Discontinuous Galerkin discretizations of optimized Schwarz methods for solving the time-harmonic Maxwell equations

Abstract : We show in this paper how to properly discretize optimized Schwarz methods for the time-harmonic Maxwell equations using a discontinuous Galerkin (DG) method. Due to the multiple traces between elements in the DG formulation, it is not clear a priori how the more sophisticated transmission conditions in optimized Schwarz methods should be discretized, and the most natural approach does not lead at convergence of the Schwarz method to the mono-domain DG discretization, which implies that for such discretizations, the DG error estimates do not hold when the Schwarz method has converged. We present an alternative discretization of the transmission conditions in the framework of a DG weak formulation, and prove that for this discretization the multidomain and mono-domain solutions for the Maxwell's equations are the same. We illustrate our results with several numerical experiments of propagation problems in homogeneous and heterogeneous media.
Type de document :
Pré-publication, Document de travail
2014
Liste complète des métadonnées

Littérature citée [33 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01062853
Contributeur : Victorita Dolean <>
Soumis le : vendredi 12 septembre 2014 - 10:20:19
Dernière modification le : samedi 29 septembre 2018 - 15:12:05
Document(s) archivé(s) le : samedi 13 décembre 2014 - 10:23:11

Fichier

paper_Dolean_etal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01062853, version 1

Citation

Mohamed El Bouajaji, Victorita Dolean, Martin J. Gander, Stéphane Lanteri, Ronan Perrussel. Discontinuous Galerkin discretizations of optimized Schwarz methods for solving the time-harmonic Maxwell equations. 2014. 〈hal-01062853〉

Partager

Métriques

Consultations de la notice

663

Téléchargements de fichiers

169