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ABSTRACT

A high gain like observer with updated gain is proposed for a class of cascade nonlinear and non triangular
systems that are observable for any input. The objective of the gain adaptation is to perform an admissible
tradeoff between state reconstruction dynamics on the one hand versus noise amplification on the other
hand. To this end, the gain of the proposed observer is tuned through a single scalar time-varying
parameter governed by an adequate differential Riccati equation. The involved adaptation process is
mainly driven by the power of the output observation error norm computed on a moving horizon window.
Simulation results are given to show the effectiveness of the proposed observer, namely its exponential
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1. Introduction

A remarkable research activity has been devoted to the high
gain observer design for uniformly observable nonlinear systems
which are diffeomorphic to the well known triangular form (see
for instance [1-3]). Recently, a high gain observer design has
been proposed in [4] for a class of non triangular systems. The
latter is particularly composed of cascade subsystems where each
subsystem is associated with a subset of the output variables,
exhibits a triangular dependence on its own state variables and
may depend on the state variables of all other subsystems. This
characterizes a large class of MIMO systems that are observable
for any input and includes the previous canonical forms that have
been used in the high gain observer design (see for instance [5,6]).
The appealing feature of these designs consists in their simplicity
as the observer gain is calibrated through the choice of a fixed
scalar parameter which is referred to as the gain parameter. This
parameter is commonly chosen high enough with respect to the
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convergence and its insensitivity with respect to noise measurements.

Lipschitz constant of the system nonlinearities leading thereby to
noise amplification.

An important effort has been particularly devoted to overcome
this noise sensitivity problem for single output nonlinear systems
by appropriately updating the gain parameter of the proposed
observers [7-10]. In the seminal contribution [10], the gain
parameter is updated under the guise of a scalar differential
equation. The initial value of the parameter is set to low values
and it is updated to continuously grows until the observation
error convergence is achieved. This parameter is not allowed to
decrease if required to properly deal with the noise sensitivity
problem. In the contribution [7], the gain parameter updating
consists in properly switching between relatively low and high
values according to a noise power determined from the output
observation error. The achieved observer performances heavily
depends on the involved gain parameter specifications. The gain
parameter adaptation proposed in [8] is performed through a
differential equation involving some constant design parameters
depending on the system nonlinearities. In [9], the gain parameter
is updated such that the resulting values vary between the value
one and some relatively high value. The adaptation process is
performed using a differential equation driven by an innovation
sequence that is proportional to the power of the output
observation error. Unlike in the above mentioned contributions
where the considered systems are single output ones, a high gain



observer with an updated gain has been proposed in[11] for a class
of multiple output systems that are characterized by a triangular
canonical form. The gain parameter adaptation is performed using
an appropriate scalar Riccati differential equation involving a
design parameter that depends on the Lipschitz constant of the
system nonlinearities and an innovation sequence similar to that
considered in [9].

It is worth noticing that the noise sensitivity issue is relatively
important for the observer proposed in [4] for a class of
cascade nonlinear and non triangular systems as the scalar design
parameter involved in the observer gain intervenes with integer
powers that are as high as the dimension of the subsystems
are. In this paper, one aims at reviving this high gain observer
design bearing in mind the performance enhancements provided
by the gain parameter adaptation for triangular systems in [11].
The tuning of the resulting observer is hence achieved according
to an appropriate scalar Riccati differential equation driven
by the output error dynamics. Though the involved observer
design is a genuine combination of the designs already proposed
in [4,11], it is by no means a trivial exercise since it requires a
suitable adaptation of these designs to deal with the underlying
convergence analysis. Such a feature will be more appreciated
throughout the constructive Lyapunov approach that has been
adopted to this end, namely it will be shown that the observer is
able to provide accurate and almost free-noise estimates with low
values of the gain parameter that can be specified a priori.

The paper is organized as follows. The problem formulation
is given in Section 2 with a particular emphasis on the class of
nonlinear systems which will be the subject of the observer design.
Useful notations and preliminaries are given in Section 3. Section 4
is devoted to the observer design together with a convergence
analysis. An academic observer design problem is addressed in
Section 5 for illustration purposes.

2. Problem formulation

As it has been mentioned above, one aims at designing an
observer with parameter gain updating for a class of cascade
nonlinear and non triangular systems which are diffeomorphic to
the following form:

(1)

x=Ax+ ¢(u,x)
y=C

where x, u, y and ¢(- - -) denote respectively the state, the input,
the output and the nonlinear function field of the system. More
specifically
e the system output is particularly composed as follows
Y1
Y2
y=1].|er

q
wherey, € Rk fork =1, ...

q
> me=p
k=1

e the system state is composed as follows

, g and hence

X! X
X P K

x=] | eR" withx=] . | eR%
k

a
X X\

where xf € RPx fori =1,...,Apandk = 1,...
to the following dimensional property

, . This leads

q q
an = Zpkkk =n with py > land Ay > 2
k=1 k=1

e the matrices A and C are respectively given by

Aq
A= . with
Aq
0 I, 0
A= | 2)
0 0 I
0 0 0
and
G
C= withGe=[l,, 0 --- 0] (3)
G
o the nonlinear function field is composed as follows
<p;(u,><)
@°(u, x)
oUu,x) = . € R" with
@(u, x)
wi(u,X)
@y (U, X)
dFun=] . "k
ok (U, %)

where the function <p{‘(u, X) € RPk is differentiable with respect
to x and assumes the following structural dependence on the
state variables.

eforl<i<i,—1:

k k 1,2 k=1 Jk Lk k
@, X) = @ (U, X, X5, L X X, Xy, X
k1 k42
PO SR L)) (4)
o fori = Ay:
k k 1,2
@ W) = @5 (u,x',x%, ..., x9). (5)

Recall that a high gain observer has been already designed for
system (1) in [4] where the underlying gain parameter intervenes
with integer powers that are as high as the dimension of the
subsystems. This leads to poor performance issues in the presence
of unavoidable noise measurements. In the following, one will
revive the observer design given in [4] to perform an admissible
compromise between the accuracy and noise sensitivity using
an adequate design parameter adaptation that borrows from
the updating gain based observer proposed in [11]. As generally
assumed in the high gain observer design, one considers the
following Lipschitz assumption.

Assumption 1. ¢(u, x) is a globally Lipschitz nonlinear function
with respect to x uniformly in u.

It is worth noticing that though the Lipschitz conditions would
be too restrictive since they are in general locally satisfied, they
can be particularly relaxed in the case where the system state
trajectory lies in a bounded set thanks to suitable prolongation
techniques which make it possible to get global Lipschitz
conditions on the whole state space.



3. Preliminaries

In the following, one introduces some variables that will be used
in the observer equations together with some identities satisfied
by these variables and a technical lemma that will be needed
in the proof of the main result, namely the convergence of the
observation error.

letf : R — R,t — 6(t) be areal-valued function and for
k=1,...,qlet Ax(0) be the diagonal matrix defined by
. 1 1 1
Ay(0) = diag o Ip,, oo o Iy, ..., Tt Ip, (6)

where {4} is sequence which indicates the power of 8 and is
defined as follows:

a 3
8 = 207K Ai— = fork=1,...,q—1
k <_1:L( 2)) d (7)

8g=1

Notice that foranyk = 1,...,q — 1, one has
% _ (s 35 (8)
5 = \ Mt T 5 ) Ok

And since A, > 2, {8} constitute a non increasing sequence of
positive real numbers, i.e.

1 >8>-->8=1 (9)

The sequence {3} allows to provide a real sequence that reflects in
some sense the interconnections between the block nonlinearities
and establish the following lemma which is similar (but not
identical) to that given in [4]. This result is of a fundamental
interest for the forthcoming observation error convergence
analysis.

Lemma3.1. Fork,l =1,...,qandi=1,..., ,j = 2,..., A,
let
k
ki _ )0 f (U x)=0
Lj = J
1 otherwise
and consider the following sequence of reals
of =ok4i8 fork=1,....,qandi=1,..., % (10)
with
1
= —Abk + A161 + 1—? (11)

where the 8,’s are given by (7). Then, the terms of this sequence satisfy
the following property
c Sk i 1

lelj_l thenO'—O' —5—55—2—‘1 (12)

Though the expressions of the reals oi" are slightly different from
those in [4], the proof of Lemma 3.1 is similar to that given in [4]
and is hence omitted. Nevertheless, one shall put forward two
properties of the reals oi" that will be used throughout this paper,
namely

P1. Fork:1,...,qandi=1,...,Ak,onehasoik>0
and
P2. Fork=1 onehasof =o! + 1.1

. =1,...,q, e =y S5 )

To check the first property, one first notices that accordmg to (11)
one has 011 = % > 0. Then, one shall show that 01 > 01 ! for
k=2,...,q. Indeed,

K 1 1
0’1—0’1 —)\k 10k—1 — Akl + zkl_?

> Ag—10k—1 — AiSy

38k 3
= A—10k—1— — — | A — 2 ) &

2 2
38k k-1

= Ag—18k—1 — — — —— according to (8)
2 2

= M1 5 Jor—

_ 30 30

— — since Ag_1 > 2
2 2
> 0 according to (9).

As a result one has 01 > ol" s 011 > 0 and henceforth oi" >0

fori > 2 since oi" = 01 + SkAx and A6, > 0. The second property

follows from (11) as one has

k k 1
O o, + MO =A161+(1— ?

LFIPYP N (L. (L] (13)
= ——=—|=0 - —=—.
M Y T\ ok

Now, let us consider the following diagonal matrix

A(0) = 07T A(0) (14)

where the oy’s are the positive reals given by Lemma 3.1and A, (6)
is defined by (6). Taking into account the structure of the matrices
Ay and C; respectively given by (2) and (3), one can show that the
following identities hold

AOAAL 0) = A AAL (O) = %A
CeAL (0) = 6°1HG. (15)
Moreover, one can check that

6@
I0)

where [} is the k x k identity matrix and Dy is the following n; x ny
diagonal matrix

Dy =diag(1,2,...,n).

d k
Ar(0) 2 —Ak(9) (01T + 8kDx) Ak(6) (16)

Furthermore, fork =1, ..., q, let

Ki = [Ki1 Kz - Kin,]' whereKy; € RP<*Px (17)

be the ny x py, matrix such that ;\k £ A, — KiCy is Hurwitz. Then,
there exist a strictly positive real number a > 0 and g symmetric
positive definite n, x n, matrices Sy such that [12,13]

AlS; + SiAr < —aS, and  DySy + SiDy > 0. (18)

This allows to define some matrices that will be used throughout
the observation error convergence analysis, namely

Qx = SkDi + DicSk,

2 = (al"Sk + SkSka) + (al"Sk + SkaSk)
2 = diag(.Ql, 92, ey Qq)

S = diag(Sl, 52, ey Sq)



Taking into account the facts that @, = Q] > 0,0f > 0and

Sk = S,f > 0, one can deduce that £2 is symmetric positive definite
and so is £2.

Finally, one shall denote by Ay () and A,;;(-) the largest and
the smallest eigenvalue of (-), respectively. And the conditioning

number of (-) shall be denoted by w(-), i.e. u(-) = %

4. Observer design

As mentioned above, the main motivation of the paper
consists in providing a suitable high gain observer with an
appropriate updating of the underlying design parameter for
the class of cascade nonlinear systems (1). In the following,
one will propose the observer equations with the underlying
fundamental convergence result and provide a full observation
error convergence analysis. Some insights are given about the
design parameter specification at the end of the section.

4.1. Observer equations

The candidate observer borrows from the high gain observers
proposed in [4,11] up to an appropriate change as pointed out by
the following equations.

,*(k(t) = AR () + " (u(t), R(6)— A O(0) K Ceek (t)

fork=1,...,q
) 1
0(0) = —mb® (a@(® — D —g@y (IFON)) with

(20)
0(0) > 1
M
g(t) = : T .
1 min (0, 3 figoc WO )

where u and y are respectively the inputs and outputs of system
(1), x € R™ denotes the state estimates given by

%! %)
N ks R
X= eR" withx =] . | eR%

x4 fc’;k
wherefcf‘ € RPkfori = 1,...,Arand k = 1,...,q and hence
>0 m = n,& € RP denotes a state estimate up to an output
injection as follows fork =1, ..., q.

sk

X, fori=2,..., %

Ak X fori=1
& =
ek e R™ and y € RP are the k’th subcomponent of the observation

error and output observation error respectively given by

k=8 —x" and y=Ce=C(8—x)

p, T and M are positive scalars which represent the observer design
parameters, (41 = fﬂ’ﬂ"@) where S and £2 are given by (19) and
finally y : |lyll = vyl is a real-valued non negative, non
decreasing and bounded function satisfying y(0) = 0.

Remark 4.1. The Riccati differential equation governing the dy-
namics of the gain parameter 6 (t) is similar to that given in [11].
The choice of the parameter p is not crucial as it is mainly intro-

duced to saturate the integral term % r;ax(O =T I¥y(®))>d t and
can be set to arbitrarily high values. However, the design parame-
ters M and T have to be specified carefully as pointed out in [11].

This shall be discussed later to make the paper self containing.

The following fundamental result provides the properties of the
observer under consideration.

Theorem 4.1. Under Assumption 1, the trajectories of observer (20)
converge exponentially to those of system (1) for relatively high values
of the parameter M.

4.2. Convergence analysis

The proof of Theorem 4.1 is carried out step by step as
follows. First of all, one shall prove the boundedness of the design
parameter 6 (t) while providing expressions of the corresponding
lower and upper bounds. In particular, one shall show that for all
t > 0,6(t) > 1. Next, one shall derive the dynamics of the
observation error. This allows to establish the boundedness of the
output observation error y(t) and subsequently the boundedness
of the observation error e(t) = X(t) —x(t). Finally, one successively
prove the exponential convergence to zero of the output and state
observation errors.

4.2.1. Boundedness of 0 (t)

To this end, one shall consider two cases depending on the
sign of 6(t). Before considering these cases, one notices that the
expression of # in (20) is such that
6=1=6>0.

As aresult,onehas 6(t) > 1forallt > 0assoonasf(0) > 1.0ne
also notices that

Vi>0:0<g(t) <M.
Let us now discuss both cases mentioned above.

e The case é(t) > 0. Since #(t) > 1 and according to (20), one
hasa(@(t) — 1) — g(®)y (IIyll) < 0 which implies that
gy Uyl
a

M
<1+ " yUyID.

o) <1+
And henceforth, one has
M
VE>0:1<0(t) <14 Y Q1)
a

where y,x is the upper bound of y.
e The case f(t) < 0.Since 6(t) > 1 and from (20), one has

~E1 (a0 -1 - g0y (7))

a a M
= Loy + L (14 L) (22)
2 2 a

Integrating (22) from some ty < t to t yields

a(t)

IA

q M
0(t) < e~ 7 E0g(ty) + (1 + yma")
a

M max
smm+0+ 2). (23)

Now, the time t, may be 0 and in this case #(0) > 1is arbitrary,
or the final time of an interval on which 8(t) > 0 and according
to(21),one has 0(tp) < 1+ % As a result, for any ¢y, one
has

M
0(to) < max (9(0), 1+ ﬂ) . (24)
a
Using (24), inequality (23) becomes

Mymax Mymax
6(t) < max (9(0), 1+ T) + (1 + T) . (25)

To summarize and according to (21) and (25), 8(t) is bounded
and satisfies
M
Vt>0: 0(t) <Omax 2 max (9(0), 1+ ﬂ)
a
M
+ (1 + —ymax) . (26)

a



4.2.2. Observation error dynamics

For writing convenience and as long as there is no ambiguity,
one shall omit the time t for each variable. The observation error
equation is given by

— o (u, x) — A1 (O)KCre (27)

where u is an admissible control such that||u||,, < n with n being
a positive scalar.
Fork=1,...

e = Ae + o*(u, R)

,q, let

ek = Ap(0)ek (28)
where Ay () is given by (14). From Eq. (27) and using (15) and ( 16),
one gets

& = MO + A0 A (O

= A(@)AAO) " + Ak(e)«o"(u X) — ", %)
— M0 A O)KCr Ay (B — (01 I + 8kDy)ek
= %Ak — 0K Cek + Ar(0) (p (u, %) — ¢*(u, %)
é k =k
— 5(01 I, + 8kDy)e
= %Ak + A(0) (" (u, R) — ¢*(u, %))
é k =k
— 5(0’1 Iy + 8kDy)e".
Set
V(@) = & s, (29)

and let V(e) = Y }_, Vk(e") = e'Se where S is given by (19), be
the candidate Lyapunov function. Notice that according to (28) and
(29) and from the fact oi" > 0, one has for 6(t) > 1:

V=0 01 < IFO1° < - :S)Vk(é"(r»
and this yields
1
Y : e _ e .
2 0: o] = 20 <~ \VED) (30)

Now, one has

Ve = 284 58"

= 20%¢ S A + 28 S, Ak(0) (0¥ (u, B) — ¢*(u, %))
- 22 <a{<é’<rs,<é’< + (Ské"TSkaé">

= 205" S A" + 28 S Ak(0) (9" (U, B) — ¢ (u, X))
- gé” 2.

where the symmetric positive definite matrix £2y is given by (19).
And using (18), one gets

Vi < —a0%e 5 + 28 S, Ak(0) (¢ (u, B) — " (u, %))
- gé” 28

< a0’V + 215811 4c(0) (9" (u, ) — p*(u, )|
g 28

IA

—a0* Vi + 2/ A (S)v/ Vi
1 ke % k é—kT Sk
Xy et D — gl n) - 52" 2
i=1 !

where o/ and o] are as given in (11). Therefore,

Vi < —ae‘skvk +2pk\/AM(5 VVi

q

x ZZZX,",‘G o ||e||— e el

i=1 I=1 j=2

‘dw.k
where p, = sup d—X; (u, x)
|

;x € R"and [|uflo < n};thex,“

have the same definition as in Lemma 3.1.
Hence

Vi < —aeﬁkvk +2pk\/AM(S)JVk
x Z Z Z X’“e i~ ||é}|| - gé"r.(zké".
i=1

As aresult, one obtains

Vi < —ae‘skvk +2pk\/AM(5 VVi
d N
X k19 J U,- L —ék o ék
ZZZX s ot

i=1 I=1 j=2

and hence
Vi < —a0’%Vie + 2pu(S)v/ 0%V

x ZZZX"%)J of - \/95!V,—ge 2. (31)
=

Now, since 6(t) > 1 and according to Lemma 3.1, one has
I_ok_% _38 _ 1

p% %272 <@ M,

Inequality (31) becomes

Vi < —ad’ vy + ZAkPkM(S)Q_Z%V 6%V,

Set W, (8") = & 28" and W(&) = Y9_, W, (¢"). One has
IO IO

Am($2) Am($2)
Notice that % = u(S)(£2) and hence inequality (32) becomes

Wy £ Wi £ Wi

Vi < —ad®V, + ZAkPkM(S)Q_%qV 6V,

9. M a
YV 98’\/1 — —W.
0

x D
=1 j=2
Now, for k = 1,...,q, set V}' = af’V; and let V* =
V. Since 6 > 1 and according to (9), one has

ke

adV = ab®v < v* < ap®1v.
Then

q M 2

- Pk _1 0
Vk < —VF 4+ 20—n(S)8 20,/V VVE— =W,

k a k 1221 ?:2 I 9

2
< V4 2 u(s)0 7 JVEVVE — W,
a
0
< Vi a2 us)omve - = We.
a

And henceforth

) 0
V< v+ 222 us)o v — W
a



where p = max{px, 1 < k < gq}. Substituting % by its expression,
one gets

V< -Vt 2n2§M(S)9—%q v*
+ % (a® — 1) — gy (17 W. (33)

Two cases shall be considered depending on whether 2n%2 1(S)
a

0~ ar < 411 or not, i.e. depending on whether or not
2q
6> <8n2§,u(5)> 20, (34)

o Inthe case where 6 > 6, (or equivalently 2n? §,u(5)9_ o <y

4
one has
2P -4 3
1- <2n —,u(S))Q () > (35)
a
and inequality (33) becomes

V(t)

IA

_1
- (1 — o2 us)p7 ) v
a

+ 51 (a6 — 1) — gy (17) W

3 -
< =200V + 5L (a0 — 1) — g0y (I9D) W
_ 3 P T} -
= —Za0v + 2la@ - oW - Llg@y (5w
< Baovi tae - v - Moy
- 4a 20 2M2g riy
1 M1 ~
= ——a0 +2V(H) — L)y 7V ()
4 242
1
< ——a0 + DV () — Ly (V). (36)
4 4

e Inthe case wheref < 6. andsince§(t) > 1,onehasd"~ il (t) <
1 and inequality (33) becomes

e
24

. "w -
V) < Vi VT S (0@ = 1) - gy (I9) W
1
* eczq 81 M1 ~
= —Via 00V 4 = (a® - 1) — 2Oy (IFD) W
1
* eczq 81 M1 ~
= —Via= 00V + 2 (a® - 1) - gy (IFD) W
51+2iq
< —abV + ——V + a6 — 1V
uw -
- ey v
2y
1
1 0951+ﬁ M1 -
= ——a@ +1DV() + V——g@®ydyhv
2 242
1 aefﬁ%q
< =@+ 1DV + 1%
uw -
—Lg@©y V. (37)
4y

Comparing (36) and (37), one can easily conclude that for any
0, one has
a&f ta

v— f—lg(r)y(nyn)v. (38)
2

V() < —%a(e + DV(E) +

4.2.3. Boundedness of the output observation error
Let us show that ||j(t)|| is bounded. Indeed, suppose the
contrary and choose p high enough. Then,

AN > 0; At* > T; Ve > t*—T: ||y@®)| > N and
1t 2
T ly()lI“dT > p. (39)
t*—T
As aresult, one has
- M
Vt>t*—T:|y®)]| >N and g(t)=——.
1+p

Let yv = y(N). Since y is a positive non decreasing function of
[I7]l, one has

Vet =T:y(IyOI) = .
Let us choose M as follows

_ A1+ p)

B YN

M (40)

81457
where A is a positive constant and is such that A > 9c1 2 % For
t > t* — T, using (39), inequality (38) becomes

] S1+37

VE®) = —7a0 + DVED) + —,—VEWD)
M
— P I y ).

4 1+ p
Substituting M by its expression (40), one gets
. 1 1 1
V@) < ——a(@ + DVED) + (95“2‘7 - ’“A) V@)

4 M2 4

<

1N 1
- (ﬂx - 95“2‘1) “VED)).
M2 4

Then, integrating both sides from t* — T to t yields
1 81+
V(e(t)) < exp (—— (ﬂk - 9c1+2q) (t— (" — T)))
4\ u2
x V(@(t* —T)). (41)
And choosing t = 2 (t* — T), one gets
1/A 81+
Vel ) = ew (1 (21 F) )
4\ U2
xV(e(t*—T)).
Since V(e(t* — T)) is constant, one can choose X high enough such
that

Ve 1) e~ (- ) 1)

2
N2
xV (e(t" —T)) < im (S) R (42)
Combining (41), (42) and (30), one gets fort > t* —T:
17EE=T)1° <lle(*=T)) 1> < lle2(t* =1)) I?

< Aml(s)v(é e -1) <y

and henceforth

- N
1y (2 —=1)) Il < >
This is in contradiction with (39) and ||y(t)] is then bounded. In
the sequel, one shall denote by B; the upper bound of ||y(t)]], i.e.

Ve>0: [[50)] < By (43)



4.2.4. Boundedness of the state observation error
To show that e(t) is bounded, one introduces the following
change of coordinates

&= A@ek, k=1,....q (44)
where 6 is a constant satisfying
6 > max {Omay, 6.} (45)

where 6.« and 6, are respectively given by (26) and (34). Then, the
error dynamics (27) is transformed into

e = Are* — AT O)KCre* + o*(u, ) — ¢*(u, %)

+ AT O)KCre* — AT O)KCre®. (46)
Using (44) and (46) and proceeding as above, one gets
k= - - N
e = 0% (A — KeG) 8+ A0) (¢" 1w, &) — ¢*(u, x)

A—ok, ~ a—ok -1 0 ~

+O Iy — 6071 A ] KiY-

Now set V,(&¥) = &s,&* and consider the Lyapunov function

V(@) = 3 1_, Vi(8¥) for system (46).
Proceeding as above, one can show that (see inequality (32)):

Vi < —aé‘s"\?k + ZAkPkM(S)é_Z%\/ 0%V

q
3T i,

=1 j=2

_ 0 N
-6 kTSkA (5) Kkyk.

Now, fork = 1,...,q, set V; = 6%V, and let V* = Y7_, V;".

Notice that
oV < V* < 9%, (47)
Then

Vi

IA

—aV} + 200 0(8)8 21/ Vi

~ P -
X ZZVVF + 61T S K
=1 j=1

- 0
— Q_UfékTSkAk_l (5) Kk

—aV} + 20n i n(S)8 2\ Vi U

IA

B} _ 0
+0TS Ky — 01T S, AL (—) K

0
).

IA

—aV} + 20n i (S)0 2 V*

+ 0TS Kk — 018 S, AL (

I

Hence

V < —aV* 4+ 2n2pu(s)a= =1 i*
B} _ 0
+ Z (9‘”5‘ TS Ky — 0TS, AL (5) Kkak) .
k=1

According to the choice of # and using (35), one gets

* 3_.
V < —a-0v

a. - 0
+> (9‘”5‘ TS K — 01T S, AL (5) Kkak) .

k=1

N

Now, since of > 0, one has

q
- k. " Amax (S) =
35BS K < KBy 2V (48)
—1 yv)\min(s)

where Bj is the upper bound of y(t) given by (43) and Ky =
Maxi <k<q [IKill-

=~

Similarly, since % < 1one has HAk_l <%) H < land

9._ . 0 -
Ze‘afekTSkAk_l (5) Kiyk < IIKml|By
k=1

In view of the estimations above, one has

A'FHEX (S) \/6. (49)

min )

2 3 _. =
V< —ZadV+ 28BNV (50)

1K | ji) This yields

VVE®)) <exp (—%aét) VVE©O) + 8’3@& (51)

As aresult, V(é(t)) is bounded and so is e(t), or equivalently e(t).
In the sequel, one shall denote B, the upper bound of |le(t) ]|, i.e.

Vt>0: |e)] <Be. (52)

where 8 =

4.2.5. Convergence of the output observation error

Let us show that ||y(t) || converges to zero. In fact, one shall show
not only that y converges to zero, but also it does it exponentially.
This can be done by a contradiction argument. Indeed, suppose that
y does not exponentially converge to zero. This implies that

Ve > 0; Vo > 0; VT* > T; 3t* > T* : ||t || > ce .

But since the function t — ||J(t)|| — ce™®! is continuous, one also
has
Vc > 0; Vo > 0; VT* > T; 3T; > 0;

> ce @+ (53)

—at

Vt e [t t* +Ti]: |§(t)]| > ce

Now, since ||y|| is bounded and by choosing p > B;, one has for
t>t":

t) = . 54
g(t) > T (54)
Now, choose M as follows

r(1+B%
=—2 (55)
Vm

where y,, = inf{y(||jz(t)||)' t € [t*, t* 4+ T1]} and X is a positive
1

constant satisfying A > 6, bt ar a“z
Using (54), inequality (38) becomes

51+2—q

. 1 aoe ,LL1 M
V() < —ZG(Q + HV(t) +

4 4w, (1 +Bz)

YV

Substituting M by its expression, (55), in

te [t t*+T]:
ol ﬂx) Ty
H2 ) 4

(38), one obtains for all

%

IA

—%a(e + V() + (a

_(_x_ a”
2

IA

) 1y 56
)Z' (56)



Integrating (56) on [t*, t* + T,], one gets

V@@ +Tp)) < exp (—% (%A - aefﬁz]q)) V(e(t))

or equivalently,

o Ty (1 81457 .
nar+nmsvm6nm(—§(fx—WJﬂ))wam.
2
Now, according to (28) and (14) and using (10) and (13), one has
foro(t) > 1:
k
I < llek]) < 01k k| = 6% |lé¥|
(11 ol 41 _
= oot (330 jay < o7l (57)
Hence
- ol +l -
le®l < llell <6°*1 " 2]le]|.
As a result, one has

~ ek * U‘ll-*
176" + Tl < lle(t* + Tl < 07 2|jet* +Ty) |

1
U}‘]

+3_
< Ok ClIECE T (58)

Combining (57) and (58), one gets
ol +1 (—%(ﬂk—wfﬁ%q))
17t + Tl < V14(S) Omak e ’ e
81+ 57
U}} +1 (_%(ﬂ)‘_aef ’ ))
< Vu(S) Oma e ’ le(t*)]
81+ g
- M(S) B 90}}1+%e(_%(%k—a951 2q ))
=V eYmax

where B, is the upper bound of e(t) as given by (52). Now, it is clear
that one can choose A high enough such that

S1+35q
ol 41 (—T—l(”—lx—aec 2 )) 1 .
Vi(S) Bk Fe\ T\ < JeemH, (59)
Combining (53) and (59) leads to a contradiction, i.e.
* - 1 *
0 < ce™ @M+ IF(* + T < >¢ e+

The convergence to zero of y is proven and thus one has

I>00>0IT">T; Ve >T": |JO)| < ce ™. (60)

4.2.6. Convergence of state observation error

Consider again the same change of variable given by (44).
Proceeding as above and miming (51), one can show for t > T*
where T* is given by (60) that

— 3 . —— B
V(e()) <exp (—gaet) V(e(0)) +mycre (61)

where 6 is given by (45) and my, ¢y, oy are real positive constants.
This ends the proof of the theorem.

4.3. Design parameters specification

The equations of the observer requires to specify the function y
together with the three design parameters M, T and p.

Recall that y(-) is non negative, non decreasing and bounded
real-valued function with y (0) = 0. One give here two expressions
that have been used in the examples given in simulation.

2

_ §
y(s)_1+52

where ¢ € R’}

and
y(§) = tanh&®> where £ € RY..
In other respects, the function g can be written as follows

M
1+ min (p, Pr(t))

gt) =

where

1 t
Pr(t) = —/
T max(0,t—T)

represents the power of the output observation error determined
on a moving window with a width equal to T. It is hence clear that
the function g is bounded as one has

I5(0)II*dz

M
VE>0: —— <g(t) <M.
> 1er_g()_

Notice that the design parameter M can be set to very high values
in the absence of noise measurements. These high values allows
the gain parameter 6 (t) to quickly reach high values. This leads to
the observation error vanishing and hence the decreasing of the
gain parameter 6 (t) to the predefined lower value, e.g. 6(t) =
1. However, it is more advisable to avoid high values of M to
reduce the sensitivity of the observer with respect to unavoidable
noise measurements. The normalization of the design parameter
M by the power of the output observation error on a moving
window with a width equal to T can be thought as an interesting
practical feature from a noise insensitivity point of view. It is worth
noticing that small values of T are more advisable in the presence
of noise measurements with a variance that varies significantly
and relatively quickly in a continuous manner. On the contrary,
relatively high values of T have to adopted when the variance of
the noise measurements is constant or varies slowly.

5. Simulation example

In order to illustrate the performances of the updated high gain
observer, one considers the following nonlinear system

X =x,—x +xju
Xy =X —x)
il = _xl X}
3 N2
1+ (x3) (62)
2
X
——=2— —10cos (10x}) +u
2
1+ (x3)
)’1=X%

2 _ 2 11 2 1
Xy _xz—x2x3—;<1—|—ux3 :

> S R X3
T @) 1+ () (63)
—10x, sin (10x,) + v
Y2 = X%

where u = 5 sin (27 t) and v is an external disturbance that takes
the value 3 between t; = 6 sand t, = 7 s and zero elsewhere.
The introduction of v is motivated by illustration purposes; this
allows to test the behaviour of the observer, and in particular that
of O(t), in the presence of such a disturbance. Notice that system
(62)-(63) is in form (1) withq = 2,p; = p» = 1, Ay = 3 and
Ao = 2 and is not included in the classes of systems considered
in [5,6]. Moreover, the state trajectory of the system is bounded
and the required Lipschitz assumption holds.
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Fig. 2. Estimation of the missing states with an updated design parameter.

An observer of form (20) can be designed for system (62)—(63).
The equations of this observer specialize as follows

o)
%= )?;
x1 0
X3
—x} +xf u
51
o % % o1
—X3 — — — — — 10 cos(lez) +u
1+(®) 1+ ()
360% (1)
—[36* @] * —») (64)
9381 (t)

X2 A
X1) _ (x%)
2] —

X, 0

—Xy%; — X7 + uky
+ N 2 Al N N
—% - ZAZ > 3A] > — 10%; sin (10%})
1+ (%) 1+ (%)
26 (1) (2
- (9282 (t) (X] —J’Z) (65)
where §; = §; = 1 are computed according to (7). The gain

matrices Ky, with k = 1 and 2, of the observer are chosen such
that all the poles of each matrix Ay = A, — K Cy are assigned to the
value —1.

In the following, one gives simulation results involving system
(62)—(63) with the following initial values:

21(0) =2 (0)=x(0)=0; k=1,2and
i=1,....,04  %(0)=%(0)=3%(0)=05 6(0)=1.

The simulation experiment has been carried out between 0 and
10s.Between 0 and 8 s, each measured variable has been corrupted
by an additive Gaussian noise with zero mean value and a standard
deviation equal to +/0.1. For illustration purposes, the noise



TIME (s)

Fig. 3. Evolution of 6(t).

measurement is cut off at time t = 8 s and the outputs then
become noise-free. The underlying noise realizations are given in
Fig. 1.

The values of the parameters M, T and a used in simulation were
respectively equal to 1000, 0.25 and 20. Concerning the function y,
it was specified as follows in this application:

~ 2
. Iyl
yYy) =———.

1+ |lyll

The estimates of the missing state variables provided by the
observer are given in Fig. 2 while Fig. 3 shows the evolution of the
gain parameter 6(t). One notices that the value of 6(t) grows from
the beginning of the simulation until time 0.5 s approximatively.
At this time, all the observation errors decrease and this allows 6
to decrease. Similarly, at the occurring of the external disturbance

to x%, increase and this induces an increasing of 6(t). As soon as
the external disturbance is cut off, the observation error as well
as the value of 6 decrease. These results clearly demonstrate that
as soon as the state estimates become accurate, the value of the
gain parameter 6(t) decreases and is maintained at low values
providing thereby accurate and almost noise-free estimates.

For comparison purposes, one has simulated the proposed
observer using two constant values for the gain parameter 6,
namely #; = 1.5 and 6, = 5. The underlying observer is a
classical high gain one [1,14]. The resulting estimates are given in
Fig. 4 where they are compared to their true values issued from
the simulation of system (62)—(63). Notice that the observer cannot
track the unknown system trajectories when the design parameter
is set to the low value #; and that the value 6, is too high to
provide smooth estimate of the state variables in the presence
of a significant noise. One notices that when the output becomes
noise free (at t = 8 s), the observer working with the constant
value & = 5 performs as well as the update gain observer while
that working with & = 1.5 still provide erroneous estimates due
to the low value of the gain parameter 6. These results confirm
the particular interest of the proposed updated gain parameter
observer.

6. Conclusion

A high gain observer with an updated gain has been designed
for a class of cascade non triangular systems that are observable
for any input. Such a design has been particularly inspired from
the observer designs proposed in the contributions [4,11]. The first
contribution allowed to consider a large class of nonlinear and
non triangular systems whereas the second one suggested a gain
parameter adaptation process to improve the performance of high
gain observers in noisy environments. A constructive Lyapunov
approach has been pursued to address the convergence analysis
problem using an appropriate adaptation of the approaches that
have been developed in [4,11]. More specifically, the proposed

(att = 6 s), the observation errors, in particular those related observer can be viewed as an improved version of that observer
08 P B 5 7 .
0.6F , g aron X3 ]
041" ) \ 3 \:\ESﬂMATED,ezf/ESTIMATED,eﬂ.5 ]
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Fig. 4. Estimation of the missing states with constant values of the design parameter.



proposed in [4]. Indeed, it has been shown that the gain parameter
can be maintained at a priori specified relatively small values
leading thereby to an admissible insensitivity of the observer with
respect to the unavoidable noise measurements. Simulation results
have been given to demonstrate this engineering feature.
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