Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin
Alexandra M.M. Robert, Jean Letouzey, Mohammad A. Kavoosi, Sharham Sherkati, Carla Müller, Jaume Vergés, Abdollah Aghababaei

To cite this version:
Alexandra M.M. Robert, Jean Letouzey, Mohammad A. Kavoosi, Sharham Sherkati, Carla Müller, et al.. Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin. Marine and Petroleum Geology, Elsevier, 2014, 57, pp.68-87. 10.1016/j.marpetgeo.2014.05.002. hal-01063954

HAL Id: hal-01063954
https://hal.archives-ouvertes.fr/hal-01063954
Submitted on 15 Sep 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Structural evolution of the Kopet Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin

Alexandra M. M. Robert, Jean Letouzey, Mohammad A. Kavoosi, Sharham Sherkati, Carla Müller, Jaume Vergés, Abdollah Aghababaei

Abstract

We present a detailed stratigraphic and structural study of the Kopet Dagh fold-and-thrust belt in NE Iran, which is an investigation of the complex polyphased tectonic history of this belt and its links with the adjacent South Caspian Sea and Amu Darya basins. Based on numerous field surveys, a large amount of 2D and 3D seismic data, borehole data and more than 150 new biostratigraphic datings, a new detailed biostratigraphic chart and 4 main regional cross-sections illustrate the importance of lateral facies variations and structural inheritance in the present-day structure of the belt.

After the Cimmerian orogeny corresponding to the closure of the Paleotethys Ocean in Late Triassic/Early Jurassic times, a Middle Jurassic post-collisional rifting event was associated with the deposition of one of the main source rocks of the Kopet Dagh and the Amu Darya Basin (Kashafrud Formation). Following this rifting event, over 7 km of sediments were accumulated until the Tertiary above a regional post-Triassic unconformity. The occurrence of local uplifts during the Late Cretaceous-Early Paleocene is interpreted as a consequence of regional-scale modification of plate-slab coupling in the Neotethys subduction zone. The main inversion of the Kopet Dagh occurred at Late Eocene times, when the far-field deformation developed in Eurasia as a consequence of the locking of the Neo-Tethys subduction. This folding phase is sealed in the western part of the belt by a major Eocene-Oligocene unconformity at the base of the thick sedimentary series belonging to the South Caspian Sea Basin. The bulk of sedimentary infill in the South Caspian Sea Basin is Oligocene and younger, and it is probably related to syn-compressional downward flexure of the resistant basement basin at the onset of the Alpine phase. In the eastern part of the Kopet Dagh, this deformation is characterized by Middle Jurassic graben inversion with evidences of forced-folding, short-cuts and as well by larger scale basement uplifts. In contrast, the northwestern part of the belt shows thrust faults involving basement and fault-propagation folds within the sedimentary sequence. The Kopet Dagh presents tectonic structures that are parallel to the Paleotethys suture zone, which emphasizes the importance of the structural inheritance and inversion processes during the structural evolution of the belt. Finally, a change from a mostly dip-slip to a mostly strike-slip tectonics occurred during the Pliocene within the Kopet Dagh as a consequence of a major tectonic reorganization in North-East Iran.

Keywords: Kopet Dagh, Amu Darya Basin, South Caspian Sea Basin, Inverted Rift System, Structural Geology, Seismic Sections
1. Introduction

Iran extended deformed zone is surrounded by the epi-
variscan Turan Platform to the NE, which is part of stable Eura-
sia and by the Arabian Plate to the SW (Figure 1a). The Iranian
geology is dominated by the long-standing convergence history
between Eurasia and Gondwanan-derived terranes as indicated
by numerous ophiolitic belts, fold-and-thrusts belts and resis-
tant blocks that remain within the deformation zone. Two ma-
jor compressional events, as a consequence of oceanic closures
are described in Iran: (1) the Cimmerian orogeny, which is re-
lated to the closure of the Paleotethys Ocean and (2) the Alpine
orogeny as a result of the closure of the Neotethys Ocean. In
northeastern Iran, the Paleotethys Ocean separated the Eurasian
Plate from Central Iranian blocks whereas the Neotethys Ocean
opened on the southern margin of the Central Iranian blocks
during the Permian (Muttoni et al., 2009) (Figure 1a). Be-
sides, several ophiolitic domains (Nain Baft, Sabzevar, Sistan)
cross-cut Central Iran and are interpreted as remnants of small
oceanic domains that opened as small back-arc basins during
the Early Cretaceous for the Sistan Ocean, and during the Late
Cretaceous for the Sabzevar and Nain Baft domains (Agard
et al., 2011). The start of the subduction of these small oceanic
domains is considered to be Turonian-Maastrichtian (Saccani
et al., 2010) and active subduction of the Sistan Ocean up to
the end of the Late Cretaceous has been recently evidenced
(Brócker et al., 2013). These small domains were closed during
Paleocene to Eocene times (Agard et al., 2011).

In northeastern Iran, the Paleotethys suture zone corresponds
to the boundary between the Kopet Dagh fold-and-thrust belt
of the NE, and the eastern prolongation of the Alborz range to
the SW (Figure 1a). Remnants of the Paleotethys Ocean are
located within the Binalud Mountains where the Cimmerian
event is characterized by a collisional type event during the Late
Triassic/Early Jurassic (Sheikhholeslami and Kouhpeyym, 2012).
Following this collision, the Kopet Dagh Basin was deposited
on the southern margin of the Eurasian Plate from the Jurassic
to the Tertiary (Brunet et al., 2003). This basin was inverted
during the Tertiary, because of the NE oriented convergence
two Central Iranian blocks and the Eurasian plate. Sev-
eral authors studied the metamorphism and the deformation as-
sociated with the closure of the Paleotethys, but there are still
critical few data on the structural and sedimentary evolution within the
Kopet Dagh after the Cimmerian orogeny. Understanding the
evolution of the Kopet Dagh is important, because of its direct
link with the Amu Darya Basin to the NE and with the South
Caspian Sea Basin where lithological and structural informa-
tion on Mesozoic rocks are rare, because of the important thick-
ness of Tertiary sediments. The Amu Darya Basin is a large
basin that subsided during the Mesozoic after the closure of the
Paleotethys Ocean and which is located in Turkmenistan and
Uzbekistan extending southwestward into Iran and southeast-
ward into Afghanistan (Ulmishe, 2004). This basin is a highly
productive oil and gas province which contains numerous giant
gas fields such as Dauletabad, Yoloten, Shaltyk, Bayram-Ali of
Achak (see location on Figure 1b) (Ulmishe, 2004). Two im-
portant gas fields are located to the East of the Kopet Dagh: the
Khangiran and the Gonbadli, which produce from the Upper
Jurassic carbonates (Mozduran Formation) and the Lower Cret-
taceous siliciclastics (Shurijeh Formation) (Afshar-Harb, 1979;
Aghanabati, 2004; Kavoosi et al., 2009a). These two gas fields
are located in anticlinal traps (Moussavi-Harami and Brenner,
1992) that include the 35 km-wide Khangiran anticline. The
volume of recoverable gas reserves at Khangiran was estimated
at 16.9 trillion cubic feet by Iran Oil Ministry (2000) and the gas
is piped from refineries to cities in northeastern Iran. The main
source rocks are considered to be the Middle Jurassic shales and
carbonates of the Chaman Bid Formation and the Upper Bajo-
cian to Bathonian shales of the Kashafrud Formation.

In this article, we will focus on the structural evolution of Kopet
Dagh fold-and-thrust belt, with new stratigraphic and structural
data, in order to set up the sedimentary and structural evolu-
tion of the belt since the closure of the Paleotethys Ocean in Late Triassic/Early Jurassic times. We will discuss the links be-
tween deformation in the Kopet Dagh and sedimentation in the
adjacent Amu Darya and South Caspian Sea basins.

2. Geological settings

2.1. Location and Morphology

This range marks the northern limit of the Alpine-Himalayan
orogeny in northeastern Iran and it also corresponds to the
morphological boundary between Turkmenistan and Iran which
separates Eurasia from Central Iran over more than 600km (Fig-
ure 1a). The Kopet Dagh belt is an intra continental range and its
topography dies out southwards towards Afghanistan, indicating the lack or small amount of recent active tectonics in this part of the belt. The Kopet Dagh range presents moder-
ate elevations reaching 3120 m high in the southeastern part
of the belt to the North of Mashad city (Kuhha-ye Hezar Mas-
jad summit). The Main Kopet Dagh Fault marks the northeast-
ern boundary of the belt and corresponds to a major inherited
crustal-scale structure (Amurskiy, 1971; Maggi et al., 2000).
The presence of the Main Kopet Dagh Fault as a major in-
herited structure is responsible of the localization of the defor-
mation in the narrow Kopet Dagh fold-and-thrust belt (Lyberis
and Manby, 1999). This 350 km-long fault delimits the south-
western boundary of the Kopet Dagh foredeep, part of the Amu
Darya Basin deposited on the southern margin of the Eurasian
Plate (Vernant et al., 2004) (Figure 1b). To the northwest, the
Kopet Dagh belt is expressed as the Apsheron-Balkhan belt, de-
limiting the northern boundary of the South Caspian Sea Basin
(Brunet et al., 2003) The southern boundary of the Kopet Dagh
range is delimited by the Paleotethys suture zone marked by the
Binalud Mountains (Wilmans et al., 2009; Sheikhholeslami
and Kouhpeyym, 2012) (Figure 1a). To the SW of this suture
zone, rocks are considered a prolongation of the Alborz fold-
and-thrust belt (Alavi, 1992; Wilmans et al., 2009).

2.2. Geodynamic context

The Cimmerian belt marks the collision of the Iran Plate
with the southern Eurasian margin (Sengor, 1990; Zanchi et al.,
2006). The upper age limit of this collision is Late Triassic,
as the Upper Triassic-Middle Jurassic Shemshak Group seals unconformably Cimmerian structures affecting the Paleozoic Middle Triassic sequences of northern Alborz (Muttoni et al., 2006; Zanchetta et al., 2013). The Kopet Dagh Basin was deposed after the Cimmerian orogeny (Garzanti and Gaetani, 2002) and more than 7 km of post-Triassic sediments were accumulated in this basin (Moussavi-Harami and Bremer, 1992). The onset of uplift within the Kopet Dagh is considered to have begun after 30 Ma (Berberian and King, 1981; Golonka, 2004; Hollingsworth et al., 2010). Lyberis and Manby (1999) proposed that the inversion of the margin occurred during the Late Miocene as a response to the North-South convergence between Iran and Eurasian plates. However, post-Eocene sedimentary and biostratigraphic studies are not well dated and more precise studies concerning the timing of inversion of the margin are needed. According to geodetic and geological data, between 4 and 11 mm/yr of the present day northward Arabia-Eurasia convergence is accommodated in northeastern Iran (Vernant et al., 2004; Reilinger et al., 2006; Shabanian et al., 2009a, e.g.). The northwestern strike of the convergence involves thrust faulting and minor left lateral strike-slip in the northwestern part of the belt and mainly right-lateral strike-slip faulting in the eastern part of the range (Figure 2). This observation is confirmed by the earthquakes focal mechanisms that show thrusting to the West and strike-slip faulting with some thrusting to the east (Figure 2). Furthermore, in the eastern part, recent strike-slip faulting across the belt dissected the folds that can be observed east of the East of Bojnurd city. According to geomorphologic data and datings, Shabanian et al. (2009b, 2012) inferred that the important lateral motion recorded within the Kopet Dagh belt should not have started before the Early Pliocene (~4 Ma) which corresponds to the commonly proposed widespread reorganization of the tectonic deformation in the Arabia-Eurasia collision zone (Axen et al., 1991; Allen et al., 2004; Copley and Jackson, 2006, e.g.). In contrast, Hollingsworth et al. (2008) propose that main strike-slip motion within the Kopet Dagh could have been initiated ~19 Ma, and that the initiation of this lateral motion could be related to the westward extrusion of the South Caspian Sea Basin relative to Central Iran and Eurasia. Nevertheless, especially in the eastern part of the belt, fold axes and strikes of the major tectonic features likely suggest that SW-NE oriented shortening, that probably reflects the tectonic settings before the reorganization of the tectonics deformation across the belt that we considered to have occurred at ~4 Ma as suggested by Shabanian et al. (2009b, 2012).

3. Stratigraphic description

We present our sedimentary and biostratigraphic study that results from widespread and numerous field surveys performed by the NIOC team including 3 common field missions. Before this contribution, the stratigraphy in the Kopet Dagh was essentially based on facies recognition and that resulted in differentiation of numerous formations, mainly according to lithological criteria. In this study, a widespread biostratigraphic study of the pelagic facies that have been correlated with precise lithological descriptions including more than 150 datings is presented, which allows us to propose a new stratigraphic chart for the Kopet Dagh and the surroundings basins (Figure 3). Our biostratigraphy is based on investigation of calcareous nannofossils. Age determination of the Mesozoic was performed from publications of Thierstein (1976) and Perch-Nielsen (1985) and we used the zonation given by Martini (1971) for the Cenozoic. Our results have been synthesized in the stratigraphic chart (Figure 3) and are also presented in Table 1 that indicates location of the main dated samples and names of the nannofossils.

In this section, we will describe the detailed stratigraphy of the Kopet Dagh region, from the oldest outcropping rocks to the Tertiary continental sediments.

3.1. Devonian to Upper Triassic: before the deposition of the Kopet Dagh Basin

The oldest rocks outcropping in the Kopet Dagh fold-and-thrust belt are Devonian to Lower Carboniferous (Ruttnier, 1991; Lyberis et al., 1998) and they are mostly outcropping within the Aghdarband erosional window and within the Fariman and Darreh Anjir complexes, in the eastern part of the belt (Ruttnier, 1991). Most of the sediments in the Aghdarband erosional window are Triassic in age and are strongly deformed as a consequence of the closure of the Paleotethys Ocean during the Cimmerian orogeny. Several unconformities between the different series are observed. The Darreh Anjir and the Fariman complexes have firstly been interpreted as ophiolitic remnants of the Paleotethys ocean but they were recently re-interpreted as remnants of a magmatic arc and related basins developed at the southern Eurasia margin, on top of the north-directed Paleotethys subduction zone long before the collision of Iran with Eurasia (Zanchetta et al., 2013).

The Upper Devonian series are constituted at their base by dark grey thinly bedded volcanoclastics, shales and turbiditic sandstones. These series are overlain by dark green volcanoclastic sediments, with some limestone layers. The Lower Carboniferous is characterized by white limestones of about 200 m thickness with the occurrence of some diabase dykes. A massive Permian sedimentary succession, including sandstones, limestones and basaltic to andesitic lava flows has been described in the Fariman Complex (see location on the figure 6) (Zanchetta et al., 2013). The ?Upper Permian to Lower Triassic molassic type rocks are composed of some red quartzitic sandstones and siltstones, with intercalated conglomerates that include pebbles of quartz, pink colored granites, radiolarites and Carboniferous to Late Permian limestones. These series present a thickness up to 500 m.

Four members are distinguished in the Triassic series of the Aghdarband erosional windows by Ruttnier (1991): the three lowermost units that comprise an important volcanic component were deposited before the Middle Cimmerian orogeny, whereas the fourth unit indicates deltaic conditions of deposition and results from the erosion of the relief formed during the Cimmerian orogeny. In this study, we are not differentiating the
different stages of the Cimmerian orogeny.

The first member (Lower Triassic) is characterized by a re-deposition of sandstones and conglomerates at its base (Qara Ghethian Formation) that are overlain by limestones layers (Sefid Kuh Formation and Nazarkardeh Formation). The second member (Middle Triassic, base of the Sina Formation) is constituted at its base by a conglomerate overlain by volcanoclastic sandstone and tuffaceous shales in the upper part. It was dated thanks to two fossil horizons with abundant crinoids and ammonites and assigned to Landinian to Lower Carnian in age. The third member (Middle Triassic) is made of tuffaceous sandstones and some shales (top of the Sina Formation). Finally, the last member (Upper Triassic) presents an unconformity at its base and starts with some sandstones without volcanic components and rich in coal layers on top of which there is some shale (Rut Formation). These deposits, named the Miankuhi Formation, are dated by plant fragments as Upper Carnian and Lower Norian (Ghasemi-Nejad et al., 2008). The dark shales and fine-grained sandstones of the coal bearing Miankuhi Formation may represent an equivalent to the lower part of the Shemshak Group (Taheri et al., 2009; Wilmsen et al., 2009). The lack of an equivalent to the widespread across the Iran Plate. Upper Triassic/Middle Jurassic Shemshak Group has been interpreted as a consequence of a period of emergence of the Turan area (Lyberis et al., 1998). The Miankuhi Formation is intruded by coarse-crystalline leucogranites (Torbat-e-Jam Granite) that have been dated at 217 +/- 1.7 Ma by (Zanchetta et al., 2013).

4.3. Middle Jurassic: Sedimentation during the rifting following the Cimmerian orogeny (Kashafrud Formation)

Following the closure of the Paleoethys, the so-called Kopet Dagh Basin was deposited from the Middle Jurassic to the Tertiary and it corresponds to the southern border of the Amu Darya Basin. The sedimentation began with deposition of the Middle Jurassic Kashafrud Formation, which rests unconformably on folded Triassic or older rocks (Taheri et al., 2009). The Kashafrud Formation comprises 300 m to more than 2500 m of deep-marine siliciclastic strata (Poursooltani et al., 2007; Taheri et al., 2009). Furthermore, it could be either very thick, or absent above crest blocks or paleohighs. The Middle Jurassic Kashafrud Formation is generally conglomeratic at its base and consists of thick siltstones, sandstones and shales units. Where the whole formation is observed, the base presents more sandy facies and the top of the formation is characterized by shallow conditions of deposition as indicated by channelized sandstones, typical of deltaic facies. Our biostratigraphic data indicate an Aalenian to Bajocian age for this formation (Figure 3 and Table 1). This sequence was deposited in a rift system as indicated by the rapid facies and thickness variations (Kavoosi et al., 2009a).

4.3. Upper Jurassic (Chaman Bid and Mozduran formations)

In the western part of the basin, the Kashafrud Formation is overlain by the Upper Bajocian to Tithonian Chaman Bid Formation (Kalantari, 1969), which mostly consists of alternations of grey shales and marly limestones. Main deposition environments of the Chaman Bid Formation are on the slope of a carbonate platform and in the adjacent basin (Majadifard, 2003). In contrast, towards the East, the Kashafrud Formation is directly overlain by the Upper Jurassic Mozduran Formation (Taheri et al., 2009), which is the main gas reservoir in the Kopet Dagh range (Figure 4). The Mozduran Formation is a well-bedded limestone and its facies varies towards the East to siliciclastic sediments. The thickness of the Mozduran Formation varies from 200 m, to 800 m in the Khangiran gas field and up to over 1400 m in the central part of the belt (Afshar-Harb, 1979). The sharp and sudden lateral lithological and thickness variations of the Mozduran Formation are interpreted as related to the presence of paleohighs within the basin after the Middle Jurassic rifting in the Kopet Dagh Basin (Kavoosi et al., 2009b). The Mozduran Formation is overlain by Cretaceous sediments, which are divided into 10 different formations (Shurijeh, Zard, Sarchashmeh, Sanganeh, Aitamir, Abderaz, Abtalkh, Neyzar and Kalat) and associated with a thickness up to 4000 m thick in the western part of the basin (Afshar-Harb, 1979). Emami et al. (2004) suggested that the Cimmerian tectonic phase resulted in widespread Late Jurassic-Early Cretaceous regression, leading to deposition of the Lower Cretaceous continental siliciclastics and evaporites of the Shurijeh Formation.

4.3. Lower Cretaceous, Neocomian (Shurijeh and Zard formations)

The Lower Cretaceous Shurijeh Formation consists of red-bedded siliciclastic sediments (reservoir rocks) overlain by limestones. The upper part of the Lower Cretaceous Shurijeh Formation consists of gypsum/anhydrite deposits that were deposited under arid conditions as a consequence of the major regression of the sea that occurred in the Jurassic/Cretaceous transition (Moussavi-Harami and Brenner, 1990; Moussavi-Harami et al., 2009). These evaporite levels make the seal for the basal Shurijeh Formation (secondary reservoir for gas in the Kopet Dagh range) and the Mozduran formations. The thickness of the Shurijeh Formation ranges from 100 m above the paleohigh to about 1000 m thick (Afshar-Harb, 1979). Towards the NW, the Shurijeh Formation thickness decreases until being completely replaced by the Zard Formation, which mainly consists of marine marls, calcareous shale with some sandstone beds (Afshar-Harb, 1979). Our biostratigraphic results with the results from Jamali et al. (2011) indicate a Late Tithonian to Hauterivian age for this formation.

4.3.5. Lower Cretaceous, Aptian-Albian (Tirgan, Sarchashmeh and Sanganeh formations)

The deposition of the continental Shurijeh Formation is followed by shallow marine sedimentation characterized by the deposition of the marls and orbitolinids rich limestone Tirgan Formation with a thickness up to 600 m. The age of these formations is Barremian and the nanofossils are often strongly re-crystallized and fragmented. The Sarchashmeh Formation (about 150-250m thick) conformably overlies the calcareous Tirgan Formation and consists of two members: the lowest uniform grey marl unit and the upper layer that consists of an alternance of shale and limestone. These thick marls become richer
in fine grained sandstone layers in the upper part which corresponds to the Sanganeh Formation. From our biostratigraphic study, a Late Barremian to Aptian age is proposed for the Sar-chashme Formation and the Sanganeh Formation appears to be Albian in age.

3.6. Upper Cretaceous (Aitamir, Abderaz, Abtalkh and Kalat formations)

The Aitamir Formation is a mudstone that grades upwards to a lower glauconitic sandstone unit with cross-stratifications and ripple marks, to a unit of mudstone intercalated with sandstone beds (Sharafi et al., 2012). This formation corresponds to shallow open-marine environment and its upper surface is delimited by a hiatus and local erosion that is the first main hiatus in the Cretaceous sedimentation recorded in the Kopet Dagh region. This formation is barren of nannofossils which do not allow us to propose an age from biostratigraphy, but it is considered as Late Albian to Early Cenomanian (Sharafi et al., 2012). Overlying this erosional surface, the Abderaz Formation is mostly made up of calcareous and marly shales (Allameh et al., 2010). Its thickness ranges from 0 to 200 and 400 m to the East of the Kopet Dagh and decreases towards the western part of the belt (Afshar-Harb, 1979). From our biostratigraphic study, a Late Santonian age was determined for the Abderaz Formation but the nannofossils are often strongly recrystallized and broken within the marls intercalations.

The Abtalkh Formation (Campanian) is well developed in the eastern Kopet Dagh and has an almost uniform lithology consisting of calcareous shales with some lumachelle rich limestone reefs. It presents a constant thickness of 700-800 m (Afshar-Harb, 1979). In the western part of the belt, the Abtalkh is characterized by an increase of fine grained sandstones. The Abderaz Formation is not developed and the Abderaz Formation is directly overlain by the Kalat Formation. In contrast, to the East of the belt, the upper part of the Abtalkh Formation is characterized by a progressive transition to the Neyzar Formation which is mostly composed of glauconite and clays with some sandstone in the upper levels indicating a shallow marine condition of sedimentation. The transition between the Neyzar Formation to the Kalat transition is progressive (Shahidi, 2008). The Kalat Formation is a widespread unit in the whole Kopet Dagh region and consists of a bioclast limestone and carbonate build-ups with subordinate sandstone beds observed only in the eastern part of the region (Afshar-Harb, 1979). This formation has been dated as Upper Campanian to Maastrichtian (Shahidi, 2008) and our biostratigraphic results indicate a Campanian age. The Kalat Formation consists of marls partly rich in gas, tropods and recifal limestones with rudists or algae, must have been deposited in a shallow shelf environment with a connection with the open sea (Afshar-Harb, 1979). The upper part of the Kalat Formation is marked by an erosional surface that is associated with the second general hiatus of sedimentation in the region.

3.7. Paleogene (Pestehleigh, Chehel Kaman and Khangiran formations)

The transition between the Upper Campanian and the Paleocene is characterized by an increase of fine grained sandstones. The Paleocene Pestehleigh Formation is predominantly represented by red continental series with sand and siltstones with some conglomeratic levels at its base. It is followed by fluviodeltaic and continental red sandstones and siltstones. Some marine incursions have been observed and dated within zone NP2 in the lowermost part and within zone NP5 upwards in the section. The uppermost Paleocene (zone NP9) was determined in the Chehel Kaman Formation that consists of white carbonates. The transition to the Lower Eocene is characterized by the occurrence of some layers of marls. The Eocene (zones NP12-NP19) is represented by alternating limestones and marls and it becomes sandier within the upper part.

3.8. Oligocene-Neogene

On geological maps, the youngest sediments represented are indicated as Neogene in age. However, there is no published study about precise dating of these continental series or whether the deformation affecting these series. In this article, we decided to name this formation as Oligocene-Neogene sediments. Most outcrops of the Oligocene-Neogene conglomerates and sandstones are represented as strongly discordant. Deposition of these sediments is associated with the late reactivation of the fold belt.

3.9. Conclusions from the stratigraphic study

Our stratigraphic descriptions, synthesis and new biostratigraphic data can be summarized as follows:

1. There is a stratigraphic gap between the Lower Carboniferous and the thick Permo-Triassic molassic type series that are in tectonic contact. This contact might be related to the Late Paleozoic active margin activity at the southern Eurasia margin (Zanchetta et al., 2013).

2. Some authors argue about several tectonic phases in the Cimmerian orogeny (Eo-cimmerian and Middle Cimmerian orogenies), but because this article is focused on the post-Cimmerian history, we will not distinguish these different phases and, instead, use the term of Cimmerian orogeny.

3. The major unconformity observed within the range corresponds to the base of the Kashafrud Formation (Middle Jurassic) which corresponds to the first deposited sediments after the Cimmerian orogeny. Then, this unconformity corresponds to a post-orogenic unconformity but also to a rift-onset unconformity.

4. A rifting episode occurred in the Kopet Dagh region during the Middle Jurassic. At this time, the southern part of the Amu Darya Basin was probably linked with the South Caspian Sea Basin (Brunet et al., 2003). The abrupt facies and thickness changes of the Kopet Dagh Basin fill are inferred to mark activation of several major extensional faults during deposition of the Middle Jurassic Kashafrud Formation (Lyberis and Manby, 1999; Thomas et al., 1999).
5. During the Cretaceous and the Paleogene, several hiatuses were interpreted as periods of uplift and erosion and the role of tectonics during these periods could be questioned. These emergent periods are indicated as local uplifts in our stratigraphic chart (Figure 3). These hiatus have previously been interpreted as periods of distal responses to collisional events (Berberian, 1983; Lyberis and Manby, 1999). There is no evidence of post-Middle Jurassic rifting as previously suggested by Lyberis and Manby (1999).

6. Finally, the late reactivation of the belt is not well dated, but occurred after the deposition of the marls of the Eocene Khangiran Formation. The occurrence of continental sediments is related to the structural inversion that occurred after the Eocene as a consequence of the relative motion between the Iran Plate and the Eurasian Plate. This inversion resulted in widespread folding and thrusting of Jurassic to Tertiary sediments (Lyberis and Manby, 1999; Allen et al., 2003). This collision led to crustal shortening and right-lateral transpression which is still continuing as indicated by seismic activity (Thomas et al., 1999; Golonka, 2004) and active faulting (Hollingsworth et al., 2006, 2008, 2010; Shabanian et al., 2009a,b, 2012). Nevertheless, the margin inversion is not well dated, because of the lack of information of the precise timing of deposition of the post-Eocene sediments that are not widely outcropping in the range.

Our new stratigraphic results have been integrated in a detailed structural study of the belt focused on four main regional cross-sections. The next section presents the detailed and widespread structural study that we carried out across the Kopet Dagh range.

4. Geological cross-sections and structure of the Kopet Dagh range

This part describes the main structures of the Kopet Dagh based on the simplified geological map (Figure 5) and on regional cross-sections across the belt (Figures 6, 11, 13 and 15). These cross-sections result from numerous field surveys and our structural interpretation locally supported by 2D and 3D seismic lines (see location of the presented field surveys and the structural style of the front of the range has been defined using borehole data plus 2D and 3D seismic sections. Toward the South Caspian Sea Basin, folded structures are buried by the thick Oligocene to Quaternary sediments and numerous seismic lines are available in this transitional zone, above the Gorgan Plain. Two of our cross-sections (Figures 6 and 11) illustrate the links between the Kopet Dagh and the Amu Darya Basin, whereas the other two (Figures 13 and 15) are focused on the links between the Kopet Dagh and the South Caspian Sea Basin.
To the North, the low metamorphosed molassic succession overthrusted Triassic units that are forming a large south-verging syncline marked in its central part by a narrow anticline. The northern flank of the large syncline is bounded by another double-verging syncline presenting secondary order folds in its core. Its northern boundary is marked by several narrow strips of steeply inclined Triassic rocks that are interpreted as due to a flower structurerelated to a vertical Cimmerian fault striking WNW-ESE with dextral strike-slip component (Zanchetti et al., 2010). The fold axes observed in Devonian and Carboniferous sediments are coaxial with the ones observed within the Triassic, which does not allow easily distinguishing the deformation associated with the Cimmerian orogeny from the one due to older orogeny. To the North of the Aghdarband erosional window, the Middle Jurassic Kashafrud Formation overlap unconformably the Devonian strata.

4.1.3. To the To the North of the Aghdarband window

Seismic data suggest a triangle (or fish-tail) structure (Figure 8). The older than Campanian series are force-folded and thrust to the NE, whereas the younger series form a wide monocline towards the NE, which is a consequence of a triangle zone associated with disharmony and back-shearing within Late Cretaceous marls.

Towards the NE, the Mesozoic and Cenozoic series of the South Amu Darya Basin are imaged on the 2D and 3D seismic lines available in the Gonbadli and Khamgiran gas fields area (Figures 9 and 10). Late Jurassic to Late Eocene series slightly thick away from the Aghdarband erosional window, which suggests that the region formed a persistent paleorelief during the deposition of the South Amu Darya Basin.

The seismic sections (Figure 9) supported with field evidences indicate that the Middle Jurassic Kashafrud Formation was deposited in a rift system. There are important lateral variations in thickness of the Kashafrud Formation from no deposition on the crests of the blocks to several kilometers thick in the hanging wall of the normal faults. Forced folding as a consequence of the inversion of a major Middle Jurassic rift faults system is observed on seismic sections (Figure 10). Some Tertiary en echelon faults can be observed on the 3D seismic block on the top of the basement uplift shown in Figure 9a, indicating a dextral component during the Tertiary inversion along the WNW-ESE trending structures.

Some carbonate build-up and progradations within the Upper Jurassic carbonate sequence are observed on seismic sections (Figure 10 and on the field (Figure 4b)).

4.1.4. Summary of the Aghdarband-Gonbadly cross-section

The Aghdarband-Gonbadly cross-section shows a major basin inversion that affects the southern border of the Amu Darya Basin. A progressive thinning of the Jurassic and Cretaceous series of the basin towards the NE, as well as the occurrence of more pelagic facies to the North and more continental facies towards the Aghdarband erosional window, suggest that the region of the erosional window formed probably a horst during the Middle Jurassic, and a persistent paleorelief
4.2. Darre Gaz cross-section

The 160 km-long Darre Gaz cross-section is cutting through the Darre Gaz syncline where the Tertiary series are the thickest observed within the range (Figure 11). This cross-section highlights the front of the Kopet Dagh and it is passing through the area where there are numerous recent strike-slip faults that cut the cross-section. Along this cross-section, the sedimentary series are thicker than along the Aghdarband-Gonbadly cross-section and presents uplifted deeper facies. Thicknesses of the formations were estimated according to field observations, seismic data and satellite imaging, because of the lack of borehole data. As for the eastern cross-section, the basement is also implied in the deformation and several décollement levels within the Mesozoic series are observed. This cross-section will be described from the SW to the NE.

4.2.1. Description of the Darre Gaz cross-section

In the southwestern part of the cross-section, the folded structures present a wavelength of about 12 km and they are cut by several strike-slip faults. We infer that the folding of the SE-verging anticline is associated with the inversion of Middle Jurassic evaporitic levels of growth strata within the Tertiary sediments. There is little information in the Turkmen part of this cross-section but several d´ecollement levels within the evaporitic levels. This cross-section attests of the important partitioning of the recent deformation across the belt: thrusts are located in the frontal part of the range as highlighted by compressionnal focal mechanisms whereas mostly strike-slip deformation is now affecting the internal parts of the range.

4.2.2. Summary of the Darre Gaz cross-section

The Darre Gaz cross-section highlights the importance of forced-folding affecting the basement and overlain by shorter wavelength folds detached along several d´ecollement levels. Surrounding seismic sections show that the d´ecollement level of the frontal fold is located within the Lower Cretaceous, probably within the evaporitic levels. This cross-section attests of the important partitioning of the recent deformation across the belt: thrusts are located in the frontal part of the range as highlighted by compressionnal focal mechanisms whereas mostly strike-slip deformation is now affecting the internal parts of the range.

4.3. Western Kopet Dagh cross-section

This 90 km-long regional cross-section (Figure 13) cuts across the western branch of the Kopet Dagh range, from the internal zone until the South Caspian Sea Basin. It is a dog-leg type cross-section based on available outcrops and it presents typical structures and unconformities characterizing this area. At large scale, this section shows the uplift and erosion of the inner part of the Kopet Dagh as a consequence of several periods of uplift and/or folding. The southwestern part of this section corresponds to the inner part of the belt, where several basement thrusts are observed and where Paleozoic and Mesozoic formations outcrops at several locations. In this area, the folds of the western part of the Kopet Dagh are oriented SW-NE (Figure 5) and plunge to the SW in the Gorgan Plain below the sediments of the South Caspian Sea Basin.

4.3.1. Description of the western Kopet Dagh cross-section

We will describe this cross-section from the internal zone, close to the Late Triassic/Early Jurassic Paleotethys suture zone towards the Gorgan Plain corresponding to the eastern prolongation of the South Caspian Sea Basin. The large wavelength structures present a SE vergence until Balkor syncline (Figure 13). In contrast, the structures that plunge beneath the Gorgan Plain present an opposite NW vergence. The southeastern part of the cross-section corresponds to a large SE-verging anticline (Figure 13) formed by the series from Paleozoic to Eocene in age. On top of the Paleozoic, Triassic series are outcropping and unconformably overlain by a conglomeratic level corresponding to the base of the Middle Jurassic Kashafrud Formation. The Kashafrud Formation presents a fan geometry and its thickness is locally up to 2500 m in the deeper parts of this rift structure (Figure 14). The Middle Jurassic Kashafrud Formation overlays lower series (Paleozoic or Triassic series) and is unconformably covered by the marls of the Upper Jurassic Chaman Bid Formation that could locally directly overly the Triassic strata. This erosion on top of the Kashafrud Formation was also observed on some seismic lines in the eastern part of the Kopet Dagh (Kavoosi et al., 2009b). Above a thin marly and clastic level, the Lower Cretaceous Tigran limestone reaches around 450 m of thickness. On the top of the Tigran Formation, there are numerous sedimentation lacunas and it is locally covered by the very thin Sarchashme Formation or by the Abderaz Formation. The whole Upper Cretaceous series do not reach 400
Conglomerates (~40 m thick) are characterized an erosion level on the top of the Aitamir Formation and they are overlain by the white limestones of the Abderaz Formation that are the only sediments from the Upper Cretaceous. The marine marls of the Eocene directly overlie the Upper Cretaceous. The entire series is concordant and presents a constant dipping whereas the Oligocene-Neogene conglomerate is subhorizontal. Toward the NW, a narrow S-verging anticline with a core made of Upper Jurassic sediments. The Lower Cretaceous series thickens and is unconformably overlain by sediments from the Upper Cretaceous Kalat Formation to the Eocene Khangiran Formation. NW verging large anticlines and synclines are observed, as well as an important thickening of the Lower Cretaceous series that is related to a higher initial thickness and to the currence of thrusting within this formation. In contrast, there is a lack of most of the Upper Cretaceous in the last syncline (Rud Atkak syncline) that has a core made of Paleocene sediments. At the western end of the section, some seismic lines illustrate that the folds of the Kopet Dagh are plunging laterally below the Gorgan plain sediments (Figure 1). Along the section, an important angular unconformity between the folded Aitamir Formation and the Oligocene-Neogene conglomerates is observed. We have already observed the folded Eocene sediments that have been eroded before the deposition of a sub-Hercynian horizontal Oligocene-Neogene conglomerate. The seismic sections show buried anticlines and the post-Eocene unconformity, which is affected by some recent thrust faults. A drill was done in this region, but due to numerous thrusts and repetitions, it did not reach the Lower Cretaceous Tirgan carbonates.

4.4. Description of the Gorgan Plain cross-section

According to borehole data and similarly to the western Kopet Dagh cross-section, the Gorgan Plain cross-section shows an important angular unconformity between folded and transgressive series that are consequent to the important Tertiary subsidence in the South Caspian Sea Basin. The folds affecting the Upper Cretaceous series present an asymmetry towards the NW and they prolong the folded structures belonging to the Kopet Dagh range (Figure 15) as attested by borehole data and seismic sections (Figures 16 and 17).

Above the unconformity, progressive onlap of the series characterizes the border of the South Caspian Sea Basin. However, these series as well as the unconformity are locally slightly folded as a consequence of the late Alpine phase. Figure 17 presents a composite seismic section close to the Caspian Sea coast and shows the prolongation of the folded structures underneath the unconformity, which is affected by local reactivation. Above the unconformity, the clastic series thickens greatly towards the South Caspian Sea as a consequence of several transgressive episodes. Regional correlations enable to propose that the yellow horizon nearly corresponds to the top-Miocene. Between the yellow horizon and the unconformity, normal faults sitted on top of a disharmony are observed, highlighting a shale ridge structure (indicated with the M7* on the Figure 17). The clay series of the Oligocene Maykop Formation of the South Caspian Sea Basin are often responsible of the development of shale ridges type structures, which suggests an Oligocene age for the series sitting on top of the unconformity.
4.4.2. Summary of the Gorgan Plain cross-section

This cross-section shows the relationship between the Kopet Dagh affinity folds uplifted and eroded after the Eocene marine transgression. The trend of the buried folds is SSE-NNW, which is parallel to the structures of the western part of the Kopet Dagh range. The processes involved for the onset of the rapid Oligocene until recent times subsidence is still debated but several authors proposed a syn-compressional downward buckling of the basin resistant basement (Korotaev et al., 1999; 2003) and/or the onset of the subduction below the Apsheron ridge (Allen et al., 2003). Progressive onlap above the unconformity in the Gorgan Plain are observed within the Oligo-Miocene clastic sediments. The trend of the Maykop ridge along the coast of the Turkmenistan suggests an Oligo-Miocene palaeo-delta of the Amu Darya river in that region. This proto-delta shifts to the N during the Pliocene, possibly as a consequence to the rapid uplift within the Kopet Dagh and Alborz ranges at that time.

5. Discussions on the geodynamic evolution

Based on our new stratigraphic and structural data correlated with already published data, we decipher the geodynamic evolution of the Kopet Dagh range and its relationships with the adjacent Amu Darya and South Caspian Sea basins (Figures 18 and 19).

5.1. Late Triassic to Early Jurassic

The collision between Central Iran and Eurasian plates (Cimmerian orogeny) follows the northward subduction of the Palaeotethys Ocean and occurred during the latest Triassic/Early Jurassic (Zanchetta et al., 2013) (Figure 18a). The trend of the main structures of the northwestern and eastern parts of the Kopet Dagh follows the arcuate shape of the Paleotethys subduction zone, which emphasizes the importance of the structural inheritance in the present-day structure of the belt. Furthermore, some authors suggest an important oblique component of the convergence from a detailed structural study on transversal sional structures within the Aghdarband window (Zanchi et al., 2010). They infer the reactivation of some Paleozoic structures as major strike-slip faults during the Cimmerian orogeny. Those linear structures are observed North of the Amu Darya Basin (Mangyshlak and Ustyurt ridges) and within the Kopet Dagh (Main Kopet Dagh Fault) and they have been recently reactivated too (Ulimshek, 2001). From a petroleum point of view, the coal beds of the Upper Triassic sequence (Miankuhi Formation) could be a potential source rock but this formation was deposited within the narrow Aghdarband back-arc basin (Zanchetta et al., 2013) and it is hard to infer its present extension.

5.2. Middle Jurassic

After the Cimmerian collision (Figure 18b), a rifting phase took place across the studied area with the deposition of the clastic Middle Jurassic Kashafrod Formation. Seismic sections show that the Middle Jurassic Kashafrod Formation was deposited in a rift system, as suggested by the lack or near lack of this formation above pre-Jurassic basement highs in opposition within the hanging wall of the normal faults where this formation reaches several thousand meters thick. Furthermore, evidences of preserved Middle Jurassic normal faulting have been observed at several places in the field. The top of the Middle Jurassic Kashafrod Formation is marked by an important erosional surface and locally by an angular unconformity with the overlying series.

This Middle Jurassic rift system in the Kopet Dagh region has been coeval with the South Caspian Sea rifting event (Brunet et al., 2003; Saintot et al., 2006). From a petroleum point of view, the Kashafrod Formation is considered as one of the main source rocks of the Amu Darya Basin, but forms a bad reservoir, because of early diagenesis (Poursoltani and Gibling, 2011). This rifting phase at Middle Jurassic times has also been observed along the Black Sea, the Kura and the South Caspian Sea (Brunet et al., 2003, e.g.). This phase is commonly interpreted as a consequence of back-arc development due to the subduction of the Neotethys Ocean. According to our observations in the Kopet Dagh, we also propose that the collapse of the Cimmerian orogenic system could have play an important role in this rifting phase.

5.3. Late Jurassic / Early Cretaceous

The Upper-Jurassic to Early Cretaceous series observed in the Kopet Dagh range also belong to the southern part of the Amu Darya Basin (Figure 18c). We infer the occurrence of gentle paleohighs in the eastern part of the Kopet Dagh to explain variations in facies and thickness of the series from the Upper Jurassic to the Lower Cretaceous. For example, to the North of the Aghdarband erosional windows, Upper Jurassic Mozduran limestone is reduced to few meters and there are no salt or evaporites above, in contrast to the observations made in the Amu Darya Basin. From a petroleum point of view, the carbonates of the Mozduran Formation as well as the clastics of the Shurijeh Formation are the main reservoirs of the Amu Darya Basin. Towards the South, in the Kopet Dagh, there is no salt on top of the Jurassic calcareous and the Upper Jurassic to Lower Cretaceous series are thinner and more clastic.

5.4. Late Cretaceous / Eocene

In the northern and western parts of the Kopet Dagh range, several local erosional levels are observed (Figure 3). For example, a large hiatus from the late Barremian to the Santonian, as well as important thickness and facies variations are observed on the western cross-section (Figure 13). Furthermore, the uppermost Cretaceous (Maastrichtian) is correlated with a stratigraphic hiatus, which is generalized in the whole Kopet Dagh region. Furthermore, an angular unconformity has been evidenced at the base of the Upper Cretaceous series in the western Alborz, suggesting the presence of persisting emerged land (Berra et al., 2007). Our results suggest several local tectonic uplifts in the southern part of the Amu Darya Basin during
the Late Cretaceous, that are not associated with an angular unconformity (Figure 18d). The Paleocene series present important facies variations from red continental series to carbonates across the belt whereas the Eocene Khangirian Formation marks the last marine episode recorded in the Amu Darya Basin and Helmand does not present important thickness or facies variations.

Some authors report evidences for a Late Cretaceous-Paleocene compression event in northern Iran (Barrier and Virgili, 2008) but this event is not well described at the moment. Notwithstanding, exhumation of the blue schist facies rocks within the Zagros belt and the exhumation of high-pressure rocks in the Sistan are broadly coincident with the obduction process of the Neotethyan lithosphere onto Arabia (Agard et al., 2004; Shabanian et al., 2009a) (Figure 19c). Moreover, conversion of plate-slab coupling in the Neotethys subduction zone during Late Cretaceous time. Further investigations in northern Iran are needed to better describe these compressional events.

5.5. Late Eocene / Early Oligocene: onset of the Alpine orogeny

The main inversion phase recorder in the Kopet Dagh occurred during the Late Eocene, which is when the Neotethys locked and when the far-field deformation developed in both the Eurasian and African plates (Frizon de Lamotte et al., 2011). The thick-skinned folding and related uplift of the Kopet Dagh may be related to reactivation of former Paleozoic or Cimmerian fault systems (Figure 19a), which is suggested by the linear front of the Eastern and Central Kopet Dagh. During the main Alpine compressive phase, folding style and structures vary laterally as a function of pre-existing structures, rock behavior, and mechanical stratigraphy (Figure 19a). In the southeastern part of the Kopet Dagh, the Paleotethys suture zone and the inherited Paleozoic trend of the Main Kopet Dagh Fault are parallel. These pre-existing structures probably control both the location of the Alpine Kopet Dagh uplift and folding and the basement-involved tectonic style we observed. Some local inversions of Middle Jurassic graben were also highlighted even though evidences of force folding within the Upper Jurassic to Lower Cretaceous (Barremian) series have been shown too. On top of the Barremian series, several décollements located within the thick Aptian-Albian marls lead to the formation of the triangle zone. Quite similar structures have already been described in Venezuela Andes (Colletta et al., 1997; Duerto et al., 2006, e.g.), in the frontal part of Longmen Shan range (Robert et al., 2010, e.g.) or in the Zagros (Sherkati et al., 2005, 2006, e.g.).

Towards the West, the structures are dominated by the basement contrast between the rigid block formed by the basement of the South Caspian Sea Basin and the weaker western part of the Kopet Dagh range that has been previously deformed by the Cimmerian orogeny. Indeed, this deformation contrast results in the indentation of the rigid South Caspian Sea region during the Alpine compression (Allen et al., 2003). The deformation style is characterized by the double vergence of deep-seated thrusts faults (Figure 8) and important disharmonies within the Mesozoic levels. Fish-tail type structures with décollement levels within Jurassic or Cretaceous shale levels are suggested. In this part, there is not much evidence of reactivation of the normal faults associated to the Middle Jurassic rifting faults and numerous short-cuts have been observed. Marine sediments up to the Late Eocene are folded with the underlying formation during the Alpine phase. Eocene sediments are clipped inside the synclines and are unconformably covered by post-Eocene series. Within the Kopet Dagh range, most of the Oligocene-Neogene series are discordant, but growth strata within the Oligocene-Neogene series were observed in the southeastern part of the belt. Further datings of these series are needed, but a Late Eocene-Early Oligocene age for onset of the Alpine orogeny within the Kopet Dagh belt can be proposed.

5.6. Oligocene to Mid-Pliocene: Important subsidence in the South Caspian Sea Basin

The rapid subsidence of the South Caspian Sea starts just after the Late Eocene-Early Oligocene compression folding that is responsible for the main uplift phase within the Kopet Dagh and the Alborz mountains (Allen et al., 2003; Brunet et al., 2003). Most of the authors agree that the basement of the South Caspian Sea is an oceanic crust resulting from the opening of a back-arc basin north of the Neotethyan arc (Brunet et al., 2003). According to Allen et al. (2003), the South Caspian Sea basin corresponds to a resistant block with almost no internal deformation, playing an indentor role, which could explain the arcuate shape of the surrounding fold-and-thrusts belts (Alborz, Kopet Dagh, and Talysht). The important thickness of the Caspian series is sealing the previously described structures in the western Kopet Dagh. Progressive onlap of these Oligocene and Miocene series on top of the unconformity is observed on seismic sections. The structures with hydrocarbon discoveries that exist along the western coast of Turkmenistan up to the Moghan Plain in Iran (Figure 1b) are associated with the deep shale ridges of the Oligocene Maykop Formation. These arch structures correspond to a Miocene proto Amu Darya delta in that region and the development of shale ridge in the delta front during the Miocene. An increase of the subsidence rate was observed during the latest Miocene and Pliocene periods and the Amu Darya River shifted to a northward position. This new large prograding system towards the South Caspian Sea Basin is associated with the deposition of the Lower Pliocene main reservoirs. It cover nearly half of the surface of the South Caspian Sea Basin with the development of a new delta front oriented NE-SW in the central part of the basin.

5.7. Mid-Pliocene to Present day: Indentation and onset of the extrusion in the Kopet Dagh

Major changes of tectonic regime have been highlighted during the Plio-Quaternary at the scale of the South Caspian Sea Basin and its surrounding domains (Axen et al., 2001; Allen et al., 2004; Copley and Jackson, 2006; Abbassi et al., 2009; Shabanian et al., 2009a) (Figure 19c). Moreover, conversion from mainly thrusting to oblique-slip and strike-slip faulting
within the Kopet Dagh range occurred during the late Cenozoic (~4–5 Ma) as a consequence of the major tectonic reorganization in NE Iran (Shabanian et al., 2009a,b). Ritz et al. (2006) suggested that the northwestward motion of the South Caspian Sea Basin compared to Eurasia and/or its clockwise rotation could explain this tectonic reorganization. Masson et al. (2006) proposed a second tectonic force due to the initiation of the northward subduction of the oceanic basement of the South Caspian Sea Basin below the Apsheron ridge.

In the Gorgan Plain and along the Turkmen margin of the Caspian Sea, the discordant series lying on top of the older series folded by the first Alpine phase are deformed too (Fig. 15). This deformation implies a refolding of the unconformity by reactivation of the underlying structures. Oblique inversion of the Kashafrud grabens and strike-slip along the Main Kopet Dagh Fault, which extends from the South Caspian Sea to the Afghan border are associated with this late deformation phase. En echelon pattern of the folds along this zone and en echelon fault pattern observed on 3D seismic blocks demonstrate a dextral shear component during the folding and reactivation. The importance of the strike-slip faults is demonstrated by the present-day seismicity across the range as well as by geomorphological data.

6. Conclusions

In this paper, we provide a detailed and revised characterisation of the stratigraphy and the tectonics of the Kopet Dagh belt from new stratigraphic, structural and seismic data. Based on these new data, we are able to define the tectonic history of the Kopet Dagh, which is most likely related with the adjacent South Caspian Sea and Amu Darya basins. We focused our study on the deformation recorded within the Kopet Dagh after the Cimmerian orogeny, which corresponds to the closure of the Paleo-Tethys Ocean. The main unconformity that is widely described within the Kopet Dagh, is located at the base of the first deposited sediments after the Cimmerian orogeny: the Middle Jurassic Kashafrud Formation. We highlighted abrupt facies and thickness changes within the Middle Jurassic Kashafrud Formation, as well as evidences of active rifting during the deposition of this formation from seismic sections. The onset of deposition of the Amu Darya Basin corresponds to the Middle Jurassic synchronously to the initiation of active rifting.

Within the thick sedimentary sequence, we evidence several hiatus during the Cretaceous and Paleocene in the northern western part of the belt. These sedimentary hiatus highlight several local uplifts, suggesting a tectonic reactivation of the belt as early as during the Late Cretaceous/Paleocene. These local uplifits can be interpreted as the consequence of the dis- tinctal closure of small oceanic domains, such as the Sabzevar or the Sistan oceans. Finally, the onset of the Alpine compression occurred after the deposition of the Eocene Khangiran Formation and resulted in the inversion of segments of the Jurassic-Cretaceous sedimentary basin and the reactivation of their bounding faults as well as newly created thrusts. Towards the South Caspian Sea Basin, we highlighted a major Late Eocene unconformity with progressive onlap above this unconformity, which indicates an age for the tectonic reactivation of the belt as early as Late Eocene-Early Oligocene. In contrast, there is no precise timing for the activation of the Alpine tectonics in the eastern part of the belt. In the western part of the belt, the double-verging structures consist of thrust faults involving basement and fault-propagation folds within the sedimentary sequence. The entire succession until the Late Eocene is folded and newly-formed thrusts cross-cut the previous structures of the Middle Jurassic Kashafrud grabens. In the eastern part of the belt, this study demonstrates Middle Jurassic graben inversion with evidences of forced-folding and few short-cuts, as well by larger structures involving basement. Furthermore, seismic sections evidence several décollement levels within the Mesozoic sequence, which explains numerous disharmonies and fish-tails structures. This Late Eocene deformation phase is probably related to the far-field deformations due to the locking of the Neo-Tethys subduction (Frizon de Lamotte et al., 2011). The important subsidence in the South Caspian Sea Basin began during the Early Oligocene and it is responsible for the sealing of the structures by the thick Oligocene to Quaternary sedimentary sequences in the western part of the belt. Finally, the tectonic reorganization in North Iran since the Pliocene is responsible for the dominance of the strike-slip component in the present-day deformation affecting the Kopet Dagh.

7. Acknowledgments

This study was funded by the Darius Programme and thanks to the strong support and collaboration with the National Iranian Oil Company (NIOC), and in particular the Exploration directorate. Additional funding was provided by the projects ATIZA(CGL2009-09662-BTE) and TECLA (CGL2011-26670). The authors are very grateful to geologists from the NIOC for their support during the field missions and for the help they provided in publishing this study. Reviews by D. Frizin de Lamotte and A. Zanchi greatly improved the first version of the manuscript.

Abbassi, A., Nasrabadi, A., Tatar, M., Yaminifard, F., Abbassi, M. R., Hatzfeld, D., Frizon de Lamotte and A. Zanchi greatly improved the first version of the manuscript.


Saccani, E., Delavari, M., Beccul2010a, L., Amini, S., 2010. Petrological and...


Figure 1: a. Topographic map (ETOPO 1 data) of Iran showing the main tectonic units with location of the main volcanic rocks, salt and ophiolites outcrops. Neotethys and Paleotethys sutures zones are indicated. MKF: Main Kopet Dagh Fault; GKF: Great Kavir Fault; GKB: Great Kavir Basin; ABS: Apsheron-Balkhan System b. Topographic map of the Kopet Dagh range from ASTER GDEM data showing the location of the gas and oil fields (red area) from publications (Dikenshteyn et al., 1983; Ulmishek, 2004) and from the Oil and Gas Infrastructure in the Caspian Sea region, March 2001 from the United State Government. The Paleotethys suture zone and major places are indicated on this map. Major gas fields: 1: Dauletabad; 2: Gonbadli; 3: Khangiran; 4: Shaltyk; 5: Bayram-Ali; 6: Achak.
Figure 2: Seismotectonic map of the Kopet Dagh region where the major recent faults are represented according to (Hollingsworth et al., 2006; Hollingworth, 2007; Hollingsworth et al., 2008, 2010; Shabanian et al., 2009a,b, 2012). Blue arrows represent GPS velocities relative to Eurasia fixed; the error ellipses indicate formal errors within 95 percent confidence interval (Tavakoli, 2007). The location of the Palaeotethys suture zone is indicated. Focal mechanisms are taken from CMT Harvard catalogue for the period 1976-2012. The shaded relief background has been made from ASTER GDEM data. DF: Doruneh Fault; KF: Khazar Fault; MKF: Main Kopet Dagh Fault; NFS: Neyshabur Fault System.
Figure 3: New stratigraphic chart of the Kopet Dagh belt and of two main adjacent Amu Darya and South Caspian Sea basins. This stratigraphic study has been constructed from our 159 biostratigraphic datings, sedimentary observations and a wide compilation of published data. Major tectonic events are been indicated on this stratigraphic chart and can be correlated with the main regional observed hiatus.
Figure 4: a) Prograding sequence of limestones belonging to the Upper Jurassic Mozdurian Formation within the upper part of the upper Jurassic shally Chaman Bid Formation b) Clastic filling between 2 reefs within the Upper Jurassic Mozdurian Formation. Similar features have been observed on seismic sections as highlighted in Figure 10.
Figure 5: Simplified geological map of the Kopet Dagh area compiled from the geological maps of the Geological Survey of Iran. Locations of the 4 regional cross-sections presented in this article are indicated.
Figure 6: The Aghdarband-Gonbadly cross-section (see location on Figure 5). This cross-section shows structural relationships between the rocks deformed by the Variscan and/or the Cimmerian orogeny that outcrop in the Aghdarband erosional windows and the series deposited in the southwestern part of the Amu Darya Basin affected by the Alpine inversion of the Middle Jurassic extensional structures. Locations of the seismic data presented in this article and borehole data are indicated.
Figure 7: Tectonic sketch of the Aghdarband erosional window, modified from previous published cross-sections (Ruttner, 1991; Zanchi et al., 2010). The folded Triassic and older series are preserved below double verging thrusts. The deformed rocks are overlain by the Middle Jurassic Kashafrud Formation characterized by its basal conglomerate (J2). D: Devonian, C: Carboniferous, PT: Permo-Triassic molassic sediments, T: Triassic series excepting the Miankuhi Formation (Tm), J2: Conglomeratic base of the Middle Jurassic Kashafrud Formation and J3: Upper part of the Middle Jurassic Kashafrud Formation.

Figure 8: Seismic section showing the triangle structure to the NW of the Aghdarband erosional window (location on the Aghdarband cross-section, Figure 6). This seismic line shows two major North-directed basement thrusts that branch into an inferred detachment within the shales of the Campanian. For calibration, we used field data and information from the borehole represented in the figure. Legend of the horizons: Black = Top Trias; Dark blue = top Kashafrud Formation (Middle Jurassic); Light blue = top Mozduran Formation (Upper Jurassic); Dark green = Top Shurjeh Formation (Neocomian); Green = Top Aitamir Formation (Cenomanian); Light green = Top Kalat Formation (Uppermost Cretaceous); Orange = Top Chehel Kaman Formation (Paleocene).
Figure 9: a) Seismic section from the Gonbadli gas field area (location in Figure 5) showing large-scale basement uplift. The Jurassic structure is shown by opposite set of normal faults, some of which seem to preserve their original normal displacement. b) Zoom on the previous seismic transect with a flattening done at the top Middle Jurassic horizon which highlight of the Kashafrud half graben structures. Legend of the horizons: Purple = Top Trias; Dark blue = top Kashafrud Formation (Middle Jurassic); Light blue = top Mozduran Formation (Upper Jurassic); Dark green = Top Shurijeh Formation (Neocomian); Green = Top Aitamir Formation (Cenomanian); Light green = Top Kalat Formation (Uppermost Cretaceous); Orange = Top Chehel Kaman Formation (Paleocene).
Figure 10: Seismic section across the Khangiran gas field extracted from a 3D cube. The Khangiran structure is due to the Tertiary inversion of a Middle Jurassic half graben. The occurrence of growth strata within the Oligocene-Neogene sequences highlights that the graben inversion is associated to the Alpine tectonic phase as a consequence of an inversion tectonics. The black arrow highlights some carbonate build-ups within the Upper Jurassic Mozduran limestones. Legend of the horizons: Purple = Top Trias; Dark blue = top Kashafrud Formation (Middle Jurassic); Light blue = top Mozduran Formation (Upper Jurassic); Dark green = Top Shurijeh Formation (Neocomian); Green = Top Aitamir Formation (Cenomanian); Light green = Top Kalat Formation (Uppermost Cretaceous); Orange = Top Chehel Kaman Formation (Paleocene); Yellow = Intra Oligo-Neogene conglomerates.
Figure 11: The Darre Gaz regional cross-section (see location in Figure 5) shows the inversion of Middle Jurassic front of the belt is characterized by North-verging basement thrusts that mostly branch into a major detachment within the Aptian-Albian series.
Figure 12: Seismic section showing typical structures of the Darre Gaz area with a disharmony between deep and surface structures implying several décollement levels within the Cretaceous series. The deeper horizons of this section are not calibrated. Legend of the horizons: Black = Top Trias; Dark blue = top Kashafrud Formation (Middle Jurassic); Light blue = top Mozdu-ran Formation (Upper Jurassic); Dark green = Top Shurijeh Formation (Neocomian); Green = Top Atamir Formation (Cenomanian); Light green = Top Kalat Formation (Uppermost Cretaceous); Orange = Top Chehel Kaman Formation (Paleocene).
Figure 13: The western regional cross-section (see location in Figure 5) highlights the upper basement décollement level forming double-verging structures that cross-cut the Middle Jurassic rift system. This cross-section also shows two folded unconformities: at the base of the Lower Cretaceous and at the base of the post-Eocene sediments.
Figure 14: Scheme of several fields observations highlighting the structural relationships between the different stratigraphic formations. The important thickness variations of the Middle Jurassic Kashafrud Formation is due to active rifting during deposition. An erosional surface at the base of the Late Jurassic Chaman Bid Formation and several progradations of the Upper Jurassic Mozduran limestones into the marls of the Late Jurassic Chaman Bid Formation are observed. Notice the reduced thickness of Cretaceous and Tertiary series.
Figure 15: The Gorgan Plain regional cross-section (see location in Figure 5) shows the buried folds of the Kopet Dagh beneath the thick post-Eocene sediments belonging to the South Caspian Sea Basin. This cross-section has mainly been constructed from seismic sections.
Figure 16: Seismic section below the Gorgan Plain to the Western part of the Kopet Dagh. This section shows the folded structures overlain by a major unconformity with progressive onlap above this unconformity. The pink horizon near the top of the section corresponds to the top of the Mid-Pleistocene strata, the red horizon corresponds to the Late-Eocene and Early Oligocene unconformity, the green horizons correspond to the Late Cretaceous marls and clastic sediments. Within the syncline, it is possible that the Paleogene up to the Upper Eocene were preserved. (a) Folded and faulted structures, the folds are oriented NE-SW parallel to the orientation of the western part of the Kopet Dagh belt (b) The red line corresponds to the folded unconformity at the base of the Oligocene-Neogene strata.
Figure 17: Seismic profile of the margin of the Caspian Sea Basin below the Gorgan Plain. Notice the unconformity highlighted in red which is covered by sediments of the South Caspian Sea Basin. A shale ridge structure is marked in red (M?) suggesting that the sediments just on top of the unconformity are probably made of the Oligocene Maykop Formation. The pink horizon corresponds to the near top Mid-Pleistocene, the yellow horizon corresponds to the near top Miocene, the red horizon corresponds to the Late Eocene-Early Oligocene unconformity and the green horizons correspond to the Late Cretaceous.
Figure 18: Schematic reconstructions of the geodynamic settings of the region centered on Central Iran during a) the Late Triassic to the Early Jurassic; b) the Middle Jurassic; c) the latest Jurassic to the Early Cretaceous and d) the Late Cretaceous to the Eocene. Reconstructions for the Neotethys and Iran were adapted from Agard et al. (2011); Barrier and Vrielynck (2008).
Figure 19: Schematic reconstructions of the geodynamic settings of the region centered on Central Iran during a) the Late Eocene to the Early Oligocene; b) the Oligocene to the Middle Pliocene and c) the Late Pliocene to the present-day. Reconstructions for the Neotethys and Iran were adapted from Agard et al. (2011); Barrier and Vrielynck (2008).