L1-optimal linear programming estimator for periodic frontier functions with Hölder continuous derivative

Alexander Nazin 1 Stephane Girard 2
2 MISTIS - Modelling and Inference of Complex and Structured Stochastic Systems
Inria Grenoble - Rhône-Alpes, LJK - Laboratoire Jean Kuntzmann, INPG - Institut National Polytechnique de Grenoble
Abstract : We propose a new estimator based on a linear programming method for smooth frontiers of sample points. The derivative of the frontier function is supposed to be Hölder continuous.The estimator is defined as a linear combination of kernel functions being sufficiently regular, covering all the points and whose associated support is of smallest surface. The coefficients of the linear combination are computed by solving a linear programming problem. The L1- error between the estimated and the true frontier functions is shown to be almost surely converging to zero, and the rate of convergence is proved to be optimal.
Type de document :
Article dans une revue
Automation and Remote Control / Avtomatika i Telemekhanika, MAIK Nauka/Interperiodica, 2014, 75 (12), pp.2152-2169. <10.1134/S0005117914120066>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01066739
Contributeur : Stephane Girard <>
Soumis le : lundi 22 septembre 2014 - 11:40:32
Dernière modification le : vendredi 3 février 2017 - 01:06:40
Document(s) archivé(s) le : mardi 23 décembre 2014 - 10:55:11

Fichiers

NazinGirardARC2014.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Alexander Nazin, Stephane Girard. L1-optimal linear programming estimator for periodic frontier functions with Hölder continuous derivative. Automation and Remote Control / Avtomatika i Telemekhanika, MAIK Nauka/Interperiodica, 2014, 75 (12), pp.2152-2169. <10.1134/S0005117914120066>. <hal-01066739>

Partager

Métriques

Consultations de
la notice

252

Téléchargements du document

90