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Abstract

Up until now, it was recognized that a detailed study of the p-rank in towers of
function fields is relevant for their applications in coding theory and cryptography.
In particular, it appears that having a large p-rank may be a barrier for a tower to
lead to competitive bounds for the symmetric tensor rank of multiplication in every
extension of the finite field Fq, with q a power of p. In this paper, we show that
there are two exceptional cases, namely the extensions of F2 and F3. In particular,
using the definition field descent on the field with 2 or 3 elements of a Garcia-
Stichtenoth tower of algebraic function fields which is asymptotically optimal in
the sense of Drinfel’d-Vlăduţ and has maximal Hasse-Witt invariant, we obtain a
significant improvement of the uniform bounds for the symmetric tensor rank of
multiplication in any extension of F2 and F3.

Keywords: Algebraic function field, tower of function fields, tensor rank,
algorithm, finite field.

1. Introduction

1.1. General context

The determination problem of the tensor rank of multiplication in finite fields
has been widely studied over the past 20 years, as shown by the growing number of
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publications on this topic including amoung others [12], [18], [2], [11], [5], [16].
This problem is worthwhile both because of its theoretical interest and because it
has several applications in the area of information theory such as cryptography and
coding theory.

1.2. Tensor rank of multiplication

Let Fq be a finite field with q elements where q is a prime power and let Fqn be a
Fq-extension of degree n. The multiplication in the Fq-vector space Fqn is a bilinear
map from Fqn × Fqn into Fqn , thus it corresponds to a tensor t ∈ F?qn

⊗

F?qn

⊗

Fqn

where F?qn denotes the dual of Fqn over Fq. Hence the product of two elements x
and y of Fqn is the convolution of this tensor with x ⊗ y ∈ Fqn

⊗

Fqn . If

t =
λ
∑

`=1

a` ⊗ b` ⊗ c`

where a` ∈ F?qn , b` ∈ F?qn , c` ∈ Fqn , then

x · y = t(x ⊗ y) =
λ
∑

`=1

a`(x)b`(y)c`. (1)

Every expression (1) is called a bilinear multiplication algorithm U (resp. a
symmetric bilinear multiplication algorithm if a` = b` for all ` ∈ {1, . . . ,λ}). The
integer λ is called the tensor rank (resp. symmetric tensor rank) of the algo-
rithm U , or the bilinear complexity (resp. symmetric bilinear complexity) of the
algorithm U .
Let us set

µq(n) :=min
U
µ(U ),

respectively
µsym

q (n) := min
U sym

µ(U sym),

where U is running over all bilinear multiplication algorithms (resp. U sym is run-
nig over all symmetric such algorithms) in Fqn over Fq.

It is interesting to study the minimal length of a symmetric multiplication algo-
rithm since it turns out that it plays an important role in several other areas such
as Riemann-Roch system of equations, arithmetic secret sharing, multiplication-
friendly codes, etc, as mentioned in [9].

1.3. Basic notions related to function fields and notation

Let F/Fq be an algebraic function field of one variable of genus g, with constant
field Fq. For any integer k ≥ 1, we denote by Pk(F/Fq) the set of places of degree
k, by Bk(F/Fq) the cardinality of this set and by P(F/Fq) = ∪k Pk(F/Fq) the set
of all places in F/Fq. For any place P, we define FP to be the residue class field
of P and OP its valuation ring. Every element t ∈ P such that P = tOP is called a
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local parameter for P. The support of D =
∑

P aP P is the set of the places P such
that aP 6= 0.

For any divisor D of F/Fq, the Riemann-Roch Fq-vector-space associated to D
is the set

L (D) = { f ∈ F/Fq | D + ( f )≥ 0} ∪ {0}.

The Riemann-Roch Theorem states that the dimension dimD of the vector space
L (D) is related to the degree of the divisor D and to the genus of F/Fq by:

dimD = degD − g + 1+ dim(κ−D), (2)

where κ denotes a canonical divisor of F/Fq. In this relation, the complementary
term i(D) := dim(κ−D) is called the index of speciality of D. Note that in any
case, we have i(D)≥ 0. In particular, a divisor D is called a non-special divisor
when the index of speciality i(D) is zero and D is called a special divisor if i(D)> 0.

1.4. Known results

1.4.1. General results
The bilinear complexity µq(n) of the multiplication in the n-degree extension of

a finite field Fq is known for certain values of n. In particular, Winograd [20] and
de Groote [13] have shown that this complexity is ≥ 2n− 1, with equality hold-
ing if and only if n≤ 1

2
q+ 1. Using the principle of the Chudnovsky-Chudnovsky

algorithm [12] applied to elliptic curves, Shokrollahi has shown in [17] that the bi-
linear complexity of multiplication is equal to 2n for 1

2
q+ 1< n< 1

2
(q+ 1+ ε(q))

where ε is the function defined by:

ε(q) =
�

greatest integer≤ 2
p

q prime to q, if q is not a perfect square
2
p

q, if q is a perfect square.

Eventually, the original algorithm of D.V. and G.V. Chudnovsky introduced in
[12] leads to the following theorem by [3]:

Theorem 1. Let q be a prime power. The tensor rank µq(n) of multiplication in any
finite extension Fqn of Fq is linear with respect to the extension degree; more precisely,
there exists a constant Cq such that for any n, it holds that:

µsym
q (n)≤ Cqn.

Moreover, one can give explicit values for Cq; in particular for q = 2 or q = 3:

Proposition 2. The best known values for the constant Cq defined in the previous
theorem are:

Cq =







19.6 if q = 2 [11], [5]

27 if q = 3 [3]
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Remark. The estimate C2 = 19.6 is obtained by combining the general uni-
form bound µsym

2 (n)≤
477
26

n+ 45
2

from [5] for n greater than 19, and the values of
µ

sym
2 (n) given in [11, Table 1] for n≤ 18 (see Appendix).

Let us present the best finalized version of this algorithm in its symmetrical
version, which is a generalization of the algorithm of Chudnovsky-Chudnovsky type
introduced by Arnaud in [2] and developed later by Cenk and Özbudak in [11].
This generalization uses several coefficients in the local expansion at each place
Pi instead of just the first one. Due to the way to obtain the local expansion of
a product from the local expansion of each term, the bound for the symmetric
bilinear complexity involves the complexity notion bMq(u) introduced by Cenk and
Özbudak in [11] and defined as follows:

Definition 3. We denote by bMq(u) the minimum number of multiplications needed in
Fq in order to obtain coefficients of the product of two arbitrary u-term polynomials
modulo xu in Fq[x].

Note that in [16], Randriambololona gives an even more general version of the
Chudnovsky-Chudnovsky algorithm, which encompass the case of non-necessarily
symmetric algorithms. This generalization is not relevant here, since we focus on
the symmetric tensor rank; thus we introduce the generalized symmetric algorithm
Chudnovsky-Chudnovsky type described in [11].

Theorem 4. Let

• q be a prime power,

• F/Fq be an algebraic function field,

• Q be a degree n place of F/Fq,

• D be a divisor of F/Fq,

• P = {P1, . . . , PN} be a set of N places of arbitrary degree,

• t1, . . . , tN be local parameters for P1, . . . , PN respectively,

• u1, . . . , uN be positive integers.

We suppose that Q and all the places in P are not in the support of D and that:

a) the map

EvQ :

�

�

�

�

L (D) → Fqn ' FQ
f 7−→ f (Q)

is onto,

b) the map

EvP :

�

�

�

�

L (2D) −→
�

Fqdeg P1

�u1 ×
�

Fqdeg P2

�u2 × · · · ×
�

Fqdeg PN

�uN

f 7−→
�

ϕ1( f ),ϕ2( f ), . . . ,ϕN ( f )
�
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is injective, where each application ϕi is defined by

ϕi :

�

�

�

�

�

L (2D) −→
�

Fqdeg Pi

�ui

f 7−→
�

f (Pi), f ′(Pi), . . . , f (ui−1)(Pi)
�

with f = f (Pi) + f ′(Pi)t i + f ′′(Pi)t2
i + . . .+ f (k)(Pi)tk

i + . . ., the local expansion
at Pi of f in L (2D), with respect to the local parameter t i . Note that we set
f (0) := f .

Then

µsym
q (n)≤

N
∑

i=1

µsym
q (deg Pi) bMqdeg Pi (ui).

In particular, we will consider in this paper a specialization of this algorithm
which is described in Section 4 and requires the additional hypothesis that there
exists a non-special divisor of degree g − 1; this will motivate the study of ordinary
towers.

1.4.2. Asymptotic bounds for the extensions of F2 and F3

The following asymptotic bound for the bilinear complexity was introduced in
[18]:

Msym
q := limsup

k→∞

µsym
q (k)

k
.

Recently, with the help of the torsion-limit technique and Riemann-Roch sys-
tems, Cascudo, Cramer and Xing improved in [9] the upper bounds for Msym

q in
the case where q is small (q ∈ {2, 3,4, 5}). In particular, from optimal towers with
asymptotically few 2-torsion points relatively to the genus they obtained:

Msym
2 ≤ 7.23 and Msym

3 ≤ 5.45.

1.5. Motivations – New results established in this paper

As mentioned in [9] by Cascudo, Cramer and Xing, and in [7] by Bassa and
Beelen, it is widely accepted that towers of algebraic function fields having a large
p-rank are less efficient for certain applications to information theory. Indeed,
for example, in [7], it reads: “A detailed study of the p-rank in towers is rele-
vant for their applications, see [8]. For example, although both of the towers
introduced in [15] and [14] have the same limit and hence are equally influ-
ential for applications in coding theory, a detailed study of their p-rank reveals
that in fact the latter 2 is more appropriate for other kinds of applications, e.g.
secure multiparty computation and fast bilinear multiplication.” In particular, it
appears that having a large p-rank may be a barrier for a tower to lead to com-
petitive bounds for the symmetric tensor rank of multiplication in every extension

2which turns out not to be ordinary, according to [9]
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of the finite field Fq, with q a power of p. In this paper, we show that there are
two exceptional cases, namely the extensions of F2 and F3. More precisely, we
will show that an ordinary tower may lead to better uniform results for the ten-
sor rank of multiplication in any extension of F2 and F3 than a non-ordinary one
because of the link between maximal p-rank and existence of a non-special divi-
sor of degree g − 1. Indeed, we know that the existence of a non-special divisor
of degree g − 1 in the function field F/Fq is of crucial importance in the perfor-
mance of Chudnovsky-Chudnovsky type algorithms over Fq designed from F/Fq
[4], [16]. When the definition field Fq is such that q ≥ 4, then according to [4]
there always exists a non-special divisor of degree g − 1. Nevertheless, the prob-
lem persists in the case where the definition field is F2 or F3. In [5], to avoid this
obstacle, we substituted non-special divisors of degree g − 1 for zero-dimensional
divisors whose degree is as close as possible to g − 1, in the descent over F2 of
the original Garcia-Stichtenoth tower presented in [14] and defined over F16; non-
special divisors of degree g − 1 being the borderline case of zero-dimensional divi-
sors. However, Bassa and Beelen established in [7] that the second optimal Garcia-
Stichtenoth tower introduced in [15] and defined over Fq2 is ordinary. On the
other hand, it was shown in [6] that there always exists a non-special divisor of
degree g − 1 in any ordinary function field. In this article, we combine these two
results to a modified version of the optimal tower studied by Bassa and Beelen
which improves the results obtained in [5]. Namely we define intermediate steps
for the tower and descend the definition field from F16 to F2, and from F9 to F3
respectively, which lead us to the two following bounds:

µ
sym
2 (n)≤ 15.23n+

9

2
and µ

sym
3 (n)≤ 7.732n.

Note that the difficulty to obtain non-asymptotic estimations of the 2-torsion points
in all steps of the tower used in [9] is an obstruction to obtain uniform bounds as
we get in this paper.

2. Definitions and related properties of the p-rank

Definition 5. The p-rank γ(F), also called Hasse-Witt invariant, of a function field F
with constant field Fp, the algebraic closure of the finite field Fp, is defined as the
dimension over Fp of the group of divisor classes of degree zero of order p.
If the function field is defined over a finite field Fq, we define its p-rank as the p-rank
of the function field FFq, obtained by extending the constant field to the algebraic
closure of Fq.

It can be shown that :

Proposition 6. If F/Fq be a function field of genus g(F), then 0≤ γ(F)≤ g(F).

Definition 7. A function field F/Fq is called ordinary if γ(F) = g(F).
A tower of function fields T =

�

Fn/Fq
�

n∈N is said ordinary if for any n≥ 0, Fn is such
that γ(Fn) = g(Fn), i.e. if any step of the tower is an ordinary function field.
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Let us recall the following result from [6]:

Corollary 8. If F is an ordinary function field of genus g > 0 defined over F2 or
over F3, then there is always a degree g − 1 zero-dimensional divisor in F.

Moreover, directly from Definition 5, we can deduce the following lemma:

Lemma 9. Let r ≥ 0 be an integer. If we set F/Fqr := H/Fq ⊗ Fqr , then H/Fq is
ordinary if and only if F/Fqr is ordinary.

PROOF. Note that the genus does not change under constant field extension or
descent. It follows from Definition 5 that p-rank does not change under constant
field extension or descent since the p-rank of a function field F/Fq defined over a
finite field Fq is equal to the p-rank of FFq.

To conclude this section, we recall the following result which is proven
in [7, Lemma 6, 2.]:

Lemma 10. If H/F is a finite extension of function fields with same constant field Fq,
then

g(H)− γ(H)≥ g(F)− γ(F).

In particular, if H is ordinary then so is F.

3. Good ordinary sequences of function fields defined over F2 or F3

In this section, we present sequences of algebraic function fields defined over F2
or F3, constructed from the well-known Garcia-Stichtenoth tower defined in [15],
which will be used to obtain new bounds for the tensor rank of multiplication.

3.1. Definition of the Garcia-Stichtenoth’s tower

Let us consider a finite field Fq2 with q = pr , for p a prime number and r an
integer. We consider the Garcia-Stichtenoth’s elementary abelian tower T0 over Fq2

constructed in [15] and defined by the sequence (F0,F1,F2, . . .) where

F0 := Fq2(x0)

is the rational function field over Fq2 , and for any i ≥ 0, Fi+1 := Fi(x i+1) with x i+1
satisfying the following equation:

xq
i+1 + x i+1 =

xq
i

xq−1
i + 1

.

Let us denote by gi the genus of Fi in T0/Fq2 and recall the following formulæ:

gi =

¨

(q
i+1
2 − 1)2 for odd i,

(q
i
2 − 1)(q

i+2
2 − 1) for even i.

(3)
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Thus, according to these formulæ, it is straightforward that the genus of any step
of the tower satisfies:

(q
i
2 − 1)(q

i+1
2 − 1)< g(Fi)< (q

i+2
2 − 1)(q

i+1
2 − 1). (4)

Moreover, a tighter upper bound will be useful and can be obtained by expanding
expressions in (3):

g(Fi)≤ qi+1 − 2q
i+1
2 + 1. (5)

If the characteristic p = 2 and r = 2, i.e. q = 4, then we can densify the Garcia-
Stichtenoth’s tower with steps defined over the finite field Fq2 by considering the
following completed tower:

T1/F16 : F0,0 ⊆ F0,1 ⊆ F0,2 = F1,0 ⊆ F1,1 ⊆ F1,2 = F2,0 ⊆ · · ·

such that Fi ⊆ Fi,s ⊆ Fi+1 for any integer s ∈ {0, 1,2}, with Fi,0 := Fi and
Fi,2 := Fi+1. Indeed:

Proposition 11. There exists a tower T1 defined over F16 whose recursive equation
is defined over F2. More precisely, the tower T1 is the densified Garcia-Stichtenoth’s
tower over F16 and is defined by T1 =

�

Fi,s
�

i≥0
s∈{0,1}

where for any i ≥ 0:

Fi,0 := Fi and Fi,1 := Fi(t i+1)

with t i+1 satisfying the equation:

t2
i+1 + t i+1 =

x4
i

x3
i + 1

for i = 0, . . . , n− 1. (6)

PROOF. Let x0 be a transcendental element over F2 and let us set

F0 := F16(x0).

We define recursively for i ≥ 0

(i) x i+1 such that x4
i+1 + x i+1 =

x4
i

x3
i +1

for i = 0, . . . , n− 1,

(ii) t i+1 such that t2
i+1 + t i+1 =

x4
i

x3
i +1

for i = 0, . . . , n− 1,

(or alternatively t i+1 = x2
i+1 + x i+1).

Thus, we can define recursively the tower T1 by setting:

Fi,1 = Fi,0(t i+1) = Fi(t i+1) and Fi+1,0 = Fi+1 = Fi(x i+1).

8



Let us remark that it is possible to densify the general Garcia-Stichtenoth’s
tower over Fq2 for any characteristic p and for any integer r since each exten-
sion Fi+1/Fi is Galois of degree q = pr with full constant field Fq2 . However, in the
general case the equation (6) for the intermediate steps is not defined over Fp but
over Fq. For example, for p = 3 and r = 2, we obtain an equation which is defined
over F9.

Notation. In the sequel, we will denote by Bk(F/K) the number of places of
degree k of an algebraic function field F/K defined over a finite field K; we will
also denote by gi,s the genus of Fi,s/F16 in T1/F16.

3.2. Descent of the definition field of the Garcia-Stichtenoth’s tower on the fields F2
and F3

First we state that when q = 3, one can descend the definition field of the
tower T0/Fq2 from Fq2 to Fq since the recursive equation defining the tower has
coefficients lying in Fq. Thus, we have the following result:

Proposition 12. If q = p = 3, there exists a tower E/Fq defined over Fq given by a
sequence:

G0 ⊆ G1 ⊆ G2 ⊆ G3 ⊆ · · ·

defined over the constant field Fq and related to the tower T0/Fq2 by

Fi = FqGi for all i,

namely Fi/Fq2 is the constant field extension of Gi/Fq.

Now, we are interested in the descent of the definition field of the tower T1/Fq2

from Fq2 to Fp if it is possible. In fact, for the tower T1/Fq2 , one can not establish a
general result but one can prove that it is possible in the case where the character-
istic is 2 and r = 2, i.e. q = 4. Note that in order to simplify the presentation, we
are going to set the results by using the variable p.

Proposition 13. If p = 2 and q = p2, the descent of the definition field of the tower
T1/Fq2 from Fq2 to Fp is possible. More precisely, there exists a tower T2/Fp given by
a sequence:

H0,0 ⊆ H0,1 ⊆ H0,2 = H1,0 ⊆ H1,1 ⊆ H1,2 = H2,0 ⊆ · · ·

defined over the constant field Fp and related to the tower T1/Fq2 by

Fi,s = Fq2Hi,s for all i ≥ 0 and s ∈ {0, 1,2},

namely Fi,s/Fq2 is the constant field extension of Hi,s/Fp.

PROOF. It is a straightforward consequence of Proposition 11.

In order to draw consequences for the previously descended towers, let us
recall the known results concerning the number of places of degree one of the
tower T0/Fq2 , established in [15] and [1].

9



Proposition 14. If q = pr ≥ 2, then for any n> 2:

B1(Fn/Fq2) =
�

qn(q2 − q) + 2q2 if p = 2,
qn(q2 − q) + 2q if p > 2.

Now, we deduce some straightforward properties concerning the towers T2/F2
and E/F3.

Proposition 15. Let q = p2 = 4. For any integers i ≥ 0 and s ∈ {0, 1,2}, the alge-
braic function field Hi,s/Fp in the tower T2/Fp has B1(Hi,s/Fp) places of degree one,
B2(Hi,s/Fp) places of degree two and B4(Hi,s/Fp) places of degree four and satisfies:

(i) Hi/Fp ⊆ Hi,s/Fp ⊆ Hi+1/Fp with Hi,0 = Hi and Hi,2 = Hi+1,

(ii) the genus gi,s of Hi,s/Fp satisfies:

(ii.a) gi,s ≤
gi+1

p2−s (ii.b) gi,s ≤ ps−2(qi+2 − 2q
i
2
+1) + ps−2

(iii) B1(Hi,s/Fp) + 2B2(Hi,s/Fp) + 4B4(Hi,s/Fp)≥ qi(q2 − q)ps.

Moreover, Fp is algebraically closed in each algebraic function field Hi,s of the tower
T2/Fp.

Remark. Bound (ii.a) is tighter than Bound (ii.b), but when we will need
an estimate for gi,s which does not depend on the parity of the step i of the tower,
Bound (ii.b) will be useful.

PROOF. Property (i) follows directly from Proposition 13. Each extension
Hi+1/Hi,s is a Galois extension of degree [Hi+1 : Hi,s] = 22−s. Moreover, according
to [19, Prop. 3.7.8] the full constant field of Hi,s is Fp since at least one place of
H0 is totally ramified in Hi,s. Indeed, the place at infinity of F0 is totally ramified in
the tower T0/Fq2 . Hence, the same holds for the place at infinity of H0 in T2/Fp.
Since the algebraic function field Fi,s is a constant field extension of Hi,s, for any
two integers i ≥ 0 and s ∈ {0, 1,2}, Fi,s and Hi,s have the same genus, so by the
Hurwitz Genus Formula [19], one has:

gi,s ≤
gi+1

p2−s (7)

with g(Hi+1/Fp) = g(Fi+1/Fq2) = gi+1 given by (3). Finally, applying Bound (5)
on gi+1, we get (ii.b). Moreover, for α ∈ Fq2\{ω ∈ Fq2 |ωq +ω= 0}, let Pα denote
the place of degree one in the rational function field F0 which is the zero of x0−α,
then Pα splits completely in Fi+1/F0 by [15, Lemma 3.9]. Let us set d := [Fi+1 : F0]
and d ′ := [Fi+1 : Fi,s]. If ` denotes the number of places of Fi,s lying over the
place Pα of F0, it is well known that ` ≤ d

d ′
with equality holding if and only if Pα

splits completely in Fi+1/F0; so `= d
d ′
= [Fi,s : F0] which proves that the place Pα

splits completely also in Fi,s/F0. Thus, there are exactly qi ps places of degree one
above Pα in Fi,s, so there are at least qi(q2 − q)ps places of degree one in Fi,s, since
�

�Fq2\{ω ∈ Fq2 |ωq +ω= 0}
�

�= q2 − q.
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To conclude, we deduce from [15] (where the same formula with s = 0 is
proven for Fi,0) that the number of places of degree one of Fi,s/Fq2 is such that
B1(Fi,s/Fq2)≥ (q2 − q)qi ps. Eventually, Fi,s being a degree four constant field ex-
tension of Hi,s, it is clear that for any two integers i ≥ 0 and s ∈ {0,1, 2}, it holds
that

B1(Hi,s/Fp) + 2B2(Hi,s/Fp) + 4B4(Hi,s/Fp)≥ (q2 − q)qi ps.

Similar results than those of Proposition 15 can be obtained for the tower E/F3,
namely:

Proposition 16. Let q = p = 3. For any integer i ≥ 0, the algebraic function field
Gi/Fq in the tower E/Fq has the same genus gi than the corresponding step Fi/Fq2

of the tower T0/Fq2 . Moreover, the number of places of degree one and two of each
function field Gi/Fq is related to the number of rational places of Fi/Fq2 by:

B1(Fi/Fq2) = B1(Gi/Fq) + 2B2(Gi/Fq)

thus, the following bound holds:

B1(Gi/Fq) + 2B2(Gi/Fq)≥ qi(q2 − q). (8)

To conclude this section, let us recall that in [7], the authors established the
ordinarity of the classical tower over Fq2 :

Theorem 17. For any prime power q, the tower T0/Fq2 is ordinary.

Thus, we can deduce that the ordinarity of T0/Fq2 provides the same property
to the towers T2/F2 and E/F3:

Proposition 18. The towers T2/F2 and E/F3 are ordinary.

PROOF. Since constant field descent preserves ordinarity from Lemma 9, the tower
E/F3 is ordinary and so are the steps Fi,0 of the tower T2/F2. Moreover Lemma 10
implies that the intermediate steps Fi,1 are also ordinary since each one belongs to
a finite extension Fi+1,0/Fi,1 with same constant field, where Fi+1,0 is ordinary.

A straightforward consequence of this last proposition and Corollary 8 is the
following result:

Corollary 19. For any function field F in the towers T2/F2 and E/F3, there exists a
non-special divisor of degree g(F)− 1.

4. New bounds for the tensor rank

4.1. Preliminary results

To obtain our new estimates for µsym
2 (n) and µsym

3 (n) from the towers described
in the previous section, we will need some technical results which are proven below.
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Theorem 20. Let n and d be two fixed integers. Let F/Fq be an algebraic function
field of genus g with at least Bk places of degree k for any k|d. If the three following
conditions are satisfied:

(a) Bn(F/Fq)> 0,

(b) there exists a non-special divisor of degree g − 1,

(c)
∑

k|d k(Bk + bk)≥ 2n+ 2g − 1, where the integers bk are chosen such that
0≤ bk ≤ Bk,

then
µsym

q (n)≤
∑

k|d

µsym
q (k)(Bk + bk) +

∑

k|d

µsym
q (k)bk,

so

µsym
q (n)≤ η





∑

k|d

k(Bk + bk) +
∑

k|d

kbk



 with η :=max
k|d

µsym
q (k)

k
.

PROOF. The algorithm recalled in Theorem 4 is applied on a set P = ∪k|dPk with
Pk a subset of Pk(F/Fq) with cardinality Bk. Among each P ∈Pk, bk are used
with multiplicity u= 2; all such places form a subset R of P . The others Bk − bk
places of Pk are used with multiplicity u= 1. From the existence of a non-special
divisor G of degree g − 1 provided by Hypothesis (b) and the existence of a place
Q of degree n, one constructs an effective divisor D such that degD = n+ g − 1
and dimD = n. Precisely, one can choose any divisor D which is equivalent to
Q+G , but whose support is disjoint from the support of Q+G . For such a divisor
D, the map EvQ is bijective: indeed its kernel L (D −Q) is trivial since D −Q is
equivalent to G which is non-special of degree g − 1 and so is zero-dimensional;
thus EvQ is injective and actually bijective by dimension reasons. Moreover, from

Hypothesis (c) it holds that L
�

2D −
�
∑

P∈P P +
∑

R∈R R
�

�

= {0} since

deg

 

2D − (
∑

P∈P

P +
∑

R∈R

R)

!

= 2degD −
∑

k|d

k(Bk + bk)< 0

thus EvP is injective. From [11], it holds that bMq(2)≤ 3, so Theorem 4 then gives
the following bound:

µsym
q (n)≤

∑

P∈P

µsym
q (deg P) + 2

∑

R∈R

µsym
q (deg R).

Rearranging summation to group places with the same degree, we get the result.

Here we state two special cases of Theorem 20 which are adapted to the study
of the tensor rank on F2 and F3 respectively. The first one is adapted to the case
where places of degree one, two and four are taking into account:

12



Proposition 21. Let p = 2. If F/F2 is an algebraic function field of genus g with at
least Bk places of degree k for k =1, 2 and 4, such that the three following conditions
are satisfied:

(a) Bn(F/F2)> 0,

(b) there exists a non-special divisor of degree g − 1,

(c)
∑

k|4 k(Bk + bk)≥ 2n+ 2g − 1, where the integers bk are chosen such that
0≤ bk ≤ Bk,

then

µ
sym
2 (n)≤

9

2
(n+ g + 1) +

9

4

∑

k|4

kbk.

PROOF. It is a straightforward consequence of Theorem 20 with q = p = 2
and d = 4. We recall that µsym

2 (2) = 3 and µ
sym
2 (4) ≤ 9; so we obtain

η=maxk|4
µ

sym
2 (k)

k
≤max

n

1; 3
2
; 9

4

o

= 9
4

and the result follows from a choice of the

Bk ’s and the bk ’s such that
∑

k|4 k(Bk + bk) = 2n+ 2g − 1+ ε, with
ε ∈ {0, 1,2, 3}: we must consider the less favorable case where there only exists
places of degree four and so we have to choose ε= 3.

This second specialization corresponds to the case where only places of degree
one and two are considered:

Proposition 22. Let q = 3. If F/F3 is an algebraic function field of genus g with
at least Bk places of degree k for k =1, 2 such that the three following conditions are
satisfied:

(a) Bn(F/F3)> 0,

(b) there exists a non-special divisor of degree g − 1,

(c)
∑

k|2 k(Bk + bk)≥ 2n+ 2g − 1, where the integers bk are chosen such that
0≤ bk ≤ Bk,

then

µ
sym
3 (n)≤ 3(n+ g) +

3

2

∑

k|2

kbk.

PROOF. The same proof than the previous one with q = 3 and d = 2, and so η= 3
2

in Theorem 20 gives the result.

Lemma 23. Let q = 4= p2 and n≥ 19. There exists a step Hi,s/F2 of the tower T2/F2
such that the three conditions of Proposition 21 are satisfied with
b1 = b2 = b4 = 0. Moreover, if Condition (c) is satisfied then the two others also
are.

13



PROOF. Thanks to Corollary 19, Condition (b) is satisfied for any step of the tower.
For i ≤ n−13

4
, it holds that p2i+6 ≤ p

n−1
2 . Then we get that

p2i+6
�

1− 1
pi+2 +

1
p2i+3

�

≤ p
n−1

2 p2(pp− 1), since 1− 1
pi+2 +

1
p2i+3 ≤ 1≤ p2(pp− 1).

It follows that p2i+4 − pi+2 + p ≤ p
n−1

2 (pp− 1), which leads to
2gi,s + 1≤ p

n−1
2 (pp− 1) according to Proposition 15 (ii.b) with s ∈ {0,1} (one can

always assume that s 6= 2 since Hi,2 = Hi+1,0). Hence, from [19, Corollary 5.2.10]
Condition (a) is satisfied for any step Hi,s such that i ≤ n−13

4
.

On the other hand, for i such that i > logq(n)−
1
2
, one has qi+1− 1

2 ≥ n+ 1,

so qi+1ps−1(q− 3)≥ n+ 1 since ps−1 ≥ q−
1
2 = p−1, which gives that

qi+1ps(q− 3)≥ 2n+ 2 and so qi+1ps(q− 1− 2) + q
i−1
2

ps
≥ 2n+ 2. Thus it holds

that: qi+1ps(q− 1)≥ 2n+ 2+ 2qi+1ps − q
i−1
2 ps = 2n+ 2ps−2(qi+2 − q

i
2
+1) + 2.

Eventually, one gets that qi+1ps(q− 1)≥ 2n+ 2ps−2(qi+2 − q
i
2
+1) + 2ps−2 − 1 since

2ps−2 − 1≤ 2 for s ∈ {0,1}, and Condition (c) is satisfied according to the inequal-
ities (ii.b) and (iii) established in Proposition 15.
Thus, for n≥ 21 one can find at least one integer i in the interval
i

logq(n)−
1
2
; n−13

4

i

, and so a corresponding step of the tower Hi,0 for which Propo-
sition 21 holds. Note that in any case, Condition (a) is satisfied for lower steps than
Condition (c), so it may happened that the first suitable step that satisfy both con-
ditions is not Hi,0 itself but one of the previous step.
Moreover one can check that for n= 19, H1 is the first suitable step of the tower to
apply Proposition 21 with b1 = b2 = b4 = 0. Indeed, it holds that g(H1/F2) = 9 so
Condition (a) is satisfied and since B1(H1/F2) = 4, B2(H1/F2) = 2 and
B4(H1/F2) = 12, Condition (c) is also satisfied for H1 but it is not the case for H0,1.
Similarly for n= 20, H1 does not satisfy Condition (c), but H1,1 does satisfy both
Conditions (a) and (c) since g(H1,1/F2) = 21, B1(H1,1/F2) = 4, B2(H1,1/F2) = 2
and B4(H1,1/F2) = 25.

Lemma 24. Let q = 3 and n ≥ 13. There exists a step Gi/F3 of the tower E/F3 such
that the three conditions of Proposition 22 are satisfied with b1 = b2 = 0. Moreover,
if Condition (c) is satisfied then the two others also are.

PROOF. Thanks to Corollary 19, Condition (b) is satisfied for any step of the tower.

For i ≤ n−5
2

, Condition (a) is satisfied since one has: qi ≤ q
n−4

2
p

q
≤ q

n−4
2

p
q+1
= q

n−4
2

p
q−1
2

and so (q
i+2
2 − 1)(q

i+1
2 − 1)≤ q

n−1
2

p
q−1
2

which gives that the inequality

2gi + 1≤ q
n−1

2 (pq− 1) of [19, Corollary 5.2.10] holds according to (4).
On the other hand, when i ≥ 2 logq

�

n
2
− 1
�

, Condition (c) is satisfied. Indeed, for

such i one has: q
i
2 ≥ n

2
− 1, so 4q

i
2 ≥ 2n− 5, which gives that 4q

i
2 + 2q ≥ 2n+ 1.

Adding 2qi+1, which equals (q2 − q)qi , to both sides it follows that:
(q2 − q)qi + 2q ≥ 2n+ 2qi+1 − 4q

i
2 + 1= 2n+ 2(qi+1 − 2q

i
2 + 1)− 1. Thus from

(8) and (5) we get that inequality of Condition (c) holds with b1 = b2 = 0.
To conclude, one can see that for n ≥ 13, the interval

�

2 logq

�

n
2
− 1
�

; n−5
2

�

con-
tains at least an integer i and so Gi/F3 is a suitable step of the tower; moreover

14



the smallest such integer is the smallest i ≥ 2 logq

�

n
2
− 1
�

, i.e. the smallest one for
which Condition (c) is satisfied.

Till the end of this section, we will deal with the following notations:

n2,i,s
def
:= max

n

m
�

�2m+ 2g(Hi,s)− 1≤
∑

k|4

kBk(Hi,s/F2)
o

and

n3,i
def
:= max

n

m
�

�2m+ 2g(Gi)− 1≤
∑

k|2

kBk(Gi/F3)
o

.

Let us explain the relevance of these definitions, focusing on the case of the role
of n3,i in the tower E/F3 (the same holds for the tower T2/F2 when one replaces
n3,i by n2,i,s). The integer n3,i is the biggest one for which it holds that:

∑

k|2

kBk(Gi/F3)≥ 2n3,i + 2gi − 1

i.e. Fqn3,i is the biggest extension of F3 for which Gi/F3 could be a suitable step of
the tower to apply Proposition 22 with b1 = b2 = 0. If n> n3,i , then

∑

k|2

kBk(Gi/F3)< 2n+ 2gi − 1

but one has
∑

k|2

kBk(Gi/F3) + 2(n− n3,i)≥ 2n+ 2gi − 1

which means that Gi is still a suitable step of tower to apply Theorem 22 if we can
choose the bk ’s such that

∑

k|2 kbk ≥ 2(n− n3,i).

Thus, we are interested in the determination of a lower bound for n3,i and n2,i,s.
It is the purpose of the two following lemmas:

Lemma 25. If p = 2 and q = p2 = 4, then n2,i,s ≥ qi+1ps + q
i
2
+1ps − 1.

PROOF. According to Proposition 15 (iii) and (ii.a), and Formula (5), we get:
∑

k|4

kBk(Hi,s/F2)− 2g(Hi,s) + 1 ≥ (q2 − q)qi ps − 2ps−2(qi+2 − 2q
i
2
+1 + 1) + 1

= qi+2ps − qi+1ps − ps−1(qi+2 − 2q
i
2
+1 + 1) + 1

= qi+2ps−1(p− 1)− qi+1ps + q
i
2
+1ps − ps−1 + 1

≥ qi+1ps−1(q− p) + q
i
2
+1ps − 1

since s ∈ {0, 1,2} and p− 1= 1

= qi+1ps + q
i
2
+1ps − 1.

15



Lemma 26. If q = 3, then n3,i ≥ 4q
i+1
2 − 1.

PROOF. Proposition 16 and Formula (5) give:
∑

k|2

kBk(Gi/F3)− 2g(Gi) + 1 ≥ qi(q2 − q)− 2(qi+1 − 2q
i+1
2 + 1) + 1

≥ qi+1(q− 1)− 2qi+1 + 4q
i+1
2 − 1

= qi+1(q− 3) + 4q
i+1
2 − 1= 4q

i+1
2 − 1.

Now, we establish a lower bound for the gap between the genus of two succes-
sive steps of each tower T2/F2 and E/F3:

Lemma 27. (i) If q = p2 = 4 then ∆gi,s
def
:= g(Hi,s+1)− g(Hi,s)≥ ps(2qi − 3q

i
2 ).

(ii) If p = q = 3 then ∆gi
def
:= g(Gi+1)− g(Gi)≥ (q− 1)(qi+1 − qdi/2e).

PROOF. (i) For any s ∈ {0, 1}, since [Hi,s+1 : Hi,s] = p the Hurwitz Genus
Formula gives that gi,s+1 − 1≥ p(gi,s − 1) and it follows that
gi,s+1 − gi,s ≥ (p− 1)(gi,s − 1).
If s = 0, then gi,s − 1= gi − 1 and according to (4), it holds that

gi − 1≥ (q
i
2 − 1)(q

i+1
2 − 1). Thus, we get gi ≥

p
qqi − (1+pq)q

i
2 = 2qi − 3q

i
2 ,

which gives that gi,s+1 − gi,s ≥ 2qi − 3q
i
2 = ps(2qi − 3q

i
2 ).

If s = 1, then gi,s+1 − gi,s ≥ (p− 1)(gi,s − 1) holds, with
gi,s − 1= gi,1 − 1≥ p(gi − 1) from Hurwitz Genus Formula. Thus we get

gi,s+1 − gi,s ≥ (p− 1)p(gi − 1)≥ (p− 1)p(2qi − 3q
i
2 ) = ps(2qi − 3q

i
2 ).

(ii) From Formulæ (3), we get

gi =







(q− 1)
�

qi+1 − q
i
2

�

for even i,

(q− 1)
�

qi+1 − q
i+1
2

�

for odd i,

which gives the result.

4.2. Main results
Theorem 28. It holds that

µ
sym
2 (n)≤

1035

68
︸ ︷︷ ︸

<15.221

n+
9

2
and µ

sym
3 (n)≤

1933

250
︸ ︷︷ ︸

=7.732

n.
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PROOF. We first set p = 2 and q = p2. Note that for n≤ 18, the result already
holds from Section 1.4.1 and [11, Table 1] (see Appendix). So, fix n≥ 19 and
choose i ≥ 0 and s ∈ {0,1} such that

∑

k|4

kBk(Hi,s+1/Fp)≥ 2n+ 2gi,s+1 − 1

but
∑

k|4

kBk(Hi,s/Fp)< 2n+ 2gi,s − 1.

We can apply Proposition 21 in the two following ways:

(a) on Hi,s+1/Fp with b1 = b2 = b4 = 0, which gives:

µ
sym
2 (n)≤

9

2

�

n+ gi,s+1 + 1
�

(b) on Hi,s/Fp with the bk ’s chosen such that
∑

k|4 kbk := 2(n − n2,i,s) if
2(n− n2,i,s)≤

∑

k|4 kBk(Hi,s/Fp), which leads to:

µ
sym
2 (n)≤

9

2

�

n+ gi,s + 1
�

+
9

4

∑

k|4

kbk.

Rewriting those two bounds respectively as:

µ
sym
2 (n)≤

9

2
(n− n2,i,s) +

9

2
(n2,i,s + gi,s + 1) +

9

2
∆gi,s

and

µ
sym
2 (n)≤ 9(n− n2,i,s) +

9

2
(n2,i,s + gi,s + 1)

we see that the second one is better than the other as soon as n− n2,i,s <∆gi,s,
under the assumption that 2(n− n2,i,s)≤

∑

k|4 kBk(Hi,s/Fp). So if D2,i,s is such that
D2,i,s ≤∆gi,s and 2D2,i,s ≤

∑

k|4 kBk(Hi,s/Fp), then when n− n2,i,s < D2,i,s , the sec-
ond bound is better and can be reached since we can choose the bk ’s such that
∑

k|4 kbk := 2(n− n2,i,s). The particular case where n= n2,i,s + D2,i,s will give us an
upper bound for µsym

2 (n) as follows: define the function Φ2(x) :=mini,sΦ2,i,s(x),
with

Φ2,i,s(x) =







9(x − n2,i,s) +
9
2
(n2,i,s + gi,s + 1) if x − n2,i,s < D2,i,s

9
2

�

x + gi,s+1 + 1
�

else,

then µsym
2 (n) is bounded above by any linear function whose graph lies above all

the points
��

n2,i,s + D2,i,s,Φp(n2,i,s + D2,i,s)
�	

i,s.
We fix X := n2,i,s + D2,i,s where

D2,i,s :=min
�

ps(2qi − 3q
i
2 ) ;

1

2
qi(q2 − q)ps	= ps(2qi − 3q

i
2 )
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so that one has D2,i,s ≤ ∆gi,s from Lemma 27, and D2,i,s ≤
1
2

∑

k|4 kBk(Hi,s/Fp)

according to Theorem 15. Thus, for any i, s, Φ2(X )≤
9

2

�

1+
gi,s+1

X

�

X +
9

2
.

One has

gi,s+1

X
≤

ps(qi+2 − 3q
i
2
+1) + ps−1

qi+1ps + q
i
2
+1ps − 1+ ps(2qi − 3q

i
2 )

=
qi+1ps(q− 3q

i
2 + q−i−1p−1)

qi+1ps(1+ 2q−1 + q−
i
2 − 3q−

i
2
−1 − q−i−1p−s)

=
q− 3pi + q−i−1p−1

1+ 2q−1 + p−i − (3q−
i
2
−1 − q−i−1p−s)

︸ ︷︷ ︸

≤7/16

≤
q− 3pi + q−i−1p−1

1+ 2q−1 + p−i − 7
16

which gives that
gi,s+1

X
≤

81

34
, so

µ
sym
2 (n)≤

9

2

�

1+
81

34

�

n+
9

2
=

1035

68
n+

9

2
.

Now we consider the case q = p = 3. Since the result already holds for n < 13
from [11, Table 1] (see Appendix), fix n≥ 13, and choose i ≥ 0 such that

∑

k|2

kBk(Gi+1/Fq)≥ 2n+ 2gi+1 − 1

but
∑

k|2

kBk(Gi/Fq)< 2n+ 2gi − 1.

We can apply Proposition 22 in the two following ways:

(a) on Gi+1/Fq with b1 = b2 = 0, which gives:

µ
sym
3 (n)≤ 3

�

n+ gi+1
�

(b) on Gi/Fq with the bk ’s chosen such that
∑

k|2 kbk := 2(n − n3,i) if
2(n− n3,i)≤

∑

k|2 kBk(Gi/Fq), which leads to:

µ
sym
3 (n)≤ 3(n+ gi) +

3

2

∑

k|2

kbk.

Rewriting those two bounds respectively as:

µ
sym
3 (n)≤ 3(n− n3,i) + 3(n3,i + gi) + 3∆gi
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and
µ

sym
3 (n)≤ 6(n− n3,i) + 3(n3,i + gi)

we see that the second one is better than the other when n− n3,i <∆gi , under the
assumption that 2(n− n3,i)≤

∑

k|2 kBk(Gi/Fq). So if D3,i is such that D3,i ≤∆gi

and 2D3,i ≤
∑

k|2 kBk(Gi/Fq), then when 2(n− n3,i)< D3,i , the second bound is
better and can be reached since we can choose the bk ’s such that
∑

k|2 kbk := 2(n− n3,i). The particular case where n= n3,i + D3,i will give us an
upper bound for µsym

3 (n) as follows: define the function Φ3(x) :=mini Φ3,i(x), with

Φ3,i(x) =







6(x − n3,i) + 3(n3,i + gi) if x − n3,i < D3,i

3
�

x + gi+1
�

else,

then µsym
3 (n) is bounded above by any linear function whose graph lies above all

the points
��

n3,i + D3,i ,Φ3(n3,i + D3,i)
�	

i .
We fix X := n3,i + D3,i where

D3,i :=min
�

(q− 1)(qi+1 − qdi/2e) ;
1

2
qi(q2 − q)

	

.

Thus, for any i ≥ 2, D3,i = (q− 1)(qi+1 − qdi/2e); and it holds that

Φ3(X )≤ 3
�

1+
gi+1

X

�

X .

One has:

gi+1

X
≤

(q
i+3
2 − 1)(q

i+2
2 − 1)

4q
i+1
2 − 1+ (q− 1)(qi+1 − qdi/2e)

=
qi+ 5

2 − q
i+2
2 (1+pq) + 1

qi+2 + 4q
i+1
2 − qi+1 − (q− 1)qdi/2e − 1

≤
qi+2

�p
q− q−

i+2
2 (1+pq) + q−i−2

�

qi+2
�

1+ 4q−
i+3
2 − q−1 − (q− 1)q−

i+3
2 − q−i−2

�

which gives that:
gi+1

X
≤
p

q− q−
i+2
2 (1+pq) + q−i−2

1− q−1 − (q− 1)q−
i+3
2 − q−i−2

so since i ≥ 2:
gi+1

X
≤
p

q− q−2(1+pq) + q−4

1− q−1 − (q− 1)q−
5
2 − q−4

.
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Finally, with q = 3, one gets:

µ
sym
3 (n)≤ 3






1+

p
3− 1

9
(1+

p
3) + 3−4

2
3
− 2 · 3−

5
2 − 3−4







︸ ︷︷ ︸

'7.7314

n≤
1933

250
︸ ︷︷ ︸

=7.732

n.

Remark. In the case of F2, the descent of the tower T0 defined over Fq2 with
q = 2 from Fq2 to Fq = F2 is not sufficient to obtain a competitive bound for the
tensor rank. Indeed, in this case, we get:

µ
sym
2 (n)≤ 22.5n+

9

2
.

Corollary 29. The following new estimates hold:

C2 = 16.16 and C3 = 7.732.

PROOF. The estimate for C3 is straightforward since 1933
250
= 7.732; for C2, it fol-

lows from Proposition 28 for n greater than 19 and [11, Table 1] for n ≤ 18 (see
Appendix).

APPENDIX

To be selfcontained we recall here the values from [11, Table 1] which are used
througout this paper, namely bounds for µsym

2 (n) and µsym
3 (n) for 2≤ n≤ 18:

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
µ

sym
2 (n)≤ 3 6 9 13 15 22 24 30 33 39 42 48 51 54 60 67 69
µ

sym
3 (n)≤ 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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