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ABSTRACT 

 

We present two methods for the estimation of main effects in global sensitivity analysis. The methods 

adopt Satterthwaite’s application of random balance designs in regression problems, and extend it to 

sensitivity analysis of model output for non-linear, non-additive models. Finite as well as infinite ranges for 

model input factors are allowed. The methods are easier to implement than any other method available for 

global sensitivity analysis, and reduce significantly the computational cost of the analysis. We test their 

performance on different test cases, including an international benchmark on safety assessment for nuclear 

waste disposal originally carried out by OECD/NEA. 
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1. INTRODUCTION 

The paper presents two procedures for the estimation of main effects in sensitivity analysis of model 

output. The estimation of main effects is the objective of a sensitivity analysis problem setting known as 

Factors Prioritization (FP) [1]. In this setting, the factor importance is defined as the expected amount by 

which the variance of the model output is reduced when a given input factor is fixed to its true, albeit 

unknown, value within its range of uncertainty. The larger the reduction of the output variance due to fixing 

one factor, the higher the main effect for that factor, and the higher the importance of that factor. In setting 

FP the factors are fixed one at a time, all the others being averaged over their range of variation. As known 

to practitioners, this setting is blind to interactions among factors [1, 2, 4, 5, 8, 13, 15, 16].  

 The ideal use of setting FP is for prioritization of research, whereby the factor most deserving of better 

experimental observation is identified. Setting FP is tackled by estimating main effects, which, in a 

variance-based context, are expressed as ( )[ ] ( )YVXYEV
iXX

ii

|
−

 [1]. Here, Y is the model output, 
i
X  

is the generic input factor, 
i

X
E

−
 is the average that operates upon all the factors but 

i
X , and 

i
X
V  is the 

variance that operates upon 
i
X . 

Note that other settings exist for quantitative sensitivity analysis. For example, a very efficient screening 

experiment exists [2] to identify non-influential factors in large models. This is useful in the context of the 

setting known as “factors fixing” (FF) [1]. The focus of this paper is on the FP setting, to which we restrain 

our experiments. 

The proposed procedures combine Satterthwaite’s random balance designs [3] with the Fourier Amplitude 

Sensitivity Test (FAST) (see [4] for a review, see [5] for a generalisation). In Section 2 we illustrate the two 

methods and in Section 3 we test their performance against the best available recipe for global sensitivity 

analysis, recently appeared in [1]. The tests are carried out on an analytical test function widely used for 

benchmarking sensitivity analysis procedures. In Section 4, another test is carried out on the Level E 

model, an international benchmark on safety assessment for nuclear waste disposal originally carried out by 

OECD/NEA [7], and largely applied in the literature. The tests show the superiority of the proposed 

procedures. 
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2. THE PROPOSED METHODS 

The classic FAST method [4] is based on selecting N design points over a particular space-filling curve in 

the k-th dimensional input space, built as to explore each dimension (factor) with a different frequency 

{ }
k

ωωω ,...,,
21

. A quite complex algorithm is used to set the frequencies such that they are free of 

interferences up to a given order M (usually M=6). The computational model is executed at each design 

point and the Fourier spectrum is calculated on the model output at specific frequencies 

{ }
iii

Mωωω ,...,2,  to estimate the sensitivity index of factor 
i
X .  

The first method proposed here is based on random balance design (RBD). We first select N design points 

over a curve in the input space. Contrarily to FAST, we explore the input space using the same frequency 

ω, to avoid the use of the algorithm cited above. However, due to that, the curve is not space-filling but 

covers only a sub-set of the whole input space. Therefore, we take random permutations of the coordinates 

of such points, to generate a set of scrambled points that cover the input space. The model is then evaluated 

at each design point. Subsequently, the model outputs are re-ordered such that the design points are in 

increasing order with respect to factor
i
X . The Fourier spectrum is calculated on the model output at the 

frequency ω and at its higher harmonics { }ωωω M,...,2,  and yields the estimate of the sensitivity index 

of factor
i
X  . The model outputs are re-ordered with respect to the other factors (and the Fourier spectra 

are calculated accordingly) to obtain all the other the sensitivity indices.  

The second method proposed is HFR, a hybrid version that combines classic FAST and RBD. 

 

The parametric curve used in the classic FAST is defined as:    

( ) ;,...,2,1;,...,2,1,sin)( NjkisGsX jiiji =∀=∀= ω    (1) 

where 
i
X  is the i-th input factor, 

i
G  are functions to be chosen by the analyst to get the desired 

probability density function for
i
X ,  s is the parametric variable varying in ( )ππ ;−  which is sampled 

over its range using N points , and the frequencies 
i

ω  are selected such that they are free of interferences 
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up to a given order M (usually set to 4 or 6). For example, eq 1 is selected as 

)arcsin(sin
1

2

1
)( ssX

ii
ω

π
+=  in [5] to get a uniform distribution for 

i
X  in (0;1).  

The selection of the
i

ω  is made using an algorithm (see [4]). The FAST sample design implies a lower 

bound on the sample size, which the theory fixes at { } 1max2
min

+=
i

MN ω . However, { }
i

ωmax  is 

an increasing function of k and, for large k, the sample size and the related computational cost, can be too 

high to be acceptable. 

In the RBD approach all the factors are sampled using the same frequency ω , which is an arbitrary integer, 

set to 1 for simplicity. Anyway, ω  could assume any other value up to (N-1)/2M, which is the maximum 

value that is allowed by the theory: higher values would cause the frequency to exceed the sampling 

dimension N.  

A sample of N points over ( )ππ ;−  is generated using the parametric equation:  

( ) NjkisGsX ijiiji ,...,2,1;,...,2,1,sin)( =∀=∀= ω .    (2) 

where {
1i
s ,

2i
s ,…., 

iN
s } denotes the i-th random permutation of the N points. For each factor 

i
X  

equation (2) provides a different random permutation. 

The model is evaluated N times over the sample of size N. 

( ) NjsXsXsXfsY kjkjjj ,...,2,1)(),...,(),()( 2211 =∀=     (3) 

The values of model output )( jsY , j=1,..N, are then re-ordered ( )( j

R
sY ) such that the corresponding 

values of )( 11 j
sX  are ranked in increasing order. By so doing, the harmonic content of 

1
X  propagates 

through f  to )( j

R
sY .  The sensitivity of Y  to 

1
X  is determined by the harmonic content of 

R
Y , which 

is quantified by its Fourier spectrum 

 ( ) ( )∑
=

−=
N

j

jj

R sksYF
1

Imexp)(
1

ω
π

ω       (4) 

evaluated at 1=ω  and its higher harmonics (in our case ...,3,2 == ωω ) up to order M=6.  
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In the discrete,  

( )[ ] ( ) ( )∑∑
==

=
===

M

l

M

l

lw
lFFXYEVarV

11

11 |ˆ ω       (5) 

provides, in a variance-based context (Saltelli et al., 2004), an estimate of 
1
V , i.e. the nominator of the main 

effect for the first factor. The procedure is then repeated for all the other factors whereby the same set of 

model output is just re-ordered according to )( iji sX  and (4) and (5) are used to estimate 
i
V , i=2,…,k.  

With the use of permutations, the total cost is kept down to N, instead of ~k*N (like in Sobol’ and FAST). 

Note that random permutations are also used to generate replicated LHS designs for the estimation of 

importance measures [8].  

 

The HFR method combines RBD with classic FAST. The k factors are partitioned in groups of equal 

cardinality. RBD is applied independently within each group of factors. FAST is applied between the 

groups: here a different frequency is associated to each group. 

To make an example, in a six-factor model we can set-up three groups of two factors each, using 

frequencies 1
1
=ω , 7

2
=ω , 11

3
=ω  and two different random permutations. Each random 

permutation, being associated with three different frequencies, provides a separate design for each factor. 

In alternative, we could set up two groups of three factors each; the procedure is the same and the results 

are equally satisfactory. 

The sampling design of HFR combines the accuracy of classic FAST with the computational cheapness of 

RBD, as we shall see on a number of test cases.  

 

 

3. ANALYTIC TESTS 

3.1 The function of Sobol’ 

The first test function has been proposed by Sobol’ and has been widely used as benchmark for sensitivity 

analysis (see eg., [9]). The function is defined as: 
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)(
1

i

k

i

i Xgf ∏
=

=        (6) 

where k is the number of input factors and gi(xi) is given by 

i

ii

ii
a

aX
xg

+

+−
=

1

24
)(  ,   for 10 ≤≤

i
X  and 0≥

i
a . (7) 

The parameter ai  is set to determine the relative importance of the Xi’s. For ai =0 the corresponding factor X 

is very important, for ai =1 it is relatively important, while for ai =9 it becomes non important and for ai =99 

non significant, given that the range of uncertainty of  gi(xi) depends exclusively on the value of ai. In a 

case where all the ai‘s are equal, the factors have the same level of importance; this level is in any case 

quantified by ai.  

The analytical partial variances of the first order (
i
V ) and the total unconditional variance (V) of the model 

output can be computed analytically: 

2)1(3

1

i

i

a
V

+
= ,   1)1(

1

−+=∏
=

k

i

i
VV ,     (8) 

from which the first order sensitivity index VVS
ii

=  can be calculated. 

In the first test we set the ai as {0, 1, 4.5, 9, 99, 99, 99, 99}, so that the first factor is the most important, and 

the last four factors are the least important. The analytic indices
i
S and the estimates at N=1,000 and 

N=10,000 are given in Table 1. With the RBD approach, all the estimated indices converge towards the 

analytic values, although the estimates for the least important factors are slightly overestimated. In HFR, 

we grouped the eight factors into two groups, associated with the frequencies 11=ω  and 35=ω . The 

HFR estimates for the least important factors are closer to the analytic values. In summary, RBD yields 

better estimates for the important factors, whilst HFR better detects the non important factors.  

To better investigate the statistical properties of the two approaches, we replicate the procedure r = 50 times 

and calculate the average and the standard deviation of the 
i
S over the replicates (see Table 2). The tests 

are repeated at increasing sample sizes N=500, N=1,000 and N=2,000. We note that the HFR seems to 

perform better, both in terms of average (in 21 cases out of 24) and standard deviation (in 18 cases out of 

24). In other words, in HFR the average is better approximating the analytic values, and the standard 
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deviation is smaller than in RBD, indicating a smaller dispersion of the 50 estimates around the average 

value. 

3.2 Performance for large-dimensional models and comparison with the method of Sobol’ as 

extended by Saltelli 

We test the performance of the proposed methods in the case of models with a large number of factors. We 

consider the function of Sobol’ with k=100 factors. 

Four factors are very important (ai=0), four other factors are fairly important (ai=1), two other factors are 

less important (ai=9) and the remaining 90 factors are irrelevant (ai=99).  

The analytic values for these four groups of factors are respectively {0.0982 0.0245 9.8173e-004 9.8173e-

006}. 

We test the performance of the RBD approach against the method of Sobol’ as extended by Saltelli [6], 

with N=100 and total computational cost C=N(k+2)=10,200. Indeed, with the Sobol’ or Saltelli’s methods 

the computational cost depends on the number of factors (k), while with the proposed methods the 

computational cost is equal to the sample size (C=N). Therefore, with a small number of model runs, we 

can estimate the first order sensitivity indices for models with a very large number of factors.  

Figure 1 displays the results of this test case. The method of Sobol’ gives better estimates for the less 

important factors, but this is not interesting in the context of setting FP. The proposed method with 

C=2,000 yields better estimates than the method of Sobol’ with C=10,200 for the most important factors in 

terms of setting FP.  

3.3. Performance for large number of important factors and comparison with the classic FAST.  

Before licensing the computational scheme proposed in this paper we believe important to check whether it 

works also when the number of important factors in the model is very large. In fact, important factors are 

easier to detect when they are few. As their number rises, the computational method needs to be very 

accurate to identify them all. We test the performance of the RBD method on a model with a high fraction 

of important factors.  We consider the g-function with 10 very important factors and 10 non significant 

factors. The result is given in Figure 2 (a). We note that, even at relatively small sample size (C=N=5,000), 

the important factors can be clearly distinguished from the non significant ones. 
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We also test the hybrid version and compare it against the classic FAST. This latter requires a minimum 

sample size of N=8,377 under the same conditions. In the hybrid version we choose five groups of factors 

each composed by four factors. Frequencies for the groups have been set at 11, 21, 27, 35, 39.  

Figure 2(a) shows that classic FAST gives better results for non significant factors while it overestimates 

the important ones. The proposed methods give similar results, yet the hybrid approach has a lower 

variance and better approximates analytic values (see Table 3). Note that the variance of the estimates for 

the important and the non important factors has been obtained across each set of 10 factors, and not by 

replicating the experiments. 

We also try an extreme case considering a model with 20 factors, 15 of each are very important (Figure 2 

(b)). The proposed methods can detect the important factors from the non significant ones at C=N=10,000. 

Again, the classic FAST performs better for non significant factors, while the important factors are 

overestimated. The HFR version, implemented in the same way as in the previous case, provides the more 

accurate estimates for important factors with respect to the other two methods. Comparing Figure 2(a) with 

Figure 2(b), and also Tables 3 and 4, as the number of significant factors increases, the hybrid version 

becomes the most precise. 

 

4. APPLICATION: THE LEVEL-E MODEL 

We apply the method to a real test case. The Level E was used both as a benchmark of Monte Carlo 

computation ([10], [11]) and as a benchmark for sensitivity analysis methods (Level S, [7]). This test case 

has been extensively used by several authors, see [12] for a review. The model predicts the radiological 

dose to humans over geological time scales due to the underground migration of radionuclides from a 

nuclear waste disposal site through a system of natural and engineered barriers.  

The model has a total of 33 parameters, 12 of which are taken as independent uncertain parameters (Table 

5); the core of the model is a set of partial differential equations which describes the nuclide migration in 

the geosphere. (See [1] for a complete description of the model).  

The model is time dependent: the simulated time frame ranges from 2 104 to 9 106 years. The predictive 

uncertainty about Y(t) is due to uncertainties in model parameters. 
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The probability distributions for the factors have been selected on the basis of expert judgment. For in-

depth discussion of the model and its predictions, see [7] and [11]).   

After generating the sample (N=4,000) and running the Level-E model, we used the output to calculate, 

with the RBD approach, the main effects over the simulated period. Results of the main effects for the two 

most influential factors (stream flow rate and water travel speed in the first geosphere layer) are given in 

Figure 3.  

Homma and Saltelli [13] showed how the approach proposed by Sobol’ [14] to estimate main effects 

outperforms both crude Monte Carlo sampling and Latin Hypercube sampling. Here we compare our 

proposed approach against that proposed by Saltelli [6], which is a further improvement with respect to that 

of Sobol’ [14]. We consider a case with N=550 for the method of Saltelli [6]. 

The RBD approach better approximates the asymptotic values (obtained at very large sample size using the 

method of Saltelli) than the one implemented by Saltelli himself (Figure 3). Besides, the computational cost 

of the method of Saltelli is equal to C=N(2k+2)=550*26=14,300 while the cost of the proposed methods is 

only C=4,000. 

In Figure 4 we compare the performance of the RBD approach against the hybrid HFR approach for the 

estimation of the main effects. The hybrid approach is implemented with three groups of (four) factors, to 

which we assign the frequencies 11, 27 and 39. The hybrid approach is worse for the two most important 

factors (Figure 4(a) and 4(b)), while both methods perform equally well for the non significant factors 

(Figure 4(c) and 4(d)).  

To give more evidence of the performance of the two methods, we run each of them ten times so that the 

width of the estimates can be evaluated and compared. In Figure 5 the estimates widths of factors 4 and 12 

are shown, for both methods. This HFR approach yields less varying estimates, especially at t=100,000 yr, 

as confirmed by the standard deviation calculated across the ten estimates (see Figure 6). The means of the 

main effects over the 10 experiments for factor 4 show that the hybrid version is less precise than the RBD 

approach. Instead, for factor 12, the means of the hybrid approach are closer to the asymptotic values. In 

summary, it is difficult to establish which method to prefer, as their performance depends on the factor 

considered and on the time. 
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5. CONCLUSIONS 

Our analysis shows that the two new methods proposed in this paper, that based on random balance designs 

(RBD) and the hybrid FAST – RBD (HFR), have computational advantages over all other strategies for the 

estimate of variance-based measures currently employed in the literature.  

The two methods are substantially equivalent, as each of them can perform better or worst in different case 

studies. Of the two proposed methods, the HFR is slightly more complex to implement than RBD, and it is 

up to the analyst the choice of the frequencies and the selection of the subsets of factors. The persisting 

drawback is that we can employ these approaches only for setting FP, as the proposed methods only supply 

estimates for main effects. 
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FIGURE CAPTIONS 

Figure 1: First Test Case: G-function. Estimation of First Order Sensitivity Indices using the RBD 

Approach at 1,000 Runs, at 2,000 Runs and the Method of Sobol’ at 20,000 Runs.  

Figure 2 (a): First Test Case: G-function. The Estimated Values for the RBD approach, classic FAST and 

HFR, in a Case Study with a Large Number of Important Factors (10 very important and 10 non significant 

ones). N=5,000 for the HFR and the RBD approaches, while N=8377 for the Classic FAST.  

Figure 2 (b): First Test Case: G-function. The Estimated Values for the RBD approach, classic FAST and 

HFR, in a Case Study with a Large Number of Important Factors (15 very important and 5 non significant 

ones), N=10,000.   

Figure 3 (a): Second Test Case: Level-E. Comparison between the method of Saltelli (2002) and the RBD 

approach, for input factor 4. 

Figure 3 (b): Second Test Case: Level-E. Comparison between the method of Saltelli (2002) and the RBD 

approach, for input factor 12 

Figure 4 (a): Second Test Case: Level-E. Comparison between the RBD and the HFR approaches, for input 

factor 4. 

Figure 4 (b): Second Test Case: Level-E. Comparison between the RBD and the HFR approaches, for input 

factor 12. 

Figure 4 (c): Second Test Case: Level-E. Comparison between the RBD and the HFR approaches, for input 

factor 3. 

Figure 4 (d): Second Test Case: Level-E. Comparison between the RBD and the HFR approaches, for input 

factor 9. 

Figure 5 (a): Second Test Case: Level-E. Estimates widths for 10 experiments (for factor 12 and factor 4), 

in the RBD approach. 

Figure 5 (b): Second Test Case: Level-E. Estimates widths for 10 experiments (for factor 12 and factor 4), 

in the HFR approach.     

Figure 6 (a): Comparison between the standard deviation of 10 level-E experiments in the proposed 

methods (HFR and RBD) for factor 4. 



 15 

Figure 6 (b): Comparison between the standard deviation of 10 level-E experiments in the proposed 

methods (HFR and RBD) for factor 12. 

Figure 7 (a): Comparison between the means of 10 level-E experiments in the proposed methods (HFR and 

RBD) for factor 4. 

Figure 7 (b): Comparison between the means of 10 level-E experiments in the proposed methods (HFR and 

RBD) for factor 12. 
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FIGURES 

 

Figure 1: First Test Case: G-function. Estimation of First Order Sensitivity Indices using the RBD 

Approach at 1,000 Runs, at 2,000 Runs and the Method of Sobol’ at 20,000 Runs.  

 

 

Figure 2 (a): First Test Case: G-function. The Estimated Values for the RBD approach, classic FAST and 

HFR, in a Case Study with a Large Number of Important Factors (10 very important and 10 non significant 

ones). N=5,000 for the HFR and the RBD approaches, while N=8377 for the Classic FAST.  
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Figure 2 (b): First Test Case: G-function. The Estimated Values for the RBD approach, classic FAST and 

HFR, in a Case Study with a Large Number of Important Factors (15 very important and 5 non significant 

ones). N=10,000.   

 

 

Figure 3 (a): Second Test Case: Level-E. Comparison between the method of Saltelli (2002) and the RBD 

approach, for input factor 4. 
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Figure 3 (b): Second Test Case: Level-E. Comparison between the method of Saltelli (2002) and the RBD 

approach, for input factor 12. 

 

 

Figure 4 (a): Second Test Case: Level-E. Comparison between the RBD and the HFR approaches, for input 

factor 4. 
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Figure 4 (b): Second Test Case: Level-E. Comparison between the RBD and the HFR approaches, for input 

factor12. 

 

 

 

Figure 4 (c): Second Test Case: Level-E. Comparison between the RBD and the HFR approaches, for input 

factor 3. 
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Figure 4 (d): Second Test Case:  Level-E. Comparison between the RBD and the HFR approaches, for 

input factor 9. 

 

       

Figure 5 (a): Second Test Case: Level-E. Estimates widths for 10 experiments (on factor 12 and factor 4), 

in the RBD approach. 
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Figure 5 (b): Second Test Case: Level-E. Estimates widths for 10 experiments (for factor 12 and factor 4), 

in the HFR approach.     

 

 

Figure 6 (a): Comparison between the standard deviation of 10 level-E experiments in the proposed 

methods (HFR and RBD) for factor 4.  
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Figure 6 (b): Comparison between the standard deviation of 10 level-E experiments in the proposed 

methods (HFR and RBD) for factor 12. 

 

 

 

Figure 7 (a): Comparison between the means of 10 level-E experiments in the proposed methods (HFR and 

RBD) for factor 4. 
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Figure 7 (b): Comparison between the means of 10 level-E experiments in the proposed methods (HFR and 

RBD) for factor 12. 
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TABLES 

 

Table 1(a): G-function’s Analytic Values and Estimates for First Orders in a Sample Size of N=1,000. The 

Estimates are Calculated both with the RBD and the Hybrid FAST-RBD Approach 

 

 Analytic values The RBD  approach Hybrid FAST-RBD 

Factor 1 0.716 0.7200 0.6998 

Factor 2 0.1790 0.1954 0.1873 

Factor 3 0.024 0.0288 0.0247 

Factor 4 0.0072 0.0210 0.0140 

Factor 5 7.162*10
-5 

0.0125 0.0021 

Factor 6 7.162*10
-5

 0.0119 0.0210 

Factor 7 7.162*10
-5

 0.0103 0.0111 

Factor 8 7.162*10
-5

 0.0108 0.0062 

 

Table 1(b): G-function’s Analytic Values and Estimates for First Orders in a Sample Size of N=10,000. The 

Estimates are Calculated both with the RBD and the Hybrid FAST-RBD Approach 

 

 Analytic values The RBD  approach Hybrid FAST-RBD 

Factor 1 0.716 0.7159 0.7091 

Factor 2 0.1790 0.1790 0.1830 

Factor 3 0.024 0.0250 0.0231 

Factor 4 0.0072 0.0083 0.0096 

Factor 5 7.162*10
-5 

0.0015 0.0002 

Factor 6 7.162*10
-5

 0.0015 0.0011 

Factor 7 7.162*10
-5

 0.0013 0.0006 

Factor 8 7.162*10
-5

 0.0015 0.0008 
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Table 2: Results of the two Proposed Methods Under Different Conditions. The Estimates are Calculated as 

the Mean of the Estimates Obtained in the 50 Repetitions of the Exercise. This has been done for three 

Different Sample Sizes  

 

N=500, no. of experiments=50 

 Analytic values The RBD  approach Hybrid FAST-RBD 

  Mean 
Standard 

deviation 
Mean Standard deviation 

Factor 1 0.7160 0.7196 0.0173 0.7079 0.0136 

Factor 2 0.1790 0.1986 0.0249 0.1833 0.0235 

Factor 3 0.0240 0.0482 0.0189 0.0399 0.0144 

Factor 4 0.0072 0.0318 0.0117 0.0223 0.0108 

Factor 5 0.0001 0.0236 0.0083 0.0044 0.0022 

Factor 6 0.0001 0.0237 0.0073 0.0122 0.0053 

Factor 7 0.0001 0.0238 0.0107 0.0152 0.0071 

Factor 8 0.0001 0.0253 0.0083 0.0188 0.0077 

     

N=1000, no. of experiments=50 

 Analytic values The RBD  approach Hybrid FAST-RBD 

  Mean 
Standard 

deviation 
Mean Standard deviation 

Factor 1 0.7160 0.7168 0.0096 0.7073 0.0112 

Factor 2 0.1790 0.1873 0.0167 0.1815 0.0207 

Factor 3 0.0240 0.0348 0.0088 0.0311 0.0094 

Factor 4 0.0072 0.0172 0.0064 0.0143 0.0058 

Factor 5 0.0001 0.0110 0.0040 0.0021 0.0010 

Factor 6 0.0001 0.0122 0.0044 0.0057 0.0028 

Factor 7 0.0001 0.0128 0.0038 0.0069 0.0030 

Factor 8 0.0001 0.0113 0.0046 0.0084 0.0043 

 

N=2000, no. of experiments=50 

 Analytic values The RBD  approach Hybrid FAST-RBD 

  Mean 
Standard 

deviation 
Mean Standard deviation 

Factor 1 0.7160 0.7171 0.0069 0.7057 0.0061 

Factor 2 0.1790 0.1849 0.0133 0.1783 0.0147 

Factor 3 0.0240 0.0304 0.0074 0.0277 0.0066 

Factor 4 0.0072 0.0127 0.0046 0.0114 0.0045 

Factor 5 0.0001 0.0062 0.0026 0.0012 0.0006 

Factor 6 0.0001 0.0057 0.0024 0.0036 0.0017 

Factor 7 0.0001 0.0058 0.0022 0.0043 0.0016 

Factor 8 0.0001 0.0060 0.0027 0.0043 0.0025 
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Table 3: Comparison between the estimates obtained with the three methods under analysis (Classic Fast, 

RBD, Hybrid FAST-RBD) in a case-study with 10 very important factors (ai =0) and 10 non significant 

factors (ai =99).  
 

 
Analytic 

values 
 

The RBD 

approach 

Hybrid FAST-

RBD 
Classic FAST 

Important factors 0.0199 
Mean 0.0217 0.0198 0.0221 

Variance 1.1014e-005 5.0911e-006 8.2378e-006 

Non important 

factors 
1.988e-006 

Mean 0.0024 0.0014 3.2799e-004 

Variance 6.7384e-006 2.4595e-006 2.3382e-007 

 

 

Table 4: Comparison between the estimates obtained with the three methods under analysis (Classic FAST, 

RBD, Hybrid FAST-RBD) in a case-study with 15 very important factors (ai =0) and 5 non significant 

factors (ai =99). 

 

 
Analytic 

values 
 

The RBD 

approach 

Hybrid FAST-

RBD 
Classic FAST 

Important factors 0.0045 
Mean 0.0086 0.0047 0.0063 

Variance 3.1128e-006 1.2586e-006 7.2886e-007 

Non important 

factors 
4.514e-007 

Mean 0.0025 6.4000e-004 2.3720e-004 

Variance 3.9133e-007 2.8000e-008 1.2315e-008 

 

 

Table 5: Description of the Input Parameters and their Probability Distributions for the Level-E Exercise 

Notation Definition Distribution Range Units 

T Containment time Uniform /100, 1000/ yr 

kI Leach rate for iodine Log-uniform /10
-3

, 10
-2

/ yr
-1 

kC Leach rate for Np chain nuclides Log-uniform /10
-6

, 10
-5

/ yr
-1 

v
(1) 

Water vel. In geosphere’s 1
st
 layer Log-uniform /10

-3
, 10

-1
/ m/yr 

l
(1) 

Length of geosphere’s 1
st
 layer Uniform /100, 500/ m 

RI
(1)

 Retention factor for I (1
st
 layer) Uniform /1, 5/ - 

RC
(1)

 Factor to compute ret. coeff. For Np (1
st
 layer) Uniform /3, 30/ - 

v
(2) 

Water vel. In geosphere’s 2
nd

 layer Log-uniform /10
-2

, 10
-1

/ m/yr 

l
(2) 

Length of geosphere’s 2
nd

 layer Uniform /50, 20/ m 

RI
(2)

 Retention factor for I (2
nd

 layer) Uniform /1, 5/ - 

RC
(2)

 Factor to compute ret. coeff. For Np (2
nd

 layer) Uniform /3, 30/ - 

W Stream flow rate Log-uniform /10
5
, 10

7
/ m

3
/yr 

 


