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Abstract—Bike sharing systems are present in several modern
cities. They provide citizens with an alternative and ecological
mode of transportation, allowing them to avoid the use of
personal car and all the problems associated with it in big
cities (i.e., traffic jam, roads reserved for public transport, . . . ).
However, they also suffer from other problems due to their
success: some stations can be full or empty (i.e., impossibility
to drop off or take a bike). Thus, to predict the use of such
system can be interesting for the user in order to help him/her
to plan his/her use of the system and to reduce the probability of
suffering of the previously presented issues. This paper presents
an analysis of various regressors from the state of the art on
an existing public dataset acquired during two years in order to
predict the global use of a bike sharing system. The prediction
is done for the next twenty-four hours at a frequency of one
hour. Results show that even if most regressors are sensitive to
over-fitting, the best performing one clearly beats the baselines.

I. INTRODUCTION

Bike sharing systems are present in more than 600 cities

around the world and allow citizens to rent a bike in one

station and drop it off in another one in order to travel across

the town [1]. This new way of travelling is getting more and

more popular as many cities open their own schemes. It is

also an efficient way of displacement as Jensen et al. [2] have

shown (at least for the scheme of Lyon) that its use is most

of the time faster than the use of a personal car. Although the

economical model differs among the implementations, most

schemes share very similar technologies, and it is interesting

to be able to predict the future usage of the system. Indeed,

thanks to a prediction system, the user would be able to better

plan his/her trips. This way he/she is almost sure to walk to a

station only if there are free bikes and to release the bike in

a station where there are free slots.

Such system would also be useful for the administrators of

the bike sharing system, to know in advance when it will be

necessary to manually exchange the bikes between two stations

when one station is full whereas the other one is empty. This

way the administrator is able to manage the system to prevent

situations where a user cannot bring back his/her bike at a

full station or cannot take a bike at an empty station. In both

cases the user experience is improved and the system is more

pleasant to use and will be more adopted.

In this work, we want to provide a system able to predict

the number of bikes used (or inversely the number of free

slots) some hours in advance. The problem can be stated as

a regression problem which takes in input various features

and produces the number of bikes in use for the requested

delay. The information used corresponds to features extracted

from various sources (weather, previous usage of the bike

sharing system, calendar) available openly in any town (i.e.,

information not proprietary, except the usage of the bike

sharing system). The proposed system is validated on a dataset

acquired on the bike sharing system of Washington DC [3],

but it could be reproduced for another town as it does not need

any information specific to Washington DC.

The proposed system is compared to several baseline meth-

ods already used in the literature which have been designed

in order to perform well and to be usable without the need

of a computer. We show that the proposed methods perform

better than these baselines, and thus would be better than a

guess from a human operator. However, we also show that the

problem is really sensitive to over-fitting and this point must

be taken seriously.

Although other studies about the prediction of bike sharing

systems have already been done, this paper improves the state

of knowledge because:

• the proposal is evaluated on a two years dataset [3]

whereas most studies of the literature validated their

results only on datasets collected during few weeks;

• we analyse the use of machine learning tools whereas

most studies of the literature use signal processing tools.

As their theoretical backgrounds are different, these ap-

proaches are complementary;

• we have observed the prediction for different deltas

between the current moment and the hour for which we

want to predict the usage ; most of the time this delta is

larger than in any study;

The paper is organised as follows. Section II presents the

previous works related to the use of computational intelli-

gence systems for bike sharing systems. Section III presents

the experimental protocol as well as the proposed method.

Section IV presents the obtained results. Section V discusses

these results. Section VI concludes the paper.

II. COMPUTATIONAL INTELLIGENCE FOR BIKE SHARING

SYSTEMS

Several works have been done on bike sharing systems, but

not all the studies are related to the prediction of the use of

the system in the future. They can be related to the balancing

of the bikes or the characterization of the use of the system.



In most bike sharing systems, it is necessary to manually

balance the bikes among the stations in order to avoid full

or empty stations. Thus, at a different frequency, trucks take

bikes from some stations and distribute them to other ones.

This step is named the “balancing of the stations”. Several

researchers proposed algorithms to reduce the cost of such

operation. Benchimol et al. [4] provides an algorithm in

O(logC + nlogN) with N the number of stations, n the

number of bikes and C the number of trucks. Chemla et al.

propose an algorithm where the balancing is operated by only

one truck [5].

Fanaee-T and Gama [3] use anomaly detection to detect

events thanks to the bike sharing usage information, weather

and working day information. The system has been applied to

Washington DC on a dataset acquired on a period of 2 years

(it is the dataset we use in our work). Their system is able

to detect 30 events which have a real meaning. They have

also made some predictions on the use of the bike sharing

system but do not provide information in order to reproduce

the experiment (i.e., train and validation splitting, parameters,

...).

Yoon et al.[6] propose a personal journey advisor for

navigating in Dublin using the bike sharing system. One of

its key module consists in predicting the availability of bikes

in stations in a near future with a spatio temporal prediction

system based on AutoRegressive Integrated Moving Average

(ARIMA) which also takes into account seasonal trends and

spatial correlations. The system has been evaluated on a

dataset of 3 weeks.

Froehlich et al. [7] also provide a system to predict the

number of bikes available in a near future (from 10 to 120

minutes) with a Bayesian Network. The method has been

evaluated on a dataset acquired on a period of 13 weeks.

Borgnat et al. [8] build a model of the cyclic temporal

patterns with a linear regression and used it to do forecasting.

Variables come from weather, number of users, holidays

markers. The database is the biggest one: more than two years.

Kaltenbrunner et al. [9] use a predictor based on Auto

Regressive Moving Average which takes into account the

availability of bikes in the near stations. The evaluation is

done on a dataset of 7 weeks.

Table I summarizes the main studies in bike sharing pre-

diction. Please note that the lack of standardised evaluation

procedure (data, duration, error metric, . . . ) forbids to do a

fair comparison between them.

III. EXPERIMENTAL PROTOCOL

A. Use of a Public Dataset

We use a public dataset provided by Fanaee-T and

Gama [3]. They have produced it, using another one released

by Capital Bikeshare1, by computing the number of bikes in

use every hour from individual trips made during the years

2011 and 2012 (17379 hours). In opposite to other studies,

they do not provide the information station per station, but

1http://www.capitalbikeshare.com/trip-history-data

for the system in a whole. So, in opposite to most of the

other works, the prediction have a city granularity instead of a

station granularity. However, it is the sole public dataset which

proposes both information about the bike sharing system

and the environmental conditions and we could expect that

our results would be reproducible when applied to datasets

representing individual stations.

In addition to the number of bikes used per hour, the dataset

provides various additional information: the season (spring,

summer, fall, winter), if it is banked holiday in the US, the

weekday, if it is a working day (not a weekend and not a

holiday day), the type of weather (among 4 categories), the

temperature, the feeling temperature, the humidity, the wind

speed, and the number of bikes used by casual users, registered

users and both of them. The maximum number of bikes used

is 977.

B. Data Cleaning and Features Extraction

The number of bikes used in the system is a timeseries

which values must be correlated with the previous ones or at

least partially depend on them. For this reason, we need to

use this chronological information if we want to build a good

prediction system. Thus, we cannot directly work with the raw

dataset presented before, but we need to build time dependant

features. Among those presented in section III-A, we are not

interested in the number of casual or registered users in this

study. The number of bikes in use is the information we want

to predict, while the other features serve to do this prediction.

There are some holes within the provided dataset (i.e. there

is not one sample for all the hours of the acquisition period).

This first operation consists in adding artificial samples in

order to ensure that we have really one sample per hour

for each day (we added 165 samples among the 17544 to

obtain this clean dataset2). The missing features are duplicated

from the value of the previous hour (season, weather, ...) or

computed from the date of the day (weekday, ...). Note that

these artificial samples serve only for the next step, but are

never used in the training or validation process. However, this

modification may have a negative impact on the recognition

performance as the extracted features (explanation follow) are

computed with inaccurate information.

Now that we have a clean dataset with one sample per hour,

we add additional features for each samples:

• the week number in the calendar;

• the number of bikes that were available one hour before;

(Bikes1h ago), two hours before (Bikes2h ago), ... up

to twenty-four hours before (Bikes24h ago) the time for

which we will make a prediction.

With these features, we will attempt to predict the number of

bikes in use up to twenty-four hours ahead.

The features used to do the prediction is summarized in

Table II, and each of them is represented by a real value.

We need the meteorological information of the moment that

we want to compute the prediction. As this moment is in the

2it is less than 1%



Table I
SUMMARY OF EXISTING WORK ON USAGE PREDICTION AND PRESENTATION OF BEST RESULT

Authors City Timespan Methods Error metric

Fanaee-T and Gama [3] Washington DC 2 years Weka’s regressors Relative Absolute Error (29.98%), Root
Relative Squared Error (39.27%)

Yoon et al.[6] Dublin 27 days modified ARIMA Root Mean Square Error. 5 min: 0.91, 60
min: 3.47

Froehlich et al. [7] Barcelona 13 weeks Bayesian network Relative Absolute Error:0.08
Borgnat et al. [8] Lyon 2 years + 8 months Linear Regression Mean Relative Error: 12%
Kaltenbrunner et al. [9] Barcelona 7 weeks Auto-Regressive Moving Average Mean Absolute Error: 1.39

future when we make the prediction, we make the assumption

that we use a weather forecast service which performs well

up to 24h ahead (its error is small compared to other sources

of error in our prediction).

C. Baseline Regression Systems

The aim of an intelligent system is to take an ensemble of

features and to predict the number of bikes in used in fixed

delay (with one regressor per delay). It is thus a regression

problem for which several algorithms are available in the

literature. We have chosen to use three baseline classifiers to

compare to the regression systems:

• Baseline Mean Value, the mean number of bikes on the

training dataset;

• Baseline Mean Hour, the mean number of bikes on the

training set at this specific hour (similar to Historic Mean

in [7]).

• Baseline Last Hour, the number of bikes of the latest

hour available (similar to Last Value in [7]);

These baselines are quite fair as they use simple rules that

seem logical and could be manually done by operators. Our

objective is to use and configure automatic algorithms which

beat them.

D. Selected Regression Systems

Several regression algorithms exist in the literature. We

have selected several of them to find which one could do the

best prediction. Please refer to their original paper for deeper

implementation details. Each regressor takes as input ~x the

feature vector of interest and produces a number which is a

prediction of the number of bikes in use. The tested regressors

are:

• Ridge Regression which corresponds to a Linear Re-

gression with a L2 regularization term. This is aimed

at reducing over-fitting by favoring simpler models with

lower regression coefficients. The regression function is

f(~x) =
∑

i wi~xi + w0 and the weights ~w are computed

by optimising: argmin~w ||X · w − y||2
2
+ α · ||w||2

2
with

X the training samples. α controls the power of the

regularization.

• Adaboost Regression [10], [11] which uses a boosting

of several random weak decision tree regressors: a first

weak regressor is fitted on the original training dataset,

while other successive regressors are fitted by iteratively

increasing the weights of the samples which do not

perform well with the previous weak regressors. This way

the latests weak regressors focus on the most difficult

samples.

• Support Vector Regression (SVR) [12] on standardized

features (removal of the mean and scaling to unit vari-

ance) which searches within the training set a subset of

samples named the support vectors in order to compute

the regression with them, with the kernel trick. The train-

ing step searches the parameters αi, α
∗

i , b and the n sup-

port vectors xi, 0 < i <= n in order to build the regres-

sion function: f(~x) =
∑n

i=1
(αi − α∗

i )kernel(~xi, ~x) + b.
• Random Forest Regression [13] in which a set of random

regression trees are built on different bootstraps of the

training set. The regression value is the mean of the

output of all the regression trees.

• Gradient Tree Boosting Regression [14] where the train-

ing incrementally builds the regression function by pro-

gressively adding to it a new decision tree which mini-

mizes the best the error metric. The generated regression

function is f(~x) =
∑M

m=1
γmhm(~x) with hm the m-th

weak learner.

Note that none of these regressors have been tested in the

previous works [3], [6], [7], [8], [9]. Table III presents the list

of parameters tested for each of them.

Figure 1 is an overview of the proposed system. Yellow

corresponds to the feature extraction and dataset splitting. Blue

corresponds to the training of the regressors. Pink corresponds

to the predicting. Green corresponds to the evaluation.

E. Evaluation Procedure

In order to evaluate the performance of each prediction

system, it is necessary to use two datasets: a training one and

a validation one. However, we must ensure that the validation

dataset only contains samples acquired after all the samples

of the training dataset. For this reason, we have chosen to

use a split date S and use all the samples acquired before

as training samples and all the samples acquired after as

validation samples. We have chosen to set S to split at 2/3 of

the dataset (2012-05-02 08:00:00) which gives 11 571 training

samples and 5 808 validating samples.

Among the various metrics of the literature to evaluate

regression systems, we have chosen to use the Root Mean

Squared Difference (RMSD) error rate which is a standard
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LIST OF FEATURES USED DEPENDING ON THE DELTA BETWEEN THE CURRENT TIME AND THE MOMENT WHEN WE WANT A PREDICTION. THE HIGHER

THE DELAY, THE LOWER THE NUMBER OF FEATURES AVAILABLE
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23H X X X X X X X X X X X X X X X

24H X X X X X X X X X X X X X X

Table IV
PERFORMANCE (LOWER IS BETTER) OF EACH PREDICTION SYSTEM FOR THE 24 DELAYS. THE BEST PERFORMING SYSTEM FOR EACH DELAY IS

PRESENTED IN BOLD. “+” MARKS SYSTEMS PERFORMING BETTER THAN THE BEST BASELINE, “-” MARKS SYSTEMS PERFORMING WORST THAN THE

BEST BASELINE, “=” MARKS THE BEST BASELINE.
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1 182.87− 129.82= 243.11− 102.46+ 79.32+ 336.78− 336.17− 312.69−

2 182.87= 210.22− 243.11− 119.68+ 111.10+ 253.13− 336.18− 319.47−

3 182.87= 255.19− 243.11− 130.95+ 120.06+ 252.05− 335.46− 336.71−

4 182.87= 282.21− 243.11− 132.14+ 122.19+ 252.95− 334.24− 339.08−

5 182.87= 305.58− 243.11− 130.51+ 122.82+ 255.89− 333.89− 296.52−

6 182.87= 328.80− 243.11− 132.64+ 122.89+ 256.06− 334.69− 302.97−

7 182.87= 345.35− 243.11− 130.92+ 122.78+ 301.80− 334.16− 283.62−

8 182.87= 348.27− 243.11− 131.42+ 122.71+ 257.63− 334.01− 303.35−

9 182.87= 339.47− 243.11− 127.18+ 123.47+ 259.53− 334.14− 298.51−

10 182.87= 338.63− 243.11− 130.16+ 123.55+ 264.22− 333.92− 320.67−

11 182.87= 347.19− 243.11− 126.55+ 123.55+ 267.86− 333.46− 273.94−

12 182.87= 352.33− 243.11− 128.42+ 123.65+ 331.55− 333.72− 307.68−

13 182.87= 348.52− 243.11− 131.92+ 123.59+ 267.14− 333.50− 334.65−

14 182.87= 340.52− 243.11− 130.24+ 123.48+ 266.43− 333.58− 285.30−

15 182.87= 339.72− 243.11− 130.03+ 123.44+ 266.37− 332.98− 321.72−

16 182.87= 345.24− 243.11− 127.88+ 123.41+ 266.05− 332.96− 254.92−

17 182.87= 340.58− 243.11− 131.11+ 123.42+ 269.20− 330.49− 285.88−

18 182.87= 324.18− 243.11− 129.86+ 123.43+ 271.12− 325.19− 332.40−

19 182.87= 302.62− 243.11− 128.64+ 123.45+ 269.39− 324.63− 317.59−

20 182.87= 282.13− 243.11− 129.86+ 123.51+ 268.83− 323.91− 317.66−

21 182.87= 260.09− 243.11− 131.61+ 123.62+ 269.02− 323.98− 329.64−

22 182.87= 226.07− 243.11− 130.84+ 123.71+ 338.86− 323.81− 321.40−

23 182.87− 173.61= 243.11− 134.16+ 123.71+ 338.51− 322.65− 321.40−

24 182.87− 134.17= 243.11− 129.61+ 123.88+ 336.61− 325.48− 291.67−



Table III
PARAMETERS TESTED FOR EACH REGRESSOR DURING THE GRID SEARCH

STEP. ONLY THE BEST PERFORMING SET OF PARAMETERS IS USED ON THE

VALIDATION DATASET.

Regressor Parameters

Ridge Regression
• α: 0.01, 0.1, 1, 10, 100

Adaboost Regression
• Number of estimators: 10, 50, 100,

400
• Loss function: linear, square, expo-

nential

Support Vector Regression
(SVR) • Regularisation parameter (C): 1, 10,

100, 1000
• Kernel: RBF
• γ : 1e-3, 1e-4, 1/#nb features

Random Forest Regres-
sion • Number of estimators: 10, 50, 100,

400
• Maximum number of features:

√

# nb features, log2(# nb features)

Gradient Tree Boosting
Regression • Number of estimators: 10, 50, 100,

400
• Maximum number of features:

√

# nb features, log2(# nb features)
• Learning rate: 0.5, 0.75, 1

error rate for regression problems and is coherent for our

problem:

RMSD =

√

√

√

√

1

n

n
∑

i=1

(pi − ai)2 (1)

with n the number of scores to predict, pi the prediction and

ai the ground truth of sample i.
As the selected regression algorithms need various param-

eters which are not trivial to configure, we use a grid search

approach with cross validation in order to automatically select

the best parameters. For each regressor, we have built a

list of configuration parameters (Table III). Thanks to a 3

folds cross validation scheme, each configuration parameter

of each regressor is tested and scored with the RMSD on the

training dataset (thus the error rate is computed on samples

which have not been used to train the model with which

we compute the prediction). For each regressor, we keep the

best performing configuration (the one which minimizes the

RMSD) and retrain the whole training dataset with it. Then,

the prediction is made on the validation dataset with each

regressor configured with its best parameters. The evaluation

is also done with the RMSD.

IV. RESULTS

Table IV presents the performance of each prediction system

for the 24 different delays (between the moment we make

the prediction and the moment we want to predict) and

Figure 2 allows to compare the performance on the training

and validation datasets.

RAW
+

Tgt

Extracted 
Features

+
Artificial

+
Tgt

Extracted
features

+
Tgt

Extracted 
features

Target

Set of
parameters

GridSearch
Training

Best
Model Prediction

Predicted 
values

Evaluation

Feature
extraction

Sample 
splitting

Figure 1. Overview of the whole system. Yellow area corresponds to feature
extraction, blue area to training, pink area to testing and green area to
evaluating

The first three columns correspond to the baselines. “Base-

line Mean Value” is never the best baseline while “Baseline

Last Hour” is the best baseline when the delay is of 1 hour

(due to short term correlations) or 23 and 24 hours (due to a

partial periodicity in the phenomenon under study), but it is

the worst in most other cases. For all other delays, the best

baseline is “Baseline Mean Hour” with a constant error rate

of 182.87. A regression system is considered to be good only

if it provides a prediction better than the best baseline for all

delays.

The next columns correspond to the intelligent systems.

The best performing baseline performs always worse than

the two best performing regressors (“Ridge Regression” and

“Adaboost regressor”) while “SVR”, “Random Forest Regres-

sor” and “Gradient Boosting Regressor” always perform worse

than the best baseline. From Figure 2 we see that the bad

performance of the bad regressors clearly come from over-

fitting. Indeed, they perform very well in the training dataset

(Figure 2(a)) whereas they are the worst on the validation

dataset (Figure 2(b)). The superiority of the best regressors

is supported by a statistical analysis thanks to the Wilcoxon

signed-rank test. “Ridge Regression” is also statistically better

than “Adaboost Regressor”. They both perform better when

the delay is of 1 hour; errors of “Ridge Regression” tend to

increase with the delay, but no trend is observed for “Adaboost

Regressor”.

The number of bikes depends on the hour of the day,

although there are few correlations between the hour and

the number of bikes in use (0.39 with Pearson correlation

coefficient). This can be shown with the low error rate of

“Baseline Mean Hour” and the shape of the “Baseline Last
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Figure 2. Evolution of the error rate depending on the prediction delay on the training and validation datasets. We can observe over-fitting for several
regressors.

Hour” where the error rate is lower when the delta is small

or close to one day (we can assume that we would obtain

something similar on a longer range of delays of test each 24

hours). The “Baseline Mean Hour” error value is higher in the

validation dataset than in the training dataset. It shows that we

cannot really make assumptions of previous mean bike usage

to predict the future bike usage, because too many factors have

to be taken into account.

Figure 3 presents the difference between the groundtruth

and each prediction system for different delays on a subset

of moments to predict. The best prediction systems are the

systems closer to 0. The peaks (i.e. the big variations between

the true and the predicted value) tend to increase when the

delta grows and tend to be decrease when the delta come

close to 24 hours. However we cannot notice understandable

patterns.

Figure 4 presents the prediction of the two best systems

and the groundtruth for several delays. There is a very close

match between the prediction and the groundtruth with a delay

of 1 hour. The differences tend to be larger when the delay

is different of 1 but seem to be stable (i.e., it is not worst

when the delay increases) over time (this is also confirmed by

Figure 2).

V. DISCUSSION

Whereas most studies of the literature use datasets of several

stations with a sampling frequency of few minutes, we used

a dataset with global information on the city and a frequency

of one hour. For this reason it will be necessary to validate

the experiment on other datasets in order to generalize these

results and show we can predict the individual use of each

station.

It would be necessary to investigate deeper on the reason

why several machine learning tools suffer from over-fitting.

Indeed, we have used several state of the art algorithms

which are supposed to be resistant to over-fitting and most of

them performed badly because of over-fitting. The protocol

should be changed in order to avoid the over-fitting issue

by modifying the kind of extracted features computed or the

parameters of the regressors. It is important to tackle this

problem as better performances can be obtained with such

regressors.

It would also be interesting to use more regressors which try

to reduce the feature space in order to analyse which features

are the more pertinent and use only them with the other

regressors in order to increase the prediction performance.

Lasso with its l1-norm could be a good candidate. Even if

the “Ridge Regressor” does not try to eliminate features, the

analysis of the weight it computes can be interesting. By

analysing the weights of the “Ridge Regressor” applied on

normalised samples (so each features as a similar importance),

for the delay of one hour, we can sort the features by their

relevance:

• Very relevant (weight > 100): Bikes1h ago,

• Relevant (100 ≥ weight > 10): Bikes2h ago,

Bikes9h ago, Bikes16h ago, Bikes17h ago, Bikes8h ago,

Bikes23h ago, Bikes10h ago, Bikes24h ago,

Bikes18h ago, Bikes15h ago, TEMP,

• Average (10 ≥ weight > 0): Bikes13h ago,

Bikes5h ago, Bikes3h ago, WEATHER, Bikes12h ago,

MONTH, Bikes11h ago, Bikes21h ago, Bikes4h ago,

Bikes7h ago, Bikes14h ago, Bikes20h ago,

Bikes22h ago, HUMIDTY, Bikes6h ago, ATEMP,

SEASON, WEEK, Bikes19h ago, WEEKDAY, DAY,

HOLIDAY,

• Not relevant (weight ≈ 0): HOUR, WINDSPEED,

WORKING DAY,

However, we have to be careful in our interpretation of these

results. Indeed, we used a linear regressor which means a

feature will show up as relevant in this classification only

if it is linearly relevant. For example, the HOUR variable is

classified as “not relevant” not because it is truly irrelevant

but because a linear classifier fails to grasp its influence as it

is highly non-linear.

It would also be interesting to see if removing the low

weighted features from the experiment would increase the
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Figure 3. Difference between the prediction of each algorithm and the ground truth on the first 200 hours of the validation dataset

performance of the other regressors.

From Table II we can see that the number of features used

to make the prediction decreases when the delay increases. It

would be interesting to use a deeper memory for these cases

in order to always have 24 different hours of features whatever

is the delay. The use of a bigger memory could improve the

recognition performance. Note, that this improvement is not

guaranteed because the actual difference between the delays

of 1 and 2 hours is very large.

The weather information of the moment for which we want

a prediction is necessary (remember that the temperature has a

big impact). It would be interesting to verify if this information

is really useful or of it could be possible to use a slightly

outdated value (i.e. a value really acquired before and not

predicted by a weather prediction system).

Despite of the issues and possible improvements to do, we

think that using the best regressor we could provide a good

idea of the future use of the bike sharing system to the user

and help him/her to choose his/her way of transportation (bike

if there is a low usage or something else otherwise).

VI. CONCLUSION

In this paper, we have shown on a real world dataset that

it is possible to predict the use of bike sharing system up to

24 hours ahead. Various regression systems have been tested

and have shown performances better than intuitive baseline

systems which could be manually used by bike sharing sys-

tem administrators. The features used are different when the

prediction must be done in one hour or later and is based on

the weather information, previous bike usage information and

holiday information.

The proposal have been evaluated on a public dataset

which contains 2 years of information on the Washington DC

bikeshare system. The two best performing systems are based

on the use of Ridge Regression and Adaboost Regression.

They both always outperform the best baseline. Although these

methods works quite well, the error ratio is higher when the

delay is superior to one hour. We have shown there is an

important issue of over-fitting with other regressors of the state

of the art.

In a near future, we want to verify if we can draw the same

conclusion on a larger number of datasets and if it is possible

to add additional interesting information in order to improve

the performance. It is also necessary to work on a station

granularity instead of a town granularity in order to help the

maintainers of the bike sharing system to balance their bikes.

The use of incremental regressor must be investigated has it

could reduce the over-fitting problems.
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Figure 4. Comparison between the prediction of some of the best methods and the ground truth on the last 500 hours of the validation dataset (notice the
logarithmic scale)
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