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A model based on Galbrun’s equation is proposed to address the problem of

vibro-acoustic interactions in sheared flows. The use of a displacement-pressure

mixed formulation of Galbrun’s equation greatly simplifies the coupling condition

formulations and avoid the problem of non-zero frequency spurious modes encoun-

tered with displacement based acoustic formulations. This model is applied to duct

acoustics. Comparisons with analytical models demonstrate the accuracy of the

method. The effects of mean flow shear on acoustic wave propagation in elastic

duct are then illustrated.
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1. INTRODUCTION

Vibro-acoustic interactions are critical aspects in many practical engineering

problems and are often found in conjunction with acoustic wave propagation in

complex flows (especially in transport engineering).

On the one hand, acoustics of fluid loaded structures in a quiescent fluid have

been widely studied for many years. Standard and efficient tools now exist to solve

this class of problems [1].

It has been shown that uniform mean flows can significantly change the vibro-

acoustic behavior of fluid loaded structures [2, 3]: an infinite plate may become

unstable for certain mean flow speeds (similar conclusions were obtained for finite

plates [4, 5] and finite cylindrical ducts [6]). Such a behavior is often attributed to

the negative stiffness added by the acoustic radiation process in the mean flow [7].

On the other hand, the propagation of linear acoustic waves in a non-uniform flow

is governed by the linearized Euler equations. Since this set of equations is quite

difficult to solve, a simplified model, the full potential theory, has been heavily

studied by many investigators [8]. This theory relies on the hypothesis that the

acoustic displacements and mean flows are irrotational. But if refraction effects by

mean flow shear are to be described, one has to solve the complete linearized Euler

equations [9–11].

The influence of sheared mean flows on vibro-acoustic interactions have only been

seldom investigated. Pagneux and Aurégan extended Pridmore-Brown’s model to

infinite ducts with vibrating walls [12]. To address this problem, the present paper

introduces an original method based on Galbrun’s model [13] for describing acoustic
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waves in a non-uniform mean flow. The coupling conditions are easily formulated

since, with a mixed formulation of Galbrun’s equation, the acoustic displacement

and pressure are explicit variables of the model.

The present paper is organized as follows. Section 2 is intended to introduce the

underlying theory of Galbrun’s equation. In Section 3, the hypotheses and model

for the vibro-acoustic interaction problem are presented and the corresponding vari-

ational formulation is derived. The model is then solved in Section 4 with a finite

element method. In Section 5, a first group of results is presented to validate the

numerical model against an analytical one, then examples illustrate the capabilities

of the model.

2. GALBRUN’S EQUATION

With the Lagrangian specification, the cinematic of a fluid flow is described by the

trajectories x (a, t) of the fluid elements. The latter are identified by their positions a

in a reference state so that the independent variables are related to fluid elements.

With the Eulerian specification, the velocity field observed for all locations y in

the fluid provides the kinematic of the flow. The independent variables are then

associated with a spatial location.

To analyze linear perturbations of fluid dynamic equations, one considers two

almost identical flows: a standard one (described by x0(t)) and a perturbed one

(described by x(t)). A quantity (scalar or tensor) measured in the base flow is

denoted by ψ0 while ψ denotes the same quantity measured in the perturbed flow.

An Eulerian perturbation ψE is defined as the discrepancy of the measured quan-
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tity between the base and perturbed flows at a given spatial location y. On the

other hand, a Lagrangian perturbation ψL is defined as the discrepancy between

the two flows for a given fluid element situated in x0 in the base flow:

ψE (y, t) = ψ (y, t) − ψ0 (y, t) . (1)

ψL (x0, t) = ψ (x, t) − ψ0 (x0, t) . (2)

Since in equation (2), an Eulerian specification of ψ is used to define a perturba-

tion associated with a given fluid element, the quantity ψL corresponds to a mixed,

or Euler-Lagrange, representation.

Assuming small amplitude perturbations, useful properties can be obtained from

these definitions. On the one hand, one can derive the following expression relating

Eulerian and Lagrangian perturbations valid up to the first order in the perturbation

amplitude:

ψE = ψL − w · ∇ψ0 , with w = x (t) − x0 (t) , (3)

where w is the displacement Lagrangian perturbation. Equation (3) shows that Eu-

lerian and Lagrangian perturbations are equivalent when ψ0 is uniform in the base

flow. On the other hand, it is known that Eulerian perturbation and derivation

operations commute (the perturbation of a gradient is the gradient of the pertur-

bation). This does not hold for Lagrangian perturbations:
[
∂ψ

∂t

]L
=
∂ψL

∂t
− ∂w

∂t
· ∇ψ0

[
∂ψ

∂yj

]L

=
∂ψL

∂yj
− ∂w

∂yj
· ∇ψ0 .

(4)

It is worth noting that Eulerian perturbations can be recovered from Lagrangian

ones, thought, in general, the opposite is not possible. An in-depth account on
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mixed representation can be found in [14].

In order to obtain Galbrun’s wave equation, the definitions and properties of

Lagrangian perturbations are applied to fluid dynamic equations for a perfect fluid

undergoing an isentropic flow (viscosity and thermal conductivity are neglected).

The continuity, momentum and constitutive equations are:

∂ρ

∂t
+

∂

∂yj
(ρvj) = 0 ,

∂

∂t
(ρvi) +

∂

∂yj
(ρvivj) +

∂p

∂yi
= 0 ,

p = P (ρ, s) .

where ρ is the density, vi the velocity components and p the mechanical pressure.

Applying the rules (3)-(4) for Lagrangian perturbations to the fluid dynamic equa-

tions gives:

ρL = −ρ0∇ · w , (5)

ρL d0v0

dt
+ ρ0

d2
0w

dt2
+ ∇pL −∇p0 · ∇w = 0 , (6)

pL = c20ρ
L , (7)

where d0/dt is the material derivative in the mean flow. Combining equations (5)

and (7) to eliminate pressure and density variables in equation (6) leads to Galbrun’s

equation:

ρ0
d2

0w

dt2
−∇

(
ρ0c

2
0∇ · w

)
+ ∇p0∇ · w −∇p0 · ∇w = 0 . (8)

Similar equations were obtained by Hayes [15] and Godin [16]. Galbrun’s equa-

tion is equivalent to the full linearized Euler equations and has some advantages.
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For isentropic perturbations, the linearized Euler equations require the use of p and

v (see [17]), while Galbrun’s equation is expressed for w only. Moreover, Godin

showed that equation (8) derives from a Lagrangian density and derived exact ex-

pressions for the energy density and flux [18, 19]. Such expressions do not exist for

the linearized Euler equations.

3. VIBRO-ACOUSTIC INTERACTION MODEL

The derivation of the model describing vibro-acoustic interactions is now ad-

dressed. The problem at hand is an acoustic domain Ωa coupled with an elastic

structure Ωs (see Figure 1). These two domains have a common boundary Γc. Two

others boundaries are defined: Γa = ∂Ωa/Γc and Γs = ∂Ωs/Γc.

The structure is considered linear elastic and isotropic with no initial stress and

strain. Thus, the structure vibrations are governed by the following set of equations:

ρs
∂2u

∂t2
−∇ · σ = fs on Ωs , (9)

u = ū or σ · n = −Fs on ∂Ωs , (10)

where ρs is the material density, u the structural displacement, σ the stress tensor,

fs the external force density, Fs the boundary forces and n the inward normal on

∂Ωs.

For the acoustic domain, one considers a perfect fluid undergoing a known, sta-

tionary, subsonic flow described by (ρ0, p0,v0) given at each point in Ωa. On Γc,

this mean flow satisfies the slip condition v0 ·n = 0. The acoustic waves propagating

in the mean flow are described by Galbrun’s equation (8) which is rewritten:
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ρ0
d2

0w

dt2
+ ∇p = fa on Ωa , (11)

p+ ρ0c
2
0∇ · w = s on Ωa , (12)

where fa is the external force and s the pressure source. The superscript L on

the pressure Lagrangian perturbation p is omitted. For the sake of clarity, the

influence of mean flow pressure gradients is neglected here but can be easily taken

into account. The use of both pressure and displacement variables will be justified

later.

The acoustic waves and structural vibrations are coupled by the geometric and

mechanic conditions. Since one considers a perfect fluid, the kinematic compati-

bility condition states the continuity of the normal displacement on Γc while the

mechanic condition implies the normal stress continuity. According to Godin [20],

for a structure without initial stress and strain, these conditions reduce to:

w · n = u · n and pn = −σ · n on Γc , (13)

where n denotes the normal pointing toward the structure.

The vibro-acoustic interaction problem defined by equations (9) to (13) is now

expressed as a variational formulation for time harmonic solutions of the form:

(w, p,u) (x, t) = (w, p,u) (x) exp (−iωt) .

The trial functions associated to w, p and u are denoted by w∗, p∗ and u∗. After

integrating by parts, the following variational formulations are obtained:
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∫

Ωa

−ρ0
d0w

dt
· d0w∗

dt
+ w · ∇p∗ + ∇p · w∗ − pp∗

ρ0c20
dΩ

+

∫

∂Ωa

ρ0 (v0 · n)
d0w

dt
· w∗ − p∗w · ndΓ =

∫

Ωa

w∗ · fa −
sp∗

ρ0c20
dΩ ∀ (w∗, p∗)(14)

∫

Ωs

σ : ε∗ − ω2ρsu · u∗dΩ +

∫

∂Ωs

u∗ · σ · ndΓ =

∫

Ωs

u∗ · fsdΩ ∀u∗ , (15)

where the overbar represents the complex conjugate and ε the symmetric strain ten-

sor. Since one considers time harmonic solutions, the material derivative represents

d0/dt = −iω + v0 · ∇. The boundary integral on Γc in equation (14) is simplified

by the slip condition v0 · n = 0 for the mean flow. And, with the geometric condi-

tion (13a), the normal acoustic displacement is replaced by the normal structural

displacement. The mechanic condition (13b) is also used in the boundary integral

on Γc in (15) for the structure. Thus, the coupled system variational formulation is

obtained:

∫

Ωa

−ρ0
d0w

dt
· d0w∗

dt
+ w · ∇p∗ + ∇p · w∗ − pp∗

ρ0c20
dΩ +

∫

Ωs

σ : ε∗ − ω2ρsu · u∗dΩ

+

∫

Γa

ρ0 (v0 · n)
d0w

dt
· w∗ − p∗w · ndΓ +

∫

Γs

u∗ · σ · ndΓ −
∫

Γc

p∗u · n + u∗ · pndΓ

=

∫

Ωa

w∗ · fa −
sp∗

ρ0c20
dΩ +

∫

Ωs

u∗ · fsdΓ ∀ (w∗, p∗,u∗) , (16)

The use of a mixed pressure-displacement formulation for the acoustic waves is

justified by two arguments.

First, the use of acoustic displacement and pressure variables leads to a simple

formulation of the coupling conditions. With displacement based formulations,

special treatments are required at the fluid-structure interface Γc in order to take

the mechanical coupling condition into account [21, 22]. This is not the case with
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the mixed formulation (16) since the variables w, p and u involved in equation (13)

are explicit variables of the model.

Secondly, it is worth noting that with no mean flow Galbrun’s equation (8) re-

duces to the standard displacement based acoustic equation. A well-known issue

concerning displacement based acoustic formulation is the occurrence of non-zero

frequency rotational spurious modes which are purely numerical solutions without

physical meaning [23]. Hamdi et al. proposed a penalty method to overcome this

difficulty [24], but the spurious modes are shifted to higher frequencies and not

removed [25]. Bermúdez et al. used edge elements to ensure that the displacement

field satisfies the irrotationality condition [22]. Wang and Bathe showed that mixed

pressure-displacement finite elements satisfying the so-called inf-sup condition are

not polluted by spurious modes [26]. To satisfy this sufficient condition for sta-

bility a mixed formulation has to be solved with carefully chosen finite element

interpolations (for more informations on this kind of elements see [27] and [28]).

Spurious numerical modes have also been encountered with Galbrun’s equation

(8). Bonnet et al. [29] proposed a regularisation technique for uniform mean flows.

Peyret also proposed the use of edge elements to describe the displacement field

[30]. A penalty method is not applicable here since with sheared mean flows the

acoustic displacement may be rotational.

In the present paper, Wang and Bathe’s approach is followed by employing a

mixed formulation of Galbrun’s equation with mean flow together with finite el-

ements satisfying the inf-sup condition. The originality of Galbrun’s equation is

that the pressure-displacement relationship given by (12) is not altered by the pres-
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ence of flow and is strictly identical to the no-flow case. Furthermore, the inf-

sup condition properties are closely related to the accurate approximation of this

pressure-displacement relation. This enables to directly apply the inf-sup condition

to a Galbrun-based formulation. Thus, under the assumption that the additional

operators introduced by the presence of flow (terms with v0 · ∇) does not alter

convergence properties of elements satisfying the inf-sup condition, it is expected

that the proposed mixed method for solving Galbrun’s equation is robust. With-

out structural coupling, these expectations have been confirmed by comprehensive

numerical tests detailed in reference [31].

4. FINITE ELEMENT MODEL

In this section, a finite element model is used to solve the variational formulation

(16) for axisymmetric ducts. The solutions are written:

(w, p,u) (r, θ, z, t) = (w, p,u) (r, z) exp (imθ − iωt) , (17)

where m is the azimuthal mode number.

In the (r, z) plane, the computational acoustic domain is approximated with linear

triangular elements. The pressure interpolation is linear while the displacement

interpolation uses linear functions plus a ‘bubble’ function (this element is known

as P+
1 − P1 or 4 − 3c). With no mean flow, Wang and Bathe have demonstrated

the stability of this element which satisfies the inf-sup condition [27, p.300].

The structure Ωs corresponds to the duct walls which are thin shell described

with Mindlin’s theory. The duct walls are approximated by linear elements. On

each element, displacements and rotations are described with linear functions. A
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complete description of this shell element is given in [32, p.100].

After assembling the element contributions, the following linear system is ob-

tained:




(Ma + Ba) Da 0

(DT
a + Ea) Ka C

0 CT (Ks + Ms)









ŵ

p̂

û





=





Fw

Fp

Fu





, (18)

where ŵ, p̂ and û denote the acoustic displacement, pressure and structural dis-

placement unknown vectors respectively. The matrices introduced in equation (18)

are defined by:

ŵ∗TMaŵ =

∫

Ωa

−ρ0
d0w

dt
· d0w∗

dt
dΩ , p̂∗TKap̂ = −

∫

Ωa

p∗p

ρ0c20
dΩ ,

ŵ∗TDap̂ =

∫

Ωa

w∗ · ∇pdΩ , ŵ∗TBaŵ =

∫

Ωa

ρ0 (v0 · n)
d0w

dt
· w∗dΩ ,

p̂∗TEaŵ = −
∫

Γa

p∗w · ndΓ , p̂∗TCû = −
∫

Γc

p∗u · ndΓ ,

û∗TKsû =

∫

Ωs

σ : ε∗dΩ , û∗TMsû = −ω2
∫

Ωs

ρsu∗ · udΩ .

It is worth noting that Ma, Ka, Ks and Ms are hermitian matrices. The sparse

system (18) can be readily solved to obtain the finite element solution.

5. VALIDATION

To demonstrate the validity and accuracy of the numerical model, it is tested

against two analytical models which are complementary. The first one considers

finite length elastic duct with uniform flow and the external solicitation is applied

on the structure. On the other hand, the second model [12] is an extension of

Pridmore-Brown’s equation and handles infinite elastic duct with sheared flows.
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5.1. FINITE DUCT WITH UNIFORM MEAN FLOW

One considers an annular duct carrying an uniform axial mean flow (see Figure

2). The duct outer wall is an elastic thin shell while the inner wall is rigid. At both

ends of the duct, all rotations and displacement are prescribed to zero except axial

displacements and azimuthal rotations. A radial, uniform, harmonic force (1N/m2)

is applied on the shell and the acoustic pressure is set to zero at the inlet (z = 0) and

outlet (z = L). Thought it does not represent a practical situation, this problem

is useful since it is possible to derive an analytical solution. The details of this

analytical model are given in Appendix A and Table 1 summarizes the duct and

fluid properties.

Axisymmetric solutions (m = 0) are sought in the two following cases: (i) with

no flow at 245Hz and (ii) with a 0.3 Mach number flow at 318Hz. These two cases

exhibit a strong coupling between an acoustic cavity mode and a structural mode.

The finite element mesh used for the computations is shown on Figure 2. The

mesh is refined near the shell in order to better describe its vibrations. The shell

is discretized with 80 elements and the acoustic domain with 1000 elements. This

corresponds approximately to 13 elements per wavelength in the two cases.

Comparisons of the analytical and numerical results are shown on Figures 3 to 5.

A good accuracy is achieved in the two cases both for acoustic pressures and struc-

tural displacement amplitudes. The small deviation of the numerical result from the

analytical solution on Figure 5 can be attributed to the very small dissipation added

by the numerical schemes. The effect of the numerical dissipation is noticeable here

since there is a strong coupling between the acoustical and structural modes.
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5.2. INFINITE DUCT WITH SHEARED MEAN FLOW

The numerical method is also validated with the model proposed by Pagneux

and Aurégan [12]. It represents an extension of Pridmore-Brown’s equation [33] by

providing a boundary condition accounting for the coupling with the elastic duct

wall. It is limited to infinite ducts but it takes the duct wall elasticity and the mean

flow shear into account. Details on this analytical model are provided in Appendix

B.

The computational domain and the finite element mesh are similar to that de-

scribed on Figure 2 and the problem parameters are also given by Table 1. Here,

the same approach as in reference [31] is used to validate the numerical model. At

the inlet (z = 0), the displacement is prescribed in order to simulate an incoming

acoustic mode provided by the analytical model. The propagation impedance of

the acoustic mode is applied at the outlet (z = L) to implement a non-reflecting

boundary condition. This method can be inaccurate if other acoustic modes or

hydrodynamic disturbances are present. However, the examples presented below

are believed not to be polluted by important spurious reflections at the outlet. A

more general technique such as a modal decomposition of the solution at the out-

let [34] should overcome this limitation. At both ends of the duct, the structural

displacements and rotations given by the analytical model are imposed.

Results obtained with the analytical model and the finite element method are

presented for the normal mode defined by m = 0, n = 1 at 800Hz with uniform and

sheared mean flows. For the latter case, downstream and upstream propagations are

investigated with a parabolic boundary layer profile (with a 10% thickness). The
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averaged Mach number in a section is 0.3. In all cases, one finds good agreement

between the two models both for the acoustic pressure (Figure 6) and the structural

displacement (Figure 7). Thus, the acoustic mode propagation in the sheared flow

and the vibro-acoustic coupling with the duct wall are accurately described by the

finite element model.

Furthermore, structural displacements (Figure 7) provide interesting insight on

the effect of acoustic refraction by mean flow shear on vibro-acoustic coupling. It is

well-known that flow shear modifies downstream acoustic propagation by deviating

the acoustic energy towards duct walls. For upstream propagation in shear flow, the

acoustic energy is concentrated near the duct axis [35]. This effect explains the fact

that the vibration amplitude is much larger in the downstream propagation case.

Due to the acoustic energy deviation near the duct, the coupling with the elastic

duct wall is more important.

6. EXAMPLES

In this section, the capabilities of the numerical method to solve realistic problems

with higher order modes (m 6= 0) and complex geometries is illustrated. The follow-

ing examples also represents situations where it is necessary to describe accurately

both vibro-acoustic interactions and wave propagation in sheared flows.

A cylindrical elastic duct which carries an axial flow is placed between two infinite

rigid ducts (see Figure 8). The computational domain comprises the 1 meter long

elastic duct and two portions of the rigid ducts (half a meter each). The duct

boundary conditions are the same as for the validation problem. At the inlet, an
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incoming acoustic mode is simulated by prescribing the corresponding displacement

field, the pressure is not imposed. The acoustic mode displacement profiles at the

inlet section are obtained with Pridmore-Brown’s model for a rigid duct [33]. At

the outlet, the non-reflecting condition based on the modal impedance is used.

In the following results, the incoming acoustic mode defined by m = 4, n = 1 at

570Hz is considered. Other parameters of the problem are given in Table 2. Figure

8 shows the finite element mesh. The shell is discretized with 60 elements and the

acoustic domain with 2300 elements.

To demonstrate the influence of the elastic duct on the acoustic mode propagation

with no flow, Figure 9 compares pressure amplitudes obtained with rigid and elastic

ducts. The acoustic mode, otherwise propagating, is reflected when interacting with

the elastic duct.

Figure 10 shows the solutions obtained with uniform and parabolic flows at a 0.2

averaged Mach number. Compared with the no flow case, the uniform mean flow

clearly modifies the pressure distribution in the duct by changing the acoustic axial

wave number and so weakening the coupling of acoustic and structural modes. The

results obtained with the parabolic flow are slightly different from the uniform flow

case.

The solutions obtained with uniform and parabolic flows with a −0.2 averaged

Mach number (the fluid flows downward) are given on Figure 11. Compared to

the downstream propagation case, the upstream propagation is less influenced by

the uniform mean flow. On the contrary, the upstream propagation is much more

influenced by the flow shear. It can be noted that results obtained for the upstream
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propagation in the parabolic flow are similar to the no flow case.

The last example is presented to demonstrate that the proposed model can handle

arbitrary geometry. The duct and acoustic mode are the same as above except that

the elastic duct radius is given by (see figure 12):

R (z) = 0.9 − 0.1cos [π (z − 0.5)] for 0.5 < z < 1.5 .

Figure 13 shows pressure modulus at 1015Hz with no flow and with an upward

incompressible irrotational flow (with a 0.2 Mach number at the inlet). Thought

this irrotational mean flow does not generate refraction effect (by boundary layer

for instance) it is found to have a noticeable impact on the acoustic propagation.

7. SUMMARY

To model vibro-acoustic interactions with shear mean flow, a method based on

Galbrun’s equation is proposed. To avoid spurious numerical modes, Galbrun’s

equation is rewritten as a mixed displacement-pressure problem and a finite element

discretization satisfying the inf-sup condition is chosen. The mixed formulation also

afford a simple way to take the fluid-structure coupling conditions into account.

Compared to similar models based on the full potential theory, the present approach

has the ability to describe refraction effects by the mean flow shear. It has been

shown that the small modifications of a ducted acoustic mode introduced by the

flow shear can significantly change the behavior of the coupled fluid-elastic duct

system.

Though the method has been applied to duct acoustics only, it is applicable to a

wide range of problems.
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APPENDIX A: ANALYTICAL MODEL FOR A FINITE DUCT

An analytical model can be derived for axisymmetric solutions m = 0 of the

validation problem in Section 5.1. The duct outer wall is a thin shell: h/R2 ≪ 1.

At both ends of the duct all rotations and displacement are prescribed to zero

except axial displacements and azimuthal rotations. Assuming that the duct axial

displacement is small compared to the radial displacement, it can be shown that

the duct radial displacement u is governed by the following equations:

D
∂4u

∂z4
+
Eh

R2
2

u+ ρsh
∂2u

∂t2
= fe + p withD =

Eh3

12 (1 − ν2)
,

u = 0 ,
∂2u

∂z2
= 0 , for z = 0, L .

The acoustic pressure in the duct is governed by the convected wave equation:

1

c20

∂2p

∂t2
+ 2

M

c0

∂2p

∂z∂t
+M2∂

2p

∂z2
− ∆p = 0 ,

p = 0 , for z = 0, L ,

where M is the Mach number of the axial, uniform mean flow in the duct. The

geometric coupling condition is expressed by:

∂p

∂r
= 0 for r = R1 ,

∂p

∂r
= −ρ0

d2
0u

dt2
for r = R2 .

For an harmonic force fe, acoustic pressure and radial structural displacement

can be written:

p(r, z, t) =
∞∑

a=0

∞∑

b=1

αabpab(r, z)e
−iωt , u(z, t) =

∞∑

c=1

βcuc(z)e
−iωt , (A.1)
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where a and b are the radial and axial mode number, respectively. The modes are

given by:

pab(r, z) = AaS0(krar) sin

(
bπz

L

)
exp

(−ikMz

1 −M2

)
a > 0, b > 0 ,

p0b(r, z) = A0 sin

(
bπz

L

)
exp

(−ikMz

1 −M2

)
b > 0 ,

uc(z) =

√
1

πR2L
sin

(
cπz

L

)
c > 0 ,

A0 =

√√√√ 2
√

1 −M2

πL
(
R2

2 −R2
1

) , Aa =

√√√√ 2
√

1 −M2

πL
[
R2

2S
2
0 (kraR2) −R2

1S
2
0 (kraR1)

] ,

with k = ω/c0 and

S0 (krar) = J0 (krar) −
J′0 (kraR1)

Y′
0 (kraR1)

Y0 (krar) .

J0 and Y0 are the zeroth order Bessel functions of the first and second kind, respec-

tively. The radial wave numbers kra are the solutions of the caracteristic equation:

J′0 (krR1) Y′

0 (krR2) = J′0 (krR2) Y′

0 (krR1) .

The generalized variables αab and βc are defined by a set of linear equations:

ΩA
abαab +

∑

c

CA
abcβc = 0 ∀a, b ,

ΩS
c βc +

∑

a,b

CS
abcαab = fc ∀c .

(A.2)

The coefficients of this linear system are given by:

ΩA
ab = k2

ra +
b2π2

L2

(
1 −M2

)
− k2

(1 −M2)
, ΩS

c = D

(
cπ

L

)4

+
Eh

R2
2

− ρsω
2 .

For a > 0, one has the following expressions:

CA
abc =

2πρ0R2AaS0(kraR2)√
1 −M2

√
πR2L

{

2iωc0M
cπ

L
Lbc +

[

ω2 + c20M
2
(
cπ

L

)2
]

Kbc

}

,

CS
abc =

2πR2√
πR2L

AaS0 (kraR2)Kbc ,
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where

Kbc =
2iπ2Bbc

L

ei(A+−B) − 1(
A2

+ −B2
) (
A2

− −B2
) ,

Lbc =
πB

L

(
1 − ei(A+−B)

) A+A− −B2

(
A2

+ −B2
) (
A2

− −B2
) ,

A± = (b± c)π , B =
kML

1 −M2
.

For the case a = 0, the expressions above are replaced by:

CA
0bc =

2πρ0R2A0√
1 −M2

√
πR2L

{

2iωc0M
cπ

L
Lbc +

[

ω2 + c20M
2
(
cπ

L

)2
]

Kbc

}

,

CS
0bc =

2πR2√
πR2L

A0Kbc .

With no mean flow, Kbc is given by:

Kbc =
L

2
δbc .

The right-hand side of equations (A.2) is given by:

fc = 2πR2

L∫

0

uc(z)fe(z)dz .

The infinite sums in equation (A.1) are truncated and the finite dimensional

linear system (A.2) is solved for the generalized variables αab and βc. Acoustic

pressures and structural displacements are then recovered by means of the modal

decompositions (A.1).

APPENDIX B: EXTENSION OF PRIDMORE-BROWN’S EQUATION

Pagneux and Aurégan have extended Pridmore-Brown’s equation [33] by deriving

a boundary condition which accounts for the duct wall elasticity [12]. When seeking

for normal modes defined by

(ur, uz, p) (r, z, t) = (ur, uz, p) (r) exp (ikzz − iωt) ,
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Pridmore-Brown’s equation in an axisymmetric duct with axial mean flow v0 =

v0(r)ez can be written:

∂2p

∂r2
+

(
1

r
+

2kz

ω − kzv0

∂v0
∂r

)
∂p

∂r
+

[(
ω − kzv0

ω

)2

− k2
z

]

p = 0 . (B.1)

It is worth noting that this equation can be obtained from Galbrun’s equation

(8). Equation (B.1) is generally supplemented by rigid- or lined-wall boundary

conditions. The boundary condition proposed in [12] is obtained directly from the

equations for an axisymmetric thin shell based on Kirchhoff theory:

(
ω2

c2s
− k2

z

)

uz + ikz
ν

R
ur = 0 , (B.2)

ikz
ν

R

Eh

1 − ν2
uz +

(
Eh

1 − ν2

1

R2
+ k4

zD − ρshω
2
)
ur = p , (B.3)

with c2s = E/ρs/(1 − ν2). Furthermore, the pressure gradient can be related to the

structure displacement by means of Euler equations and the normal displacement

continuity:

∂p

∂r
= ρ0 (ω − kzv0)

2 ur . (B.4)

Upon eliminating ur and uz in equations (B.2), (B.3) and (B.4), one can obtain

the following boundary condition for the pressure in the duct:

[

ρsh
ν2k2

zc
2
s

R2
+

(
ω2

c2s
− k2

z

)(
ρs

h

R2
c2s − ρshω

2 +Dk4
z

)]
∂p

∂r
= ρ0 (ω − kzv0)

2

(
ω2

c2s
− k2

z

)

p.

By solving Pridmore-Brown’s equation with this boundary condition at r = R, one

can determine the normal modes of an infinite elastic duct carrying an axial sheared

mean flow. In this paper, the normal modes are normalized by the integral over a

section of the squared pressure.
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TABLE 1

Parameters of the validation test

Parameter Symbol Value

Duct Inner radius R1 0.2m

Outer radius R2 1m

Length L 2m

Thickness h 1mm

Material aluminum

Density ρs 2700kg/m3

Young’s modulus E 7.1 × 1010N/m2

Poisson’s ratio ν 0.3

Fluid Density ρ0 1.2kg/m3

Sound speed c0 340m/s
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TABLE 2

Parameters of the example problem

Parameter Symbol Value

Elastic duct Radius R 1m

Length L 1m

Thickness h 2mm

Material aluminum

Density ρs 2700kg/m3

Young’s modulus E 7.1 × 1010N/m2

Poisson’s ratio ν 0.3

Fluid Density ρ0 1.2kg/m3

Sound speed c0 340m/s
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Figure 1. Sketch of the fluid-structure interaction problem.
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Figure 2. Sketch of the validation problem (left); Finite element mesh (right).
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Figure 3. Acoustic pressure amplitude (in Pa) for the first validation problem with no flow at

245Hz: Analytical model (left); Numerical model (right).
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Figure 4. Acoustic pressure amplitude (in Pa) for the first validation problem with a 0.3 Mach

number uniform flow at 318Hz: Analytical model (left); Numerical model (right).
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Figure 5. Radial structural displacement amplitudes (in m) for the first validation problems. With

no flow at 245Hz: analytical model (dot-dash line), numerical model (dotted line). With a 0.3

Mach number uniform flow at 318Hz: analytical model (dashed line), numerical model (solid line).
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Figure 6. Acoustic pressure amplitudes (in Pa) for the second validation problem. Results obtained

with the finite element model (top) and the analytical model (bottom): downstream propagation

with an uniform mean flow (left), downstream propagation with a sheared mean flow (center) and

upstream propagation with a sheared mean flow (right).
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Figure 7. Radial structural displacement amplitudes (in m) for the second validation problems.

Downstream propagation in a sheared mean flow: analytical model (dashed line), numerical model

(solid line). Upstream propagation in a sheared mean flow: analytical model (dot-dash line),

numerical model (dotted line).
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Figure 8. Sketch of the example (left); The finite element mesh (right).
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Figure 9. Acoustic pressure amplitude (in Pa) for an incoming acoustic mode (4, 1) at 570Hz with

no flow: Rigid duct (left); Elastic duct (right).
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Figure 10. Acoustic pressure amplitude (in Pa) for an incoming acoustic mode (4, 1) at 570Hz with

a 0.2 Mach number flow: Uniform flow (left); Parabolic flow (right).
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Figure 11. Acoustic pressure amplitude (in Pa) for an incoming acoustic mode (4, 1) at 570Hz with

a −0.2 Mach number flow: Uniform flow (left); Parabolic flow (right).
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Figure 12. Sketch of the varying elastic duct (left); The finite element mesh (right).
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Figure 13. Acoustic pressure amplitude (in Pa) for an incoming acoustic mode (4, 1) at 1015Hz in

a variable duct: With no flow (left); With a 0.2 Mach number flow (right).
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FIGURE CAPTIONS

Figure 1. Sketch of the fluid-structure interaction problem.

Figure 2. Sketch of the validation problem (left); Finite element mesh (right).

Figure 3. Acoustic pressure amplitude (in Pa) for the first validation problem with

no flow at 245Hz: Analytical model (left); Numerical model (right).

Figure 4. Acoustic pressure amplitude (in Pa) for the first validation problem with

a 0.3 Mach number uniform flow at 318Hz: Analytical model (left); Numerical

model (right).

Figure 5. Radial structural displacement amplitudes (in m) for the first validation

problems. With no flow at 245Hz: analytical model (dot-dash line), numerical

model (dotted line). With a 0.3 Mach number uniform flow at 318Hz: analytical

model (dashed line), numerical model (solid line).

Figure 6. Acoustic pressure amplitudes (in Pa) for the second validation problem.

Results obtained with the finite element model (top) and the analytical model

(bottom): downstream propagation with an uniform mean flow (left), downstream

propagation with a sheared mean flow (center) and upstream propagation with a

sheared mean flow (right).

Figure 7. Radial structural displacement amplitudes (in m) for the second

validation problems. Downstream propagation in a sheared mean flow: analytical

model (dashed line), numerical model (solid line). Upstream propagation in a
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sheared mean flow: analytical model (dot-dash line), numerical model (dotted

line).

Figure 8. Sketch of the example (left); The finite element mesh (right).

Figure 9. Acoustic pressure amplitude (in Pa) for an incoming acoustic mode

(4, 1) at 570Hz with no flow: Rigid duct (left); Elastic duct (right).

Figure 10. Acoustic pressure amplitude (in Pa) for an incoming acoustic mode

(4, 1) at 570Hz with a 0.2 Mach number flow: Uniform flow (left); Parabolic flow

(right).

Figure 11. Acoustic pressure amplitude (in Pa) for an incoming acoustic mode

(4, 1) at 570Hz with a −0.2 Mach number flow: Uniform flow (left); Parabolic flow

(right).

Figure 12. Sketch of the varying elastic duct (left); The finite element mesh

(right).

Figure 13. Acoustic pressure amplitude (in Pa) for an incoming acoustic mode

(4, 1) at 1015Hz in a variable duct: With no flow (left); With a 0.2 Mach number

flow (right).


