]. A. Singh, R. K. Sharma, M. Agrawal, F. M. Marshall, M. Hua et al., Health risk assessment of heavy metals via dietary intake of foodstuffs from the wastewater irrigated site of a dry tropical area of India Heavy metal removal from water/wastewater by nanosized metal oxides: a review Adsorption of several metal ions onto a low-cost biosorbent: kinetic and equilibrium studies, Food Chem. Toxicol. J. Hazard. Mater. Environ. Sci. Technol, vol.484, issue.1, pp.611-619, 2002.

F. Arias and T. K. Sen, Removal of zinc metal ion (Zn2+) from its aqueous solution by kaolin clay mineral: A kinetic and equilibrium study, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.348, issue.1-3, pp.100-108, 2009.
DOI : 10.1016/j.colsurfa.2009.06.036

R. Jain, G. Gonzalez-gil, V. Singh, and E. D. , Fe 3 O 4 @SiO 2 core-shell magnetic nanomaterial as a novel adsorbent for aqueous heavy metals removal, J. Colloid Interface Sci, vol.349, pp.293-299, 2010.

B. Lens, A. Selenium-nanoparticles, J. N. Kuman, . S. Govil7-]-r, M. J. Oremland et al., Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria Aerobic biogenesis of selenium nanospheres by Bacillus cereus isolated from coalmine soil, Evangelou, L. Winkel, M. Lenz, Colloidal properties of nanoparticular biogenic selenium govern environmental fate and bioremediation effectiveness, pp.361-390, 2004.

Y. Bai, F. Rong, H. Wang, Y. Zhou, X. Xie et al., Removal of Copper from Aqueous Solutions by Adsorption on Elemental Selenium Nanoparticles, Journal of Chemical & Engineering Data, vol.56, issue.5, pp.2563-2568, 2011.
DOI : 10.1021/je2000777

N. C. Johnson, S. Manchester, L. Sarin, Y. Gao, I. Kulaots et al., Mercury Vapor Release from Broken Compact Fluorescent Lamps and In Situ Capture by New Nanomaterial Sorbents, Environmental Science & Technology, vol.42, issue.15, pp.42-5772, 2008.
DOI : 10.1021/es8004392

J. W. Fellowes, R. A. Pattrick, D. I. Green, A. Dent, J. R. Lloyd et al., Use of biogenic and abiotic elemental selenium nanospheres to sequester elemental mercury released from mercury contaminated museum specimens, Journal of Hazardous Materials, vol.189, issue.3, pp.189-660, 2011.
DOI : 10.1016/j.jhazmat.2011.01.079

S. Jiang, C. T. Ho, J. Lee, H. Van-duong, S. Han et al., Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200, Chemosphere, vol.87, issue.6, pp.621-624, 2012.
DOI : 10.1016/j.chemosphere.2011.12.083

O. V. Kharissova, H. V. Dias, B. I. Kharisov, B. O. Pérez, and V. M. Pérez, The greener synthesis of nanoparticles, Trends in Biotechnology, vol.31, issue.4, pp.31-240, 2013.
DOI : 10.1016/j.tibtech.2013.01.003

A. L. Stroyuk, A. E. Raevskaya, S. Ya, V. M. Dzhagan, D. R. Zahn et al., Structural and optical characterization of colloidal Se nanoparticles prepared via the acidic decomposition of sodium selenosulfate, Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol.320, issue.1-3, pp.320-169, 2008.
DOI : 10.1016/j.colsurfa.2008.01.055

M. Quintana, E. Haro-poniatowski, J. Morales, and N. Batina, Synthesis of selenium nanoparticles by pulsed laser ablation, Applied Surface Science, vol.195, issue.1-4, pp.175-186, 2002.
DOI : 10.1016/S0169-4332(02)00549-4

T. Wang, L. Yang, B. Zhang, and J. Liu, Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor, Colloids and Surfaces B: Biointerfaces, vol.80, issue.1, pp.94-102, 2010.
DOI : 10.1016/j.colsurfb.2010.05.041

M. Lenz, A. C. Van-aelst, M. Smit, P. F. Corvini, and P. N. Lens, Biological Production of Selenium Nanoparticles from Waste Waters, Advanced Materials Research, vol.71, issue.73, pp.73-721, 2009.
DOI : 10.4028/www.scientific.net/AMR.71-73.721

K. M. Hambidge and N. F. Krebs, Zinc deficiency: a special challenge, J. Nutr, vol.137, pp.1101-1105, 2007.

W. Naito, M. Kamo, K. Tsushima, and Y. Iwasaki, Exposure and risk assessment of zinc in Japanese surface waters, Science of The Total Environment, vol.408, issue.20, pp.4271-4284, 2010.
DOI : 10.1016/j.scitotenv.2010.06.018

J. Kessi and K. W. Hanselmann, Similarities between the Abiotic Reduction of Selenite with Glutathione and the Dissimilatory Reaction Mediated by Rhodospirillum rubrum and Escherichia coli, Journal of Biological Chemistry, vol.279, issue.49, pp.279-50662, 2004.
DOI : 10.1074/jbc.M405887200

M. Lenz, E. D. Van-hullebusch, G. Hommes, P. F. Corvini, and P. N. Lens, Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors, Water Research, vol.42, issue.8-9, pp.42-2184, 2008.
DOI : 10.1016/j.watres.2007.11.031

URL : https://hal.archives-ouvertes.fr/hal-00693574

. Akkermans, Community analysis of a full-scale anaerobic bioreactor treating paper mill wastewater, Syst. Appl. Microbiol, vol.28, pp.175-185, 2005.

J. Dobias, E. I. Suvorova, and R. Bernier-latmani, Role of proteins in controlling selenium nanoparticle size, Nanotechnology, vol.22, issue.19, 2011.
DOI : 10.1088/0957-4484/22/19/195605

M. Zhao, J. R. Duncan, and R. P. Van-hille, Removal and recovery of zinc from solution and electroplating effluent using Azolla filiculoides, Water Research, vol.33, issue.6, pp.1516-1522, 1999.
DOI : 10.1016/S0043-1354(98)00338-8

C. Nuengjamnong, J. Hyang, J. Cho, C. Polprasert, and K. Ahn, Membrane fouling caused by extracellular polymeric substances during microfiltration processes, Desalination, vol.179, issue.1-3, pp.117-124, 2005.
DOI : 10.1016/j.desal.2004.11.060

N. Kayaalp, C. Kinaci, N. Dizge, and N. Hamidi, Correlation of Filtration Resistance with Microbial Polymeric Substances Extracted from Membranes in a Submerged Membrane Bioreactor, CLEAN - Soil, Air, Water, vol.264, issue.1-2, pp.1-9, 2014.
DOI : 10.1002/clen.201300424

N. T. Prakash, N. Sharma, R. Prakash, K. K. Raina, J. Fellowes et al., Aerobic microbial manufacture of nanoscale selenium: exploiting nature???s bio-nanomineralization potential, Biotechnology Letters, vol.17, issue.12, pp.31-1857, 2009.
DOI : 10.1007/s10529-009-0096-0

K. Shin, J. Hong, and J. Jang, Heavy metal ion adsorption behavior in nitrogendoped magnetic carbon nanoparticles: isotherms and kinetic study, J. Hazard. Mater, pp.190-226, 2011.

F. Q. Guo and K. Lu, Microstructural evolution in melt-quenched amorphous Se during mechanical attrition, Physical Review B, vol.57, issue.17, p.10414, 1998.
DOI : 10.1103/PhysRevB.57.10414

V. Bansal, D. Rautaray, A. Bharde, K. Ahire, A. Sanyal et al., Fungus-mediated biosynthesis of silica and titania particles, Journal of Materials Chemistry, vol.124, issue.26, pp.15-2583, 2005.
DOI : 10.1039/b503008k

V. Bansal, P. Poddar, A. Ahmad, and M. Sastry, Room-Temperature Biosynthesis of Ferroelectric Barium Titanate Nanoparticles, Journal of the American Chemical Society, vol.128, issue.36, pp.11958-11963, 2006.
DOI : 10.1021/ja063011m

X. Unger, NEXAFS studies of aliphatic and aromatic amine species on functionalized surfaces, Surf. Sci, vol.603, pp.2849-2860, 2009.

S. Senapati, A. Ahmad, M. I. Khan, M. Sastry, and R. Kumar, Extracellular Biosynthesis of Bimetallic Au-Ag Alloy Nanoparticles, Small, vol.43, issue.5, pp.517-5200, 2005.
DOI : 10.1002/smll.200400053

S. B. Kanungo, S. S. Tripathy, S. K. Mishra, and B. Sahoo, Adsorption of Co2+, Ni2+, Cu2+, and Zn2+ onto amorphous hydrous manganese dioxide from simple (1???1) electrolyte solutions, Journal of Colloid and Interface Science, vol.269, issue.1, pp.11-21, 2004.
DOI : 10.1016/j.jcis.2003.07.002

W. Matthes, F. W. Madsen, and G. Kahr, Sorption of heavy metals cations by Al and Zr-hydroxyl-intercalated and pillared bentonite, Clays and clays material, pp.47-617, 1999.

D. D. Do, Adsorption analysis: equilibria and kinetics, 1998.
DOI : 10.1142/9781860943829

K. L. Nuttall, A model for metal selenide formation under biological conditions, Medical Hypotheses, vol.24, issue.2, pp.217-2211, 1987.
DOI : 10.1016/0306-9877(87)90107-1

W. Zhang, Z. Yang, J. Liu, Z. Hui, and W. Yu, A hydrothermal synthesis of orthorhombic nanocrystalline cobalt diselenide CoSe2, Materials Research Bulletin, vol.35, issue.14-15, pp.2403-2408, 2000.
DOI : 10.1016/S0025-5408(00)00437-2

Y. Li, Y. Ding, H. Liao, and Y. Qian, Room-temperature conversion route to nanocrystalline mercury chalcogenides HgE (E=S,Se,Te), Journal of Physics and Chemistry of Solids, vol.60, issue.7, pp.965-968, 1999.
DOI : 10.1016/S0022-3697(98)00349-7

H. Su, Y. Xie, B. Li, and Y. Qian, A simple, convenient, mild hydrothermal route to nanocrystalline CuSe and Ag 2 Se, Mater. Res. Bull, pp.35-465, 2000.

R. R. Navarro, K. Tatsumi, K. Sumi, and M. Matsumura, Role of anions on heavy metal sorption of a cellulose modified with poly(glycidyl methacrylate) and polyethyleneimine, Water Research, vol.35, issue.11, pp.2724-2730, 2001.
DOI : 10.1016/S0043-1354(00)00546-7

D. E. Tebo and . Giammar, Adsorption of uranium(VI) to manganese oxides: X-ray absorption spectroscopy and surface complexation modeling, Environ. Sci. Technol, pp.47-850, 2013.

G. Mckay and J. F. Porter, Equilibrium Parameters for the Sorption of Copper, Cadmium and Zinc Ions onto Peat, Journal of Chemical Technology & Biotechnology, vol.10, issue.3, pp.309-320, 1997.
DOI : 10.1002/(SICI)1097-4660(199707)69:3<309::AID-JCTB724>3.0.CO;2-W

A. G. Boricha and Z. V. Murthy, Preparation, characterization and performance of nanofiltration membranes for the treatment of electroplating industry effluent, Separation and Purification Technology, vol.65, issue.3, pp.65-282, 2009.
DOI : 10.1016/j.seppur.2008.10.047

S. M. Kanawade and R. W. Gaikwad, Removal of Zinc Ions from Industrial Effluent by Using Cork Powder as Adsorbent, International Journal of Chemical Engineering and Applications, vol.2, pp.199-201, 2011.
DOI : 10.7763/IJCEA.2011.V2.102

S. I. Amer, Treating metal finishing wastewater, Environmental Technology

U. Kouakou, A. S. Ello, J. A. Yapo, and A. Trokourey, Adsorption of iron and zinc on commercial activated carbon, J.Environ.Chemistry Ecotoxicol, vol.5, pp.168-185, 2013.

Y. Zhang, Y. Li, L. Yang, X. Ma, L. Wang et al., Characterization and adsorption mechanism of Zn 2+ removal by PVA/EDTA resin in polluted water, J. Hazard. Mater, pp.178-1046, 2010.

D. Nibou, H. Mekatel, S. Amokrane, M. Barkat, and M. Trari, Adsorption of Zn 2+ ions onto NaA and NaX zeolites: kinetic, equilibrium and thermodynamic studies, J. Hazard. Mater, pp.173-637, 2010.

Q. Su, B. Pan, S. Wan, W. Zhang, and L. Lv, Use of hydrous manganese dioxide as a potential sorbent for selective removal of lead, cadmium, and zinc ions from water, Journal of Colloid and Interface Science, vol.349, issue.2, pp.607-612, 2010.
DOI : 10.1016/j.jcis.2010.05.052

R. Sitko, E. Turek, B. Zawisza, E. Malicka, E. Talik et al., Adsorption of divalent metal ions from aqueous solutions using graphene oxide, Dalton Transactions, vol.4, issue.202, pp.42-5682, 2013.
DOI : 10.1016/j.jscs.2012.10.004

A. Miyazaki, I. Balint, and Y. Nakano, Solid-liquid interfacial reaction of Zn2+ ions on the surface of amorphous aluminosilicates with various Al/Si ratios, Geochimica et Cosmochimica Acta, vol.67, issue.20, pp.3833-38444, 2003.
DOI : 10.1016/S0016-7037(03)00373-9