, (2) = S Wie, (2).
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Therefore, for any j € Z, for every z € ¥ (I;,V;(U), 1, K),
Wtru,j, 1(2 U) = Wtry,(—j—1),i (Z U)

and with (6.17) we deduce that, for every z € 7(I;,Vi(U),r,K) and
z € ¥V (1;,Va(U), T,K) respectively,

711)”“7],71(2, U) = thuJ.,Q(Ee*(QjJrl)iﬂ'?Ue*(j+1/2)i7r) (6.18)

Weru,j,2 Ze— (27+1)i —(j+1/2)i
Wiruj2(2,U) = Wira 1 (ze 2j+D)ir Tre—(+1/ )”T)_

6.2.4 Considerations on the domain

Viewing (6.17) and (6.18), it will be enough for our purpose to consider the
domain ¥ (Io, Vi, 7, K) with Iy =]0,7[, (Vi(U))(z) = Ue™*2%/2 with |U| > 0,

2

7(0) = ,277, (K(9))(c) = 2; We would like to describe the
4|sin(0)| 37(6)2/sin(0)

boundary of this domain. As a matter of fact, we will restrict ourself to

describing its subdomain 0% (V4 (U),7(6),K(6)) with 6 = 7/2. Considered

by projection on C, this domain reads: z = z + iy, (z,y) € R?, belongs to

0% (V1,7(3),K(%)) if and only if there exists A > 1 so that

y<——)\

U]~ (@ +47)%/% < 222,

(We take ¢ = 2IX > 7(7/2)). We now fix y = —2TX with A > 1 and we
remark that z = 2 + iy belongs to 0% (V1(U),7(%),K(3)) iff z > X with X
such that

—X(y2 2\3/4 2 (4 \°
Ule™ (X" + )" =3 {5y ) - (6.19)

Indeed, just see that the real mapping z +— e (2% + y?)P is decreas-
ing when |y| > p, and use an argument of continuity. With the implicit
function theorem, these arguments show the existence of a unique solution
X 1y €] — o0, —3[— X(y) of (6.19), of class C> and increasing with y, which
can be described as follows. The above equality is equivalent to writing

xX2\* 32 \*
14+ 2 ) = ay2etX = —= . 6.20
(1+57) = a=(qam (6:20)
and we can remark that X(—a~!/2) = 0 if —a1/2 < —2. When assuming
1 2
y?2 > X2, we get X = —% + e, € = o(1) as a first approximation.

Plugging this in (6.20), one gets

In(ay?) | ,In*(ay?) s
X=- 1 +3 12,2 +o(y™°)
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and one can keep on this way to get an asymptotic expansion at any order
of the solution3. To put it in a nutshell:

Corollary 6.1. In theorem 6.2, the sum Wiy 0.1(2,U) = Sow(z,Uey)
defines, for any U € C*, a holomorphic function with respect to z on
a domain which contains, by projection on C, a subdomain of the form

. 27
{z:x—l—zy, y<—Z
on ]| — oo, f%[, whose asymptotics when y — —oo is given by:

, T > X(y)} where X is an increasing C* function

In(ay?) In?(ay? _ 32 :
X(y)=— 1 +3 yEne ) +oly 2)’ a = W (6.21)

and so that X(—a=Y?) =0 if —a=1/? < =3,

6.3 Summability of the formal integral

We saw with corollary 5.2 that the formal integral can be interpreted as a
formal transformation w = &(z,u),

B(zu)= Y uka(2), (6.22)
keN?

that formally transforms the prepared ODE (3.6) into the normal form equa-
tion (5.66). It is then natural to wonder whether this formal transformation
gives rise to an analytic transformations @y (z,u) by Borel-Laplace summa-
tion,
By(z,u) = .70D(z,u) = Z ukjﬁaﬁ')ko} (2),
keN?

with a definition of the sum similar to that of definition 6.2. One could give
a positive answer to this question, for the price of some further effort.

One has to extend lemma 6.5 to the whole k-th series 15,[3]. It is worth for this

matter to complete the Banach spaces detailed by proposition 3.7 by other “focusing
algebras” for which we refer to [6], in particular those based on L}-norms.

This does not mean that the formal integral is Borel-Laplace summable,
which this is wrong, due to the effect of the exponentials. Only the restrictions
of the formal integral to convenient submanifolds is 1-summable, which means
here just considering one of the two the transseries. However, the sums of the
two transseries share no common domain of convergence and thus, the formal
integral cannot be summed by Borel-Laplace summation.

We do not pursue toward this direction and we conclude this chapter with
the truncated solutions.

3 One can also describe the solution in term of the Lambert function, the compositional
inverse of the function xze®.
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6.4 Truncated solutions for the first Painlevé equation

We have demonstrated with theorem 6.2 that, for any j € Z and i = 1, 2, the
SUM Wiy j.i(2,U) = S1w(2,Ue;) is a holomorphic solution of (3.6), for z
on a domain of the form ¥ (I;,V;(U), r,K) with I; =]jm, (j + 1)x[. From its
very definition and from corollary 6.1, the domain ¥ (I;, V;(U), T, K) contains
a sectorial neighbourhood of co with aperture f; where (see Fig. 6.1):

v 1 1 y 1
e wheni=1, I; =] — 3™ +§7r[—j7r for j even, I; =] - 2™ —iw[—jw for j
odd;
_ . 11 _ L 3 1 _
e wheni =2 I7 =] - §7T,—|—§7T[—]7T for j odd, I5 =] — 57?,—571'[—]# for j
even.

To go back to the the first Painlevé equation (2.1), we use the transformation
T of definition 3.12.

Definition 6.4. The conformal mapping .7 sends the domain ¥ (I, g,~, K)
onto the domain f(”l/(l,g,'y, IC)) and we set

S(I,g,%/C) = g(%([,g,’}/,’C)), S (Iagv'-)/alc) = W(S(I,g,’y,’C)).
(6.23)

The domain S(I;,V;(U), 7, K) contains a sectorial neighbourhood of co with
aperture K (see Fig. 6.2):

4 11 4
. Whe?i =1, K; =] — gw, —%W[—Sj’ﬁ for j even, K} =] — = —gw[—gjw
for j odd;
7 3 4 11 7 4
. WheTl i=2, K =] - 57 —gﬂ'[—gjﬂ' for j odd, K} =] — = —gﬂ[—gjﬂ'
for j even.

In any case, the domains S(I;, V;(U), 7, K) are in connection: for every j € Z,
S(j41,V2(U), 7. K) = e ""/58(1;, Vi (U), 7, K).
From (3.4), (2.6), (2.7), the transformation z € ¥'(I;, V;(U),7,K) +» z € S(I;,V;(U), 7, K),

e (1 B 4 + wt”ﬁj’i(y_l(x ’U)>
\/6 25(§—1(x))2 (y_l(x))2 .

[N

wtru,j,i(za U) x4 utru,j,i(l‘7 U) =

provides the solutions wry j,i(x, U) for the first Painlevé equation. These are
the truncated solutions.

The property (6.17) translates into the following relationships between trun-
cated solutions: for any j € Z, for every z € S(I;,V1(U), 1, K), respectively
HASS S(Ij,Vz(U),T,IC),

Ugru 1 (2, U) = 2™ Py, i o(xe™ /5 Ue™1™/2) (6.24)

2im /5 —4in /5 —im/2
Utry,j,2(7,U) = e /utr11,,j+1,1(-77e /,Ue /)

These are the symmetries discussed in Sect. 2.5. In the same way from (6.18),
for any j € Z, for every x € S(I;, V1(U), 7, K), respectively z € S(I;, Vo(U), 7, K),
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Fig. 6.2 The (shaded) do-

main & (o, VA (U), T,K) \
27 N
for 7(0) = ———, W
4| sin(0)| N
(K@)(c) =
22
¢ and

37(0)24/sin(0)
Vi(U)(z) = Ue 223/2,

7utru,j,l(xaU) _ e%(2j+1)iﬂutru’j72(§e—§(4j+7)i7r7Ue—(j+1/2)i7r)7 (6.25)

PP v .
Uiru j2(2,U) = 65(2J+1)1’n’utru,j)l(xe 5(4j+7)17r7Ue (;+1/2)m).

6.5 Comments

We mentionned in Sect. 5.5 the existence of formal transforms of the type v =
T(z,u), T(z,u) = > cnn WFVE(2), Vie(2) € C*[[z!]] that brings differential
and difference systems to their linear normal form, under some convenient
hypotheses. For differential equations of type (5.67), the series v are in
general not 1-summable but multisummable [10]. The first results in that
direction, concerning the multisummability of the formal series solutions,
were obtained by Braaksma [1] then by Ramis & Sibuya [11]. A resurgent
approach for 1-level differential equations were undertaken by Costin [4],
with the proof of the 1-summability of the formal integral on restriction to
convenient submanifolds. These results were then generalized to differential
and difference equations, see e.g. [2, 9, 7, 5] and references therein, at least for
the cases where no resonance occurs. The question of the (multi)summability
of the above formal transforms may be delicate, even for 1-level differential
systems or ODEs, when quasi-resonance occur, giving rise to small divisors.

If A = (A1, ,An) stands for the multipliers and in absence of resonance, it may
happen that A.k comes close to one multiplier, for some k € N™. Thus, the con-
struction of the formal integral gives rise to division by small factors. One has
“quasi-resonance” when there exists an increasing sequence (k; € N™) such that
lim;_, oo A.k; = 0 fast enough, a condition that translates into diophantine relations
on the sequence.

More details on this subject can be found in [8].

We finally mention a general upshot, that of the formation of singularities
near the anti-Stokes rays. Considering the Borel-Laplace sum of a transseries
stemming from (resurgent) 1-level differential or difference equations, it is
possible, as shown in [7] (see also [6]) to analyze its behavior on the boundary
of its domain of convergence, by a suitable use of a multi-scale analysis. This
is detailed in [5] for the first Painlevé equation.
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Chapter 7
Supplements to resurgence theory

Abstract This chapter is devoted to some general nonsense in resurgence
theory that will be useful to study furthermore the first Painlevé equation
from the viewpoint of the resurgent analysis. We define sectorial germs of
analytic functions (Sect. 7.2) and we introduce the sheaf of microfunctions
(Sect. 7.3). This provides an approach to the notion of singularities : this
is the purpose of Sect. 7.4. We define the formal Laplace transform for mi-
crofunctions and for singularities and, conversely, the inverse formal Borel
transform acting on asymptotic classes (Sect. 7.5). We make some links with
the Borel-Ritt theorem. The main properties of the Laplace transform that
we need in this course are developed in Sect. 7.6. We finally introduce some
spaces of resurgent functions and define the alien operators (Sect. 7.7, 7.8
and 7.9).

7.1 Introduction

At its very root, one can rely the Borel-Laplace summation scheme to the
simple formula

1 p Cn—l coel? ¢ Cn—l ° 0
Z—ﬂ:ﬁ (F(n)):/o e F(n)dc’ ne N, zel]l.

Consider a holomorphic function @ € O(D(0, R)) with Taylor expansion
n—1
Z an;() at the origin. We take an open arc I =]—a+60,0+a[,0 < a < 7/2,
n
n>1
bisected by the direction 6, and we note I* =] — a — 0, —0 + a[C 6. For some
r >0, we set §° = ;?O(I*) For any cut-off x €]0, R[, the truncated Laplace

re'

integral ¢, (z) = e~ 3(¢)d¢ provides an element of A;(§°°) whose
0
1-Gevrey asymptotics 7| ;m@,ﬁ(z) (see [14]) is given by the 1-Gevrey series
Z In ¢ C[[z™"]]1 : this is essentially the Borel-Ritt theorem for 1-Gevrey
ZTL

n>1
asymptotics. For two cut-off points k1, ko €]0, R[, the difference ¢,, —px, be-

longs to a (§°), the differential ideal of A; (5°°) made of 1-exponentially

. (]
flat functions on s°.

135
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One gets this way a morphism £(I) : § € Oy — cl(gp,) € Ay (I*)/ASTHI),
where here Qg stands for the constant sheaf (of convolution algebras) over
S'. By (obvious) compatibility with the restriction maps, one obtains' a
morphism of sheaves of differential algebras, £ : Oy — A, JAS"! where the
quotient sheaf A; /AS~1 over S! is known to be isomorphic to the constant
sheaf C[[27!]]; (Borel-Ritt theorem 3.3, see [14, 17]). The formal Laplace
transfom £ is an isomorphism, the inverse morphism being the formal Borel
transform B : C[[z~']]; — Op (seen as a morphism of sheaves).

One can extend the theory by considering the properties of Laplace inte-
grals defined along Hankel contours. For instance, standard formulae provide

1

7_2m/ e ¢¢°7'd¢, oeC\N, (7.1)
1 —e Y[—2m,0],e

I'(o) =
where the integration contour 7[_sr o] - is the (endless) Hankel contour drawn
on Fig. 7.1, while (7! = e(®=D1o2¢ and log ¢ is the branch of the logarithm
so that arg(log¢) €] — 2m,0[. Performing a change of variable, one gets the
identity

1 oV —2¢ Y 20

o L I (Z) = € Io (C)dC7 z € HO? (72)
z Y[—2m,0],e
with 27 = e?198% where this time log z is the branch of the logarithm so that
arg(log z) €] — m, [, while

¢7~log(¢)
(=4 i,

(1—e 2"\ (0)

forc—1eN

forc—1eC\N.

v
The definition of [, that we give for o —1 € C\ N is well-defined when —o ¢ N. It
can be analytically continued to the case —o € N by the reflection formula.

This example provides another one that will be used later on : for any
] Vv
m € N, any 0 € C\N*, for z € 119, (=1)™2"7(log2)™ = L° Jom,

m
}g,m: <(,;1> ifl,, with the above convention for the logz. Remark how-
ever that £° \I/g: CO( } p —l—hol) when hol is any holomorphic function on a
half-strip containing the origin, with at most exponential growth of order 1
at infinity. This justifies the introduction of the spaces of microfunctions and
singularities that we do in the next sections.

This chapter can be seen as a sequel of the resurgence theory developed
in [24]. For most of the materials presented here, we mainly refer to [7, 9, 10,
1, 24] for this chapter, see also [4, 23, 20].

Y[S—Zn,e] €

Fig. 7.1 The Hankel con- 0
tour Yjg_2r,0),c for 6 = 0.

I Modulo the quite innocent complex conjugation I — I*.
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7.2 Sectorial germs

7.2.1 Sectors

We remind that
C :{g:rew | r>0,0eR}, wn:£€C (= relf e C*

is the Riemann surface of the logarithm (definition 3.10). We complete defi-
nition 3.7 by defining sectors on C.

Definition 7.1. For an open arc I of S' and 0 <r < R < o0, s2(I) denotes
the simply connected domain of C of the form s*(I) = {¢ = &'’ | 0 € I,¢ €]r, R[}.

We simply write so(I) ~resp. §°°(I)- for a domain of type s{*(I) —resp. §2°(I)-
for some 0 < r < R < 0o. We even write s¢ and s for such dorniauins7 when
there is no need to indicate the arc I.
For0<r<R<oo,weset§é%(I):{ngeiaE(C | 0€l,0<¢< R} and
s5°()={C=¢’cC|0ecl,r<&<oo}.

For a continuous function R : R —]0,+oo[, we note 50R(S.1) the simply

connected domain s§(S') = {¢ = rel?, 0 < < R(A)} C C. We simply write

s0(S!) for such a domain, when there is no need to specify the function R.

7.2.2 Sectorial germs

Definition 7.2 (Sectorial germs-1). For I an open arc of S!, one says that
two functions ¢ € (’)(gé%1 (I), g2 € (’)(;52 (I)) define the same sectorial

v
germ ¢ of direction I at 0, when ¢; and s coincide on a same domain of

type 5o(I). We note 0°(I) = lim O(s&(I)) the space of germs of direction
R—0
I at 0, and OV the sheaf over S associated with the presheaf OY.

As a rule in this paper for the (pre)sheafs one encounters, the restriction maps

are the usual restrictions of functions. We warn the reader that the presheaf O°

is not a sheaf over S! (see for instance a counter example given in [14]) : for an
v

open arc I, a section € O°(I) = I'(I,0°) is a collection of holomorphic functions

wi € O(;?i (I;)) that glue together on their intersection domains, the set {I;} being
an open covering of I

Ezample 7.1. We denote by C{¢,( '} the space of Laurent series »., ., an(™
which converge on a punctured disc D(0, R)*. This space can also be seen as
a constant sheaf over S' and the space O°(S') of global sections of O° on S!
coincides with C{¢, (71}

For n € N* and a given direction 6y € S!, we now consider the sectorial germ

v v n—1 o
oo () =1 (€) = S5

Here (980 denotes the stalk at 6y of the sheaf O°. When making 6 varying

€ (920, for any given determination of the log.

v
from 0y on I =] — 7 + 6y, 0y + 7| on S', the sectorial germs o€ OF glue



138 7 Supplements to resurgence theory

\
together and defined a section ¥€ I'(I,0%) which cannot be prolonged to a
global section.

This last example illustrates the need of defining sectorial germs for func-
tions defined on sectors of C. The covering map 7 : S' — S' (see definition

3.10) allows to consider the sheaf 7*O° over S', that is the inverse image
[ ]

by 7 of the sheaf O° (see [1, 12, 3]). For J an open arc of S', an element

s\é of #*(0°%(J) appears as an element of the space I'(J, OY) of multivalued

sections of O° on J, that is QVO: s(J) where s is a continuous map such that
sop=n: B
00 = Lpest 08
s/ Ip
S.l — Sl
™

We say that in another way in the following definition:
Definition 7.3 (Sectorial germs-2). For J an open arc of St, one says
L]

that two functions ¢; € O(s{* (J)), w2 € O(s52(J)) define the same sectorial

v

germ ¢ of direction J at 0 when ¢; and (2 coincide on a same domain of
type s0(J). We note I'(.J,0°) the space of multivalued sections of germs of
direction J.

Remark 7.1. For any w € C and by translation, one can of course define O,
the sheaf over S' of sectorial germs at w, associated with the presheaf O%.
7.3 Microfunctions

In this section, we introduce the sheaf of microfunctions %, at w € C, in
the spirit of [1] to whom we refer. Since %, is deduced from ¢ = %, by
translation, we make the focus on the case w = 0.

7.3.1 Microfunctions, definitions

We complete definition 3.6.

Definition 7.4. For a direction 6, for an open arc I =]o, 3] (of S' or S'),

we note:

1. 6* = —0 and I* =] — 3, —a[ the complex conjugate arc;

2.0 =] —%—9,—9+%[andi=U9€I§;

3. Q =] — 37 /2,0 — 7/2[ the “copvolar” of 0;

4. I =la —37/2, 8 — 7/2[= e, 0 the “copolar” of I;

5. for [I| >, T =la+m/2,8—m/2[; for [I| < m, I =]3—7/2,a+m/2[. When

|[I| =7, we set I ={f —m/2}.
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We would like to define “microfunctions of codirection I at 0”. For an
open arc I of S! of aperture < 7, we first notice that its copolar I is of
aperture < 7, thus can be seens as an arc of S'. For such an arc, we note

50(1) = @O(f). We now remark that for two arcs I C I of S', of aperture
< m, one has I C I;. The restriction map py, ; : O%(I;) — O°(I5) gives rise
to a restriction map pr,,1, = py, j, from OY(I;) into OY(Iy). This justifies the
following definition.

Definition 7.5 (Microfunctions). For I an open arc of S! of aperture < 7,

one calls O%(I) = O°(I) the space of germs of codirection I at 0, and O° the
corresponding sheaf over S'.

Viewing Oy as a constant sheaf over S', we set € = O° /Qq. This quotient
sheaf over S! is the sheaf of microfunctions at 0 and ¢'(I) = I'(I, %) is the
space of sections of microfunctions of codirection I at 0.

The sheaf of microfunctions 4 and makes allusion to Sato’s microlocal analysis, see,
e.g. [22, 13, 18]. We mention that microfunctions depending on parameters can be
also defined, see for instance [4] for a resurgent context.

We mention that € (I) = O°(I)/Oy, that is the quotient sheaf coincide
with the pre-quotient sheaf, because Oy is a constant sheaf.

In what follows, we transpose with some abuse the notations for singular-
ities (Sect. 7.4) to that for microfunctions.

Definition 7.6. For an open arc I of S' of aperture < m, we note

Z?: sing} 9\26 %(I) the microfunction of codirection I at 0 defined by the

Vo=
sectorial germ ¢€ O°(I) of codirection I.

When I is an arc of aperture > 7, then I is of aperture larger than 27

and should be seen as an arc of S'. In that case, a microfunction st of €(I)

v 5
is represented by an element ¢ of I'(I,0Y).

For I an arc of S! of aperture > , one can define the variation map,
var: €(I) — I'(1,0°) ,

var :%e CI)— pel(I,0%, 3¢ :gvo = g\é (Ce™2m).

(=)™ nl!
2iw (ntl
seen as a global section of the sheaf @°. The associated microfunction is

can be

v
Ezample 7.2. 1. For n € N, the sectorial germ J_,, (¢) =

v v
equally denoted by T_,,, 6 or singy [_p.

v
Notice that for any holomorphic germ @ € Oy, the sectorial germ @ Jg

v
defines a microfunction singy (% Io) equal to $(0)6(® = $(0)d.
2. More generally, the constant sheaf C{¢,(™'} over S! can be seen as a

v
subsheaf of ¢ (of vector spaces). Any microfunction ¢ of C{¢,( ™!} can be
v
written as a sum Zn>0 Ap [ pn= Zn>0 ané(”), where the Laurent series
y > >
—1 n
Y (Q) =250 an%q,’f—!l converges for |¢| > 0.
3. We assume that ¢ € Oy is a germ of holomorphic function. For a direction
v
6y € S', we consider the microfunction bg,= singgo ((ﬁ%) € 6y, (where

Gy, 1s the stalk at 0y of the sheaf %), represented by the sectorial germ
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v y .

bg,= P& of 0 = O°(f), for any given determination of the log (remark
v

that ¢y, does not depend on the chosen determination). Making 6 varying

v
from 6y up to Oy + 27 on S', the microfunctions ¢,= singg <@%) € 6y

v v
glue together and ¢y =@y, ,o,- This provides a global section denoted by
v

¢= sing, <@;‘;—Tgr) € I'(S', %) which does not depend of the chosen deter-
mination of the log one started with.

It can be shown (through the variation map) that the space of global
sections I'(S', %) of the sheaf of microfunctions, is composed of micro-

v v
functions of the form ¢ +sing, (@;—i), with e C{(, (71} and ¢ € Oy,
see [1].
4. We suppose 0 — 1 € C\ N. For a direction # € S!, the microfunction

v v v o—1
py=sing) ( I ), represented by the sectorial germ I, (¢) = = eEQiW)F(J)’

is well-defined once the determination of the log has been chosen. Let us
now fix the arc I =]0, 2|, consider the arc I =] — 37/2,37/2[ as an arc

v y
of ' and [,€ I'(I,0°) as a (uniquely well-defined) multivalued section

. v
of O° on I. One can apply to its associated microfunction [,€ €' (I) the
v ~ . .
variation map and var([,) = I, € I'(I,0%), I =]r/2,37/2], is given by

o) = oy

7.3.2 Convolution product of microfunctions

This subsection is devoted to convolution products of microfunctions. We
start with some geometrical preliminaries.

7.3.2.1 Geometrical Preliminaries

Definition 7.7. For ¢ > 0, for an open sector I C S! of aperture < m,
we set S.(I) = U D(n,¢), the “c-neighbourhood” in C of the sector

nesi (D)
$5°(1). When the open arc I is of aperture = m, then I = {#} and we set
S.(I)= | D(se”,e).

seRt

We set &.(I) = C\ S.(I) and we denote —0S,(I) = dS.(I) the oriented
boundary.
We denote I .y, n, the path that follows the oriented boundary —0&. (1)
from m; to 2. We set I'7 . the endless path that follows the oriented boundary

_06.(I).

Lemma 7.1. We note ¢ — S.(I) the convex domain deduced from S.(I)
by the point reflection centered on (/2 € C. If dist(¢,S:(I)) > 2e, then
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Fig. 7.2 The domain Se ()
(left-hand side shaded do-

main), the domain ¢ — S« (1)
(right-hand side shaded do-

main.

¢-58.(I)c éE(I), In particular, for every ¢ € éza(I), for everyn € (—06.(1)),

one has ( —n € és(I).

Proof. We only consider the case where I C S is an open arc of aperture < 7.
We take an open sector ESO(IA) and ¢ € C\ggo(f) Then (/2 € (C\ESO(IA) as
well. Denote by ¢ —;80 (I) the convex domain deduced from ;80 (I) by the point
reflection centered on (/2 € C. One sees that for every ¢ € ¢ — §¢°(1), for ev-

ery 1 € %80 (), dist((,ggo (1)) < dist(&,n) (dist is the euclidean distance). In-
deed, by the projection theorem for convex sets, there exist a unique point 7

on the closure of §8°(I) so that dist((, 7o) = dist ((,580 (IA))7 see Fig. 7.2. One
easily shows that the perpendicular bisector of the segment [(, 7] separates

the two convex sets 85°(1) and ¢ — §5°(1). Therefore, if dist(¢, S-(I)) > 2e,
then ¢ — S.(I) c &.(I). O

Lemma 7.2. Let I =]a,B[C S be an open sector of aperture < w and

e > 0. We consider n; € (—aég(l)) and we note r = |n1|. We suppose that

(e/r) < 1 and we set § = arcsin(e/r) €]0,7/2].

1. if J =|8 — /2, + 7/2 + §] is an open sector of aperture < w, we set
h =rsin(J). Then, for any ¢ € D(0,h), ( —n € %gO(i)

Fig. 7.3 Picture asso-
ciated with the proof of
lemma 7.2.
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2.4if J =8 —7/2,a+7/2+ 0] is an open sector of aperture < w/2, then, for
any C € D(Oﬂ"), C_ m Eggo(j)

Proof. Left as an easy exercise. Just look at Fig. 7.3. O

7.3.2.2 Convolution product of microfunctions

v v
We take two microfunctions ¢ and 1 of codirection I, where [ is an open arc
of aperture < m. For any strict subarc I; C I, these microfunctions can be

represented by functions 4\,5 and 12 belonging to (’)(%?"’T(Ivl)) with R >r >0

small enough. In what follows, we take ¢ €]0, g sin(7 — [1])[.

We remark that both égg(l) N D(0,r) and ég(ll) N D(0, R) are non empty

domains and that éE(Il) ND(0,R) C %é’”r(fl).

We consider a path I' = I, ., that follows the oriented boundary

—8(‘.35([1) from ny to ne with r < |n1| < R, r < |n2| < R, drawn on Fig. 7.4.
For any 1 € I't, ey, n, and any ¢ € (‘.525(1) ND(0,r), | —n| < R+ r and

we know by lemma 7.1 that { —n € &,(I). Therefore, the function

b xp i €)= /F # (n) b (¢ —n)dn (7.3)

1:8:M1,M2
is well-defined for all ¢ € So.(I)ND(0,r) and is holomorphic on this domain
(which is non empty since 2e < 7).
% .
Notice that <,v0 *p 1) can be analytically continued to Sq.(I) U D(0,r)

v
when v is holomorphic on D(0,R + ), because |( — n| < R+ r for g
on the integration contour and ¢ € D(0,r). Thus, by linearity, adding to

v

¢ an element of O(D(0,R + r)) results in the addition of an element of
v

O(D(0,r)) for é *p 1. Similarly when é is holomorphic on D(0, R + ),

Vv Vv .
then ¢ %p 1 can be analytically continued to &Sa.(I) U D(0,7) : by an ho-
motopy in D(0, R), just deform the contour Iy, . ,, », into an arc I running

Fig. 7.4 The path of
integration I'r; ¢ nq,no-
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from 11 to nz in {n = se'’ | s €r, R[, 0 € f} c S.(I); by Cauchy, the two func-
v
tions / é (n) ¥ (¢ —n)dn and / é (n) ¢ (¢ — m)dn coincide for
I_‘/

I'ryenyma

¢ € &5.(I) N D(0,r), while the second integral is holomorphic on D(0, ).
Replacing 1, 2 by 0}, nh on —06.(I1), with r < |ni| < R, r < |n4| < R,

v
results in modifying Xz, ¢, n, by an element of O(D(0,h)) for h > 0 small
enough : writing I = I'y, . v s, the difference

%*pl)(o—é*p,%(o:(/ /) b C—mdy  (7.4)

can be analytically continued from &y (1) N.D(0,7) to D(0, h). Indeed, using
the condition on e and by lemma 7.2, we see that for n on the two seg-
ment contours and for ¢ € D(0,h) with 0 < h < rsin(f), ¢ — n remains in

y v
58°(I) N D(0, R + r) where ¢ is holomorphlc
Finally replacing ¢ by a another &’ €]0, £ 3 sin(m — |I|)[ yields the same

conclusion : for ¢ on the 1ntersect10n domaln 625( ) ﬂ 625 (I)ND(0,r), one

v
can compare the two functions QD *p w and @ xp w, I'" =17, o By
Cauchy, the difference reads like (7.4) with the same conclusion.

In particular, we can let ¢ — 0 in the above construction: the family of

y"71 7"7é .

v \Y%
functions @ xp 1 (¢) glue together modulo the elements of Op, thus provid-
ing a microfunction of codirection I;. Making the arcs Iy C I recovering I,
one sees that these microfunctions glue together to give a microfunction of
codirection I.
Definition 7.8. Let be I an open arc I of aperture < w. We consider two
v v
microfunctions of codirection I, ¥ and v, represented by the sectorial germ of

vV Y
codirection I, ¥ and 1 respectively. For a covering of I by open arcs I C I,

v
the family of functions é xr 9 (¢) defined by (7.3) with I' = I'1, < 5, 0., glue
together modulo Oy and provide a microfunction of codirection I denoted by

v v
577 x 1. It is called the convolution product of <,v0 and .

Proposition 7.1. The sheaf of microfunctions € zs a sheaf of C- dlﬁerentml

convolution algebras, for the derivation O : blngo(w) > singd (— C ¢) These

algebras are commutative, associative and with unit § = sing, %Z

v v
Proof. In what follows we use the previous notations : ¢ and v are the micro-
functions of codirection I, an open arc of aperture < 7. One takes a subarc

\Vi \%
I, C I and tho microfunctions can be represented by functions ¢ and i be-
longing to O(s R'”(h)) with R > r > 0 small enough.

v
We consider the microfunction ¥y= & € %(S!) that we represent by
\ Y, PS
Yo (€) = P0(C) Io () = g‘;—fr? with $o € O(D(0, R +r)) subject to the con-
v
dition @o(0) = 1. Thus st *p 1, reads:
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1 ) —
Pariy =g [ EmPE D,

1:8:M15M2
By Cauchy and the residue formula, one easily gets that for all € §§+T(fl) N D(0,r),
i V.oV
© xp 1o=% +hol, where hol can be analytically continued to D(0,r). This
v \
implies that @ x6 =¢.

We now consider the integral:

Forar (O =g [ PSS ) @aadea, (1)

%o € O(D(0,R+71)), %0(0)=1,

where I' = Iy, I'=1Iry, . . We remark that for any (§1,&) € I' x I’

’,77{,772
_ o v Vv
one has (&1 + &) € Seyer(I1) N D(0,2R). Thus ¥ *px v ¥ defines a holomor-

phic function on the simply connected domain S.;./(17) : just apply the
Lebesgue dominated convergence theorem for ( on any connected compact

£,M1,M2>

subset of &/ (I1). This also allows to use the Fubini theorem:

Farar b0 = [ (5 [ B8R @) & (e

2ir Jr (= (€1 + &)
RN NSRS
B /F/ <2i77 A C_ (61 + 52) ¥ (51)d£1> 'l/} (52)d52

Vv Vv Vv
From the previous considerations, we recognize ¥ *px s =% % 1 +hol for

vV VoV Vv
the first equality, ¥ *p« =1 *p ¢ +hol for the second equality, where hol
is a holomorphic function that can be analytically continued to a neighbour-
hood of 0. As a consequence,

v V V y
P xPp=1h x P,

that is the convolution product of microfunctions is commutative. One easily
shows in the same way that the convolution product of microfunctions is
associative. The fact that 0 is a derivation is obvious. 0O

\V \%
We have previously seen two kind of integral representations, ¢ *p 1

\
(equation (7.3)) and 5\2 *xpyw v ¥ (equation (7.5)) for the convolution product

v v
¢ * 1 of two microfunctions. Other representations can be obtained under
convenient hypotheses as exemplified by the next proposition.

\Y%
Proposition 7.2. One considers a 1) a microfunction of codirection I, an

v

open arc I of aperture < mw, represented by the sectorial germ i of codirection
v

I. Let be pe I'(S*,€) a microfunction of the form sing, (@;‘z—i) with @ € Oy.

v v
Then, the microfunction ¥ * 1 of codirection I can be represented modulo O
by a family of functions of the form

/ " o) b (¢~ n)dy and / " 8 b (¢~ n)d (7.6)
0 0
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Fig. 7.5 Decomposition of
the path Ity e ny m,-

with n1, N2 as for definition 7.8.

The proof is left as an exercise. (See [23]). Starting with the integral rep-
resentation (7.3), the idea is to decompose the path I'r, ., 5, as on Fig. 7.5
and to use the integrability of the log at the origin.

7.4 Space of singularities

We now turn to classical notions and notations in resurgence theory [9, 10,
24, 23, 20].

7.4.1 Singularities

Definition 7.9. For # € R and a > 0, we denote by ANAy . the space of
sections I'(.J, O%), where J =] — o —2m,0+a[C S', and ANA = I'(S}, 00).

Thus ANA is the space of sectorial germs at 0 that are represented by

v
functions ¢ holomorphic on a simply connected domain of the form sq(S!).
L]

Definition 7.10. One defines SINGy , = ANAy ,/Op and SING = ANA/O,.
The elements of these quotient spaces are called singularities at 0. One de-
notes by sing, the canonical projection,

Vv v

. ANA — SING , ANAg o — SINGg o
sing : v , singy : v .
¢ > ¢ 2

V. v v v
If singy(¥) =9, then ¢ is called a major of the singularity ©.
In particular, with these notations:

Proposition 7.3. The space of singularities SINGg o can be identified with
the space I'(J,€) of multivalued sections of € by, with J =] — L —a + 60,0 + a + Z[.

Notice that SINGg , and SING are naturally Op-modules.
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Definition 7.11. One defines the spaces SING,,, resp. SING,, g o of singu-
larities at w € C, by translation from SING, resp. SINGg_q.

It is of course enough to study the spaces of singularities at O and this is
what we do in what follows.

Definition 7.12. For f € Oy and 939: sing 5\2 in SING or SINGy,, one
defines the product f <,v0 by f <,v0: sing (f LEJ)

Definition 7.13. One defines the variation map by

= singy(9) = B, B(C) =P (¢)— ¥ (Ce~2im)

{ SING — ANA

var:q v

and ¢ = Var(svﬁ) is called the minor of the singularity @.

The variation map var operates similarly on every element SVOE SINGg, o, with
P = Var(QVO) in I'(J,0%), where J =] — a,0 + a[C S'.

A minor is said to be regular when it belongs to Q.

We illustrate the notion of singularities by the following examples. (The
reader will recognize sectorial germs used in the introduction of this chapter).

v v
Definition 7.14. The singularities I, Jo,m€ SING, o0 € C, m € N are de-
fined as follows.

o—1

v v v
e For 0 € C\N*, [,=sing,(I,) where I, (¢) = T )}

v —-1)" n!
In particular, J_,= 6" = sing, (( )" _n ) , neN.

2w (i
v v v ne
e For n € N*, J,,=singy(I,,) with I, (¢) = %}%()C)_

m v

v )
e FormeNando €C, J,m= (%) Is-

It is useful to define the following subspaces of “integrable singularities”,
SING™ C SING and SING}"f, C SINGyg 4.

Definition 7.15. An integrable minor is a germ ¢ € ANA holomorphic in
the domain so(S') € C which has a primitive ¢ such that ¢ — 0 uniformaly

in any proper subsector §, & 50(81 ). The space of integrable minors is

denoted by ANA™,

An integrable singularity is a singularity SVDG SING which admits a major

v v

¢ holomorphic in the domain so(S") C s¢(S") such that %in%C v ()=0
. . —

uniformaly in any proper subsector 5y € s0(S'). One denotes by SING™

L]
the space of integrable singularities.

There is a natural injection @y < ANA™ from the space of germs of
holomorphic functions to the space ANA™® of integrable minors. The space
ANA™® can be equipped with a convolution product, by extending the usual
law convolution on Oj.

It is not hard to show that integrable singularities satisfy the following

property:
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Proposition 7.4: By restrz'ction,'the variation map var induces a linear iso-
morphism S_INGmt — ANAmt. The inverse map is denoted by
> p € ANA™ s °5 c SING™,

This allows to transports the convolution law from ANA™® to SING™ by
the variation map.
Definition 7.16. The convolution product of 31, 3, € ANA™ is defined by
B1 % 82(0) = f3 B1()B1(C — m)en.

v v )
The convolution of two integrable singularities 1= "3y, Po= "y € SING™
\ v ~ —~

is given by : 91 * Pa= "(P1 * $2).

Quite similarly:
Definition 7.17. A minor $ holomorphic in the domain so(I) € C is said to

be integrable if ¢ has a primitive gg such that g/b\ — 0 uniformaly in any proper
subsector 8y € so(). One denotes by ANAy", the space of these integrable
minors.

An integrable singularity is a singularity SY?G SINGyg, o which has a major
¢ holomorphic in the domain so(f) C C and such that lim ¢ ¢ () =0
L4 —

uniformaly in any proper subsector §p € s((I). One denotes SING};}& the
space of these integrable singularities.

Proposition 7.5. By restriction, the variation map var induces a linear iso-
morphism SINGg:Z — ANAYY,.
The inverse map is denoted by * : § € ANA% — "pe SINGL‘}L.

We end with further definitions.

v v
Definition 7.18. Any singularity ¢ of the form ¥= ad +°@ with § € Oy is
said to be simple. The space of simple singularities is denoted by SING®™P,
The space SING*™™" of simply ramified singularities is the vector space

spanned by SING*™P and the set of singularities {;_n, n € N}.

7.4.2 Convolution product of singularities at O

The resurgence theory asserts that the space of singularities SING can be
equipped with a convolution product [7, 8, 24], see also [1, 21]. Since SINGg 4
can be identified with the space I'(J, %) of multivalued sections of € by T,
with J =] = § —a+0,0+a+ 5[, the convolution product for microfunctions
(proposition 7.1) allows to transport this product to SINGy , : for any two

v Vv
singularities ¥, 1 € SINGy ,, and any strict subarc I C J of aperture = 7, one
v Vv
can find two majors ¢, 1 € ANAg , that can be represented by holomorphic

. vV
functions on a sector so(I). By projection on C, one can think of ¥, as

belonging to O(;O(Iv )), that is sectorial germs of codirection I. By restriction,
v V
¥, 1 are seen as microfunctions of codirection I, whose convolution product

v v
@ x1pe I'(I,€) can be represented either by
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P ar i (C) = /F % (n) b (¢ - mdn (7.7)

or by

¥ o= L T (Gt&) g
$rrxr ¥ (Q) = o /F><F C— (616 ¢ (&) ¥ (&2)d&rdsz,  (7.8)

with f € Oy and f(0) =1 (cf. (7.3) and (7.5)), where I" = I'1 . ,, 5, is as in
definition 7.7. Considering a covering of J by such intervals I, these sections

v v
glue together to give the convolution product ¥ * 1 as a multivalued section
of € over J.

Proposition 7.6. The space SING can be equipped with a convolution prod-
uct * that makes it a commutative convolution algebra, with unit

1 v
§ = sing, (QWC) =Jo. Moreover:

v v v v
1. the linear operator, 0 : = sing,(¥) € SING — 0 ¥=sing,(—( ¥) € SING,
s a derivation.
v v . v v .
2.if © and 1 belong to SING™, then @ x 1) belongs to SING™® and
°Gx "P =" (P * ). In particular, the space of simple singularities SING*™P
18 a convolution subalgebra.

Theses properties remain true when one considers SINGg , instead of SING.

Proof. We have already demonstrated that SINGg , (thus SING) is a com-
mutative convolution algebra for the convolution product with unit §. The
equality "3 x °@ =" ($ * @) for integrable singularities, emerges from consid-
erations on integrals and is left as an exercise. (Start with proposition 7.2.
See [23]). O

7.5 Formal Laplace transform, formal Borel transform

7.5.1 Formal Laplace transform for microfunctions
at 0

We start with the following definition.
Definition 7.19. For an open arc I C S' and r > 0, we note:

1. ZSO(%?O (I)) the C-differential algebra of holomorphic functions ¢ on
g,‘?" (I) that satisfy the property : for any proper subdomain %‘X’ S %,‘?" (1),
for any € > 0, there exists C' > 0 so that, for all z € %OC, lo(2)| < Cell;

2. we set A=0(I) = lim A=0(52°(I)). This defines a presheaf A=;

r—00

3. we denote by A= the sheaf over S! associated with the presheaf A=0.

Remark 7.2. The fact that A< is indeed a sheaf of differential algebras is an
exercise left to the reader. (We stress that the derivation considered is the
usual one for holomorphic functions).
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The sheaf A=C should not be confused with the sheaf A<C of flat germs at
infinity (definition 3.9). As a matter of fact, A<°(I) C A(I) C AS°(I) where
A stands for the presheaf of asymptotic functions (see definition 3.9 and
14, 16, 17)).
We mention that our definition of A= differs from that of Malgrange in [16]
where A= is defined as the sheaf of sectorial germs that admit an asymptotics
belonging to the formal Nilsson class, that is of the form Z@(z)log;#,
o €C,m e N, w € C[[z71]]. Our sheaf A=? contains this sheaf as a subsheaf.
However, the constructions in the sequel resemble in much aspect to that of
Malgrange [16].

The following Lemma is left to the reader as an exercise. This will allow

us in a moment to properly define the quotient sheaf A</ A<~1 over St

Lemma 7.3. The space jé_l(goo) —resp. Zg_l(l)f of 1-exponentially flat

functions on §%° —resp. of 1-exponentially flat germs at infinity over I, is a
differential ideal onSO(EOO(I)) ~resp. of ASC.

Definition 7.20. For a direction 6 (of S* or S'), we note Ry the ray 0, e!ocl.
L]

For k > & >0, we note Ry . =lJeel? e?oof and Ry ... =|eel?, kel?|.

For a closed arc J = [0,05], we denote by v, (resp. vj...), the Hankel

contour (resp. truncated Hankel contour) which consists in following:

1. Ry, ¢, resp. Ry, c.x, backward,

2. then the circular arc 67 = {ee'? |0 € J} oriented in the anti-clockwise
way,

3. finally Ry, ., resp. R, c.\, forward.

We take an open arc I of S' of aperture < m, and a microfunction

v Voo
pe €(I) of codirection I, represented by the germ ¥e O°(I). For any open
arc Iy =]aq, f1] with I; C I, one can find R > 0 so that the restriction of

v .

¢ to Iy =Jag — 37/2, 81 — 7/2[C St is represented by a function (still de-
v .

noted by ¢) holomorphic in the sector s{f(I;). We take another open arc

Iy =|ag, B2, I C Iy, so that I \ I, has two connected components. We
take one arbitrary direction in each component, 61 €]a; — 37/2, as — 37/2],
0y €]B2—m/2, f1—7/2[. For R > k > & > 0, we consider the truncated Laplace

v

integral @y, 9, () = e=*¢ ¢ (¢)d¢, see Fig. 7.6.
'7[9 ,02],e5K

The function g, g, slatisﬁes the following properties:

® ¥y, .0,.x is an entire function, since one integrates on a (relatively) compact
v
path of the domain of holomorphy of ¢.

o for € > 0 chosen as small as we want, set M = SUP5~ (19, ,0.1) | t\;/) | with
57(1601,02]) = {¢ = €19 | 0 € [01,05],€ € [e,K]}. then:

/ e b (O)d
5[91792]

N

- forall z € C, < e|l,|Mef* where || = 1 — ay + 7

L]
— we observe that for any r > 0, for every z € 7%, < kKMe™".

/ = b (Q)dc
Ry e5n

Similarly, for every z € 792,

/ e~ @ (¢)d¢| < kMe—e".
Rog e
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Fig. 7.6 Formal Laplace
transform. The open arcs
I, I, I, I>, and the path
Y = 61,02] 651"

I I

L[] [ ]
— the domain 7% contains any closed sector of the form 877 (.J1) with J;
an open arc so that J; C]—%—6, —61+75[and 7’ > 0 large enough. Since

L]
B2 — 5 <01 < az+ 7, one deduces that IT% contains any closed sector
L] [ )
of the form §%(13) with 7/ > 0 large enough. Similarly, 792 contains
any closed sector of the form 557 (I3) with ' > 0 large enough.

From this analysis, since € > 0 can be chosen arbitrarily small, we retain
that g, g, . belongs to the space .7130(57?"(15)), r > 0 large enough.

e Furthermore, looking at the above analysis and by Cauchy, we can observe
that for two cut-off points s,k €le,R[, for two directions
0} €lag —37w/2, 00 — 31/2[, 05 €]|B2 — /2,01 — w/2[ the difference
©6,.0,,x — P07 05 belongs to jgil(g,‘?o(lz*)) with » > 0 large enough.

We finally remark that adding to <,v0 a function holomorphic on D(0, R)

only affects g, 9,.x(2) by the addition of an element of Zg_l(é;f"(lg)),
r > 0 large enough.

One thus obtains a morphism , £(I, I5) . pe ¢(I) e XSO(IQ)/XS_l(IQ*),
@ = cl(wea, 0,.1), which is obviosuly compatible with the restriction maps.
This allows to move up to stalks, L, : €, — (ASO/ASA) and finally? to

a morphism of sheaves £ : € — ASC/AS7L

a*

Definition 7.21. One calls formal Laplace transform for microfunctions
at 0, the morphism of sheaves £ : € — AS°/AS"!. The quotient sheaf
AS9/AS—1 over S! is called the sheaf of asymptotic classes. An asymp-

A
totic class is usually denoted by ¢.

The term “sheaf of asymptotic classes” is borrowed from [1] where the sheaf A=0 is

denoted by £°, and the sheaf A<~ is denoted by £~. The notation <,A0 is own.
Example 7.3. For (o,m) € C x N and I =] — /2, 7/2[€ S!, we consider the

v v
microfunction J,. = singp | Jo.m | € €(I) represented by the sectorial germ

Y O\ VY _ A0 07
Jom= 0 I,€ O°(I) = O°(I), I =] — 2x,0[ and the branch of the log
o

2 Modulo complex conjugation
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that arg(log¢) € I. By standard formulae recalled in Sect. 7.1, one readily

A - v
gets that its formal Laplace transform J, = L£(I) Jsm is an asymptotic
class that can be represented by the (sectorial germ at infinity of) holo-

morphic function(s) (—1)mM € ASUTY), I* =] — n/2,7/2[ with the

o

determination of the log so that arg(logz) € I'*.

The following proposition is a straight consequence of the very construction
of the formal Laplace transform.

Proposition 7.7. The formal Laplace transform satisfies the identity : L8 = L.

7.5.2 Formal Borel transform for asymptotic classes

We take an open arc I* of S of aperture < 7, and a sectorial germ at infinity
¢ € ASY(I*). For any open arc IT with I7 C I*, one can find r > 0 so that the
restriction of ¢ to I7 is (represented by) a holomorphic function (still denoted

by ) on the domain ;7?0(]{) For z; € gﬁo (I7) and a direction o € I, we note

S\ézha )= e*¢(2)dz, see Fig. 7.7. We can make the following

o, z1

2im Jg
v
observations about this Laplace integral ¢, :

J— L]
e since p € AS0(§2°(I7)), we know that for any proper subsector 5°(J) e s°(17),
for any e > 0, there exists C' > 0 so that, for all z € §°, |p(2)| < Cel?l.
. — v
Assume that z; € §77(J*) and take o € J*. This implies that ¢, , belongs

to (9(].]?“'”). Making « varying in J* and since € > 0 can be chosen arbi-
trarily small, these functions glue together by Cauchy, and provide a holo-

v . o
morphic function ¢,, s+ on 2(J*,0) = s5°(J). Notice that for two points

o \Y V
21,22 € 8,5(J*), the difference ¥, j« — ¥, s+ defines an entire function
(with at most exponential growth of order 1 at infinity). Therefore, local-

v y 3
ising near the origin, we get a sectorial germ ¥,, 1€ O(I) = O(I), defined
modulo the elements of Op, that is a microfunction of codirection I;

e when ¢ belongs to AS71(I*), one easily sees from the above analysis that

Vv
©,,,1= is holomorphic on a domain containing a full neighbourhood of the
origin, thus by localisation, an element of Oj.

To conclude, we have defined a morphism (of C-differential algebras),

B(I*) : pe ASO(I*)JAS~L(I*) s = cl (¢,, 1) € €(I) whose compatibility
with the restriction maps is easy to check.

e

)1* “
Fig. 7.7 Formal Borel

transform. The open arcs
I*, and the path Ra,z; .
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Definition 7.22. One calls formal Borel transform the morphism of
sheaves B: AS0/AS™! & 7.

The formal Laplace transform for microfunctions and the formal Borel
transform for asymptotic classes are isomorphisms of sheaves, as shown in [1]:

Proposition 7.8. The morphisms/j 16— A%O/{lg_l and B: ASYJASTY 5 @
are isomorphisms of sheaves and Lo B =1d, Bo L =1d.

Remark 7.3. We have seen that we have an injective morphism of sheaves,
pe O »—><,v0: sing! (@;‘;—i) € €(I), and the following commutative diagram
makes a link between the formal Laplace transform for regular minor —resp.
formal Borel transform for 1-Gevrey formal series— and the formal Laplace
transform for microfunctions —resp. formal Borel transform for asymptotic
OO — ¢
classes: £ |1 B Btl L
ApJASTE s ASO/AS L

7.5.3 Formal Laplace transform for singularities and
back to convolution product

In the sequel, we translate to singularities what have obtained so far for
microfunctions.

7.5.3.1 Formal Laplace transform for singularities at 0

We start with two definitions.

Definition 7.23. Let be § € S' and a > 0. We denote by ASYMPy , the
space of asymptotic classes defined as multivalued sections of AS?/A<~1! on

J*=|-n/2—a—0,-0+ o+ 7/2[. We denote by ASYMP the space of
asymptotic classes given by global sections of A</ A<~1 on St.

Definition 7.24. Let be ¢ € C and m € N. We denote by ?06 ASYMP

A
the asymptotic class represented by 1/z7. We denote J,,»,€ ASYMP the

1 m
asymptotic class represented by (—I)WLU(Z). We often simply write 1/27
z

A A
instead of I, and similarly for Jy .

We have already said that the space of singularities SINGg . can be
identified with the space I'(J,%¢) of multivalued sections of € by , with
J=]-% —a+0,0+a+ F[. The formal Laplace transform for microfunc-
tions thus extends to singularities, by inverse image:

L _
Uges: €5 = Upresr (A7) A= 1);3*
s/ p ip
St>Jsp—8S'383 = St 5 g*
¢ 7 *
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When returning to the very construction of the formal Laplace transform

v
(Sect. 7.5.1), one sees that for a singularity € SINGy ,, for any direction

BeJ =]—a+6,0+af and for B =] — 5 + B,8 + 5[, the formal Laplace

transform £(3*) s given as the class o= A(p_arpr) € ASOB)/ASL(B),

v V \Y2

p=]—-%—B,—B+7F[, where ¢g_or 5.r(2) = e * @ (¢)d¢, with ¢
YB—2m,B].e55

any major of 57. This introduces the following definition. (Notice that J=1J ).

Definition 7.25. The morphism £f = £(3*) : SINGg., — AS(3)/AS1(B)
is called the formal Laplace transform in the direction 8 € J =] — a + 60,0 + a.
For any singularity SVOE SINGg, o, one denotes by L7 SVDE ASYMPy . the

.V
asymptotic class given by the collection (Eﬂ % ) sei

Ezxample 7.4. We continue the example 7.3 but for the fact that we now
consider }a,m as a singularity in SINGg . The formal Laplace transform
Ll=mml }U’m is the asymptotic class ﬁg’me ASYMPy . seen by restriction as
an element of I'(] — 37 /2, 37/2[, AS?/ AS71).

Let us linger for a moment to the cases of singularities of the form
Z?: "G e SINGL’?L. For any direction 8 €] — a + 6,0 + «f, the formal Laplace
transform 9= L8 pe A<9(3)/AS=1(B) can be represented by the function

pp—2mpn(2) = / e~ ()¢ = e B(Q)d¢,  (7.9)
VB—2n,B],ein Rg,0:x

and we thus recover the “usual” formal Laplace transform (see Sect. 7.1). In
particular, we recall that we have extended the convolution law to SING};;

C . v b ¥ b~ int V. Y b (5 w5
by the variation map: for 1= "1, o= "y € SINGQQ, 1 * Po= (<p1 *gpg).
The above remark (7.9) shows that

EB(Qvﬁ * 9v02) = (25 4701)(/35 &2),

by the properties of the “usual” formal Laplace transform.

v v .
We now assume that ¢ is a simple singularity, = ad +°@ € SING®™P

with @ € Op. For any arc J =] — a + 6,0 + o[, the formal Laplace trans-

A s v
form ¢= L7 (ad+ ¢) is an asymptotic class that belongs, more precisely, to
I'(J*, A1 /JAS"1). This again comes from (an analogue of) the identity (7.9)
and classical arguments recalled in the introduction of this chapter.

Definition 7.26. One denotes by ASYMP*™P the subspace of asymptotic
classes obtained by injection of the global sections I'(S',.A;/AS71) into

ASYMP.

Proposition 7.9. The restriction of the formal Laplace transform L to
SING®™ has ASYMP®"™P for its range.

Remark 7.4. Consider a formal series expansion ¢ € C[[z7!]] and an open
arc of the form J* =] —7/2 —a — 0, -0 + a + w/2[C S'. By the Borel-Ritt
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theorem, there are infinitely many ¢ € A(J*) whose Poincaré asymptotics
T(J*)p is given by ¢ on J*. These various ¢ differ by flat germs, that is
elements of A<°(.J*). Therefore as a rule, these germs ¢ represent different

asymptotic classes 9%6 ASYMPy 4.

Now suppose that @ is 1-Gevrey and choose a (good) covering (I;) of J* where
each I; is an open arc of aperture less than 7. By the Borel-Ritt theorem for 1-
Gevrey asymptotics and for each subscript i, there exists ¢; € A;(I;) whose
1-Gevrey asymptotics T1(I;)¢; is . Moreover, each ¢; is uniquely defined
this way up to 1-exponentially flat germs, that is up to elements of A<~1(I;).

A
One thus gets a uniquely defined section € I'(J*, A;/AS~1) that can be
thought of as an asymptotic class. One can characterize another way this

A n A v v,
asymptotic class € ASYMP™™P by settling ¥= L(ad+ ¥) where =" with
© the minor of ¢ while a is its constant term.

Definition 7.27. The mapping * : ¢ € C[[z!]| = "G € ASYMPS™ is
~ v v
defined by <AP: L(ad+ ¢) where ¢="@, whereas @ stands for the minor of @

and a its constant term.

Obviously, the mapping ? is an isomorphism, the inverse map being the
(1-Gevrey) Taylor map. This allows to merge %@ with @ in practice.

7.5.3.2 Back to convolution product

We have said without proof that £ and B are morphisms of sheaves of alge-
bras. Thus it is certainly worthy to prove the following proposition.

Proposition 7.10. For any two singularities 9v017<,v02€ SINGyg o and any di-
rection B €] —a+ 60,0 +al, (L° <,v01)(iﬁ sv01) = Eﬁ(;l * ()VDQ). Moreover,
- v .
LP (0 ¥)=0LP .

v v

Proof. (Adapted from [1]). We take two singularities ¢1, ¥2€ SINGy , with
VooV .

major ¥1,¥s. Choosing a direction 8 € J =] — a + 6,0 + a|, we can consider

A . A .V
the formgl Laplacevtransforms 0= L8 @1 and Ys= LP ¢5. These are elements
of AS%(B3)/A=~1(3) which can be represented respectively by

p1(z) = / ¢~ @y (Q)d¢ € AZO(52°(B)), pa(2) = / =% P, (¢)dC € AZO(52°(

with v1 = Yg_2x8),e15r15 V2 = V[B—2,8],c2:r, and some r > 0 large enough.
The product élége AS0(B)/ A==1(p) is thus represented by

1p2(2) = / G Gy (&) o (G)dCG € A (B2 ()).
Y1 Xy2

Let us look at the formal Borel transform B(f) (§A01§AD2) € ¢(B*). This Borel

transform can be represented by the integral

\Y 1 . v
(p192),. o () =—— ezccplgag(z)dz, with 2z € sp°(8%), for ry > 7,
1,1 20w

@q,21

G

))’
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o \%
and for any direction a; € S*. The function (p;1p2) (¢) is holomor-

Z1,01
phic on J7§*™™ (go back to the construction of the formal Borel transform,

Sect. 7.5.2). Taking ¢ € 1'75;*” with € > €1 + €2, we can apply Fubini.

L] L]
r rather ¢; + (,) remains in the bounded strip
e1 + ez}, for (¢1,¢2) € M1 X 2. Thus ¢ — (C1 + ¢2)

Remark that (1 + (2 (
{¢ € C | dist(¢, [0, ])

L] L]
remains in the domain 78T for ¢ € H;EI-HT and this ensures the integrability
conditions.

O

This way, we get:

(wlv¢z)zl,a1 €)= 7% . S </W72 e~GHR) @y () b (Cz)dCld@) d>
. / ez1((—¢1—¢(2) v ( y ( e
- Y1 Xy2 m <p1 Cl) @2 CQ) <1 CQ

ezl(C—Cl—Cz) v v
-/ (/ T (AR <<z>d<z> b1 (G)dG
7 Y2

Returning to the very construction of the convolution product for sin-

is nothing but a major of the singu-
e#1¢

2im¢

v
gularities, we see that (p162), .

o e*1¢ v v .
larity sing, * 1 * 9. But sing, = ¢ and therefore
\4

2im(
singy, <(<P1‘P2)zl,a1) :stl * Z?g. From Proposition 7.8, we know that BoLl =1d

(when considering B and £ as morphisms of sheaves), thus the conclusion.
The last statement as been already seen. 0O

Example 7.5. We know by theorem 3.2 that the formal series wg,g) solution
of the prepared ODE (3.6) associated with the first Painlevé equation, is
1-Gevrey. Its formal Borel transform @9y = Bw o) is thus a germ of holo-

morphic functions at the origin and we set 17)(070): "1’5(070) € SINGS™P_ We

v
now consider the singularity I, * 13)(070)6 SING, for any ¢ € C. By propo-
sition 7.10, for an arbitrary direction 5 € S!, the formal Laplace transform

~ \ v v v
Eﬁ( I, * 171(070) ) € A=Y(B)/A="1(p) is the asymptotic class of direction j3
which also reads:

. v ~ v ~
LP( I, ) ) = L£9( o ) L% (o0 )-

On the one hand, £ ;c, is the asymptotic class ?06 (3, A9/ AS—1). On
the other hand, £P 73)(070):%7(070). Therefore, £°( ;U * 731(0,0) ) :?0 "W (0,0
that can be identified with %6(070) with the branch of z? determined by the
condition arg z € B. :

Ezample 7.6. We now use the notations of Sect. 3.5.2.3 but for the fact that
we consider arcs on S*. We write Iy =]0, 7[ and I§ =] — 37/2,7/2[C S' and

in what follows with think of the Laplace-Borel sum w9 = . fo@(om as
(representing) a multivalued section of .A; on I3. Similarly, we set I =], 27|



156 7 Supplements to resurgence theory

and It =] — 57/2, —7/2[C S' and think of wy.;1 = Yflﬁ(o’o) as an element
of (I, A1). Notice that I;NI =]—37/2, —m/2[ on S*. Since both w;,; o and

wyr4,1 are asymptotic to the 1-Gevrey series w(g,g), we know that the difference
Wiri,0 — Wirs,1 1S & multivalued section of A<=l on 15 N I;. Therefore, for any

1 1

o € C, — Wiri0 and — Wiri1 glue together to give a multivalued section
z z

of A1/AS~! on Iy U If, that can be identified with the asymptotic class

A ~ A
I h@(o,o) € ASYMP, . The formal Borel transform B(IS)( I hﬁ(o,o)) is the
multivalued section of € on Iy =] — /2,37 /2] which can be thought of as a

- A v
singularity in SING, /3 r/2, and is given by B(I§)( I, hqﬂ(o,o)) =I5 * 17)(010).
~ A
Similarly, the formal Borel transform B(I7)( I, *@(o,0)) is the multivalued
section of ¢ on I =|m/2, 57 /2[ which provides a singularity in SING3 /2 /2,
- A v
of the form B(If)( Is h{E(O’O)) =[], * %(070). These two singularities glue

v
together as the element [, * 51(0,0) of SING .

7.5.3.3 Formal Laplace transform for singularities at w

The spaces SING,,, resp. SING,, g o of singularities at w € C are the trans-
lated of SING, resp. SINGg 4. (See definition 7.11). By its very construction,
the formal Laplace transform transforms the translation into the multilplica-
tion by an exponential.

Definition 7.28. The formal Laplace transform £ sends SING,,, resp. SING,,
onto the space denoted by e “*ASYMP, resp. e “*ASYMPy ,, made of
asymptotic classes with support based at w.

We mention the following result that can be thought of as an analogue of
the Watson’s lemma [14].

Lemma 7.4. For any w € C*, the sum of the C-vector spaces ASYMPy
and e"“*ASYMPy  is direct.

Proof. We consider an asymptotic class ée ASYMPy . By definition, one
can find a (good) open covering (J;) of J* =] —7w/2 —a—0,—0 + a + /2]
and a “O-cochain” (goj € ASO(Jj))j with associated “l-coboundary”
A A
(j+1—pj € ASTH( T4 N Jj))j that represents ¥. Now assume that ¢ also

belongs to e"“*ASYMPy . Considering a refinement of (J;) if necessary, one
deduces that ¢; € AS71(.J;) for at least one j, since J* is an arc of aperture

v
> 7. This implies that the formal Borel transform ¥&€ SINGy , has a major
v v

® that can be analytically continued to 0, thus ¢¥= 0 and as a consequence
A

v=0. O

7.6 Laplace transforms

We develop here only matters convenient for this course. For more general
nonsense on Laplace transforms in the framework of resurgent analysis, see

1,2, 7,8, 16].

0,005
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7.6.1 Laplace transforms

Definition 7.29. For an open arc I C S! and r > 0, we note:
1. £SY(I) the C-differential algebra of holomorphic functions ¢ on ;80(1 )
with l-exponential growth at infinity on the direction I : for any proper
L]

subsector 5°° € §3°(I), there exist C' > 0 and 7 > 0 so that, for all z € §°°,
o(2)] < Ceml#l; ) .
2. for any open arc I C S! of aperture < m, we set ES1(I) = £S1(1), the

space of holomorphic functions ¢ on %gO(i ), with 1-exponential growth at
infinity on the codirection I.
3. we note £ —resp. £ — the sheaf over S corresponding to the family

(ESH(I)) —resp. ESY(I)—
4. we note O(C)=! the space of entire functions with l-exponential growth
at infinity on every direction.

We take an open arc I of S' of aperture < 7, and a function 4\,26 ESN(I).
Thus Q\é is holomorphic on ggo(f) and for any open arc I; so that I C I,
for any € > 0, there exist C > 0 and 7 > 0 so that, for all € %Zo(fl),
| @ (¢)| < Ce™l¢l. We consider the Laplace integral,

on(2) = L . e ¢ (¢)d¢ = ( /R L /5 o /R > ¢ (Q)d¢

where I; =]f1,65[. This Laplace integral can be decomposed as follows:

e by classical arguments, the integral / e % 9\2 (¢)d¢ defines a holo-
Rel,e

L]
morphic function on /7% and we observe that for any r > 7, for every

L]
z € I%,

e—a(r—r).

r—T

/ e b (()d
Ro, e

oo
§/ e "Ce™ds <
I

In the same way, the integral / e ¢ <,v0 (¢)d¢ defines a holomorphic
Ro, e

°
L] [
function on T f? and for any r > 7, for every z € II%,

/ e $ (¢)dC
R

09,

e the integral / e ¢ % (¢)d¢ defines an entire function and

010,1.05].¢

v .
/ e P (()d(| < C|I|ee™eefl?,
5101,02],¢

< ¢ efs(rf‘r),
=, _ 7 ’

e by arguments already encounter (see Sect. 7.5.1), both ].] % and ].] %2 con-

hd .
tains any proper subsector 5 of §2°(I7), once r > 0 is chosen large
enough.
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Therefore, ¢y, belongs to the space XSO(;if(If)) for 1 > 0 large enough,
because € > 0 can be chosen arbitrarily small.

It is easy to see that adding to % any element of O(C)<!, does not affect the
function ¢y, (just deform the contour of integration, by Cauchy).

The family of functions (¢r, )1, cr obtained this way glue together analyti-
cally, by Cauchy.

The above construction gives a morphism, £(I) : £S'(I)/O(C)St — ASO(1%),

compatible with the restriction maps, which provides a morphism of sheaves®.

Definition 7.30. The morphism of sheaves £ : £S'/O(C)S! — A=C is
called the strict Laplace transform?.

We now return to the construction we did to get the formal Borel trans-
form, Sect. 7.5.2. We take an open arc I* of S! of aperture < m and

@ € ASO(I*). For 2 € 2°(I*), r > 0 large enough, for a direction o € I*,

v
we consider ¥,, o () = e*p(z)dz. We have seen that, mak-

2T R

121

ing o varying, one gets an element of f:'gl(I), while ézl’a depends on z;
only modulo an element of O(C)<!. We thus get a morphism of sheaves
B: ASC = £51/0(C)=! which has the following property (we refer to [1] for
the proof):

Proposition 7.11. The morphisms L : ES/oC)st - A=Y and
B: A=Y — £S1/O(C)St are isomorphisms of sheaves of C-differential alge-
bras, and Lo B =1d, Bo L =1d. Moreover, LO = OL.

7.6.2 Singularities and Laplace transform

7.6.2.1 Summable singularities

We remind that SINGyg ,, can be identified with the space I'(J, ¥) of multival-
ued sections of € over J =] — /2 —a + 0,0 + a4+ 7/2[C S'. In particular,

any singularity Z?E SINGy,, can be represented by a major e ANAy,, = I'(J,0%),
with J =)0 — a — 27,0 + a[C S*.

Definition 7.31. An element %6 ANAy , = I'(J,0°) is said summable in
the direction 8 € J =] —a+6, 6 +a[ if there exists a neighbourhood .J; C .J of

v . v R v .
/3 so that the two restrictions ¥ € I(J1,0% and po€ I'(Jz, O°) of ¢ over J;
and Jp = —27+J; respectively, can be represented by elements of r(J;,ESY)
and I'(Jy, ES1) respectively.

v . .
A singularity ¥€ SINGy , is summable in the direction J if for any 8 € J,

v v

© has a major Y€ ANAy , which summable in the direction 3.

v
We note SINGy'";" the space of singularities € SINGy , that are summable

in the direction J.

3 As usual, modulo complex conjugation

4 We abide a notation of [1], although the construction therein slightly differs from ours.
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7.6.2.2 Laplace transforms of summable singularities

v ~
We take a singularity »€ SING}') and we consider a direction 3 € J. We

v v
note ¥ a major of ¢ which is summable in the direction /5. Using the notations
of the definition 7.31, we consider the following Laplace integral

ool = [ e (¢)dC (7.10)
YB—27,B),e

- [ e Kb O [ b (e
d(p—2m,p].¢ Rp_2re

Rg e

_ / e ¢ (O)dC + / e B(C)d¢
O —2m,8].e

R/LE

v
(¢ > 0 small enough. In the last equality, ® = var ). From the arguments
used in Sect. 7.6.1, we see g defines an element of A=(3). Moreover, if

v v

¥ is another major of ¥ which is summable in the direction 8 (for instance

\V \%

¢ — e O(C)=1), then its Laplace integral 15 coincide with ¢z as elements

of ASY(3). Thus g is independent of the chosen summable major and only
v v

depends on € SING";. This allows us to write g = LF .

. v
Making 3 varying in I, the functions £? ¢ obviously glue together ana-

\
lytically (by Cauchy and using the independence of £? ¢ with respect to the

;v
chosen summable major), to give and element £7 ¢ of I'(J*, AS?).

Definition 7.32. The morphism £? : SINGyW' — ASO(B) is called the
Laplace transform in the direction 8 € J =] — a+ 6,0 + «af. The morphism
cl SING{"3 — I'(J*, A=°) is called the Laplace transform in the direction
J=]—a+6,0+al

We recover with the following proposition the examples given in the intro-
duction of the chapter, see also [24].

v v
Proposition 7.12. The singularities I, and J, m belong to SINGy'" for any
direction 0 and any o > 0. Moreover, for any direction 3 € S',
L]

v 1 v log™
Pl @=L £ e (2) = (1)

, ZEHOﬁC(C.
z 20 .

This has the following consequences:

v v v

Proposition 7.13. For all 01,02 € C, for all mi,ma €N [, * I5y=Ic, 40,
v v v

and Joi1,mi ¥ Jou,ma=Jo1+02,mi4+ms -

1

202"

~ v 1 ~ vV
Proof. From proposition 7.12, we deduce that £ J,,= o and £ [,,=
ZO’

~ vV v
Thus by proposition 7.10, £ I, * I,,= o and one concludes by formal

Borel transform. Same proof for the other equality. O
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In definition 7.32, we meant morphisms of vector spaces. As a matter of
fact, these are morphisms of C-differential algebras. This is the matter of the
following proposition.

Proposition 7.14. The space SINGy';" is a commutative and associative al-
gebra with unit §. The Laplace transform LP : SINGg'y' — AS(B) is com-

v v v v
patible with the convolution of singularities: £ © 1= (E’B ® )(E’B P )
Moreover, LP (D <,v0) =oLP <,v0.

Proof. We go back to the very definition of the convolution product of micro-
v v A
functions and singularities. For ¢, ¥ € SINGy ,, for any 8 € J =]—a+0, 0+a|,

v v °
the convolution product ¥ 1 can be represented, for ( € S (|5 — 27, 8])
with € > 0 as small as we want, by

\ Vv 1 eV(Cf(gl‘i’gZ)) Vi
- ﬂ/p

\Y%
P xrxr ¥ (C) Gt h) P (§1) ¥ (§2)d&rde, (7.11)

(see 7.8), where I' = I3 5, is as in definition 7.7 and where S\é,z\//) are
thought of as belonging to (9(;0(][3 —2m,8]). In (7.11), v € C is a free pa-
rameter which can be chosen at our convenience.

We now assume that <,v07 126 SINGy'y and that é, 1) are summable majors in

the direction 3. In that case, choosing v = |v|e™ with |v| large enough to en-
v v
sure the integrability, one can rather consider the convolution product ¥ *

as represented by (7.11), but this time with an endless path I' = I’z . (see

v V
definition 7.7). This construction gives a major of ¢, which is summable in
the direction 8. Moreover, the arguments used in the proof of the proposition

7.10 show that £° Svﬁ * ’ZJZ (EB Svﬁ )(DB 17} ) ad

Example 7.7. We consider the formal Borel transform @, o) = B{E(Qo) where
W(o,0) is the formal series solution of the prepared ODE (3.6) associated
with the first Painlevé equation. We know by theorem 3.2 that (g,

L]
can be analytically continued to the star-shaped domain 2(® with at
most exponential growth of order 1 at infinity along non-horizontal di-
rections. We set 17/(0’0): "@(0’0) € SING™®. Then 13)(070)6 SINGfr“/rS,W/Q (or
log(¢)

2w

17)(0’0)6 SINGSf,f}QJ/z) : just consider the major 1\1/)(070) (€) = W(0,0)(¢)

The Laplace transform £107! 73/(0’0) is well-defined and gives a section of A=°
on ] —3n/2,m/2[. As a matter of fact,

£lorl %(0¢0)= ﬁ]o’ﬂ[@(o,o) = y]o’w[@(o,o)

and £107 17)(0,0) can be thought of as belonging to the space of sections

I'(]—3n/2,7/2[, A1).

v
We now consider the singularity [, * 17)(0,0), for any o € C. Using propositions
7.12 and 7.14, this singularity belongs (for instance) to SING73 5 and

\Y v v \% 1 ~
£ 15w o .0= (970 1, ) (L0 ) ) = 500,

ZU
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this time viewed as a multivalued section A< on | — 37/2,7/2[C S'.

7.7 Spaces of resurgent functions

7.7.1 Preliminaries

We refer the reader to [1] (Pré 1.3, lemme 3.0) for the proof of the following
key-lemma, the idea of which being due to Ecalle.

Lemma 7.5 (Key-lemma). Let I' C C be an embedded curve, transverse
to the circles |(| = R for all R > Ry > 0. Let & be a holomorphic function
on a neighbourhood of I'. Then, for any continuous function m : RT — RT
so that inf{m([0,£])} > 0 for all £ > 0, there exists ¥ € O(C) such that, for
all ¢ € I, |@(¢) + #(Q)| < m([¢]).

In what follows, we use the notations introduced in definition 7.7. We also
remind that C\ Z stands for the universal covering of C\ Z. One may also

think of m as the universal covering of C \ U {me'? | m e N*}.
O=nk, keZ

Lemma 7.6. Let SVDE SING be a singularity which can be determined by a

magor that can be analytically continued to C\ Z. Then, for any direction

v v
0 and any € > 0 small enough, the singularity ¥ has a major ¢ with the
following properties:

Vv
1. the restriction of ¢ as a sectorial germ of codirection I =] — /2 + 6,0 + 7 /2],
can be represented by a function @ holomorphic on the cut plane

C\ [0,e0[= s°(I), I =] — 27 + 6,0][;
2. & is bounded on S,/ (I), for every &' > e.
3. @ can be analytically continued to C\ Z.

Proof. Let 4\;1 be a major of 42 that can be analytically continued to C\ Z.
This major can be represented by a function @; holomorphic on
s8(I) U Soc(I)\ [0,ec0], for R > 0 and £ > 0 small enough, and &, can
be analytically continued to (C\Z The boundary I7. = —86 (I) can
be seen as an embedded curve Hy : R — C that fulfills the condition
of lemma 7.5 : one can find a function ¥; € O(C) so that &3 = &1 + ¥
satisfies |P2(n)| < exp(—|n|) for all n € IT.. One can also assume that
|Hy(s)| is bounded and these conditions ensure the integrability for the inte-

sl #(0) = o [ 0

&, (I). Moreover, one easily sees by Cauchy that @ = @5 4+ Wy where ¥y € O.
One observes that [ —n| > &’ — ¢ for ((,n) € So(I) X I'1., with & > .
Thus @ is bounded on &,/ (I). Notice that @9 inherit from @, the property

of being analytically continuable on C\ Z. Thus one can analytically con-

dn which thus, defines a holomorphic function on
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Cfn

Fig. 7.8 Deformation of the contour I'7 . by an isotopy equal to the identity in a neigh-
bourhood of infinity, for 8 = 0.

tinue @ on m by Cauchy, by deformation of the contour by isotopies®
H: (s,t) e Rx[0,1] — H(s,t) = H¢(s) € C\ Z that are equal to the iden-
tity in a neighbourhood of infinity, Fig. 7.8.

Finally, from the fact that & = &1 + ¥ with ¥, + ¥, € O, we see that @
defines a sectorial germ é of codirection I =] — /24 6,6 + w/2[ whose asso-

v
ciated microfunction coincides with the restriction of ¥ to the codirection I.
O

v
Lemma 7.7. Let ¢ € SING be a singularity which can be determined by a
magor that can be analytically continued to C\ Z. Then, for any direction 0

v v
and for any € > 0 small enough, the singularity ¥ has a major ¢ with the
following properties:

v
1. the restriction of ¢ as a sectorial germ of codirection I =] — /2 + 6,0 + 7 /2],
can be represented by a function @ holomorphic on the cut plane

C\ [0, e00[= s3°(]), [ =] — 21+ 6,6];
2. |®(n)| < exp(—|n|) for all n € Iy, where It . = —0S.(I) C s3°(I);

3. @ can be analytically continued to C\ Z.

Proof. Just consider first the function @, given by lemma 7.6, then use lemma
7.5 to define @ from ¢;. O

The above lemmas 7.6 and 7.7 motivate the introduction of new Riemann
surfaces that will be used in a moment.

Definition 7.33. Let 6 € S! be a direction and (; € C \ [0,ec0[. We note
9{20 the set of paths of the form A = A\; Ay where ), : [0,1] — C\ [0, 0]
with A(0) = (p, and A, : [0,1] = C\ Z.

For A € RY , we note cl(}) its equivalence class for the relation of homotopy
e of paths in 9%20 with fixed extremities. We set

RO ={C=cl()) | A€ R} and p: ¢ =cl()) —C=A(1) € C*.

5 That is H is a homotopy and for each t € [0, 1], Ht is an embedding. We remind that we
see I'r . as an embedded curve Hp : R — C.
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Proposition 7.15. The space Rgo can be equipped with a separated topology

that makes (Rgo, p) an étalé space. The space Rgo is arcconnected and simply
connected, thus defines a Riemann surface by pulling back by p the complex
structure of C. Moreover, for two points (o, (1 € C\[0,e?cc, the two Riemann
surfaces Rgo and Rgl are isomorphic.

The proof of proposition 7.15 is left as an exercise. We complete the above
proposition with a definition.
Definition 7.34. We note R? for the equivalent class of Riemann surfaces
L] .
’R‘go given by proposition 7.15. We note R = C \ [0,e?cc[. We call

“principal sheet” the unique domain R%(® ¢ R? so that the resctriction
plro.0) realizes a homeomorphism between R0 and the simply connected

domain 7.29’(0) .

7.7.2 Resurgent functions

Various spaces of so-called resurgent functions can be defined and used ac-
cording to the context. We start with the notion of resurgent singularities.

7.7.2.1 Resurgent singularities, resurgent asymptotic classes

v
Definition 7.35. A singularity ¢ € SING is said to be Z-resurgent when

v
it can be determined by a major ¥ € ANA that can be analytically contin-

ued to m We denote by RESz or simply RES the space of Z-resurgent
singularities.

A Z-resurgent singularity is often simply called a Z-resurgent function. Throughout
this course we will usually write “resurgent singularity” in place of Z-resurgent
singularity.

Remark 7.5. It is important to keep in mind that the minor ¢ of any resurgent

v —
singularity ¢€ RES, can be analytically continued to C \ Z, since the minor
© does not depend on the chosen major.

v v
Definition 7.36. One says that ¥ € RES is a resurgent constant when ¢
has a major which can be analytically continued to C. The space of resurgent
constants is denoted by CONS.

A
Definition 7.37. An asymptotic class ¥€ ASYMP is called a Z-resurgent
asymptotic class, resp. a resurgent constant, when its formal Borel trans-

form Z’ is a Z-resurgent singularity, resp. a resurgent constant. We denote by
ﬁE/SZ or simply RES the space made of Z-resurgent asymptotic classes. We
denote by C/(_)\l_\T/S the sub-space of resurgent constants.

A Z-resurgent asymptotic class is often simply called a Z-resurgent function or even

a resurgent function.

v v
Example 7.8. The singularities I, and J, ., are resurgent constants, as well

A A
as their associated asymptotic classes I, and Js .
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7.7.2.2 Resurgent functions, resurgent series

We remind the following simple definition, for objects much discussed in [24].

Definition 7.38. The C-differential commutative and associative convolu-
tion algebra Co @ %z with unit §, is called a space of Z-resurgent functions.

v
We denote by %27C RES the C-differential commutative and associative con-

\
volution algebra made of resurgent singularities of the form ¥= ad +"% with
P E Xy

Since C8 @ %y, is a convolution algebra, the identity "3 * "3 =" (3 * ) (proposition
v
7.6) implies that %7z is indeed a convolution algebra. One usually uses abridged

v
notation £ in this course.

Definition 7.39. A series expansion € C[[z7!]] is a Z-resurgent series
when its formal Borel transform B3 is a Z-resurgent function or, equivalently,
when the asymptotic class & belongs to RESz. We denote by %y the C-
differential commutative and associative algebra made of Z-resurgent series.

Throughout this course we usually simply write “resurgent functions” or “resurgent
series” instead of Z-resurgent functions or Z-resurgent series, since there is no risk
of misunderstanding.

7.7.2.3 Resurgent singularities and convolution

Theorem 7.1. The space RES is a C-differential commutative and associa-
tive convolution algebra with unit §, and CONS C RES is a subalgebra. There-
fore, the space RES is a C-differential commutative and associative algebra

and CONS C RES is a subalgebra.

Proof. (Adapted from [8, 1]. The reader should look before at the reasoning

made for the proof of proposition 4.6).

It is enough to only show that RES is a convolution space. We take two
v VvV

singularities ¢, 1 € RES, we choose a direction 6 and we suppose 0 < ¢ < 1.

v v
By lemma 7.7 —resp. lemma 7.6— ® —resp. 19— has a major such that its
restriction as a sectorial germ of codirection I =] — w/2+ 6,0 4+ 7 /2], can be

Vv M °
represented by a function ¥ —resp. ¢—, holomorphic on R?(?, that can be

analytically continued to the Riemann surface (R?,p) and moreover, satisfies
the condition:

1. |<,v0(77)| < exp(—|n|) for all n € I' ., where I'1, = —06.(I) C 7.29’(0);
\% .
2. 1 is bounded on &.(I).

We know by lemma 7.1 that ( — I'7. C &.(I) for every ¢ € Sy (I). We
also think of I'y . as an embedded curve Hy : R — C with |H{(s)| bounded.
Therefore, the above properties and the dominated Lebesgue theorem, ensure
that the integral

\Vi \%

X(Q) = 1y D(C) = /H S(n)P(C — m)dn (7.12)
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defines a holomorphic function on &a. (1) C R%(©) which by (7.7), represents

v %
the convolution product ¥ * 1. We want to show that x can be analytically
continued onto the Riemann surface (R?,p) (thus to C\ Z as well).

We choose a point (g € Sa.(I) so that {(op — Ho} NZ = ), and we
view x as a germ of holomorphic functions at (p: for & € C close to 0,

X(Co+¢&) = /H é(n)@z(f + Co — n)dn. We take a smooth pathy : [0,1] = C\ Z

starting from D{g = ~(0). We fix R>¢ so that v([0,1]) € D(0,R) and
length(y) < R. We will get the analytic continuation of x along «y by continu-
ously deforming Hy through an isotopy H : (s,t) € R x [0,1] — H(s) e C\ Z
that is equal to the identity for |s| large enough. One introduces a C' func-
tionn : C — [0,1] satisfying {¢ € C | n(¢) = 0} = Z. We also set a C* function
p: C — [0,1] with compact support so that the conditions p|p(s5r) = 1 and
pleypo,6r) = 0 are fulfilled. In what follows, we see Hy as an embedded curve
R — C and there is no loss of generality in supposing the existence of sqg > 0
so that Hy(s) € D(0,3R) for |s| < sg, else Hy(s) € C\ D(0,3R).

One considers the non-autonomous vector field X ({,t) = UL v (t).
1(¢) +n(v(t) — ¢)
We note g : (to,t,¢o) € [0,1]2 x C +— g(to,t, (o) = gt (¢o) € C the (well-
defined global) flow of the vector field, that is ¢ € [0,1] — () = g'*((o)

d
is the unique integral curve satisfying both d—i = X((,t) and the datum

((to) = Co- One finally notes ¢:(¢) = g**(¢).
Notice that any integral curve ((t) of X has length less than length(y) < R,

since | X (¢, )| < |9/ (t)]. With this remark and arguments detailed in [24], we
can observe the following properties, for every t € [0, 1]:

1. ¢¢(7(0)) = ~y(t), that is v is an integral curve. (Notice that p(y(t)) = 1
because ([0, 1]) € D(0, R)).

2. ¢:(C\Z) Cc C\ Z. (One has ¢;(w) = w for any w € Z since n(w) = 0).

3. ¢¢(¢) = ¢ for any ¢ € C\ D(0,6R) (since p|c\p(o,6r) = 0)-

4. for every ¢ € D(0,3R), ¢¢ (’y(O)—C) =y(t)— ¢ (C) Indeed, if t — ((t) is an
integral curve starting from ¢(0) € D(0,3R), then ((¢t) € D(0,4R) for ev-
ery t€][0,1] (the integral curve have length <  R), thus

% _ n(<)+ZEi)(t) 70 Comsider €0) = (1) ~ @) one has
s _ n(¢) n(&)p(€) 7' (t) because |£(t)] < 5R

/
&t~ (@) + (vt - €) W= e n(v(t) - €)
for every t € [0, 1], thus & is an integral curve of X.
5. for every ¢ € C\ D(0,3R), |7(t) — ¢+(¢)| > R. As a matter of fact, observe
that if ¢ — ((¢) is an integral curve starting from ¢(0) € C\ D(0, 3R), then
I¢(t)] > 2R for every t € [0,1] and therefore |y(t) — ¢ (¢)| > R.

We define the isotopy H : (s,t) € R x [0,1] — H(s,t) = Hy(s) by setting
H,(s) = ¢t(H0(s)). Since Hy avoids Z, one has H:(s) € C\ Z by prop-
erty 2. By property 3, we remark that for |s| large enough, H is a con-
stant map. Notice also that Hy C 7.29’(0) can be lifted uniquely with respect
to p on the principal sheet R%(®) of R?. We note Hq this lifting. We can
use the lifting theorem for homotopies [11, 5] to get the continuous map-
ping H : (s,t) € R x [0,1] = H(s,t) = Hs(s) € R? which makes commuting
the following diagram:
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RG
HA”p
R x [0,1] — C. (7.13)
H
We now set K : (s,t) € R x [0,1] — K(s,t) = Ki(s) = v(t) — Hi(s). We know

that Ko(s) =7(0) — Ho(s) € &.(I) C RO for every s € R. In particular,
one can lift Ky uniquely with respect to p into an embedded curve Ky on the
principal sheet R%(®) of R?. Moreover Ky(s) € C\ Z, for every s € R. Prop-

erty 5 ensures that K,;(s) stays in &.(I) for |s| > s, otherwise by property
4, K, (s) belongs to C\ Z. This implies that K; can be lifted uniquely with re-
spect to p into an embedded curve K; which lies on the principal sheet R ()
of RY for |s| > so. Applying again the lifting theorem for homotopies, one
obtains a continuous mapping K : (s,t) € R x [0,1] = H(s,t) = H,(s) € RY
that makes commuting the following diagram:

RG
K/ Ly
R x [0,1] — C. (7.14)
K
We finally introduce the two holomorphic functions @, ¥ € O(R?) such that

v
D(¢) = %(p(g)), () = ¢(p(¢)) for ¢ € R%©®. With these notations, the
germ of holomorphic functions x at (o = (0) reads

N(1(0) 4 €) = / B(Ho(3)) W (€ + Ko(s)) Hj(s)ds

and its analytic continuation along ~ is obtained by

X(y(t) +€) = / B(Ha () W& + Ku(s)) HL(3)ds. (7.15)

R

Indeed, remark that for |s| large enough, @(H(s)) = SVO(Ht(s)) and
\ \%
[P (Hi(s))| < exp(—|Hy(s)]). Also, for |s| > so, ¥ (& + Ki(s)) = ¢(Kq(s))

which is bounded since K(s) € &.(I). Thus the integral (7.15) is well-
defined. The fact that (7.15) provides the analytic continuations comes from
the Cauchy formula, see analogous arguments in, e.g. [24]. O

7.7.2.4 Supplements

One often uses other spaces in practice as we now exemplify.

The space RES(®®) (L) The space Z(%:*) (L) was introduced by definition
4.18 and we know by proposition 4.6 that Cé @ 2% (L) is a convolution
algebra. The following definition thus makes sense.

v v
Definition 7.40. We denote by %(‘9’Q)(L) >% the C-differential commuta-
tive and associative convolution algebra made of singularities of the form
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S%: ad+"% € SING with ¢ € 2% (L). The associated space of formal series
is denoted by 2% (L).
By its very definition, any element @ € %) (L) is a germ of holomorphic

functions at 0 that can be analytically continued to the Riemann surface
v

Z%)(L). This means that any Pe %) (L) is a simple singularity that

v

has a major ¥ which can be analytically continued to a Riemann surface

Z %) (L) constructed from 2% (L) \ {0} as an étalé space above C that
R0 (L)

N\
makes commuting the diagram: %) (L)\ {0}  C . (The construction of

e
C*
Z#9*) (L) is obvious and is left to the reader).

v
Since 22(%*)(L) is a convolution algebra, we know that for any two singu-

v v v v
larities SVO, e %) (L), their convolution product <,v0 % 1 belongs to 29 (L)
as well, thus has a major that can be analytically continued to % (% (L).

In substance, this comes from the property that °@ % *@ =" ($ * ) for two
integrable singularities (proposition 7.6). Now, what about the convolution

v v v v v
product ¥ * 1 of two singularities 1€ %(®* (L) and € RES ? To give the
answer, we prefer to shift to a more general case and we introduce a new
definition.

Definition 7.41. Let be 6 € {0,7} C S!, @ €]0,7/2] and L > 0. We denote
by RES(®% (L) the space made of singularities that have majors that can
be analytically continued to the Riemann surface % (®>*)(L). The associated

— (0,
space of asymptotic classes is denoted by RES( )(L) C ASYMP.
Proposition 7.16. The space RES"¥ (L) is a C-differential commutative

v
and associative convolution algebra with unit &, contained RES and 2% (L)
as subalgebras.

Proof. The proof follows that of theorem 7.16 but for the fact that one adds
the arguments used at the end of the proof of proposition 4.6.

The spaces RES®) The spaces 2% were introduced by definition 4.15.
They provide new spaces of singularities that are worthy of attention.

%
Definition 7.42. For k € N*, we denote by %(*) the space of singularities of

the form st: ad +°p € SING with ¢ € Z#™*) . The associated space of formal
series is denoted by 2",

v
Remark 7.6. Notice that the set of spaces (%(k))keN provides an inverse sys-

. e Y (k) V) i 2 .
tem of spaces whose inverse limit lim #\* = ﬂ% is #. This is why we
—
k

. . v v

sometimes write %(OO) =Z.
v

The space 21 is of particular interest since, from propositions 4.3 and 7.6,

v
2V makes a convolution algebra.
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v
The space #¥) is made of simple singularities that have majors that
can be analytically continued to a Riemann surface % ¥) above C obvi-

ously deduced from 2 \ {0} and that makes commuting the diagram:
174G

N
Z*\ {0}  C. (The details are left to the reader).

e
C*
We now consider larger spaces of singularities.
Definition 7.43. We denote by RES™® the space of singularities that have
majors that can be analytically continued to the Riemann surface % (¥), for

k € N*. We denote by RES®) ¢ ASYMP the space of asymptotic classes
whose formal Borel transform belongs to RES™).

Remark 7.7. Notice again that lim RES® = [JRES™ = RES, and we some-
k
times write RES(®) = RES.

We will have a special interest in RES™ because of the following analogous
to proposition 7.16.

Proposition 7.17. The space RES™) is a C-differential commutative and

v
associative convolution algebra with unit 8. It contains RES and V) as
subalgebras.

We omit the (rather lengthy) proof of this proposition. The main idea is
to consider the integral representation (7.12) used in the proof of theorem
7.1 and to adapt the construction made in Sect. 4.2.

Conjecture 7.1. We conjecture that any space RES™ makes a convolution
algebra as well.

7.8 Alien operators

Alien operators are powerful tools for analysing the singularities of resur-
gent functions. These operators are carefully defined and discussed in [24],
especially when they operate on the algebra Cé @& R5P of simple resurgent
functions. Most of the arguments there can be easily adapted for alien oper-
ators acting on RESyz, once the study of singularities had been made. This is
the reason why we introduce the alien operators in a rather sketchy manner
in what follows.

7.8.1 Alien operators associated with a triple

7.8.1.1 Mains definitions

We consider two directions 61,0 € S!, a point w € Z and a sectorial germ

\ \%
pe (981 of direction 6;. We can think of ¥ as a sectorial germ on a sector



7.8 Alien operators 169

EORI (I;) for 0 < Ry < 1 and I; C S! an open arc bisected by 67, and this is
what we do in what fovllows. -
We now assume that ¥ can be analytically continued to C\ Z. We consider

a path v : J — C\ Z starting from ¢; € ;é%l (I1) and ending at (s close to w

so that (o —w € §§2 (I2) with 0 < Ry < 1 and I C S! an open arc bisected
by 6. See Fig. 7.9.

v v
By hypotheses, the analytic continuation (cont, ¥) of ¢ along v is a well-
defined germ of holomorphic functions at (5 that only depends on the ho-
motopy class of v (for the relation of homotopy of paths in C\ Z with fixed

extremities). Moreover, if 7://16 O¢,—w stands for the germ of holomorphic func-
tions at (s — w defined by 1\//1 (&) = (cont, s\é )(w + &) then, still by analytic
continuations, @\[/J determines a unique sectorial germ on §0R2 (I3) and thus, by
restriction, a unique sectorial germ 1,vb€ (’)22.

This justifies the following definition adapted from [24].

Definition 7.44. Let be 0;,0, € S', w € Z and %E (981 a sectorial germ of
direction 6; that can be analytically continued to (a/Z Let v:J - C\Z
be a path starting from a sufficiently small sector go(I 1) bisected by 6; and
ending close to w in a sufficiently small sector of the form w + 30(12) where

I bisects 3. Then, one denotes by ,Ztl(ﬁg, 01) %E Og2 the sectorial germ of

\ L[]
direction 6, represented by v (£) = (cont,, <,v0 )(w +€) for & € so(I2).

v
We now consider two directions 6;,60; € S' and a singularity ¥€ RES;.
L]

v
Thinking of ¢ as a singularity of SINGg, o, (for some «; > 0), its mi-
nor @ can be seen as representing a sectorial germ @ € Ogl of direction

0, = 7(61) € S! that can be analytically continued to m Therefore, un-

\% ° . .
der the conditions of definition 7.44, the sectorial germ v, = A7 (62, 61)% of
direction 0y = 7(02) € St is well-defined. Even, by analytic continuations, one

v .
can deduce from 94 a sectorial germ of direction I =] —7 + 62, 6> +7[C St

v
that we denote by 1/119, € I'(1y,, 0%). By inverse image by 7 of the sheaf O,
2
v
this sectorial germ I determined a uniquely defined sectorial germ of di-
2

\%
rection Iy, =] — 7 + 0,02 + 7[C S' that we denote by ¥, - Still by analytic

continuations, this sectorial germ gives rise to a (multivalued) section on any

Fig. 7.9 A triple (v, 61,02) defining the operator A7, (61,02) at w = —2.
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arc of the form | — a — 2w + (62 + ), (02 + ) + a[€ S', a > 0, that is to

v v
an element ¢ of ANA =) ANA (9, 47),a> Whose singularity ¢ belongs to

RESz.

a>0

Definition 7.45. Let be 01,0, € S* and w € Z. Let v : J — C\ Z be a path

starting from a sufficiently small sector go(Il) bisected by 6; = 7(6;) and

ending close to w in a sufficiently small sector of the form w +§0(IQ) where I

bisects O = 7(fy). For any singularity SVOE RESz, one denotes by A, (62, 0;) <,v0
v v

the singularity 9 that can be represented by a major 1€ ANA = I'(S', 0%)

v
whose restriction vy, € (932 is the sectorial germ of direction 85 determined

\ ° . .
by ¥4, = AL (02,01)p, where { is the minor of svD.
The linear operator A7}, (62, 61) : RESz — RESg is called the alien operator
at w associated with the triple (7,61, 62).

The alien operators have their counterparts on asymptotic classes through
formal Borel and Laplace transforms.

Definition 7.46. The alien operator A (62,61) at w associated with the
triple (v,01,62) is defined on asymptotic classes by making the following

RrES ") RES.
diagram commuting: £ [1 B LITB.

RES 5™ RES

7.8.1.2 The spaces RES (%) (L) and RES®)

Alien operators acting on RES('é’a)(L) We would like to define alien
operators acting on the space RES®®)(L). We take 0 € {rk,k € Z} C S.l,
o €)0,7/2], L > 0and m e {1,---,[L]}. We set § = 7() € {0,7}, we con-
sider a singularity ;E RES() (L) whose minor is @. By the very definition
7.41 of the space RES(é’a)(L), the sectorial germ 1,7192: ;l:ﬁ(ég, 0)p € (922 is

well defined under the following conditions:

1. w=mel? and the path 7 is of type 73 with € = (&)1 € {+,—}"" 1. In
that case, 0 should be 6 — ;

v
2. however, starting from v, __ and be analytic continuations, one can con-

v . ..
sider as well sectorial germs vy with 0 € I =] — 27 + 0, 0[C St.

\
By a construction already done, the various sectorial germs 1, glue together
v
and provide a sectorial germ 1, € (1, 0% of direction 1,. Still by analytic
continuations and moving to multivalued sectorial germs by inverse image by

v .
7 of the sheaf O°, one eventually gets an element 1 of ANAy , with 7(0) = 6.
This gives sense to the following definition.
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Definition 7.47. Let be 6 € {rk,k € Z} ¢ S*, a €]0,7/2] and L > 0. We

write 6 = #(0) € {0,7} C S'. We pick m € {1,---,[L]}, we set w = me?
and we assume that the path ~ is of type 'Y(Oi)m_l'

v ) v
For any singularity € RES*) (L), one denotes by A (6,0) © the singu-
v v
larity 1€ SINGg , that can be represented by a major € ANAy , whose
v
restriction 1,_,€ O)__ is the sectorial germ of direction § — 7 determined

\% ° . .
by ¥y_.= AY(0 — m,0)p where ¢ stands for the minor of Z).

This gives rise to a linear operator A (6,0) : RES(é’O‘)(L) — SINGy 4, still
called the alien operator at w associated with the triple (v, 8, ).

Alien operators acting on RES™®) We now work on the spaces RES®
given by definition 7.43. We want to demonstrate that alien operators can be
defined on RES™ | associated with triples of the form (7,0,0) with v of type
6 é
Y H)m O V(=) '
We start with RES!. Let be 6, € {rk,k € Z} C S' and set w; = e

with 0, = 7(6;). The very definition of RES™") and the above reasoning lead
straight to the following linear operators, for any integer m; > 2 and any
ee{—+}:

61 791
A (01,61) : RESY) 5 SINGg, «,  Ameii ™ (61,61) : RESY — SINGy, 4 x/2.2/2

(7.16)

Let us now move to the next case k = 2, that is we consider the space
RES® ¢ RES™W. Of course the above operators (7.16) still act on RES®
but, however, their ranges can be made more precise. By the very definition

of RES(z), the minor ¢ of any singularity Z’G RES(Q), when considered as a

sectorial germ, can be analytically continued along any path ~ of type ’yg}ll
with

e™ € {((H)™, (Hmi-1), (E)™ (Dmy—1) | (n1,m1) € (N)?}.

Moreover, introducing 6, = 61 + (n— 1), w; = €% and wy — w; = €2, the
analytic continuation cont., @ of ¢ along 7 is a germ of holomorphic func-
tions that can be analytically continued onto the simply connected domain
p(#=" %) = C\{] —o0,p]U[p+1,400[} where |p, (p+ 1)[=]wi,ws[ when
m1 =1, |p, (p + 1)[=](m1 — 1)wa, miws[ when m; > 2. Considering only odd
values for ny (thus #3 = 6; on S'), one immediately sees that (7.16) becomes:

61
ALV (61,6) : RES® — RESW, (7.17)

01
Ay (01,01) : RES® — SINGy,
7(951)7n171 . (2)
miwi (91791) : RES — SING91+7T/2,7T/27 my > 3.
0
Notice in particular that the operator A (62,60;) now acts on RES® as
well, for any direction 6, € S.

The reasoning generalizes and we give the result.
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Lemma 7.8. Let be 0, € {rk,k € Z} C S'. For any integer k > 1, any
L]
. 791
e € {—,+} and any m; € N*, settingw, = ', the alien operator Anﬁzﬁlfl (61,01)

is well defined on RES™) with the range:

61

’y £),

a1 (01,61) : RES® — RES®—™) 1 <m; <k—1 (7.18)
61

’Y £

a1 (0y,61) : RES®) — SINGy, », my =k
61

Y€ my -1 . (k)
mawst (01,601) : RESYY — SING@IJ’,W/QJT/Q’ my > k+ 1.

7.8.1.3 Miscellaneous properties

We start with a simple result which is a consequence of the very definitions.

Proposition 7.18. For any alien operator  of the form
A2(05,6,) : RES; — RESy, acting on RESz, RESY)(L) or RES®, for

any singularity Z? :
v v
AL (02,01)(0 %) = (9 —w)AL(02,61) ¥ . (7.19)
In other words, [AY(02,01),0] = —wA)(02,601).
We introduce new definitions before keeping on.
Definition 7.48. For any k € Z, one denotes by g € Aut(m) the deck

transformation of the cover (C,7), defined by:

o : C =71 € C s gp(¢) = re T2k ¢ C.

v v v
For any singularity of the form ¢ = sing,¥ € SING, ¢ € ANA, we write
v v
ok = sing, (¢ o o) € SING.
More generally, for any r € R, one defines

or: C=re? € C s 0,(¢) = rel? 2™ ¢ C

and gr.s% = sing,, (svo o o,) € SING.

Remark 7.8. With this notation, the variation map var : SING — ANA reads
var =id — 0_1..

The alien operators associated with a triple satisfy some identities as can
be easily observed:

Proposition 7.19. For any given alien operator AY,(62,01) : RESz — RESyz,
and for any k € Z,

AZ(92,91 + 271']6) = AZ(92,91)Q1€., AZ(GQ + 27T'/€,91) = Q_k.AZ)(QQ,Gl).
(7.20)
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Fig. 7.10 Two triples (v, 01, 62) and (yAw, 01,02) for the point w = —2, with A, a closed
path of winding number wind,, (As) =1 at w.

Let us now consider a point w € Z and a given triple (v,61,602). One
can prolongs the path v into the path yA*¥ where ¥ is a closed path
near w that surrounds that point like on Fig. 7.10, with winding num-
ber wind,(A\¥) =k € Z at that point. One can as well consider the path
A\é~ where Af is a closed path surrounding the origin with winding number
wind,, (A¥) = k € Z. A little thought provides the following result.

Proposition 7.20. We consider a triple (v,01,02) defining alien operator
A2 (04,01) : RESz, — RESy at w. We assume that Y\¥ | resp. \Ev is a product

of paths so that \¥, resp. \E, is a closed path surrounding w,resp. 0, and close

to that point, with winding number wind,(\F) = k, resp. windo(\E) = F,
k € Z. Then,

AR~ YAF
Awo (02,91) :AZ(GQ,Ql)gk., Aw “’(92,01) = gkAZ(QQ,Gl) (721)
In particular,
AL (B, 01 427k) = A2 (6,0,),  AL(O2427k,0y) = AL (60,01). (7.22)
We end with the following property.

Proposition 7.21. For any alien operator of the form
i v
AY(6,0) acting on RESz, or RES(Q’(’)(L), for any singularity ¥ and any resur-
v
gent constant conste CONS,

A2(6,6)( const * ¢ )= const *(A(6,0) Y ). (7.23)

We stress that in proposition 7.21, only alien operators of the form
A2 (02,01) with 6; = 6, are considered. We omit the proof of this propo-
sition which relies on a careful reading of what have been done for showing
theorem 7.1.

7.8.2 Composition of alien operators

7.8.2.1 Alien operators on RESy

The following definition is adapted from [24].

Definition 7.49. One calls alien operator at w € Z associated with the
couple (#,07") any linear combination of composite operators of the form



174 7 Supplements to resurgence theory

Fig. 7.11 The triple (71, 9%, 63) for the point w1 = —2, the triple (v2, 63, 93) for the point
wg — w1 = 4, with 0% :9% + .

Y ™m m Y2
Awm—wm 1( 2 791 ) OAwQ —w1

(63,63) o AT (63,6}) : RES;, — RESy,

where (w1, ,wm) € Z™, m € N* with w = w,,, = Z;"Zl w;j —wj—1 and the
convention wg = 0.
Example 7.9. We exemplify the above definition. We take w; = —2 and
wy = 2. The alien operator AJ! (63,67) at the point wy = —2 is associated with
the triple (y1,61,63) drawn on Fig. 7.11. The alien operator .AwZ ., (03,07)
at the point wy — wy = 4 is associated with the triple (y1,61,63) drawn on
Fig. 7.11. We furthemore assume that 62 — 61 € [0, 27| to fix our mind.
From the very definitions of the alien operators and of a minor, one easily
checks that the composite alien operator A72_, (03,07) o A7} (03,01) at wo,
can be written as the difference of two simple alien operators, namely

A2, (62,63) 0 AT (63,01) = ALT(63,01) — AL (62,61).

Wo —w1
In this equality, I'* and I"~! stands for the (homotopy class of the) product
of paths I't = 1 \f (w1 +72) and I'™ = v, A\, (w1 + 72) respectively, where
the paths )\Il and Aj drawn on Fig. 7.12, are homotopic to small arcs so
that (A5, )~'A}, makes a loop around w; counterclockwise.

Typically, the end point of v; is QQ = w1 + rei®1 while the starting point of 2
is ¢2 = reif? with 0 < r < 1. Then, A}, : 6§ € [63,63] — wy + rei® while
Aoy t:0 e [—2m 462 Gl]i—>w1+re“9

From this result, one deduces from proposition 7.20 that for any k € Z,

AL, (63 9%+2Wk)OAZi(9%,0%):Aw(9 1) — ALk (63,01).

‘9 243

Fig. 7.12 The paths I't = 71)\1'1 (w1 +72) and I't = A~ (w1 +72), w1 = —2.
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with IF = A8 AL (w1 + 12) and I, = 1Ak AJ (w1 + 72) respectively,
where AF stands for a closed path around w; = —2 with winding number

wind,,, ()\Zil) = k at that point.

What have been done in the above example can be generalized. This is
the matter of the next proposition.

Proposition 7.22. We consider the two alien operators AJ! (03,071), AL2 _, (63,07)
and we assume that 3 — 03 € [0,2x[. Then, for any k € Z,
V2 2 92 1 g1 If p2 o1 I 92 pl
A (62,01 + 2mk) o A7} (63,01) = Aus (63, 601) — Aus (63, 61).

w2 —w1

with I}F = 1 A5 A (wi+72) and I}, = v A5 A5 (w1+72) respectively, where
AE. stands for a closed path around wy with winding number wind,, (A ) = k
at that point, whereas )\jl and A5, follows small arcs so that (A;l)’lkjl
makes a loop around wy counterclockwise.

As a consequence, any alien operator at a point w € 7 associated with the
couple (01,02) can be written as a linear combination of alien operators at w

associated with triples of the form (7,01, 602).

We now focus on paths of type Vgn. For m € N*, we take a (m —1)-tuple of
signs € = (€1, ,em-1) € {+,—}" Land n = (ny, - ,npm_1) € (N*)m-L
We choose a direction 6, € {rk, k € Z}. Following definition 4.4, to a path of

type WZ}L one associates a sequence of points and directions defined as follows :

0j41 =0; +ej(n;—)mr 1<j<m—1 (7.24)
wjﬂ—wj:em”l 0<j<m-1
wo =0.

61
These data thus provide a uniquely defined alien operator Ag<" (0, 01), once

the direction 6,, € S', 6,, = 7(0p,) is chosen.

Theorem 7.2. Let m € N* be a positive integer, € € {+, -}, ne@m)m!
and 0y € {mk,k € Z}. Lety be a path of type N5, W and 0., given by (7.24),
and 0,, € S' so that 6,, = 7(0,,). Then the alien operator AL (Om, 01) at wp,

associated with the triple (v, 61,0,,) can be written as a Z-linear combination
of composite operators of the form

A% 7%71(0”” 0} )o---0 Alszi (05,05) o AZ,E (07,07)

Wi

that satisfy the properties:

(Wi, ,wy) € Z*, k € N* and W) = Win;
Om =0);
o foreveryj=1,---,k, the path ~; is of type fy(g my eN*;

’
j
i P,
Zj:1 m; < m.

This theorem is of a purely geometric nature. We omit its proof (see
[1] Sect. Rés II-2, see also [24, 21]) and we rather produce two examples
that explain the algorithm.
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Ezample 7.10. We consider a path v of type 721 for e = (+,—,+) and we
take 6; = 0, see Fig. 4.2. To the path v one associates by (7.24) the se-
0; =0, 1<j<4

o =d = ) . O
(.do:O, UJjJrl—UJj:].OS]S?) ne
takes §; = 0’ = 0 for any j € [1,4]. We want to decompose the alien operator
AY, (04,61). From the very definition of the alien operators, one observes that

quence of points and directions: {

63 61
AP (04,05) 0 A D (03, 01) = ”(“3(94,91>— ST (0,,04),

Wyqg—Wws2

and therefore

61 6’ 6/ o
Z(4+,7,+> (04, 91) — Z(:)a (0/7 9/) o A'Y(Jr_) (0/’ 0/) o AZ(;) (9/’ 0/)

Wy —w2

Example 7.11. A bit more difficult, we consider a path v of type 'yﬁh for
e=(+—,+), n=(1,3,1) and 6, = 0, see Fig. 7.13. The algorithm (7.24)

. . 0, =0, 1<j<4
still . J ’ >J =
sti prov1des{wO:0’ Wi —w; =1 0<j<3

for any j € [1,4]. Since

. One takes again6; = ¢’ =0

63 2
AP (04,05 —2m) 0 Ausy ih (92791) = 3(41+’7’+)(94,91) A/H 1 (04,01),

Wq—w2

one deduces with the first example that

91 o o/
L0 (0,,0) = AL (0,0) — AL (0.0~ 2m) 0 AL (01,0)

Wy —w2

_ Z}(4+)3 (9/ 9/)—./4’}/{9:;) (9/ /)OAWH—)(HI /)

Wq—w2

878 18
- A;;jwz(e' 0 —271) o Aus o 0',0).
Example 7.12. A step further, we consider a path  of type ygh for
e=(—+,++ ), n=1(1,2,1,1,1) and take 6; = 0, see Fig. 4.3. Using
(7.24), we define:

91—492—0
93— —95—7‘(’
wg—o,wlwa—LL)Q*wl:l
OJ3—(JJ2:"':LU6—OJ5:—]..
We set 6y =03 =607 =0, 03 =--- =05 = 0, = m. We start with the identity:

o 0
70 HEEI gy
(05, 01) = Awg

Aws—w (067 96) O A

D (05 0)) — A, (66, 01).

Next, a little thought yields:

Fig. 7.13 A path of type
72’}1 for € = (+7 ) +)7 * \./ @ \./
n=(1,3,1) and ; = 0. 0 1 2 3
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91

A”**“(e 63) o AZ2 (62,01) = (**“’*H)(es,o)— "D (95, 05),

We —w2

A”<t+>(95793)o ”H(az,el) ,4”<-+2++>(95, 6,) — AWS (65, 65).

W5 —w2

01
Finally, Aw(; oy (02,05) 0 ALY (61,6,) = ”<+> (62,6,) — ”“ )(65,6,). Putting

things together, one concludes:

9/
A2 (66,61) = ”*’(ez,e')
6/ 9'/ /
"/ Y, Y ’Y
+ 'Aw(; :ru;) (027 92) (+)( 0/) Aw(g) ws (027 02) © 'A () (0/27 0/2)
- AZf; £ (64, 64) oAj;; o, (00,07) 0 A”“ @;,0})

’
6% 64

- AZ‘; o (05.0) 0 A1 (81, 04) 0 AL (0], 61)
e’ 9'
+A12 o (05,00 0 AJ (01 00y 0 ATO (01,04 >oA”<>< 60).

7.8.2.2 Alien operators on RES®)

We have seen with lemma 7.8 that the alien operators associated with triples
of the form (v, 61,61) act on RES® for ~ of type *yfjr)m and ’y?i)m. We keep
on this study according to the guiding line of this section.

We assume 6, € {0, 7} and take two integers [, k subject to the condition
2 <l < k. By the very definition of RES(k), the minor @ of any singularity

v
pe RES(k), once considered as a sectorial germ, can be analytically continued
along any path v of type 753” with

e™ € {((B) ), (O)m—1) | e € {+ —}m = (n1,- - ,m_1) € (N7 my € N*).

With the notations of (7.24), the analytic continuation cont, @ of ¢ along ~ is
a germ of holomorphic functions that can be analytically continued onto the
simply connected domain p(#¢"'+%) = C\ {] — 0o, p] U[p + 1, +o0[} where
Ip, (p + 1)[=]wi—1,wi[ when m; = 1, ]p, (p + 1)[=](m; — 1)w;, myw;| otherwise.
These properties translate into the next statement (the details are left to the
reader).

Proposition 7.23. Let be 0, € {rk,k € Z} C S* and (I,k) € N with the

condition 1 <1 < k. The following alien operators are well-defined, for any
e € {—,+}, any ny e N=! and any m; € N*. Setting 01,0 by (7.24) and
0, € Sl with 6; = 7(6;),

61
’Y nl -
LI g, 01y RES® — RESE—Hmith) ] <y < ke — 1
91
KO (g 0y RES®) 5 SINGg, s my = k— 1+ 1

91

TSP @y —1)

e (01,01) : RES™ — SINGy, yr/o.n/2, ma >k —1+2.
(7.25)
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oy

: Yy -1 2
Equivalently, A ! (0;,60) 0 --- AV

6y
s wn—w; (02,02) © Az,(l) (01,01) are well-

defined alien operators, with éj,wj given by (7.24) and 0; € S' with
0; = 7(0;), with the following ranges:

0y 6

Ve L 1 e

At (61,600) 0 -+ 0 Aol (61,61) : RES®) — RESE=1=mH1) 1 <y < ke — 1
0y 6

Ve 1

At (0,6) 00 ALY (61,61) : RES®) — SINGy, , my =k —1+1

él I}

Yo 1

A (1,67) 0 -~ 0 A (61,60:) : RES®) 5 SINGo, 15,2, my >k —1+2.

(7.26)

We would like now to discuss a kind of converse of proposition 7.23 with
the next two propositions.

Proposition 7.24. Let k € N* be a positive integer and sVDG RES®). We
4
suppose that for any 0 € {rk,k € Z} C S* one has A0 (0,0) sv@E RES™,

with w = el § = 7(0). Then SVD belongs to RESH+Y).

v
Proof. There will be no loss of generality in assuming that ¢ is a simple

v v
singularity and this assumption is easier to handle : = ad +°3 € ™) with
peR®.

v
We consider a singularity #(1). Thus, @ can be analytically continued to
Z") . Equivalently, for any 01 € {mk,k € Z}, § can be analytically continued

along any path 7, of type 7?51) o meN* e¢€ {—,+} and cont., ¢ is a germ
that can be analytically continued to the star-shaped domain p(e@(s)’"*l’él).

01
Let us assume that for any 0, € {rk,k € Z}, AL (61,071) Z? belongs to

- v
RES(l), where w; = ¢'%1. We claim that ¢ belongs to RES®.
Our assumption results in the following property : for any n; € N* and
any path v of type Vgi)nl, denoting by Aj, a clockwise loop around wi,
1

the difference (contnY — cont_ - )(5 is a sectorial germ that can be analyt-
o1 .
ically continued along any path o of type 7?52) »m e N e¢€ {—+},
0y = 01 + (ny — 1)7. Moreover cont., (cont., — cont, - )@ is a germ of holo-
wq

morphic functions that can be analytically continued to the star-shaped do-
main p (%((i)?l 1(€)m*1)791 ) .

Start with ny = 1 and a path ~ of type yfjr)l, resp. vfi)l. Take a path 5 of
type ,y(aj‘)yn—l’ 0y = 01, resp. V?E)WHI. Notice that 73 = v7y2 is a path of type
'y?sl) . Therefore from the above property, cont., (contvgﬁ) = cont, @ is well-
defined and gives a germ that can be analytically continued to the domain
p(%(“r)mael) — p(%((+)1,(+)m71),91), resp p(%(*)mﬁl) — p(%((*)h(*)mfﬂﬁl).
But this implies that cont., (contw\;1 ?) = cont, -~ 4, @ s also well-defined
and provides a germ that can be analytically continued to the domain

p(%(“")mael) — p(%((f)l’(“r)M*l)#él), respp(%(f)m’él) — p(%((f)?’(f)M*l)’él).
(Notice that the path A7 72 is a path of type 7(9(1_)1’(”7”71), resp 7(0(17)?’(7)7“71)).
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Of course, one could have chosen a path - of type ’7(0:-)1 and a path v, of type

’Yfi), . The path 71 = YA, 72 is a path of type ’y(gi) and we conclude for

the analytic continuation of @ along the path s of type *y(o(l (=)m1)”
One can pursue this way by induction on n; to show our claim. Here, we
just add the case n; = 2 so as to deal with a subtlety. We thus consider

a path ~ of type 'y&_)z, and a path 7, of type 'y?;) 6, = 61 + 7. Notice
1

m—1’

that the path yA_ 72 is homotopic to a path of type 7?)1 when m = 1, of

type ’y?;) ) when m > 2. Therefore, cont., (cont AD c,/o\) is well-defined and
m— “1

one concludes that ¢ can be analytically continued along the path 1 = v,
6

OF tYPC V()2 (e),o

continued to the star-shaped domain p(%(("’)?’(e)m—l)’él).
The same reasoning can be generalized and give the proposition. 0O

) and moreover the germ cont.,, @ can be analytically

A quite similar (and even simpler) reasoning gives the next result.

v
Proposition 7.25. Let be k € N* and ¢ RES®). We suppose that for any

'761 n
0, € {nk,k € Z} € S* and anyn € N1 the singularity Aw(k(i)k’l)(Qk, 61) ¢

belongs to RESW | where wy, is given by (7.24). Then SVD belongs to RESFHD.

We eventually use theorem 7.2 to reformulate proposition 7.25.

Corollary 7.1. Let k € N* be a positive integer and SVDE RES™ . We suppose
that AT (0, 0k) 0+ 0 A2 (B3,02) 0 AL (6y,61) @ belongs to RES™Y

We—WEg—1 w2 —Ww1
for any composite operator that satisfies the properties:

o for every j=1,--- k, the path v; is of type V?jr)
k
o Xiim; =k

Then SVO belongs to RES(*+1),

, My € N*,‘

mjfl

7.8.3 Alien derivations

We now specialize to some alien operators.

7.8.3.1 Definitions

Definition 7.50. Let be 0 € {nk,k € Z} C S', a €]0,7/2] and L > 0. We
denote § = 7(0) € {0,7} C S'. We set w =me'? € C for m e {1,---,[L]},
resp. m € N*. The so-called alien operators at w,

AL, Ay RESU) (L) - SINGg., resp. Ab, A, : RES — RES,

are defined by (7.27),
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Fig. 7.14 Symmatrically
contractile path Hp and
contributions to AZ, (7 @ -3 -2 -1 4
for w = 3. Pinchings occur e 0 o )7 6 )y
between 1 and ¢ — 2, and |
between 2 and ¢ — 1.

(9

6
ALm=19.0) & (7.27)

Z p(E)Tilq!(E)!Af (97 9) ()vo,

e=(e1, em—1)E{+,—}m !

v
Al

v
A, ®

where p(e), resp. g(€) = m—1—p(e), denotes the number of “+” signs, resp.

“ 7

—” signs in the sequence €.

Definition 7.51. The alien operators AY, A, : RES — RES for asymp-

totic classes are defined by making the following diagrams commuting:

+
RES “=3“ RES

L1t B LItB
— + —
RES “=3° RES

7.8.3.2 Properties

Theorem 7.3. Under the hypotheses of definition 7.50, the alien operators
A} RESOY(L) — SINGy,q, resp. Al : RES — RES, satisfy the identity:

v v v

AL(® 1) ) % (AL, 4 )+ P (A% D)

I
©
€+
E
*
<
+
™
£+

(7.28)

19 with my, mo € N* such

where the sum runs over all w; = mlele, Wy = Mae
that mi1 +mo = m.

The alien operators A, : RES(é’O‘)(L) — SINGg , resp. 4, : RES — RES,
v v v

satisfy the Leibniz rule, A, (ZJ *1p) = (Awst) * ) + & (Aut). Moreover,

A, (0 <,v0) = (0— (:J)(Aw <,v0) Fventually, A} cons= A, cons= 0 for any

v
resurgent constant cons.

Proof. We give the proof for the identity (7.28) only, so as to exemplify the
v .
use of singularities. Moreover we work on the space %2(%"*)(L).

The reader is invited to compare with the proof made in [24] for simple resurgent
functions.

There is no loss of generality in assuming that Z?: >3, 71: b’L//; with @, LE e %) (L).
By proposition 7.6 one has @ * "3 =" (§ * @), therefore we can use argu-
ments developed in chapter 4 (see in particular the proof of proposition 4.3),
which allow us some abuse of notations. R

The analytic continuation of the convolution product @ * ¢ along a path

. [ ] . .

~ of type 7(0—5-)7%1 = 7r(7€+)77171), ending at ¢ = w + &, near |(m — 1)el?, me'?|,
is the germ of holomorphic function defined as follows:



7.8 Alien operators 181

e e e £ e e
(Contvﬁ*w)(wﬂLé):/H @(nl)w(nz+§—£o)+/o GCHmY(E=Eo—m)dn.

Here H, 1is a symmatrically contractile path deduced from -,

o(m) = contﬁb‘[o’s]@(ﬂb(s)), Y(ne+E—&y) = Contﬂljl|[o,s]w(ﬂ;1(5)+f*fo)
and o(¢ +n) = contﬂb@(ﬂb(l) + 77). To get the associated singularity, that

v v
is AL (¢ 1), one only needs to consider the restrictions:

1. of the first integral near the “pinching points” (see Fig. 7.14), where one
easily recognizes convolution products for majors and these provide the

v v v v
contribution Y- (A% ¢) * (Af,¥) to the singularity AF (¢ * v);
2. of the two integrals near the end points, which provide the missing contri-
butions (use proposition 7.2).

This ends the proof. O

Definition 7.52. The linear operators A, are called alien derivations and
RES is called a resurgent algebra (since stable under alien derivations).

We refer to [24, 1] for the proof of the next statements.

Theorem 7.4. For any 0 € { kr,k € Z}, w € C with arg(w) =0,

(_1)871
Aw = Z S Z AI Ws—1 OAIQ w1 Azjla
seN* arg(wl) =arg(ws—1)=0
w1< Rws <w
(7.29)
1
Z 5 > Awo, 1 00 Ay, 0 Auyy  (7.30)

eN* 77 arg(wy)=-=arg(ws—1)=0
0<wi < <ws<w

In the above theorem, < stands for the total order on [0,w] induced by t € [0, 1] —
tw € [0,w].

The alien derivations own the property of generating the whole set of alien
operators. We precise this claim with the following upshot from theorem 7.2
and theorem 7.4.

Theorem 7.5. Let m € N* be a positive integer € 6 {+, -}, ne(N)m-t

and 0y € {mk,k € Z}. Let ~y be a path of type N2, O and 6, given by (7. 24)
and 6, € Sl so that 0, = 7(0,,). Then the alien operator A (Hm,ﬂl)

wm associated with the triple (v, 61,60,,) can be written as a Z—lmear, resp.
Q-linear combination of composite operators of the form

Ok, - (AL o---0 AL o0 AL ), resp. ok, (Au, 00 Au, 0 Auy),

that satisfy the properties:

o (&1, ,wy) € (Z*)", n € N* andw(zyzle) =W
O,, g(wn) + 21k, ky € Z;

—= ar (
?:1 |w;| < m.
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Example 7.13. We continue the example 7.10. The path ~ is of type 72 for
€ = (+,—,+) and we know that

0
A F70(0,0) = Af — Af o AF
(On the right-hand side of the equality, (4,2) stands for (4ei%,2e?)). Using

theorem 7.4, one gets:

AL 70(0,0) = Ag+ & (Az 0 A+ Ag 0 Ay + Ay 0 Ay)
+%(A2OA10A1+A10A20A1—|—A10A10A1) +%A10A10A10A1
_(AQ + %Al OA1> o (Ag + %Al OAl).

(We do not simplify).
Ezxample 7.14. We continue the example 7.11. The path + is of type ’yﬁh for

e=(+,—,+), n=(1,3,1) and we have shown the identity:

AZ<+‘_2’+) (0,0) = Af — A 0 AY — 0_1.AF .. 0 AF.

2e—2im
This can be expressed in term of alien derivatives as well.

We end with an observation. By its very definition, any singularity

v v

pe %) (L) has a regular minor. This property involves the following rela-
tionships for the action of the alien operators. (These are essentially conse-
quences of propositions 7.19 and 7.20).

Proposition 7.26. We suppose o €]0,7/2], L > 0 and m € {1,---,[L]}.
The following equalities hold for any k € Z:

v v
o for any e %% (L),
v v v v
A:,;Ciﬂ'2k p= Q—k~(A7:eiwo ¥ )a Appeinzr P= Q—k-(AmciWO ¥ );
v v
e for any pe %™ (L),
v v v v
A;;Cm(zwrl) = Q*k"(A:;Leifr ¥ )a Ameiﬂ(2k+1) p= Q*k~(Amei7f ¥ );
. v v v . . . —~ .
e moreover, if € % (L) N %™ (L) and if its minor @ is even, then
v v v v
A,;« Y= 9—1/2~(AIr Y )» Agin = Q—1/2~(A1 ‘F’)

with 1 = e'°, while if § is odd, then

v v v v
A:},, p= _9—1/2'(AIr ¥ )» Agin p= —Q—1/2~(A1 ‘P)
Ezample 7.15. We take ¢(() = %1 € Z%. This is a meromorphic func-
e -

tion with simple poles at Z* whose residue at m € Z* is res,, = m. Intro-

v
ducing the singularity ¥="3, one easily deduces that for every k € Z and
every m € N*,

Apaini 9= AT 6= (=1)Fms. (7.31)
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~ Vv A
The formal Laplace transform £ ¢ is an asymptotic class ¢= 9% that can be
representend by a Z-resurgent series p € %z and (7.31) translates into
A + A k
Ameiﬂ'k Y= Amci""k Y= (71) m. (732)
. . v v v
We now look at the singularity ¢, ,=Jsn * ¢ for (o,n) € C x N. By the

v
Leibniz rule and since J,,, is a resurgent constant,

v v v k v
Apeins Yo =Join *Amenr ¢= (=1)*m Jon € [ SINGrgo.  (7.33)
a>0

v
The asymptotic class associated to v, , by formal Laplace transform is

A __
1/1(,?”:(?0,”9%6 RES. The identity (7.33) provides:

o,n

A k A
Apeint Yy = (=1)"m Jon € ﬂ ASYMP .}, 4. (7.34)
a>0

7.8.3.3 The spaces RES®)

We have already describe the action of the alien operators on the spaces

RES®). We can draw some consequences from theorem 7.3.

Corollary 7.2. Let be k € N* andw € C so that @ is an integer and |w| < k.
L]

The alien operator A, acts on RES™ and

Ay RES® RES(kfl“’l), when 1 <|w|<k-1

7.35
A, :RES™ — SING, g0 n when |w| = k. (7.35)

% o (*)
Moreover for any ¥, € RES'Y :

v ° v
. A,0%) = (0- )AL P);
v
o A, ((,VD * 1/1) belongs to RESY when 1 < wl <k —1 and to SINGarg(w) »

. v VvV v, V v v
when |w| = k and furthermore A, (*1)) = (Ay®) x+P* (Au) (Leibniz
rule).

Proof. The identity (7.35) is a consequence of proposition 7.23. The com-
mutation formula [A,,d] = — @ A, ensues from proposition 7.18. No-
tice now that for any k € N*, any L €]k — 1,k] and any a €]0,7/2], one
: v
has RES(®) (L) > RES®. Take two singularities svﬁ,w e RES™ and con-
sider them as belonging to RES(*®(L). One can apply theorem 7.3 to get:
v v v
A, (QVO * w) = (AWQYJ) *x 1+ svﬁ * (Aww) € SINGyg . Also, we know that Awg)

v
and A, belong to RES* ™) or SINGg, » depending on |w|. Finally when
1< |w| <k —1, one can work in RES™ 5 RES*~™) which is a convolution
algebra by proposition 7.17 and this provides the conclusion. O
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Definition 7.53. The alien operators A} A, : RES®) — RES*—IvD for
1< |w <k—1,resp. AL, A, : RES®) — ASYMP 14(0),n» for |w| = k, for
asymptotic classes are defined by making the following diagrams commuting:

+ +
RES(kN) Aw_’%“ RE~S(kf\~w\) RES(’CN) Aw_’Af SINparg(g),w
LIt B LB L resp. £11B £t B
— + — — +

RES(® 225+ RES(— D), RES™) 225 ASYMP (0.1

We add a property that will be useful in the sequel.

Corollary 7.3. Let k € N* be a positive integer and QVDG RES®. We suppose
that for any n € N*, A, o---0A,, o Ay, svD belongs to RES™ for any
composite operator that satisfies the properties: (ot)l,~-~ ,of)n) e (Z")"™ and
Z?Zl lw;| = k. Then Z’ belongs to RESF+D),

Proof. This is a direct consequence of both corollary 7.1 and theorem 7.2.
O

7.9 Ramified resurgent functions

As already said, one uses various spaces of resurgent functions, accordingly
to the problem under consideration. We introduce some of them.

7.9.1 Simple and simply ramified resurgent functions

We start with the resurgent algebra of simple resurgent singularities [24, 1, 7]
and we make use of proposition 7.6.

v

Definition 7.54. A Z-resurgent singularity ¢€ RES is said to be a simple
v .

resurgent singularity when ¢= ad +°% € SING*™P and, for any alien op-
v .

erator AY (02, 61), AY(02,01) ¢ belongs to SING®™P. The minor @, resp. the

1-Gevrey series ¢ = a + E@, associated with a simple Z-resurgent singularity
is a simple resurgent function, resp. a simple resurgent series, and one

denotes by @ZSimp, resp. @Zsmp the space of simple Z-resurgent functions.,
resp. series. The resurgent subalgebra made of simple resurgent singularities

is denoted by RESSZimp and the corresponding space of asymptotic classes is
simp

denoted by ]Fﬁil/SZ

As usual in this course, we use abridged notations. One can make acting
the alien operators on the space Z°"™P.

Definition 7.55. The alien operators Af, A, : Ry Z7SP are defined
—— simp Ai)Aw —— simp
RES <" RES

by making the following diagrams commuting: T} [1° Ty 119 .

~ + ~
%simp Ag,Quw E@simp
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Obviously (from proposition 7.26), for any ¢ € @Simp, the alien derivation

A, only depends on c:), thus one could define A}, A, : RSP _y s for
w e L.

Before introducing the simply ramified resurgent functions, we need to
state the following straightforward consequence of proposition 7.13.

Lemma 7.9. The space SING®™™  of simply ramified singularities
v v
o= Ef’LVIO an I—n 3, @ € Oy, is a convolution subalgebra.

Definition 7.56. One denotes by ASYMP®™" the space of asymptotic
classes associated with SING®**™. The restriction of the Taylor map to
ASYMPS™™ is denoted by T7**™. One denotes by 95T its composition
inverse, that is the natural extension of the mapping # to C[z] @ C[[z~]];.

v

Definition 7.57. A Z-resurgent singularity ¥€ RES is a simply ramified
v v .

resurgent singularity if ¢= Zg:o a_p I—p ¥ € SING*™™ and if, for

any alien operator AY (62,61), A} (62,61) ¢ belongs to SING* ™™, The resur-

gent subalgebra made of simply ramified resurgent singularities is denoted
s.ram

by RES; ™" to which corresponds the space of asymptotic classes RES
The space of the associated formal series @(z) = Y02\ a,z~" is denoted

by <QEZS.I‘B,HI

One can define the the alien operators A, A, : F5TAM —y ggSTem i the
same manner than in definition 7.55 and, again, for any ¢ € %Z°"™, the alien
derivation A, @ only depends on @.

7.9.2 Ramified resurgent functions

The following definition makes sense by propositions 7.6 and 7.13.

Definition 7.58. We denote by SING™™ < SING the convolution sub-
algebra generated by the simple singularities and the set of singularities

v v
{Jo,m, (6,m) € C x N}. An element of ¥€ SING™" is called a rami-
v v v
fied singularity and reads as a finite sum ¥= Z Jom * P(o,m) With
(oym)

v .
P(e,m)€ SING™P. The associated space of asymptotic classes is denoted by
ASYMP™" ¢ ASYMP.

v v v
To a ramified singularity ¥= Z Jo,m * P(o,m) 18 associated, by for-
(o,m)
A
mal Laplace transform, an asymptotic class ¥€ ASYMP™™ of the form
A A A A .
p= Z Jo,m®P(o,m) With @5 my= h@(mm) € ASYMP*"™P, This asymptotic

(o;m)
class provides a formal expansion of the type

5= Y () By e @ 8”@ gy,

(o,m) (o,m)
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through the Taylor map, for any given arc of S'.
L]

We have encountered such formal expansions when we considered the formal integral
for Painlevé I (theorem 5.1).

In the same way that C[[z7!]]; can be thought of as a constant sheaf on

S, the space @, ) log:#@[[zfl]h can be seen as a constant sheaf on S'.

This justifies the following definition.

Definition 7.59. Let be § € S' and a > 0. We denote by N\il/sl, resp.
ﬁﬁsl,(&a). the space of global sections of the sheaf 8™ (=) [z~ 1)y,

o,m) 20

resp. section on J* =] — 7/2 —a — 0, —0 + o + 7/2[. We call Nils; the differ-
ential algebra of 1-Gevrey Nilsson series.

The restriction of the Taylor map to ASYMP™™" is denoted by T5*™. One
denotes by

Nils; — ASYMPra™

=~ =~ ram < 4 =~
Y= Z:(U,m) Ja’m(p(‘f’m) — " v = Z(o’,m) Jom h(‘0(‘7’7”)

hram .,

m log™ (2)
z° :

its composition inverse, where J, ,(z) = (—1)

One can define the space Nils as well, made of formal expansions of the
form ¢ =3, ) JomP(o,m) With @(5m) € C[[z7Y]]. Let us consider an ele-
ment @ € Nils under the form @ = S z%, @i € C[[z71]]. We can of course

assume that for any i # j, 0; —0; ¢ Z. We denote w; = e~ 2 and we remark
that w; —w; # 0 for any i # j. We set 0.4(z) = $(2e%™) and more generally

n
0k-P(2) = §(2e%™F) for any k € Z. We notice that gp.5 = wa& There-

ZO'
o _ i=1
=~ ~ ~ P11 P2 ¥
fore, t(% 01-@y 5 0nP) = At <z‘71 »ort ,ZUZ) where A stands for the
1 ... 1
. . wl ... w’ll . . .
n x n invertible Vandermonde matrix A = . . |. This implies that
W{L PR wg
. . i . . o - ~
for each integer ¢ € [1,n], 271 is a linear combination of @, 0.9, -+, 0n.@.

This observation can be generalized:

Lemma 7.10. Let ¢ = ), Z:n;(l) jgiym(ﬁ(oiﬁm) be an element of Nils. Then
the series @(q,.my € Cllz7']] are uniquely determined by ¢ and its mon-
odromy (that is 0.0, 02.9, etc.) once one imposes that o; — o; ¢ Z whenever

()E(O'i ,m) '()5(0'j ,m) 7é 0.

Proof. This is a well-known fact and we follow a reasoning from [19]. We only
show how ¢ determines the series ¢(4, ) since we will use this result in a
moment.

m m—1 1
If w = e~ 2" observe that (0—w) <log(z)> =w Z <T> (2i7r)m?ZM
1=0

29 Ad

log™ m log™
and therefore (p—w)™ <0g(z)> = m!% while (o — w)™t? (og(z)) —0.

29 29
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As a consequence, for any ¢ € Nils one has P(o)p € Nils for any polynomial
P € C[X], and there exists a polynomial P € C[X] such that P(9)g = 0. We
denote by d(@) the degree of the minimal polynomial of the action of g on @.
We then make a reasoning by induction on d(@).

Suppose that d(@) = 1. This means that there exists w = e~2" ¢ C such
that (9 —w)® = 0, thus ¢ (27¢) = 2°@. Therefore @ is of the form @ = %
with (o, 0) € C[[z7']] and a convenient choice of o1 € C so that oy — o € Z.
(Thus ¢, 0) = 0(2719)). -

Suppose now that for any ¢ € Nils such that d(@) < d, its decomposition is
(uniquely) determined by @, 0.9, - , 04-@.

Take ¢ € Nils with d(¢) = d + 1. The minimal polynomial of the ac-
tion of p on ¢ is P(X) = [[,(X — w;)™ with > ,r; = d + 1. Write
P(X) = (X —w)" ] (X —wi)™ = (X —w;)""'Q(X). From the fact

that (p — w1)P(p)p = 0, we deduce the identity ﬁ(p)(ﬁ = il with
ZU'

¢ € C[[z1]]1 and a convenient oy € C such that w; = e~ 271 Since

5 (log" T (2) wit ™! wi !
P(o) (fl =Q(o) | (r1 —1)! el Q(wr)(ry = 1! ot
we see that necessarily ﬁ(g) (jtn,rrl&ahrlq) - (_1)73—1% and

~ z
’I”lfl ¢

~<71 ri—1 = -1 —
e P T

We finally observe that P(p) (5— jc,lyh,l(ﬁgml,l) = 0 and we can apply
the induction hypothesis on 5— jal,rl,lcﬁgl,rl,l. This ends the proof. O

We are in good position to define the ramified resurgent functions [23, 7, 8],
see also [15].

v
Definition 7.60. A Z-resurgent singularity ¥€ RESy is a ramified resur-
v
gent singularity when € SING™" whereas, for any alien operator AY (05, 01),

A7 (02,67) ; belongs to SING™™. The space of ramified resurgent singular-

ities makes a resurgent subalgebra denoted by RES;*™. The corresponding
——— ram
space of asymptotic classes, resp. formal expansions, is denoted by RES,

ram

resp. %7,
We state a result that derives directly from lemma 7.10

Proposition 7.27. The formal expansion ¢ = Z(U m) ja,mﬁ(mm) € Nils be-

longs to Rram if and only if each of its component Q4 m) belongs to 7y

Definition 7.61. The alien operators AY, A, : R s Zrm gre defined by

ram At A, ram
RES =5 RES
making the following diagrams commuting: 77*™ | 18ram Tyam |qGram
~ AT A, ~
gpram W gpram

We eventually lay down a direct consequence of proposition 7.19. (We warn
to the change of sign).
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Proposition 7.28. Let ¢ be an element of@mm. Then, for any w € C with
L[]

o:*EZ*, forany k € Z,

AweQ‘WkS/E = Ok- (Awgfk:~¢'>7 Awei"g5 = 01/2- (Awgfl/Z'[)B) .

Ezample 7.16. Suppose that & € C[[z~1]]; belongs to Z™™ with A, 3 = log(z)w,
¢ € Cl[z7Y]]. For k € Z, 0_1.3(2) = (), then A eoinr 3(2) = 1°g<z+2”k>¢( ).

20 oXinko

Suppose furthermore that ¢ is even, so that o_;,2.9(2) = ¢(2). On deduces
that Aer@(z) = 2LEED(—2).

20eimo

7.10 Comments

We mentionned in Sect. 4.6 the generalisation of the resurgence theory with
the notion of “endlessly continuable functions”. The whole constructions
made in this chapter can be extend as well to this context.

We of course owe the main ideas presented here from the work of Ecalle,
who started his theory in the 1970’s [6]. We have borrowed most of the materi-
als to Pham et al. [1], in particular the microfunctions and the sheaf approach.
To compare with other written papers devoted to resurgence theory, we have
paid more attention to the sheaf and associated spaces of asymptotic classes.
Finally, the possible mistakes are own.
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Chapter 8
Resurgent structure for Painlevé I

Abstract We show the resurgence property for the formal series solution of
the prepared form associated with the first Painlevé equation. The detailled
resurgent structure is given in Sect. 8.1. Its proof is given using the so-called
bridge equation (Sect. 8.4), after some preliminaries (Sect. 8.3). The Stokes
phenomena is briefly analyzed in Sect. 8.2.

8.1 The main theorem

8.1.1 Some recalls

The formal integral of the prepared form (3.6) associated with the first
Painlevé equation was described with theorem 5.1 and its corollary 5.1. It
can be written under the following equivalent form:

w(z,U)z’Wo(z)Jri Yoo Uke MEWL(2), (8.1)

n=0keZ,1,0\5n,0

where /V[v/o = W = @E([)O] and for any n € Nand any k € =110\ Sh0,
__ n 1 N N B
Wi = Z I (%-k)l IOgl(z)W,[gO,]p W,LO] = z_""kw,[co]. (8.2)

!
1=0

The formal series wp € C[[27!]] solves (3.6), namely

P90 + é@(a)wo = F(z.0) = fo + frilo + foil2, (8.3)
P(3) =0%—-1,Q(9) = =30, fo(2) = %2_27 filz) = =427, fa(2) = %Z_2a

while the Wk satisfy a hierarchy of equations given by lemma 5.3 that we
recall:

191
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Wy = Wi, W, 0°F (2, o)
et = k1+zk;=k 2! ow? (8.4)
[ki|>1
0 1 OF (2, @
T = Falilo) = PAK+ ) + Q- Ak +9) - ZL00)

To what concerns the k-th series 151[? Ve C[[z71]], we have a result that ensues
directly from theorem 6.1:

Proposition 8.1. For any k € N2, the k-th series 'LEI[(O] belongs to %7(1),
A —~ — (1

the asymptotic class W= """Wy belongs to RES( ) and the singularity

v - A

Wx= B W belongs to RES™,

n

-~ 1 ~
Notice that I_, W, = Z T (fz.k)l J,.,.,lyleo]il. for any n € N and any
=0 "
v 1 v v v
k € Ep41,0 \ En,0. Therefore, W= Z i (—%.k:)l J -1, swi_ 19 where w[eoi] =4 +b@ei
=0 "
for i =, 1,2, otherwise 73);3] :bﬁf].

8.1.2 The main theorem

We now formulate the main result of this chapter.

Theorem 8.1. The formal integral w(z,U) of the prepared form (3.6) asso-
ciated with the first Painlevé equation, is resurgent. More precisely, for any
k € N2, Wy belongs to the space Zz"™™ of ramified resurgent formal expan-
S10MS. . . . ‘

We set w) = e2™ () = Ay ) and w), = 20T/ (5] = X,) for any j € Z.
Then, for every w € (.: of the form w = kow{, resp. w = kowg, with kg € N*,
neN and (Bn(w))nEN’

uniquely defined and only depending on w such that, for any k = (k1,k2) € N2
and any n € N,

there exist two sequences of complex numbers (An (w))

n

Awwk-‘,-n = Z ((kl +m+ kO)Anfm(w) + (k2 + m)anm(W)>Wk+m+koelv
m=—1

resp. (8.5)

AWirn = 3 ((ka+m+ ko) An-m(w) + (k1 +m) B () ) Wit huess

m=—1

where by convention W(khk,z) =01k <0orky<O.

The sequences (An(w))neN and (Bn(w))neN are subject to the conditions:
Ap(w) = 0 when |w| > n+ 2 and By(w) = 0 when |w| > n+ 1. Also,
(A”(w))neN and (Bn(w))neN are known for every w € ((.3 once they are

known for argw = 0 only. In particular, Ap(w?) = (=1)7Ag(w?) while
Ap(wy) = —iAo(wy).

The proof of this theorem will be given in Sect. 8.4.
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Remark 8.1. We detail (8.5) for n = 0. For For any j € Z and any ko € N*,

Ayt o = Ag(kow!YWe, = Ag(kow? )2/ * i, (8.6)

Ay Wo = Ag(kows)We, = A (kow?) 2>/ e,

and Ao(k:owg) =0 when ko > 2.

When k € =19, we use abridged notations wy, = 1’17,[‘?].

By proposition 7.28, A jwe = Qj.(AwQQ_j.’wo), i = 1,2. Therefore,
Ap(w?) = (=1)7 Ag(w?). Remember that @wo is even, thus @ = 0—1/2-Wo,
while We, = 01/2.We, - By proposition 7.28 again, Awg Wo = 01/2- (Awyl- Q,1/2.1Eo>

and we deduce that Ag(w)) = —ido(w]).
Now for any k; € N*,

Ao Wiser = (k1 + ko) Ao (kow! ) Wik, 4k )es (8.7)

Akowéwk1€1 = kOAO(kow%)Wkthrkoez + (k1 — 1)B1 (kowg)wklel+k0627l'

and B (kow)) = 0 when ko > 2. We have in particular A We, = Ao(w)) W7,
thus Aw%@el = Ao(w%)z3/21ﬁ1. Also, for k; > 2,

A Wiyer = Ao(@h) Wik, -1y, 41 + (k1 — 1)B1(wh) Wik, —1ye,

and using (8.2),

~ ; _ ~ )

Awgwklel = AO(“%) ((kl - 1)%1 IOg(z>Z 3/2w(k1*1)€1 + ZB/QwEk]1—1)e1+1)
+ (kl - 1)B1(w§)273/2i5(k1*1)61'

By proposition 7.28, Awéﬁgel = Qj.<Aw?g_j.1ﬂ2el>, therefore

Awgfﬁgel = (—1)jA0(w8) (%1 log(z + 217rj)z‘3/2{17€1 + 23/2@[e01]+1)

+ (=1 Bi(w9) 2 e,

and one deduces: By (w)) = (—1) (B1 (W) + 2i7rj%1A0(w8)). Of course, by

symmetry: By (w]) = (—1)7 (Bl(w(l)) + injngo(w?)>.

In the same way, Aw%"lﬂzel = 91/2.(AW{Q_1/2.{17261> and we know that

~ -~ ~ =~ ~[0] _ ~[0] Thus
0-1/2-W2e; = W2e,, 01/2-Wey, = Wey; 01/2-We,11 = We 11- us,

Ay Tze, = —ido(w])( = 2 log(z + im)z~20,, + 22, )
+ iBl(w{)z_3/2ﬁel

and Bi(w)) = 1(31(4&7{) + 17"'%2140(“{))
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Definition 8.1. The coefficents A4,,(w) and B, (w) given by theorem 8.1 are
called the resurgence cofficients for the first Painlevé equation. The coef-
ficient Ag(w) and Ag(w)) are the Stokes cofficients.

As a rule and apart from some integrable equations, the resurgence coffi-
cients are seldom known by closed formulas but can be calculed numerically :
see for instance [9] and specifically [23] for hyperasymptotic methods, see also
[1]. For the first Painlevé equation and its Stokes cofficients, an explicit ex-
pression has been obtained by Kapaev [17, 18] using isomonodromic methods,
see also [31] for an exact WKB offspring. This result has also been founded by
Costin et al. [8] by means of resurgent analysis and we give this expression.

6
Proposition 8.2. In theorem 8.1, the Stokes coefficients are Ag(w]) = —i B
7r
and Ag(w)) = — 6
N2 5

The Stokes coefficients are also known for the second Painlevé equations. See [15]
and references therein. It is likely that the method of Costin et al. [8] can be used
to get the other resurgence cofficients for the first Painlevé equation.

8.1.2.1 Resurgence coefficients and analytic classification

We saw with corollary 5.2 that the formal integral can be interpreted as a
formal transformation @ = &(z,u), (z,u) = Y kene ukﬂ'),[co] (2) € C[[z71,u]]
that formally conjugates the prepared equation (3.6) to its normal form (5.66).
We mentionned (without proof) in Sect. 6.3 that this formal transformation
gives rise to analytic transformations through Borel-Laplace summation. In
other words, equation (3.6) and the normal form (5.66) are analytically con-
Jugated.

It can be shown (see for instance the arguments given in [3]) that for
any two differential equations that are formally conjugated to (5.66), then
these differential equations are analytically conjugated if and only if their
resurgence coefficients are the same. Therefore in this way, the resurgence
coefficients are also called the holomorphic invariants of Ecalle. See [11]
for further details.

8.2 Painlevé I and the Stokes phenomenon

Knowing the Stokes coefficients Ag(w) provides a complete description for
the Stokes phenomena. In what follows, we use the notations of theorem 8.1
and we denote 6! = arg(w!), i = 1,2, j € Z. We simply refer to [28] for
the notion of “symbolic Stokes automorphism” A:j and of “symbolic Stokes
infinitesimal generator” A i for a given direction 6. We only recall their

i
expressions and relationships, in our frame:
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A+ qu_ . @e—kAiz%Zram N @e—k)\iz%Zram,

67’
¢ keN keN
AT =1d+ At A = A
67 — kow]’ o] kow; (8.8)
¢ ko EN* ‘ ko€EN* .
4 e—k}o)\iz
Aaz‘ = &xp (Aej) =1Id+ Z 0 Z Akzw{ R Akw{-"
‘ ) LEN* : 7@1+"'+>k1£:7€0

(F=

Let us consider the formal series wg. From theorem 8.1, one sees that

Af o = o + Y Ag(w])Fe W, (8.9)
‘ keN*

where, on the right-hand side, on recognizes the transseries solutions. This
action allows to compare left and right Borel-Laplace summation: in their
intersection domain of convergence,
i~ it ik . gt~
S o =S o+ Y Aog(w!) e FAES N W, (8.10)
keEN*

This allows, in particular to analytically continue the sum .% o Wo, thus the
tritruncated solutions, onto a wider domain.

The same calculation can be made for the (convenient) transseries as well,
and one easily gets, for i = 1,2:

7 (@O + Y Ufe—“isz/ke) — 0" (ao +Y (U + Ag(w))) e P,

keN~* keN*

(8.11)

Once again, this provides analytic continuations of the the truncated solutions
onto a wider domain.

It is a good place to mention medianization, since the k-th series wge, are

all real formal series. For instance, since wo belongs to R[[z71]], its left and

right Borel-Laplace sum are complex conjugate: S o (z) = 79 @ (2).
However, neither .% o wo nor . o1 wg are real analytic functions, because
of the Stokes phenomenon. The question is therefore the following one : can

we construct from wg a real analytic function by a suitable morphism of
differential algebras 7

The naive idea of taking their mean does not work (why 7).

The answer is “yes”, by medianization or good averages, and is not unique.
We refer to [21, 14] for this question and its subtleties, see also [6].

Remark 8.2. The fact that the Stokes coefficient Ag(w?) is nonzero can be de-
duced from the identity (8.10) : if Ag(w?) = 0, then necessary the associated
trituncated solution is holomorphic on C\ K where K is a compact domain.
This would mean that this trituncated solution has only a finite number of
poles and that contradicts theorem 2.2. The fact that Ag(w{) is pure imagi-
nary can be seen also from (8.10) and from the realness of wg. For arg(z) =0
and |z| large enough, one can write

SN Bo(2) = SN Wo(2) + Y Ap(@)re N SN Wi (2),  (8.12)

keN*

) |
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and Ag(w)) = —Ag(w) comes as an upshot.

8.3 The alien derivatives for the seen singularities

The idea that leads to theorem 8.1 relies on the following observations. We

v
know by proposition 8.1 that the singularity Wy belongs to RES(I)7 for any
k € N2, and we can apply corollary 7.2 : for any w € C so that w=+1 (the

v
so-called seen singularities), the alien derivative A, Wy is well-defined. If
these alien derivatives belong to RES(I)7 then we see with corollary 7.3 that

the singularities IX/k belongs to RES®. A reasoning by induction allow to
conclude.

In this section, we explain how to calculate these alien derivatives with
various methods and we direct our efforts towards wop.

8.3.1 Preparations

The formal series wo being solution of the equation (8.3), we introduce by
proposition 7.4 the singularities 13)0: bf&g, }0: bﬁ), }1: bfl and }2: bfg.
Notice that ]v"’o, }1 and ;2 obviously belong to COVNS.

Equation (8.3) translates into the fact that 'LY)O satisfies the following convo-

lution equation:

v

P(0) o + I1 ¥[Q(D) o | = F (¢, 00) (8.13)
:Jvco“‘Jvcl*g’O‘*‘Jzz*g’zz-

One can rather introduce the asymptotic class 1%/0: "W € ASYMPSITP (cf.
Definition 7.27) and equation (8.3) becomes:
1
P(9) to +-Q(0) wo = F(z, o) (8.14)

2
A A
= fo + f1 wo +f2 wy

As already said, we know that 73)0 belongs to RES(U, resp. IAUO belongs to

— (1
RES( ), and corollary 7.2 can be applied : with the notations of theorem 8.1,

v A
W= Aw‘f Z/O is a well-defined singularity of SINGg ,, resp. W= Awg ﬁ)o is a

well-defined asymptotic class of ASYMPy .
v VvV Vv v
The singularities f,, f;, fo and I are all constant of resurgence. There-

fore, they vanish under the action of any alien derivation. Adding to this
remark the fact that A, satisfies the Leibniz rule and the commutation rule

[Ay0,0] = —A,o (corollary 7.2 and remember that @9 = 1), one deduces from

(8.13) that IX/ solves in SING , the following associated linear convolution
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equation:

PO -1 + h[@o - 1)1 ] = ZE ) (8.15)

v v v v
=<f1+2f2*w0>*W.

A
For the same reasons, the asymptotic class W is solution in ASYMPg , of a
linear ODE:

A
PO-1) W +%Q(6 W= W W (8.16)

Of course, (8.16) can be deduced also from (8.15) by formal Laplace transform
(definition 7.25 and proposition 7.10).

The differential equation (8.16) is nothing but the equation

Pe, (iv0) W= 0 (8.17)

where Pe, is the linear operator recalled in (8.4). We know by lemma 5.4

that the differential equation PBe, (W)W = 0, that is (8.17) through the
Taylor map, has its general formal solution that belongs to the direct sum
Nils; @ e?*Nils;, under the form

W(z) = Clz%@el(z) + CgeQZz%@EZ (2) (8.18)
= Olwel (Z) =+ OQGZZWEQ (Z),

where Wel and W32 belong to the space Nils; of 1-Gevrey Nilsson series.
One should precise what we mean by “general formal solution”. The linear op-
erator Pe, is of order 2 in z and the particular solutions We, and e?*W,, are
Wel e22W82
OWe, 0(e**We,)
Thus, if w belongs to a differential algebra that contains 1@1 &) 62zm1 as
sub-vector space, for instance the direct sum H e ®Nils; and if
kEZ
PBe, (Wo)W = 0, then W is of the form (8.18) with Cy,Cy € C given by the
a8e-22 | W W, W e®*W,,
2| OW OWe, OW 9(e**We,) |
We claim that the general solution of equation (8.17) in [], ., e **ASYMPy
A A
is a linear combination of We, € ASYMP™ and e** W,€ e?* ASYMP™™

A —
with We,=1""V,,. Consequently:

two independent formal solutions : their wronskian is = 2z3e2%,

_ Z—Se—2z

Kramer’s formulas: Cy = — , 01 = —%—

Lemma 8.1. There exists Ag(w)) € C such that the singularity Aw? 17106 SINGg »
is of the form

v v
Aw? QY}OZ Ao(w?) I_ 3 % ’Z)elz AO(w(l)) We,,

(N

thus can be extended uniquely to an element of SING. In other equivalent
A — —
words, Ao 510: Ao(W?) We, € ASYMP™™, Ao = Ao (W)W, € Nils;.
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As promised, we show proposition 8.1 by two different approaches in the
sequel.

8.3.2 Alien derivations, first approach

We follow here ideas developed in [16, 24], see also [27, 26, 22].
We start with the following results that come from general nonsense in
1-Gevrey theory and its proof is saved for an exercise.

Lemma 8.2. Let w € 27 'C[[27!]]; be a 1-Gevrey series with vanishing con-
stant term, and W € Oy its minor. The following properties are satisfied.

1. The formal series (1 +w) € C[[z~"]]y is invertible. Its inverse (14 w)~"
is 1-Gevrey and has a formal Borel transform B(1 +w)~* € C6 & Oq of
the form (6 +w)*~t =6 + Do ()W

2. The formal series log(1+w) = 3_, 4 U G s a 1-Gevrey with vanish-

~ —1)ntt o
ing constant term, whose minor is given by log, (6+w) := > %w*",

3. The formal series w is exponentiable in the sense that its exponen-
tial ¥ = anl %ﬁ" is a 1-Gevrey series, whose minor is of the form

exp, (W) =6 + 27«21 %@*" Moreover, logoexp = expolog = Id.

Remark 8.3. More general results along that line in resurgence theory can be
obtained, see [3, 28] and specially [30].

We are now ready to calculate the alien derivative IX/: Aw? 17106 SINGo, .
We consider the 1-Gevrey Nilsson series Wel = 232, € Nils; solution of
(8.16) (more precisely its transform through the Taylor map), and its associ-
ated singularity IX/el:;_% * 5)616 SING, where ’3}51: 5+ "W, . (Remember
that we, has 1 for its constant term). Since we, is invertible in C[[z7]], so
does '17161 in SING, its inverse being given by ’Z);_l: S+° (Zn21(—1)"1ﬁz’f).

v v*1 ¢ *—1
Accordingly, We, is invertible in SING and W, =Is * 17161 . We now in-

v
troduce the singularity S€ SINGg , defined by

v v v

W=5* We, (8.19)

v
and we want to show that S= Ag(w?)d for some Ag(w?) € C. Plugging
(8.19) into (8.15), using the property that 0 is a derivation in SINGq . (cf.

v v
proposition 7.6) and that 1, solves (8.15), one easily gets for S the following
equation:

(02— 0) § )% We, 4209 )+ (O We, ) =3 11 #(0 8 )% We,=0. (8.20)

. v 3V
Since 0 We,= 5 1_
equation



8.3 The alien derivatives for the seen singularities 199

v
where X = "y is the singularity associated with the minor X(¢) of

~ OWe,
X(2) = Tel

€ 22C[[z 1.

The formal series ¥ has a unique primitive Yo(z) = 0~ X(z) = log (e, (2))
in the maximal ideal 27 *C[[z7!]]; of C[[27!]]1 and, thus, Xo as well as its

v
associated singularity Xo is exponentiable in SING. (Lemma 8.2)
More simply, exp, ()VCO) =6 + "@e,, thus exp, (2>v(0) =3+ *(2We, + w32).
\
We introduce So€ SINGy . given by the identity:
v v v
3 S:S() *exp*(—2X0). (822)

By construction, dexp,(—2 ;'(o) — 2x *exp, (—2 ;vco). One deduces from
(8.21) that EO solves the convolution equation 9 EO - Z*O: 0. This trans-
lates into the fact that ((+1) :S/‘O is holomorphic near ¢ = 0, where 50 stands
for any major of g‘o. Therefore §0 is holomorphic as well near ( = 0, thus
g*o: 0. From (8.22), this means that 0 g‘: 0, that is Cg’((:) is holomorphic
near ¢ = 0 for any major é of g’. This allows to conclude that there exists
a constant Ag(w?) € C such that 9= Ag(wf)d. Thus, Ao Wo= Ao(w?) I/?/'e1

which implies that A, 0 wo can be continued to an element of SING. This
ends the proof of propomtlon 8.1 with the first appoach.

8.3.3 Alien derivations, second approach

The second approach We now propose another approach, based on the no-
tion of asymptotic classes, that uses tools akin to Gevrey and 1-summability
theories.

A A
We know that W= Aw? ’3)06 ASYMP . satisfies the condition Pe, (1%)0) Ww=0.

We look at the equation B, (ﬁo)W = 0. The operator ‘Bel (wo) i 15 of order two
in z and has two hnearly 1ndependent formal solutions WEl =23 We, € N1151
and e2ZW =e? z2w , €€ ZNﬂsl

A ~ A ~ A

Let us represent the abymptotlc classes wo= "W, We, = hwe1 and We,= “w¢22
on restriction to ASYMPj .. We pick a (good) open covering (I;) of
J* =] —3m/2,3n/2[ with open arcs I; of aperture less than m. We use
the Borel-Ritt theorem for 1-Gevrey asymptotics to get, for each sub-
script i: wo,;, We, i, Wes,i, € Ai(I;) whose 1-Gevrey asymptotics is given by
Wo, We, , We, respectively. We know that each of these 1-Gevrey germ is
uniquely defined up to 1l-exponentially flat germs, that is up to elements
of AS71(I;). As a consequence, the collections (wp ;), (We, i), (We,,i) repre-
sent the asymptotic classes we have in mind.
For each subscript ¢, observe that

T3 (1) (Dey (w0, )ty ) = Dey (o), = 0
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with ®e, the linear operator given by definition 5.5, because the 1-Gevrey
Taylor map T1(/;) is a morphism of differential algebras. This ensures that
De, (wo i )we, ; belongs to AS~1(I;).

We draw a first conclusion : De, (1%0) 1%61 = 0in ASYMPyg, » and thus, Pe, (1%)0) V?/el =0
as well with We, = 23/2 the, € ASYMPg .
We add a property that ensues from an analogue of the M.A.E.T. (theorem

3.1) and for which we refer to [14, 16]: one can even find h; e, € AS7(I;)
so that D, (wo,;)(We, i — he, ;) vanishes exactly, for each subscript 7. Thus,

one can find a representative we, ; € Aj (I;) of ﬁ)el so that De, (we,;)We, i =0

and thus, Pe, (wo,i)We, : = 0 as well with W, ;, = z%wehi. o
The same reasoning yields: one can find a representative we, ; € A1 (Z;) of

A . 3
We, 80 that De, (W;,0)We,,i = 0, thus Pe, (wo.;)e**We, ; = 0 with We, ; = 22 we, ;.

A

Therefore De, (o) Wey= 0 in ASYMPq » and thus Pe, (00)e?* We,= 0. The key
A

point if that e?* We, belongs to e?* ASYMPy » which is a vector space in direct

sum with ASYMPg .

Putting things together, keeping the same notations, we see that the kernel
of the linear differential operator Pe, (w;,0) in the space of sectorial germs of
direction I; is spanned by We, ; and eQZWeM-.

A
We now go back to the asymptotic class We ASYMPg . that satisfies

A
&Bel(’ﬁ)o) W= 0. Considering a refinement of (I;) if necessary, one can find

J— A
for each subscript i a representative W; € A=(I;) of W and a 1-exponentially
flat germ b; € AS71(I;) such that Pe, (wo)W; = b;. To get W;, we apply
the usual variation of constants method. One gets W; under the form

W; = Bl(z) + Clwem» + CQQQZWEQJ‘, C,Cy € C, (823)

231(2) = WeZ’i/273W317i.bi — Wei,i/z’?’WeZ’i.bi.

It is a simple exercise to show that B; belongs to Zfil (I;) and one easily
concludes that W; has to be equal to C; W, ; modulo AS~1(T;).

Depending on the arc, the term CgeQzWezﬂ- either belongs to A<~1(I;) (so one can
take C2 = 0) or escape from W; € AS9(I;) (thus one has to impose Cs = 0).
This ends the second proof of proposition 8.1: the general solution of the linear
equation Pe, (5)0) V?/: 0 in ASYMPy - is C I/?/,31 and, consequently, there
exists a constant Ag(wf) € C so that Ao o= Ap(w?) I/%/e1 in ASYMPy .

Thus, Aw(f 1%0 can be uniquely continued to an element of ASYMP.

Conclusion What we have shown amounts to the following upshot. The so-
lutions of the equation P, (wo )W = 0 in the differential algebra H e~ " Nils;
keZ
are spanned by the independent solutions We, € Nils; and e?*W,, € e?*Nils.
A
This implies that the solutions of the equation e, (5}0) W= 0 in the differen-
tial algebra H e **ASYMP, resp. H e_szSYMPOJ, are spanned by the
keZ kez

A A
independent solutions We, € ASYMP and e?* W, € e?* ASYMP, resp. their
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restrictions. in ASYMPy . and e?* ASYMP, . respectively. This result can be
generalized as follows.

Lemma 8.3. For k € N2, we denote by Vf/ke ASYMP™™ the asympotic class
defined by v?/kzhramm where Wy, € Nils; satisfies (8.4). Let 6 € § be any
direction, a« > 0 and k € N?\ {0}.

If )/AVG [liez efZZASYMP‘g’a solves the linear differential equation

Wi Wiy 02F (2, o)

4 Z,w A

mkW: Z k12[ . w2 0 ’ mk:mk(wo), (824)
g

then there exist uniquely determined constants Cy,Cs € C so that
A

W=W, +e = (C’le’\lz I/%/e1 +Che 27 I/f/Q) : (8.25)

Proof. The general formal solution for the equation (8.4) is of the form
W = Wk + eMk2 (Cle_’\leel + Cge_’\QZWez). We already know that

Akz —A1z & — Aoz 4 : :
e Cie We, +Cae We, | provides the general solution for the

A
homogeneous equation ‘Bk(t%o) W=0in [[,c; e **ASYMPy . This asymp-

A
totic class Wy is of the form (8.2), namely

A 1 (0] (0] "
Wi= Y 7 (ek) log! (2)27 % by, oy, =,
i

with ﬁ,[co I e C[[z7Y)1 satisfying as linear differential equation given in corol-

A
lary 5.1. This allows to conclude that Wy is a particular solution for the
equation (8.24) and one ends the proof in the same way.

8.3.4 A step further

What have been previously done works as well for the other alien derivatives

. v . A
Aw{ 17)0: Ao(w]) We,, resp. Aw{ 1%0: Ap(w]) We,, for any i =1,2 and

A A — (1
j € Z. Since W, and We, belong to RES( ) (proposition 8.1), one infers
from corollary 7.3 that wg belongs to 2(?). In particular, the alien derivatives
A2w{ Z)oe SINGQﬂ—jm—, resp. AQw{ 1%106 ASYMPQT‘—]‘J‘— and

\ A
Azw% Wo € SINGQW(J’J’,I/Q)JT, resp. Azw% Wo € ASYMPzﬂ—(jJrl/Q)’ﬂ—’ are well-
defined. As a matter of fact, these alien derivatives are quite simple !

Lemma 8.4. For any w € C so that o= +2, one has A, 1710: 0. Equiva-

lently, A, 1%)0: 0, A,we = 0.
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A
Proof. We only calculate W= A%{ 1%0. Through the alien derivation A%{,
equation (8.3) is transformed into the linear ODE

PO —2) W +%Q(8 —9) W= W W (8.26)

A
as a consequence of corollary 7.2. We recognize the equation Pae, (ﬁ)o) Ww=0.
By lemma 5.4, the general formal solution for the linear equation
Pae, (Wo)W = 0 is of the form Cre*We, + Cae**W,, and we either conclude

v v v
with the reasoning made in Sect. 8.3.2 (still write 1 under the form W=S
v v
* We, and show that S= 0) or rather directly with lemma 8.3 : the solutions
A v v
of the equation Pae, (1%0) W= 01in H e P*ASYMP is Ce* We, +02%* We,
kEZ

and one concludes that Azw{ ﬁ}g: 0 since the alien derivative belongs to
ASYMPyrj». O

We can keep on that way to get the complete resurgent structure for wg
and, at the same time, to analytically continued its minor wg. Let us see
what happens a step further.

To show that @y belongs to Z3), we have to complete the informations
given by lemma 8.4. Following corollary 7.3, we would like to show that

(1 .
A, 0 A, 1%)0 belongs to RES( ) for any wi,ws € C so that wy = £1 and
ng = +1. From what we know, this amount to showing that the alien deriva-
A — (1
tives A, We, belong to RES( ).

A A A
Let us look at V= A0 We,€ ASYMPq . From the identity Be, (o) We,= 0
(equation (8.16)) and corollary 7.2, we draw:

A A
PO —2) W +§Q(8 —2) W= W W+ We, Ay o %,
that is .
Tae, (o) 1= Ao(ul) 17, Lo t0) (5.27)
where Ag(w?) is the resurgent constant given in lemma 8.1. Observe that the

general formal solution for the equation Pae, (@O)W =4 (w?)Wi %,

deduced from (8.27) through the Taylor map, reads:

W = QAO(W?)/WQeI + Clezwel + Cge3zWe2 S H e‘kzml
keZ

with C1,C € C. By lemma 8.3 one gets A, Vf/elz 2A0(w?) V?/2el, which

thus belongs to RA/ES(I) by proposition 8.1.

Of course, one can keep on that way, by induction. However, a lesson has
to be learned from what precedes : the resurgent structure is closely coupled
with the formal integral and it is much time to introduce the bridge equation.
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8.4 The bridge equation and proof of the main theorem

We go back to the formal integral

(2, U) = Y Ure ™k, € [[ e *Nilsy[[U]] (8.28)
keN? kEZ

and we consider its derivatives with respect to the indeterminate U;, ¢ = 1, 2:

ow

oo (2 U) = 3 ke Uk e W, e [ e **Nilsi [[U]] (8.29)

keN? kEZ
= Wei + O(Ul, UQ)

Since the formal integral w solves the differential equation
P(9)w + 1Q(d)w = F(z,w), one deduces that the following identity holds
fori=1,2:

=0.  (8.30)

0 v, =0, ie. ‘Bo(w)an

(P(a) +200) - W) Ot 9

The formal solutions for the equation ‘)30(@0)17\7 = 0 is spanned by e_)‘“Wel

—~ w
and e~*2?W,,. Therefore, and —— are two linearly independent solu-

w
U, U, .

tions for the order two linear differential equation Po(w)W = 0 , explicitly

(wronsk stands for the wronskian):

ow ow

k(| — ——
wrons ( ou,’ U,

) = wronsk (e_AIZWel,e_’\zzWEZ) =223

Lemma 8.3 translates into the fact that for any series of the form

W(U) = Y U Wi, Wie [[ e ASYMPy,.,
keN? k€EZ

that satisfies the second order equation &}30(5)) I/%/: 0, there exist uniquely
determined constants A(w,U) € C[[U]] and B(w,U) € C[[U]] such that

A 1o} ﬁ) 0 ﬁ; 0 1%1 ow
= fram
W (z,U) = A(w,U) ) + B(w,U) > aU, o, (8.31)

To the formal integral w(z,U), one associates its analogue through the map-
pinghram :

A —
b (2 U) = 3 Uke ™ Wy, Wi="""Wh. (8.32)
keNZ

We take w € C and we assume for the moment that @ = 1. By proposition
L]

8.1 and corollary 7.2, the alien derivation A, acts on the formal integral

i (z,U). As a matter of fact, it will be easier to use the dotted alien

L]
derivation, A, = e “?*A, which has the virtue of commuting with the
derivation 0. Therefore,
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° A [ A
Aot (2,U) = 3" UPe ™ A, Wi, Au W€ € “*ASYMP, g0
keN2

We deduce that the decomposition (8.31) holds for Aw . This decomposi-
A A

tion Aw = Alw,U) = ow + B(w U)a—w is the so-called bridge equation
ol oU,

of Ecalle, that is a link between alien derivatives and the usual partial deriva-
tives.

Let = C N? be the set defined by & = = = {kej,kes |k € N} and set
=, = n+ = for any n € N*. With these notations, the formal integral can
be written as follows:

(Z U i Z Uk Aszk( i ZUk+n )\szk+ ( )
n=0ke=, n=0kec=

(8.33)

To fix the idea, suppose that W= koA1 with kg = 1 at the moment. We get
from the decomposition (8.31) the identity:

o0

Z Z Uktne—X(kthoe)z A Vf/k+n:
n=0kec=
w) Z Z (k4 n).egUktnerem2be Wk+n (8.34)
n=0ke=
B(w) Z Z (k 4 n).eUktreze= k= Vf/k—l—n
n=0kex=

A
Each component Uk P> (ktkoe)z A Wk4n€ ef’\'(’“Jrk"el)Z‘ASYMParg(wL7T
has its counterpart on the right-hand side of the equality. Necessarily,

Aw,U) = U N "4, (w)U™ (8.35)
n>0

B(w,U) =U®*""M " B, (w)U
n>0

This implies on the one hand hand that A4, (w) = 0 when |w| > n + 2 while
B, (w) = 0 when |w| > n + 1. On the other hand,

A
Aw Wk+n = Z An m k + m + kOel) €] Wk—}—erkoel (836)

m=—1

+ Z By—m(w)(k + m+ kpep).eo Wk+m+k0e1

m=—1

with the convention use in theorem 8.1. The case w = koXo with kg = 1 is
obtained by symmetry.

A —
This result implies that the asymptotic class W= "W belongs to

— (2
RES( ), as a consequence of corollary 7.3. An easy induction on ky € N* allows
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then to conclude that the Wk belong to @Zram. The rest of the theorem is
shown by arguments used in remark 8.1. This ends the proof of theorem 8.1.

8.5 Comments

For differential systems of level 1 of the type (5.67), the resurgent study of
the Stokes phenomenon and of the action of the symbolic Stokes automor-
phism A on transseries solutions were first done by Costin [4], under some
conditions. This work was later extended to more general differential equa-
tions (with no resonance), and also for difference equations of the type (5.68),
in particular by Braaksma and his students (see [2, 19]). These works make
use of (so-called) “staircase distributions” [4, 6] and do not make appeal to
alien derivations. The method explained in this chapter is closer to the ideas
of Ecalle, leading to the bridge equation. Also, as we saw on the particular
example of the first Painlevé equation, this method provides (theoretically)
the whole set of holomophic invariants of Ecalle and passes the resonance
cases under some conditions (no quasi-resonance, no nihilence [11]).
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