N

N

Validation of logic controllers from events observation in
a closed-loop system

Anais Guignard, Jean-Marc Faure

» To cite this version:

Anais Guignard, Jean-Marc Faure. Validation of logic controllers from events observation in a closed-
loop system. 19th Emerging Technologies and Factory Automation (ETFA’14), International Confer-
ence on, Sep 2014, Spain. 7 p. hal-01065591

HAL Id: hal-01065591
https://hal.science/hal-01065591

Submitted on 18 Sep 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01065591
https://hal.archives-ouvertes.fr

Validation of logic controllers from events observation
in a closed-loop system

Anais Guignard
Automated Production Research Laboratory LURPA
Ecole Normale Superieure de Cachan, 61 Avenue du President Wilson, F-94230 Cachan
anais.guignard @lurpa.ens-cachan.fr

Jean-Marc Faure, Member, IEEE
Automated Production Research Laboratory LURPA
Ecole Normale Superieure de Cachan, 61 Avenue du President Wilson, F-94230 Cachan
jean-marc.faure @lurpa.ens-cachan.fr

Abstract

Numerous worthwhile results have been published in
the last two decades on validation of logic controllers
by using formal methods like model-checking or confor-
mance testing. Whatever the merits of these contributions,
the first approach considers only a model of the control
code while the second one focuses on an isolated con-
troller that executes this code. However, from a control en-
gineering point of view, validation of a logic controller re-
quires also to analyze the behavior of the controller when
it is connected to the plant it must control to form a closed-
loop system. This paper proposes a method to check, from
observation of I/O events, whether the behavior of such a
controller conforms to its specification. The principle of
this method is to build a model of the closed-loop system
from the observed I/O events then to compare this model
to the specification model. A criterion to terminate the
observation step is defined by using previous results on
identification of discrete event systems. This method is il-
lustrated on a small example.

1 Introduction

As defined in [2], validation consists in checking that
the product does the right thing or with other words that
the product conforms to its specification. Programmable
Logic Controllers (PLC) are products which are more and
more integrated in automated systems, even to perform
critical functions; this explains why validation of PLC is
gaining an always increasing interest. This paper focuses
on the validation of a mono-tasking PLC with cyclic input
and output (I/O) scanning that executes an implementation
of a logic control that has been specified to control a given
plant.

A possible solution to meet this objective is to use for-

mal verification techniques, like model-checking [4][1].
This valuable approach ensures an exhaustive analysis of
a model of the logic control but not of an implementation
of this control. Therefore, it is surely necessary but not
sufficient to fully validate a PLC.

A promising approach to analyze an implemented con-
trol is conformance testing [3][8][10]. This approach can
be decomposed in two phases: test sequence construc-
tion and test execution. The aim of the first phase is to
build an input sequence, called test sequence, from the
specification model. A test objective must be defined be-
fore building this sequence; for non-timed critical systems
whose specification is described by a finite state machine,
an usual test objective is to cross at least once every transi-
tion of the machine. This input sequence is then applied to
the implementation under test, a PLC in this paper, during
test execution. The sequence of outputs that are emitted
by the PLC is then observed and compared with the ex-
pected output sequence defined by the specification.

It must be clearly underlined that, during the execution
of the test, the PLC is connected to a test-bench that gener-
ates the input sequence and observes the output sequence
but not to the plant which must be controlled. Hence, the
observed behavior is that of the PLC in isolation and not of
the PLC in a closed-loop. The state space that corresponds
to the observations is therefore larger than the state space
that describes the evolutions of the PLC connected to the
plant, because in the latter case the evolutions of the PLC
are constrained by those of the plant. This implies that
the results of the conformance test cannot be completely
applied in the real operational conditions. In particular,
a negative conformance verdict may come either from an
error in the implemented logic control or from a situation
that is not possible in the closed-loop because it is not
reachable owing to the structure of the plant (limitations
on some movements, inter-locked actuators, etc.).

This explains why we propose in this paper a method

to validate a PLC that executes an implementation of a
logic control from observation of I/O events in a closed-
loop system. It will be assumed that the plant is faultless
and that no plant model is available; only a model of the
specification of the logic control is given. Validation will
be performed by observing the I/O events of the controller,
building a model of the closed-loop system from these ob-
servations then comparing this model to the specification
model, as illustrated at Figure 1. It may be noted that the
closed-loop includes a real PLC and a real or simulated
plant; the last solution fits very well the recent needs for
HIL (Hardware In the Loop) validation where a model of
the plant is connected to a real controller.

Closedloop system 'O sequences

Iy | Controller g I = (@b,
BIH @b.é,
)
Plant O = (O.V. W,
Real Simulated UV
or [Haitst)
-

Specification of the
logic control
= Comparison
Ls verdict
OK orKO

Figure 1. Objective of the work

The main issue in this approach is to define a criterion
to terminate the observation step. A too short observation
will provide indeed an incomplete model of the closed-
loop system which will not be appropriate for comparison
with the specification model; a too long observation will
surely hinder the applicability of the approach. To solve
this issue, a termination criterion that has been previously
introduced for identification of discrete event systems has
been selected.

After two reminders on the formalism selected to spec-
ify the logic control and on identification of discrete event
systems in section 2, the third section provides a global
description of the validation method we propose. The sec-
ond step of this method, construction of the model of the
closed-loop system, is formally defined at section 4. A
complete example is developed in section 5 while some
conclusions and perspectives are drawn up in section 6.

2 Background

2.1 Specification model

In this paper, the specification model is assumed to be
a Mealy machine. This choice has been motivated by the
fact that a Mealy machine is a formal class of finite au-
tomata for which transitions are labeled by two elements
that represent the input values read and the output values
emitted by the controller in one cycle.

Formally, the specification model is a Mealy machine
defined by a 6-tuple (ISpeCa OSpeC’ SSpec, Sinits 65‘1)5(1,
Aspec) Where:

® Igpec is the input alphabet

Ospec 1s the output alphabet

Sspec 18 a finite set of states s;

Sinit 1S the initial state

Ospec © Sspee X Ispec — Sspec is the transition func-
tion

Aspec : Sspec X Ispec =+ Ogpec is the output function

Let V7 be the set of input variables and Vp be the set
of output variables of the PLC. The input alphabet I,
(resp. output alphabet Ogy..) of the machine is composed
of all combinations of input (output) variables. The di-
mension of Ispec (Ospee) 18 |[Ispec| = 2IVil (|Ospec| =
2IVoly and each element of the input (output) alphabet is
represented by a minterm' defined on V; (Vo). Hence,
every input (output) event of the model corresponds to a
combination of the input (output) variables of the PLC

The following assumptions are to be made to build a
conformance test sequence from this specification model:

e The transition function is complete and deterministic
(i.e. every transition 6(s X igpec) With s € S and
ispec € Ispec 18 defined once and only once).

e Each state is distinguishable from the other ones by
observation of the output.

e There is no transient evolution, i.e. no input change
causes successive changes of state or emitted output.

A simple Mealy machine where these assumptions are
verified is given at Figure 2.

2.2 Identification of discrete event systems
Identification of a discrete event system (DES) con-
sists in building a formal model of this system from ob-
servation of I/O events and possibly from a priori knowl-
edge about its internal structure. The formal model can
be represented by using finite automata [7][11] or Petri
Nets [9][6]. Identification techniques may be classified

! A minterm defined on a set of n Boolean variables is the conjunction
of all these variables in their positive or complemented form.

Figure 2. A basic example of Mealy machine
with distinguishable states and no transient
evolution

into two categories: black-box identification and gray-box
identification. No knowledge on the system structure is
available in the first approach while partial information
about the system to identify is given in the second one.
[5], for instance, presents a gray-box identification tech-
nique for Petri Nets by assuming that either the number of
places and transitions or an upper bound of the number of
places is known.

This work considers only identification of DES rep-
resented by automata because the specification model is
given in the form of an automaton; as the principle of
the validation method which is proposed is to compare
a model constructed from observations with the specifi-
cation model, the choice of the formalism is straightfor-
ward. Moreover, the construction of the model of the
closed-loop system is an example of gray-box identifi-
cation where the specification model is a superset of the
model to build, as it will be detailed in section 3.

The issue mentioned at the end of the introduction: def-
inition of an appropriate termination criterion of the obser-
vation step, will be solved by using the results presented
in [7]. This reference describes an identification technique
to build an automaton that will be used later as a reference
model for diagnosis. The identified model must generate
every observed event sequence of given length, and only
these sequences; a termination criterion of the observation
step to meet this objective is defined.

3 Overall description of the approach

The aim of this work is to propose a method to validate
a PLC that executes an implementation of a logic control
from observation of I/O events in a closed-loop system.
This method comprises three steps:

e Observation of I/0 events,

e Construction of the model of the closed-loop system
from these observations,

e Comparison of this model with the specification
model.

The last two steps can be performed off-line, once a
sequence of events is observed, or on-line, as soon as a
new I/O event is observed.

3.1 Observation of I/0 events

An input (respectively output) event corresponds to the
change of at least one input (output) variable of the PLC.
An /O event is then built by reading the input and out-
put variables (information from/to the plant) at the end of
each PLC cycle and keeping only the combinations which
correspond to the change of at least one variable. It will
be assumed in what follows that every change is detected.

A sequence of I/O events is merely built by concatena-
tion of I/O events.

3.2 Construction of the model of the closed-loop sys-
tem

This model is a priori unknown and must be built by
identification. A gray-box approach can be used, because
the language accepted by the model of the closed-loop
system is included inside the language of the specifica-
tion, if the controller conforms to the specification, as it is
detailed below.

3.2.1 Controller, plant and closed-loop system mod-
els

If the specification is modeled by a Mealy machine, the
plant and the controller must obviously be modeled by
Mealy machines which share the alphabets Ig,.. and
Ospecs Ispec (Ospec) is the input (output) alphabet of the
controller model and the output (input) alphabet of the
plant model. The two models are therefore synchronized
and the evolutions of each of them are restricted by the
other model; a plant model may, for instance, represent
constraints on sensors values (i.e. two limit switches are
never True at the same time in a faultless plant) that limit
the evolutions of the controller model.

The set of all evolutions of an automaton can be rep-
resented by a language. If L, is the language accepted
by the model of the plant and L. the language accepted
by the model of the controller’, the language accepted
by the model of the closed-loop system L. is the inter-
section of these two languages, as represented at Figure
3. This figure shows that the language L.;s is included
into the specification language. Hence, identification of
the closed-loop system consists in finding a subset of the
specification model that complies with the observed 1//O
events, assuming that the controller conforms to the spec-
ification.

3.2.2 Construction method

From the previous analysis, each observed I/O event may
be interpreted as the label of a transition from an up-
stream state to a downstream state in the specification

2If the controller conforms to its specification, this model is the spec-
ification model.

Figure 3. Language of the closed-loop sys-
tem

model. Therefore, the principle to construct the model of
the closed-loop, starting from the initial state s;,;, iS to
select the states and transitions in the specification model
that correspond to the observed I/O events. The algorithm
that performs this operation is formally defined at section
4.

3.2.3 Termination of the observation step

If the model of the closed-loop system was identical to
the specification model, the observation step would be fin-
ished when the firing of every transition of the specifica-
tion was observed at least once. This condition does not
commonly hold however. The model to identify is not
complete and the firing of some transitions will be never
observed. To determine the termination of the observation
step, the following strategy has been developed (Figure 4):

e Each time the firing of a new transition is observed,
a counter is incremented; the current value of this
counter represents the number of transitions whose
at least one firing has been observed.

e When the value of this counter has not changed dur-
ing a pre-defined time, the observation step stops.
The criterion to terminate the observation step is thus
that no firing of a transition which has not been pre-
viously fired has been observed during a sufficiently
long time.

Value of the
counter

Number of
PLC cycles

Figure 4. Evolution of the number of ob-
served fired transitions

A similar strategy has been already proposed in [7] for
black-box identification of a closed-loop system. In this

case, no a priori knowledge about the model to identify
was available and it was not possible to reason with the
transitions of an already known model. Hence, the event
sequences of a given length that were not already observed
were counted; it is shown experimentally in this reference
that the number of these sequences converges to an up-
per limit. The observation is stopped when this limit is
reached.

3.3 Validation of the controller

The discussion of 3.2 assumed that the controller con-
formed to the specification. If this is not the case, for at
least one state of the specification model, at least one ob-
served I/O event will not correspond to the label of a tran-
sition starting from this state. Hence, if it is possible for
the whole sequence of observed I/O events, to interpret
every event as the firing of a transition of the specification
model that starts from the active state, the controller is
declared valid; otherwise, it does not conform to the spec-
ification. With other words, validation can be performed
during the construction of the model of the closed-loop
system. If this model can be fully identified from the spec-
ification model and the whole sequence of observed I/O
events, the controller is validated.

4 Construction of the model of the closed-
loop system

This section will present the algorithm to build the
model of the closed-loop system and validate the con-
troller. This model is a Mealy machine defined by a 6-
tuple (Icl59 OClSa SClS’ Sinitclss 5cl5s >\cls)- ACCOfdiIlg
to the previous section, its two alphabets are identical to
those of the specification. Its initial state is also the ini-
tial state of the specification; the implementation of the
logic control in the PLC would be non-conform otherwise.
The set of states S5, as well as the transition and output
functions are subsets of the corresponding elements of the
specification, however. The previous 6-tuple is therefore
formally defined as follows:

L4]cls = ISpec

L4 Ocls = OSpec

Scls c SSpec

Sinitcls = Sinit

6cls c §Spec

)\cls -)\Spec

The construction of this model from a sequence of ob-
served I/O events is described by the Algorithm 1. Only
the initial state is known at the beginning and there is no
element in the transition function .5 and in the output
function \;,. For each observed I/O event, the algorithm

verifies whether there exists a transition labeled by this
event in the specification model. If this transition exists
and if no firing of this transition has been observed be-
fore, the algorithm creates the corresponding transition
and destination state in the model of the closed-loop sys-
tem (lines 4 to 12). The analysis continues from this state.
When the observed I/O event cannot be interpreted as the
firing of a transition of the specification, the construction
is stopped and the controller is not validated (line 14).

We can notice that this algorithm can be performed on-
line. This means that the construction is done and the ver-
dict on validity is given at each observation step and the
process can be stopped as soon as a non expected output
is observed.

Algorithm 1 Construction of the model of the closed-loop
system
1: Let 0 = (I0y,...,10,,) be the observed sequence
with IOy = (ig,0r) where iy, € Igpe. and o €
OSpec
2: Let s = s;,itc1s De the current state of the identified
model; Scls = Sinitcls
3: for IO = (i,0) € o do
if it exists sq4 € Sgpec such as dgpec(s,) = sq
and A(s,4) = o then

®

5: if s4 ¢ S.s then
6: Scls = Seis U Sq
7: end if
8: if no firing of the transition 0.5 (s, ¢) has been
previously observed then
9: 5C15(8, Z) = Sq
10 Acis(8,7) =0
11: end if
12: S = Sq
13: else
14 The controller does not conform to the speci-
fication
15: end if
16: end for
S Example

5.1 Specification model

The basic example presented Figure will be used
to illustrate the results of this work. This model repre-
sents the specification of a logic controller with four input
variables Vi = {G,, G, Car, Rec} and two output vari-
ables Vo = {Open, Close}. The input and output alpha-
bets of this Mealy machine comprise respectively 16 and 4
Boolean combinations of variables. The machine includes
3 states and 48 transitions (16 transitions for every state to
ensure completeness).

534

3The operator (-) represents the operator of conjunction and (7) rep-
resents the complement

“For clarity reasons, when several transitions start from the same up-
stream state and arrive to the same downstream state, only an arrow is

[e].[f],1.[k].
[11.[mL[n],
[oL[p]/[A]

[e],[f1. 0L IK],
[I1,[m][n]
[o].[p]
/A]

[bl.[cl
[dL.lgllhl/IC

[al.[i]
/18]

[il/ 18]

lal.li [al.[b].[cL.Id.[e].

[l [cl i, thl / C]

/18] [fl.[gl.Ih] /[C]
lel=G,.G,.Car.ReC [b]l =G, G,.Car.ReC el = G,.G,.Car.ReC
ldl=6G,.G,.Car.ReC lel = G,.G,.Car. ReC |fl =G,.G,.Car.ReC
lgl=6,.G..Car.ReC [kl =G, 6G,.Car.ReC lil =G, G..Car. ReC
lil= &,.G,.Car. ReC |kl =G,.G,.Car. ReC [t] =G, G,.Car.ReC
|m]=G,.G..Car.ReC [n] =G, G,.Car. ReC o] =G,.G,.Car. ReC

lpl=6,.G,.Car.ReC

|4] = Open.Close |B]= Open.Close |€]= Open.Close

Figure 5. Specification model

5.2 Example of observed I/O sequence

The input and output values are observed in the PLC
and are stored under the form :

G,
- G. Open
10 = Car |’ < Close > M
ReC
The beginning of the observed sequence is>:
Oobs =
F F
T F T T
F |\ F ’ T |'\ F ’
F F

MmTY mm Ty

MmN IEN i NEY

(@)

drawn between these states.
SWhere T (resp. F) means that the value of the variable is True
(resp. False)

5.3 Construction of the model of the closed-loop sys-
tem
As the initial state is known and the specification model
is deterministic, it is thus possible to find, for each I/O
event, the only corresponding transition and its down-
stream state, if the controller conforms to the specifica-
tion. For example, the first observed I/O event is:

F
T F
o-([5):05)
F
with igpec = [e] and ogpec = [A]. From the ini-

tial state (state 1) of the specification model, this I/O
event corresponds to the self-loop on this state labeled
[e]/[A]. The transition and output functions are respec-
tively dspec(1, [e]) = 1 and Agpec(1, [e]) = [A].

If a fired transition in the specification model is written:

Su
t fired = Sd
Z.Spec
where s, sq and igp.. represent respectively the up-
stream state, downstream state and input event of this tran-
sition, the sequence of fired transitions in the specification
model that corresponds to (2) is:

1 1 3
Tfired = 1 5 3 5 3 5
[e] (gl (g]

3 3 3

3 , 3 , 2 ,
[c] [a] (il

2 2 2)
2 , 2 , 1 ,
[i] [a] [e]

1

1 -
[e]

It must be noted that ten transition firings are associ-
ated to only seven observed events. The second event cor-
responds indeed to the firing of a transition that provokes
a change of the active state (from state 1 to state 2) and is
immediately followed by the firing of the self-loop on the
new active state.

The whole identified model of the closed-loop system
is presented at Figure 6. This model contains 3 states and
36 transitions. This means that 12 transitions of the spec-
ification model that correspond to the combinations of in-
put values where GG, and GG,, are both T'rue, are not pos-
sible in the model of the closed-loop.

5.4 Termination of the observation

The evolution of the counter of observed fired transi-
tions for the complete I/O sequence is represented at Fig-
ure 7. The value of this counter converges to 36; no firing

[el.[FL 1. [k],
/Al

(2], (71,01, [k],
/14l

[al.[i] [d.[gl.th]/[C
/18]

J[d.[el],

b],[c],[d], [fl.[h] /[C
/18] LI ELARI/IE 1 /(0]
lel=6,.G,.Car.ReC |b] =G,.G,.Car.ReC le]l =G,.G..Car.ReC
|d]l= G,.G..Car.ReC |e] = G,.G,.Car. ReC Ifl=6,. G,.Car.ReC
lgl =G,.G..Car.ReC |h] =G,.G,.Car.ReC il = G,.G,.Car. ReC
ljl= G,.G..Car.ReC |k] = G,.G,.Car. ReC |1l = G,.G,.Car.ReC

[A] = Open.Close |E] = Open.Close [C]= Open.Close

Figure 6. Identified model of the closed-loop
system

of a transition which has not been fired previously is ob-
served once this value reached.

Valoe ofthe 20
counter

0

150 Womberof
BLC cyeles

50 100

Figure 7. Number of observed fired transi-
tions for the complete I/0O sequence

5.5 Case of a non valid controller

It has been assumed in 5.3 and 5.4 that the controller
conformed to the specification. The aim of this section is
to show how a flawed implementation of the specification
can be detected during the construction of the model of the
closed-loop system. It will be assumed to meet this ob-
jective that the following I/O event sequence is observed
from the initial state:

Oobs =—

F F
T F T T
F |’ F ’ T |\ F ’
F F

F F

F T F F

T |\ F ’ F |'\ F

F F

4)
The first three I/O events are identical to those of (2);
only the fourth one is different. Hence, by using the Algo-
rithm 1, the first four transitions of the sequence of fired
transitions derived from these observations (5) are identi-
cal to those of (3). The fifth one is the empty set, however.
When the fourth event is observed indeed, the state 3 is
the active state but there is no transition with the corre-
sponding label ([a]/[A]) that starts from this state in the
model of Figure 5; the controller does not conform to the
specification.

1 1 3
Tfired = 1 ’ 3) 3 ’
[e] (gl (gl
5
5 &)
3 .0
[c]

6 Conclusion and perspectives

This paper has presented a method to validate a PLC
from observation of I/O events in a closed-loop system.
The main interest of this work is to provide a verdict about
the correctness of the controller from observations in real
operational conditions and not in specific test conditions.
The principle of this contribution is to build a model of
the closed-loop system by checking whether the complete
sequence of observed I/O events can be interpreted as a
sequence of transitions of the specification model; if this is
not the case, the PLC is not validated. The whole method
has been also illustrated on a simple but relevant example.

On-going work is aiming at extending these results by
considering that the I/O events are observed outside the
PLC, while it has been assumed in this paper that they are
obtained from the internal variables of the PLC. This new
approach will require to integrate in the analysis the delays
and unexpected synchronization mechanisms introduced
by the I/O scanning cycle. In spite of these difficulties, this
new approach seems promising for HIL systems where
the PLC is connected to a simulated plant because it does
not require any knowledge of the internal structure of the
controller.

7 Acknowledgment

This work is funded by the French research agency
(ANR) as part of the VACSIM project (ANR-11-INSE-
004).

References

[1] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit,
L. Petrucci, and Schnoebelen. Systems and Software Veri-
fication. Model-Checking Techniques and Tools. Springer,
2001.

[2] B. W. Boehm. Classics in software engineering. Yourdon
Press, Upper Saddle River, NJ, USA, 1979.

[3] T. Chow. Testing software design modeled by finite-state
machines. Software Engineering, IEEE Transactions on,
SE-4(3):178-187, May 1978.

[4] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model
Checking. MIT Press, Cambridge, MA, USA, 1999.

[5] M. Dotoli, M. P. Fanti, and A. M. Mangini. Real time
identification of discrete event systems using Petri nets.
Automatica, 44(5):1209-1219, May 2008.

[6] A.-P.Estrada-Vargas, E. Lopez-Mellado, and J.-J. Lesage.
Automated Modelling of Reactive Discrete Event Systems
from External Behavioural Data. In Proc. of CONIELE-
COMP’13, pages pp. 120-125, Cholula Puebla, Mexique,
Mar. 2013.

[7] S.Klein, L. Litz, and J.-J. Lesage. Fault detection of Dis-
crete Event Systems using an identification approach. In
16th IFAC world Congress, Praha, Czech Republic, July
2005.

[8] D. Lee and M. Yannakakis. Principles and methods of
testing finite state machines-a survey. Proceedings of the
IEEE, 84(8):1090-1123, Aug. 1996.

[9] M. Meda-Campana, A. Ramirez-Treviro, and E. Lopez-
Mellado. Asymptotic identification of discrete event sys-
tems. In Decision and Control, 2000. Proceedings of the
39th IEEE Conference on, volume 3, pages 2266-2271
vol.3, 2000.

[10] J. Provost, J.-M. Roussel, and J.-M. Faure. Testing Pro-
grammable Logic Controllers from Finite State Machines
specification. In 3rd International Workshop on Depend-
able Control of Discrete Systems - DCDS 201 1, pages 0-0,
Saarbriicken, Allemagne, June 2011. 6 pages.

[11] M. Roth, J. Lesage, and L. Litz. Black-box identifica-
tion of discrete event systems with optimal partitioning of
concurrent subsystems. In American Control Conference
(ACC), pages 2601-2606, 2010.

