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Abstract

Numerical simulations of compressible Navier-Stokes equations in closed two-

dimensional channels are performed. A plane standing wave is excited inside

the channel and the associated acoustic streaming is investigated for high

intensity waves, in the nonlinear streaming regime. Significant distortion of

streaming cells is observed, with the centers of streaming cells pushed towards

the end-walls. The mean temperature evolution associated to the streaming

motion is also investigated.

Keywords: acoustic streaming, standing wave, numerical simulation,

nonlinear streaming regime

1. Introduction1

Acoustic streaming is generated inside a two-dimensional channel as a2

consequence of the interaction between a plane standing wave and the solid3

boundaries. It consists of a mean second order flow produced mainly by shear4
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forces within the viscous boundary layer along the solid walls. This motion5

was initially studied by Rayleigh [1] in the case of wide channels, in which the6

boundary layer thickness is negligible in comparison with the channel width.7

This streaming flow is characterized by four steady counter-rotating vortices8

outside the boundary layer, nowadays referred to as Rayleigh streaming. The9

vortices develop along the half wavelength of the standing wave. Along the10

central axis of the channel, the streaming motion is oriented from acoustic11

velocity nodes to antinodes. Inside the boundary layer four additional vor-12

tices are created simultaneously, with the streaming motion oriented from13

acoustic velocity antinodes to nodes along the inner walls of the tube [2, 3].14

In the case of wide channels, Menguy and Gilbert [4] showed that stream-15

ing itself can be linear (case of slow streaming) or nonlinear (case of fast16

streaming), and both regimes are characterized by a reference nonlinear17

Reynolds number ReNL = (M × y0/δν)
2 reflecting the influence of inertial18

effects on the streaming flow (M is the acoustic Mach number,M = Umax/c0,19

with Umax the maximum acoustic velocity inside the channel and c0 the ini-20

tial speed of sound, y0 is the half width of the channel and δν the viscous21

boundary layer thickness). Most analytical streaming models have been es-22

tablished in the case of slow streaming, characterized by ReNL ≪ 1. They23

are based on successive approximations of the nonlinear hydrodynamic equa-24

tions and have been derived for arbitrary values of the ratio y0/δν , taking25

into account the variations of heat conduction and viscosity with tempera-26

ture [5], and the existence of a longitudinal temperature gradient [6]. In the27

case ReNL = O(1), Menguy and Gilbert [4] derived an asymptotic model for28

streaming flow inside wide cylindrical resonators, with no mean temperature29

2



gradient, and showed a distortion of streaming patterns due to inertia ef-30

fects. However, this model does not cover the strongly nonlinear streaming31

regime (ReNL ≫ 1), and does not explain the nonlinear effects on acoustic32

streaming recently observed in several experimental works [7, 8, 9], where33

the temperature gradient along the resonator wall has a significant influence.34

Numerical simulations in the linear regime, yielding results for non ide-35

alized geometries, were performed in the specific cases of thermoacoustic36

refrigerators [10] or in annular resonators [11] and solved the dynamics of37

the flow without taking heat transfer into account.38

Simulations in the nonlinear regime were first performed by Yano [12],39

who studied the acoustic streaming associated with resonant oscillations with40

periodic shock waves in tubes with aspect ratio (width over length) very41

large (0.1). He solved the full 2D Navier-Stokes equations with an upwind42

finite-difference TVD scheme and showed the existence of irregular vortex43

structures and even turbulent streaming for high streaming Reynolds num-44

bers (based on a characteristic streaming velocity, the tube length, and the45

kinematic viscosity, Rs = UsL/ν). This is a different configuration than our46

configuration, since it considers low frequency acoustic waves in wide tubes47

with respect to their length and focuses on turbulent streaming.48

Simulations of acoustic streaming in the linear and nonlinear regime, tak-49

ing heat transfer into account, in a two-dimensional rectangular enclosure,50

were performed by Aktas and Farouk [13]. In their study, the wave is created51

by vibrating the left wall of the enclosure and the full compressible Navier-52

Stokes equations are solved, with an explicit time-marching algorithm (a53

fourth order flux-corrected transport algorithm) to track the acoustic waves.54
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Their numerical results are in agreement with theoretical results in the lin-55

ear regime and show irregular streaming motion in the nonlinear regime,56

but they show the existence of irregular streaming at small values of ReNL,57

in contradiction with experiments cited above. Moreover, these simulations58

do not analyze the deformation of the streaming cells until they split onto59

several cells.60

We propose in this work to conduct numerical 2D compressible simula-61

tions for studying the origin of the distortion of streaming cells (of Rayleigh62

type) that were experimentally observed. Calculations are performed for63

channels with aspect ratios ranging from 0.01 to 0.07, and the coupling be-64

tween streaming effects and thermal effects in the channel (existence of a65

mean temperature gradient) is also investigated.66

2. Problem description and numerical model67

We consider a rectangular channel of length L and half width y0, initially68

filled with the working gas. In order to initiate an acoustic standing wave in69

the channel, it is shaken in the longitudinal direction (x), so that an harmonic70

velocity law is imposed, V(t) = (V (t), 0)T , with V (t) = xpω cos(ωt), ω being71

the angular frequency and xp the amplitude of the channel displacement.72

The channel being undeformable, the flow can be modeled by the compress-73

ible Navier-Stokes equations expressed in the moving frame attached to the74
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channel, so that a forcing source term is added. The model reads:75 

∂ρ

∂t
+∇ · (ρv) = 0

∂ρv

∂t
+∇ · (ρv ⊗ v) +∇p = ∇ · (¯̄τ)− ρ

dV

dt
∂ρE

∂t
+∇ · (ρEv + pv) = ∇ · (k∇T ) +∇ · (¯̄τv)− ρv · dV

dt

(1)

where v = (u, v)T is the flow velocity, E = e + 1
2
v · v is the total energy,76

with e = p
(γ−1)ρ

the internal energy, γ the specific heat ratio, ¯̄τ = −2
3
µ(∇ ·77

v)¯̄I+2µ ¯̄D the viscous stress tensor of a Newtonian fluid, ¯̄D the strain tensor,78

µ the dynamic viscosity, k the thermal conductivity. The thermo-physical79

properties µ and k are supposed to be constant. The gas is considered as80

a perfect gas obeying the state law p = rρT , where T is the temperature81

and r is the perfect gas constant corresponding to the working gas. The82

physical boundary conditions employed in the moving frame are: no slip and83

isothermal walls.84

The model is numerically solved by using high order finite difference85

schemes, developed in Daru and Tenaud [14]. An upwind scheme, third86

order accurate in time and space, is used for convective terms, and a cen-87

tered scheme, second order, is used for diffusion terms. More detail about88

the scheme and computations showing its good qualities can be found in89

Daru and Gloerfelt [15], Daru and Tenaud [16]. This scheme can be derived90

up to an arbitrary order of accuracy for convective terms in the case of a91

scalar equation. Here the third order scheme is selected, after having done92

several comparisons using higher order schemes (up to the 11th order), that93

have shown that third order gives sufficient accuracy for a reasonable CPU94

cost. In cases where shock waves are present, the scheme can be equipped95
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with a flux limiter (MP), preserving monotonicity, intended for suppressing96

the parasitic numerical oscillations generated in the shock region, while pre-97

serving the accuracy of the scheme in smooth regions. However, the flows98

considered here are always low Mach number flows. Although traveling shock99

waves are a main feature of the flow for high acoustics levels, as noticed by100

several authors [17], they are of weak intensity and the numerical oscillations101

are very small and do not spoil the solution. Thus the MP limiter, which102

is expensive in terms of CPU cost, was not activated in these calculations.103

For solving the 2D Navier-Stokes equations, the scheme is implemented using104

Strang splitting. This reduces the formal accuracy of the scheme to second105

order. However, numerical experiments have shown that a very low level of106

error is still achieved.107

Let us describe our numerical procedure. The system (1) can be written108

in vector form :109

∂w

∂t
+

∂

∂x
(f − f v) +

∂

∂y
(g − gv) = h (2)

where w is the vector of conservative variables (ρ, ρu, ρv, ρE)T , f and g are110

the inviscid fluxes f = (ρu, ρu2 + p, ρuv, ρEu+ pu)T and g = (ρv, ρuv, ρv2 +111

p, ρEv + pv)T , f v and gv being the viscous fluxes f v = (0, τxx, τxy, k
∂T
∂x

+112

uτxx + vτxy)
T , gv = (0, τxy, τyy, k

∂T
∂y

+ uτxy + vτyy)
T . The source term reads113

h = (0,−ρdV
dt
, 0,−ρudV

dt
)T . Denoting wn

i,j the numerical solution at time t =114

nδt and grid point (x, y) = (iδx, jδy), we use the following Strang splitting115

procedure to obtain second order of accuracy every two time steps :116

wn+2
i,j = LδxLδyLδyLδxw

n
ij (3)

where Lδx (resp. Lδy) is a discrete approximation of Lx(w) = w + δt(−fx +117
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f v
x + h) (resp. Ly(w) = w + δt(−gy + gvy)). The 1D operators being similar118

in the two directions, we only describe the x operator. The scheme is imple-119

mented as a correction to the second order MacCormack scheme. It consists120

of three steps, as follows :121

w∗
i,j = wn

i,j − δt
δx
(fi+1,j − fi,j − f v

i+1/2,j + f v
i−1/2,j)

n + δt hni,j

w∗∗
i,j = w∗

i,j − δt
δx
(fi,j − fi−1,j − f v

i+1/2,j + f v
i−1/2,j)

∗

wn+1
i,j = 1

2
(wn

i,j + w∗∗
i,j) + Cx

i+1/2,j − Cx
i−1/2,j

(4)

The viscous fluxes are discretized at each interface using centered second or-122

der finite differences formulae. The corrective term Cx
i+1/2,j−Cx

i−1/2,j provides123

the third order accuracy and the upwinding for the inviscid terms. Let us de-124

fine ψi+1/2,j = 1
6

∑4
l=1

{
|νli+1/2,j|(1− νli+1/2,j)(1 + νli+1/2,j)δα

l
i+1/2,j · dli+1/2,j

}
,125

where νl = δt
δx
λl, λl and dl are the eigenvalues and eigenvectors of the Roe-126

averaged jacobian matrix A = df
dw

[18], and δαl is the contribution of the127

l−wave to the variation (wn
i+1/2,j − wn

i−1/2,j). Using the function ψ, the cor-128

rective term reads :129

Cx
i+1/2,j =

 −ψn
i+1/2,j + ψn

i−1/2,j if νi+1/2,j ≥ 0

ψn
i+3/2,j − ψn

i+1/2,j if νi+1/2,j < 0
(5)

This completes the description of the numerical method.130

We are interested in the acoustic streaming generated by the interaction of131

the imposed plane standing wave and the channel wall. Resonant conditions132

are imposed, for which L = λ/2, λ = c0/f being the wave length, c0 the speed133

of sound for initial state and f the vibration frequency of the channel. It is134

known [5] that boundary layers develop along the walls, with thickness δν =135 √
2ν/ω, ν being the kinematic viscosity ν = µ/ρ0, and ρ0 the density at initial136

state. Depending on the value of the ratio y0/δν , several patterns of streaming137
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can appear: Rayleigh-type streaming in the central region, and boundary138

layer type streaming near the longitudinal walls. The boundary layer is of139

small thickness and must be correctly resolved by the discretization mesh.140

After several trials, we have determined that a value of 5 points per boundary141

layer thickness is sufficient for reasonable accuracy of the simulations. The142

results obtained using 10 points per boundary layer thickness show very small143

differences with the former, the maximum value of the differences being less144

than 3%. All results presented below are thus obtained using a cartesian145

mesh of rectangular cells of constant size δx and δy, composed of 500 points146

in the axial direction x, and of 5× y0/δν points in the y direction normal to147

the axis. In the considered geometry, this leads to cells such that δy ≪ δx.148

The flow being symmetrical with respect to the x axis (at least in the range149

of parameters treated), only the upper half of the channel was considered.150

Also, the scheme being fully explicit, the time step δt is fixed such as to151

satisfy the stability condition of the scheme which can be written as:152

δt ≤ 1

2
min(δy2/ν, δy2/(k/ρ0c0), δy/c0) (6)

As shown in Equation (6), the first two limiting values δy2/ν and δy2/(k/ρ0c0)153

are related to the viscous and thermal conduction terms, and the third one154

δy/c0 is related to the acoustic propagation. In all cases considered here,155

the time step limitation is acoustic, ie δt ≤ 1
2
δy/c0. Taking δt =

1
2
δy/c0 and156

δy = δν/5, this results in a number of time steps NT per period of oscillation157

proportional to
√
L, NT = 1/(fδt) = 10

√
2πc0
ν

√
L. Since transients of sev-158

eral hundreds of periods may be needed in order to reach stabilized steady159

streaming flow, simulations are very costly, and one must rely on numerical160

schemes that are sufficiently accurate in both space and time.161
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Finally, the mean flow is obtained from calculating a simple mean value162

for each physical quantity (velocity, pressure, temperature) over an acoustic163

period. The mean velocity obtained is the so-called Eulerian streaming ve-164

locity. The Lagrangian streaming velocity, associated to the streaming mass165

transport, could also be computed. The difference between them is signifi-166

cant only in the boundary layer, and in the case of wide channels the two167

velocities are almost the same. In order to observe the mechanism of cell168

distortion, either one of these velocities can be monitored.169

3. Numerical results170

We consider a channel initially filled with air at standard thermody-171

namic conditions, p0 = 101325Pa, ρ0 = 1.2kgm−3, T0 = 294.15K. The172

thermo-physical properties of air are µ = 1.795 10−5kgm−1s−1 and k =173

0.025Wm−1K−1. Also for air, γ = 1.4 and r = 287.06Jkg−1K−1. The174

Prandtl number Pr is equal to 0.726. This results in an initial speed of175

sound c0 = 343.82ms−1.176

For a 1m long channel, the limiting time step would correspond to NT ≈177

25000
√
L, that is 25000 iterations per period. Since transients of several178

hundreds of periods may be needed in order to reach stabilized streaming179

flow, several millions of iterations are necessary for each simulation. Con-180

sidering these numerical constraints, a shorter channel is considered, with181

L = 8.59mm. This corresponds to a high-frequency wave, with f = 20000Hz.182

The resulting boundary layer thickness is δν = 1.54 10−5m. The time step183

δt = 8 10−9s is chosen in order to satisfy the numerical stability condition,184

corresponding to 6250 time iterations per period for a mesh involving 5 grid185
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xp(µm) 5 10 50 80 100

Umax(m/s) 7.0 26.45 61.11 70.94 89.96

y0/δν 10 40 20 10 20

y0/L 0.0180 0.0718 0.0359 0.018 0.0359

ReNL 0.041 9.469 12.636 4.257 27.384

Table 1: Values of the parameters of the simulations.

points across the boundary layer thickness. The acoustic velocity produced186

in the channel depends on the amplitude of the channel displacement and on187

the ratio y0/δν . It varies approximately linearly with the amplitude of the188

channel displacement, for a given ratio y0/δν . Table 1 summarizes the dif-189

ferent parameter values corresponding to the simulations that are presented190

thereafter.191

As mentioned earlier, the parameter identified as relevant in describing192

the regularity of streaming flow is the nonlinear Reynolds number ReNL193

introduced by Menguy and Gilbert [4]. In this paper we used a slightly194

different definition for ReNL, because the definition of the viscous boundary195

layer thickness is different. Our Reynolds number corresponds to half of that196

of Menguy and Gilbert [4].197

We first present results concerning the main acoustic field in the channel,198

for a small value of ReNL corresponding to slow streaming. In Figure 1(a)199

is represented the velocity signal at the center of the channel, as a function200

of the number of periods elapsed. At this location, the acoustic velocity201

amplitude is maximum since it corresponds to the antinode. For this value202

of ReNL, the problem is nearly linear and the final signal is purely sinu-203
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soidal, in agreement with the linear theory. The amplification of the initial204

perturbation until saturation can be observed. The periodic regime is estab-205

lished after about 20 periods. Figure 1(b) shows the time evolution of the206

mean horizontal velocity (over an acoustic period) and of the mean temper-207

ature difference ∆T = T − T0 (also over an acoustic period) on the axis,208

at x = λ/8. At this location the streaming velocity is maximum. It can be209

noticed that the steady streaming field is established also after about 20 peri-210

ods which is of the same order of magnitude as the theoretical characteristic211

streaming time scale τc = (2y0
π
)2 1

ν
, (see Amari, Gusev and Joly [19]) which212

in this case gives nc periods for reaching steady-state, with nc = 13. In Fig-213

ure 2(a) is shown the variation of the axial dimensionless streaming velocity214

at x = λ/8 along the channel’s width, compared with results computed us-215

ing the analytical expressions of Hamilton, Ilinskii and Zabolotskaya [20]. In216

this figure, the reference velocity is the Rayleigh streaming reference velocity217

[2, 5], uRayleigh = 3
16
U2
max/c0. The slight discrepancy between the numerical218

and the analytical profiles is probably due to the presence of the vertical219

end walls, which is not accounted for in the model of Hamilton, Ilinskii and220

Zabolotskaya [20]. In Figure 2(b) is shown the stabilized mean pressure p−p0221

(over an acoustic period), scaled by (γ/4)p0M
2, along the channel’s axis. It222

is the second order average pressure resulting from the streaming flow, which223

is clearly one-dimensional and has a cosine variation with respect to x, as224

expected in the linear regime of streaming. In the present case, there is an225

offset pressure poff, corresponding to an increase of the mean pressure and226

temperature (uniform in space) inside the channel, due to the harmonic forc-227

ing source term. When subtracting off this offset pressure, the theoretical228
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Figure 1: a) Acoustic velocity at the channel’s center, as a function of time counted by the

number of periods elapsed. b) Mean horizontal velocity and mean temperature variation,

on the channel’s axis at x = λ/8. Case ReNL = 0.041 (y0/δν = 10, M = 0.02).

a) Ust

y/
y 0
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b) x/L

p
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Figure 2: a) Ust as a function of y/y0 at x = λ/8, numerical (present study) and analytical

[20] results. b) Dimensionless mean fluctuating pressure, p− p0 along the channel’s axis.

Case ReNL = 0.041 (y0/δν = 10, M = 0.02).

result for the dimensionless hydrodynamic streaming pressure is obtained,229

P2s = cos 4π x
λ
(see Menguy and Gilbert [4]).230

Simulations are then performed for several values of ReNL correspond-231

ing to configurations ranging from slow streaming flow (ReNL = 0.041) to232

fast streaming flow (ReNL = 27.384), for several values of the cavity width233

(y0/δν = 10, 20, 40), and for increasing acoustic velocities, with Mach num-234

bers ranging from M = 0.02 to M = 0.27 so that shock waves can occur.235

This can be seen in Figure 3(right) showing the acoustic velocity signal at236

channel’s center as a function of time counted by the number of periods237
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elapsed. In Figure 3(a)(right) the signal contains only one frequency, but for238

all other cases, there are shock waves and the acoustic velocity signal is dis-239

torted in a ”U” shape, because of the presence of odd harmonics (3, 5, etc).240

Figure 3(left) shows the streamlines of the streaming velocity field over the241

whole length and only over the top half width of the channel. As expected, in242

the case of small ReNL number values (Figure 3(a)), four symmetric stream-243

ing cells develop over the length and the half width of the channel: two cells244

in the boundary layer, and two cells in the core of the channel, identified in245

the literature as Rayleigh streaming. These results are in agreement with246

the predictions of analytical models of streaming flows [5, 6], and with ex-247

perimental measurements [7]. The only noticeable difference is the slight248

asymmetry of cells with respect to the vertical lines x = λ/8 and x = 3λ/8,249

due to the presence of vertical boundary layers. Indeed these boundary layers250

are accounted for in the present simulations but are neglected in the analyt-251

ical models, and are very far from the measurement area in the experiments.252

Several simulations have shown that this asymmetry is independent of ReNL253

as long as the value of the latter remains small with respect to 1.254

For ReNL > 1, the steady streaming flow is established after the same255

characteristic time as in the linear case. The recirculation cells become very256

asymmetric as ReNL increases, and streaming flow becomes irregular (Fig-257

ure 3(b,c,d,e)(left)). This was also observed experimentally (with PIV mea-258

surements) by Nabavi, Siddiqui and Dargahi [8] in a rectangular enclosure.259

The centers of all streaming cells (boundary layer cells as well as central260

cells) are displaced towards the ends of the resonant channel, close to the261

boundary layers next to the vertical walls. PIV measurements by Nabavi,262
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Siddiqui and Dargahi [8] show the same distortion of streamlines between an263

acoustic velocity node and an antinode. Figure 4(a) shows the x variation264

along the channel’s central axis y = 0, of the axial dimensionless streaming265

velocity component, using as reference velocity the Rayleigh streaming ref-266

erence velocity [2, 5], uRayleigh = 3
16
U2
max/c0. There is a clear modification of267

the velocity profiles as ReNL increases: the sine function associated to slow268

streaming becomes steeper next to the channel’s ends. The slope to the curve269

at the channel’s center (acoustic velocity node) becomes smaller as ReNL in-270

creases, then becomes close to zero (curve parallel to the longitudinal axis) for271

a critical value between 13 and 27, and then changes sign, which indicates the272

emergence of new streaming cells (Figure 4(a)). Another consequence of the273

distortion of streaming cells can be observed on the acoustic streaming axial274

velocity profiles along the width of the channel, shown in Figure 4(b,c,d).275

The parabolic behavior in the center of the channel at x = λ/8 disappears276

as ReNL increases (see Figure 4(b)), as a consequence of displacement of the277

center of each streaming cell toward the velocity node. Figures 4(c,d) also278

confirm the direction of the displacement of the streaming cells’ centers. This279

distortion of streaming cells was already observed in experiments in rectan-280

gular or cylindrical geometries in wide channels [7, 8, 9]. Nabavi, Siddiqui281

and Dargahi [8] described it as irregular streaming and detected a critical282

nonlinear Reynolds number ReNL = 25 that separates regular and irregu-283

lar streaming, which is in agreement with our simulations. In the literature284

there is to our knowledge no other theoretical or numerical study confirming285

measurements in these streaming regimes. With the weakly nonlinear model286

of Menguy and Gilbert [4] the streaming can be calculated for a maximum287
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value of ReNL = 2 (in our definition), while the numerical simulations of288

Aktas and Farouk [13] show the existence of multiple streaming cells for a289

low value of ReNL = 1.4, which is in contradiction with our results and with290

experiments. Moreover, these numerical simulations [13] do not analyse in291

detail the transition from two exterior streaming cells to more streaming292

cells.293

According to Menguy and Gilbert [4], the fluid inertia causes distortion294

of streaming cells for large values of ReNL. This was also verified through our295

simulations. For ReNL = O(1), the Mach number is still small (the wave is296

almost a mono-frequency wave) and the mean temperature difference inside297

the channel is smaller than 0.1K (the mean temperature gradient is negligi-298

ble). The approximations of the model by Menguy and Gilbert [4] still apply299

here, so we can say that the distortion is caused only by inertial effects. When300

ReNL increases, periodic shocks appear and the mean temperature gradient301

becomes important in our simulations. In their experimental study, Thomp-302

son, Atchley and Maccarone [9] show the existence of some distortion of the303

streaming field that are not predicted by existing models of the literature in304

the nonlinear regime. They do not relate this distortion to fluid inertia but305

rather to the influence of the mean temperature field, and more specifically306

of the axial temperature gradient induced through a thermoacoustic effect307

along the horizontal walls of the resonating channel. In an experimental case308

with no shock waves, Merkli and Thomann [17] showed that a mean tem-309

perature gradient is established inside the tube so that heat is removed close310

to the velocity antinodes, i.e. at the location of largest viscous dissipation,311

and heat is produced close to velocity nodes, along the lateral walls. Similar312
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Figure 3: Streamlines of mean flow on the top half of the channel (left) and acoustic

velocity signal at channel’s center as a function of time counted by the number of periods

elapsed (right) a) ReNL = 0.041 (y0/δν = 10, M = 0.02). b) ReNL = 4.257 (y0/δν = 10,

M = 0.206). c) ReNL = 9.469 (y0/δν = 40, M = 0.077). d) ReNL = 12.636 (y0/δν = 20,

M = 0.178). e) ReNL = 27.384 (y0/δν = 20, M = 0.262). Lengths are normalized with L.
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Figure 4: Horizontal mean velocity component Ust, normalized with 3
16U

2
max/c0 for the 5

cases of Figure 3. a) Ust along the channel’s central axis. b),c) and d) Ust as a function

of y/y0 for several sections x.
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Figure 5: Mean temperature field on the top half of the channel, a) ReNL = 0.041. b)

ReNL = 4.257. c) ReNL = 12.636. d) ReNL = 27.383. The difference between minimum

and maximum values of temperature is (respectively) : a) ∆T = 0.039K, b) ∆T = 6.39K,

c) ∆T = 19.4K, d) ∆T = 44K.

18



observations can be made in our simulations as seen in Figure 5(a) which313

shows the mean temperature field for small values of ReNL. The thermoa-314

coustic heat transport takes place at a distance of one thermal boundary315

layer thickness and then heat diffuses in the radial direction, yielding a tem-316

perature field almost one-dimensional in the central part of the tube in the317

steady-state. As ReNL increases however, the mean temperature field clearly318

becomes two-dimensional, as a consequence of both convective heat trans-319

port by streaming flow and heat conduction in both directions (Figure 5(b)).320

Within the considered range of values of the nonlinear Reynolds number,321

there is a change of regime for the temperature field before ReNL = 13.26,322

corresponding to the confinement of outer streaming cell towards the acous-323

tic velocity node. Consequently a zone of very small streaming velocities is324

generated in the middle of the cavity and that induces the accumulation of325

heat (Figure 5(c)). The mean temperature gradient changes the orientation326

and can cause the splitting of the outer cell into several cells when further327

increasing ReNL (Figure 5(d)).328

Note that the streaming flow stabilizes in several stages in regimes with329

high values of the nonlinear Reynolds number. In a first and rapid stage330

(a few tens of periods), regular streaming flow appears. Then this regular331

streaming is destabilized along with increasing heterogeneity of the mean332

temperature field. The steady mean flow stabilizes much later, with time333

scales related to convection and heat conduction.334
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4. Conclusions335

The numerical simulations performed demonstrate the transition from336

regular acoustic streaming flow towards irregular streaming, in agreement337

with existing experimental data. These are the first simulations, to our338

knowledge, in good alinement with experiments of nonlinear streaming regimes.339

Results show a sizable influence of vertical boundary layers for the chosen340

configuration. There is also intricate coupling between the mean tempera-341

ture field and the streaming flow. This coupling effect will be the object of342

future work. Also, extension of current results in configurations with larger343

channels is currently in progress.344
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