H. Hong, Non-Invasive Cell Tracking in Cancer and Cancer Therapy, Current Topics in Medicinal Chemistry, vol.10, issue.12, pp.1237-1248, 2010.
DOI : 10.2174/156802610791384234

D. Elson, Biomedical Applications of Fluorescence Lifetime Imaging, Optics and Photonics News, vol.13, issue.11, pp.36-68, 2002.
DOI : 10.1364/OPN.13.11.000026

R. Richards-kortum and E. Sevick-muraca, QUANTITATIVE OPTICAL SPECTROSCOPY FOR TISSUE DIAGNOSIS, Annual Review of Physical Chemistry, vol.47, issue.1, pp.555-606, 1996.
DOI : 10.1146/annurev.physchem.47.1.555

M. Dahan, Time-gated biological imaging by use of colloidal quantum dots, Optics Letters, vol.26, issue.11, pp.825-827, 2001.
DOI : 10.1364/OL.26.000825

A. May, Whole-body, real-time preclinical imaging of quantum dot fluorescence with time-gated detection, Journal of Biomedical Optics, vol.14, issue.6, p.60504, 2009.
DOI : 10.1117/1.3269675

X. Michalet, Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics, Science, vol.307, issue.5709, pp.538-544, 2005.
DOI : 10.1126/science.1104274

M. Bruchez and J. , Semiconductor Nanocrystals as Fluorescent Biological Labels, Science, vol.281, issue.5385, pp.2013-2016, 1998.
DOI : 10.1126/science.281.5385.2013

Q. Ma and X. Su, Near-infrared quantum dots: synthesis, functionalization and analytical applications, The Analyst, vol.2, issue.70, pp.1867-1877, 2010.
DOI : 10.1039/c0an00233j

J. Frangioni, In vivo near-infrared fluorescence imaging, Current Opinion in Chemical Biology, vol.7, issue.5, pp.626-634, 2003.
DOI : 10.1016/j.cbpa.2003.08.007

S. Kim, Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping, Nature Biotechnology, vol.22, issue.1, pp.93-97, 2004.
DOI : 10.1038/nbt920

L. Li, /ZnS Core/Shell Nanocrystals: Cadmium-Free Quantum Dots for In Vivo Imaging, Chemistry of Materials, vol.21, issue.12, pp.2422-2429, 2009.
DOI : 10.1021/cm900103b

T. Pons, /ZnS Quantum Dots for Sentinel Lymph Node Imaging with Reduced Toxicity, ACS Nano, vol.4, issue.5, pp.2531-2538, 2010.
DOI : 10.1021/nn901421v

URL : https://hal.archives-ouvertes.fr/hal-00479841

E. Cassette, Synthesis and Characterization of Near-Infrared Cu???In???Se/ZnS Core/Shell Quantum Dots for In vivo Imaging, Chemistry of Materials, vol.22, issue.22, pp.6117-6124, 2010.
DOI : 10.1021/cm101881b

URL : https://hal.archives-ouvertes.fr/hal-00548762

L. Li, Efficient Synthesis of Highly Luminescent Copper Indium Sulfide-Based Core/Shell Nanocrystals with Surprisingly Long-Lived Emission, Journal of the American Chemical Society, vol.133, issue.5, pp.1176-1179, 2011.
DOI : 10.1021/ja108261h

H. Zhong, Nanocrystals, Chemistry of Materials, vol.20, issue.20, pp.6434-6443, 2008.
DOI : 10.1021/cm8006827

T. K. Tran, /ZnS nanocrystals, Advances in Natural Sciences: Nanoscience and Nanotechnology, vol.1, issue.2, p.25007, 2010.
DOI : 10.1088/2043-6254/1/2/025007

A. L. Rogach, Infrared-Emitting Colloidal Nanocrystals: Synthesis, Assembly, Spectroscopy, and Applications, Small, vol.126, issue.317, pp.536-557, 2007.
DOI : 10.1002/smll.200600625

B. Chen, Highly Emissive and Color-Tunable CuInS2-Based Colloidal Semiconductor Nanocrystals: Off-Stoichiometry Effects and Improved Electroluminescence Performance, Advanced Functional Materials, vol.75, issue.10, pp.2081-2088, 2012.
DOI : 10.1002/adfm.201102496

J. Zhang, R. Xie, and W. Yang, A Simple Route for Highly Luminescent Quaternary Cu-Zn-In-S Nanocrystal Emitters, Chemistry of Materials, vol.23, issue.14, pp.3357-3361, 2011.
DOI : 10.1021/cm201400w

H. Nakamura, -Based Semiconductor Nanocrystals Synthesized in a Colloidal System, Chemistry of Materials, vol.18, issue.14, pp.3330-3335, 2006.
DOI : 10.1021/cm0518022

URL : https://hal.archives-ouvertes.fr/hal-00758436

P. M. Allen and M. G. Bawendi, Ternary I???III???VI Quantum Dots Luminescent in the Red to Near-Infrared, Journal of the American Chemical Society, vol.130, issue.29, pp.9240-9241, 2008.
DOI : 10.1021/ja8036349

E. Giovanelli, Highly Enhanced Affinity of Multidentate versus Bidentate Zwitterionic Ligands for Long-Term Quantum Dot Bioimaging, Langmuir, vol.28, issue.43, pp.15177-15184, 2012.
DOI : 10.1021/la302896x

J. Park, CuInSe/ZnS Core/Shell NIR Quantum Dots for Biomedical Imaging, Small, vol.1, issue.22, pp.3148-3152, 2011.
DOI : 10.1002/smll.201101558

L. and D. Trizio, Strongly fluorescent quaternary CuIn?Zn?S nanocrystals prepared from Cu 1?x InS 2 nanocrystals by partial cation exchange, Chem. Mater, vol.24, issue.12, pp.2400-2406, 2012.

J. A. Kloepfer, S. E. Bradforth, and J. L. Nadeau, Photophysical Properties of Biologically Compatible CdSe Quantum Dot Structures, The Journal of Physical Chemistry B, vol.109, issue.20, pp.9996-10003, 2005.
DOI : 10.1021/jp044581g

A. Derfus, W. Chan, and S. Bhatia, Intracellular Delivery of Quantum Dots for Live Cell Labeling and Organelle Tracking, Advanced Materials, vol.16, issue.12, pp.961-966, 2004.
DOI : 10.1002/adma.200306111

E. Muro, Comparing Intracellular Stability and Targeting of Sulfobetaine Quantum Dots with Other Surface Chemistries in Live Cells, Small, vol.142, issue.7, pp.1029-1037, 2012.
DOI : 10.1002/smll.201101787

M. Helle, Visualisation of Sentinel Lymph Node with Indium-Based near Infrared Emitting Quantum Dots in a Murine Metastatic Breast Cancer Model, PLoS ONE, vol.7, issue.8, p.44433, 2012.
DOI : 10.1371/journal.pone.0044433.t003