G. Arbia, J. F. Gerbeau, and T. Y. Hsia, Vignon-Clementel, I.E.: A new approach for the outflow boundary conditions in three-dimensional hemodynamics

A. Armillotta, P. Bonhoeffer, G. Dubini, S. Ferragina, F. Migliavacca et al., Use of rapid prototyping models in the planning of percutaneous pulmonary valved stent implantation, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol.86, issue.6, pp.407-416, 2007.
DOI : 10.1243/09544119JEIM83

Y. Bazilevs, M. C. Hsu, D. J. Benson, S. Sankaran, and A. L. Marsden, Computational fluid???structure interaction: methods and application to a total cavopulmonary connection, Computational Mechanics, vol.42, issue.5, pp.77-89, 2009.
DOI : 10.1007/s00466-009-0419-y

C. Bertoglio, P. Moireau, and J. F. Gerbeau, Sequential parameter estimation for fluid-structure problems: Application to hemodynamics, International Journal for Numerical Methods in Biomedical Engineering, vol.36, issue.1-2, pp.434-455, 2012.
DOI : 10.1002/cnm.1476

URL : https://hal.archives-ouvertes.fr/inria-00603399

E. L. Bove, M. R. De-leval, F. Migliavacca, G. Guadagni, and G. Dubini, Computational fluid dynamics in the evaluation of hemodynamic performance of cavopulmonary connections after the norwood procedure for hypoplastic left heart syndrome, The Journal of Thoracic and Cardiovascular Surgery, vol.126, issue.4, pp.1040-1047, 2003.
DOI : 10.1016/S0022-5223(03)00698-6

J. S. Brody, E. J. Stemmler, and A. B. Dubois, Longitudinal distribution of vascular resistance in the pulmonary arteries, capillaries, and veins, Journal of Clinical Investigation, vol.47, issue.4, pp.783-799, 1968.
DOI : 10.1172/JCI105773

C. Corsini, C. Baker, E. Kung, S. Schievano, G. Arbia et al., An integrated approach to patient-specific predictive modeling for single ventricle heart palliation, Computer Methods in Biomechanics and Biomedical Engineering, vol.84, issue.1, pp.37-41, 2013.
DOI : 10.1080/10255840903413565

URL : https://hal.archives-ouvertes.fr/hal-00918643

M. Ismail, W. A. Wall, and M. W. Gee, Adjoint-based inverse analysis of windkessel parameters for patient-specific vascular models, Journal of Computational Physics, vol.244, issue.0, pp.113-130, 2013.
DOI : 10.1016/j.jcp.2012.10.028

E. Kung, A. Baretta, C. Baker, G. Arbia, G. Biglino et al., Predictive modeling of the virtual Hemi-Fontan operation for second stage single ventricle palliation: Two patient-specific cases, Journal of Biomechanics, vol.46, issue.2, pp.423-429, 2013.
DOI : 10.1016/j.jbiomech.2012.10.023

URL : https://hal.archives-ouvertes.fr/hal-00765797

F. Migliavacca, G. Pennati, G. Dubini, R. Fumero, R. Pietrabissa et al., Modeling of the Norwood circulation: effects of shunt size, vascular resistances , and heart rate, Am. J. Physiol. -Hear. Circ. Physiol, vol.2802805, issue.5, pp.2076-2086, 2001.

M. E. Moghadam, Y. Bazilevs, T. Y. Hsia, I. E. Vignon-clementel, and A. L. Marsden, A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations, Computational Mechanics, vol.65, issue.41???43, pp.277-291, 2011.
DOI : 10.1007/s00466-011-0599-0

URL : https://hal.archives-ouvertes.fr/hal-00650986

J. Muller, O. Sahni, X. Li, K. E. Jansen, M. S. Shephard et al., Anisotropic adaptive finite element method for modelling blood flow, Computer Methods in Biomechanics and Biomedical Engineering, vol.127, issue.5, pp.295-305, 2005.
DOI : 10.1016/S0021-9290(02)00185-9

O. Leary, C. E. Fiori, R. Hakim, and T. S. , Perioperative distribution of pulmonary vascular resistance in patients undergoing coronary artery surgery, Anesth. Analg, vol.82, pp.958-963, 1996.

J. N. Oshinski, D. N. Ku, and R. I. Pettigrew, Turbulent Fluctuation Velocity: The Most Significant Determinant of Signal Loss in Stenotic Vessels, Magnetic Resonance in Medicine, vol.7, issue.2, pp.193-199, 1995.
DOI : 10.1002/mrm.1910330208

S. Pant, B. Fabreges, J. F. Gerbeau, and I. E. Vignon-clementel, A Multiscale Filtering-Based Parameter Estimation Method for Patient-Specific Coarctation Simulations in Rest and Exercise, Proc. 16th Int. Conf. Med, 2013.
DOI : 10.1007/978-3-642-54268-8_12

URL : https://hal.archives-ouvertes.fr/hal-00911339

G. Pennati, C. Corsini, D. Cosentino, T. Y. Hsia, V. S. Luisi et al., Boundary conditions of patient-specific fluid dynamics modelling of cavopulmonary connections: possible adaptation of pulmonary resistances results in a critical issue for a virtual surgical planning, Interface Focus, vol.38, issue.7, pp.297-307, 2011.
DOI : 10.1007/s10439-010-9992-7

R. G. Presson, S. H. Audi, C. C. Hanger, G. M. Zenk, R. A. Sidner et al., Anatomic distribution of pulmonary vascular compliance, J. Appl. Physiol, vol.84, pp.303-310, 1998.

Y. Qian, J. L. Liu, K. Itatani, K. Miyaji, and M. Umezu, Computational Hemodynamic Analysis in Congenital Heart Disease: Simulation of the Norwood Procedure, Annals of Biomedical Engineering, vol.31, issue.11, pp.2302-2313, 2010.
DOI : 10.1007/s10439-010-9978-5

O. Sahni, J. Muller, K. Jansen, M. Shephard, and C. Taylor, Efficient anisotropic adaptive discretization of the cardiovascular system, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.41-43, pp.5634-5655, 2006.
DOI : 10.1016/j.cma.2005.10.018

S. Schievano, F. Migliavacca, L. Coats, S. Khambadkone, M. Carminati et al., Percutaneous Pulmonary Valve Implantation Based on Rapid Prototyping of Right Ventricular Outflow Tract and Pulmonary Trunk from MR Data, Radiology, vol.242, issue.2, pp.490-497, 2007.
DOI : 10.1148/radiol.2422051994

R. L. Spilker, J. A. Feinstein, D. W. Parker, M. V. Reddy, and C. A. Taylor, Morphometry-Based Impedance Boundary Conditions for Patient-Specific Modeling of Blood Flow in Pulmonary Arteries, Annals of Biomedical Engineering, vol.55, issue.4, pp.546-559, 2007.
DOI : 10.1007/s10439-006-9240-3

R. L. Spilker and C. Taylor, Tuning multidomain hemodynamic simulations to match physiological mea- surements
DOI : 10.1007/s10439-010-0011-9

G. Troianowski, C. A. Taylor, J. A. Feinstein, and I. E. Vignon-clementel, Others: Three-dimensional simulations in Glenn patients: clinically based boundary conditions, hemodynamic results and sensitivity to input data, Trans. ASME-K-Journal Biomech. Eng, vol.111, issue.11, pp.133006-133024, 2011.

I. E. Vignon-clementel, A. Figueroa, C. Jansen, K. E. Taylor, and C. , Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.29-32, pp.29-32, 2006.
DOI : 10.1016/j.cma.2005.04.014

I. E. Vignon-clementel, C. Figueroa, K. E. Jansen, and C. Taylor, Outflow boundary conditions for 3D simulations of non-periodic blood flow and pressure fields in deformable arteries, Computer Methods in Biomechanics and Biomedical Engineering, vol.284, issue.5
DOI : 10.1016/0021-9290(69)90024-4

URL : https://hal.archives-ouvertes.fr/inria-00542731

I. E. Vignon-clementel, A. L. Marsden, and J. A. Feinstein, A primer on computational simulation in congenital heart disease for the clinician, Progress in Pediatric Cardiology, vol.30, issue.1-2, pp.3-13, 2010.
DOI : 10.1016/j.ppedcard.2010.09.002

URL : https://hal.archives-ouvertes.fr/inria-00542957

D. A. De-zélicourt, A. Marsden, M. A. Fogel, and A. P. Yoganathan, Imaging and patient-specific simulations for the Fontan surgery: Current methodologies and clinical applications, Progress in Pediatric Cardiology, vol.30, issue.1-2, pp.31-44, 2010.
DOI : 10.1016/j.ppedcard.2010.09.005