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1 Introduction

The thesis deals with Gaussian random field (GRF) models and their use in
functional approximation. More particularly we focus here on a novel class
of kernels leading to Gaussian random fields with paths that are orthogonal
to the space of additive functions. One of the main motivations of this work,
where a number of concepts from functional analysis and spatial statistics
meet, is to modestly contribute to recent extensions of Gaussian process
regression techniques for high-dimensional problems.

With growing dimension, kriging suffers from the curse of dimensionality
[BC56]. Typical designs require a number of observations that grows expo-
nentially with respect to the dimension. A promising approach to escape
the curse is described in [DGR12], where the used kriging models are based
on generalized additive models [HT90]. The results confirm the suggestion
about additive models that was already expressed in [Cre93, p.284]: ”It would
be worth investigating whether this regression technology could be adapted to
spatial prediction”.

[DGR12] shows that Gaussian random fields with an additive covariance
structure have additive paths, i.e. paths of the form f(x1, . . . , xd) = c +
f1(x1) + . . .+ fd(xd). Kriging models based on such kernels turned out to be
particularly useful in high dimensional. Experiments were carried out with a
linear budget of observations in which additive models worked well compared
to standard kriging models.

In other cases the assumption of additivity is too restrictive. Therefore
it seems reasonable to enrich an additive model in order to allow for non-
additivity. Finding a suitable complement for additive kernels is one of the
main objectives of this thesis.

In order to reach this goal we start by identifying the additive part of
the underlying Gaussian random field. We assume L2 paths and, inspired by
[DGRC13], we offer a decomposition of L2 into the subspace A of additive
functions and its orthogonal complement which we call the space O of ortho-
additive functions. We derive the according orthogonal projections πA and
πO.

In the sequel of the thesis we extent πA and πO to projections which
can be applied to covariance kernels. Then we consider centered Gaussian
random fields whose covariance structures are expressed by projected kernels
and state that their paths are additive, respectively ortho-additive.
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The thesis shows the full calculation of the additive and the ortho-additive
projection of kernels which have a product structure

k(x,y) =
d∏
i=1

ki(xi, yi) .

In particular explicit formulae are presented in the case of a squared expo-
nential (or Gaussian) kernel.

It is also an objective of the thesis that the newly projected kernels are
assessed. For this purpose we offer an original cross-check technique which
illustrates the quality of kriging predictions generated with the true kernel
and with a set of misspecified kernels.

We hence propose to use a GRF model which is based on a kernel of the
form α kA + (1 − α) kO. kA and kO denote respectively the additive and
ortho-additive parts of a Gaussian kernel, α is some coefficient of additivity
in [0, 1]. A numerical experiment is conducted for investigating the properties
of the Maximum Likelihood Estimator of α. The obtained results suggest
that it is unrealistic to hope recovering α based on a single realization in the
proposed experimental setup.

The outline of the thesis is as follows. In Chapter 2 we recall some
basic definitions and properties about random fields with a special emphasis
on GRFs and the role of the covariance kernel. Then we discuss sufficient
conditions for paths of random fields to be measurable, continuous or L2.

Chapter 3 is about a decomposition of square-integrable functions into
a subspace of additive functions and its orthogonal complement, here called
the space of ortho-additive functions. First, it presents concisely some results
from functional analysis and then, in more detail, how the results can be
used to derive a decomposition of L2 into subspaces containing additive and
ortho-additive functions, respectively. We derive the according orthogonal
projections.

The interplay between the two preceding chapters is shown in Chapter
4. We extend the additive and ortho-additive projections such that they
can be applied to covariance kernels. A GRF with such a projected kernel
has additive or ortho-additive paths, respectively. We present the general
calculations for projecting a product kernel and the explicit formulae in the
case of a Gaussian kernel.

Chapter 5 is dedicated to numerical experiments. First, Section 5.1 recalls
the necessary formulae for applying kriging. In Section 5.2 we illustrate and
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discuss kriging predictions of an additive and an ortho-additive kernel. This
offers some intuition for the experiment in Section 5.3 where we compare
a set of kernels in a two-dimensional setting. The idea is to choose two
kernels from the set, perform kriging predictions with the first one, based
on measurements that were generated with the second one, then repeating
it for all possible pairs of kernels. We present the results for an additive
kernel, an ortho-additive one and possible variations. Finally, in Section
5.4, we consider kernels which differ in their degree of additivity. In an
experiment we generate data with such kernels and try to recover the degree
of additivity with maximum likelihood estimation. We present the results
and discuss their development with growing dimension.

Chapter 6 concludes the thesis.
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2 Random fields

Some central objects that we will consider in this thesis are real-valued ran-
dom fields. In this chapter we discuss random fields in general and the special
case which is known as Gaussian random field. Then we will see some par-
ticular properties, characterizations and prospects.

2.1 General definition

A random field is a stochastic process whose index set is some multi-dimensional
space.

Definition 1 (Random field). A (real-valued) random field (RF) is a col-
lection of (real-valued) random variables defined over a common probability
space (Ω,F , P ) and indexed by an element of a set D. We write (Zx)x∈D.

Note that no particular assumption is made about D. However, for most
considerations it is necessary that D is at least equipped with a topology, as
will be the case in Section 2.3.

Since a random field Z is indexed by x ∈ D and defined over a probability
space (Ω,F , P ) we can consider it as a function of two arguments.

Z : D × Ω→ R
(x, ω) 7→ Zx(ω)

If we fix either x or ω we see two aspects of the random field. Both of
them will be important in future investigations. Fixing x ∈ D gives us a
real-valued random variable Zx. More generally we can fix a set {x1, . . . , xn}
of n elements of D and we get a random vector (Zx1 , . . . , Zxn) (like, e.g.,
in Figure 1a. It describes the random field in the chosen set of locations.
Fixing ω we get a realization, i.e. an elementary event of the random field
as in Figure 1b. We speak of a trajectory or path. It can be seen as function
Z.(ω) : D → R mapping x to Zx(ω) for a fixed ω ∈ Ω.

Note that a priori we do not know much about the properties of such
paths. In Section 2.3 we will see some sufficient conditions under which the
paths are measurable, almost surely square-integrable or continuous.

As a random field is a collection of random variables, for any x ∈ D we
can speak of moments of the random variable Zx. We assume here and in
the following that all Zx have a finite second moment (i.e. E[Z2

x] <∞) such
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(a) Samples of a random vector (Zx1 , Zx2)
with joint normal distribution; The respective
probability density functions for Zx1 and Zx2 .

(b) Realization of a Gaussian ran-
dom field having a squared expo-
nential covariance function.

Figure 1: Aspects of a random field

that the expectation function m and the covariance kernel k of the random
field can be defined:

m(x) := E(Zx) ,

k(x1, x2) := Cov(Zx1 , Zx2) .

m and k are important descriptors of a random field. In 2.2 we will see a
class of random fields that are even entirely characterized by these quantities.

Definition 2. A random field (Zx)x∈D with finite second moment is called

• first order stationary if m is constant.

• second order stationary if it is first order stationary and k(x + h,x)
does not depend on x. In this case we simplify the kernel function
k(h) := k(x+ h,x).

• isotropic if it is second order stationary and k(h) = k(‖h‖).

A special case of a first order stationary random field is the centered
random field whose expectation function is trivial.
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2.2 Gaussian random fields

We now get to some special kind of random fields.

Definition 3 (Gaussian random field, GRF). A random field Z over the
domain D is called Gaussian if (Zx1 , . . . , Zxn) is a Gaussian vector for any
set {x1, . . . , xn} ⊆ D and any n ∈ N.

Gaussian random fields play a special role because they have some nice
properties. For one they are entirely characterized by their expectation func-
tion and covariance kernel (see, e.g., [Sch09, Lemma 2.4.18]). Moreover the
class of Gaussian random fields is closed under certain transformations. For
instance the sum of two Gaussian random fields is again Gaussian. And like-
wise if we apply a bounded linear transformation to a GRF then the result
is Gaussian.

Example 1. If D is in R2 we can display trajectories as images. Figure 2
shows some trajectories of centered Gaussian random fields with a covariance
structure expressed by the exponential kernel based on the l1-distance in R2

(upper row)

k1(x, y) = σ2 · e−
|x1−y1|
θ1

− |x2−y2|
θ2

and the isotropic squared exponential (or ”Gaussian”) kernel (lower row)

k2(x,y) = σ2 · e−
(
‖x−y‖
θ

)2
.

In Example 1 above, notice that k1 is not isotropic. k2, however, is
isotropic and hence invariant under rotation. Another observation is that
the trajectories of the GRF with covariance kernel k2 seem to be smother.
This is due to the fact that k2(x1, x2) is big (close to σ2) for two points
x1, x2 ∈ D that lie close together. So the according random variables Zx1
and Zx2 have a high covariance. However, this is just an intuitive explanation.
There has been a lot of research about path regularity as we will see in the
next subsection.

2.3 Path regularity

Without further assumptions on the random field, little can be said about
the regularity properties of its paths: it is not even guaranteed that they
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Figure 2: Paths of centered Gaussian random fields over D = [0, 1]2.
Upper row: using an exponential kernel with σ2 = 1, θ1 = 1 and θ2 = 0.25.
Lower row: using an isotropic Gaussian kernel with σ2 = 1 and θ = 0.25.

are (Borel-)measurable functions! In this section, we present some selected
state-of-the-art results on the functional properties of paths depending on
assumptions on the distribution of Z.

A general overview of the regularity of random field paths is given in
[Sch09, Chapter 5] or [AT10, Chapter 1.3]. There we can find criteria that
guarantee measurable, L2, continuous or differentiable paths. We follow
[Sch09] and equip the domain D with Lebesgue measure λ.

For a start we introduce the conditions under which a random field is said
to be separable (going back to [Doo53]).

Definition 4 (Separable random field). A random field (Zx)x∈D over the
probability space (Ω,F , P ) is called separable if there exists a countable and
dense subset S ⊆ D and a set N ⊆ F with P (N) = 0 such that for any
G ⊆ D open and any F ⊆ R closed the following sets

AF,G := {ω : Zx(ω) ∈ F ∀x ∈ G}
AF,G∩S := {ω : Zx(ω) ∈ F ∀x ∈ G ∩ S}

differ only on a subset of N .
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In the context of this thesis we are mainly interested in random fields with
almost surely L2 paths. The following theorem (see [Sch09, Theorem 5.3.6])
states some sufficient conditions under which the paths are a.s. continuous.

Theorem 1. Let (Zx)x∈D be a separable centered Gaussian random field on
a compact domain D ⊆ Rd. If for some constants 0 < C < ∞ and δ, η > 0
we have

E[(Zx − Zy)2] ≤ C∣∣ln ‖x− y‖ ∣∣1+δ
(1)

for all x, y ∈ D with ‖x− y‖ < η, then the paths of (Zx)x∈D are almost surely
continuous and bounded on D.

Remark 1. Since D is here assumed compact, this will in particular ensure
that the paths are almost surely in L2(D,λ).

Assuming that the random field is centered is no serious restriction. If
we have a random field (Zx)x∈D with non-trivial expectation m then we
consider the centered random field (Zx −m(x))x∈D and add the expectation
to its paths.

Condition (1) is met (by far) by the continuous kernels that are most
frequently used in practice. We see it illustrated in Figure 3 for the Gaussian
kernel (as encountered in Example 1). We choose C = δ = 1 and some
appropriate value for η, e.g. η = 0.03. Assuming that k is the covariance
kernel of (Zx)x∈D, we get E[(Zx−Zy)2] = k(x, x) +k(y, y)− 2k(x, y). We see
that (1) is satisfied.

There is another way that leads to almost surely L2 paths [Sch09, Section
5.4]. For this purpose we introduce the notion of a measurable random field:

Definition 5 (Measurable random field). Let (Zx)x∈D be a random field over
the probability space (Ω,F , P ) and a measurable domain (D,M). Let F⊗M
be the product σ-algebra of F and M, and F ⊗M its completion w.r.t. the
measure P ⊗ λ. Then (Zx)x∈D is called measurable if it is measurable as a
map

Z : (Ω×D,F ⊗M)→ (R,B) . (2)

Remark 2. From Definition 5 we get directly that the paths of a measurable
random field are measurable, for a path is the restriction of the map (2) to a
fixed ω ∈ Ω.
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Then, by the following proposition, we again get a criterion for paths that
are almost surely (locally) L2. Notice, though, that this time we do not know
whether the paths are continuous.

Proposition 1. The sample paths of a measurable random field (Zx)x∈D are
in L2

loc(D) almost surely. If in addition we have∫
D

k(x, x) dλ(x) <∞

then the paths of (Zx)x∈D are in L2(D) a.s.

In [Sch09, Proposition 5.4.3] λ is still the Lebesgue measure. The proof
can be extended, though, to any σ-finite measure.

2.4 Simulation of Gaussian random fields

In Chapter 5 we will see some experiments concerning Gaussian random
fields. Amongst other things we will need a method to simulate their out-
come, i.e. to generate random field paths. This section is dedicated to such
simulations and how they are carried out in practice.

Let (Zx)x∈D be a Gaussian random field indexed by D. Let m and k
be respectively its expectation function and covariance kernel. In order to

Figure 3: Visualization of condition (1) for a Gaussian kernel
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generate a random field path we start by a discretization of the domain.
That means we choose a set X = {x1, . . . xn} ⊆ D of points, e.g. lying on
a grid. Then we calculate the expectation vector M := (m(x1), . . . ,m(xn))T

and the covariance matrix K, an n × n matrix with entries Kij = k(xi, xj)
(1 ≤ i, j ≤ n). From Definition 3 we know that ZX := (Zx1 , . . . , Zxn) is a
Gaussian vector.

ZX ∼ N (M,K)

There are numerous procedures to generate random vectors having a mul-
tivariate normal distribution. Often used are the Cholesky decomposition or
the Mahalanobis transform [GS11]. K has to be a positive definite matrix.
We will see in Section 2.4.1 below that this is guaranteed in our case.

If the set of points X has a special structure then there may even exist
some advanced techniques that allow simulations with better performance.
This is the case if X lies on a regular grid. Then we can do a circular
embedding [DN97]. Another method is called the turning band method. It
can be applied when the covariance kernel is isotropic (see [Ste99, Chapter
2.2]).

For our purposes we have chosen to apply a Cholesky decomposition1

which is the standard procedure in this case (see [GG09, Chapter 4.7]).
As symmetric positive definite matrix, K can be decomposed as

K = LLT ,

where L is a lower triangular matrix with nonnegative diagonal entries. If
N ∼ N (0, In) (i.e. N has a standard multivariate normal distribution) then
(LN +M) ∼ N (M,K).

2.4.1 Positive definite kernels

An important object, when talking about a random field (Zx)x∈D, is the
corresponding covariance kernel k. It is a symmetric real-valued function
taking two arguments from D. A significant property of a kernel is positive
definiteness. It is closely related to the positive definiteness of a matrix.

Definition 6 (Positive definite kernel). A kernel k : D ×D → R is said to
be positive definite if for any n ∈ N, for any subset {x1, . . . , xn} of D and

1After the French mathematician André-Louis Cholesky (1875-1918)
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for all choices of real values α1, . . . , αn we have

n∑
i=1

n∑
j=1

αiαjk(xi, xj) ≥ 0 .

The corresponding definition for matrices requires strict positiveness. The
loose definition is more convenient and well-established [Cre93, SS02], al-
though the literature is not consistent in this case. We can also find the term
positive semi-definite (e.g. [GG09]), or non-negative definite [AT10].

In the case of a covariance kernel we have the following useful result:

Theorem 2 (Loève2). k : D ×D → R is a covariance kernel of some real-
valued random field (Zx)x∈D if and only if it is symmetric positive definite.

Proof.
”⇒”: Consider the random field (Zx)x∈D with covariance kernel k. For
arbitrary n ∈ N, x1, . . . , xn ⊆ D and α ∈ Rn we have

n∑
i=1

n∑
j=1

αiαj k(xi, xj) =
n∑
i=1

n∑
j=1

αiαj Cov(Zxi , Zxj)

= Cov

(
n∑
i=1

αiZxi ,
n∑
j=1

αjZxj

)
= Var

(
n∑
j=1

αjZxj

)
≥ 0 .

”⇐”: If we have any positive definite kernel we can construct a Gaussian
random field with the according covariance function. The details for this
direction of the proof are omitted here. Instead we recommend, e.g., [Sch09,
Corollary 5.1.2].

2Michel Loève 1907-1979, French American mathematician, known amongst other
things for the Karhunen–Loève expansion
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3 Decompositions in L2

We come now to a rather different topic. This chapter is dedicated to some
classical Hilbert space theory. In particular we discuss orthogonal projec-
tions. For now it will not be related to what we did in Chapter 2. We will
see the connection only in Chapter 4 where we apply orthogonal projections
to the trajectories of a random field.

3.1 Fundamentals

In the sequel of the chapter we are going to define an orthogonal decompo-
sition of a Hilbert space. In order to do this we use some standard results
from functional analysis. This section is based on [Tre13]. The proofs are
omitted.

Lemma 1. Let (H, 〈·, ·〉) be a Hilbert space, M ⊆ H. Then M⊥ is a closed
linear subspace of H.

We recall that M⊥ is the orthogonal complement of M in H, i.e. the set
of all elements of H that are orthogonal to M (which means orthogonal to
all elements of M). Note that in Lemma 1 above, M needs to be just a set,
not a subspace, and does not have to be closed.

Definition 7 (Direct orthogonal sum). Let (H, 〈·, ·〉) be a Hilbert space and
M,N ⊆ H two linear subspaces. Then H is called the direct orthogonal sum
of M and N , written as H = M ⊕N if M ⊥ N and

∀x ∈ H ∃! x1 ∈M,x2 ∈ N : x = x1 + x2 .

There exists literature that makes the distinction between a direct sum
and a direct orthogonal sum and the notation is not consistent. Notice
that we write ⊕ and require orthogonality. If H can be written as a direct
orthogonal sum of two subspaces M and N then we have directly M = N⊥

and N = M⊥ and hence - using Lemma 1 - both subspaces are closed (in
H).

The definition is equivalent if we exchange ∃! by ∃. The uniqueness of
the decomposition is guaranteed by the orthogonality of M and N .

15



Definition 8 (Orthogonal projection). Let (H, 〈·, ·〉) be a Hilbert space and
M ⊆ H a closed linear subspace. Then the linear operator π : H → H,
πx = x1 where x = x1 + x2 ∈ M ⊕M⊥ is called orthogonal projection of H
onto M .

Notice that M⊥ is closed by Lemma 1. This and the fact that M is
closed itself ensure that H can always be written as a direct orthogonal sum
M ⊕M⊥.

The co-domain of the projection π is often called range and denoted by
R(π).

Lemma 2. Let (H, 〈·, ·〉) be a Hilbert space, M0,M1 closed linear subspaces
of H and π0, π1 the orthogonal projections onto M0, M1 respectively. Then
the following are equivalent:

• π0π1 = 0 (i.e. ∀x ∈ H : π0π1x = 0)

• M0 ⊥M1

• π0 + π1 is an orthogonal projection

In this case we have R(π0 + π1) = M0 ⊕M1.

Lemma 3. Let (H, 〈·, ·〉) be a Hilbert space, M0,M1 closed linear subspaces
of H and π0, π1 the orthogonal projections onto M0, M1 respectively. Then
the following are equivalent:

• π0π1 = π0 (i.e. ∀x ∈ H : π0π1x = π0x)

• M0 ⊆M1

• ∀x ∈ H : ‖π0x‖ ≤ ‖π1x‖ (we write π0 ≤ π1)

• ∀x ∈ H : 〈π0x, x〉 ≤ 〈π1x, x〉

• π1 − π0 is an orthogonal projection

In this case we have R(π1) = R(π0)⊕R(π1 − π0).

16



3.2 Retrieving additive and ortho-additive functions

We consider a set D ⊆ Rd which has the form of a d-dimensional hyper-
cuboid:

D = D1 × . . .×Dd ,

Di being bounded closed real intervals (1 ≤ i ≤ d) of positive length. We
equip D with a product measure

µ = µ1 ⊗ . . .⊗ µd .

For the sake of simplicity we restrict µi, and hence µ, to be probability
measures. In this section we consider the Hilbert space L2(D,µ) (which in
the following is simply called L2) and subspaces thereof.

Let us start with some remarks on notation. We recall that the elements
of L2 are equivalence classes of (real-valued) functions in L2 with respect to
µ-almost everywhere equality. If in the further text the term function is used
then it may refer to an element of L2 (which is indeed a function according
to the common definition) or likewise to the corresponding equivalence class
in L2.

For such functions capital letters are used, whereas lowercase letters refer
to constants or functions in one variable. For instance the notation

C(x) = c or C = c µ-almost everywhere

refers to a function C : D → R with the constant value c on the whole
domain (or to the equivalence class of functions that are equal to c µ-almost
everywhere). We will sometimes use the symbol 1 for the constant one-
function, i.e. we could also write C(x) = c · 1(x). We will use it quite
liberally, though, e.g. also for functions which are defined only on a subspace
of D.

We will now start with a simple decomposition of L2 into two subspaces.
It is at the same time an introduction for the more complicated decomposition
that follows.

The subspace of L2 that contains all elements which are constant on the
whole domain is important enough to us to have its own name. Let us call
it L2

C.

L2
C :=

{
F ∈ L2 s.t. ∃c ∈ R with F = c almost everywhere

}
17



Lemma 4. L2
C is a closed linear subspace of L2.

Proof. When adding two elements of L2
C or multiplying one with a scalar we

get again an element of L2
C. Thus L2

C is clearly a linear subspace of L2.
There exists a natural isometric isomorphism between L2

C and R. Since
such an isomorphism preserves completeness we conclude that L2

C is complete.
A subspace of the complete space L2 is closed if and only if it is complete.

Let us define the space L2
Z of zero-mean functions3:

L2
Z :=

{
Z ∈ L2 s.t.

∫
D

Z dµ = 0

}
.

And let us state the following result:

Lemma 5. L2 is the direct orthogonal sum of L2
Z and L2

C.

Proof. First we get that L2 = L2
C ⊕ (L2

C)
⊥, for L2

C is a closed linear subspace
of L2. Then we can show that L2

Z = (L2
C)
⊥.

Z ∈ (L2
C)
⊥ ⇐⇒ 〈C,Z〉 = 0 ∀C ∈ L2

C

⇐⇒
∫
D

CZ dµ = 0 ∀C ∈ L2
C

⇐⇒ c ·
∫
D

Z dµ = 0 ∀c ∈ R

⇐⇒
∫
D

Z dµ = 0

⇐⇒ Z ∈ L2
Z

We can define orthogonal projections onto L2
C and L2

Z , which we call
respectively πC and πZ .

F
πC7−→ FC :=

∫
D

F dµ · 1 and F
πZ7−→ FZ := F − FC .

What we have achieved is a first orthogonal decomposition of L2 with its
according orthogonal projections.

3The letter Z (or Z) that we will use in the context of zero-mean functions has nothing
to do with a random field (Zx)x∈D
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We now want to go a step further and decompose L2 into subspaces L2
i

containing elements that depend only on the ith input variable (1 ≤ i ≤ d).
By

Fi(x) = fi(xi) with x = (x1, . . . , xi, . . . , xd)

we refer to functions Fi : D → R which depend only on the ith variable, i.e.
the functions fi are univariate on Di. In its strict sense the subscript i for the
functions is not mandatory. But we write it for the sake of clarity. For every
i = 1, . . . , d we subsume all equivalence classes of functions which possess
such a univariate nature in the i-th variable and are moreover centered under
the term L2

i (D,µ) or L2
i , i.e.

L2
i :=


Fi ∈ L2(D,µ) s.t. ∃fi ∈ L2(Di, µi) with Fi(x) = fi(xi)

and

∫
Di

fi dµi = 0

 . (3)

Lemma 6. For i ∈ {1, . . . , d} the spaces L2
i are pairwise orthogonal closed

linear subspaces of L2.

Proof. First we introduce some new notation. For the following calculations
we will use the subscript −i to consider the space D without the ith dimen-
sion, i.e. D−i = D1 × . . . × Di−1 × Di+1 × . . . × Dd. In the analogous way
µ−i = µ1 ⊗ . . .⊗ µi−1 ⊗ µi+1 ⊗ . . .⊗ µd and 1−i is the constant one-function
defined on D−i.

The spaces L2
i are clearly linear subspaces of L2. We show that they are

closed and pairwise orthogonal.
Straight from the definition (3) we can assign to any Fi ∈ L2

i (D,µ) the
element fi ∈ L2(Di, µi) (or the other way round we can construct Fi from
any fi). The obtained bijection is an isometric4 isomorphism preserving
completeness. Hence L2

i inherits the completeness from L2(Di, µi) and is
therefore closed in L2.

There remains to be shown that the subspaces are orthogonal. We prove
it by calculation. Consider arbitrary Fi ∈ L2

i and Fj ∈ L2
j (i 6= j).

4‖Fi‖ = 〈Fi, Fi〉 =
∫
D
FiFi dµ =

∫
Di
fifi dµi ·

∫
D−i

dµ−i = 〈fi, fi〉 = ‖fi‖.
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〈Fi, Fj〉 =

∫
D

Fi · Fj dµ

i 6=j
=

∫
Di

∫
Dj

∫
D−i−j

fi(xi) · 1−i · fj(xj) · 1−j dµ−i−j dµj dµi

=

∫
Di

fi(xi) ·
∫
Dj

fj(xj) ·
∫
D−i−j

1−i−j dµ−i−j dµj dµi

=

∫
Di

fi(xi) dµi ·
∫
Dj

fj(xj) dµj = 0

We conclude that L2
i (1 ≤ i ≤ d) are pairwise orthogonal.

A consequence of Lemma 6 is that there exist orthogonal projections πi
onto L2

i . We will soon see how they look like. Since L2
i ⊆ L2

Z we will first
consider orthogonal projections π̃i from L2

Z onto L2
i .

Lemma 7. For i ∈ {1, . . . , d} the map π̃i, defined as follows, is the orthog-
onal projection onto L2

i

π̃i : L2
Z → L2

Z

FZ 7→
∫
D−i

FZ dµ−i · 1−i .

Proof. We will show (according to Definition 8) that any FZ ∈ L2
Z can be

decomposed into two elements π̃iFZ ∈ L2
i and (FZ − π̃iFZ) ∈ (L2

i )
⊥.

By construction π̃iFZ is the product of a univariate function in the ith
variable and the constant one-function on D−i. We can also check that the
result has still zero-mean.∫

D

π̃iFZ dµ =

∫
D

∫
D−i

FZ dµ−i 1−i dµ =

∫
D−i

∫
D

FZ dµ︸ ︷︷ ︸
0

1−i dµ−i = 0

So for an arbitrary FZ from L2
Z we have π̃iFZ ∈ L2

i . Moreover we can
assure ourselves that (FZ − π̃iFZ) ⊥ L2

i , i.e. 〈FZ − π̃iFZ , F 〉 = 0 ∀F ∈ L2
i .

In order to convince ourselves we recall that F is constant on D−i.
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〈FZ − π̃iFZ , F 〉 =

∫
D

(
FZ −

∫
D−i

FZ dµ−i 1−i

)
· F dµ

=

∫
Di

∫
D−i

(
FZ −

∫
D−i

FZ dµ−i 1−i

)
· F dµ−i dµi

=

∫
Di

∫
D−i

(
FZ −

∫
D−i

FZ dµ−i 1−i

)
dµ−i · F dµi

=

∫
Di

(∫
D−i

FZ dµ−i −
∫
D−i

∫
D−i

FZ dµ−i︸ ︷︷ ︸
constant on D−i

1−i dµ−i

)
· F dµi

=

∫
Di

(∫
D−i

FZ dµ−i ·
(

1−
∫
D−i

1−i dµ−i

)
︸ ︷︷ ︸

0

)
· F dµi = 0

But as said before there exists also a projection πi which is defined on the
whole space L2. From Lemma 3 (and since L2

i ⊆ L2
Z) we know that such a

projection satisfies πi = πiπZ . But in this case this has to be equal to π̃iπZ .

Corollary 1. For i ∈ {1, . . . , d} the map πi, defined as follows, is the or-
thogonal projection onto L2

i

πi : L2 → L2

F 7→
∫
D−i

πZF dµ−i · 1−i .

Proof. πi is nothing but π̃iπZ .

Note that the spaces L2
i are also orthogonal to L2

C since L2
i ⊆ L2

Z = L2
C
⊥

.

So we have defined a lot of closed linear subspaces of L2. But what we
are really interested in is the space which is composed of all of them.

Definition 9 (Space A of additive functions). We call

A = L2
C ⊕

(
d⊕
i=1

L2
i

)
the space of additive functions.
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In order to be correct we recall that the elements of A are equivalence
classes with respect to µ-almost everywhere equality. Anyway we will use
the term additive function for these equivalence classes as well as for the
according functions of L2.

In the literature (e.g. [HT90]) we can find that additive functions on
D ⊆ Rd are simply defined as a sum of a constant function and d univariate
functions in xi (1 ≤ i ≤ d). In other publications (e.g. [DGRC13]) the
univariate functions are assumed to be centered. Apart from the difference
between functions and equivalence classes, the definitions are equivalent. In
our definition we also impose that the elements in the spaces L2

i have to be
centered. This guarantees orthogonality between the different subspaces of
A. It does not affect the whole space, though.

From Lemma 2 we get the according orthogonal projection onto A:

πA = πC +
d∑
i=1

πi .

In the following text not just A will be important to us but also its
orthogonal complement A⊥.

Definition 10 (Space O of ortho-additive functions). Let us define by

O :=


F ∈ L2 : ∀i ∈ {1, . . . , d}

∫
D−i

F dµ−i = 0

and

∫
D

F dµ = 0


the space of ”ortho-additive” functions.

Proposition 2. O is the orthogonal complement of A in L2.

Proof. We have to showO = A⊥. ”⊆” and ”⊇” can be shown simultaneously.
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F ∈ A⊥

⇐⇒ F ∈ L2
C
⊥ ∩

(
d⋂
i=1

L2
i
⊥
)

⇐⇒ πCF = 0 and πiF = 0 ∀i ∈ {1, . . . , d}

⇐⇒
∫
D

F dµ = 0 and

∫
D−i

F − πCF dµ−i = 0 ∀i ∈ {1, . . . , d}

⇐⇒
∫
D

F dµ = 0 and

∫
D−i

F dµ−i = 0 ∀i ∈ {1, . . . , d}

⇐⇒ F ∈ O

Any orthogonal complement in a Hilbert space is a closed linear subspace.
The according orthogonal projection is

πO = id− πA .

Example 2. We consider the function F (x1, x2) = x1x2 + x1 defined on the
Domain [0, 1]2. We can calculate the projections of this function.

(πCF )(x1, x2) =
3

4

(π1F )(x1, x2) =
3

2
x1 −

3

4

(π2F )(x1, x2) =
1

2
x2 −

1

4

(πOF )(x1, x2) = x1x2 −
1

2
x1 −

1

2
x2 +

1

4
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4 Projecting Gaussian random fields

We are ready now to make the link between the previous two chapters. We
will apply the projections defined in Chapter 3 to random field paths.

For the whole chapter let D = D1 × . . . × Dd ⊆ Rd be a d-dimensional
hyper-cuboid with measure µ as in Section 3.2. Consider a measurable Gaus-
sian random field (Zx)x∈D indexed by D. Again we use the abbreviation L2

for the Hilbert space L2(D,µ).

4.1 Projecting Gaussian random field paths

From Proposition 1 we know that (Zx)x∈D has a.s. L2 paths (for D is compact
and µ finite). This means that we can project these paths by applying an
orthogonal projection π : L2 → L2.

In Figure 4 in the first row we see some examples of trajectories of a
centered Gaussian random field. They are defined over the unit square and
are generated using the Gaussian covariance kernel

k(x, y) = σ2 · e−
(
‖x−y‖
θ

)2
. (4)

The values are represented by colors. Positive values are yellow, values
around zero are orange and negative values are red. The values follow a
Gaussian distribution for any coordinate of the domain. We can see that two
points of the field that are close to each other tend to have similar values.
This behavior is driven by the covariance kernel.

What does it mean if we now project the trajectories? The result can be
seen in the second to fourth row. In the second row are projections into the
space A of additive functions. We can clearly see the additive structure of
C + Z1(x1) + Z2(x2) in terms of horizontal and vertical stripes.

The third row is even more interesting. At first glance one might think
that these trajectories have been generated by the same kernel as in the first
row. But in fact these are the projections of such paths into O. This means
that they have certain properties that we can check. First of all the projected
trajectories have to be centered, i.e. the images have to be orange on average.
This is not clearly visible. It can be checked numerically, though. The values
in the images are also column- and row-wise centered. That means that in
any row and in any column there is as much yellow as there is red. Knowing
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Figure 4: Three realizations of a GRF (first row), their projections to A
(second row), to O (third row) and the sum of the two latter (last row)
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this we can clearly see a difference between the corresponding images in the
first and in the third row.

The last row shows trajectories which are the sum of the additive and the
ortho-additive projection. These images are indeed equal to the images in the
first row. This is clear by construction. Anyway, we emphasize it because
in Section 4.2 we will see some other kind of additive and ortho-additive
projections which do not sum up to the identity.

4.2 Projecting covariance kernels

We present here a general result which has an interesting application in our
context [TV07, Corollary 3.7].

Property 1. Let X and Y be real separable Banach spaces, µ be a Gaussian
measure on B(X), η : X → Y be a bounded linear operator and ν = µ ◦ η−1.
Then ν is a Gaussian measure on B(Y ) with mean mν = ηmµ ∈ Y and with
covariance operator Cν = ηCµη

∗ : Y ∗ → Y , where η∗ is the adjoint operator
of η and Y ∗ is the dual space of Y .

Let X be the space of continuous functions on D equipped with the
supremum norm (and the hereby induced topology). Consider an orthogonal
projection π : X → X (hence we consider Y = X). It is in particular a
bounded linear operator. X is a separable5 Banach space. We already know
that the random field πZ is again Gaussian.

From Property 1 follows that for the projection π there exists an operator
which can be applied to covariance kernels. We call it π⊗π, where ⊗ denotes
the tensor product between two operators.

The relation between π and π ⊗ π can be express as follows:

Cov(πZ, πZ)(x, y) =
(
(π ⊗ π)k

)
(x, y) .

So the covariance of a projected random field is expressed by a projection
of the covariance kernel of the original random field. Notice that (π ⊗ π) k
is positive definite by Theorem 2.

For two (different) projections π1, π2 respectively, we can derive a more
general projection π1 ⊗ π2.

Cov(π1Z, π2Z)(x, y) =
(
(π1 ⊗ π2)k

)
(x, y)

5We point out the distinction from a separable random field (Definition 4)
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However the resulting kernel (π1 ⊗ π2)k defines a cross-covariance between
two projections of a GRF and is no more positive definite, in general.

Let us go a step further and consider a family Π of projections such that

idL2(D,µ) =
∑
πi∈Π

πi

then we have

idL2(D×D,µ⊗µ) =
∑
πi∈Π

πi ⊗
∑
πj∈Π

πj =
∑
πi∈Π

∑
πj∈Π

πi ⊗ πj .

Notice that in order to calculate the projected kernels we define the fol-
lowing operators where the superscripts l and r are used to indicate that
we apply the operator to the left (i.e. to the first variable) or to the right
(second variable), respectively.

πl : RD×D → RD×D

k 7→ (πl k)(x, y) =
(
π k(., y)

)
(x)

(5)

πr : RD×D → RD×D

k 7→ (πr k)(x, y) =
(
π k(x, .)

)
(y)

(6)

The cross-covariance of (π1Z)x and (π2Z)y is
(
πl1π

r
2k
)
(x, y). For the sake

of legibility we shorten the terms for the projections conveniently: We will
use πij for πliπ

r
j and πi for πii.

4.2.1 Product kernels

Consider the projections πA and πO seen in Section 3.2. Using notation
(5) and (6), we know how to decompose a kernel into an additive and an
ortho-additive part6. However, it is not always practicable to find an explicit
expression in a closed form. But there exist kernels for which the calculations
are feasible. Notice that in the following calculations we will use a shortened
notation concerning integrals by writing, e.g.,

∫
dx instead of

∫
dµ(x).

One of the main research findings of this master thesis is subsumed under
the following proposition.

6Following our shorthand notation introduced above, we write πAk for πl
Aπ

r
Ak and

accordingly for πOk
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Proposition 3 (Decomposition of a product kernel). Let k be a symmetric
product kernel on the non-empty domain D = [a1, b1] × . . . × [ad, bd], i.e. a
symmetric kernel which fulfills

k(x,y) =
d∏
i=1

ki(xi, yi) (7)

for some set of symmetric positive definite kernels ki defined on [ai, bi]
2

We can calculate πAk and πOk explicitly in terms of

Ei(xi, ai, bi) :=

∫ bi

ai

ki(xi, yi) dyi

and Ei(ai, bi) :=

∫ bi

ai

Ei(xi, ai, bi) dxi .

(8)

The integrals in (8) can always be calculated at least numerically.

Proof. We can calculate πAk and πOk straight forward by applying the pro-
jections from Section 3.2. However we have to do almost the whole decom-
position of k into (d + 2)2 terms. The main clue to the result is that the
projected kernels depend solely on the following auxiliary quantities which
we get from (8):

• Ei(xi) := Ei(xi, ai, bi) =
∫ bi
ai
ki(xi, yi) dyi

• E(x) := E(x,a, b) =
∏d

i=1Ei(xi, ai, bi)

• Ei := Ei(ai, bi) =
∫ bi
ai
Ei(xi, ai, bi) dxi

• E := E(a, b) =
∏d

i=1 Ei(ai, bi)

Notice that we get simultaneously Ei(yi) and E(y) due to the symmetry
of k. A helpful simplification to get neater equations is the assumption that
our kernel is strictly positive in the following way:

ki(xi, yi) > 0 ∀ xi, yi ∈ [ai, bi] (1 ≤ i ≤ d) . (9)

This assumption along with the fact that the domain is non-empty guar-
antees us that all our auxiliary quantities are likewise strictly positive. We
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can hence write them into the denominator of a fraction. The proof could
be done without this assumption, though.

The computation is a matter of endurance. We give here the strategy.
The full calculations can be found in the appendix.

We will first apply the right-hand-side projections πrCk and πrjk for all
j ∈ {1, . . . , d}. This will lead to

πrAk = πrCk +
d∑
i=1

πri k .

Then with the left-hand-side projections we get πCAk, πiAk (1 ≤ i ≤ d)
and finally

πAk = πCAk +
d∑
i=1

πiAk .

In a second step we calculate the ortho-additive part of a kernel. From
the previous results we can derive

πrOk = k − πrAk

and with the intermediate results πCOk and πiOk (1 ≤ i ≤ d) we get

πOk = πrOk − πCOk −
d∑
i=1

πiOk .

When we carry out all these calculations we obtain the two equations
which complete the proof:

πAk =
A(x)A(y)

E
+ E ·

d∑
i=1

(
ki(xi, yi)

Ei
− Ei(xi)Ei(yi)

E2
i

)

πOk = k(x,y)− E(x) ·
(

1− d+
d∑
j=1

kj(xj, yj)

Ej(xj)

)
− E(y) ·

(
1− d+

d∑
i=1

ki(xi, yi)

Ei(yi)

)

+
A(x)A(y)

E
+ E ·

d∑
i=1

(
ki(xi, yi)

Ei
− Ei(xi)Ei(yi)

E2
i

)

with A(x) = E

(
1− d+

d∑
i=1

Ei(xi)

Ei

)
.
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We finish this section with an important remark. We refer to the very
last statement of Section 4.1. There we noticed that the sum of the additive
projection of a random field path and its ortho-additive projection is equal
to the original (unprojected) path.

However, if we project the covariance kernel k of a random field then we
get

πk = πAk + πAOk + πOAk + πOk .

The sum of the additive and the ortho-additive part is no more equal to
k, for there are the cross-covariance terms πAOk and πOAk.

4.2.2 The Gaussian kernel

For a concrete example we consider now the Gaussian kernel on the domain
D = [a1, b1]× . . .× [ad, bd]

k(x,y) =
d∏
i=1

σ2
i · e

−
(
xi−yi
θi

)2
.

It complies with the necessary condition (7) and also (9). We can calculate
the first auxiliary integral numerically using the cumulative distribution of
the standard normal distribution.

Φ(x) =

∫ x

−∞

1√
2π

e−
t2

2 dt

or in our case (to simplify the results) the error function

erf(x) = 2 · Φ(
√

2x)− 1 .

We get

Ei(xi) =

∫ bi

ai

σ2
i · e

−
(
xi−yi
θi

)2
dyi =

σ2
i θi
√
π

2
·

(
erf
(bi − xi

θi

)
+ erf

(xi − ai
θi

))
.

In order to calculate Ei we have to integrate once more. To do so we can
benefit of the fact that the integral of the error function is known (see e.g.
in [Wei10, p. 934]):∫

erf(x) dx = x · erf(x) +
1√
π
· e−x2 .
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We can calculate the second integral

Ei =
σ2
i θi
√
π

2
·

(
−(bi − bi) · erf

(bi − bi
θi

)
+ (ai − bi) · erf

(ai − bi
θi

)
+(bi − ai) · erf

(bi − ai
θi

)
− (ai − ai) · erf

(ai − ai
θi

))

+
σ2
i θ

2
i

2
·

(
−e
− (bi−bi)

2

θ2
i + e

− (ai−bi)
2

θ2
i + e

− (bi−ai)
2

θ2
i − e

− (ai−ai)
2

θ2
i

)

and after some simplifications we get

Ei = σ2
i θi
√
π · (bi − ai) · erf

(bi − ai
θi

)
+ σ2

i θ
2
i ·

(
e
−
(
bi−ai
θi

)2
− 1

)
.

4.3 Schematic representation of a covariance kernel

In the following we will use projected kernels as seen in Section 4.2. The
family of projections Π = {πC, π1, . . . , πd, πO} decomposes a kernel k into
(d+ 2)2 parts:

k(x,y) =
∑
πi∈Π

∑
πj∈Π

((
πi ⊗ πj

)
k
)

(x,y) . (10)

Every part of the right-hand-side sum in (10) can again be used as kernel
and any sum of two or more parts just as much. Even if we consider just
the positive definite kernels this gives as a big number of kernels. Instead
of giving a name to each and any of them, we identify a projected kernel
schematically by a (d+ 2)× (d+ 2) matrix as in Figure 5.

The first row and the first column of the matrix correspond to the pro-
jection πC. The d rows and d columns in the middle stand for the projections
πi, 1 ≤ i ≤ d; and the last row and column for the ortho-additive projection.
Hence, Image 5a depicts the constant kernel (πC ⊗ πC)k and Image 5b the
additive kernel as it was proposed in [DGR12]7. The other images, 5c and

7We will sometimes call it the sparse additive kernel. Notice the important distinction
between the sparse additive kernel (πC ⊗ πC) k +

∑d
i=1(πi ⊗ πi) k and the full additive

kernel (πA ⊗ πA) k.
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(a) constant (b) sparse add. (c) full additive (d) ortho-add.

Figure 5: Schematic representation of projected kernels

5d, correspond to the full additive kernel (πA⊗πA)k, and the ortho-additive
kernel (πO ⊗ πO)k, respectively.

There is a nice property of the here proposed schematic representation.
Kernels whose corresponding matrix has a block-diagonal shape, e.g. the
kernels that are depicted in Figure 5, are positive definite.
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5 Application and numerical experiments

5.1 Kriging

Under the notion of kriging8 we understand an interpolation and predic-
tion technique stemming from geology and mining engineering. The original
problem was to find veins of metal ore based on information from a limited
number of boreholes. The technique provides a best linear unbiased pre-
dictor accounting for the spatial dependency of measurements by means of
covariances (or variogram values, in a slightly different setup like, e.g., in
[Cre93]).

Most applications of kriging are in two or three dimensions. In the thesis
at hand we are interested in the d-dimensional formulation, though. Fur-
thermore, we concentrate on the case where the random field is assumed
Gaussian.

Let (Zx)x∈D be a Gaussian random field over a domain D ⊆ Rd. Assume
that we have a vector Z containing the outcome of the random field at some
given set X = {x1, . . . , xn} ⊆ D of locations and want to predict the outcome
of a location x0. For now, let (Zx)x∈D be centered. We assume furthermore
that we know the covariance kernel k of the random field9.

We consider the linear predictor

Ẑx0 = λTZ

with some vector of weights λ.
As shown in any standard book about kriging or Gaussian process mod-

eling, e.g. in [GG09, Chapter 1.9.1], we can derive formulae for the Best
Linear Unbiased Predictor (BLUP) of Zx0 as well as for the variance τ 2 of
the prediction error by minimizing the mean squared error

MSE(x0) = E[(Zx0 − Ẑx0)2]

and solving for λ.
Using the covariance kernel k to get σ2

x0
:= k(x0, x0), the vector k(x0) :=

(k(x0, x1), . . . k(x0, xn))T and the n× n matrix K (assumed invertible) with

8After its recently deceased founding father Danie Krige 1919-2013, South African
mining engineer and professor.

9In practice it is in general not known and has to be estimated
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entries Kij = k(xi, xj) the optimal weights write λ = K−1k(x0) and so the
kriging predictor and variance are respectively

Ẑx0 = k(x0)TK−1Z and τ 2(x0) = σ2
x0
− k(x0)TK−1k(x0) .

If we are interested in the case of a non-centered GRF (i.e. a GRF with
non-trivial expectation function m) we can generalize the formula for the
predictor Ẑx0 . The prediction variance remains the same.

Ẑx0 = m(x0) + k(x0)TK−1(Z −m(X)),

where m(X) = (m(x1, . . . ,m(xn))T

These equations are known under the name Simple Kriging. Possible
extensions and generalizations have been discussed in detail in [GS11] and
can be found for instance in [Cre93] or [GG09]. In the thesis at hand we will
remain for convenience with the Simple Kriging settings.

5.2 Illustrations

Kriging is performed under the assumption that the covariance kernel is
known. In the next section we we will see an experiment that analyses a
possible kernel misspecification. Before we get to that point we first want to
do some illustrative introduction.

Figure 6: One realization of a centered Gaussian random field with a Gaus-
sian covariance kernel
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For this purpose we look at a discretized path that has been generated
using a Gaussian kernel (see Figure 6). It consists of 26 × 26 pixels (i.e.
26 × 26 values which are arranged on a grid). Now let us assume that we
know only some of these values, namely 6× 6 values which lie themselves on
a grid (a coarser one which covers the same domain, though).

Figure 7: Predictions and prediction errors with various covariance kernel
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Under these conditions we can apply kriging and predict the values that
are not known. We assume, though, that we do not know the true covariance
kernel either. So we perform Kriging with several kernels. In Figure 7 we see
the kriging predictions that have been generated with four different kernels:
the Gaussian one, its sparse additive and ortho-additive projections and the
sum of the two latter. In each case we find the schematic representation
of the respective kernel on the left. In the middle there are the predictions
whereas on the right-hand-side we see the errors (compared to the true value
from the simulated path).

We can see that the first prediction is quite good. The turquoise pic-
ture on the right indicates that there is only a minor difference between the
simulated path and the prediction.

In the second row we find the results when using a sparse additive kernel.
We clearly see a difference to the simulated path and this difference is also
reflected in the error on the right.

When we consider the third prediction, though, we discover that it is even
worse. Even much worse because the pictures are displayed using a different
color scheme (this is what the exclamation mark on the very right stands
for). The fourth prediction, finally, is done using a kernel which is not full
but still consists of some additive and some ortho-additive part. We see that
the prediction quality is comparable to the one that we had in the first row.

With these illustrations we cannot come to any conclusion. It was just one
simulated path. But we will see in the subsequent section that the phenomena
that we have seen here are typical for predictions with the selected kernels.

5.3 Effect of a misspecified kernel in two dimensions

A crucial step in the application of kriging is the choice of a covariance
kernel (or a variogram) and its parameters. The number of possible kernels
is unlimited and with the projected kernels that were introduced earlier there
are even more. Typically one of the most popular kernels is picked and some
parameters (e.g. variance or scale parameters) are chosen in a way such that
the kernel fits best to the data. The definition and examples of variograms
have been shown in [GS11] or can be found in [Cre93, Chapter 3] or [GG09,
Chapters 1.3 and 5.1].

The choice of a suitable kernel is still an open area of research. In the
following, though, we change the point of view and assume that a kernel has
been chosen. We focus on the consequences if the choice was bad.
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5.3.1 Setup of the experiment

We present here a general experiment that can be run for an arbitrary set of
kernels.

1. Determine the domain, the set of kernels and the set of locations for
the measurements Xm as well as for the predictions Xp

2. For each pair of kernels (ki, kj) repeat the following N times:

(a) Simulate data simultaneously on Xm (Zm: the measurements) and
on Xp (Zp: control values) using the kernel ki

(b) Based on the measurements Zm in Xm predict the values Ẑp at
the locations Xp using the second kernel kj

(c) Estimate the ISE (Integrated Squared Error) by

1

#Xp

∑
x∈Xp

[Ẑp(x)− Zp(x)]2 , #Xp denoting the cardinality of Xp

The concrete numerical experiment for this thesis was performed under
the following conditions:

• The domain: D = [0, 1]2. And the used kernels:

– The Gaussian kernel (with σ2 = 1, θ1 = θ2 = 0.2)

– Its full additive part

– Its (sparse) additive part

– The ortho-additive part

– The sum of the full additive and the ortho-additive part

– The sum of the sparse additive and the ortho-additive part

• Xp: A grid consisting of 45× 45 points

• There were two runs with N = 500 in both cases but different Xm:

(a) A coarser grid with 5× 5 points

(b) An LHS design consisting of 25 points
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(a) grid (b) LHS

Figure 8: Design of experiment (25 points in each case)

Xm is called the design of experiment (DoE). The two designs that are
used in the experiment are shown in Figure 8. LHS stands for latin hyper-
cube sampling [MBC79]. This method generates n points in a d-dimensional
domain which are distributed such that their projections onto each of the
coordinate axes always contains a point in every interval [ i−1

n
, i
n
] (1 ≤ i ≤ n).

The experiment was written using the free statistical software R [R D08].
The execution of the code on an average personal computer lasted about 12
hours.

5.3.2 Results

The results are displayed in Table 1 (for measurements on a grid) and Table
2 (for the LHS arrangement of measurements). Any entry of the tables
contains (in brackets) the average of the ISE after 500 runs along with the
column-wise rank. We can see in the respective column header the kernel
that was used for simulating data and in the row header the kernel which
was used for the predictions.

The motivation for the actual experiments was the assumption that a
dataset in practice contains additive as well as non-additive information.
Even with a Gaussian kernel we have different possibilities to treat the ad-
ditive and the non-additive part of the data. The format of the experiment
gives us the possibility to compare several of them.
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(0.210962)

1
(0.068943)

2
(0.075201)

5
(0.147291)

4
(0.218059)

3
(0.216960)

3
(0.570005)

4
(0.068612)

1
(0.074526)

3
(0.495903)

5
(0.571497)

4
(0.590910)

5
(0.571088)

5
(0.069635)

4
(0.073525)

1
(0.495959)

6
(0.572297)

5
(0.590218)

4
(2.111929)

6
(2.174713)

6
(1.962971)

6
(0.125648)

1
(2.174662)

6
(2.079147)

6
(0.212033)

2
(0.068968)

3
(0.074716)

4
(0.145895)

3
(0.216585)

1
(0.214928)

2
(0.213109)

3
(0.069943)

5
(0.073810)

2
(0.145881)

2
(0.217428)

2
(0.214217)

1

Table 1: Results of the first experiment using a grid design. Average mean
integrated squared error (in brackets) and column-wise rank

Regarding the results in Table 1 we can draw several conclusions. For
one they reflect that the predictions are best if we use the kernel which also
produced the data, i.e. the column-wise minimal average ISE is always on
the diagonal of the table. It is not surprising. But we can also observe more
interesting connections.

When we have a look at the first column (where the data was simulated
using the full Gaussian kernel) we see that the predictions using the kernels
in the last two rows are almost as good as the predictions with the Gaussian
kernel itself. Using an only additive or an only ortho-additive kernel we do
not get good predictions. Concerning the additive kernel there is a huge
difference with respect to the DoE. We will come back to that point later.

When the data is produced by an additive kernel (in the second and third
column of the two tables) a different image is conveyed. The predictions by
an additive kernel are close to perfect if we have an LHS design. Having a
grid design, though, it does not help much to know that the data is additive.
All the kernels that we used, except the only ortho-additive one, had almost
the same prediction quality.

For only ortho-additive data we get a similar image. With a grid design
all but the only additive kernels have similar prediction quality. In case of
an LHS design the differences are bigger with outstanding bad results using
the only additive kernels.
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(0.23307)

1
(0.07526)

5
(0.07693)

5
(0.18751)

2
(0.25833)

3
(0.25390)

3
(9.205095)

5
(0.000047)

1
(0.000049)

2
(10.558257)

5
(9.653643)

5
(9.461567)

5
(9.327517)

6
(0.000048)

2
(0.000048)

1
(10.692463)

6
(9.776614)

6
(9.581967)

6
(1.698350)

4
(1.588515)

6
(1.614348)

6
(0.071103)

1
(1.693248)

4
(1.702827)

4
(0.239546)

2
(0.069486)

4
(0.072202)

4
(0.188095)

3
(0.251321)

1
(0.249042)

2
(0.240659)

3
(0.068825)

3
(0.067681)

3
(0.190973)

4
(0.253786)

2
(0.246083)

1

Table 2: Results of the second experiment using LHS. Average mean inte-
grated squared error (in brackets) and column-wise rank

In the last two columns there is no further surprise. They emphasize,
though, that the results differ with respect to the DoE.

Combined the results suggest that the (solely) ortho-additive kernel is not
suitable for predictions if the data is generated by any other kernel. Of course
the experiment treats only a small number of kernels but it is plausible that
a kernel which does not make allowances for additive data cannot depict the
complexity of some (more general) dataset. The same applies to the sparse
additive and the full additive kernel (which cannot gather the non-additive
part). But, interestingly, we can see it only in the experiment with the LHS
design. This shows us that the DoE can have a critical impact.

The actual phenomenon concerning the solely additive kernels looks (in
terms of the average ISE) worse than it is and it can be explained. Other
experiments (for instance [DGR12]) have shown earlier that an LHS design is
suitable when working with an additive kernel. In the current case, however,
there occurred two problems. For one there was an over-fitting towards the
measurements which was reflected by strongly oscillating predictions. In
addition there were bad predictions at the borders of the domain because
the LHS design does not cover the domain as well as the grid does. The
latter, though, is a problem with which also the other kernels are confronted.
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Finally there is one more observation which is probably the most im-
portant. By comparing the average ISE we notice that there is almost no
difference between the second and the third row, as well as between the fifth
and the last row. And even the differences between the first and the last
two rows are marginal! That means that our predictions with a sparse kernel
(e.g. the last one) offer almost the same quality as the predictions with the
full kernel. Or, in the context of the double decomposition the experiment
suggests that neglecting the non-diagonal parts of the Gaussian kernel does
not gravely harm the prediction quality.

5.4 Quantifying additivity in higher dimensions

The results in Section 5.3 suggest that an additive kernel can be enriched
with an extra ortho-additive term. This makes sense, for random fields in
general have some non-additive part. This section presents a special class of
kernels which allow to quantify the additivity by some coefficient. Then it
shows how the coefficient can be recovered from data that was produced by
such a kernel.

For the experiment we propose the following model. We work with a ker-
nel kψ which is a weighted sum of the additive and ortho-additive projection
of a Gaussian kernel, kA and kO.

kψ := σ2(α kA + (1− α) kO), for some σ2 > 0, α ∈ [0, 1]

ψ denotes the parameter vector (α, σ2). We call α the coefficient of ad-
ditivity.

The experiment is, again, performed under laboratory conditions. We fix
the coefficient of additivity α of kψ and generate data with this kernel. Then
we try to recover α from the data by maximum likelihood estimation.

5.4.1 Applying maximum likelihood estimation

Maximum likelihood estimation (MLE) is a technique to estimate the pa-
rameters of a statistical model relying on data. We recapitulate shortly how
it can be applied in the context of a GRF model (see also [GS11] or [GG09]).
We treat the specific case of a kernel kψ as above.

From a centered Gaussian random field (Zx)x∈D we consider some realiza-
tion. It is represented by a vector of measurements Z at {x1, . . . , xn} ⊆ D.

41



The according random vector follows a multivariate Gaussian distribution,
Z ∼ N (0, Kψ) where Kψ is the n × n covariance matrix with respect to
kψ. Now we try to find the most likely parameter vector ψ for the present
realization.

The likelihood function L is the density function of the according distri-
bution (in our case the multivariate Gaussian), seen as a function of ψ. The
vector of measurements Z is fixed.

L(ψ) =
1

(2π)
n
2

√
|Kψ|

e−
1
2
ZTK−1

ψ Z

Instead of L we consider the log-likelihood function l = log(L). It is
equivalent to maximize either l or L, for the logarithm is a monotonically
increasing bijection.

l(ψ) = −n
2

log(2π)− 1

2
log(|Kψ|)−

ZTK−1
ψ Z

2

Notice that Kψ is σ2Kc(α) where Kc(α) = α KA + (1− α) KO, with KA
and KO being n× n covariance matrices with respect to the kernels kA and
kO, respectively.

l(ψ) = −n
2

log(2π)− n

2
log(σ2)− 1

2
log(|Kc(α)|)− ZTKc(α)−1Z

2σ2

When we consider the partial derivative of l with respect to σ2 we can
see that for any α we can calculate

σ2
∗(α) =

ZTKc(α)−1Z

n

that minimizes l. In this case it is equivalent to maximize the profile log-
likelihood function

lp(α) := l(α, σ2
∗(α)) = −n

2
log(2π)− n

2
log(σ2

∗(α))− 1

2
log(|Kc(α)|)− n

2

instead of l. Or, as we will do in the experiments, we can find the argument
that minimizes −2 lp(α).

In the case where we have several independent realizations of (Zx)x∈D
we can look at each log-likelihood function individually or we can derive an
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overall log-likelihood. The result is simply the mean of the log-likelihood
functions of the different realizations.

Let us finally remark that, even though we considered this option for
monitoring purposes, it is not perfectly rigorous to do that directly with
profile log-likelihood functions, for different realizations lead to different σ2

∗
for a given α.

5.4.2 Setup of the experiment

In the following we describe the structure of the experiment and the chosen
parameters.

1. We consider six kernels in dimension d = 2, 3, . . . , 9

(a) We start with a Gaussian kernel kgau as in Equation (4), with σ2 =
1 and θ = 0.2. We extract its additive and ortho-additive part and
construct five instances of kψ with α ∈ {0.00, 0.25, 0.50, 0.75, 1.00}
and σ2 = 1 in each case.

(b) We use kgau itself with θ = 0.2

2. For each kernel k and each dimension d we

(a) generate a random design of experiment containing 10 · d points.
We used two different types of design:

i. An LHS design as in Section 5.3

ii. A design containing uniformly distributed points in [0, 1]d

(b) calculate the covariance matrix using k and the current design

(c) simulate a realization Z of the random vector Z

(d) evaluate −2lp at the values {0.00, 0.01, . . . , 0.99}
(e) find the argument α̂ for which −2 lp is minimal

For every kernel, every dimension and both designs we made, at first, 200
iterations. Then we ran the experiment with 1000 iterations.

Notice that the likelihood function is not evaluated at α = 1.00 (full ad-
ditive). When we consider data which is not full additive then the likelihood
function typically becomes very small or is even exactly zero. In the latter
case the logarithm is undefined. Therefore we decided to neglect α = 1.00.
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The source code for the experiment was written in the high-level program-
ming language Python [Fou12] using the well-established extension numpy
for high-dimensional calculations [Oli07] and the plotting package matplotlib
[Hun07]. For the specific calculations concerning Gaussian random fields we
made use of GPy [HFA+13]10. The code was executed on a Linux instance
with average power. The experiment for one DoE and 1000 iterations lasted
about two days.

5.4.3 Results

The summarized results of the experiment are presented in Figure 11. But
we will first consider one specific case, discussing the results in dimension 5
for α = 0.75 when working with a design of uniformly distributed points.

We shortly recall the experiment setting for this case: A kernel kψ in di-
mension 5 is constructed with σ2 = 1, α = 0.75. Then a design of 50 points,
uniformly distributed in [0, 1]5, is created and a path of the Gaussian random
field with kernel kψ is simulated at the design. Then the log-likelihood func-

10A special release containing an ortho-additive kernel was provided by Nicolas Durrande
to support this thesis!

Figure 9: Results in dimension 5 and for α = 0.75. 1000 log-likelihood curves
(thin cyan lines) with their minima (black diamonds), the mean curve (thick
red line) with its minimum (red diamond)
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tion l is calculated for 100 equally spaced values in [0, 1]. The whole thing is
repeated 1000 times.

The likelihood curves are drawn in cyan in the graph in Figure 9. We
can see that all the curves have a rather flat shape. Only to the very right,
close to α = 1, some of them are bent up or down. The arguments α̂ which
minimize the curves are often close to or exactly 0 or 1. More information
about the empirical distribution of α̂ is contained in Figure 10 in terms of
a histogram (upper left part of the figure). In the histogram we see (even
better than in Figure 9) that the values are divided into 2 sets.

The histogram of the variances σ2
∗ (upper right part of Figure 10) shows

that most values are smaller than 2. In the plot underneath we see that only
for high values of α the variance becomes big. The curves that are presented
appear to have a smooth shape.

From the empirical distribution of α̂ we cannot recover the original value

Figure 10: Upper left and upper right, respectively: Histograms with 1000
values of α̂ and σ2

∗(α̂); Bottom: curves showing σ2
∗(α) for 1000 realizations

of the random vector Z (cyan lines, 5 exemplary curves in black)

45



of 0.75. This is why we decided to extend the experiment.
Although the procedure is inappropriately simplified (see the last remark

of Section 5.4.1) we took the mean over all the profile log-likelihood functions.
The correct approach is computationally more expensive but should certainly
be considered in the future. Hence, the following results should be interpreted
with caution.

In Figure 9 the mean of the −2 lp curves is depicted as a red line. The
argument which minimizes it is 0.74 (marked by the red diamond). This
is reasonably close to the initially chosen original value α = 0.75. In the
following we use this value as an estimator and call it α̂.

We gathered the results for all dimensions and for all kernels of the form
kψ in Figure 11. There are four sub-figures. The upper two concern the
case in which the DoE consists of uniformly distributed points in the domain
[0, 1]d. The lower two correspond to LHS designs. To the left and to the
right are respectively the results when running 200 and 1000 iterations.

In each graph we see five dashed black lines. Each of them corresponds
to one of the values that we have chosen for α, i.e. 0.00, 0.25, 0.50, 0.75 and
1.00. In the left part of the sub-figures we see clearly to what value each line
belongs. For every dimension in {2, 3, . . . , 9} the estimated values for α are
plotted. The estimate α̂ = 0.74 that we discussed before can be found in the
upper right graph, marked by a blue circle.

When we have a closer look at the results we notice first that the estimates
in low dimensions are much better than in high dimensions. We can see that
even with 200 iterations we can find reasonable estimates for α when the
dimension does not exceed 4. With 1000 iterations we can go to 5. For d > 5
the experiment fails to recover the value of α. It appears, though, that high
additivity may be easier to recover than low additivity.

A special case is α = 1.00. The estimate is always 0.99 because we decided
to skip 1.00 as mentioned earlier. Additional experiments (not reproduced
here) with just a few iterations confirmed that if we would allow the true
value, the estimate would be correct.

The type of design, in the experiment, does not seem to influence the
results gravely. Still it would be interesting to perform the experiments with
another design. We recall that in the experiment in Section 5.3 the effect of
the DoE was remarkable.

Finally, there are the plain red lines which are related to data that was
produced using a Gaussian kernel. Here we have to be cautious, for we
perform MLE now with a misspecified kernel kψ. The estimated coefficient
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Figure 11: Recovering/Estimating the coefficient of additivity of a dataset.
Four settings of the experiment, each containing five curves (dashed, black)
corresponding to α = 0.00, 0.25, 0.50, 0.75, 1.00, respectively, and one red line
related to the Gaussian kernel

of additivity α̂ belongs to kψ. Its relation to the Gaussian kernel has to be
interpreted. The estimates say: if the data (which, in fact, stems from a
Gaussian kernel) was generated by a kernel of the form kψ, then it is most
likely that the coefficient of additivity of the kernel was about 0.5 (at least
for d ≤ 6).

This is reasonable and we can explain it. We could do the same exper-
iment with almost any other kernel. We just have to keep in mind that kA
and kO, in that case, would be the projections of that very kernel. Con-
sequently the experiment would most likely return 0.5. We say almost any
kernel because the experiment is pointless when the kernel itself is purely
additive or ortho-additive, and hence one of the projections trivial.

Towards higher dimensions (d > 6), again, the estimates do not appear
reliable. In all the four subgraphs, though, the red curves increase with
growing dimension. It is not clear whether this is a coincidence or if there is
an explanation.
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The experiment indicates that it is not possible to recover the coefficient
of additivity of a random field with kernel kψ by maximum likelihood esti-
mation, when we know just one realization and have the here chosen design
parameters (type of design and number of points).

On the other hand it is possible to combine the information of several
realizations in order to calculate some combined likelihood. Based on this
we can apply MLE. Although we present here some simplified procedure,
which should be improved, the experiment still suggests that it is possible to
recover the coefficient of additivity of a kernel from data, in the case when
we have many realizations. However, the calculations are computationally
intensive. We recall that we had a linear budget concerning the number of
points in the design. The number of iterations was constant. With the chosen
parameters the values for α are well recovered in low dimensions. The results
for d > 6, however, do not appear reliable. In this case, we suggest either to
adjust the DoE (e.g. by adding more points) or to base the calculations on
more realizations.

An open question is how the approach could be extended to estimate the
additivity for an arbitrary Gaussian random field. In our calculations the
coefficient of additivity α always belongs to a concrete basis kernel. It can
only be interpreted relatively to the basis kernel. Further investigations are
necessary in this regard.

In addition it would be interesting to decompose another kernel into an
additive and an ortho-additive part. With this result we could try to recover
the coefficient of additivity of one tunable kernel using another one. This
would demonstrate the effect when the kernel was misspecified even before
the decomposition.
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6 Conclusion and Perspectives

The thesis deals with Gaussian random fields and identifies a close relation-
ship between their covariance kernel and the associated paths. In order to get
a deeper understanding of this relationship we examined the space of the ran-
dom field paths and the space of kernels using some results from functional
analysis. We focused on the correspondence between applying orthogonal
projections in both spaces.

We introduced orthogonal projections which divide a path of a centered
Gaussian random field into an additive part and its orthogonal complement,
here called the ortho-additive part. We derived according projections for the
covariance kernel, i.e. projections which allow us to create random fields
whose paths are additive or ortho-additive, respectively.

We studied these projections in depth. The thesis reveals general formulae
for the projection of product kernels and presents the calculation in the case
of a squared exponential (or Gaussian) kernel.

Of rather practical importance is the procedure to evaluate newly derived
kernels, suggested in Section 5.3. A cross-check technique is introduced which
compares a number of random fields having different covariance kernels. The
technique proposes to simulate random field paths with each kernel in turn
and do kriging predictions with the other kernels. We applied this procedure
to the Gaussian kernel, its additive and ortho-additive projection and the sum
of the two latter (which turns out to be different from the original kernel!).
The technique proves useful to compare kernels and identify those which are
particularly robust in the face of misspecification. In the concrete case we
identified that neglecting some cross-covariances may not necessarily lead to
a loss of prediction power.

In Section 5.4 we introduced GRFs with covariance kernels that have an
adjustable additive part (by means of some coefficient). We used the kernels
in an experiment to estimate the additivity of such a random field, based
on a set of its paths. The first estimates were carried out when the true
coefficient was known. Although the here used simplified MLE procedure
should be investigated deeper, the estimates were reasonably close to the
true values for up to 5-dimensional datasets. The here suggested technique
is applicable to recover the coefficient of additivity. However, the calculations
are computationally expensive.
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Summarized we see two kinds of achievements of the thesis. First, some
rather concrete results. Namely the decomposition of random field paths and
kernels into additive and ortho-additive parts. And the explicit calculations
concerning the Gaussian kernel.

The other achievements of the thesis are more general. They include
guidelines and procedures. The thesis can also be used as a tutorial about
how to decompose a kernel and work with the resulting partition.

We see certainly potential for future improvements. Amongst other things
the detection and quantification of additivity in Gaussian random fields could
be investigated much deeper.

In addition to enhancing the here presented results it would be interest-
ing to consider a completely different decomposition of kernels. There are
plenty of possible orthogonal function decompositions in L2 (see for instance
[DHRL13]). For any of them we could do a double decomposition for a kernel.
This would provide us with new classes of kernels which could be investigated
with the variants of the experimental protocol introduced here.
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7 Appendix

Here we perform detailed calculations for the proof of Proposition 3 in Section
4.2.1 concerning projections of a kernel k defined on the domain D = [a1, b1]×
. . .× [ad, bd], which fulfills

k(x,y) =
d∏
i=1

ki(xi, yi)

ki(xi, yi) > 0 ∀ xi, yi ∈ [ai, bi] (1 ≤ i ≤ d)

and for which the quantities

Ei(xi, ai, bi) :=

∫ bi

ai

ki(xi, yi) dyi

and Ei(ai, bi) :=

∫ bi

ai

E(xi, ai, bi) dxi

are known.
Notice that positivity - the latter of the conditions - is not compulsory.

It guarantees, though, that the denominators in the formulae below are non-
zero. But for a kernel which is not positive everywhere we can write the
formula without denominators.

We are using the auxiliary quantities (which can be computed at least
numerically):

• Ei(xi) := Ei(xi, ai, bi) =
∫ bi
ai
ki(xi, yi) dyi

• E(x) := E(x,a, b) =
∏d

i=1Ei(xi, ai, bi)

• Ei := Ei(ai, bi) =
∫ bi
ai
E(xi, ai, bi) dxi

• E := E(a, b) =
∏d

i=1 Ei(ai, bi).

For the sake of simplicity and legibility the formulae are shortened and
simplified as follows. The dependent variable of a function is often omitted.
Instead of (

πrC k
)
(x,y) =

(∫
D

k(x̃, ỹ) dỹ

)
(x,y) = E(x)
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we write the minimum that is required to cover the essential information,
like

πrC k =

∫
D

k dy = E(x) .

Moreover some parts of the calculations that occur often (like the appli-
cation of Fubini) are skipped, e.g.∫

D

k dy =

∫
D

d∏
i=1

ki(xi, yi) dy =
d∏
i=1

∫
D

ki(xi, yi) dyi =
d∏
i=1

Ei(xi) = E(x) ,

and we will benefit of the assumption that the auxiliary quantities are strictly
positive by writing them into the denominator, like

d∏
j=1

j 6=i

Ej(xj) =
E(x)

Ei(xi)
.

In the following calculations, terms that are needed to prove Proposition
3 are printed in bold type. The other terms are written down in the interests
of completeness.

Applying the right-hand-side projections we get

πr
Ck =

∫
D

k dy = E(x)

πr
jk =

∫
D−j

k − πrCk dy−j =

∫
D−j

k dy−j −
∫
D−j

πrCk dy−j

= kj(xj, yj) ·
E(x)

Ej(xj)
− E(x) = E(x)

(
kj(xj, yj)

Ej(xj)
− 1

)

πr
Ak = πrCk +

d∑
j=1

πrjk = E(x)

(
1− d+

d∑
j=1

kj(xj, yj)

Ej(xj)

)

πr
Ok = k − πrAk = E(x)

(
k(x,y)

E(x)
− 1 + d−

d∑
j=1

kj(xj, yj)

Ej(xj)

)
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and accordingly

πl
Ck = E(y)

πl
ik = E(y)

(
ki(xi, yi)

Ei(yi)
− 1

)

πlAk = E(y)

(
1− d+

d∑
i=1

ki(xi, yi)

Ei(yi)

)

πlOk = E(y)

(
k(x,y)

E(y)
− 1 + d−

d∑
i=1

ki(xi, yi)

Ei(yi)

)
.

When combining the two projections we can compute the rest. We intro-
duce one last auxiliary quantity which will occur several times in the context
of additivity:

A(x) := E

(
1− d+

d∑
i=1

Ei(xi)

Ei

)
.

With all the auxiliary quantities we can express all the projected kernels.

πCk = E

πCjk = E

(
Ej(yj)

Ej
− 1

)

πCAk =

∫
D

E(x)

(
1− d+

d∑
j=1

kj(xj, yj)

Ej(xj)

)
dx

= (1− d)

∫
D

E(x) dx+
d∑
j=1

∫
D

E(x)
kj(xj, yj)

Ej(xj)
dx

= (1− d) E +
d∑
j=1

EEj(yj)
Ej

= E

(
1− d+

d∑
j=1

Ej(yj)

Ej

)
= A(y)

πCOk = πlCk − πCAk = E(y)− A(y)
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πiCk = E

(
Ei(xi)

Ei
− 1

)

πijk = E

(
Ei(xi)

Ei
− 1

)(
Ej(xj)

Ej
− 1

)
for i 6= j

πik = πiik = E

(
ki(xi, yi)− Ei(xi)− Ei(yi) + Ei

Ei

)
πiAk =

∫
D−i

πrAk − πCAk dx−i

=

∫
D−i

E(x)

(
1− d+

d∑
j=1

kj(xj, yj)

Ej(xj)

)
− A(y) dx−i

= E

[
(1− d) · Ei(xi)

Ei
+
ki(xi, yi)

Ei
+

d∑
j=1

j 6=i

Ei(xi) Ej(yj)

Ei Ej

]
− A(y)

= A(y)

(
Ei(xi)

Ei
− 1

)
+ E

(
ki(xi, yi)

Ei
− Ei(xi)Ei(yi)

E2
i

)

πiOk = πlik − πiAk = E(y)

(
ki(xi, yi)

Ei(yi)
− 1

)
− A(y)

(
Ei(xi)

Ei
− 1

)

− E

(
ki(xi, yi)

Ei
− Ei(xi)Ei(yi)

E2
i

)
πACk = A(x)

πAjk =A(x)

(
Ej(yj)

Ej
− 1

)
+ E

(
kj(xj, yj)

Ej
− Ej(xj)Ej(yj)

E2
j

)

πAk = πCAk +
d∑
i=1

πiAk

= A(y) +
d∑
i=1

[
A(y)

(
Ei(xi)

Ei
− 1

)
+ E

(
ki(xi, yi)

Ei
− Ei(xi)Ei(yi)

E2
i

)]

=
A(x)A(y)

E
+ E ·

d∑
i=1

(
ki(xi, yi)

Ei
− Ei(xi)Ei(yi)

E2
i

)
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πAOk = E(y)

(
1− d+

d∑
i=1

ki(xi, yi)

Ei(yi)

)
− A(x)A(y)

E

− E ·
d∑
i=1

(
ki(xi, yi)

Ei
− Ei(xi)Ei(yi)

E2
i

)
πOCk = E(x)− A(x)

πOjk = E(x)

(
kj(xj, yj)

Ej(xj)
− 1

)
− A(x)

(
Ej(yj)

Ej
− 1

)

− E

(
kj(xj, yj)

Ej
− Ej(xj)Ej(yj)

E2
j

)

πOAk = E(x)

(
1− d+

d∑
i=1

ki(xi, yi)

Ei(yi)

)
− A(x)A(y)

E

− E ·
d∑
i=1

(
ki(xi, yi)

Ei
− Ei(xi)Ei(yi)

E2
i

)

πOk = πrOk − πCOk −
d∑
i=1

πiOk

= E(x)

(
k(x,y)

E(x)
− 1 + d−

d∑
j=1

kj(xj, yj)

Ej(xj)

)
− E(y) + A(y)

−
d∑
i=1

[
E(y)

(
ki(xi, yi)

Ei(yi)
− 1

)
− A(y)

(
Ei(xi)

Ei
− 1

)

− E

(
ki(xi, yi)

Ei
− Ei(xi)Ei(yi)

E2
i

)]

= k(x,y) + E ·
d∑
i=1

(ki(xi, yi)
Ei

− Ei(xi)Ei(yi)

E2
i

)
+
A(x)A(y)

E

− E(x) ·
(

1− d+
d∑
j=1

kj(xj, yj)

Ej(xj)

)
− E(y) ·

(
1− d+

d∑
i=1

ki(xi, yi)

Ei(yi)

)
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