N

HAL

open science

On theories of growing bodies

Reuven Segev, Marcelo Epstein

» To cite this version:

‘ Reuven Segev, Marcelo Epstein. On theories of growing bodies. 1996, 22 p. hal-01064932

HAL Id: hal-01064932
https://hal.science/hal-01064932

Submitted on 17 Sep 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-01064932
https://hal.archives-ouvertes.fr

On Theories of Growing Bodies

Reuven Segev! and M. Epstein?

1Ben-Gurion University, Beer-Sheva, Israel 84105
2The University of Calgary, Calgary Ab, Canada T2N
IN4

ABSTRACT

A general setting for a continuum kinematics and force theory for
bodies whose material structure may evolve is presented. The body
object of continuum mechanics is replaced by two distinct objects: the
growing body and the material manifold. The configuration space of
the growing body is given the structure of an infinite dimensional fiber
bundle over the manifold containing the collection of material struc-
tures that the growing body may possess. A connection on this fiber
bundle allows the decomposition of generalized velocities and forces
into components pertaining to growth and mechanical power. A num-
ber of examples of growing body theories is given.

1. INTRODUCTION

This work considers a continuum mechanical framework for the de-
scription of growing bodies and gives a number of examples for growing
body theories.

In terms of continuum mechanics, growing bodies are different from
the usual in that their material structure is not conserved, i.e., material
points and subbodies may be added or removed from the body. The
theories of growing bodies are intended to model two basic classes of
phenomena: addition (removal) of material to a body during a phase
transition or a chemical reaction (see Eshelby [1] and Gurtin [2, 3, 4]),
and growth processes in biological systems (see Skalak et al. [5] and
Taber [6]).

For a continuum mechanical treatment of a growing body means
that one has to generalize some of the notions of continuum mechan-
ics so that bodies of a variable material structure may be considered.
In particular, the gecmetry of growth should be studied in the frame-
work of kinematics of continua. Furthermore, following the ideas of
Eshelby [1] and Gurtin [2, 3, 4], one may associate generalized forces
and stresses with changes in geometry due to growth processes just as
the usual mechanical forces and stresses are associated with changes of

the geometry due to deformation.
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The framework presented here, described generally in the following
Section, makes a distinction between the growing body, a mathematical
object, and the material it contains at each growth stage, which is a
subset of another mathematical object—the material manifold.

We use a global geometric framework to continuum mechanics (see
7, 8]) in which the collection of configurations of a system is given the
structure of a differentiable manifold, whose tangent bundle contains
the generalized velocities and whose cotangent bundle contains the gen-
eralized forces. Here, the collection of various material contents of the
growing body (various material structures)—the content space—is an
infinite dimensional manifold. Thus, the generalized forces associated
with the growth processes are elements of the cotangent bundle of the
content space. Similarly, the configuration space of the growing body
contains all the configurations in space of all the material contents that
the body may possess.

The basic mathematical objects, those describing the growing body,
material manifold, a material content, and a configuration of the grow-
ing body in space, are defined in Section 2. Section 3 considers the
content space and the configuration space of the growing body. In
particular, the configuration space of the growing body is assumed to
have the structure of a fiber bundle. A desirable feature in a theory of
growing bodies is the possibility to decompose a generalized velocity
of the growing body into two components: a rate of change of the ma-
terial content and a material velocity field. Such a decomposition will
induce a similar decomposition of forces into components associated
with growth and components associated with mechanical power. This
decomposition, whose geometrical counterpart is a connection on the
configuration space (when regarded as a fiber bundle), is considered in
Section 4.

Section 5, based on [9], models the growth of organisms, i.e., grow-
ing bodies that have identifiable elements. This theory is analogous
to the theory of volumetric growth (see [5, 6]). Section 6, based on
[10], presents a theory capable of modeling the growth of bodies due
to phase transition. This theory is obtained from the theory of organ-
isms by the requirement of invariance under the action of the group of
diffeomorphisms of the growing body. Section 7 presents an example
where the material manifold is a not a Fuclidean space. The situation
described in Section 7 can be interpreted as the growth of wood in the
cross section of a tree trunk. Section 8 formalizes the surface growth of
Skalak et al. [5] used to model growth in bones, horns, spiral shells and
trees. Section 9 generalized the situation of Section 8 to allow variable
age of the growing bodies.



3

Stress theory is not discussed here; however, the relevant results of
8, 11, 12, 13] concerning the representation of forces by stresses may
be used to construct stress theories for the various examples considered
here.

The constructions of the various infinite dimensional manifold struc-
tures use results of Kijowski & Komorowski [14], Komorowski [15], Binz
& Fischer [16], Michor [17] and Hamilton [18].

2. GROWING BODIES

In this Section we describe the basic mathematical objects used in
the formulation of the theories of growing bodies that we present in
the following.

The notion of a growing body is used in order to extend continuum
mechanics that deals traditionally with bodies of a fixed material struc-
ture so it can be used in situations in which the material structure of
the body varies. This changing of material structure reflects the growth
of the body.

While traditional continuum mechanics considers the body and the
physical space as basic objects, theories of growing bodies replace the
“body” by two objects: the growing body Band the material manifold
M. We will use the term simple body when we refer to a regular body
B of continuum mechanics.

It is assumed that during the process of growth, in all the various
growth stages, the growing body retains certain identifiable properties.
For example, one may assume that the topology of the growing body
is retained during a process of growth. The mathematical object that
models the growing body is chosen in such a way that it reflects those
properties that remain invariant and identifiable throughout the pro-
cess of growth. Thus for example, if for a certain theory the topology
is the only property that remains invariant throughout processes of
growth, then B will be a topological space. Henceforth, it is assumed
that the growing body has a differentiable structure.

The material manifold M is conceived as the collection of virtual
material points. This notion is somewhat analogous to the material
universe (see Noll [19] and Truesdell [20]). Thus, a point X in M
may be a part of the body in a certain growth stage or it may not.
As suggested by the terminology, it is assumed that M is a smooth
manifold.

A growth stage of the body is described mathematically by a map-
ping c¢: B — M. The image of the mapping c is the collection of material
points that the body contains at the growth stage described by ¢ and
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accordingly, we will refer to ¢ as a content of the growing body. Thus,
the image of a content is a simple body. The class of mappings that
are admitted as contents should reflect the invariant properties of the
growing body. For the example of a body whose topology is conserved
in all its growth stages, a content will be a continuous mapping. In the
following we will be more restrictive than this example and it will is
assumed henceforth that the images of contents and simple bodies are
smooth compact manifolds with boundaries.

A simple interpretation of these notions may be offered if one iden-
tifies the material manifold with the space manifold and the images
of contents of the growing body are identified with reference configu-
rations of simple bodies in space. This interpretation can be carried
one step further if we identify the growing body B with a simple body
B and consider the images of the contents of B as various reference
configurations of the simple body B.

Since for each content ¢ of the growing body, B = ¢{B} is a simple
body, we may consider configurations of B in the physical space. For
simplicity, we consider here only the case where the physical space is
modeled by 23, and in accordance with most treatments of continuum
mechanics, we will model configurations of simple bodies in space by
embeddings. Thus, we define a configuration of a growing body r to be
a configuration in space of the image of some content ¢ of the growing
body.

With the interpretation of a content of the growing body as a ref-
erence configuration of a simple body, a configuration of the growing
body may be interpreted as a deformation superimposed on the refer-
ence configuration.

It is customary in continuum mechanics to consider the action of
groups on simple bodies and on the space manifold. The action of a
group on a body is usually related to symmetry of the material prop-
erties of the body and the action of a group on the space manifold—
usually, the action of the Euclidean group on #*3—is generates balance
laws. In the case of theories of growing bodies, the actions of groups
on the growing body and material manifold should be considered.

In the following, we will present an example for the action of a group
G on the growing body manifold. We will denote this action by ¥z
so that

Epgi GB xB— B
is a smooth mapping. Similarly to the case of a group action on a

simple body, the action ¥y describes invariance of the “properties” of
the growing body points under class of certain transformations. In



addition, one may consider the action
!pMI GM XM —M

of a group G s on the material manifold.

Theories of growing bodies may be classified according to the invari-
ance requirements that are satisfied. That is under what group action
¥ on the growing body and under what group action ¥, on the mate-
rial manifold is the theory invariant. For example, if one assumes that
M has a metric structure, it is natural to require that contents that
differ by an isometry of M be identified. (With the interpretation of a
content as a reference configuration, this requirement means identifying
reference configurations of the body that differ by rigid body motions.)
Such a requirement of invariance will lead to balance of content forces.

3. THE CONTENT SPACE AND THE CONFIGURATION
SPACE OF A GROWING BODY

We will study the various theories from a global geometric point of
view and so we make the following definitions. The content space C
is the collection of all contents of the growing body in the material
manifold, i.e.,

C ={c|c: B— M is a content}.
It is assumed that the content space is a differentiable manifold. Clearly,
as a manifold of mappings, C is infinite dimensional. When considering
various theories of growing bodies, one has to show for each instance
that C possesses indeed a structure of a manifold.

Given a content ¢, one may consider the configuration space Q.(sy
of its image, the simple body B = ¢{B}, in the physical space. That
is,

Qc5y = Emb(B, R?),
where, “Emb” denotes the collection of embeddings of the first argu-
ment in the second.

Thus, the configuration space of the growing body is

Qs = U QeiBy-
ceC
We note that ()5 has a natural projection mapping 7,: @5 — C that
assigns c to every k in Q.zy.

The following results will be of use when considering the structure of
the various configuration spaces. The collection Emb(X, ) is an open
subset of the Frechet manifold C™(X', )) of smooth mappings of X in ),
for a compact X (see [17, 18]). Thus, the tangent space T;Emb(X,))
to Emb(X,)) at the embedding i can be identified with the tangent



6

space to C™(X,Y) at i, i.e., with {u € C™(X,TY) | ryou =i}, where T
denotes the tangent bundle projection of the corresponding manifold.
Since, N3 is a trivial manifold, it follows that for any configuration  of
c{B} in space, T,,Q.(5} is isomorphic with C™(c{B}, R*). We conclude
that for every ¢ in C, the fiber WC_I(C) is a manifold.

In [7, 8, 11] the kinematics and force theory of simple bodies was pre-
sented from a global geometrical point of view. The configuration space
of a simple body in space was presented and generalized velocities were
defined as elements of the tangent bundle. The results quoted in the
previous paragraph indicate that as expected, such generalized veloci-
ties are the virtual velocity fields of continuum mechanics. Generalized
forces, defined as elements of the cotangent bundle, were shown to gen-
eralize forces on simple bodies in continuum mechanics. In particular,
under a natural choice of topology for the configuration space, forces
where shown to be represented by stresses. This discussion explains
the terminology material velocity field for an element v of T, Q) (5) and
a simple body force for an element f,, in T;Q.(5y, where c is a given
content.

We will consider only theories of growing bodies for which the con-
figuration space possesses a differentiable structure. For such theories
it is possible to apply the framework of [7, 8, 11] so that generalized
velocities are defined as elements of the tangent bundle of the con-
figuration space and generalized forces are defined as elements of the
cotangent bundle. Thus, one may formulate kinematics and force the-
ory for growing bodies.

Similarly, since C was assumed to have a smooth structure, general-
ized velocities and forces pertaining to the growth of the body may be
defined as elements of the tangent and cotangent bundles of C respec-
tively. Thus, we will refer to an element ¢ € T.C as a content rate and
to an element f. € T*C as a content force. Clearly, the content rate
and content force are velocity and force only in the generalized sense of
the word. The use of such forces is motivated by the works of Eshelby,
[1], and Gurtin (e.g., [2, 3, 4]) who uses the terms accretive forces and
configurational forces in his works on multiphase bodies.

The mapping 7, our assumptions concerning the availability of dif-
ferential structure for both @)z and C, and the earlier discussion con-
cerning the structure of 7rc_1(c), ¢ € C, will be supplemented by the
requirement that ()5 has the structure of a fiber bundle. The availabil-
ity of a connection on the fiber bundle will be related to our ability to
decompose generalized velocities and forces pertaining to the growing
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body into the corresponding variables pertaining to growth and simple
bodies. We will describe the problem in some detail in the next section.

Note that with the foregoing framework, the interpretation of con-
tents as reference configurations of a simple body may be formulated
mathematically as follows. We assume that we have a given section
s: C — Qg of the bundle structure of (). Such a section associates
with every content ¢ of the growing body a configuration s(c)—the
“reference configuration”—of the growing body in space.

4. CONNECTION-INDUCED DECOMPOSITIONS

A desirable feature that one would like a theory of growing bodies
to have is the possibility to decompose a generalized velocity into a
growth rate and a velocity of a simple body. Similarly, it is desirable
that forces be decomposable into content forces and simple body forces.
Such decompositions are made possible by a connection on the bundle
m.: Qs — C. This Section describes some of the details pertaining to
such decompositions.

The mapping

Tan: TQs — Qs
assigns the configuration s of the growing body to every generalized
velocity of the growing body at that configuration. In addition, we
note that the tangent mapping

Tr,: TQz — TC

assigns to every generalized velocity the corresponding content rate.
Moreover, we can identify generalized velocity fields that are actually
material velocity fields by the condition that the content rate associated
with them vanishes, i.e., generalized velocity fields & that satisfy the
condition
Tr,(k)=0.

Geometrically, such purely material generalized velocity fields are termed
vertical vectors, the subspace V,Qs C T.(Q)s containing the vertical
vectors is usually called the vertical subspace and the collection of all
vertical subspaces is the vertical subbundle V Q)5 of T'(Q)s. Nevertheless,
we do not have an invariant mapping that assigns material velocity
fields to generalized velocities.

A connection on Q5 is specified by means of a family of linear injec-
tions

I,:T.C—T,.,Qs k€Qs c=m,(k)

satisfying, T'r, ol = 1, where I is the identity mapping. The mapping
I, will be referred to as the connection mapping. The connection
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mapping induces a mapping
Ay T,Qs — ViQs

for every kK € Qs by A, = 1 — I, 0oTm,. We will refer to A,
as the wertical projection and, indeed, one can verify that the im-
age of A, consists of the vertical vectors. Similarly, we will refer to
Image{ I} = Kernel(A,) as the horizontal distribution. Using ¢ to de-
note the inclusion mapping, the situation is illustrated in the following
commutative diagram.

. Tk
VHQB EE— TKQB —C> TCC

H H

VHQB (i THQB (F_K ch

Thus, (T'r,, A,) provide the required decomposition of generalized ve-
locities.

Once a connection is given, one can take duals of the foregoing map-
pings and decompose forces by (I,*,¢*). The situation is described by
the following commutative diagram.

(Tﬂﬂ'c )*

(VeQs)" —— (1.Qs)" (T.C)*
| | |
VeQu)* 2L (1Qu) 25 (1o

5. ORGANISMS

The theory of organisms describes growing bodies whose elements
are identifiable throughout the growth. It is natural to assume that for
a living organism we are able to identify various parts of the organism
irrespective of the growth. In accordance with continuum mechanics
we require that this ability does not end at a certain scale or size. This
requirement is reflected mathematically in the following definitions.

Definition 5.1. An organism B is a three dimensional compact man-
ifold with boundary that can be embedded in R3.

Definition 5.2. The material manifold of an organism is a three di-
mensional Euclidean space M with tangent space V.

Definition 5.3. A content ¢ of an organism is an embedding of the
organism in the material manifold.
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Clearly, the requirement that contents are embeddings means that
not only the growing body points are identifiable but in addition there is
a differentiable structure that remains invariant throughout the growth.

Proposition 5.1. The configuration space of an organism has the
structure of a trivializable fiber bundle.

Proof. Given a configuration x in ﬂgl(c) for c € C, set, e: B — 33 by
e = ko c. We will refer to e as the extent of the growing body at the
configuration k. Consider the mapping

®: Qs — C x Emb(B, R?)

given by
(k) = (7 (K), Ko T (K)) = (c,€).
This natural mapping defines a global fiber bundle chart on Q5. O

Under this global chart a generalized velocity is represented by (c, €, ¢,
where ¢ € T.C is a vector field on B valued in the tangent space V to
the material manifold M, and ¢ € T,Emb(B, R?) is a vector field on B
valued in 33

The natural global fiber bundle chart ® induces immediately a de-
composition of generalized velocities for which the connection mapping
I, is given by T.®(I.(¢)) = (¢,0). Here, T.® denotes the tangent of ®
at ¢ and it follows that A, (T.® (¢, ¢)) = T.®71(0,¢€). In other words,
the representative of the vertical projection A, acts as the projection
on the second component in the product C x Emb(B,R*). From the
definition of ® it follows that A, (%) = é o ¢~!. With this connection a
generalized velocity £ belongs to the horizontal distribution if é = 0 so
that the growing body points remain momentarily stationary in space.
This means that if the body grows but at the same time it is deformed
so that the identifiable parts remain in the same location in space the
corresponding generalized velocity will be horizontal.

A different connection can be defined on ()5 such that the generalized
velocity corresponding to the situation describe above will no longer
be horizontal and the vertical projection will have a clear kinematical
meaning.

Proposition 5.2. The mapping I}, given by
O(I:(¢)) = Droc(e)

defines a connection on @), for which the vertical component of a gen-
eralized velocity is the material velocity field

v(X)=¢éoc ' (X)—Dr(X)(¢oc (X)), X €c{B}.

€)
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Proof. One can verify that the last equation holds by differentiating
the relation x(t)(X) = e(t) o c71(t)(X), X € ¢{B}, with respect to the
t parameter. In addition, using the definition of A, in terms of I'; one
can show that the expression for v is indeed the result of the vertical
projection. U

If fg: T,Qs — R is a force on the growing body, the global chart ®
allows a natural representation of fz in terms of a pair of functionals

(fer fo) € CT(B, V)* x CT(B, %),

in the form
fB("i) = fc(c) + fe<é>>

where ¢ and ¢é are the representatives of the generalized velocity . It
is natural to refer to f. as a content force and to f. as an extent force.

Corresponding to the decomposition of generalized velocities into
vertical and horizontal components, one has a decomposition of gen-
eralized forces. The decomposition induced by the first connection
mentioned is virtually identical to the decomposition using the natural
chart except for the fact that the domain of definition of the vertical
component is ¢{B} and not B. We consider therefore the decompo-
sition induced by the material velocity connection. Thus, a force fz
acting on the growing body at the configuration x may be represented
by

(fas fm) € CT(B,V)* x C™(c{B}, R%)",
in the form
f8(k) = fa(¢) + fm(v),

where, v is the material velocity field corresponding to 4. Naturally,
we will refer to f,,—a simple body force—as the material component
of the force. Note that although f, belongs to the same space as f.
they are different. The power expanded by fz on £ will be equal to the
power expanded by f. on ¢ if é vanishes. Thus, intuitively we can say
that f. performs work on both the content rate and the rate in which
the material deforms.

The relation between the components of forces are given by the fol-
lowing equations.

fa:fc—i_feO(D'%oc)
fm = fe © C*,
where, ¢* is the pullback mapping of the vector fields defined on c¢{5}

into vector fields defined on B, so for example, ¢*(v)(§) = v(c(§)),
v:c{B} - R c*(v): B— R € B.
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6. INVARIANCE UNDER THE GROUP OF
DIFFEOMORPHISMS

In this section we use the same setting as in the case of organisms but
now we consider a theory that is invariant under the action of the group
of diffeomorphisms of B, i.e., we consider the case where G5 is the group
of diffeomorphisms of B, Diff(8). The mechanical situation that such
a theory describes is completely different than the theory of organisms.
Here, the invariance under the group of diffeomorphisms implies that
the growing body points are no longer identifiable. Thus, the only
property that remains invariant throughout growth is the differential
topological structure of the growing body. As such, this theory is aimed
at describing phenomena such as phase transition for the case where a
single phase is considered.

Definition 6.1. We say that two embeddings c¢;, c; have the same
shape if there is a diffeomorphism 9 € Diff(B) such that ¢; = ¢; 0.

Clearly, the condition that two embeddings have the same shape de-
fines an equivalence relation ¢ on Emb(B, M). The equivalence classes
are the shapes of the growing body and two embeddings have the same
shape if and only if they have the same image. Thus, the image of a
shape is well defined and in the sequel we will often identify a shape
with its image. This motivates the term “shape” and the definition
above. We conclude that if we wish to construct a theory of growing
bodies that is invariant under the action of the group of diffeomophisms
on B we have to admit shapes of B in M as contents rather then em-
beddings as in the previous Section. We will use x to denote a typical
shape and we will use § to denote the collection of shapes.

Definition 6.2. The content space for the Diff(B)-invariant growing
body theory is
S = Emb(B, M)/ .
The configuration space for the Diff(B)-invariant growing body theory
is
Qs = |_J Emb(Image(y), ®?).

XES
In order that this theory satisfies the postulates of Section 3 we have

to show that the collection of shapes has a differentiable structure. This
result, given first in [14] can be also found in [16, 17, 18].

Proposition 6.1. The collection of shapes & has a structure of a
Frechet manifold. The tangent space T, S can be identified with C™(9x),
the collection of smooth functions defined on the boundary of y.
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Proof. We will only outline the construction of charts on the space of
shapes. The rest of the proof is available in the references cited above.
Let n be the unit normal field to dx and for u in C™(dy), consider the
mapping s, : 0y — M given by

su(X) = X + u(X)n.

It may be shown that for a sufficiently small u, the image of s, is a two
dimensional submanifold of M that is diffeomorphic to dx. Thus, the
image of s, is the boundary of a shape x’. In addition, for two distinct
uy, uz, Image(s,,) # Image(s,,). In other words, once x is given with
its normal field, there is a neighborhood U of y such that the mapping

¢: U — C™(dx),

so that ¢(x’) is the unique function in C*(dx) with Image(s,) = X/, is
a chart on §. We will refer to this chart as the chart centered at x. U

Remark 6.1. We note that the chart in & constructed above and the
identification of T, S with C*(dy) depended on our choice of the normal
vector field rather than any other vector field that is transversal to
dx. While the choice of the normal is natural here, in general, any
other vector field may be used to construct a chart. Moreover, it is
not necessary to use straight lines in the construction. Any family of
parametrized curves, transversal to dx—a tubular neighborhood—may
be used. Such constructions may be needed if the material manifold
M does not have a metric structure. In such a general case, the basic
principle of the construction still applies but the the tangent space T, S
is identified with the space of smooth sections C™(T'M/T(dx)), where
TM/T(0x) is the quotient vector bundle—normal bundle.

The next result that we quote pertains to the manifold structure of

Qs
Proposition 6.2. The configuration space for the Diff(B)-invariant
growing body theory has a structure of a fiber bundle
T, Qs — C,
whose fiber
. {x} = Emb(x, ®°)
at any shape y can be identified with Emb(B, i*)—the space of extents.

Proof. We will outline the construction of a fiber bundle chart in a
neighborhood of a content Y € §. We construct a diffeomorphism
between Emb(x’, %?) and Emb(y, R3) for Y’ in a neighborhood of .
Such a diffeomorphism can be constructed by artificially deforming
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x to the shape x’. Mathematically this is obtained by generating a
diffeomorphism

5)(’ X — X,
that depends smoothly on x’. Such a mapping § will be referred to as
a dragging of the domain x, and its existence in a neighborhood of
can be proved. Thus, 7 '{x'} = Emb(x’, ®%) can be identified with
77 {x} = Emb(x, ®) by

K rk=ro06y K:ixX =R kyxy—R.
U

Remark 6.2. The manifold Emb(B, ®?) is diffeomorphic to Emb(y, ?3).
However, unlike the theory of organisms, there is no natural identifi-
cation of 7 '{x} with Emb(B,R?) as y is not a particular embedding
but an equivalence class.

The tangent space T,(Q)s can be identified using a fiber bundle chart
with C™(0x) x C™(B,R3). This way, a generalized velocity # is repre-
sented by a real function on the boundary of y and an extent rate. The
first component y is interpreted as the normal velocity field of growth.
We recall that the first component is the representative of T'r, (%) and
it depends on our choice of the unit normal field, or in the general case,
choice of a particular tubular neighborhood. The second component,
the extent rate, depends in addition on our choice of dragging of the
domain y and the particular shape x of B.

The next step in the construction of a Diff(B)-invariant growing body
theory is the consideration of a connection on ).

Proposition 6.3. Using the unit normal field, there is a connection
on Qs such that the vertical component of a generalized velocity & is
the material velocity field v.

We omit the proof of the Proposition. For the details, see Segev,
Fried & deBotton [13] and Hamilton [18]. If X € Interior(x) and B(t)
is the motion in )5 whose tangent at ¢ = 0 is the generalized velocity
, then

v(X) = ZROC0]

makes sense because X € m, o k(t) for ¢ in a neighborhood of ¢ = 0.
The values of v on the boundary of y are obtained as limits. An addi-
tional connection is also suggested by Hamilton [18] whose mechanical
application we do not consider here.

Forces on a Diff(BB)-invariant growing body can be represented using
a fiber bundle chart by means of a pair (fs, f.), where fs € C™(dx)* is
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interpreted as a force normal to the boundary of x and f, € C™(B, R?)
an extent force. Thus,

f5(k) = fs(x) + fe(é),

where (X, é) are the representatives of £.
Using the decomposition induced by the connection, we have a rep-
resentation of forces in the form

fB(H) = fS(X) + fm(v)> fS € Coo((?X)v fm € COO(X7 %3)*7

where, x = T'm, (), and v is the material velocity field.

7. A NON-EUCLIDEAN MATERIAL MANIFOLD

In this Section we present an example in which the material manifold
M is not a Euclidean space. For the sake of illustration we consider
a two dimensional example but the extension to three dimensions is
straightforward.

Consider the case where B is a two dimensional annulus. We denote
by 0B; and 0B5 the inner and outer components of the boundary of
the annulus, respectively. We set M to be the two dimensional cylinder
S! x L, where S* denotes the circle and L denotes a one dimensional
oriented Euclidean space—a line—together with a specific orientation.
We will treat M as a one dimensional vector bundle 7: M — St over
the circle, and much of the following immediately generalizes to the
case of a general vector bundle.

Note that an embedding of the annulus into the cylinder can be in
one of two forms. For the first form, the boundary of the annulus can
be contracted to a point on the cylinder and in the second form it
is impossible to contract the image of the boundary to a point, and
0By, 0B,y are the images of two sections s; and s, of 7, respectively.
Note also that for an embedding of the second kind, there are two
possible orientations of the image of B in M. For one orientation,
51(X) > s9(X) for each X on S* and for the second orientation s;(X) <
s9(X). Simply put, we define a content to be the image of a mapping
that wraps the annulus on the cylinder like a sleeve so that the outer
boundary of the annulus remains always on one particular side of the
image.

Definition 7.1. A content of the growing body is a shape y of em-
beddings B — M such that the images of the boundary components
0B; and 0B, correspond to sections s; and sy of 7, respectively, with
59(X) > s1(X), for all X on S*.
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Remark 7.1. Note that we can also set M = S! x L? with the bundle
structure

78t x L? — S,
induced by the projection on the first factor, so that a content can be
identified with a section of m with sy > s7.

Definition 7.2. A configuration of the growing body B at the content
X is an embedding x: y — R? that preserves the orientation of the
annulus.

The next Proposition follows immediately from the definition of a
content and the fact that the pullback of the vector bundle 7: M — S*
onto the images of the two components of the boundary serve as tubular
neighborhoods.

Proposition 7.1. The content space
C = {(s1,89)|s; € C7(m), 1 =1,2, 89(X) > 5,(X), for all X € S'},

where, C™(r) is the Frechet space of smooth sections of 7, is an open
subset of C”™(m)%. Given a content x by s; and s, any shape X' = (s, s5)
in a neighborhood of x in C may be represented by (s} — s1, 5 — $2)
which is in a neighborhood of the zero element of C™(S')%. Here, we
identify the tangent space Tx L with R so the difference of two smooth
sections can be identified with an element of C™(S?).

Clearly, the method of dragging of the domain can be used in or-
der to provide )z with a differentiable structure. A configuration of
the growing body s will be represented under a fiber bundle chart on
Qs by a pair (x,e), where, x = (s1,52) € C7(S")?, and e: B — R?
is an orientation preserving embedding. A generalized velocity & is
represented under a chart by the pair (x,¢é), x = ($1,82) € C™(S1)?,
¢ € C7(B,R?). Thus, a force fg is represented under a chart by a pair
(fs, fe), where fs = (fshpsi, fs,, fs;2 being real distributions over the
circle, and f, € C™(B, R?)*.

The fact that M is not the Euclidean plane does not affect the con-
struction of the connection outlined in the previous Section using the
material velocity field as the vertical component of the generalized ve-
locity. Using the connection, generalized velocities decompose by

i (X,v), X €CT(SY) ve O R,
generalized forces decompose by
fB = (f$7fm)7 fS = (f317f82)a ij € OOO(SI)*a fm € COO(X’ %2)*7

and finally
f5(f) = fs,(X1) + fs,(X2) + fin(V).
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Remark 7.2. In this example, motivated by the notion of surface growth
of Skalak et al. [5], using a cylinder rather than R* to model the ma-
terial manifold allows unbounded growth on both components of the
boundary of the annulus, even at the inner boundary. If one uses :2
or 2 — {(0,0)} to model M, the metric properties of the material
manifold will not be represented adequately.

Remark 7.3. The addition of material at the inner boundary of the
annulus is meant to model the growth of the bark of a tree trunk at
the cambium, while there is no generation of material at s,. In order
to model the generation of wood at the inner side of the cambium one
should consider contents that have two components ¢ = (1, x2). Here,
x1 describing the outer growth is defined as above and xs is a shape
of hte circle bounded by 0B; in ®2—an R+ valued function on 9B;.
Alternatively, one should add an additional dimension to the cylinder
representing M. For example, we can use the fiber bundle

S x L2 x Rt — St

to model the material manifold. Shapes of the annulus in S* x L? x ¢+
that are images of sections of the type (s, S2, 83), S > s1, of this fiber
bundle will model contents. The value of the third component repre-
sents the growth of wood—the circle bounded by 0B;. A description
of surface growth that is closer to the treatment of [5] is given in the
following Section.

8. SURFACE GROWTH

Skalak et al. [5] use the notion of surface growth to model growth
patterns in bones (particularly the skull), horns, spiral shells, and trees.
The characteristics of surface growth in the work of Skalak et al. are as
follows. The material points in the image of a content are parametrized
by points on a surface and a parameter 7. For a particular X in the
image of a content, the parameter 7 represents the time elapsed since
X was added to the body. The parameter 7 varies between zero and a
maximum value ¢, the age of the growing body. Growth may occur on
both sides of the surface, possibly in two different directions.

We now turn a formal geometrical description of surface growth. We
first consider growth on one side of the surface only and extend the
situation to growth on two sides growth later in the Section.

Definition 8.1. The growing body for the theory of surface growth is
B =X x10,1],
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where Y is a compact two dimensional submanifold without boundary
of N3 to which we will refer as the growth surface. The material mani-
fold M is a three dimensional Euclidean space with tangent space V.
A content of the growing body is an isotopy of the growth surface in
M, i.e., an embedding ¢: B =X x [0,1] — M.

Remark 8.1. By the definition, the material points in the images of
contents have identifiable surface and “time” parameters, and as such,
it is an example of an organism with a somewhat different interpreta-
tion of the growing body points. The fact that we consider the fixed
nondimensional “time” interval [0, 1] means that the various contents
of the growing body are interpreted as growth stages of the growing
body at one fixed “age”.

Remark 8.2. Consider a two dimensional example (M is 2-dimensional)
in which ¥ = S'. We interpret X as a cross section of the cambium
of a tree and for a content ¢ in C, we interpret Image(c) as the cross
section of a tree trunk having a fixed nondimensional age one. Growth
of wood on one side of the cambium is considered only, i.e., the growth
of wood rather than the bark. We note that with this model, the trunk
has a cavity because of the fact that Image(c) is an annulus. The rings
of the trunk are the surfaces c{X x {r}}, 7 € [0, 1], and so, the points
on the cross section are parametrized by the “time” they were created.
The content space is interpreted as the collection of sections of tree
trunks of a fixed age corresponding possibly to various kinds of trees
and various growth conditions.

We note that in the previous example, the growth of the trunk in the
various radial dimensions need not be identical because of the invariant
parametrization by the points on Y. If we require that the theory is
invariant under the action of the diffeomorphisms or rotations on S?,
we obtain growth patterns that are symmetrical.

The fact that we consider a special case of the theory of organisms
implies that all the properties of that theory hold here, in particular,
the differentiable structures and the connection.

In order to model growth on two sides of the growing surface, the
previous framework should be modified as follows.

Definition 8.2. The growing body for the theory of two sided surface
growth is

8261UBQ, 61:E><[—1,0], BQZEX[(),l],



18

where X' is a growth surface. A content of the growing body in M is a
continuous injection c¢: B — M such that the restrictions

ClzC‘BllglﬁM, 0226’62:BQ—>M,
are smooth embeddings.

This definition makes contents for the theory of two sided surface
growth identical in structure to composite body configurations discussed
in [13]. The mathematical structure of B here is that of a composite
body with the two phases B;, and interface X x {0}. Roughly, contents
are “embeddings” of B in M whose derivative suffers a jump across the
interface. The configuration space of a composite body is considered
in [13] and the results apply to two sided surface growth as follows.

Proposition 8.1. The content space C for the theory of two sided
surface growth is an open subset of

Fa = {w € C(B,M)|w; = wy, € CT(B;, M), j=1,2}.
Thus, C is a differentiable manifold with tangent space
Fv ={ue C(B,V)|u =ug, € C7(B;,V), j=1,2}.

We note that the jump in the derivative of contents at 7 = 0 implies
that the differential structure of B is different than that of B = ¢{5}.
Thus, while a configuration of the growing body in space is by definition
a smooth embedding x: c{B} — %3, for some ¢ € C, the corresponding
extent ¢ = koc: B — R is no longer smooth but has a jump in
the derivative at 7 = 0, in contrast with the situation for the theory
of organisms used for one sided surface growth. The structure of the
configuration space should be modified accordingly.

Proposition 8.2. The configuration space for a two sided surface
growth has a differentiable structure of a trivializable fiber bundle,
such that

d: Qs — CxF,
given by
(k) = (7 (r), kom (r)) = (c,€),

where,
Fi = {ue C(B,R) |u; = s, € C(B;,R%), j=1,2},

is a global natural trivialization.
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One would also like to use the material velocity field in order to
construct a connection on the configuration space as in the case of the
theory of organisms. However, recalling the expression

v(X)=¢oc ' (X)-Dr(X)(coc (X)), X €c{B},

for the material velocity field, we note that because of the discontinuity
in the derivative Dk, the velocity field suffers a jump. Hence, the
velocity field is not a member of the vertical tangent subspace

T.(m(0) = C7(c{ B}, %)

and the construction of a connection cannot be followed. This situation
is analogous to the theory of multiphase bodies (see [13]).

9. SURFACE GROWTH WITH A VARIABLE AGE

The mathematical framework suggested in the previous Section was
intended to model surface growth in the case where all bodies had
a fixed age—that corresponding to the dimensionless time parameter
7 = 1. While a material point was parametrized by the 7-parameter
specifying the time it was created, the maximum value of the time
parameter—the age of the body—was fixed for all bodies. In this
Section we wish to extend the framework suggested for surface growth
so that the contents of growing bodies may have different identifiable
ages. For the sake of simplicity, we restrict the discussion to one sided
growth.

Definition 9.1. For a growth surface X, the t-old generation is
C; = Emb(X x [0,t], M), teR".
The content space for a variable age surface growth theory is
c=Jec.
teRt

The mapping 7;: C — Rt that assigns ¢ to every element of C; will be
referred to as the age projection.

The construction here is somewhat similar to the situation with the
configuration space over the manifold of shapes in a Diff(B)-invariant
theory and similar tools should be used for the construction of the
bundle structure.

Proposition 9.1. The content space for a variable age surface growth
theory has the structure of a trivializable fiber bundle 7;: C — R™.



20

Proof. To construct a global fiber bundle chart we construct a diffeo-
morphism of C; with C; for ¢ € RT. The dragging of the domain
dp: X x [0,t] — X x [0,1],

takes the very simple form
.
(577_) = (ga ?)7
so that
dsc=codt, celC, ceCly,
is the required diffeomorphism. O

Once the content space has been defined, the structure of the con-
figuration space

Qs = U Emb(Image(c), R*)
ceC
should be considered. Note that we can write

Qs = U (U Emb(Image(C),%P’)).
teRt+ ceCy
Thus, setting
B = U Emb (Image(c), R*)
ceCy
to be the collection of configuration in space of the t-old generation,

the configuration space can be written as the union of configuration
spaces of fixed age surface growth theories,

Qs = U QBt'
teRt
Proposition 9.2. The configuration space for a variable age surface
growth theory has two fiber bundle structures. It is a trivializable fiber
bundle
.. Qs — C,
and a trivializable fiber bundle
mom,: Qs — R+
where the fiber over ¢ in R is Qp,.
Proof. We first consider fiber bundle charts for m;om,. Let t € R+, then,

the fiber bundle structure of m; implies that there is a diffeomorphism
C, to C; given by ¢+ cod;!. Hence,

Qs = U Emb(Image(c/)’g{g)

c'eCy
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is diffeomorphic to Qs; because for ¢ € C;, ¢ € Cy, ¢ = ¢ 0 6; * we have
Image(c’) = Image(c).

Next consider ¢ in C;. We construct a diffeomorphisms of Qruage(c)
with Emb(X x [0, 1], R?). Here, we only have to generalize the extent
e = ko c used for organisms (or surface growth with a fixed age), into

e=rocod, " € Emb(X x [0,1],R%), c€Ci K € Quuage(o)-
O

Thus, surface growth with variable age provides an example of an
iterated fiber bundle structure for the configuration space.
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