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Abstract

The paper presents an advanced stiffness modeling techniquefémt @ad non-perfect parallel manipulators under internal and externa
loadings. Particular attention is paid to the manipulators comgageron-perfect serial chains, whose geometrical parameters differfiom t
nominal ones and do not allow to assemble manipulator without intstresdse that considerably affect the stiffness properties and also
change the end-effector location. In contrast to other worksradypes of loadings are considered simultaneoustyexternal force applied

to the end-effector, internal loadings generated by the assembinueperfect serial chains and external loadings applied toriteernediate
points (auxiliary loading due to the gravity forces and relév@ampensator mechanisms, etc.). For this type of manipulators, a non-linea
stiffness modeling technique is proposed that allows to takadotunt inaccuracy in the chains and to aggregate their aifmodels for the
case of both small and large deflections. Advantages of tledoged technique and its ability to compute and compensate the aoceplia
errors caused by the considered factors are illustrated by ampbe that deals with parallel manipulators of the Orthoglide family.

Keywords
Nortlinear stiffness modeling, parallel manipulators, compliance erravg;perfect manipulators.

1 Introduction

Stiffness modeling of robotic manipulator is one of the important igba¢sllows usr to evaluate its compatibility for
certain tasks. It becomes especially critical for parallel manipulators, for wdtich manufactures tend to decrease moving
masegsvia reducing the link cross-sections. The latter improves the rghattcs but obviously leads to the deterioration of the
manipulator resistance with respect to the external folnesome application areas where high precision is required (robotic
based machining, etc.), the stiffness model is in the core of the relm@ptiance errors compensation technique and its
precision defines the final product quality. For these reasons, the problie manipulator stiffness modeling permanently
attracts attention of the research community.

Currently, there are a number of works that contains essential resulte amattipulator modeling under the external
loading. Some of them take into account very specific features causbd mfluence of the second order derivatives [1,2]
impact of passive joints [3,4] or effect of internal constraints [&)&jer works concentrate the problem of stiffness analysis for
the manipulators with internal preloading or antagonistic actuftii®]. A number of authors address more general problems
arising in stiffness analysis of serial and parallel manipulatorslf]liThere are also quite a few works focusing on particular
architectures [13-7]. However, some important issues have remained beyond the scopseafch activities, they include
influence of internal loadings caused by geometrical errors in over-coesitraamallel manipulators and impact of auxiliary
loadings applied to the intermediate points (different from the end-effettus) paper contributes to the enhancement of the
existing stiffness modeling methods by focusing on the abovaanedtissues.

The remainder of this paper is organized as follows. Section 2 presents detaist arfiaklated works on the stiffness
modeling of robotic manipulator. Section 3 deals with the stiffnesselingof serial chain and proposes equilibrium equations
and a numerical algorithm for computing of the loaded static equilibriumdan#mipulator under internal and external lading as
well as equations for computing corresponding stiffness matrix aggsel in virtual joints. Section 5 focuses on the stiffness
modeling of parallel manipulators and presents aggregation techniquke foanipulators with perfect and non-perfect serial
chains under internal and external loadings. Section 6 contains a set of llestsainples that demonstrate the advantages of
developed technique. Section 7 presents some discussion concerning limaatopsssible extensions of the developed
method. And finally, Section 8 summarizes the main results and contributions
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2 Reated workson the stiffness modeling of robotic manipulator

To ensure efficient compensation of the compliance errors in the basett machining, an appropriate stiffness model
which is able to take into account both changes in manipulator configueatibinfluence of the external forces/torques is
required. This section presents an analytical review of existing apy®acthe stiffness modeling of robotic manipulatdrs
both serial and parallel architectures, with special attention to the virtual joint maethaiding a reasonable compromise
between the model accuracy and computational efficiency. In addition, a gpepladsis is given to the stiffness modeling in the
loaded mode, which is essential for the considered application area.

2.1 Problem of stiffness modeling and existing approaches

Existing approaches. Similar to general structural mechanics, the robot stiffness charactegzrartipulator resistance to
the deformations caused by an external force or torque applied to te&esidr [18,19]. Numerically, this property is usually
defined through the stiffness matrik , which is incorporated in a linear relation between the translational/rotational
displacement and static forces/torques causing this transition (assumirngah#team are small enough). The inversekofis
usually called the compliance matrix and is denoted a#s it follows from related works, for conservative systemds a
6x 6 semi-definite non-negative symmetrical matrix but its structure mapmeliagonal to represent the coupling between the
translation and rotation [12]. However, in general, for non-conseevatigtems and/or some special parameterizations of
end-effector location, in the loaded mode the stiffness matrix mayheretricaf.

In stiffness modeling of robotic manipulator, because of somef®itgcithere are some peculiarities in terminology. In
particular, the matrix< is usually referred to as the “Cartesian Stiffness Matrix” K . and it is distinguished from the
“Joint-Space Stiffness Matrix” K , that describes the relationship between the static forces/torques and corresgefhelitions
in the joints [28]. Both of these stiffness matrices can be mapped to #amh using the Conservative Congruency
Transformation 29-31], which is trivial if the external (or internal) loading is negligible. his tcase, the transformation is
entirely defined by the corresponding Jacobian matrix. However, libdloéng is essential, it is described by a more complicated
equation that includes both the Jacobian as well as the Jacobian derivatitles adliing vector [1,5]. Other specific cases,
where the above transformation is non-trivial (non-linear or evegukir), are related to manipulators with passive joints and
over-constrained parallel architectures [3,4,10]. Since this work contributes tprbbtéms, these issues will be considered in
more detail below.

In the most general sense, existing approaches to the manipulator stiffrtedisng may be roughly divided into three main
groups: (i) theFinite Elements Analysi@-EA), (ii) the Matrix Structural AnalysigMSA), and (iii) theVirtual Joint Modeling
method(VJM). Their advantages and disadvantages are briefly presented belowp®dtal emphasis to the computatibna
complexity and accuracy.

Finite Element Analysis method (FEA). Its basic idea is to decompose the physical model of the mechanical structure on
a number of rather small (finite) elements and to introduce compliant relaégtnwsen adjacent nods described by relevant
stiffness matrices. These finite elements have a standard shape (pyramids, cytfes,vatich the stiffness matrix can be
computed analytically. Using this discretization, the static equilibrium equatisnsath node are derived, and they are
aggregated in a global matrix expression defining relations between the dpptiefiorque and node deflections. Then, the
obtained matrix of rather large size is inverted and is used to obtain the déffineds matrix by simple extraction of proper
elements. In the modern CAD-environment, the above processhly lsigtomated and is integrated with 3D-modeling of
mechanical structures and mechanisms. In particular, the decompoditiansiet of finite elements (so called meshing) usually
needs definition of the discretization step and the mesh type dmiylaiter can be either linear or parabolic, which correspond to
pyramids with 4 and 10 nodes respectively (with either 6 or 12lkamce relations). Then (for this finite element model), the
CAD-based tools provides both numerical data and convenient visualizatioimglé¢fie deflections vectors for each nodes and
potential dangerous areas with high stresses.

An evident advantage of the FEA-modeling is its high accuracy thiatiied by the discretization step only. For robotic
application it is very attractive, since the links/joints are modeled with its itmendion and shape [16,32,33]. However, while
increasing of the number of finite elements, the problem of limited atenpemory and the difficulty of the high-dimension
matrix inversion become more and more critical. Besides the high computatitoés, ethis matrix inversion generates
numerous accumulative round-off errors, which reduce accuraoybditics, this causes rather high computational expenses for
the repeated re-meshing and re-computing, so in this area thenfetfod can be applied for the links stiffness matrix
identification [34] that is further used in the frame of the VIM techni§ueh combination allows us to use the advantages of the
FEA while avoiding intensive computations for different manipulator cardigpns.

2 In robotic literature, there is rather intensive disans concerning the symmetry of the stiffness matrixaridaded mode [20-2But in this work, due to the
adopted assumptions, the stiffness matrix is certainly syrivale
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Matrix Structural Analysis method (M SA). This method incorporates the main ideas of the FEA but operates with rather
large compliant elements such as beams, arcs, cables, etc. [35]. Tibisshbleads to the reduction of the computational
expenses and, in some cases, allows us to obtain an analytinekstihatrix for the specific task. Similar to the FEA-modeling
the MSA method gives forces/torques and displacements for eactbnbbere it has a clear physical interpretation (manipulator
active or passive joint), which can be useful for some tasks [14&86parallel robots, this method has been developed in works
[37,38], where a general technique for stiffness modeling of thépmator with rigid/flexible links and passive joints was
proposed. It has been illustrated by stiffness analysis of parallel manipafafelta architecture where the links were
approximated by regular beams. The latter causes some doubts indéleagccuracy compared to the combination of the FEA
and VJM techniques that are being developed here. Besides, this result was abtdierethe assumption that the external
forces/torques are relatively small (i.e. for the unloaded mode), and itkelyrthat such approach can be enhanced to take into
account particularities of manipulator behavior in loaded mode. In addigoa there exists a problem of the stiffness matrix
computation for the manipulator singular configurations.

From a computational point of view, the MSA method is less complicateditbdfEA-based one. In spite of the fact that
the MSA still involves matrix operations of rather high-dimensiogjves a reasonable trade-off between the accuracy and
computational time, provided that links approximations by the beam elearentsalistic. It should be also noted that, in their
general formulations, the FEA and MSA methods are closed: both of tkenpret physical system as a set of nodes with mutual
flexible connections. The main difference is that the MSA operates withhgstcal objects (like beams, arcs and others), while
the FEA decomposes them into small finite elements. So, the MSA desabex as a special case of the FEA that has already
found its application in robotics.

From the other side, if each link is applied to the FEA-based stiffness mdatntification technique developed in [34], an
advanced combination of the MSA and FEA that is suitable for the ssfimedeling of arbitrary parallel manipulators (with
numerous internal loops) can be obtained. However, it is out of the s€dipis work because of the above mentioned critical
limitation, which makes the method applicable to the case of the unloaded mpde onl

Virtual Joint Modeling method (VJM). The core of this method is an extension of the conventional rigid+nodgl of

the robotic manipulator, where the links are treated as rigid but the joints @ameeds® be compliant (in order to accumulate all
types of existing flexibilities in the joints only). Geometrically, suchrapimation is equivalent to adding to the joints some
auxiliary virtual joints (with embedded virtual springs). It is obgidkiat such lumped presentation of the manipulator stiffness
(that in reality is distributed) essentially simplifies the model. So, at pri¢gserthe most popular stiffness analysis method in
robotics. This method was first introduced by Salisbury [39] @adselin [40], who assumed that the main flexibility sources
were concentrated in the actuator joints. The derived expression deaféétign between the joint and Cartesian stiffness
matrices (Conservative Congruency Transformation) became a basis foathmilaitor stiffness analysis in many research
works. Later, these results have been further developed in order tottakedaunt some specific geometrical constrains [5,41]
and external loading [1,2]. Nevertheless, external loading is assumed smgh énaletect any non-linear effects discovered in
this work. Due to its computational simplicity, the VIJM method has also deecessfully applied to the analytical stiffness
analysis of a translational parallel manipulator [42]

A key issue of this method is how to define the virtual springrpeters. At the beginning, it was assumed that each
actuated joint is presented by a single one-dimensional virtual spking4[43]. Further, to take into account the links
flexibilities, the number of virtual joints was increased and in each aathizdted or passive joint several translational and
rotational virtual springs were included [42]. The latest developments imrbéds operate with 6-dimensinal virtual springs
identified using the FEA-based method [3,34]. This leads to essentialsimgyed the VIM method accuracy that becomes
comparable with the accuracy of the FEA-based techniques, but with much lowrrtattomal expenses.

The only essential disadvantage of the VIJM method is related to soficeiltgifin stiffness modeling of parallel
manipulators. While for strictly parallel architectures, where there are only seriad bleaiveen the base and moving platforms,
for architectures with internal loops (or with parallelogram-based links) thebARd stiffness analysis is rather complicated.
Nevertheless, taking into account all advantages and disadvantages of thitn&BFSA and the VIM techniques, the VIM
method looks the most attractive in robotics.

Computational complexity. The main benchmark that allows us to evaluate the computational complexityadifotres
described methods is related to the computational efforts required fomaiex inversions inside of the corresponding
algorithms. It should be stressed that the matrix inversion is the mesttinsuming operation for both linear and non-linear
stiffness modeling. Generally, for the matrix inversion of sizen, it can be defined as(n’) [44].

For the FEA method depends on the discretization step and the type of finite elements usebll&as from a relevant
study, in the case of the parabolic mesh (10 nodes and 12 connpeti@gnite element) the value af can be approximately
computed as = 30v n_, wheren_ is the number of manipulator links, is the number of finite elements per link (it should be
about 16 to ensure desired precision). For the MSA method, the upper bothelatiove matrix size = 12n, can be computed
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via the node number, . Finally, for the VIM method, the size of the matrix to be invertedis + n_, wheren,_ is total number
of the degrees of freedom in the passive joints.

Using these formulas, it was estimated the stiffness model complexity fortypeseof manipulators (Stewart platform,
Delta, Orthoglide). Relevant results are presented in Table 1. As it followsHem the VIJM method essentially overcomes
FEA and MSA, so it will be used in this work as a preferable one. It is presemtenardetails below.

Tablel Computational complexity of existing stiffness modeling methods

Manipulator architecture
Stewart Platform Delta Orthoglide

(6 serial chains, each with (3 serial chains, each with (3 serial chains, each with
2 links and 5 passive joints) 6 links and 5 passive joints) 5 links and 4 passive joints)

Stiffness modeling method

FEA 010 (n, =13) 010" (n, =19) 010" (n,  =16)
MSA 010" (n, =5x6) 010° (n, =11x3) 010° (n, =13x3)
VIM 110° (n,=5) 110° (n,=5) 110° (n, =4)

n_, n,, n, are the number of links, node points and passive joints (in a simgjie) respectively

2.2 Virtual Joint Method in stiffness modeling of robots

Since the VIJM-based method is proved to be more computationally effidiatproviding acceptable accuracy, let us
consider it in more details. Taking into account some specificities of thaleoed application area, the main attention will be
paid to the VJIM applicability to the stiffness modeling of parallel manipulators (lmotér-constrained and over-constrained),
considering the impact of the passive joint, evaluating the influertbe ekternal and internal forces/torques as well as accuracy
improvement of the stiffness model.

VJIM method background. In the frame of this method, all types of compliance existing li@ah manipulator (both
distributed and lumped) are replaced by localized virtual springs locatedjéimtts (Table 2). Example of VIJM modeling is
given in Figure 1, where both kinematic model of Stewart Platform antIM model are presented. Then, for this mechanism
consisting of rigid links and compliance joints, the static equilibriunatgns is derived and linearized in order to obtain
Cartesian stiffness matrix, which in a general case depends oatiifgutator posture (configuration) [10]. Usually it is assumed
that the elastic deflections in virtual springs are relatively small and linearizationfosnet in the neighborhood of éh
equilibrium configuration corresponding to zero forces and torques (@wtoadde).

a) manipulator architecture b) VJM model

Figurel Kinematic model of Stewart Platform and its VJM model



A. Klimchik, D. Chablat, A. Pashkevich 5
Stiffness modeling for perfect and non-perfect parallel manipwdatoder internal and external loadings

Table2 VJM-based modeling of manipulator components

Manipulator components VJIM-model elements
Component Graphical presentation Components Graphical presentation
- Actuated joint + 6 d.o.f.
Actuated joint virtual spring
Passive joint Passive joint

(non-actuated)
Rigid link Rigid link
Elastic link Rigid link +

6 d.o.f. virtual spring

Rigid base E%IE Rigid base Base

g Er ®)
Vo

, Rigid base +
Elastic base Base gid _
6 d.o.f. virtual spring

Chain #1 Chain #1

Rigid platform Platform{— Chain #3 Rigid platform Platform{)— Chain #3
Chain #2 Chain #2
Chain #1 .. Chain #1

Rigid platform + =

Elastic platform PlatformO— Chain #3  set of 6 d.o.f. virtual spring Platform{{=)- Chain #3

Chain #2 (fOI’ each Cham) Chain #2

This technique originates from the work of Salisbury [39] who derveldsed-form expression for the Cartesian stiffness
matrix of a serial manipulator assuming that the mechanical elasticity is conceimrhiedctuated joints. The basic equations
have been written as it follows

dt=1J,-36; t=J,-F; t=K, -50; Q)

0

where st denotes the end-effector displacement in Cartesian space (both positidraiientational)F is the vector of the
external loading applied to the end-effector (that includes both thedodcthe torque components)y is the deflection in the
virtual joint coordinate® caused by this loading, is the vector of reactions in the elastic joirks, is the corresponding joint
stiffness matrix,J, is the Jacobian matrix computed with respect to the elastic joints. Here, thquimson is derived from the
manipulator geometrical model, the second one describes the static equilibrium cdad#ioning that the load is not essential),
and the third equation presents the linear elasticity relation (Hooke's law).

After relevant transformations of (1), the desired linear relation between theabdtadingF and the end-effector
displacementt is presented as

st=(3,-K,>3)F, (2)
which gives Cartesian stiffness matrix
=J K, J* ©)
In literature [26,27,45], the latter may be also presented in a slightly diffieren

K,=3,K.J3, 4)

which sometimes is referred to as Conservative Congruency Traasifam{CCT), to emphasize that it describes mapping from
the joint stiffness to Cartesian one, and vice versa.

In further works, similar equations were obtained for parallel manipulasstgming that they are not over-constrained and
the elasticity is concentrated in the actuator joints while the passive jointsfe pEI]. Other contributions to this area include
[3,15,22,24,25,468], where the VIM method was partially extended. It is also worth mentitimng/orks where the VIM
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technique was applied to particular manipulators, in particular to the CaPAMan, [@ehagd H4 robots, Stewax®ough
platforms, etc. [42,4%4].

VJIM modéd parameters. In the first works, it was explicitly assumed that the main sources of elaatigicpncentrated in
actuated joints. Correspondingly, the links were assumed to be rigtt@hdM model included one-dimensional springs only.
In other recent works, compliance of the links has been takeadotant by introducing additional virtual joints describing their
longitudinal elasticity [11] or stiffness properties in several directioBs Recent development in this area use 6-dimensional
virtual joints to describe elasticity of each link [17]

At the beginning, thetiffness parametersf the virtual joints describing the link elasticity (and incorporatatiénmatrix
K ,) were evaluated rather roughly, using a simplified representation laikrshape by regular beams. Besides, it was assumed
that all linear and angular deflections (compression/tension, bending, torgahgcupled and are presented by indepdanden
one-dimensional springs that produce a diagonal stiffness masizeo6<6 for each link. Afterwards, this elasticity model was
enhanced by using complete@non-diagonal stiffness matrix of the cantilever beam [17,55%. dllowed taking into account
all types of the translational/rotational compliance and relevant coupling betiwfsand deflections. Other enhancements
include the link approximation by several beams, but it gives rathezshisdprovement in accuracy.

Further advance in this direction (applicable to the links of complicateé sleaito thd-EA-based identification technique
that involves virtual loading experiments in CAD environment and sgfmatrix estimation using dedicated numerical routines
[34]. The latter essentially increased accuracy of the VIM-modeling while yiregséis high computational efficiency. It is
worth mentioning that usual high computational expenses of the FEfAascritical issue here, because it is applied only once for
each link (in contrast to the straightforward the FEA-modeling for the entmguoiator, which requires complete re-computing
for each manipulator posture). As a result, this approach allowed the autimegtate accuracy of the FEA-modeling into the
VJIM-modeling technique that provides high computational efficiency. General me&ibpad this hybrid approach is presented
in Figure 2.

’Link1 ‘ e Link n ‘
CAD model CAD model
. for the link 1 DM for the link n P
/ /%@\ = Deflections @23
Y Sensor — Y <
. 9
¢ FEA-based ! FEA-based h
. . Surface for the ) . .
virtual experiments wrenches application Stiffness virtual experiments
matrix
y 5 i .
Stiffness matrix ///;//d// Stiffness matrix
for the link 1 e for the link n
T

T

[ I
- !

VJM-based stiffness model
of the manipulator

Figure2 Integration of VJM modeling approach with FEA-based identification technigthe atiffness model parameters

Stiffness matrix for manipulatorswith passive joints. Another important issue is related to taking into account influence
of the passive jointswhich are widely used in parallel manipulators. In the simplest edsn the geometrical constraints
imposed by the manipulator assembly are not redundant, the pasdivegilinates may be just eliminated from the kinemati
model, allowing us direct application of the Salisbury formula. Howevedhercase of over-constrained or under-constrained
manipulators, the elimination technique cannot be used directly.

For serial kinematic chaingith passive joints, the problem has been solved for the general 6askn [Barticular, it was
proposed an algorithmic solution that extends the Salisbury formula abékito produce the rank-deficient stiffness matrices
describing “zero-resistance” of the end-effector to certain types of displacements, which do not require deflestitims virtual
springs (due to presence of passive joints and/or kinematic singufatiey @xamined posture). The relevant technique involves
inversion of dedicated square matrix of size+ 6)x (n, + 6), which is composed of the links stiffness matrices, and kinematic
Jacobians of both virtual springs and passive joints (heris the number of passive joints). Then, the desired Cartesian stiffness
matrix is obtained by simple extraction of an appropréte sub-matrix from the computed inverse. Corresponding expression
for stiffness matrix computation can be presented as

1 Takar a1t
‘ " ©)

. [
R

-1
eKe
37
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where J, is Jacobian related to the virtual springs<{,), J, is Jacobian related to the passive joinés §, ). The main
advantage of this method is its computational simplicity, since the nuriniberdrtual springs do not influence on the size of the
matrix to be inverted. Besides, the method does not require manualagibmiof the redundant spring corresponding to the
passive joints, since this operation is inherently included in thericahalgorithm.

Because of its evident advantages, this approach found further dmexid[4,57] In these works, an analytical expression
for the matrixk . has been derived from (5) using the blockwise inversion and presented as

KC=KZ—KZ-Jq-(J:-KOC-Jq)J-JLKOC (6)

where the first ternk ¢ = (3,-K ,*-3,) 7" is the stiffness matrix of the corresponding serial chdihout passive jointand the
second term describes the impact of the passive joints. Anothertagmpoontribution in this area is a recursive procedure that
allows user to take into account the impact of passive joints sequertdiz@!py one or by specific groups). Relevant expression
has the following form

K=K -K I (3K T) I7K g i=12,.. (7)
where the matricesx‘q < J, are extracted from the full Jacobiap = [J{1 Jj] in arbitrary order (columipy-column, or by
groups of columns).

However, fomparallel manipulatorswith passive joints, solutions were obtained for less general cases. They include “pure”
parallel architectures where the base and the end platform are connected by stigttkingenatic chains. Here, the total
stiffness matrix can be presented as the sum of partial matrices corresporsipgrite chains (computed using the above
described technique)

ko 1 To,knr 9,1

_ @i). c _ 0 6 Vi G

R ©

so the passive joints are taken into account easily. Besides, in this case ibenstaining of the mechanism does not create
additional difficulties. For instance, for tlwer-constrainednanipulator of Orthoglide family [58], each of the parallel chains
yields the stiffness matrix of rank 4 while their aggregation givesriatrix of full rank 6. But if there exists a cross-linking
between the parallel chains (like in kinematic parallelograms, for instahiseethod can not be applied directly. For this case,
some interesting results are presented in [6,41] where the geometrical consteaintseated in a general way but detailed
computational techniques were not developed.

VJIM modeling of parallel manipulators: problem of internal stresses. In spite of the fact that the VJM technique has
been originally developed for serial manipulators, it can be efficiently appligaratiel robots. The basic idea here is to obtain
first the stiffness models of each kinematic chain separately, and aftgedgrate them in a united model corresponding to the
parallel manipulator. This idea was partially implemented in [3,48], wtherenanipulator structure was assumed to be strictly
parallel (i.e. without internal loops) and the kinematic chains where assemifedsame end-point.

Under such assumptions, the stiffness matrix of the parallel manipulatoe camputed via straightforward summation of
the chain stiffness matrices

KCZZKS) 9

where the index defines the kinematic chains ands the total number of chains. However, in more general (and practically
important) cases where the kinematic chains are connected to differgntqidive end-platform, this formula cannot be applied
directly. Besides, for parallel manipulators with parallelogram-based linkg, essential modifications are required.

Other limitation of the existing results devoted to the parallel manipulat@aied to the assumption that the assemblin
does not produce any internal stresses. But in practice, numerosagaccumulated in serial chains [59] and they cause
non-negligible internal forces in manipulator joints (even if the extdéone¢ applied to the end-effector is equal to zero). The
internal forces may essentially change the manipulator behavior (mbdiftiffness matrix, change the end-effector location,
etc.) and should be obviously taken into account in the stiffnesgelmddwever, existing works ignore this issue. Another
research issue is associated with stiffness modeling of parallel manipulatiersloading, which has not received proper
attention yet.
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2.3 Siffnessmodeling under external and internal loadings

Manipulator stiffness modeling in the loaded mode is a relatively new ressa@hwhich is worth to be considered
separately. This subsection presents analysis of related works amesdefime important research problems that will be in the
focus of this work. Some of them are based on the analogy thaeastablished between robotics and structural mechanics (it
concerns buckling phenomena, for instance).

Typesof loadings. Manipulator loading may be of different nature. For the stiffnestelim, it is reasonable to distinguish
two main types of loading, external and internal ones.ekbernal loadings caused mainly by an interaction between the robot
end-effector and the workpiece, which is processed or transpottezidonsidered technological process [2,26]. Another type of
external loading exists due to the gravity influence on the manipuiats, for many heavy manipulators employed in
machining the link weight is not negligible [5,7]. Besides, to conmgtens a certain degree the gravity influence, some
manipulators include special mechanisms generating external forces/torthespposite direction. It is worth mentioning that
the external loading generated by a technological process is always applied amifhalator end-effector while others may be
applied at intermediate points (at joints, for instance). Besides, the external soedirsgd by gravity have obvious distributed
nature.

In addition to the above mentioned forces/torqirgrnal loadingin some joints may exists. For instance, to eliminate
backlash, the joints may include preloaded springs, which generatertieedr torque even in standard "mechanical zero"
configuration [9]. Though the internal forces/torques do not infleem the global equilibrium equations, they may change the
equilibrium configuration and have influence on the manipulator stiffmegserties. For this reason, internal preloading is used
sometimes to improve the manipulator stiffness, especially in the neligidubof kinematic singularities. Another case where
the internal loading exists by default, is related to over-constrained manipulabrare subject of the so-called antagonistic
actuating [8,60]. Here, redundant actuators generate internal forcesguekttitat are equilibrated in the frame of close loops.

It is obvious that the both external and internal loadings influench@manipulator equilibrium configuration and,
consequently, may modify the stiffness properties. So, they musubtedily be taken into account while developing the
stiffness model.

Stiffnessmatrix for theloaded manipulator. At present, in most of related works the stiffness is evaluated in asjatsi-
configuration with no external or internal loading. There is a very limitenber of publications that directly address the loaded
mode case (or serlled case of “large deflections™), where in addition to the conventional “elastic stiffnes3in the joints it is
necessary to take into account the “geometrical stiffneSsarising due to the change in the manipulator configuration under the
load. Although the existence of this additional stiffness component for edastitures has been known for a long time [61], the
importance of this problem for robotic manipulators has been grghti rather recently. The most essential results in this area
were obtained in [1,2,62] where there are presented both some theoreteakisdiseveral case studies for serial and parallel
manipulators. Several authors [8,9,60] addressed the problem asgitinalysis for the manipulators with internal preloading or
antagonistic actuating, but in relevant equations some of the second iosteatic derivates were neglected. Using notation
adopted in this work and summarizing existing results [1,2,13], émgpmlator stiffness matrix for the loaded can be expressed a
follows

Kc=‘J;—(Ke_KF)‘J;a1 (10

whereK . is n, x n, stiffness matrix that is induced by external loading and is not presentedioys equation (3). This matrix
depends on both the derivatives of the Jacobjaand the loading vectoF . Required details concerning computingkof are
givenin [1]

In the frame of the same concept, the manipulator stiffness modelefdoadtied mode was proposed in [5,7], where
numerous factors were taken into account (conventional external loadiniy dorces, antagonistic redundant actuation, etc.).
The final results for the stiffness matrix is presented as

=K I (11)

wherek , is a solution of a non-linear matrix equation, which includesaim §tiffness and the external/internal loadings as
parameters. However, this approach is rather hard from computational fpaewoBesides, in this work the Jacobians and all
their derivatives have been computed not in a "true" equilibrium confignr@tiwas unreasonably replaced by unloaded one).
For this reason, since the equilibrium obviously depends on the loadiggitude, some essential issues were omitted. As a
result, any nonlinear effects have been detected in the stiffness belidh@®eramined manipulators.

Another significant result, which should be mentioned here, is relatbeé stiffness modeling of the parallel manipulators
with the cross-linkage. Firstly this problem was considered in [5,7]envliéicoordinates where decomposed into two groups
(dependent and independent ones). But no clear rule for such coordinategspéii been proposed, besides the developed
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technique involved very non-trivial computations. Further, the crokagmwas in the focus of [6,41] where a rather compact
expression for the stiffness matrix has been proposed

Ke=37 (K, -K,+K )3, 12
which, compared tadlQ), includes additional matrix , thatis induced by the geometrical constraints (cross-linkage). However,
there are still a number of open questions concerning the coordinate gpiliten(i.e. dividing them into dependent and
independent ones) and computing of the equilibrium configuration cordisgao the applied loading.

It should be noted that this problem of (computing the loaded eduifiphas been omitted in most of the related worlts. A
the same time, it is clear that the changes in the manipulator configuratidty dineence the Jacobians (and their derivatives)
as well as on the end-effector location. For this reason, computingdbkidns and Hessians in a traditional way (i.e. for the
unloaded configuration) may lead to excessively rough simplificatiomeoftiffness model. In particular, some non-linear
phenomena in manipulator stiffness behavior can be hardly deted¢tiésl thvey should obviously exist from the point of view
general theory of elastic structures.

To our knowledge, the most extended results in this area has been presfritgavimere the authors proposed a non-linear
stiffness model for parallel manipulators with passive joints which takeoaount deviations in the manipulator configuration
caused by the external loading applied to the manipulator end-effector.ftartteeof this conception, an iterative scheme that
allows them to computastatic equilibrium configuration has been developed

(F.1 [0 3, 3, 1T [At+J, -q,+3,-0,]
C BB 0 | (13
L0\+1J LJ; 0 _KOJ L -K, -6, J

where the vectont defines the end-effector displacement caused by the external loadiag &ngreloading in virtual springs.
Since, this procedure cannot distingugsstable equilibrium configuration from an unstable one, there were propasettix
criteria that allows user to check stability via analyzing matrix properties

fvel THE -k, HETTve ]
\\ BOJ \\ 00 . 0 29J| OD |<0 (14)
Vq H 0q H qaq |_V9 J
wherev;, v are the sub-matrices corresponding to the zero singular values of ag(jnm_;a)biar[Jo, Jq] after applying to
it SVD-factorization (see [10] for detaily ., H,, H',, H{. are the Hessians of scalar function= g(q, 0)" -F with respect
to virtual and passive joint coordinates. In accordance with this criteria, thiputaor configuration is stable if (and only if) the
matrix (14) is negative-definite. The stiffness matrix for the manipulator witkipagoints under the end-point loading can be
computed as
F_K__C__i__jjj Lk 3+, kEHE T 15
R R
where ki = (K, -H ge)'l. Among the limitations of the proposed approach it should be mextithat it is suitable for the
manipulators under the loading applied to the end-effector only ahgheritect serial chains. These limitations will be overcome
in this paper.
Nonlinear -behavior of the manipulator under loading. In mechanics, it has been known since a long time that the elastic
structures may suddenly change their configuration if the loadtegebsome critical value. A classical example is the so-called

Euler column that retains its straight shape until the loading. This effecklifi) is well known in structural mechanics,
however in robotics this aspect has never been studied before.

Non-linear behavior of force-deflection relation and possible bucklimgtsfhave been known since a long time. However
in robotics, these questions did not attract much attention, mainly chightaigidity of commercially available robots. But
current trends in mechanical design of manipulators that are targeted at essential refiuaiiing masses motivate relaxing
this assumption. Hence, non-linear stiffness analysis is alsatempdor the robotic manipulator. As it was mentioned before,
existing stiffness analysis techniques for robots are strictlymass that loading cannot change configurations of an examined
manipulator or these changes are negligible. This simplification imposgaldimitations for the stiffness analysis and, as a
result, does not allow us to detect buckling and other non-linear phenomewafkam general theory of elastic structures.
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Similar to the classical mechanics three types of buckling can appear intia sysbem: buckling of the link, contact
buckling and geometrical buckling. First type of buckling is defingthle mechanical properties of the link and easily can be
detected by FEA analysis or critical loading for it can be computed via appated equations. Normally these loadings are
unreachable in robots, while minimization of the link cross-sectionsrake these limits reachable. Thus it is reasonable to
check critical loads for the buckling of elements on the design stepséldond type of buckling is caused by the contact of the
links with environment. It can be avoided on the machining proasgndng stage. The nature of the geometrical buckling is
closed to the buckling of the elements, while several elements should bednagether. In this case the critical force is defined
by the stiffness of the links and junctions between them. Stiffreess of the junction may be lower than stiffness of links, or
even in parallel manipulators can be negligible (for the passive joiresjritital force can be reduced in times comparing with
the critical loading of the separate elements. So, nonlinear effects and buakliagpear in robots and they require additional
analysis, however these questions have been omitted before.

In practice, it is impossible to detect non-linear effect without fipdhre loaded equilibrium while this question was
omitted in previous works. Besides, the loading may potentially lead to multipléneqgons, to bifurcations of the equilibriums
and to static instability of the manipulator configurations. These effects argialysgangerous for parallel manipulators wich
impose numerious passive joints. Some aspects of multiple-equilibridnteprdéor robotic manipulators have been examined in
the works [63,64}vho applied the Catastrophe theory for the stability analysis of the plarsdieparanipulators with several
flexural elements under external loading. However, they did not peopogeneral approach for stability analysis of the
manipulator configurations. Therefore, it will be also in the focus of this research

3 Siffnessmodeling for serial chain with internal and external loadings

Typical examples of the examined kinematic chains can be found in tbié& 3rBnslational parallel kinematic machine
[17], in the Delta parallel robot [65] or in the parallel manipulators of thieoQlide family [58] and other manipulators [66]. It is
worth mentioning that here a specific spatial arrangement of under-coadtchiains yields the over-constrained mechanism that
posses a high structural rigidity with respect to the external forparticular, for Orthoglide, each kinematic chain prevents the
platform from rotating around two orthogonal axes and any catibmof two kinematic chains suppresses all possible rotations
of the platform. Hence, the whole set of three kinematic chainsipesd non-singular stiffness matrix while for each separate
chain the stiffness matrix is singular. This motivated the developofieledicated stiffness analysis techniques that are presented
below.

3.1 Problem statement

Let us consider a general serialdthatic chain, which consists of a fixed “Base”, a number of flexible actuated joints “Ac”,
a serial chain of flexible “Links”, a number of passive joints “Ps” and a moving “Platform” at the end of the chain (Figure 3). Itis
assumed that all links are separated by joints (actuated or passive, rotattceradlational) and the joint type order is arbitrary
Besides, it is admitted that some links may be separated by actuated and passsienliaiseously. Such architecture can be
found in most of the parallel manipulators where several similar kinematic enainsnnected to the same base and the platform
in a different way (with the rotation of 90° or 120°, for instancedrdter to eliminate the redundancy caused by the passive joints.
It is obvious that such kinematic chains are statiaatiger-constraine@nd their stiffness analysis cannot be performed by the
direct application of the standard methods.

Base platform G G Mobile platform 6-d.o.f. 6-d.of. 6-d.o.f.
(rigid) \ 2 n- \ (rigid) / spring spring spring
F

GEM® - @RI, /| 2 mer m 8m - mi@E
Kinematic chain 3\_ 2 G, Link }G, Link | G,

¥ Gy Gn
a) kinematic model b) VJM model

H

AN\

%\\\\\;\iﬂ

Figure3 General structure of kinematic chain with auxiliary loading and its VJM model

In order to evaluate the stiffness of the considered serial chain, let ugapptification of the virtual joint method (VJM),
which is based on the lump modelling approach [39,40]. Accorditids@pproach, the original rigid model should be extended
by adding virtual joints (localized springs), which describe elastic detowns of the links. Besides, virtual springs are included
in the actuating joints, to take into account the stiffness of theatdmdp. Under such assumptions, the kinematic chain can be
described by the following serial structure:

(&) arigid link between the manipulator base and the first actuating joint éestrybthe constant homogenous
transformation matrixr

Base !
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(b) the 6-d.o.f. actuating joints defining three translational and ttotsional actuator coordinates, which are
described by the homogenous matrix functing(e,) wheree, = (07,6;,0;,06.,0.,0,") are the virtual
spring coordinates;

(c) the 6-d.o.f. passive joints defining three translational arek thotational passive joints coordinates, which are
described by the homogenous matrix functiop(q;,) whereq, = (q,. q,, d,. d,, 4,. §,) are the passive joint
coordinates;

(d)  the rigid links, which are described by the constant homogenog$otmraation matrixT,  ;

Link ?
(e) a 6-d.o.f. virtual joint defining three translational and three rotatiotkabprings, which are described by the
homogenous matrix functiom,, (e',,), wheree, = (0,.0,.0,,6, .0, .4d.), (0,.0,,0,) and (0, , 0, ,6,.,)

correspond to the elementary translations and rotations respectively;
()  arigid link from the last link to the end-effector, described byhthrmogenous matrix transformatian,, .

In the frame of these notations, the final expression definingrbeeffector location subject to variations of all joint
coordinates of a single kinematic chain may be written as the productfoliéing homogenous matrices

T= TBase.H (T SD(OIa) T 3D(q2;171) ' TiLink. T 3D(9I Link) T 3D(q2p)) T Too (16)
where the components,,.., T.,(-.), T ... T, May be factorized with respect to the terms including the joint variables, in
order to simplify computing of the derivatives (Jacobian and Hessian).

This expression includes both traditional geometric variables (passive andj@atie®ordinates) and stiffness variables
(virtual joint coordinates). The explicit position and orientation of the eretteff can by extracted from the matfixin a
standard way [19Fo finally the kinematic model can be rewritten as the vector function

t=9(q,0) 7

where the vectort = (p, ¢)" includes the positiom = (x, y, 2" and orientationp = (¢,, ¢,, ¢,)" of the end-platform, the
vector q = (q,, d,, ..., d,,) contains all passive joint coordinates, the veaer(d,,6,,...,6,) collects all virtual joint
coordinatesp, is the number of the passive joing, is the number of the virtual joints.

Several examples of prismatic passive and actuated joints are presented ind-gusere other types of joints have been
illustrated in [6770]. Such joints include internal springs, as such their statics is describleel foyidwing expression
7y = Ky '(gi -0, ) (18)

wherez,, is the torque/force caused by the deviation of the joint coordmafi®m its unloaded (“zero”) value ¢, , and
coefficient K, defines the spring stiffness. For the purpose of generality, let us introduce similar “zero” values 6,, for the virtual
springs that described flexibility of the links (obviously theyeageal to zero for this subset @f). This allows us to define vector
0, of the same size as and to present the static equations corresponding to all variables (coriegpngerfect and
preloaded passive joints, virtual springs of links and actuatorsheraeorm

T, =K, (0-90,), T, =0 (19

T i T i T

Aq Aq / AQ

S === Al
{m]f s W\
(a) Passive joint (b) Actuated joint (a) Passive joint
with hard end-constrains with elastic transmission with soft end-constrains

Figure4 Examples of prismatic passive and actuated joints
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Here z,, =, are the generalized torque/force in joints corresponding to the variatdes q ; the matrixk , collects stiffness
coefficients of all springs of the kinematic chain. In the frame isfghper it is assumed that the internal loading (which may
change the robot stiffness properties) may arise from two reagahse (o additional elastic elements introduced by the designer
in order to improve the manipulator properties; (ii) because of interresss in links/joints caused by over-constrained
architecture of the considered manipulators. It is clear that here the totaff stlinnternal forces/torques is equal to zero (in
contrast to the external loading studied in most of related works); nevertinelésternal loading influence on the manipulator
stiffness matrix may be essential.

It is worth mentioning that in the case without internal preloading, ébtore describes only flexibility of manipulator
links/actuators that are presented by virtual springs, while vgctwllects entire set of passive joint coordinates. In contrast,
here, the passive joint coordinates are divided into two subsétger(igct passive joints” included in g, and (ii) “preloaded
passive joints” included in 6 together with traditional virtual springs. Besides, if a passive joint includediagwrspring (see
Figure 4c), the corresponding joint variable may be included eitheranq , depending on the current configuration of the
manipulator. However, for each configuration, this assignment is strittjyie!.

It is assumed that the desired stiffness model of serial chain is definetbhyliaear relation
F=f(at), (20)

where f (...) is a soealled “force-deflections” function that associates a deflection At with an external forc& that causes
deformations. It is worth mentioning that the function..) can be determined even for the singular configurations (or redundant
kinematics) while the inverse statement is not generally true. Hence, enbtffoeds analysis must include the computation of
this function and the detailed analysis of its singularities that may keosasious nonlinear phenomena (such as buckling). In the
unloaded case, ith function is usually defined through the “stiffness matrix” K , which describes the linear relation
F=K(q, 0,) At between small six-dimensional translational/rotational displacemantand the external forces/torques
causing this transition. Here, it is assumed that includes three positional componentsx, Ay, Az) describing the
displacement in Cartesian space and three angular compgnentsi o , Ag,) that describe the end-platform rotation around
the Cartesian axes, while the vectars 0, correspond to the manipulator equilibrium configuration for which thergadboth
internal and external) are equal to zero. However, for the loaded nmodar Enear relation is defined in the neighborhood of
another static equilibrium, which corresponds to a different manipulator craifegu(q,0) , that is modified by external
forces/torques . Respectively, in this case, the stiffness model describes the relation betwaerethents of the forceFr and

the positionat

8F =K' (q,0) 5t (21

whereq=q,+Aq ande =0, + A8 denote the new configuration of the manipulator, agd Ae are the deviations in the
coordinatesy, 8 respectively.

For stiffness modeling of serial kinematic chain with auxiliary loading lessame that the serial chain has the additional
external loadings applied to the internal node points (Figure 3). These loaalinigs caused by gravity forces (generally they are
distributed, but in practice they can be approximated by localized onesy gnaVidy compensators. These forces will be
denoted ass |, where j =1,...,n is the node number in the serial chain starting from the fix(base, j =n corresponds to the
end-point). It should be noted that for computational convenience, it imedstinat the end point loading consists of two
componentss | andF of different nature.

It is evident that in general the auxiliary forces depend on the manipulator configuration. So, let us assume thatréhe
described by the functions

G,=G,(q,0), (22

In contrast, for the external force, it is assumed that there is no direct relation with the manipulator configuratio

For the serial chains with the auxiliary loadings it is also required to etlterggbometrical model. In particular, in addition
to the equationl(7) defining the end-point location, it is necessary to introduce the additioraidns

t,=9,(9.0), j=1,..n (23

defining locations of the nodes. It is worth mentioning that for ¢niaischain, the positiom; depends on a sub-set of the joint
coordinates (corresponding to the passive and virtual joints located betwdmse¢hand theth node), but for the purpose of
analytical simplicity let us use the whole set of the joint coordingfes) as the arguments of the functiogs...).

Using these assumptions, the problem of stiffness modeling of seaialschith auxiliary loadings can be split in the
following sub-problems: (a) deriving the static equilibrium equations ferctimin with auxiliary loadings; (b) computing
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full-scale “force-deflections relatioh for the end-point and intermediate nodes; (it)earizationof the relevant force-deflection
relations in the neighborhood of the equilibrium and computing camepg stiffness matrix. Let us focus on these
sub-problems.

3.2 Satic equilibrium equationsfor serial chain with auxiliary loadings

To obtain a desired stiffness model, let us derive first the static equilibrivesi@us. In the frame of this work, the notion of
static equilibrium of serial chain is referred to the configuration (defined by af $ké actuated, virtual and passive joint
coordinates) that depends on external/auxiliary loadings, which ensureizey@&forces/torques for each link separately. Let
us apply the principle of the virtual work and assume thatitteatic chain under external loadingsandG =[G,..G ] has
the configuration(q, 8) and the locations of the end-point and the nodes arg(q,0) andt, = g,(q.8), j = 1,n respectively.

According to the principle of virtual work, the work of external forgesF is equal to the work of internal forces
caused by displacement of the virtual springs

n

S (G, -8t,)+F st=1," 50 (249

0
j=1

where the virtual displacemends, can be computed from the linearized geometrical model derived #8m (
(1) (i) i
Stj:\]@J -80+JqJ 8q, j=1.n, (25)

which includes the Jacobian matrices

o 8
3 =—g,(a.0); I =—g (q.0 26
V=9 @0)i I =g (a.0) (26)

with respect to the virtual and passive joint coordinates respectively.
Substituting 25) to (24) we can obtain the equation

(6,73 -30+G "3 5q)+(FT IV -50+F I .5q)=1,"-50 (27)
j=1
which has to be satisfied for any variation &, 5q . It means that the terms regrouping the variablkessq have the
coefficients equal to zero, hence the force-balance equations can be written as

T (mT . (nT (nT
7, =3307G6 s3IV F 0=Y 30T G I F. (29

j=1 j=1

Also, these equations can be re-written in block-matrix form as

@)T

1, =3T.G+IP"F; 0=J97.G+J3°".F (29
q

0 q

where

(F) (n). (F) (n). (G) (€92 mT7" . © T mT]" . T T
I =9 3P =9l I =T 3P =30 T] s e =[67.6,] (30
Finally, taking into account the virtual spring reactien=K,-(0-6°), wherek , = diag(K
equilibrium equations can be presented as

JOT.G+IPT F=K, - (6-90°
; ; 0 (0-0°) (31)
IPTG+IPTF=0

It should be noted that compared to the case of end-effector loadinfLlO6hlhere there are two additional term{§'G and
J®7G that take into account the influence of the auxiliary loadingFurther, these equations will be used for computing the
static equilibrium configuration and corresponding Cartesian stiffness matrix.
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3.3 Equilibrium configuration for serial chain with auxiliary loadings

To obtain a relation between the external loadingnd internal coordinates of the kinematic ch@jm) corresponding to
the static equilibrium, equation81) should be solved either for the different given values afr for the different given values
of t.Based on this data, the desired value of the end-point displacement can btedostmaightforwardly, using geometric
equation 17). In previous works, this issue was usually ignored aaditlearization was performed in the neighborhood of the
unloaded configuration assuming that the external load is small enougjlobltious that the latter essentially limits relevant
results and does not allow detecting non-linear effects such as buckling.aFmmathematical point of view, the problem is
reduced to solving of a system of the non-linear static equilibriumiegaahat may produce unique or non-unique, stable or
unstable solutions.

For computational reasons, let us considerdhal problemthat deals with determining the external forceand the
manipulator equilibrium configurationqg, ) that corresponds to the end-effector locatiotaking into account internal
preloading in the joints and auxiliary loadit®y(q,0) . Let us solve static equilibrium equations with respect to the manipulator
configuration(q,0) and external loadnF for given end-effector position=g(q,0) and function of auxiliary-loadings

G(q,0)

K,-(0-0")=0,""-G+3""F; JOTG+IPTF=0 32
=9(9.0); G =G(q.9)

Since this system of equations usually has no analytical solatiaterative numerical technique can be applied. Sinolar t
the previous Section, the kinematic equations may be linearized in the mamhthof the current configuratiofy, ,e,)

t..=9(a,.0)+37(q,.0)(0.,-6)+I(q.0)(q,-q); (33

where the subscrigit indicates the iteration number and the changes in Jacobfdns”, 3/, 3 and the auxiliary loadings
G (q,0) are assumed to be negligible from iteration to iteration. Correspondinglytatie exjuilibrium equations in the
neighborhood ofq,,0,) may be rewritten as

I+l

3:77(a,,0,)-G (a,.6,)+ 37" (q,.8, ), =K, (6
( (a,.9,)-G (q,.6,) (9.6, ( (34)

G)T

Jq (qi’ei)‘c(qi 10, )+J;F)T (g, .6, )'F;+1:0

Thus, combining 33) and B4), the iterative algorithm for computing of the static equilibrium configuratantte given
end-effector location can be presented as

[F.. ] |F 0 35 (a,.0,) I (a8, )7| 1|“.+1 g(q,.0)+37(q .8)8 +37(q 9 )q 7|
‘qi+l‘:|J;F)T(qi’ei) 0 0 | _J(G)T (0,.0,)-G, | (39
B S B T S I T M R O S

WhereGHl =G(q,,,,0,,,) .

To reduce the size of a matrix to be inverted, the above system cliaghbg simplified. In particular, applying the same
approach as in [10] (but here based on analytical expressien-fer, *(J*"-G + 377 -F) + 8°), the unknown variables cae b
separated in two group$, q) ande . This yields the iterative scheme

-1

[F, T[98 (a0) K, 97 (a,,0,) 37 (q,.0,)]

i+l

o] 377 (a,.0,) o |
xrti+l_g(qi’ei)+JZ)F)(q\ 0, )'ei +‘I<(;F)(qi 0 )q _JéF)(q 4 )'Keil"]e(G)T(q 9 )G 1 (36)
_JgG)T(qirei)'Gi J
0., =K, (357 (a,.0,)-G, +3"(q,,0,)-F_,)+0°

The latter is more convenient computationally, since it requires the invessiariower dimension matrikn+ 6)x (n+ 6)
instead of(n+ m+6)x(n+ m+6), wheren, m are the sizes of the vectogs and 6 respectively. For instance, for the
kinematic chains of the Orthoglide manipulator (see application example inrSgtihe expressior3f) requires the inversion
of 34x 34 matrix, while iterative scheme§) needs the inversion afox 10 matrix only. It should be mentioned that’
computed only once, outside of the iterative loop.
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Similar to the other iterative schemes, convergence of this algorithm kigbgnds on the starting point. However, due to
the physical nature of the considered problem, it is possible to start iterlsiomshe non-loaded configuratiory(, 0,).
Besides, it is useful to modify the target point for each iteration in accoredthicthe expression, = ¢, -t +(1- o, )-t, using
scalar variablex, that is monotonically increasing from 0 up to 1. Another approachbeamsed for computing the
force-deflection curve. Here, the starting point can be taken from previcasiputed loaded configuration corresponding to
another value of deflection that is very close to the target one. kealtyplues of deformations, the proposed iterative procedure
convergences in 3-5 iterations if the configuration is stable. In thdatiomustudies, the convergence has been evalbgtdte
weighted sum of residual nhorms corresponding to equati#)sagd the algorithm stopped when this criterion achieved the
prescribed value.

However, some computational difficulties may arise in the case of bgaklim the area of multiple equilibriums, where
the convergence problem becomes rather critical and highly depends on anaimtiatpre, the number of iterations increases
significantly and the computational time becomes non-negligible. To awertloese difficulties, it is proposed to modify the
developed iterative scheme and to repeat the computations several times, lthrabglified initial points that are obtained by
adding small random noise tg, 0,. Another option is to add small disturbancegtqgq, ) at each iteration. These techniques
were used in the case studies presented in Section 5.

The proposed iterative scheme can also be slightly modified to soleeigiveal problem i.e. computing the equilibrium
configuration corresponding to given external loadinginstead of given ). In this case, expressior5}, (36) are used in the
internal loop, while the desired algorithm is supplemented by an exterrmml Wdoch provides iterative searching for
corresponding to the given

ti+l=ti+Ki71'(F_Fi) (37)

wheret,, F, andK , are the location, the loading and the stiffness matrix at the i-th iterationtresjyedt is worth mentioning
that the dual problem is meaningful only if the stiffness makrjxis non-singular. It is obvious that for a separate serial chain
with passive joints the matrix , is always singular, while for an industrial serial manipulator it is usuoaltysingular (the same
as for a parallel manipulator due to specific assembling of kinematic cHam#f)e other hand, the dual problem considered in
this Section (i.e. coputing F corresponding ta ) is always physically meaningful and has at least one solution.

Another problem related to computing equilibrium configuration thdte considered, is the stability of the manipulator
configuration under the loading. This problem has been described in det§ll®,71] and can be applied directly for the
considered case since the matrix criteritd) lepends on the parameters that define the end-effector coordinateseimhpadct
of loadings applied to the intermediate points in this case is taken into acecothe step of the equilibrium configuration
computing .

Hence, the proposed algorithm allows us to compute static equilibrium a@ritigufor the serial chains with passive joints
and all types of loadings (internal preloading, external loadings applied to emtyopthe manipulator and loading frometh
technological process applied to the end-effector).

3.4 Siffnessmatrix for serial chain with auxiliary loadings

The previous sub-section allows us to obtain the non-linear relatiwedr@elastic deflectionst and external loading .
Since common engineering practice operates with the stiffness matrix, let wzdirtass relation in the neighborhood of the
equilibrium. Following the virtual work technique, let us assume that thenektarce and the end-effector location are
incremented by some small valugs , 5t in the neighborhood of current equilibrium configuration. Let us alsenas that a
new configuration also satisfies the equilibrium conditions. Hencenéidsssary to consider the two equilibriums corresponding
to the manipulator state variablgs, g, 8, t) and (F + 8F, g + 3q, 6 + 30, t + 3t) simultaneously. The relevant static equilibrium
equations may be written as

t=9(q,0)
K,-(0-0")=3""-G+J""-F (39

Jff”.G +J;F)T~F =0

and
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t+5t=9g(q+5q9,0+350)

Ke.(e+59—e°):(J;G’+5J;G))T .(G+6(;)+(J(§F)+6J;F>)T -(F +8F) (39)
(J;G)+6J;G>)T (G +5G)+(Jff’+8Jff))T (F+8F)=0

where the variables, F, G,K,,q,6,6° are assumed to be known.

After linearization of the functiory(q,8) in the neighborhood of loaded equilibrium, the syst88), (39) is reduced to
three equations

5t =350+ .5q
K, 80=8J.G+39.5G6+3J" F+JF 5F (40)

5Jff’~G +Jff’.5G +5J;F’-F+J;F)~8F:0

which define the desired linear relations betweerandsF , 5q, 56 that are expressed by the stiffness matrices K .,
K ., - In this system, small variations of Jacobians may be expresseé gecitnd order derivatives

837 =HD 50+ H" - 5q; 87 =H 50+ H - 8q; (1)
37 =HG -30+H 3q; 337 =H -850+ H - 5q;
where
©G) . 62 T . (G) . 62 T .
Hi' =2 —(9,'@.0)G); HE =2 —(9,"@.0)G));
j=1 00 j=1 6q
n 2 n 2
©G) _ T . ©G) _ T
Hil =2 (9 @0G ) HI =3 ——(0,"(@.0)G);
7100 0q 7109 90 42)
o* a°
G T - " _ T ).
H _602(9 (q,B)F), H _6q2(g (q,('))F),
o* o°
Hi = ——(0"(@.0)F); HE = ——(a"(@.0)F);
20 dq dq 00
Also, the auxiliary loadings may be computed via the first order derivatives as
oG oG
3G = .50+ —.5q (43)
00 aq
Furthermore, let us introduce the additional notation
(F) (G) @)T 0 . G) (F) ©G)T 0 .
Hyy =HO +HE + 3§ '56’ Ho, =H +H + 3 -ae,
: (44)
H, = H(‘;’)+H(§)+J‘G”~ie; H cH® p®, 01 9% g
q q q 69 qaq qaq qq q aq
which allows us to present the systetfi)(in the form
(F) (F)
] [ 037 T e
AT
\o|:|Jq H., H, |.|aq| (45)

OJ 907 H,, —KﬁHeerﬂJ

The latter gives a straightforward numerical technique for computing the desfreess matrix: direct inversion of the
matrix in the left-hand side ofif) and extracting from it the upper-left sub-matrix of sizé.6Similarly, the matrices defining
linear relations between the end-effector increm&nand the increments of the joint variablss, 5q can be computed, i.e.:

8F = K . -3t; 50 = K , - ot; g =K, -t (46)

where
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-1
(k. i+ i+ 1 To 38 30 ]

DI e e @

Ca aq o
LKC"; * : *J LJ;F)T Heq _Ke+HeeJ

It is worth mentioning that the internal preloading (expressed by the vasigpis not included in the latter expression in
the explicit way, but it directly influences the variablgs 6) describing the equilibrium configuration and corresponding
Jacobians and Hessians, which are elementgl)f Besides, in contrast to previous works, here it is possible to obtain
supplementary matricex ., K ., that give additional measures of the manipulator stiffness which evaluate sgnsfttvie
joint coordinategq, 8) with respect to the external loading.

In the case when the matrix inverge)(is computationally hard, the varigb$e can be eliminated analytically, using
corresponding static equationse = k; -J;”7-3F + k;-H, -3q , Wherek; denotes the modified joint compliance matrix
k; =(K,-H;)™". This leads to a reduced system of matrix equations with unkn@#nsnd sq

[P A, TaE]_[at] o
IOT+H k30T H -kaHquLSQJ LOJ

q+qu 0

q
that may be treated in the similar way, i.e. the desired stiffness matrix isbédsioed by direct inversion of the matrix in the
left-hand side 0f48) and extracting from it the upper-left sub-matrix of sizé:6
il -1
(Kot = 1 [ 39 .kl.a®" 3O+ 3PkFH, ]
KC TS e ' ' 2 ®T ! ’ OF " (49)
cq | J, +Hy kg-J, H,+H, ky-H

q 0 0 0q

Similar to previous subsection, this approach allows us to redweedithension of the inverted matrix from
(n+m+6)x(n+ m+6) to (n+6)x(n+6), that in the case of Orthoglide corresponds4e 34 and10x 10respectively.

It is worth mentioning that the structure of the latter matrix is similénéamne obtained for the unloaded manipulator and
for the manipulator under end-point loading only [10] and diffgrklessians that take into account the influence of the external
load. It should also be noted that, because of the presence of the passyéthpstiffness matrix of a separate serial kinematic
chain is always singular, but aggregation of all the chains for a paralhgbutator produces a non-singular stiffness matrix.

Further simplification 0of49) can be obtained by applying the block matrix inversion technique of Fusl{@g] that yields
the following expressions

0(F) 0(F) F F
Ke=Kd-Kg -(Jq+J9~ke ~Heq)-K

(50)

Cq

0(F)

where the first termk 2 = (3, k{ -3,)"* exactly corresponds to the classical formula defining stiffness of teenkiiic chain
without passive joints in the loaded mode [1,2] and

-1

K cq :—(HF +HY kg H e = (3 H Gk T3T) K (3, +J0~k0F~HOZ)) (3,4 H 5 k,3)) K D (52

qq 0q 0
Similarly, the matrix K ., can be expressed analytically as

(52

co

Ko =kg -3y Ko+kyHp K

Hence, the developed technique allows us to compute the static equilibrium idigand Cartesian stiffness matrix for
serial chains with external and internal loading applied to the end-effectothedntmde-points (auxiliary loading). It allows us to
compute values of the internal variables corresponding to the equilibriumato tie non-linear force-deflection relation and to
compute the related stiffness matrices.

4  Siffnessmodel of parallel manipulatorswith internal and external loadings

The non-linear stiffness modeling technique proposed in Sections 3 ddakeparate kinematic chains. In order to be
applied to the parallel manipulators, it should be extended by appropriate stifiodet aggregation routs Hence, it is
reasonable to propose the method of aggregation of the elastostatic ofgglarate kinematic chains to the stiffness model of
the parallel manipulator. In general, these routines have to be applicable forefettt pnd non-perfect kinematic chains.
Besides, it is required to develop numerical algorithms for computing both dirédnverse force-deflection relations that are
referred below to as non-linear stiffness and compliance models respectively.
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4.1 Siffness model aggregation technique for perfect serial chains

Let us assume that a parallel manipulator may be presented as a strictly paratteb§iyis¢eactuated serial legs connegti
the base and the end-platform (Figuy¢a®]. Using the methodology described in the previous sections andrapiplio each
leg, a set ofn Cartesian stiffness matrices!’ expressed with respect to the same coordinate system but corresponding to
different platform points can be computed. If initially the chain stiffmessrices have been computed in local coordinate
systems, their transformation is performed in a standard wayg49]

glob 7|—R 0—| loc |—RT 0 —‘
e =lo RrJ o Rr"| 3

whereR is a3x3 rotation matrix describing orientation of the local coordinate system withatesptie global one.

To aggregate these matrices’ , they must be also re-computed with respect to the same refe@ntef the platform.
Assuming that the platform is rigid enough (as compared to the compbérice legs), this conversion can be performed by
extending the legs by a virtual rigid link connecting the end-point of thenéghe reference point of the platform (see Figure 5
where these extensions are defined by the veetors

(a) (b) Chain #2 (c)

Chain #2

Chain #2

Chain #1 Chain #3

Figure5 Typical parallel manipulator (a) and transformations of its VIJM models (b, c)
(ER isith end-point, BPisith base point, RP is the reference poiint: EP - BP, v = RP- EP)

After such extension, an equivalent stiffness matrix of the leg maygressed using relevant expression for a usual serial
chain, i.e. ag""" .k 397 where the Jacobian!’ defines differential relation between the coordinates ofi-thevirtual
spring and the reference frame of the end-platform. Hence, thefipadssion for the stiffness matrix of the considered parallel
manipulator can be writtesis

K=Y (307 k0307 9

i=1

wherem is the number of serial kinematic chains in the manipulator architecture.

As a result, expressiq54) allows us to compute Cartesian stiffness matrix for the parallel maniputeted lon stiffness
matrices for serial chains and transformation Jacohighswhich define geometrical mapping between end-points of serial
chains and reference point frame (end-effector). Moreover, it is implasgymed here that all stiffness matrices (both for the
serial chains and for the whole manipulator) are expressed in the sarakaglotdinate system, otherwise they should be
recomputed to requisite coordinates. Hence, the axes of all virtual spripgsaltel to the axes y, z of this system. This allows
to evaluate Jacobiang”’ and their inverses from the geometry of the end-platform analytically

3o :|—|3 (V,X)—| J(i)—1=|—|3 *(V.Xﬂ (55)
' L 0 I 3 lexe 7 ' L 0 I 3 Jexe
wherel, is 3x 3 identity matrix, and vx) is a skew-symmetric matrix corresponding to the veetor
[ 0 -v, v, 1
(vx) = | v, 0 -v, | (56)
{—vy v, 0 J

Therefore, expression4) represents explicit aggregation of the leg stiffness matrices with res@at tiven reference
point of the platform. It is worth mentioning that in practice, the matricg's are always singular while the aggregation usually
produces non-singular matrix. Relevant examples are presented in theénpléub-section.
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4.2 Siffness model aggregation technique for non-perfect serial chains (under internal loadings)

In the previous Section, it was implicitly assumed that kinematic chaing pkttallel manipulator argérfect, i.e. their
geometrical parameters are strictly nominal and their end-frames can be alignmedtahed without additional efforts and/or
internal stresses, while assembling. However, in practice, the kinematic chaietigemay differ from the nominal one (i.e. be
"non-perfect), and the assembling causes internal stresses and shifting of theietedlocation. Thus, let us extend the above
aggregation procedure to the case of nhon-perfect serial chains and developcai¢eathich is able to evaluate deflections and
internal forces/torques caused by geometrical errors in the chains.

Let us consider a parallel manipulator, which may be presented as a strictly pastdlal sy the actuated serial legs
connecting the fixed base and mobile end-platform [66]. Using the dwtgy described in the previous sections, aabheg
(serial chain) may be characterized by the geometrical functiew, (q,,0,), wheret, defines the end-frame location and
q,,0, are passive and virtual joint coordinates respectively, which define kinematicodmiguration. For perfect kinematic
chains, the joint coordinates,,8, are computed using nominal geometrical model of theglgg,.0,) , for the given
end-platform locationt® . These notations are illustrated by Figure 6a whereorrespond to the end-points of the perfect chains
and o is the platform reference point, the vect@T@ are denoted ag, . Using the above presented technique, it is possible to
compute the Cartesian stiffness matrices of the chains and expresstheaspect to the same reference pantLet us denote
this matrix ask &’ .

(a) platform before assembling (b) platform after assembling

Figure6 Transformation of characteristic points of serial chains in assemblimgneperfect parallel manipulatora(, A’ -
end-point locations of serial chain before assembling for perfect anpgarfect manipulators respectively,” - end-point
location of serial chain after assembling for non-perfect manipulator)

For the non-perfect chain before assembling, similar configuratiges produce slightly different end-point locations of
the chainst, = g’ (q,.9,) +¢,, which are denoted as’ in Figure 6a. Correspondently, assuming that the platform is rigid
enough, the point®\’ can be mapped t8,’ that differ fromo by ¢, . Hence, geometrical errors do not allow assembling
parallel manipulator at the original reference point.

To assemble all chains in the same reference point, it is required to applyreddifforts. Geometrically, it leads to
relocation of the frames corresponding to the pomtsto a new positiors,”, and relocations of the poimt’ to A" that is
defined by the vectont, . In Figure 6b, relevant reference point of the platform is denotex’ aslence, the stiffness model
aggregation problem is reduced to computing of a new end-platf@atido t° + At for which end-frames of all kinematic
chains are aligned and matched. Consequently, a manipulator will ot®ipyost advantageous configuration with respect to
the potential energy of the elastic elements.

To compute the end-platform deflectian , let us assume that the geometrical errors are small enough and corregpondin
shifting of the chain end-points and end-effector do not change @arts8ffness matriceg ’ or their influences are
negligible. So, the stiffness matrices of the serial chaiffs are the same at the points, B ando” and computed for the
nominal configurationsy,,8, . Let us also assume that the podit is shifted fromo by Ap and the mobile platform
orientations for the parallel manipulator with perfect and non-perfect seaimsctiiffer by A¢ . This allows us to express the
potential energy of the parallel manipulator with geometrical errors in kinemaiitscis
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E :—Zm:((si -at) K (g - At)) (57)

25

where At = (Ap, Ag) is displacement (position and orientation) of the reference point.

It is obvious that after assembling, the considered mechanical syft@rcupy the most advantageous configuration with
respect to the potential energy, i~ min. It means that the desired vector can be found from the expression
At
oE

=Y (K (At-g))=0 (58)

oAt =

that yields the following linear equation

ZKQ)-At:Z(K‘Q-si) (59
which allows us to evaluate the end-platform deflection
( o (\)\71 u ()
SR PATY DALY (60)

and the end-platform location after assembling
t'=t°+ At (61)

For each separate kinematic chain, the end-frame deflections due to assemiiegxpressed as

-1
Ati=At—si=(ZKg)\ S (K )¢ (62
L i=1 J i=1
This allows us to compute the loading for each kinematic chain applied to tpeiehddue to interaction with other non-perfect
chains)
F, = KAt (63

and corresponding loadings in the virtual joirfs
) =30TF =30 K At (64)

It is worth mentioning that herd’ LFi =0, since there is no external loading applied to the platform reference poirthafter
assembling. Besides, it is possible to compute relevant deflections of the virtyessnc joint coordinates of the chain

0, = KU At ; Aq, = K{) At (65)

caused by the assembling.

Thus, the above expressions allow us to evaluate the end-platform deflastiomternal forces/torques caused by
assembling of kinematic chains with geometrical errors. However, the tot@utzdar Cartesian stiffness matrix . is
assumed to be the same as in the case of perfect serial chains, since the geemettsicak assumed to be small enough. It
should be mentioned that the difference in the potential energy cheegedmetrical errors of serial chains is the second order of
smallness, as follows from eq. (57). On the other handntrisperfection leads to the errors in the end-effector position and
orientation with the first order of smallness. For this reason, the geometriced from manufacturing and assembling do not
appear directly in the final expression for the stiffness matri). (S8évertheless, the above mentioned deviations effect the
equilibrium configuration with respect to which the Jacobians and tffieestf coefficients are computed. For this reason, the
authors prefer to take into account such deviations of the secaerdsandliness in order to detect some non-linear phenomenon
in the manipulator behaviour, such as geometrical buckling studied prexious paper [10].

Hence, here the stiffness model assembling technique from Section 4.kdra®xiended for the case of parallel
manipulators with geometrical errors in serial chains. In addition to compftaggregated Cartesian stiffness matrix, it allows
us to evaluate internal deflections and forces/torques in joints, as well as defletttenseference point caused by geometrical
errors in kinematic chains. In spite of this issue has essential practicdiicaitce for evaluating the desired tolerances in
links/joints geometry and corresponding internal stresses in over-constnaéebadnisms, it has never been studied before.
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4.3 Siffness model of non-perfect parallel manipulator under external loading

Let us focus on the aggregation of stiffness models of separatechaiiiad into the stiffness model of the whole parallel
manipulator in the loaded mode. To solve this problem, it is negetssabtain the non-linear force-deflection relation, which
takes into account elastostatic properties of all kinematic chains, and to compegpaoding Cartesian stiffness matrix.

Let us assume that the end-points of all kinematic chains are aligned anédnat¢che same target poinf, which
corresponds to the desired end-platform location. This point is assumeknovireand allows us to compute, from the inverse
kinematic model, the actuator and passive joint coordinates defining nomifiglucations of the chaingq,,.0,) . It is also
assumed that the stiffness models of all kinematic chains have been abitadgusing techniques proposed in Sections 4.2
and are presented in the form of partial non-linear force-deflection relatiens, (t |[t,) corresponding to the target point.

It is evident that the external loadimg changes the end-platform location, hence it is reasonable to consider the set of
locationst in the neighborhood of target one. Under the above assumptionsy fgivan pointt from neighborhood of it is
possible to compute both the partial foreesand corresponding equilibrium configuratioqs,e,) . Then, in accordance with
the superposition principle, the desired non-linear force-deflection relatidghefavhole parallel manipulator can be found by
straightforward summation of all partial forces, i.e.

F=3 f(tlt,) (66)

M=

i=1

whereF denotes the total external loading applied to the end-platform. As a resultpootieg curves can be obtained by
multiple repetition of the above described procedures for different values of tiptatfiodm locationt .

Furthermore, for each given the stiffness matrices ! of all kinematic chains can be computed using expressign (
This allows us to compute the Cartesian stiffness matrixof the whole parallel manipulator as a sum

KCZZK(Ci) (67)

However, the matrices (), and kK {) defining the "sensitivity" of the chain joint coordinates.e,) to the end-platform
displacement cannot be aggregated in this way, they should be used sefmeatdliate stresses in joints/links and resistance of
the chain configurations with respect to external loading

P = 30T KO (t-t,); 8q, =K (t-t,); 50, =K (t-t,) (68)

Cq

where 3! is Jacobian matrix afth kinematic chain with respect to virtual joint coordinates.

It is worth mentioning that above it was implicitly assumed that tueipalator assembling is equivalent to the aligning and
matching of the chain end-frames. To deal with more general case, whemaihs are connected to the different points of the
platform, it is necessary to slightly modify the chain geometrical moddiscare-compute the forces/torques and the stiffness
matrices by adding a virtual rigid link connecting the end-point ofltlaén and the reference point of the platform (see Figure 5
where these extensions are defined by the veestoysAfter the relevant transformations, the above presented technique can be
applied straightforwardly.

Besides, here there are no evident differences in stiffness models aggregpgdeaifand non-perfect kinematic chains.
However, here the chain geometrical errors are implicitly included in the fungjjegqse,) . In particular for non-perfect
chains, it is assumed that the nominal values of the joint coordiagjes,) produce the end-point location vector which
differs fromt, :

g:(qoi'eoi)=t0+£i (69)

where g, accumulates influences of all geometrical errors on the end-point locaiigh ohain. As a result, the end-platform
cannot be located in the target poiptwithout external loading, i.e.

Zm:fi(tno) #0 (70)

t=t,

Moreover, without external loading, the end-platform locatioiis different from the target ong . The vectort, can be
computed from the equation

S0t 1t,)=0 (71)
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Figure7 Aggregation of serial chains stiffness models technique

which will be considered in the next sub-section. Corresponding intenrc@sfe’ defining the chain loadings due to the
geometrical errors in the chains can be computed by simple substitutiorthe partial force deflection relations

FP=f(tlt,) (72)

It is obvious that the sum of the is equal to zero but they produce stresses in the links and jaimésgarallel manipulator is
over-constrained.

Hence, the developed aggregation technique allows us to obtain the non-liceaddfection relation for a parallel
manipulator in the loaded mode as well as to compute Cartesian stiffness nfiatrgegsgiven target point, and given set of
the end-point location&t . This technique is summarized in Figure 7.

4.4 Modéd inversion: compliance properties of parallel manipulator under theloading

The non-linear force-deflection relatio6g) allows us to evaluate the external force/torgqueequired to locate the
manipulator in the target point (assuming that the actuated coordinates are computed for the end-platfotionloga
corresponding to the unloaded configuration). However in practice, teis nécessary to determine the end platform resistance
to the external loading, i.e. to compute the deflection caused by theFfoapplied to the end-platform. The desired value can be
found from the non-linear compliance model that in general case is expasssed

t="f7(F|t,) (73

and is defined by the inverse™(...) which for parallel manipulators usually exists (due to over-constratredture). In
contrast, for serial chains with passive joints, the functioty...) cannot be computed since the corresponding Cartesian
stiffness matrixk &’ is singular.

It is obvious that in a general case, the functiof(...) cannot be expressed analytically. Hence, it is required that a
dedicated iterative procedure, which is able to solve the non-linear eqif&idor t (assuming that is given). It is proposed
here to apply a modification of Newton-Raphson technique which iterativdbtespthe desired value in accordance with the
expression

=t K (tIty)(F-f(t]ty)) (74

wheret' corresponds to the next iteratioR, . (t |t,) is the Cartesian stiffness matrix computed in the poiraind t, denotes
the unloaded location of the end-platform. For this iterative schejnean be also used as the initial valuetof Similar to
sub-section 4.5.1, within each iterative loop, corresponding coafigns (q,.0,) , the loadingsF, and stiffness matrices &’
for each kinematic chain are computed using equat®8)s(60).
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Obtain deflection-force relation t=f"(F|t,)

Figure8 Procedure for obtaining deflection-force relation for loaded parallel manipulator

As it follows from the relevant study, convergence of this iterative proeésigood enough if the functiof(...) is smooth
and non-singular in the neighborhood qf. If it is required to improve convergence, it is possible to apply the sachnique as
in Section 3.3, when the forcge is modified from iteration to iteration in accordance with the expressien:-F , where a
scalar variablex is monotonically increasing from O up to 1. The stopping criteriarbeaexpressed in a straightforward way as

||F— f(t|t0)||< e, (75)

wheree, is the desired accuracy. More details presentation of the developed iterative roglivess is Figure 8

Summarizing this sub-section, it is worth mentioning that the developeddeehailows to obtain the desired non-linear
deflection-force relation describing the end-platform resistance with respect to témeaéxorce for a givent, , which
corresponds to the unloaded (nominal) manipulator configuration. The pbesented results can be used both for stiffness
modeling of manipulator under the loading and for compliance errgpesation.

5 Application examples. parallel translational manipulator

5.1 Non-perfect parallel manipulator without exter nal loading

Let us illustrate the developed stiffness model aggregation techniquerbplegahat deal with assembling of Orthoglide
parallel translational manipulator with geometrical errors in kinematic chainsréF8u The manipulator consist of three
kinematic chains with one translational actuator along the axes x, oy passive U-joints (or two separate rotational joints)
and kinematic parallelogram between them. It should be mentioned that tws el kinematic parallelograms would be
sufficient to restrict the motion in translation. However in order to increase thiputstor stiffness, the third actuated chain has
been introduced that impose redundant constraints on the mobile plaifermthe Orthoglide manipulator has an
over-constrained structur€his manipulator has the working area of size 200x200x200 nimthvéttransmission factor from 0.5
to 2; the detailed geometrical parameters are presented in [58], the link stiffagk®s were computed using an approach
developed in [34], where their numerical values are presented as well. Latuoseahat the manipulators have geometrical
errors in the kinematic chains, which have effects on the end-poitibloead provoke internal loadings in the joints.

(a) Photo (b) CAD-model

Figure9 Photoard CAD models of Orthoglide manipulator
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Taking into account the shape of the dexterous workspace, letussdo the stiffness analysis of these manipulatorsén fiv
characteristic points: isotropic poing,Q@wo limit points Q and Q. with symmetrical configuration and two limit points gnd
Q.. with non-symmetrical configuration [74] (see Figure 9). Let us estinthe end-effector location and internal
deflections/loadings caused by the geometrical errors in the chains. Ttesstifiatrices of the chains for the manipulator in the
points Q...Qs have been computed using the technique proposed in Section 3.3.

For illustration purposes, let us investigate two types of geometrical errors

CaseA: Each actuator of the manipulator has position error 1 mm in actuator location
£ =(1,0,0000 ; £=(01000) ; £=( 00,1007
CaseB: Each actuator of the manipulator ha§ amgular error 1° in actuator location

¢-(0,001,00 ; -(00001,0 ; &=( 0,000, 0).
It should be mentioned that the developed approach can be applied fuarihpeilator of general architecture and non-regular

structure of vectors’. However here, the regular errors were used to show that théaoaming and assembling deviations
effect the manipulator end-platform location and it Cartesian stiffness matrix

In case A, as it follows from the chains geometry, the deflectionseofthin end-points before assemblingnay be
expressed as, =¢);¢,=¢5¢,=¢5. In case B, the values should be computed using the geometrical magel, ,0,) ,
relevant computational results are summarized in Table 3.

Table3  Equivalent end-point errors caused by inaccuracy in serial chainsderdhains of Orhoglide manipulator

Point Chain #1:¢", Chain #2:¢,", Chain #3:¢,",

(mm mm mm deg deg dey (mm mm mm deg deg dey (mm mm mm deg deg dey
Q (0 -0.02 192 1 0 @ (192 0 -0.02; 0 1 @ (-0.02 192 0} 0 0 1
Q. (0 -2.24 411} 1 0 @ (411 0 -224 ;7 0 1 @ (224 411 0} 0 0 1
Q, (0 1.28 065, 1 0 @ (065 0 1.28} 0 1 @ (128 065 0; 0 0 1
Qs (0 125 414} 1 0 @ (062 0 -221; 0 1 9 (224 411 0} 0 0 1
Q. (0 -2.21 062 1 0 @ (414 0 125] 0 1 0 (128 065 0} 0 0 1

Further, substituting deflections and corresponding chain stiffness matrige$§ into formulas 60)-(65), were computed
the assembling-induced values of the end-platform displacement, the lifidecea/torques and the relevant displacements in
virtual and passive joints. The main results of this study are awized in Tables 4-5, whereq™ is the maximum rotational
displacement of passive jointg,, 6 "* are maximum displacement of translational and rotational virtual springs respectively

max

o™, 7,"" are maximum torques in translational and rotational virtual joints resplgetiv " is the maximum moment in the

chains, caused by assembling of a parallel manipulator with the non-p@ntsoiatic chains.

These results show that in the Case A (Table 4), the geometrical errorkinettmatic chains do not cause any internal
loading. However, they provoke the shift of the end-platform locatjpio 2.02 mm (point €. Corresponding changes in
passive joint coordinates are aboudtQ(point Q)

Table4  Assembling of Orthoglide manipulator with non-perfect chains: loadingsisplacements for the case A
(At=[5,,6,8,,0,0,0 ,F=0,F,=0,F,=0)

. Displacement Deflections and loadings
Point . L .
of end-pointat in joints and links
QO 51 = 52 = 53 = lmm, Aqmax — 0180 , gpmax — 0, gwmax: O Z_prnax: O’ Z_(pmax: O
Q: 5,=6,=06,=050mm AQ™ =0.14 ; apma* = 0; g(pmaxz 0 Tpma*: 0; Tq)maxz C
Q> 5,=6,=06,=2.02mm; AQ™ =0.42; apmax = 0; g(p'“axz 0 7p"‘a*: 0; TQ'W: G
Qs 6,=06,=0.73mm; 5,=0.27 mm AQ™=0.20; 6"=0; "=0 "= 10; 7,""= C
Q4 51=52 =0.56mm; 53=1.28 mm AqmaX:O.26°; Hpmax: 0: 9¢max: 0 2_pmax: 0: Twmax= C
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Table5 Assembling of Orthoglide manipulator with non-perfect chains: loadingslsplacements for the caBe
(At=[5,,8, 65 01,0, 05 F.#20,F, 20, F,#0)

Point Displacement Deflections and loadings
of end-pointaAt in joints and links
5 5,=6,=5,=0mm; M ™ =2.09N-m ' =0; "= 2.09N-m
0 o max _ o . max _ . max _ o,
0, =¢,=p,=0.03; AQ"*=0.31; 6" =0.05mm; 6,""=0.94";
o 5,=6,=56,=0.41mm M™ =8.9IN-m 7%= 0; r"*=11.96 N-m
1 o max _ . max __ . max _ o,
0, =0¢,=p,=-062; AQ™ =0.63 ; 0" = 0.54mm; 0 "=1.74";
s 5,=6,=6,=-0.96mm; M ™ =1.48N-m %= 0; "= 1.75N-m
2 o max ° . max _ . max _ o,
p,=¢,=¢,=021; Aq ™ =0.52; 6, =0.14mm; 6 "=0.80;
9 5,=-0.91mm; §,= 1.31mm; §,= 0.58mnm M "™ =433N-m; 7" =0; 7, = 4.84N -m
3 p, =-0.19; p,=-0.49; ¢, = 0.44, AQ™ =0.67; 0,""=0.99mm; 6= 1.49 ;
o 5,=0.93mm; &,=-0.10mm; §,=- 0.25mn M "™ =2.98N-m; 7""=0; 7= 4.0N-m
4 ¢, = 0.33; p, = 0.22; p,=-0.31; AQ™ =0.59; 6" = 0.62mm; 6 ""=1.30";

In contrast, in the Case B, the geometrical errors in the kinematic cligmghoglide (Table 5) cause essential internal
loadings. For instance, in poing @e torque applied to the end-point of the chain can reachaip 1ol m. This loading induces
displacements up to.41mm and 0.62 for translational and rotational virtual springs respectively. It should teel tbat the
loadings for rotational virtual springs are upitp.96 N-m, but for translational virtual springs they are equal to zero (in spite of
non-zero deflections in them). Nevertheless, this result is redsodaé to the non-diagonal structure of the matricés
representing couplings between rotational and translational deflections. Variationgasghe joint coordinates can reach up to
0.67 (Point Q). For the end-platform, this case study gives the positional deflectimnlupl mm (Point §) and the rotational
deflection up to0.62 (Point Q). It is obvious that the total sum of all internal loadings is equal ta Zéw® above presented
simulation results show that the developed technique can be used to eistienate stresses in the manipulator components and
to avoid damage of mechanical elements.

5.2 Non-perfect parallel manipulator under external loading

Now let us consider the chain stiffness model aggregation of Orthoglidgutator under external loading caused by
groove milling.. According to [42], such technological process causessfg, = 215N ; F, = -10N ; F, = -25N . The tool
length h = 100mm leads to torques at the manipulator end-effestqr=1N-m and M ,=21.5N m. It should be noted that to
define appropriate cutting conditions the frequency analysis is requiréth mlay demand to change the feed rate or cutting

depth in order protect the robot and equipment. It is assumed that the ntanipatatwo sources of inaccuracy:

(i) the assembling errors in the kinematic chains causing internal fancerelevant deflections in joints and links due to
manipulator over-constrained structure;

(ii) the external IoadingHF|| = 217N caused by the cutting force, which generates essential compliance defleatising
non-desirable end-platform displacement.

Similar to the previous example, it is assumed that the first source of iaeg@an be caused by translational (Case A) and
rotational (Case B) errors in the actuator locations.

Let us consider the case study when Orthoglide performs millingtfremoint Q to Q(-73.65, 126.35, -73.65) following
the straight line. Simulation results for two error sources for e @ and Case B are presented in Figure 10 and Figure 11
respectively. They include the target trajectories, displacements caused by tiggfordés and non-perfect geometry as well as
total compliance errors and the displacement evaluated using the supergwsitiiple. The results are presented for the
displacements in x- and z-directions.
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Figure 10 Case A: Displacements caused different sources of inaccuracy chilling along the straight line from point,Qo
Q4 using Orthoglide manipulator: (1) target trajectory, (2) displacencantsed by cutting forces, (3) displacements caused by
non-perfect geometry, (4) total compliance error, (5) displacemetaimet using superposition principle.
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Figure 11l CaseB: Displacements caused different sources of inaccuracy during nalting the straight line from point,@
Q, using Orthoglide manipulator: (1) target trajectory, (2) displacencantsed by cutting forces, (3) displacements caused by
non-perfect geometry, (4) total compliance error, (5) displacemetamet) using superposition principle.

The obtained results show that, due to the cutting force, the end-platgmlacément in the x-direction with respect to the
target trajectory may reach up to @in and its variations are insignificant (compared to the errors causeddnumacy in the
serial chains). In particular, in Case A, the errors in the x-direction indwcegtting forces and inaccuracy in serial chains have
the same direction, and, consequently total error is close to 2.5 mepoitit Q and about 0.8 mm in the vicinity of the point
Q. In contrast, in the Case B, the compliance errors in the x-direction thbydée cutting forces and inaccuracy in the serial
chains have different signs, so the total error in the loaded mode is lesstthannloaded one. This error varies from -0.6 mm
to 0.1 mm along the trajectory and even reduced to zero whencierginate is about 80 mm. In the z-direction, the errors
caused by the assembling of non-perfect serial chains is much {figinei0.5 mm to 2.1 mm for the Case A and from -1 mm to
1 mm in the Case B). To compensate these errors, the technique similampi@sented in [73] can be applied.

6 Discussions

The developed advanced stiffness modeling technique can be applietd betial and parallel manipulators and has a
number of advantages, some of which have not been highlighted. dlmiws briefly address some of them and give guidelines
for the technique application for several particular cases, which are importantiferesingy practice.

The first of these advantage is related to the ability to compute the stiffregtrix and the manipulator configuration under
the loading both fonon-singular and singular postureBor the simplified case (when the manipulator geometry is perfect), this
feature has been demonstrated in our previous works [4,10} wimgular and non-singular stiffness matrices both for serial and
parallel manipulators were derived. This paper gives the methodology to siotélar results in more general case, when the
kinematic chains are non-perfect and/or auxiliary loadings are applied. itioadthis feature allows us to detect new type of
singularities ¢o-called elastostatic ones), that are associated with the loss of static stabilitghenttexding. Moreover, it is
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possible to compute the "singularity axis" for which the force/torqpéicapion is dangerous.

The second advantage is associated with the ability to model manipulatorspéx topologywere pure serial and strictly
parallel architectures are mixed. Typical examples include heavy serial robiotgrawity compensators, serial robots with
parallelogram-type loops as well as parallel robots with parallelogram-based liekagerial robots with gravity compensators
or kinematic parallelograms, the desired model can be obtained by replacimigitiel hybrid structure by a strictly serial one,
but assuming that the equivalent joint stiffness is configuratpemnident (i.e., it can be described by a non-linear function of the
corresponding joint variable). More details concerning implementation ofdidscan be found in [75], where a simplified
stiffness model was used, without auxiliary loadings and with rigkéliBimilar approach can be also applied in the case when
the manipulator joints includeortlinear elastic element@vhich are used to compensate backlash, for instance) or it is necessary
to take into account the friction impact.

For parallel manipulators witbarallelogram-based linkagé¢he desired model can be obtained by replacing this linkage by
a corresponding solid bar with two passive U-joints and an equivadenlinear virtual spring whose stiffness depends on the
internal variable (parallelogram angle). For the case of perfect kinematic chisiideghhas been implemented in [76]. It is clear
that similar approach can be applied to parallelograms with non-perfecetyg@nto the kinematic loops of other types (with
triangles, trapezoids, pentagons and non-symmetric structure, for instance).

Non-obvious advantage of the proposed technique is its ability taattedifferent error sources (manufacturing errors,
assembling errors. backlash, etc.) in the elasto-static model of parallel fatmipthis feature follows from expression (60),
which treats all errors in a similar way by evaluating their impathemnd-chain position/orientation, i.e. deviation from perfect
case. Besides, the developed approach can be efficiently applied to the tadkdinéar and non-linear errors.

Another important issue, which should not be missed in the ssffngalysis of the heavy industrial robots, is the influence
of gravity forceswhich are associated with the own mass of the manipulator links. It igltéedhese forces are applied to the
link mass centers, what on the first sight contradicts to the assurppti®ented in Section 3.1 (see Figure 3, where all external
forces are applied at the nodes corresponding to the manipulator jbiotg@ver, this difficulty can be easily overcome by
presenting relevant gravity forces as equivalent pairs of parallel forces apajdcnt joints.

And finally, this technique is rather computationally efficient, and it cansbdanline compliance error compensation
The main difficulty here is related to computing of static equilibrium gaoindition, which usually consumes the majority of
computational time. However, for small position/force increments betweesureessive control signals update, corresponding
numerical procedure converges in 1-2 iterations (if current solution gremous control step is used as an initial one for the
subsequent step). This allows us to use the benefits of the developeduedbnitmprovement of existing robot controllers
without essential increasing of their computational capacity

7 Conclusions

The paper presents an advanced stiffness modeling technique for parallellatarsmomposed of perfect and non-perfect
serial chains whose geometry differs from the nominal one. The deddatg®mique contributes both to the stiffness modeling of
serial and parallel manipulators under internal and external loadings. Parittal#ion has been done to enhancement of
VJIM-based stiffness modeling technique for the case of auxiliary loading (appltbd intermediate points). The obtained
results allows us to take into account gravity forces induced by theniidhts which are assumed to be applied in the
intermediate points. In contrast to other works, the developed technijule i® take into account deviation of the end-platform
location because of inaccuracy in the geometry of serial chains, wiesmat allow to assemble manipulator without internal
stresses. The developed aggregation procedure combines the chain stitidelssand produces the relevant force-deflection
relation, the aggregated Cartesian stiffness matrix and the reference ipplatements caused by inaccuracy in kinematic
chains. The developed technique can be applied to both over-constrained@ndanstrained manipulators, and is suitable for
the cases of both small and large deflections.

The advantages of the developed technique are illustrated by an example thatitietle wver-constrained parallel
manipulator of the Orthoglide architecture. It demonstrates the technique abiligjuatexthe end-effector deflections caused by
conventional causes (cutting forces/torques applied to the end-effectaritieatvhile workpiece processing) and by specific
ones, induced by inaccuracy in serial chains of the parallel manipulator. Reditarhat illustrate influence of different error
sources on the manipulator positionaguracy are presented.

In future, the proposed technique will be integrated in a software tottladxcan be used for parallel manipulators of
complex architecture and applied to the industrial problem of the compliance@mpensation in robotic machining cells.
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