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Within the framework of the Kondo-Heisenberg model, we analyse the effect of charge fluctuation on the
modulated spin liquid (MSL) and antiferromagnetic (AF) orders which were established in a previous pub-
lication. We discuss the emergence of two quantum critical lines separating the coexisting Kondo-MSL and
Kondo-MSL-AF phases. The various order parameters of the system possess a characteristic signature observ-
able on the electronic band structure of each of the phases. We calculate that the MSL order is indeed a possible
explanation of the hidden order phase of URu2Si2 heavy fermion compound. Our model produces results in
qualitative agreement with the experimental (T,P) phase diagram and the two gap openings in the system and
quantitative agreement with the entropy and Sommerfeld coefficient evolution.

PACS numbers: 72.80.Ga, 74.40.Kb,75.10.Kt,75.25.Dk

I. INTRODUCTION

Kondo lattices are among the most studied models in con-
densed matter physics.1 They are realized in broad families of
strongly correlated materials, when conduction electrons in-
teract with a periodic crystal of quantum magnetic moments.
In heavy fermion compounds, the local moments represent the
f−electrons from the lanthanide or actinide atoms. An ex-
tremely rich variety of unusual quantum phases are observed
in these systems.2–4 Exotic superconductivity,5 Quantum Crit-
ical Points (QCP)6,7 and their related non-standard critical ex-
ponents result from the competition between various micro-
scopic mechanisms.8–11 Among the well accepted scenarios
explaining pressure-driven QCPs in heavy fermions, the gen-
eral Doniach’s argument8 relies on the competition between
local Kondo screening and inter-moment Ruderman-Kittel-
Kasuya-Yosida (RKKY) magnetic interaction.12–14 When the
Kondo coupling dominates, the thermodynamic, transport,
and magnetic properties are characterized by a Fermi liquid
behavior with a large effective mass.15–17 The opposite regime
leads generally to a magnetically ordered ground state or, al-

ternatively, to a spin-liquid (SL) phase18 when the RKKY
mechanism dominates the Kondo scale but frustration pre-
vents the magnetic ordering.19,20 Leaving aside the issue of
superconductivity, it thus appears that Doniach’s view8 can
give rise to two different kinds of QCPs. In one of them, the
order parameter characterizing a traditional QCP (denoted by
QCPc) is the local magnetization, which can be easily mea-
sured experimentally. The second kind of QCP (denoted by
QCP?) marks the breakdown of the Kondo effect, which is
also called fractionalization, and has been first discussed from
a theoretical ground by several authors.7,19–26 Since the vol-
ume of the Fermi surface is expected to have a significant dis-
continuity when crossing a QCP? one may naively think that
this single feature would be enough to provide a clear experi-
mental signature of a Kondo breakdown transition. However,
experimental reality is more complex than that, since most of
the (magnetic) QCPsc also break lattice translation symmetry.
This also leads to another significant variation of the Fermi
surface due to the folding of the first Brillouin zone. Signa-
tures of these quantum phase transitions can still be obtained
from a Fermi surface analysis, but this requires a carefull in-
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vestigation which takes into consideration the volume as well
as nesting and symmetry properties.

In this article, our first aim is to use the Fermi surface analy-
sis to clarify the signatures of the various quantum phases that
emerge in Kondo lattice systems. We then apply our analysis
to the specific heavy fermion compound URu2Si2 .

Intensive researches have been provided for almost 30 years
due to its mysterious hidden order (HO) phase observed at am-
bient pressure below 17,5 Kelvin.27 Recent inelastic neutron
scattering (INS) experiments on URu2Si228–31 suggest that the
HO phase is a RKKY phase somewhat similar to the antifer-
romagnetic (AF) phase which is realized in this compound
above critical pressure. Indeed, neutrons, which are only sen-
sitive to magnetism, revealed an excitation peak at a com-
mensurate wavevector in the HO phase that coincides with
the commensurate order characterizing the AF phase. This
commensurate peak may be interpreted as a kind of a Bragg
peak and the HO phase in this way breaks the lattice symme-
try in the AF phase. Nevertheless, the lack (or weakness) of
local magnetization in the HO phase32–34 establishes a clear
difference with the AF order.

Various experiments reveal the dual local and non-local na-
ture of the wave function characterizing the hidden order.27

The multipolar approach,35–39 based on the symmetry of the
Uranium orbitals, were mostly focused on a site-localized or-
der parameter. But these approaches, projecting the wave
function onto a localized basis, do not explain the microscopic
origin of the commensurate wave vector Q0 observed by INS
experiments.28–31

We recently proposed a scenario in which the HO phase
is identified with a Modulated Spin Liquid (MSL)40,41 with
some resonant valence bonds forming a sort of singlet crys-
tal. Our approach is based on the idea that the hidden or-
der is characterized by a many body wave function where
magnetic degrees of freedom are highly entangled from site
to site. The commensurate wave vector emerges naturally
from this intersite entanglement, in a similar way as discussed
elsewhere.42–47

Introduced for the sake of clarity from a quantum Heisen-
berg model, the MSL has no local magnetization but it breaks
the lattice translation symmetry. The AF to MSL transition
is thus characterized by a melting of the staggered magneti-
zation preserving the lattice symmetry breaking. In this MSL
scenario, the partial melting of the AF order explains most of
the physical properties of the AF to HO transition in URu2Si2.
Yet this material is also a metallic heavy fermion and the
Kondo effect needs also to be taken into acount for a correct
description of its physical properties.

These considerations led us to analyse Fermi surfaces for a
Kondo lattice model with an extra explicit RKKY interaction
that is able to reproduce the MSL-AF transition. For the sake
of clarity we consider this model on a square lattice. In sec-
tion II, we present the general model and the method we use
to establish the different phase diagrams presented in section
III. In section IV, we apply this general model and analysis to
the particular case of URu2Si2. An analysis of the band struc-
ture and of the Fermi surface with an emphasis on the char-
acteristical signatures of each order parameter is presented in

appendice.

II. MODEL AND METHOD

A. Model

We consider a Kondo-Heisenberg model49,50 on a square
lattice with N sites and a lattice constant a = 1, defined by
the following Hamiltonian:

H = HKL +HRKKY

≡ tc
∑

〈R,R′〉,α

c†RαcR′α + JK
∑
R

SR · sR + J
∑
〈R,R′〉

SR · SR′ ,

(1)

where the operator c(†)Rα annihilates (creates) a conduction
electron on site R with spin component α =↑, ↓≡ ±1, and
SR denotes a quantum spin 1/2 on site R. The sum over
〈R,R′〉 refers to nearest neighbors with each bond being
counted only once. The conduction electron local spin den-
sity can be expressed as sR = 1

2

∑
αβ c

†
RασαβcRβ , where

σ ≡ (σx, σy, σz) denotes the Pauli matrices. The average
electronic occupation per site is fixed to be nc, which will
later be taken into acount by the introduction of a given chem-
ical potential µ. Here, HKL is a Kondo lattice Hamiltonian,
with a nearest neighbor hopping term tc and a local Kondo
antiferromagnetic coupling JK between conduction electrons
and local moments. The Heisenberg term HRKKY adds an
antiferromagnetic interaction J between nearest neighboring
Kondo spins.

Hereafter, we use the Abrikosov pseudofermions rep-
resentation for the local spin 1/2 operators:51 SR =
1
2

∑
αβ f

†
RασαβfRβ , where the fRα (f†Rα) are fermionic

annihilation (creation) operators satisfying the local single-
particule occupation constraint:

f†R↑fR↑ + f†R↓fR↓ = 1 . (2)

The Kondo interaction is first rewritten as JKSR · sR =
JK
2

(∑
α f
†
RαcRα

)(∑
β fRβc

†
Rβ

)
− JKnc/4. These local

terms are then decoupled using a standard mean-field approx-
imation,53–55 within the Hubbard Stratonovitch scheme. The
RKKY interaction is treated with exactly the same mean-field
procedure as the one described in Ref.:40 the Heisenberg in-
teraction is decoupled on each nearest neighbor bond 〈R,R′〉,
partially in a spin-liquid channel, and partially in an antiferro-
magnetic Weiss field channel. The respective weights, JSL/J
and JAF /J , of each decoupling channel are constrained by
the relation J ≡ JSL + JAF . Here, JSL and JAF can be con-
sidered as tuning parameters for the model. This decoupling
scheme, which might appear to be arbitrary on a square lattice
model, captures phenomenologicaly some of the frustration
effects of a more realistic three-dimensional model.41,52
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B. Mean-field method

We introduce the mean field decouplings in the Kondo, the
Weiss-AF, and the SL channels, considering only the colinear
order for the AF channel. The Hamiltonian (1) is approxi-
mated as:

H ≈ HMF ≡
∑
α

(Hα
KL +Hα

RKKY ) + E0

+µ
∑
R,α

(nc
2
− c†RαcRα

)
+ λ

∑
R,α

(
1

2
− f†RαfRα

)
,

(3)

with

Hα
KL = tc

∑
〈R,R′〉

c†RαcR′α +
∑
R

(bRc
†
RαfRα + h.c.)

Hα
RKKY =

∑
〈R,R′〉

(ϕRR′f
†
RαfR′α + h.c.)

+α
∑
R

f†RαfRα
∑
z

mR+z

E0 =
∑
R

|bR|2

JK
+
∑
〈R,R′〉

(
|ϕRR′ |2

JSL
− mRmR′

2JAF

)
,(4)

where λ is a Lagrange multiplier introduced in order to take
into acount the local constraints Eq. (2). Following the stan-
dard mean-field scheme,53–55 this Lagrange multiplier field
has been assumed to be constant and homogeneous. There-
fore, λ acts here as an effective chemical potential for the
Abrikosov fermions and the constraints (2) are satisfied on
average only. The sum over z denotes a sum over all the
nearest neighbour sites. The Kondo mean-field parameter is
given by the self consistent equation bR = JK

∑
α〈f
†
RαcRα〉,

where the thermal average 〈· · · 〉 is computed from the mean-
field hamiltonian (3). This Kondo parameter can be under-
stood as an effective hybridization between the light con-
duction electron band and the heavy flat band.53–56 The
spin liquid and antiferromagnetic mean-field self-consistent
relations give ϕRR′ = −JSL

∑
α〈f
†
RαfR′α〉 and mR =

JAF
∑
α〈αf

†
RαfRα〉. A full self-consistent resolution of the

mean-field effective model also requires the determination of
µ and λ from the relations 1

N

∑
R,α 〈c

†
RαcRα〉 = nc and

1
N

∑
R,α 〈f

†
RαfRα〉 = 1.

In principle, the Kondo and the Weiss fields bR and mR are
site dependent whereas the SL field ϕRR′ is bond dependent
instead. Following the procedure of Refs.,40,41 we will make
some simplifying ansatz for the RKKY fields. First, we re-
mark that the AF field mR is formally similar to the standard
Weiss mean-field moment that would emerge from a classical
approximation. Since we consider a square lattice model, we
will consider only the Néel ordering to represent the AF state.
We thus assume that mR = SQ eiQ·R, where Q = (π, π)
and SQ is the staggered magnetization. The SL field ϕRR′ is
reminiscent of the Resonant Valence Bond (RVB) state intro-
duced by Anderson and co-workers.18,48 The RVB state was
originaly introduced within an homogeneous SL field. This

was motivated by the description of frustrated spin systems
that could not form a long range magnetically ordered state.
Nevertheless, it was shown in Ref40 that a spatially modulated
spin liquid (MSL) was more energetically stable on a square
lattice than an homogeneous SL phase. Here, we assume a
real space modulation of the SL mean field which has the form
ϕRR′ = δRR′φ0 + i

φQ
2

∑
± e
±iQ.(R+R′)/2. The SL field is

defined on the dual (i.e., bond) lattice in general, although
this particular MSL ansatz breaks the same lattice translation
symmetry which is broken by the AF Néel ordering. Con-
sequently, the Bravais lattices for the MSL and AF ordered
state are identical to each other and correspond to a doubled
unit cell in contrast with the single unit of the initial square
lattice. We make an ansatz for the Kondo parameter bR. An
indirect coupling between the modulated spin-liquid order pa-
rameter and the Kondo screening may produce a modulation
of the Kondo parameter as well. Thus, we include the pos-
sibility of a modulation for the Kondo mean field parameter
writing bR = b0 + ibQe

iQ.R, where both b0 and bQ are real.
With this ansatz, the phase of the Kondo mean-field param-
eter can be spatially modulated, when bQ 6= 0. But its am-

plitude ρ ≡
√
b20 + b2Q is homogeneous since eiQ.R reduces

only to ±1. Note that the amplitudet ρ could also be mod-
ulated. Indeed, a space modulation of ρ may lead to charge
ordering. We left this possibility aside because it has never
been observed in the URu2Si2 compound which is the main
motivation of this work. Finally, the Kondo parameters are
reexpressed as b0 = ρ cos(θ) and bQ = ρ sin(θ), with a non-
zero value of the amplitude ρ being typical for a Kondo phase.
A non-zero angle θ clearly indicates that the Kondo phase is
modulated. We define the Kondo temperature TK as the tem-
perature at which the conduction electrons start to screen the
local moments. Numerically, we signalled this temperature
as the temperature where the amplitude ρ becomes different
from zero.

Invoking the Fourier transform, fkα ≡ 1√
N

∑
R e

ikR

fRα
and its inverse, and replacing the site and bond dependent
mean-fields by their corresponding ansatz expressions, the ef-
fective mean-field Hamiltonian (3) reads:

HMF =
∑
k,α

[
(tcγk − µ) c†kαckα + (φ0γk − λ) f†kαfkα

]
+
∑
k,α

(
4αSQ + iφQγk−Q/2

)
f†kαfk−Qα

+ρ cos(θ)
∑
k,α

(c†kαfkα + f†kαckα)

+iρ sin(θ)
∑
k,α

(f†k−Qαckα − c
†
k−Qαfkα)

+N

[
ρ2

JK
+

2
(
φ2

0 + φ2
Q

)
JSL

+
S2
Q

JAF
+ λ+ µnc

]
,(5)

where γk ≡ −2 cos(kx) − 2 cos(ky) is the square lattice dis-
persion.

The mean-field parameters φ0, φQ, SQ, ρ, θ, the Lagrange
multiplier λ, and the chemical potential µ, are determined
self-consistently by the minimization of the free energy, given
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by βFMF = −Tr[exp (−βHMF )]. We find the following
saddle point equations:

φ0 = −JSL
4N

∑
k,α

γk〈f†kαfkα〉 , (6)

φQ = − iJSL
4N

∑
k,α

γk−Q/2〈f†kαfk−Qα〉 , (7)

SQ = −2JAF
N

∑
k,α

α〈f†kαfkα〉 , (8)

ρ cos(θ) = −JK
2N

∑
k,α

〈c†kαfkα + h.c.〉 , (9)

ρ sin(θ) = −JK
2N

∑
k,α

〈if†k−Qαckα + h.c.〉 , (10)

1 =
1

N

∑
k,α

〈f†kαfkα〉 , (11)

nc =
1

N

∑
k,α

〈c†kαckα〉 . (12)

C. Numerical treatment of the mean-field equations

Within the mean field Hamiltonian, the free energy per site
can be written explicitly as a function of the mean-field pa-
rameters φ0, φQ, SQ, ρ, θ, the Lagrange multiplier λ, and the
chemical potential µ. We find:

FMF = −kBT
N

∑
k,n

ln
(

1 + e(−βΩn)
)

+ λ+ µnc

+
ρ2

JK
+

2
(
φ2

0 + φ2
Q

)
JSL

+
S2
Q

JAF
(13)

where β = 1/kBT , N is the number of site, n runs over
the band defined by the eigenvalues of the effective mean
field Hamiltonian and Ωn are the eigenvalues of the follow-
ing mean field Hamiltonian matrix


tcγk − µ 0 ρcos(θ) −iρsin(θ)

0 tcγk−Q − µ −iρsin(θ) ρcos(θ)
ρcos(θ) iρsin(θ) φ0γk − λ 4αSQ + iφQγk−Q2
iρsin(θ) ρcos(θ) 4αSQ − iφQγk−Q2 φ0γk−Q − λ

 (14)

For a numerical self-consistent solution, we proceed
iteratively as follows. At each loop, for a fixed
(φ0, φQ, SQ, r0, rQ), the chemical potentials λ and µ are de-
termined by dichotomy method to fullfill simultaneously the
constraint conditions (11) and (12). In turn, for either fixed
λ and µ, the free energy expression (13) is minimized using
Powells method,57 providing the solution (φ0, φQ, SQ, ρ, θ)
of the mean-field equations. (6, 7, 8, 9, 10 ).

All the numerical results presented in this article have been
obtained with the following choice of parameteres: the Kondo
coupling is set to be JK/tc = 0.8686 where tc is the conduc-
tion electron hopping. tc characterizes the conduction elec-
tron bandwidth which equals 8tc in a square lattice. These pa-
rameters are choosen such that the Kondo temperature, TK0,
for a zero RKKY interaction (JAF = JSL = 0) is small com-
pared to the bandwidth (TK0 = 0.098tc). This guaranties that
we work in the weak Kondo coupling regime TK � tc. We
choose also an electronic filling nc = 0.7 which avoids the
square lattice instability (at nc = 0.5) and which also avoids
the Kondo insulating regime (at nc = 1). We used other sets
of numerical values for testing, that are not presented here,
and we obtained the same qualitative conclusions as the ones
presented in this article.

III. PHASE DIAGRAM

In this section we analyse the phase diagram obtained
for the Kondo-Heisenberg model within the mean-field ap-
proximation. Considering the different mean-field param-
eters introduced in the previous section, φ0, φQ, SQ, ρ,
and θ, we study the competition or the cooperation between
Kondo screening, and AF or Modulated SL ordering. Our
very systematic approach starts from an arbitrary fixed value
of electronic filling nc. The pure Kondo lattice part of
the Hamiltonian (1), HKL, is thus roughly characterized by
one energy scale58 : the non-interacting Kondo temperature
TK0. Doniach’s argument8 can be reproduced phenomenolog-
icaly within a Kondo-Heisenberg model by comparing TK0

with the energy scale that characterizes the Heisenberg part
HRKKY of the Hamiltonian. Therefore, in this section we fix
the TK0 that provides the energy unit scale of the problem, and
we analyse the phase diagram as a function of the two RKKY
phenomenological energies JAF and JSL, and the tempera-
ture T . The resulting phase diagram is depicted schematically
in figure 1, on the basis of the numerical solution of the self-
consistent mean-field relations, that is shown in figure 2.
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FIG. 1. Schematic phase diagram of the Kondo-Heisenberg model
in coordinates (T, JAF , JSL), showing: the MSL phase transition
(solid line), the AF phase transition (doted line), and the Kondo
crossover (dashed line). Three specific QCP are marked: two of them
indicate a breakdown of Kondo effect (circle) and the third one in-
dicates the onset of MSL (triangle) in a Kondo regime. The various
phases and their related order parameters are defined in section III A.

A. Description of phases and order parameters

As expected, a Kondo regime is obtained at low tempera-
ture for sufficiently small RKKY energies. In contrast pure
RKKY-dominated phases appear when JAF or JSL are large
enough. The general phase diagram (see Figure 1) reveals also
coexisting phases: for the Kondo and the MSL order (KMSL)
and for the Kondo phase, MSL order and AF order (KMSL-
AF). Note that the AF order can coexist with Kondo effect
only in the presence of MSL order. The phase diagram re-
veals also a QCP? and a QCPc at J?SL, JcSL , respectively,
and J?cAF which will be discussed further. Among the five
mean-field parameters that have been introduced, φQ, SQ, and
θ correspond to true order parameters characterizing phase
transitions, whilst φ0 and ρ rather characterize crossovers to
correlated regimes, which are associated respectively with the
spin-liquid and the Kondo heavy-fermion phases. Hereafter,
we classify these phases in four sets: the disordered phase,
the pure AF, the pure MSL, and the mixed AF+MSL ordered
phases.

1. The Disordered phase

The disordered phase covers the paramagnetic high temper-
ature metallic and the Kondo correlated heavy fermion phases.
Within our mean-field approach, the crossover Kondo tem-
perature is signalled by a transition at TK which is character-
ized by a continuous vanishing of the Kondo parameter: for
T < TK with the Kondo regime being realized for ρ 6= 0. Be-
low TK , the mean-field approach may distinguish two kinds of
Kondo regimes, depending on the value of the homogeneous

SL parameter φ0. The Kondo regime with a finite φ0 does not
break any symmetry.

a. The decoupled regime
This regime is established for a temperature higher than all
the interaction energy scales, i.e., when T > TK0, JSL, JAF .
At the mean-field level, this corresponds to a complete decou-
pling between the Kondo spins and the conduction electrons,
with φ0 = φQ = SQ = ρ = 0. The transport and ther-
modynamic properties correspond to that of a light metal, and
the resulting magnetic susceptibility can be directly associated
with free moments.

b. The Kondo regime with φ0 = 0
This usual Kondo regime is defined by the condition ρ 6= 0,
with all other mean-field parameters being nullified. It is
obtained for T < TK when JSL ≈ 0, and it extends to
JAF < J?cAF as shown in figure 2.

c. The Kondo regime with φ0 6= 0
Finite values of both φ0 and ρ characterize this correlated
heavy-fermion regime which does not break any symmetry
(φQ = SQ = 0). Note that the solutions θ = −π/2
with φ0 > 0 and θ = 0 with φ0 < 0 are equivalent to
each other. The apparent symmetry breaking provided by
θ = −π/2 can be recovered by the local gauge transformation
(φ0 > 0, θ = −π/2) → (φ0 < 0, θ = 0). Physically, this
corresponds to a Kondo coupling between conduction elec-
trons and local moments dispersion with opposite sign.

2. The pure AF phase

The AF phase is obtained at low temperature for JAF >
J?cAF . Here, the occurance of long range magnetic AF or-
dering coincides with the suppression of the Kondo effect.
This decoupled AF+metal phase is characterized within our
mean-field approach, by a finite staggered magnetization SQ
together with φ0 = φQ = ρ = 0. We find no coexistence be-
tween Kondo effect and AF order, but such coexisting phases
might appear in different lattice structures. The pure AF phase
breaks lattice and time-reversal symmetries.

3. The MSL phases

The MSL order parameter merges with the mean-field φQ
which was introduced in40,41 within purely Heisenberg mod-
els. Here, the presence of conduction electrons and their
Kondo coupling to the local moments lead to two MSL
regimes:

a. The pure, decoupled, MSL phase
This phase is purely RKKY-dominated phase, characterized
by a finite MSL order parameter φQ, without Kondo effect
(ρ = 0), and without AF order (SQ = 0). Here, the con-
duction electrons are effectively decoupled from the Kondo
spins which form the MSL order. The lattice translation sym-
metry is broken but the local magnetization remains equal to
zero. The Z4 lattice symmetry is also broken as discussed in
Ref..40
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b. The Kondo-MSL phase
The KMSL phase merges at low temperature for a broad range
of intermediate couplings JcSL < JSL < J?SL. In this phase,
conduction electrons are strongly correlated to the MSL or-
dering formed by the local moments. Within our mean-field
approach, this phase is defined by a finite Kondo parameter
ρ coexisting with a finite MSL order parameter φQ. Here,
the order is purely MSL, which means that the system has no
staggered magnetization, i.e. SQ = 0. We find that the Kondo
effective hybridization is inhomogeneous, with θ = −π/2.

Such a phase modulation in the Kondo parameter results
from the lattice breaking of symmetry of the MSL. It is still
compatible with the local U(1) gauge invariance invoked in
our mean-field approach. Indeed, without the MSL order,
any local phase variation of the Kondo hybridization could be
gauged out invoking a local U(1) transformation. However,
in the presence of an MSL order, such a local gauge transfor-
mation for the Kondo term would also have some effect on
the intersite spin-liquid term. Using appropriate local gauge
transformations, one might thus be able to map a set of mean-
field solution θ = −π/2 to θ = 0 but at the same time φ0 and
φQ must be mapped to −φ0 and −φQ respectively

This strongly correlated phase breaks the square lattice
translation and the Z4 symmetries.

4. The mixed AF+MSL phase

a. The decoupled AF+MSL phase
When JAF and JSL are of similar magnitude and are both
much larger than TK0, the system forms an RKKY-dominated
phase with conduction electrons effectively decoupled from
the local moments. This AF+MSL decoupled phase is defined
by finite SQ and φQ, together with ρ = 0. This appears in a
very narrow part of the phase diagram. Such a phase breaks
time reversal symmetry as well as the lattice translation and
Z4 symmetries.

b. The Kondo coupled AF+MSL phase
This Kondo coupled AF and MSL phase (KMSL-AF) is char-
acterized by non-zero values of all the considered mean-field
parameters, φQ, φ0, SQ, and ρ. It is realized when the three
relevent energy scales, TK0, JAF , and JSL are of the same
order of magnitude. This phase breaks the same symmetries
broken by the decoupled AF+MSL phase.

B. Numerical results

For JSL = 0, the Kondo and AF order competition ex-
hibits a QCP at J?cAF = 0.2TK0 (see figure2.a ) which is both
a QCP? (breaking of the Kondo effect) and a QCPc (onset of
long range magnetic order). The value of J?cAF is of the same
order of TK0 and this is consistent with the Doniach’s argu-
ments. The Kondo to AF transition is of first order nature
as emphasized by the discontinuities of the effective Kondo
coupling ρ and the staggered magnetization field SQ at the
transition (see figure2.b ). The Kondo to Normal metal phase
transition manifests itself as a second order phase transition

FIG. 2. (Color online) Phase diagrams ( a) c) e)) and variation of the
mean fields at T/TK0 = 0.01 ( b) d) f)) for JK/tc = 0.8686, the
conducting electron density nc = 0.7 and TK0/tc = 0.098 where
the MSL phase transition is presented in solid line, the AF phase
transition in doted line, and the Kondo crossover in dashed line. We
chose the regime JSL = 0 as a function of JAF in a) and b). We
show the regime JAF = 0 as a function of JSL in c) and d) and an
intermediary case Jc

SL < JSL < J?
SL as a function of JAF in e) and

f). The grey area delimit the Kondo phase with φ0 = 0.

because of the mean field approximation but it should indeed
be a crossover. The AF to metal phase transition is second
order in our case.

For JAF = 0, both the Kondo local and spin liquid in-
tersite screening reveals two QCPs (see figure2.c) : a QCPc

at JSL = TK0 and a QCP? at J?SL = 3TK0. The QCPc

at JSL = TK0 characterizes a second order phase transition
from the Kondo phase with φ0 6= 0 to the KMSL phase hy-
brid phase as shown by the continuity of the modulated spin
liquid field φQ at the transition (see figure2.d). The QCP?

at JSL = 3TK0 appears at the KMSL to MSL second order
phase transition as emphasized by the continuous vanishing ot
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the effective Kondo field ρ at the transition. In the MSL phase,
the homogeneous and modulated spin liquid mean fields φ0

and φQ have the same values φ0 = φQ. This is related to the
absence of second nearest neighbour coupling and was first
signalized in.40 The metal to Kondo and Kondo with φ0 = 0
to Kondo with φ0 6= 0 changes of state appears as phase
transition because of the mean field treatment but are both
crossovers. The metal to MSL phase transition is second or-
der. In contrast, the transition from the Kondo with φ = 0
state to a MSL phase is a first order phase transition.

The KMSL-AF phase appears at an intermediary SL cou-
pling JcSL < JSL < JcSL as shown in the figures 1 and
2.e. In the KMSL-AF phase, the staggered magnetisation
SQ increases with the AF coupling as shown in figure 2.f.
The phase transition between the KMSL and the KMSL-AF
phases is second order and this is signaled by the continuous
appearence of SQ in figure 2 f. However, the transition from
the KMSL-AF to the MSL+AF phases and from the MSL+AF
to AF phases are both first order as attested by the disconti-
nuity of the order parameters φ0, φQ and SQ mean fields at
the transitions (see figure2.f ). We note the existence of the
MSL+AF coexisting phase in a very narrow part of the phase
diagram (between the KMSL-AF and AF phases). This coex-
isting phase disappears for larger values of JSL and tempera-
ture. The θ phase is equals to−π/2 in the KMSL and KMSL-
AF phases and vanishes with the effective Kondo mean field
ρ. The metal to Kondo phase change is a crossover while
the kondo to KMSL and the metal to AF changes of state are
real second order phase transitions. Finally, the Kondo to AF
change is a first order phase transition.

C. Discussion

From this model, we show the emergence of two quan-
tum critical lines in the (JAF, JSL) phase diagramm, end-
ing on three QCPs when either JAF or JSL vanishes. One
line, denoted with a ? marks the Kondo breakdown. The
other critical line, with a c index, characterizes the break-
ing of lattice translation symmetry. . A QCP?c appears at
the Kondo-AF phase transition (JSL = 0, JAF = 0.2TK0)
and a QCP? occurs at the KMSL to MSL phase transition for
(JSL = 3TK0, JAF = 0). A QCPc separates the Kondo and
KMSL phases (JSL = TK0, JAF = 0).

A QCP? separates a heavy Fermi liquid phase where the
conventionnal Luttinger theorem59–61 holds, and a fraction-
alized phase in which such a theorem does not apply any
longer. In other words, the number of quasiparticles in the
heavy Fermi liquid phase is the sum of the conduction elec-
trons and localized electrons. Contrary to that, light conduc-
tion electrons provide the metallic properties of the fraction-
alized phase. From this theoretical definition emerged the fol-
lowing experimental signature of a Kondo breakdown QCP?

in a periodic system: the Fermi surface is expected to vary
from a large to a small volume as the QCP? is crossed from the
Kondo to the RKKY phase. Other signatures of a QCP? are
also expected for crystals as well as for non periodic systems,
including, for example, a change of sign in the Hall constant.

This mechanism drives the physics in the vicinities of both the
QCP? (JSL = 3TK0) and the QCP?c (JAF = 0.2TK0).

When the RKKY interaction produces a magnetically or-
dered phase, the magnetic QCPc might coincide or not with
the Kondo breakdown QCP?. This issue relies on the possi-
ble coexistence of the Kondo effect with magnetic ordering
since QCPc=QCP? means that the local Kondo screening dis-
appears precisely when the magnetic moments order sets in.
This issue depends on several model parameters including the
nature of magnetic ordering, and on the dimensionality of the
physical system.62 This mechanism occurs close to the QCPc

(JSL = TK0) and the QCP?c (JAF = 0.2TK0). The physics
near the QCP?c is driven by the Kondo breakdown and lattice
symmetry breaking.

IV. HIDDEN ORDER PHASE AS MODULATED SPIN
LIQUID IN URu2Si2

In this section, we apply the formalism developped in the
section II, III and IV to the particular case of URu2Si2.

The MSL model assumes that HO order parameter has both
local and itinerant characteristics.40,41 The MSL model repro-
duces qualitatively different experimental observations such
as the entropy quenching, the (T,P) phase diagram and the
MSL gap evolution.

In the following, the Kondo coupling, JK = 54.37meV
and the conduction electron hopping tc = 63.31meV are
set to establish a Kondo temperature around TK = 70K.
This value of Kondo temperature is suggested by resistivity
measurements33,64,65 and optical conductivity66 experiments.
Hall experiments72–74 and Angle Resolved Photo-Emission
Spectroscopy (ARPES)69,75–77 measurments confirm the ex-
istence of hybridized bands.

The spin liquid coupling JSL = 11.37meV is adjusted to
the HO phase transition temperature T0 = 17.5K as indicated
in the specific heat data.64 The tunning of JAF reproduces the
pressure tunning given by the experiments.41

A. The variation of entropy and specific heat

1. Main Experimental results

The hidden order phase is signalled by a large jump in the
specific heat at 17.5K27,64 characterizing a second order phase
transition. The total entropy quenched in this phase is around
0.3kBln(2) per U atoms.33,64 In spite of this entropy quench-
ing, the measured magnetic moment is m = 0.03.µB .32 Con-
sequently, the HO phase cannot be explained by an antiferro-
magnetic (AF) phase.33

2. Numerical results

The entropy S per site, with S = −∂FMF /∂T , is plotted in
figure 3 a) for three following cases : a pure Kondo phase with
TK = 70K (dashed line), a Kondo + φ0 phase with TK =
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FIG. 3. Temperature dependence of (a) the entropy, (b) the Som-
merfeld coefficient C/T, for a pure Kondo ground state (dashed line,
JSL=5 meV and JAF =0), a Kondo-MSL ground state (solid line,
JSL=11.37 meV and JAF =0), and an AF ground state (doted line,
JSL=11.37 meV and JAF =1.5 meV). Note that the entropy evolu-
tion around TK is abrupt because of the mean-field approximation
for the Kondo interaction. A crossover is expected around TK be-
yond the mean-field. We clearly see that the Kondo-MSL scenario,
unlike the pure Kondo one, is characterized by a peak in C/T around
T=17K. Note that the too-sharp peak obtained at the Néel tempera-
ture within the AF scenario (doted line) should be broaden within a
more realistic three-dimensional lattice (see the text).

70K and MSL order with T0 = 17, 5K (solid line) and a
Kondo + φ0 phase with TK = 70K and AF order with TN =
24K (dotted line).

The entropy is quenched around the Kondo temperature
TK ≈ 70K giving S = kBln2. Note that the little differ-
ence in entropy with kBln2 at TK in figure 3 originates from
the entropy of the conduction electron that are not all frozen
at TK . The abrupt decrease of entropy around T = TK is
an artifact of the mean field approximation that describes the
Kondo crossover by a phase transition. The entropy in the
Kondo phase below TK presents two different regimes of de-
creasing entropy (dashed line on figure 3 a) ). The first regime
occurs around TK and is related to the local Kondo screen-
ing. The second regime, occuring for T < Tcoh , is related
to the coherence of the Fermi liquid. This smooth crossover
at Tcoh manifests itself with the appearence of the coherent
Fermi liquid. In this regime, the entropy decreases linearly to
zero. This behaviour is coherent with earlier results (see e.g.
Ref58).

The entropy for higher spin liquid coupling JSL =
11.37meV is represented in figure 3 a) by the solid and dot-
ted lines. The variaiton of the entropy between the pure Kondo
and Kondo with φ0 phases (respectively dashed and solid (and
dotted) lines on figure 3 a) ) can be explained by the spin liquid
correlations appearing with the Kondo screening at TK that
contributes to freeze a part of that entropy. Note that in the
model presented here, we do not take into account the orbital
symmetry of the Uranium atoms and the crystal field splitting
that also contributes to the determination of TK .

At the Kondo to KMSL phase transition, the variation of
entropy takes place at T0 (see dashed line in figure 3 a) ). This
change can be related to a jump in specific heat as observed
in real compound.64,65 Moreover, the variation of entropy be-
tween T0 and T = 0K is around 0.3kBln2 which is near the
value measured in the bulk coumpound.33,64 This variation is
also seen at the Kondo-AF transition (dotted line on the figure

3 a) ) and this suggests a similar mechanism for this entropy
quench between KMSL and AF phases.

Note that the coherence temperature of the Kondo lattice
Tcoh is smaller than the KMSL phase transition temperature
T0. This implies that the Kondo screening is not complete
at T0. The partial Kondo coupling existing above T0 may ex-
plain the band structure reconfiguration observed around 30K
in both optical conductivity,67,68 ARPES experiments69 and
Scanning Tunneling Microscopy (STM).70 It is a strong fea-
ture of our model that it describes the formation of the Kondo
screening within a simple coupling to an itinerant band.

The Sommerfeld coefficient C/T = ∂S/∂T is presented
in figure 3 b). We see a jump in the specific heat at the
Kondo to KMSL transition (solid line) and at the Kondo to
AF transition (dotted line) corresponding to a second order
phase transition. Note that the jump in specific heat appears at
C/T ≈ 200mJmol−1K−2 which is close to the experimen-
tal value. From the three curve of the figure 3 b), we show that
Kondo lattice Fermi liquid coherence only cannot reproduce
a peak in C/T around 17K. In order to reproduce this peak, a
RKKY-like mechanism is required and this is provided here
by the MSL ordering.

The value of the peak of the Sommerfeld coefficient at the
AF phase transition is higher than in the real compound. This
results from the square lattice approximation in which the
Kondo breakdown coincides with AF order. We are aware
that a 3-dimensional model might lead to a coexistence be-
tween Kondo and AF; in that case we could expect the peak
in C/T to be less sharp at the AF transition. Note that the
peak in Sommerfeld coefficient appearing below T0 around
T ≈ Tcoh characterizes the formation of the coherent state
constituting the Fermi liquid. This peak does not appear in the
real compound where a signature of a superconducting state is
observed.

B. The (T,P) phase diagram and evolution of Fermi surface

1. Main Experimental results

The Temperature-Pressure phase diagram was extracted
from neutron scattering data28,29,71 and from resistivity
measurements.65 It shows a second order HO phase tran-
sition at T = 17, 5K at ambient pressure. However, it
has been shown that HO phase suffers a first order phase
transition to AF phase with magnetic moment m = µB at
P = 0.5GPa.28,29,65,71 Conductivity measurements,33,79angle
resolved photoemission spectroscopy (ARPES),75 infrared
spectroscopy,67,68 Hall effect72,73 and STM70 show a gap
opening at the Fermi surface inducing a Fermi surface recon-
struction at the HO phase transition. Hence Fermi surface and
transport properties exhibit strong similarities in both the HO
and the AF phases.78

2. Numerical results

The (T, JAF ) phase diagram presented in figure 4 shows
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FIG. 4. a) (T, JAF ) phase diagram in URu2Si2 with JSL =
11, 37meV , JK = 54, 37meV and tc = 63, 31meV . Here JAF

represents phenomenologically the effect of pressure. b) Evolu-
tion of the mean field parameter and the staggered magnetization
SQ for the ground state. In both of figure, JSL = 11, 37meV ,
JK = 54, 37meV and tc = 63, 31meV .

a second order phase transition between the Kondo and the
KMSL phases and a first order transition between the KMSL-
AF and AF phases. This is in agreement with the INS
experiments.28,29,71 We observe a strong Fermi surface recon-
struction with folding at the Kondo-KMSL phase transition
(at T0 = 17.5K) (see figure 5 e) and c) ). Note that in
our model, this reconstruction is associated with the Z4 and
lattice symmetry breaking appearing simultaneously with the
MSL order parameter. As is displayed by quantum oscillation
experiments,78 the HO and AF phases exhibits similar Fermi
surfaces. This similarity results from a folding of the initial
Fermi surface (see figure 5 a), b) and c)). Moreover, in our
model, these similarity is emphasized by the progressive ap-
pearence of AF order in KMSL phase that steadily destroys
the Z4 symmetry breaking (see figure 5 b), c) and g)). A de-
tailed analysis of the Fermi surfaces presented on the figure 5
is proposed in the appendice B.

C. Evolution of MSL gap

1. Main Experimental results

Inelastic neutron scattering experiments exhibit a resonance
at the commensurate wave vector Q0 = 2π

a (1, 0, 0) which
transforms itself into a strong elastic AF signal for a pres-
sure P > 5kbar.30,31 An inelastic resonance occurs in the
AF and HO phases at the incommensurate wave vector Q∗ =
2π
a (1 ± 0.4, 0, 0). Two distincts gaps exist in the system :

∆Q∗ ≈ 5meV which is related to the transport properties and
∆Q0

≈ 2.5meV which characterizes the HO phase itself.30,31

2. Numerical results

The direct gap, ∆X1
(see in Appendice A Introduction, sec-

tion 1 c and 1.d) exists only in the KMSL state and vanishes

FIG. 5. Dispersions of a) the paramagnetic metal phase, b) the AF
phase, c) the KMSL phase, d) the Kondo phase with φ = 0,and with
e) φ 6= 0, f) the spinons of the MSL phase and g) the KMSL-AF
phase in the first Brillouin zone. The solid line represents the Fermi
surface at the Fermi level (E = 0). In e), the hole states are confined
between the two solid lines. The similarity between the AF (Fig. b)
and MSL (Fig. c) folded Fermi surfaces is consistent with quantum
oscillation experiments realized under pressure 78.

at the KMSL-AF to AF phase transition (see figure 6). More-
over, ∆X1 is associated with the vector Q (see in Appendice
A section 1.c and 1.d). ∆X1 vanishes continuously at the tem-
perature T = 17, 5K = T0 confirming the second order na-
ture of the KMSL phase transition.

D. Evolution of the spectral density

In this section we analyse the local density of states ρ(ω) =
−1

2Nπ

∑
k Im(Gc(ω, k)) where the conduction electron Green

function Gc(ω, k) is computed from the mean field Hamilto-
nian (5).
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FIG. 6. a) Direct gap at theX1 point as a function of JAF for ground
state. b) Direct gap at the X1 point as a function of the temperature
in KMSL state (JAF = 0.31meV ).

1. Main Experimental results

A gap appearing around T=30-80K have been detected
by optical conductivity measurments.67,68 The conclusions of
the authors is that the band structure reconstruction around
T=30K is a precursor to the HO phase transition T=17,5K.
These observations have been emphasized by the observation
of a band close to the Fermi level by ARPES69 and pseudo-
gap measurments by STM.70

2. Numerical results

The evolution of the spectral density for different temper-
ature is presented in figure 7. We see that a gap appears in
the Kondo phase which increases with the decrease of tem-
perature. This gap has a value close to 20meV for T=25K.
This value is closed to the experimental value (12meV).67,68

Below the KMSL phase transition, we see the appearence of
an additionnal low energy structure which is characteristic of
the MSL order. We think that the gap observed above T0 in
the optical conductivity measurements is directly correlated
to the partial Kondo screening occuring at this temperature.
This gap remain independant of the KMSL gap which appear
below T0. Note that the gap observed in optical conductivity
and the gap associated with the incommensurate wave vector
Q?, ∆Q? observed by neutron scattering are both related to
the transport properties of the compound.

V. CONCLUSION

We demonstrate the existence of a stable solution for
the Kondo-MSL-AF competition and generalize earlier
approach40,41 taking into account the conducting regime. The
modulated spin liquid is a non conventional magnetic ordered
phase which competes with the Kondo screening in a simi-
lar way as to what happens with the AF magnetic order. The

FIG. 7. Spectral density in the URu2Si2 for a KMSL ground state
(JSL = 11.37meV and JAF = 0) in the effectively decoupled high
temperature phase a) at T=100K, the Kondo phase b) at T=60K, c)
at T=25K and d) at T=20K and in the KMSL phase e) at T=15K
and f) at T=1.44K. The van Hove singularity appearing in figure a)
is standard for tight-binding model on a square lattice, and it would
coincide with the Fermi level only at electronic half-filling. Here,
we precisely chose nc=0.7 in order to locate the Fermi level suffi-
ciently away from this singularity which has no physical meaning
for URu2Si2.

existence of two QCPs that emerged from the competition of
Kondo and MSL is the signature of our model. In particular,
the KMSL phase, which sees the coexistence of Kondo and
MSL order, is a new outcome of our model.

This stable solution produces two distinct gaps in the elec-
tronic band structure. One gap is related to the Kondo screen-
ing as well as to the transport properties. The other gap is re-
lated to the MSL order parameter and the commensurate vec-
tor Q. These two gaps can be considered independently and
mark a clear distinction between the magnetic and the con-
ducting properties of these systems. The existence of these
two gaps on the square lattice is another promising feature of
this model.

Our results are in qualitative good agreement with the ex-
perimental phase diagram for the URu2Si2 compound.28 We
found a first order KMSL to AF phase transition and a sec-
ond order Kondo to KMSL phase transition. Futhermore, the
evolution of the Fermi surfaces denotes a Fermi surface re-
construction at the KSL/KMSL phase transition.69,75–77 Note
that in our model, the reconstruction of the Fermi surface at
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the Kondo-KMSL phase transition is related to the MSL order
parameter unlike what is proposed by other workers in67–69 .
We also find a variation of entropy around 0.3Rln(2) closed to
the variation of entropy measured in the realistic compound.64

To sum up, our model provides results is in quantitative
agreement with the temperature evolution of entropy, Som-
merfeld coefficient and spectral density. Our results are in
qualitative agreement with the evolution of Fermi surface, the
MSL gap evolution and phase diagram. The extension of our
work to the realistic 3D lattice should produce quantitative
agreement in (T,P) phase diagram, gap evolution and Fermi
surface evolution. Moreoever, it should be possible to cal-
culate realistic electronic band structure for ARPES experi-
ments, Raman scattering and Inelastic Neutron Scattering.
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Appendix A: Electronic band structure

1. General considerations

The phase diagram presented in section III reveals the ex-
istence of several phases characterized by different order pa-
rameters. In the present section, we exhibit the specific signa-
ture of each of these phases on the electronic band structure
and on their associated Fermi surfaces.

We present the electronic band structure in the first Bril-
louin zone of the square lattice (FBZ) (see figure8).The elec-
tronic band dispersion are plotted along the four directions
M ′Γ− ΓX −XM −MΓ (see figure8) where M ′,Γ, X and
M are the high symmetry points of the FBZ. Note that the di-
rectionM ′Γ is considered here to emphasize the Z4 symmetry
breaking in the MSL phases.

The zone folding manifest in the AF and MSL phases re-
duces the First Brillouin zone to the magnetic Brillouin Zone
(MBZ) (dotted line on the figure 8). The boundaries of the
MBZ are delimited in the four directions kx = ±ky ± π. For
simplicity, we signalized the two characteristic points local-
ized on the bound of the MBZ : X1 in (kx = π/2, ky = π/2)
and X2 in (kx = −π/2, ky = π/2).

For each dispersion, we plot the original and the folded
electronic band dispersions. The original and folded elec-
tronic dispersions are related to the wave vector Q. Conse-
quently, an excitation between this two layers indicates the
presence of folding and may be related to the excitation wave
vector Q.

FIG. 8. The first Brillouin zone of the bidimensionnal square lattice
is presented in solid line. For simplicity, the side of the real square
lattice is set to a = 1. The Brillouin zone used in the case of folded
Fermi surface is presented in dotted line. The high symmetry point
of the first Brillouin zone are the center of the zone Γ, the center of
a side X , and a corner M (or M ′). The characteristical direction of
the first Brillouin zone are the directions ΓM , ΓX , XM and ΓM ′.
TheX1 andX2 are two charateristic points of the magnetic Brillouin
zone.

2. Electronic dispersion in the different phases

a. The Disordered phases

a. The decoupled phase : Paramagnetic metal and free
moments
The electronic band structure of the metal + free moments
phase is presented in the figure 9. The spinons are degenerate,
without dispersion and centered on zero energy. The spinons
are non interacting and non dispersive.

Note that the energy level of the band crossing (solid and
dashed line 9 c)) occuring at the X , X1 and X2 points is de-
termined by the chemical potential µc. These band crossings
between the layer and the folded layer occurs in the four direc-
tions ky = ±π ± kx. This helps at determine the boundaries
of the reduced Brillouin zone (dashed line on figure 8). Nev-
ertheless, the conduction electron dispersion does not present
any folding signature, as expected for the metallic phase.

b. The Kondo phase with φ0 = 0
The electronic band structure and the electronic dispersion of
the Kondo phase with φ0 = 0 are plotted in the figure 10.
There is now the appearence of a gap in the electronic band
structure around the Fermi level. The hybridization between
the conduction electrons and the local moments leads to an ex-
tended Fermi surface (FS). This FS enlargement is associated
with the presence of the Kondo quasiparticles in the system
and is related to the decreasing of the resistivity occuring be-
low TK in Kondo lattice systems.1 This indirect gap induced
by Kondo interaction (see figure 10 b)) approximatively equal
to 1

2 (tc−
√

(t2c+4ρ2)) depending on the electronic bandwidth
and on the amplitude of the Kondo coupling ρ and vanishes
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FIG. 9. The electronic band structure of the local moments a) and
the conduction electons b) in the paramagnetic metal + free moments
phase in the first Brillouin zone. In this case φ0 = 0, φQ = 0, ρ = 0,
θ = 0, SQ = 0, µ = 0 and µc/TK0 = −7.45 at T/TK0 = 2.,
JSL = 0 and JAF = 0. In the figure c) are plotted the original
(solid) and folded (dashed) dispersions of the c electron in the char-
acteristic directions of the first Brilouin zone. The Fermi level is set
at E=0.

with the Kondo phases.
c. The Kondo phase with φ0 6= 0

The electronic band structure and the single particle disper-
sion of the Kondo phase with φ0 6= 0 are plotted on the figure
11. In this phase, the Kondo screening hybridizes two layers
with opposite dispersions. This implies the opening of a di-
rect gap between the two layers. The direct gap at the Γ point
is proportionnal to ρ2/4tc. This gap vanishes with the Kondo
phase. Note that no symmetry is broken between the φ = 0
and φ 6= 0 Kondo phases. This is typical of a crossover sepa-
rating these two phases. Also, this crossover is accompagnied
by a change of the Fermi surface (see fig 5 d) and e)) .

b. The decoulped phase : AF+metal

In the AF phase, the electronic band structure is composed
by the local moments (see figure 12 a)) and the conduction
electrons (see figure 12 b)). In our model, the spinons in the
AF phase are totally flat and non degenerate (see figure 12 a)).
The gap between the two spinons is equals to 8.SQ.

From the magnetic type Kondo mean field decoupling,53

we deduce the magnetic interaction of the local mo-
ments with the conduction electrons. Considering the
first order perturbation of the Kondo interaction in the AF

FIG. 10. In a), the electronic band structure of the Kondo phase
with φ0 = 0 in the first Brillouin zone. In this case φ0 = 0, φQ = 0,
ρ/TK0 = 4.40, θ = 0, SQ = 0, µ/TK0 = −0.58 and µc/TK0 =
−9.37 with T/TK0 = 0.5, JSL = 0 and JAF = 0. In the figure
b) is plotted the original (solid) and folded (dashed) dispersions of
the electronic band in the four characteristic directions of the first
Brilouin zone. The zoom near the Fermi level (E=0) is shown in the
figure c). Note the direct gap in the Γ and M point.

phase, the mean field Kondo lattice Hamiltonian writes
HMF
KL ≈ JK

∑
q,σ

[
c+qσ(σSQ)cq−Qσ

]
. The conducting

electron spectrum writes Ec ≈ 1
2 tc(εq + εq−Q) − λ ±

1
2

√
t2c(εq−Q − εq)2 + 4SQ. The magnetization of the local

moments induce a gap in the conduction electrons band struc-
ture (see figure 12 c) and d)). The direct gap at the X , X1 and
X2 points between the original (solid) and the folded (dashed)
layer equals 2SQ (see figure 12). The magnetization seen by
the conduction electrons is four times smaller than for the cor-
responding local moments because of the local aspect of the
Kondo coupling. This gap opening is accompanied by a fold-
ing of the conduction electron band structure in relation with
the lattice symmetry breaking. Moreover, this gap is related
to the commensurable vector Q.
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FIG. 11. In a), the electronic band structure of the Kondo phase
φ0 6= 0 in the first Brillouin zone. In this case φ0/TK0 = 0.19,
φQ = 0, ρ/TK0 = 4.25, θ = −π/2, SQ = 0., µ/TK0 = −0.99
and µc/TK0 = −9.81 with T/TK0 = 0.5, JSL/TK0 = 0.5 and
JAF = 0. In the figure b) is plotted the original (solid) and folded
(dashed) dispersions of the electronic band in the four characteristic
directions of the first Brilouin zone. The zoom near the Fermi level
(E=0) is shown in the figure c). Note the direct gap in the Γ and M
point.

c. The MSL phases

a. The Decoupled phase : MSL + metal
The MSL phase is an itinerant phase associated with the dis-
persion relation γq−Q2 whose dispersion is presented in Figure
13. We clearly see a Z4 symmetry breaking with the opening
of the direct gap at the point X1, called ∆X1 , absent at the
X2 point (see figure 13 c)). This Z4 symmetry breaking has
been introduced in the initial MSL model40 following the ob-
servation on susceptibility measurements63 in the HO phase
of URu2Si2 compound. At the X2 point, the two bands are
in contact with the Fermi level. In fact, this contact exists
along the flat bands directions ky = ±π + kx. Note that hole
or electron pockets emerge along these two directions in the
spinon dispersion at the conduction electron Fermi surface in
the presence of second nearest neighbour term in the disper-

FIG. 12. In a), the electronic band structure of the the f electrons
and the conducting electrons b) in the AF phase in the first Brillouin
zone. In the AF state φ0 = 0, φQ = 0, ρ = 0, θ = 0, SQ/TK0 =
0.51, µ/TK0 = 0.10 and µc = −7.10 at T/TK0 = 0.01, JSL =
0. and JAF /TK0 = 0.5. In the figure c) are plotted the original
(solid) and folded (dashed) dispersions of the c electron band in the
characteristic directions of the first Brilouin zone. The zoom near the
Fermi level (E=0) is shown in the figure d).

sion relation.40 The gap at the X1 point, ∆X1
= 8φQ, can be

associated with the vector Q and only depend on the modu-
lated spin liquid mean field parameters The spinon dispersion
reveals a non-symetrical folding, originating in the association
of Néel order lattice symmetry breaking with Z4 symmetry
breaking.

b. The Correlated phase :KMSL
The transformation of the electronic band structure at the
Kondo-KMSL phase transition can be observed throughout
the figure 11 and 14. We observe a strong electronic band
reconstruction with the emergence of folding due to the lat-
tice symmetry breaking. Moreover, the opening of a gap only
at the X1 point emphasizes the Z4 symmetry breaking in the
KMSL phase. This gap is also associated with the commen-
surate vector Q. The Z4 symmetry breaking is related to the
modulated spin liquid mean field φQ. The direct gap occuring
at the X1 point,∆X1 , is approximatively equal to 4φQ. This
gap is a characteristic signature of the MSL phase.

d. The coexisting phase

The dispersion of the electronic band structure of the co-
existing KMSL-AF state is presented in figure 15. The gap
induced by the modulated spin liquid is compensated by the
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FIG. 13. In a), the electronic band structure of the the f electrons and
the conducting electrons b) in the MSL phase in the first Brillouin
zone. In the MSL state φ0/TK0 = 1.14, φQ/TK0 = 1.14, ρ = 0,
θ = 0, SQ = 0, µ = 0 and µc/TK0 = −7.10 with T/TK0 = 0.01,
JSL/TK0 = 5 and JAF = 0. In the figure c) are plottedthe original
(solid) and folded (dashed) dispersions of the c electron band in the
characteristic directions of the first Brilouin zone. The Fermi level is
set at E = 0.

AF gap. Consequently, the Z4 symmetry breaking is progres-
sively destroyed. On the electronic band dispersion shown in
Figure 15 c), we see the onset of a gap between the origi-
nal and folded electronic band that does not exist in the pure
KMSL phase electronic dispersion (see figure 14 c)). This
direct gap at the X2 and the X points (kx = π,ky = 0)
approximatively equals to 4SQ. It is directely related to the
magnetization of the system. This gap exists only in the anti-
ferromagnetic phase and implies a less pronounced aspect of
the Z4 symmetry of the Fermi surface. The direct gap ∆X1

is

approximatively equal to 4
√
φ2
Q + S2

Q and it also depends on
the magnetization of the systems. Note that both direct gaps
∆X1

and ∆X2
are related to the wave vector Q and this em-

phasizes the similar symmetry breaking between the AF and
MSL phases.

Appendix B: Fermi Surfaces: Characteristical signatures of the
different phases

We display the evolution of the electronic band structure be-
tween the different phases. We observe the onset of gaps the
systems characterizing the existing different phases. More-
over, we see that the electronic band structure evolves in the

FIG. 14. In a), the electronic band structure of the KMSL phase
in the first Brillouin zone. In this case φ0/TK0 = 0.6, φQ/TK0 =
0.36, ρ/TK0 = 2.99, θ = −π/2, SQ = 0, µ/TK0 = −0.98
and µc/TK0 = −8.8 with T/TK0 = 0.01, JSL/TK0 = 1.84 and
JAF /TK0 = 0.05 . In the figure b) is plotted the original (solid)
and folded (dashed) dispersions of the electronic band in the four
characteristic directions of the first Brilouin zone. The zoom near
the Fermi level (E=0) is shown in the figure c). Note the direct gap
in the Γ and M point and the gap at the X1 point.

different phases, as shown in the figure 3.The system can ex-
hibit four types of order parameters that can coexist in the
system.

1. The Kondo order parameter

The Kondo effect is characterized by a volume change of
the Fermi surface. This change of volume is a consequence of
the hybridization of the f and c electrons. It occurs between
the decoupled phases (see 3 a), b) and f)) and the Kondo phase
(figure 5 d) and e)). This explains the Kondo breakdown and
the accompanied existence of the QCP in the phase diagram
at J?SL and J?cAF (see fig 1). The Kondo breakdown is difficult
to observe at the KMSL to AF phase transition because of the
lattice symmetry breaking occuring at these phase transition.
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FIG. 15. In a), the electronic band structure of the KMSL-AF phase
in the first Brillouin zone. In this case φ0/TK0 = 0.6, φQ/TK0 =
0.33, ρ/TK0 = 2.7, θ = −π/2, SQ/TK0 = 0.13, µ/TK0 = −0.78
and µc/TK0 = −8, 35 with T/TK0 = 0.01, JSL/TK0 = 1.84 and
JAF /TK0 = 0.15 . In the figure b) is plotted the original (solid)
and folded (dashed) dispersions of the electronic band in the four
characteristic directions of the first Brilouin zone. The zoom near
the Fermi level (E=0) is shown in the figure c).

Nevertheless, change of Fermi surface volume, without fold-
ing, is a clear signature of the Kondo effect.

2. The lattice symmetry breaking

The lattice symmetry breaking occuring in the magnetic
ordered phases manifests itself in the folding (or non-
symmetrical folding) of the Fermi surface (see (see 5 b) c)
f) and g). These lattice symmetry breaking is a clear signature
of the magnetically ordered nature of the phases. The folding
is observable by the periodicity which shows up in the Fermi
surface. We see that this periodicity is related to the limit of
the MZB. This folding can also be observed by neutron scat-
tering. The folding of the Fermi surface is a typical feature
of magnetically ordered phases (AF and MSL). The conse-
quence of that is the enlargement of the Fermi surface which

is not related to Kondo breakdown physics in this case.

3. The Z4 symmetry breaking

These symmetry is broken in the Fermi surfaces with MSL
charateristics (see 5 d),c) and g)). The Z4 symmetry breaking
is emphasized by the direct gap opening in the electronic dis-
persion along the flat band direction ky = −kx ± π which is
observable at X1 on the figures 10, 14 and 15 . The Z4 sym-
metry breaking of the Fermi surface is a characteristic signa-
ture of the MSL states.

4. The time reversal symmetry breaking

The time reversal symmetry occurs only in the AF phase
and originates the AF order parameter. These symmetry can-
not be directly seen on the Fermi surface. However, the elec-
tronic dispersion associated with the AF phase (figure 12 and
15) exhibits a gap opening between the two conduction elec-
tron bands. These specific gap, proportionnal to SQ and re-
lated to the commensurate vector Q, could be a specific sig-
nature of the time reversal symmetry.

The difference between the Kondo phases with φ0 = 0
and φ0 6= 0 is observable in the electronic band struc-
ture and in the corresponding Fermi surfaces. If the Fermi
surfaces of these two phase are different, they preserve the
same symmetry and conserve the same volume. A crossover
should describes the transition between these two phases. A
gauge invariance manifest itself in the Hamiltonian. We see
that the Hamiltonian is invariant under the transformation
(φ0, φQ, b0, ibQ) −→ (−φ0,−φQ, ibQ, b0). These invariance
corresponds to the invariance by changing the phase of the
fermions f like fR,σ −→ ei(

π
2−Q.R)fR,σ . These invariance

gives another explanation of the Kondo phase with φ0 6= 0.
The inhomogeneous coupling between the two phases can be
understood as a homogeneous Kondo coupling between two
layers with opposite dispersions. These homogeneous cou-
pling does not change the symmetry of the phases.
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