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MUSCL RECONSTRUCTION AND HAAR WAVELETS

LAURENT GOSSE ∗

Abstract. MUSCL extensions (Monotone Upstream-centered Schemes for Conservation Laws)
of the Godunov numerical scheme for scalar conservation laws are shown to admit a rather simple
reformulation when recast in the formalism of the Haar multi-resolution analysis of L2(R). By
pursuing this wavelet reformulation, a seemingly new MUSCL-WB scheme is derived for advection-
reaction equations which is stable for a Courant number up to 1 (instead of roughly 1

2
). However

these high-order reconstructions aren’t likely to improve the handling of delicate nonlinear wave
interactions in the involved case of systems of Conservation/Balance laws.

Key words. Godunov scheme, Haar wavelets, Multi-resolution Analysis, MUSCL reconstruc-
tion, Second-order resolution (SOR), slope-limiter, wave interactions, Well-balanced (WB) scheme.

Subject classifications. 65M06, 65T60, 35Q35.

1. Introduction

The goal of this text is to recast the widely-used MUSCL high-order schemes for
computing the entropy solution of a one-dimensional convex scalar conservation law,

∂tu+∂xf(u)=0, u(t=0, ·)=u0∈L1∩BV (R), (t,x)∈R
+
∗ ×R, (1.1)

into the formalism of a multi-resolution analysis of L2(R) derived from the Haar
wavelet. For convenience, we shall always work with a Cartesian uniform computa-
tional grid, determined by a space-step ∆x and a time-step ∆t satisfying the standard
homogeneous CFL restriction. Let J ∈Z be fixed, we select in a first stage:

∆x=2−J , max |f ′(u)|∆t≤ ∆x

2
=2−J−1.

1.1. The standard Godunov scheme

By defining Ck=(xk− 1
2
,xk+ 1

2
) as the generic computational cell of width ∆x

centered on xk=k∆x, k∈Z, one may apply the Divergence Theorem on any rectangle
Ck×(tn,tn+1) in order to derive a mass-preserving numerical scheme for (1.1):

∫

Ck

u(tn+1,x)dx=

∫

Ck

u(tn,x)dx−
∫ tn+1

tn
f
(

u(τ,xk+ 1
2
)
)

−f
(

u(τ,xk− 1
2
)
)

dτ.

This is equivalent to writing down the weak formulation of (1.1) with test-functions
being the indicator functions of Ck, denoted χ(Ck). Hereafter, we use the standard
notation unk =

∫

Ck

u(tn,x) dx
∆x . Yet the observation leading to Godunov scheme is the

following: in case u(tn, ·) is constant on each computational cell Ck, then the boundary
flux terms can be explicitly computed by resolving all the discontinuities, that is
to say, Riemann problems at both interfaces xk± 1

2
. Moreover, since Riemann fans

ω(xt ;u
L,uR) display a self-similar structure, one has a nice simplification,

∫ tn+1

tn
f
(

u(τ,xk+ 1
2
)
)

dτ =∆t ·f
(
ω(0;unk ,u

n
k+1)

)
. (1.2)
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2 MUSCL reconstruction and Haar wavelets

When seeking an explicit time-marching algorithm, one may want to get rid of the
Riemann solution ω, and it can be shown that (1.2) defines a smooth and consistent
numerical flux function denoted by F :R2→R,

∀u,v∈R
2, F (u,v)=f (ω(0;u,v))=







min
u≤ξ≤v

f(ξ) if u≤v
max
v≤ξ≤u

f(ξ) if u>v
(1.3)

Now, let’s consider another formulation of this numerical scheme: denote by PJ

xk−1 xk−1xk+1xk xk+1xk

unk

unk+1

unk−1

Approximation inVJ Exact Riemann evolution

Fig. 1.1. Piecewise constant approximation (left) and exact Riemann fans (right) in (1.4).

the L2-projector onto the space of piecewise-constant functions on the computational
grid, and EJ(t) the exact Riemann evolution operator1 at each interface point xk+ 1

2
=

(k+ 1
2 )∆x=(k+ 1

2 )2
−J of the grid, the Godunov approximation reads:

∀n∈N, u∆x(tn, ·)= [PJ ◦EJ (∆t)]nPJ(u0). (1.4)

Godunov wipes all the details at a finer scale than the grid by layered local averaging.

1.2. Scaling function and the Multi-Resolution formalism

We recall what is aMulti-Resolution Analysis (MRA, [25]) as L1∩BV (R)⊂L2(R).

Definition 1.1. A sequence of nested (scale-limited) subspaces Vj ⊂L2(R) is called
a Multi-Resolution Analysis of L2(R) if {0}⊂ ···⊂V−1⊂V0⊂V1⊂···⊂L2(R).
Moreover, the following properties must hold:

• for all f ∈L2(R), ‖Pjf−f‖L2 →0 as j→+∞ also, Pjf→0 as j→−∞.
• if f(x)∈Vj, then f(x2 )∈Vj−1 and for all k∈Z, f(x−2jk)∈Vj.
• there exists a shift-invariant orthonormal base of V0 given by the scaling
function ϕk(x)=ϕ(x−k) for k∈Z.

Hence Pj stands for the orthogonal projector onto the subspace Vj . Wavelet
spacesWj are defined as the orthogonal complement of Vj in Vj+1: Vj+1=Vj⊕Wj .
From ϕk, the base of V0, one deduces a base of Vj , j∈Z, by simple dilatation,

∀k∈Z, ϕj,k(x)=
√
2jϕk(2

jx)=
√
2jϕ(2jx−k). (1.5)

1Actually the scale index J isn’t indispensable and one may denote E as the exact (entropy)
solution operator: however, we shall keep on displaying J (or J+1) hereafter for ease of reading.
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Fig. 1.2. Haar’s scaling function (left) and wavelet (right).

Thus, the orthogonal projection of f onto the scale-limited subspace Vj reads:

Pjf =
∑

k∈Z

<f,ϕj,k>ϕj,k, <f,ϕj,k>=

∫

R

f(x)ϕj,k(x)dx, (1.6)

which is the best approximation of f in Vj in the least-squares sense. In the context
of applications to the Godunov scheme (1.4), there exists a scaling function (hence a
MRA) of particular interest, which is part of the “Haar system” (see Fig. 1.2),

ϕ(x+
1

2
)=χ([0,1]), ψ(x+

1

2
)=χ

(

[0,
1

2
)

)

−χ
(

(
1

2
,1]

)

. (1.7)

The shift factor of 1
2 is necessary in order to fit with the notation of (1.4), that is, to

ensure that the Haar scaling functions match the indicator of each computational cell
Ck. A simple observation is that, thanks to the definition (1.7), for a computational
grid for which ∆x=2−J , the Godunov approximation reads now:

∀n∈N, u∆x(tn, ·)= 1√
2J

∑

k∈Z

unk ϕJ,k, (1.8)

where the initial coefficients are obtained through:

un=0
k =

1

∆x

∫

Ck

u0(x)dx=
√
2J
∫

R

u0(x)
√
2Jϕ

(
2Jx−k

)
dx=2

J

2 <u0,ϕJ,k>.

1.3. Main Theorem and plan of the Note
Having at hand the expressions (1.7) of both the Haar father and mother wavelets,

we see that MUSCL reconstructions rewrite as a set of (mother) wavelet corrections:
Theorem 1.2. Let ∆x=2−J be the grid’s parameter and u0∈L1∩BV (R) be Cauchy
data for (1.1). For any TVD-admissible slope-limiter function φ :R→ [0,2], let’s Rφ

stand for the associated MUSCL reconstruction (2.2), then Rφ :VJ →VJ+1 and

Rφ ◦PJ(u0)=2−
J

2

(
∑

k∈Z

u0k ϕJ,k−
∑

k∈Z

φ(r0k)
u0k+1−u0k

2
ψJ,k

)

, r0k=
u0k−u0k−1

u0k+1−u0k
. (1.9)



4 MUSCL reconstruction and Haar wavelets

Accordingly, Id−Rφ ◦PJ maps VJ into WJ and there is a “back-projection” property:

PJ ◦Rφ ◦PJ =PJ , L2(R)→VJ . (1.10)

Both the equations (1.9) and (1.10) imply that for any limiter φ, MUSCL reconstruc-
tions induce only a “fluctuation component” in WJ , so it can’t recover the type of
sub-grid details (in the elementary Riemann fans) which are discarded in the Godunov
averaging step, like the ones displayed for instance on the right part of Fig. 1.1. It is
possible to devise local projectors furnishing exact solutions at certain times; however,
it doesn’t seem possible to recast them in this “Haar wavelet framework” because they
result of an interpolation between PJ and the random sampling of Glimm, see [13].
It is important to remember that, even if Rφ generates an approximation in VJ+1,
usual MUSCL schemes still use the Riemann evolution operator EJ , that is to say, the
(new) discontinuities located in xk aren’t resolved (see Fig. 2.2).

∀n∈N, u∆x,φ(tn, ·)= [PJ ◦EJ (∆t)◦Rφ]
nPJ(u0). (1.11)

In Section 2, we prove the Main Theorem and in Section 3, advection-reaction equa-
tions and some issues raised by interaction of waves for systems [1, 12, 14] are studied.
Finally, in Appendix A, some facts about “evolutionary errors” for discretizations
based on the Method of Lines are recalled following mainly [9, 26, 29, 30, 39, 40].
Remark 1.3. Hereafter, φ stands for a slope-limiter. One may set up a flux-limiter
instead, but showing an analogy with a wavelet formalism would result less easy. Gen-
erally, the term “flux-limiter” is used when it acts directly on fluxes, and “slope-
limiter”, when it acts just on states. Both have the same mathematical form, and
have the effect of limiting the solution’s gradient near shocks or local extrema.

2. Proof of the Main Theorem
MUSCL-based numerical schemes extend the idea of using a linear piecewise ap-

proximation to each cell by using slope limited left and right extrapolated states2.
With the Godunov flux (1.3), they yield second-order resolution (SOR), Total-
Variation Diminishing (TVD) time-marching processes after some approximations.

2.1. MUSCL reconstruction as an extrapolation process
Let’s recall how the “extrapolated states” are derived: for any indexes k,n∈

Z×N, the Godunov averaging furnished an approximate (formally first-order) value
unk ≃u(tn,xk), from which a piecewise-linear reconstruction is deduced in each cell,

vnk : Ck→R, vnk (x)=u
n
k +(x−xk)σn

k . (2.1)

A first way to proceed is by analogy with Lax-Wendroff second-order scheme with
f(u)=u: so, a convenient definition of the local slopes reads,

σn
k =

unk+1−unk
∆x

φ(rnk ), rnk =
unk −unk−1

unk+1−unk
.

The slope-limiter φ must meet with several constraints in order to ensure both the
TVD and second-order accuracy, see [35]. Recalling the construction of the Godunov
scheme, we must face now the resolution of interfacial discontinuities separating linear

2The classical Donoho-Stark criterion suggests that, as its scaling function is discontinuous,
performing scale-limited extrapolation in the Haar multi-resolution spaces may be unstable [10, 17].
Hereafter, extrapolation refers to piecewise polynomial extrapolation, and not to scale-limited one.
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xk−1 xk−1xk+1 xk+1xk xk

G.R.P’sPiecewise-linear
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k− 1

2

uR
k− 1

2

uR
k+ 1

2

uL
k+ 1

2

Approximation inVJ
unk

unk+1

unk−1

Fig. 2.1. Piecewise-linear reconstruction leading to Generalized Riemann Problems.

polynomials instead of constant states: this is usually called a Generalized Riemann
Problem (see [36] pages 427–9 and Fig. 2.1). The issue is, quoting Osher “obtaining
the exact solution to this nonlinear initial value problem with piecewise linear initial
data is a nontrivial business” (see also [2, 3]): in particular, the simplification (1.2) is
lost along with self-similarity property, except for the astute derivation presented in
[16]. So in the vast majority of cases, the MUSCL algorithm limits itself to solving
again usual (self-similar) Riemann problems with extrapolated states at each interface
xk± 1

2
of the grid with ∆x=2−J , hence EJ(∆t). For the advection equation, i.e.

f(u)=a ·u, the global error generated by MINMOD reconstructions was analyzed in
[28]: a convergence rate slightly greater than 1

2 was obtained with weak solutions.
Remark 2.1. Another way to motivate MUSCL piecewise-linear reconstructions is
to work out the ODE system obtained by semi-discretization in space (the “Method of
Lines”, evoked in [24]) in order to obtain a Local (space-) Truncation Error in ∆x2 for
smooth exact solutions u: see our Appendix A and Verwer’s papers [29, 30, 39, 40].

2.2. The Haar wavelet fluctuation
As we explained in the former subsection, a more correct representation of the

MUSCL algorithm is displayed on Fig. 2.2, where remain only a set of extrapolated

states u
L/R

k− 1
2

and the corresponding (usual, self-similar) Riemann problems:

∀k∈Z, uRk− 1
2

=unk −φ(rnk )
unk+1−unk

2
, uLk+ 1

2

=unk +φ(r
n
k )
unk+1−unk

2
(2.2)

Since the local reconstructions (2.1) are odd in the x−xk variable, it is now obvious
that the states (2.2) rewrite by means of the Haar wavelet ψ. More precisely, given
(1.8) as the Godunov approximation at time tn in VJ , those states read:

uRk− 1
2

=unk −φ(rnk )
unk+1−unk

2
ψ(−1

2
), uLk+ 1

2

=unk −φ(rnk )
unk+1−unk

2
ψ(

1

2
).

Since WJ is the orthogonal complement of VJ in VJ+1, the MUSCL extrapolated
states furnish a piecewise-constant approximation in the finer scale-limited subspace,

2−
J

2

(

unk ϕJ,k(x)−φ(rnk )
unk+1−unk

2
ψJ,k(x)

)

∈VJ+1=VJ ⊕WJ , (2.3)

because Haar wavelets satisfy the following relation:

2−
J

2 ψJ,k(xk± 1
2
)=ψ

(

2J(k∆x±∆x

2
)−k

)

=ψ
(
2J (k ·2−J ±2−J−1)−k

)
=ψ(±1

2
).
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A consequence of the formulation (2.2) is that one has 1
2 (u

R
k− 1

2

+uL
k+ 1

2

)=unk in all the

xk−1 xk−1xk+1 xk+1xk xk

Piecewise-linear
Reconstruction

Approximation inVJ+1
Riemann

Fig. 2.2. MUSCL Piecewise-linear reconstruction and approximation in VJ+1.

cells Ck. However, such a symmetry should occur for a transonic rarefaction wave.

2.3. The back-projection (conservation) property
The property (1.10) is a direct consequence of the simple observation:

∀k,k′∈Z
2,

∫

R

ϕJ,k(x)ψJ,k′(x)dx=0.

Indeed, thanks to the definition (1.6) and the expression (2.3), one sees that by lin-
earity of the integral, the former orthogonality property implies

∀k∈Z,

〈

unk ϕJ,k−φ(rnk )
unk+1−unk

2
ψJ,k,ϕJ,k

〉

=<unk ϕJ,k,ϕJ,k>=u
n
k .

This completes the proof of the Main Theorem 1.2. 2

3. Inhomogeneous equations, comments and outlook
Looking at Fig. 1.1, one sees that the reconstruction on Fig. 2.2 cannot yield an

improvement in terms of elementary wave interactions. Indeed, in order to be com-
patible with the sub-grid details which are discarded in the averaging for the case of
Fig. 1.1, the extrapolation process should address the right-half of the computational
cells only. But such a reconstruction process wouldn’t belong toWJ : instead, it would
have a component in VJ and the “back-projection” (1.10) wouldn’t hold (see [23]).

3.1. A new MUSCL-WB scheme for advection-reaction
A case where G.R.P.’s arising from piecewise-linear reconstructions like on Fig.

2.1 is when f(u)=au, with a>0 taken for convenience: formula (1.2) modifies into,

∫ tn+1

tn
a ·vnk

(

xk+ 1
2
−a(τ− tn)

)

dτ =a∆t

(

unk +
σn
k∆x

2

)

︸ ︷︷ ︸

usual MUSCL flux

− a2
σn
k∆t

2

2
︸ ︷︷ ︸

correction GRP

, (3.1)

so numerical fluxes do depend on time (see (5.3b) in [20]). Oppositely, when one
simply substitutes G.R.P.’s with usual, self-similar Riemann problems, such a phe-
nomenon doesn’t show up, but the CFL number must be lowered to a value around 1

2
(see [35]). Yet, according to Fig. 3.1, our reconstruction in VJ+1 is different because
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xk−1 xk+1xk

Fig. 3.1. Derivation of numerical fluxes: GRP’s (left) and approximation in VJ+1 (right).

it involves new discontinuities at the center of each cell, xk. Hence it appears logical
to replace the Riemann solver EJ which handles only the discontinuities at interfaces
xk± 1

2
by EJ+1 processing jumps at both interfaces and center. The resulting scheme,

ũ∆x,φ(tn, ·)= [PJ ◦EJ+1(∆t)◦Rφ]
nPJ (u0), φ(r)=

r+ |r|
1+ |r| , (3.2)

involves numerical fluxes still derived by modifying formula (1.2), see Fig. 3.2:

a

∫ tn+1

tn
unk −2

J

2 ψJ,k

(
xk+ 1

2
−a(τ− tn)

)σn
k∆x

2
dτ

def
= a∆t

(
unk+1+u

n
k

2
−Q̃n

j+ 1
2

unk+1−unk
2

)

=a∆t ·unk +
σn
k∆x

2

(

min(a∆t,
∆x

2
)−max(0,a∆t−∆x

2
)

)

.

A slope-limiter φ is indispensable because its numerical viscosity is only,

xkxk−1 xk+1

∆x
2a

∆t− ∆x
2a

xk− 1
2

xj+ 1
2

∆x

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9
0

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

1−nu
1−2max(0,1−1/2.nu)

Fig. 3.2. Illustration of scheme (3.2) (left), and deviation w.r.t. exact GRP fluxes (right).

Q̃n
j+ 1

2

=1−φ(rnj )
(

min(1,
1

2ν
)−max(0,1− 1

2ν
)

)

, ν=
a∆t

∆x
, (3.3)

=1+φ(rnj )

(

2max(0,1− 1

2ν
)−1

)

,

(

as 1−min(1,
1

2ν
)=max(0,1− 1

2ν
)

)

.

One may compare it to Qn
j+ 1

2

, the one associated to the numerical flux (3.1):

Qn
j+ 1

2

=1−φ(rnj )(1−ν), Q̃n
j+ 1

2

=1−φ(rnj )
(

1−2max(0,1− 1

2ν
)

)

,
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see Fig. 3.2. All in all, this yields the following (and seemingly new) discretization,

un+1
k =unk −

a∆t

∆x

[
(
unk −unk−1

)
+

(

2min(1,
1

2ν
)−1

)
∆x(σn

k −σn
k−1)

2

]

, (3.4)

which rewrites simply, un+1
k =unk − a∆t

∆x

(

ũn
k+ 1

2

− ũn
k− 1

2

)

, after having defined,

ũnk+ 1
2

=(1−αn
k )u

n
k +α

n
ku

n
k+1, αn

k =

(

min(1,
1

2ν
)− 1

2

)

φ(rnk )∈ [0,1].

Below we display numerical results for a=1, u0(x)=sin3(2πx), and 26 points in

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

0

−1

1

−0.8

−0.6

−0.4

−0.2

0.2

0.4

0.6

0.8

MUSCL−WB scheme with CFL=0.7
Exact solution

0 102 4 6 81 3 5 7 9
0

0.1

0.02

0.04

0.06

0.08

0.12

0.14

0.01

0.03

0.05

0.07

0.09

0.11

0.13

L1 error of MUSCL−WB w.r.t. time

Fig. 3.3. Advection with CFL=0.7 (left) and L1-errors (right) for CFL=0.55, 0.7, 0.85, 0.99.

x∈ (0,1) with periodic boundary conditions. To prevent the development of un-
aesthetic staircases in the numerical solution, we sampled initial data on the grid
{∆x

2 ,
3∆x
2 , ...,1− ∆x

2 }: results are displayed on the left of Fig. 3.3 with ∆t=0.7∆x.
On its right, one can see the dependence of the time-growth of the L1-error with re-
spect to the Courant number; even if the error gets big when it goes lower than 0.8, at
least it stops growing after a certain time. Since our MUSCL scheme isn’t restricted
by low CFL numbers, they are less vulnerable to numerical diffusion’s bad effects.
Remark 3.1. For ν=1, the scheme (3.4) yields un+1

k =unk−1, so it is exact. If ν≤ 1
2 ,

it reduces to the usual second-order MUSCL scheme. Oppositely, for 1
2 <ν<1,

rnk =
unk −unk−1

unk+1−unk
=1−

unk+1−2unk +u
n
k−1

unk+1−unk
=1+O(∆x), for u(tn, ·) smooth,

so φ(rnk )=φ(1)+O(∆x) because φ is Lipschitz-continuous and φ(1)=1 [35]. Yet,

ũn
k+ 1

2

= unk +
1
2

(
1−(2− 1

ν )
)
(unk+1−unk )(1+O(∆x))

= 1
2 (u

n
k+1+u

n
k )+O(∆x2)−

(
1− 1

ν

)
(unk+1−unk )(1+O(∆x))

= 1
2 (u

n
k+1+u

n
k )+

(
1
ν −1

)
O(∆x)+O(∆x2).

According to (A.5), the L.T.E. is O(∆x) for ν > 1
2 despite the weak viscosity (3.3).

Next, when considering an inhomogeneous equation of the type ∂tu+∂xu=k(x)u, the
scheme (3.2) can match the WB framework [18] where one solves a “lifted equation”,

∂tu+∂xu−u∂xa=0, ∂ta=0, (because ∂xa(x)=k(x)),
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which induces a solver Ẽ now including a “standing wave” locally rendering the source,

∀n∈N, ũ∆x,φ,WB(tn, ·)=
[

PJ ◦ẼJ+1(∆t)◦Rφ

]n

PJ(u0).

In the same manner as for (3.4), we get a simple expression of the resulting scheme,

un+1
k =unk −

∆t

∆x

(

ũnk+ 1
2

− ũnk− 1
2

·exp
(
a(xk)−a(xk−1)

))

.

The exact solution reads u(t,x)=u0(x− t)exp(a(x− t)−a(x)): on the left of Fig. 3.4,

0 10.2 0.4 0.6 0.80.1 0.3 0.5 0.7 0.9

0

−0.01

0.01

−0.008

−0.006

−0.004

−0.002

0.002

0.004

0.006

0.008

MUSCL−WB scheme with CFL=0.7
Exact solution

102 4 6 81 3 5 7 9
0

0.02

0.04

0.06

0.08

0.01

0.03

0.05

0.07

0.09

L1 error of MUSCL−WB w.r.t. time

Fig. 3.4. Exponential decay, CFL=0.7 (left); L1-errors (right) for CFL=0.55, 0.7, 0.85, 0.99.

our WB scheme is set up for k(x)≡− 1
2 and compared to it with 26 grid points and

CFL=0.7 at t=9.5. The function a(x) is discretized according to the grid correspond-
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MUSCL−WB scheme with CFL=0.85
Exact solution
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Fig. 3.5. Oscillating k(x) with CFL=0.85 (left); L1-errors (right) for CFL=0.55, 0.7, 0.85, 0.99.

ing to VJ , so it jumps only at interfaces xk± 1
2
: this means that the discontinuities

in xk are resolved with the homogeneous Riemann solver. A more accurate scheme
would be produced if a(x) is sampled on the fine scale of VJ+1, too. In this case, even
the discontinuities in xk’s are resolved with the WB Riemann solver. Such a scheme
would be well suited for source terms containing an oscillating coefficient k(x): for

instance, the rather delicate case where k(x)= cos(4πx)
2 is presented on Fig. 3.5. Such

a MUSCL-WB scheme may be useful for kinetic models involving slow particles [18].
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3.2. Wave-interactions and Engquist-Sjogreen counter-example

Now we switch to the more involved case of nonlinear systems of conservation
laws: left apart the Temple class, shock curves aren’t straight lines in the Hugoniot
space. A first problem materializes because intermediate points resulting from the
numerical “viscous smearing” of jumps generally don’t belong to these curves. This
creates spurious (small) waves of other characteristic families in the numerical so-
lution: see Fig. 3.6 and [1, 22, 31]. Clearly MUSCL reconstructions can’t improve
noticeably this situation which occurs mainly for large discontinuities, though. About

⊗ ⊗ ⊗ ⊗ ⊗

⊗

⊗

⊗

⊗ ⊗ ⊗

x

u(t,x)

u

v

⊕

⊕

⊕

Hugoniot plane

(Curved) shock-locus

Numerical viscosity points
don’t belong to shock-locus

Fig. 3.6. Numerical viscosity and its effects for systems with curved shock loci

numerical wave interactions, P. L. Roe writes: It is natural still to feel some anxiety
about replacing the discrete jump conditions (Rankine-Hugoniot relations), that hold
across an infinitesimally thin shock, with a ‘smeared-out’ statement of conservation.
It seems likely that such a strategy will lead to some sort of unavoidable error. Cur-
rently, rather delicate computations of the interaction between a strong shock and weak
acoustic waves are not successful unless the shock is either represented as an explicit
discontinuity or else the grid spacing is greatly reduced in its vicinity ([21], page 15).
SOR can fail when Glimm’s interaction potential is positive like in a p-system, an

x

t

1-shock

2-rarefaction

Smooth but first-order region

Fig. 3.7. Nonlinear 2×2 interaction and loss of SOR in a smooth region

interaction between a 1-shock and a 2-rarefaction. Along with numerical smearing of
the profile, the local truncation error can reduce from second-order to first-order in
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the vicinity of the shock wave. When interaction occurs (see Fig. 3.7), all the vari-
ables are coupled, and the formal accuracy of the outgoing rarefaction wave may not
be second-order: this is the essence of what appears in [12], and later in [11, 32, 33].

3.3. Multi-dimensional issues

Most of existing 2D MUSCL schemes don’t completely fit in our Haar wavelet
formalism as the scaling function and mother wavelets read ϕ2D(x,y)=ϕ(x)ϕ(y) and

ψ2D,vert(x,y)=ϕ(x)ψ(y), ψ2D,hor(x,y)=ψ(x)ϕ(y), ψ2D,diag(x,y)=ψ(x)ψ(y).

Hence it perceives a diagonal direction. The issues of numerical wave interactions still
exist in 2D, see [7, 32, 38]. Multi-resolution schemes were studied in [8] (also [19, 4]).

Appendix A. Formal analysis of the evolutionary error.

Hereafter we follow the canvas of Cullen and Morton [9] in order to shed some
light onto the various mechanisms of error creation/propagation (see also [5, 15, 40]).

A.1. Semi-discretization in space (Method of Lines)

Let a Cauchy problem for a given partial differential operator L be,

∂tu=Lu, u(t=0, ·)=u0. (A.1)

For ∆x=2−J fixed and the corresponding griding of the real line, a finite-differences
approximation of L acting on ∆x ·Z is denoted by LJ , so (A.1) reduces to an (infinite)
differential system (Method of Lines, Ch. 17 in [24]), with ũ(t, ·)∈ ℓ∞(Z), say:

d

dt
ũ=LJ ũ, ũ(t=0, ·)=PJu0, (A.2)

for which one can legitimately wonder about the global error u− ũ at each time t>0.

• one “triangulates” u(t, ·)− ũ(t, ·) by inserting PJu(t, ·),

u− ũ=(Id−PJ)u+(PJu− ũ) :=aJ +eJ ,

where aJ is purely an approximation error, which belongs to the wavelet
subspace ∪j≥JWj . On the contrary, eJ stands for an evolutionary error,
which may accumulate in time, and satisfies a differential equation,

d

dt
eJ =

d

dt
PJu−

d

dt
ũ=PJLu−LJ ũ. (A.3)

• Triangulating again, one gets deJ
dt =(PJLu−LJPJu)+(LJPJu−LJ ũ), so

d

dt
eJ +(LJ ũ−LJPJu)=(PJLu−LJPJu) :=L.T.E.,

and by substituting ũ by PJu−eJ , we get finally:

d

dt
eJ +

[
LJ (PJu−eJ)−LJPJu

]
=L.T.E., (Local Truncation Error).

(A.4)
Hence, the L.T.E. is just a source term inside the differential equation (A.4)
governing the scheme’s evolutionary error; this was noted in [26, 29, 40], too.
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In case both (A.1) and its (consistent) discrete approximation LJ , are dissipative
(“contractive” [39, 30], “strongly stable” in a terminology of [26]) in some norm, this
source term is responsible for most of the error eJ ; if, on the contrary, (A.1) happens
to be accretive, for instance if ‖u(t)−v(t)‖≤K‖u0−v0‖ with K>1 like in Bressan-
Glimm’s theory of strictly hyperbolic systems of conservation laws [6], then both LJ

and the L.T.E. can contribute to the increase of the evolutionary error, see again [40].
Remark A.1. If the approximation LJ is linear, then (A.4) simplifies into,

∀t>0,
d

dt
eJ(t)=LJeJ (t)+τu(t),

where τu(t) stands for the L.T.E. related to (x-derivatives of) the exact solution u(t, ·)
to (A.1) at time t. Duhamel’s principle yields an expression of the evolutionary error,

eJ (t)=exp(t ·LJ )

(

eJ (t=0)+

∫ t

0

exp(−s ·LJ )τu(s)ds

)

.

Quantities like exp(t ·LJ ) are usually estimated by “logarithmic norms”, see e.g. [30].

A.2. Local Truncation Error (LTE) and second-order accuracy
Second-order accuracy in space for 1D scalar conservation laws (or linear advec-

tion equations) was studied in [27] (see also [21, 36]). These equations are dissipative
in L1, so the former analysis yielding (A.4) indicates that the local truncation error
is probably the main source of evolutionary error. For Lu=−∂xf(u), it reads:

∀k∈Z, PJLu(t,xk)=− 1

∆x

∫ x
k+1

2

x
k−

1
2

∂xf(u)dx=−
f(u(t,xk+ 1

2
))−f(u(t,xk− 1

2
))

∆x
,

by exact integration of the conservation law (1.1). Now, since high-order accuracy is
only concerned with smooth exact solutions u, one approximates this expression with
a second-order mid-point rule by taking advantage of xk+ 1

2
= xk+1+xk

2 ,

PJLu(t,xk)=
f
(

u(t,xk+1)+u(t,xk)
2

)

−f
(

u(t,xk)+u(t,xk−1)
2

)

+O(∆x2)

∆x
,

and so, the L.T.E. is the difference between this approximation and the numerical
scheme LJ applied to the piecewise constant projection of the exact solution, PJu.
Since LJ needs to be conservative and consistent with L, we assume it is given by a
(smooth) numerical flux which reads, in standard notation,

F̃k+ 1
2
=F (uLk+ 1

2

,uRk+ 1
2

), LJPJu(t,xk)=
F̃k+ 1

2
(t)− F̃k− 1

2
(t)

∆x
,

where u
L/R

k+ 1
2

are obtained from the set of cell-centered values PJu by means of a

reconstruction like (2.2) and F is, for instance, the exact Godunov flux (1.3). Hence,

L.T.E.=
[f
(

u(t,xk+1)+u(t,xk)
2

)

− F̃k+ 1
2
]− [f

(
u(t,xk)+u(t,xk−1)

2

)

− F̃k− 1
2
]

∆x
.

As the CFL condition imposes ∆t=O(∆x), second-order accuracy asks for,
∣
∣
∣
∣
f

(
u(t,xk+1)+u(t,xk)

2

)

− F̃k+ 1
2
(t)

∣
∣
∣
∣
=O(∆x2),
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which, by the smoothness of the flux functions, reduces simply to,

∀t,k∈R
+×Z,

∣
∣
∣
∣
u
L/R

k+ 1
2

(t)− u(t,xk+1)+u(t,xk)

2

∣
∣
∣
∣
=O(∆x2). (A.5)

And this meets with the definition used by Osher (see Lemma 2.1, page 953 in [27])
and Sjogreen (see Theorem 3.9 in [34], page 47). A slightly different derivation of
a second-order scheme for smooth solutions is given in [5] (page 53), essentially by
keeping the term d

dtPJu in (A.3) inside the expression of the L.T.E as follows:

d
dtPJu(t, ·) = lim∆t→0

(
PJu(t+∆t,·)−PJu(t,·)

∆t

)

= −F
(
u(t,·+∆x),u(t,·)

)
−F
(
u(t,·),u(t,·−∆x)

)

∆x ,

where F is the exact flux defined in (1.3). The L.T.E. is now defined like,

∀k∈Z,
d

dt
PJu(t,xk)−LJPJu(t,xk)=−

Fk+ 1
2
(t)−Fk− 1

2
(t)

∆x
,

where Fk+ 1
2
(t)=F

(
u(t,xk+∆x),u(t,xk)

)
−Fk+ 1

2
(t). The scheme induced by the nu-

merical flux Fk+ 1
2
is called second-order in space as soon as, for any smooth exact

solution u(t, ·), Fk+ 1
2
is a quadratic quantity (possibly depending on |∂xxu(t, ·)|),

∀t≥0, |Fk+ 1
2
(t)|=O(∆x2). (A.6)

Clearly, both criteria pick up variants of the (unstable) “centered scheme” which is
second-order, but unstable because it lets the total variation increase strongly: despite
its L.T.E. is quite small, its evolutionary error quickly grows with the left-hand side of
(A.3). MUSCL reconstructions, involving a slope limiter, allow to keep both L.T.E.
and other terms in the O.D.E. (A.3) governing eJ rather small (in smooth regions).
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