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HARMONIC FUNCTIONS ON MULTIPLICATIVE GRAPHS AND INVERSE

PITMAN TRANSFORM ON INFINITE RANDOM PATHS

CÉDRIC LECOUVEY, EMMANUEL LESIGNE AND MARC PEIGNÉ

Abstract. We introduce and characterize central probability distributions on Littelmann paths.
Next we establish a law of large numbers and a central limit theorem for the generalized Pit-
mann transform. We then study harmonic functions on multiplicative graphs defined from the
tensor powers of finite-dimensional Lie algebras representations. Finally, we show there exists
an inverse of the generalized Pitman transform defined almost surely on the set of infinite paths
remaining in the Weyl chamber and explain how it can be computed.

1. Introduction

In this paper we apply algebraic and combinatorial tools coming from representation theory of
Lie algebras to the study of random paths. In [7] and [9] we investigate the random Littelmann
path defined from a simple module V of a Kac-Moody algebra g and use the generalized Pitmann
transform P introduced by Biane, Bougerol and O’Connell [1] to obtain its conditioning to
stay in the dominant Weyl chamber of g. Roughly speaking, this random path is obtained by
concatenation of elementary paths randomly chosen among the vertices of the crystal graph
B associated to V following a distribution depending on the graph structure of B. It is worth
noticing that for g = sl2, this random path reduces to the random walk on Z with steps {±1} and
the transform P is the usual Pitman transform [16]. Also when V is the defining representation
of g = sln+1, the vertices of B are simply the paths linking 0 to each vector of the standard basis
of Rn+1 and we notably recovered some results by O’Connell exposed in [14]. It appears that
many natural random walks can in fact be realized from a suitable choice of the representation
V .

We will assume here that g is a simple (finite-dimensional) Lie algebra over C of rank n.
The irreducible finite-dimensional representations of g are then parametrized by the dominant
weights of g which are the elements of the set P+ = P ∩ C where P and C are the weight lattice
and the dominant Weyl chamber of g, respectively. The random path W we considered in [9] is
defined from the crystal B(κ) of the irreducible g-module V (κ) with highest weight κ ∈ P+ (κ
is fixed for each W). The crystal B(κ) is an oriented graph graded by the weights of g whose
vertices are Littelmann paths of length 1. The vertices and the arrows of B(κ) are obtained by
simple combinatorial rules from a path πκ connecting 0 to κ and remaining in C (the highest
weight path). We endowed B(κ) with a probability distribution p compatible with the weight
graduation defined from the choice of a n-tuple τ of positive reals (a positive real for each simple
root of g). The probability distribution considered on the successive tensor powers B(κ)⊗ℓ is the
product distribution p⊗ℓ. It has the crucial property to be central: two paths in B(κ)⊗ℓ with the
same ends have the same probability. We can then define, following the classical construction
of a Bernoulli process, a random path W with underlying probability space (B(κ)⊗Z≥0 , p⊗Z≥0)
as the direct limit of the spaces (B(κ)⊗ℓ, p⊗ℓ). The trajectories of W are the concatenations
of the Littelmann paths appearing in B(κ). It makes sense to consider the image of W by the
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generalized Pitman transform P. This yields a Markov process H = P(W) whose trajectories
are the concatenations of the paths appearing in B(κ) which remain in the dominant Weyl
chamber C. When the drift of W belongs to the interior of C, we establish in [9] that the law of
H coincides with the law of W conditioned to stay in C. By setting Wℓ = W(ℓ) for any positive
integer ℓ, we obtain in particular a Markov chain W = (Wℓ)ℓ≥1 on the dominant weights of g.

In the spirit of the works of Kerov and Vershik, one can define central probability measures
on the space ΩC of infinite trajectories associated to H (i.e. remaining in P). These are the
probability measures giving the same probability to any cylinders Cπ and Cπ′ issued from paths
π and π′ of length ℓ remaining in C with the same ends. Alternatively, we can consider the

multiplicative graph G with vertices the pairs (λ, ℓ) ∈ P+ ×Z≥0 and weighted arrows (λ, ℓ)
mΛ

λ,κ→
(Λ, ℓ+1) where mΛ

λ,κ is the multiplicity of the representation V (Λ) in the tensor product V (λ)⊗
V (κ). Each central probability measure on ΩC is then characterized by the harmonic function
ϕ on G associating to each vertex (λ, ℓ), the probability of any cylinder Cπ where π is any path
of length ℓ remaining in C and ending at λ. Finally, a third equivalent way to study central
probability measures on ΩC is to define a Markov chain on G whose transition matrix is computed
from the harmonic function ϕ. We refer to Paragraph 6.1 for a detailed review.

When g = sln+1, the elements of P+ can be regarded as the partitions λ = (λ1 ≥ · · · ≥ λn ≥
0) ∈ Zn. Moreover, if we choose V (κ) = V , the defining representation of g = sln+1, we have
mΛ

λ,κ 6= 0 if and only if the Young diagram of Λ is obtained by adding one box to that of λ.

The connected component of G obtained from (∅, 0) thus coincides with the Young lattice Yn

of partitions with at most n parts (one can obtain the whole Young lattice Y by working with
g = sl∞). In that case, Kerov and Vershik (see [6]) completely determined the harmonic function
on Y. They showed that these harmonic functions have nice expressions in terms of generalized
Schur functions.

In [16] Pitman established that the usual (one-dimensional) Pitman transform is almost surely
invertible on infinite trajectories (i.e. reversible on a space of trajectories of probability 1). It
is then a natural question to ask wether its generalized version P shares the same invertibility
property. Observe that in the case of the defining representation of sln+1 (or sl∞), the general-
ized Pitmann transform can be expressed in terms of a Robinson-Schensted-Knuth (RSK) type
correspondence. Such an invertibility property was obtained by O’Connell in [14] (for usual RSK
related to ordinary Schur functions) and recently extended by Sniady [17] (for the generalized
version of RSK used by Kerov and Vershik and related to the generalized Schur functions).
Our result shows that this invertibility property survives beyond type A and for random paths
constructed from any irreducible representation.

In what follows, we first prove that the probability distributions p on B(κ) we introduced in
[7], [8] and [9] are precisely all the possible distributions yielding central distributions on B(κ)⊗ℓ.
We believe this will make the restriction we did in these papers more natural. We also establish
a law of large numbers and a central limit theorem for the Markov process H. Here we need our
assumption that g is finite-dimensional since in this case P has a particular simple expression
as a composition of (ordinary) Pitman transforms. Then we determine the harmonic functions
on the multiplicative graph G for which the associated Markov chain verifies a law of large
numbers. We establish in fact that these Markov chains are exactly the processes H defined in
[7] and have simple expressions in terms of the Weyl characters of g. This can be regarded as an
analogue of the result of Kerov and Vershik determining the harmonic functions on the Young
lattice. Finally, we prove that the generalized Pitman transform P is almost surely invertible
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and explain how its inverse can be computed. Here we will extend the approach developed by
Sniady in [17] for the generalized RSK to our context.

The paper is organized as follows. In Section 2, we recall some background on continuous time
Markov processes. Section 3 is a recollection of results on representation theory of Lie algebras
and the Littelmann path model. We state in Section 4 the main results of [9] and prove that the
probability distributions p introduced in [7] are in fact the only possible yielding central measures
on trajectories. The law of large numbers and the central limit theorem for H are established
in Section 5. We study the harmonic functions of the graphs G in Section 6. In Section 7 we
show that the spaces of trajectories for W and H both have the structure of dynamical systems
coming from the shift operation. We then prove that these dynamical systems are intertwined
by P. Finally, we establish the existence of a relevant inverse of P in Section 7.

MSC classification: 05E05, 05E10, 60G50, 60J10, 60J22.

2. Random paths

2.1. Background on Markov chains. Consider a probability space (Ω,F ,P) and a countable
set M . A sequence Y = (Yℓ)ℓ≥0 of random variables defined on Ω with values in M is a Markov
chain when

P(Yℓ+1 = µℓ+1 | Yℓ = µℓ, . . . , Y0 = µ0) = P(Yℓ+1 = µℓ+1 | Yℓ = µℓ)

for any any ℓ ≥ 0 and any µ0, . . . , µℓ, µℓ+1 ∈ M . The Markov chains considered in the sequel
will also be assumed time homogeneous, that is P(Yℓ+1 = λ | Yℓ = µ) = P(Yℓ = λ | Yℓ−1 = µ)
for any ℓ ≥ 1 and µ, λ ∈ M . For all µ, λ in M , the transition probability from µ to λ is then
defined by

Π(µ, λ) = P(Yℓ+1 = λ | Yℓ = µ)

and we refer to Π as the transition matrix of the Markov chain Y . The distribution of Y0 is
called the initial distribution of the chain Y .

A continuous time Markov process Y = (Y(t))t≥0 on (Ω,F ,P) with values in Rn is a measur-
able family of random variables defined on (Ω,F ,P) such that, for any integer k ≥ 1 and any

0 ≤ t1 < · · · < tk+1 the conditional distribution (1) of Y(tk+1) given (Y(t1), · · · ,Y(tk)) is equal
to the conditional distribution of Y(tk+1) given Y(tk); in other words, for almost all (y1, · · · , yk)
with respect to the distribution of the random vector (Y(t1), · · · ,Y(tk)) and for all Borelian set
B ⊂ Rn

P(Y(tk+1) ∈ B | Y(t1) = y1, · · · ,Y(tk) = yk) = P(Y(tk+1) ∈ B | Y(tk) = yk).

We refer to the book [3], chapter 3, for a description of such processes.
From now on, we consider a Rn-valued Markov process (Y(t))t≥0 defined on (Ω,F ,P) and we

assume the following conditions:

(i) M ⊂ Rn

1Let us recall briefly the definition of the conditional distribution of a random variable given another one. Let
X and Y be random variables defined on some probability space (Ω,F ,P) with values respectively in Rn and
Rm, n,m ≥ 1. Denote by µX the distribution of X, it is a probability measure on Rn. The conditional distribution
of Y given X is defined by the following “disintegration” formula: for any Borelian sets A ⊂ Rn and B ⊂ Rm

P

(

(X ∈ A) ∩ (Y ∈ B)
)

=

∫

A

P(Y ∈ B | X = x) dµX(x).

Notice that the function x 7→ P(Y ∈ B | X = x) is a Radon-Nicodym derivative with respect to µX and is
thus just defined modulo the measure µX . The measure B 7→ P(Y ∈ B | X = x) is called the conditional
distribution of Y given X = x.
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(ii) for any integer ℓ ≥ 0

(1) Yℓ := Y(ℓ) ∈ M P−almost surely.

It readily follows that the sequence Y = (Yℓ)ℓ≥0 is a M -valued Markov chain.
(iii) for any integer ℓ ≥ 0, the conditional distribution of (Y(t))t≥ℓ given Yℓ is equal to the

one of (Y(t))t≥0 given Y0; in other words, for any Borel set B ⊂ (Rn)⊗[0,+∞[ and any
λ ∈ M , one gets

P((Y(t))t≥ℓ ∈ B | Yℓ = λ) = P((Y(t))t≥0 ∈ B | Y0 = λ).

In the following, we will assume that the initial distribution of the Markov process (Y(t))t≥0

has full support, i.e. P(Y(0) = λ) > 0 for any λ ∈ M .

2.2. Elementary random paths. Consider a Z-lattice P ⊂ Rn with rank n. An elementary
Littelmann path is a piecewise continuous linear map π : [0, 1] → PR such that π(0) = 0 and
π(1) ∈ P . Two paths which coincide up to reparametrization are considered as identical.

The set F of continuous functions from [0, 1] to Rn is equipped with the norm ‖·‖∞ of uniform
convergence : for any π ∈ F , on has ‖π‖∞ := supt∈[0,1] ‖π(t)‖ where ‖·‖ denotes the euclidean
norm on P ⊂ Rn. Let B be a finite set of elementary paths and fix a probability distribution
p = (pπ)π∈B on B such that pπ > 0 for any π ∈ B. Let X be a random variable with
values in B defined on a probability space (Ω,F ,P) and with distribution p (in other words
P(X = π) = pπ for any π ∈ B). The variable X admits a moment of order 1 defined by

m := E(X) =
∑

π∈B

pππ.

The concatenation π1 ∗ π2 of two elementary paths π1 and π2 is defined by

π1 ∗ π2(t) =
{

π1(2t) for t ∈ [0, 12 ],
π1(1) + π2(2t− 1) for t ∈ [12 , 1].

In the sequel, C is a closed convex cone in P ⊂ Rn.

Let B be a set of elementary paths and (Xℓ)ℓ≥1 a sequence of i.i.d. random variables with
same law as X where X is the random variable with values in B introduced just above. We
define a random process W as follows: for any ℓ ∈ Z>0 and t ∈ [ℓ, ℓ+ 1]

W(t) := X1(1) +X2(1) + · · ·+Xℓ−1(1) +Xℓ(t− ℓ).

The sequence of random variables W = (Wℓ)ℓ∈Z≥0
:= (W(ℓ))ℓ≥0 is a random walk with set of

increments I := {π(1) | π ∈ B}.

3. Littelmann paths

3.1. Background on representation theory of Lie algebras. Let g be a simple finite-
dimensional Lie algebra over C of rank n and g = g+ ⊕ h⊕ g− a triangular decomposition. We
shall follow the notation and convention of [2]. According to the Cartan-Killing classification, g
is characterized (up to isomorphism) by its root system R. This root system is determined by
the previous triangular decomposition and realized in the euclidean space Rn. We denote by
∆+ = {αi | i ∈ I} the set of simple roots of g, by R+ the (finite) set of positive roots. We then
have n = card(∆+) and R = R+ ∪ R− with R− = −R+. The root lattice of g is the integral
lattice Q =

⊕n
i=1 Zαi. Write ωi, i = 1, . . . , n for the fundamental weights associated to g. The

weight lattice associated to g is the integral lattice P =
⊕n

i=1 Zωi. It can be regarded as an
integral sublattice of h∗R (the real form of the dual h∗ of h). We have dim(P ) = dim(Q) = n and
Q ⊂ P .
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The cone of dominant weights for g is obtained by considering the positive integral linear
combinations of the fundamental weights, that is P+ =

⊕n
i=1 Z≥0ωi. The corresponding open

Weyl chamber is the cone C̊ =
⊕n

i=1 R>0ωi. We also introduce its closure C =
⊕n

i=1 R≥0ωi.
In type A, we shall use the weight lattice of gln rather than that of sln for simplicity. We also
introduce the Weyl group W of g which is the group generated by the orthogonal reflections si
through the hyperplanes perpendicular to the simple root αi, i = 1, . . . , n. Each w ∈ W may
be decomposed as a product of the si, i = 1, . . . , n. All the minimal length decompositions of w
have the same length l(w). The group W contains a unique element w0 of maximal length l(w0)
equal to the number of positive roots of g, this w0 is an involution and if si1 · · · sir is a minimal
length decomposition of w0, we have

(2) R+ = {αi1 , si1 · · · sia(αia+1) with a = 1, . . . , r − 1}.

Example 3.1. The root system of g = sp4 has rank 2. In the standard basis (e1, e2) of the
euclidean space R2, we have ω1 = (1, 0) and ω2 = (1, 1). So P = Z2 and C = {(x1, x2) ∈
R2 | x1 ≥ x2 ≥ 0}. The simple roots are α1 = e1 − e2 and α2 = 2e2. We also have R+ =
{α1, α2, α1 + α2, 2α1 + α2}. The Weyl group W is the octahedral group with 8 elements. It acts
on R2 by permuting the coordinates of the vectors and flipping their sign. More precisely, for
any β = (β1, β2) ∈ R2, we have s1(β) = (β2, β1) and s2(β) = (β1,−β2). The longest element is
w0 = −id = s1s2s1s2. On easily verifies we indeed have

R+ = {α1, s1s2s1(α2) = α2, s1s2(α1) = α1 + α2, s1(α2) = 2α1 + α2}.

We now summarize some properties of the action of W on the weight lattice P . For any
weight β, the orbit W · β of β under the action of W intersects P+ in a unique point. We define
a partial order on P by setting µ ≤ λ if λ− µ belongs to Q+ =

⊕n
i=1 Z≥0αi.

Let U(g) be the enveloping algebra associated to g. Each finite dimensional g (or U(g))-module
M admits a decomposition in weight spaces M =

⊕

µ∈P Mµ where

Mµ := {v ∈ M | h(v) = µ(h)v for any h ∈ h and some µ(h) ∈ C}.
This means that the action of any h ∈ h on the weight space Mµ is diagonal with eigenvalue
µ(h). In particular, (M ⊕M ′)µ = Mµ ⊕M ′

µ. The Weyl group W acts on the weights of M and
for any σ ∈ W, we have dimMµ = dimMσ·µ. For any γ ∈ P , let eγ be the generator of the

group algebra C[P ] associated to γ. By definition, we have eγeγ
′

= eγ+γ′

for any γ, γ′ ∈ P and

the group W acts on C[P ] as follows: w(eγ) = ew(γ) for any w ∈ W and any γ ∈ P .
The character of M is the Laurent polynomial in C[P ] char(M)(x) :=

∑

µ∈P dim(Mµ)e
µ

where dim(Mµ) is the dimension of the weight space Mµ.
The irreducible finite dimensional representations of g are labelled by the dominant weights.

For each dominant weight λ ∈ P+, let V (λ) be the irreducible representation of g associated to
λ. The category C of finite dimensional representations of g over C is semisimple: each module
decomposes into irreducible components. The category C is equivariant to the (semisimple)
category of finite dimensional U(g)-modules (over C). Roughly speaking, this means that the
representation theory of g is essentially identical to the representation theory of the associative
algebra U(g). Any finite dimensional U(g)-module M decomposes as a direct sum of irreducible
M =

⊕

λ∈P+
V (λ)⊕mM,λ where mM,λ is the multiplicity of V (λ) in M . Here we slightly abuse

the notation and also denote by V (λ) the irreducible f.d. U(g)-module associated to λ.

When M = V (λ) is irreducible, we set sλ := char(M) =
∑

µ∈P Kλ,µe
µ with dim(Mµ) = Kλ,µ.

Then Kλ,µ 6= 0 only if µ ≤ λ. Recall also that the characters can be computed from the Weyl
character formula but we do not need this approach in the sequel.
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Given κ, µ in P+ and a nonnegative integer ℓ, we define the tensor multiplicities f ℓ
λ/µ,κ by

(3) V (µ)⊗ V (κ)⊗ℓ ≃
⊕

λ∈P+

V (λ)
⊕fℓ

λ/µ,κ .

For µ = 0, we set f ℓ
λ,κ = f ℓ

λ/0,κ. When there is no risk of confusion, we write simply f ℓ
λ/µ (resp.

f ℓ
λ) instead of f ℓ

λ/µ,κ (resp. f ℓ
λ,κ). We also define the multiplicities mλ

µ,κ by

(4) V (µ)⊗ V (κ) ≃
⊕

µ λ

V (λ)⊕mλ
µ,κ

where the notation µ  λ means that λ ∈ P+ and V (λ) appears as an irreducible component
of V (µ)⊗ V (κ). We have in particular mλ

µ,κ = f1
λ/µ,κ.

3.2. Littelmann path model. We now give a brief overview of the Littelmann path model.
We refer to [11], [12], [13] and [5] for examples and a detailed exposition. Consider a Lie algebra
g and its root system realized in the euclidean space PR = Rn. We fix a scalar product 〈·, ·〉 on
PR invariant under W. For any root α, we set α∨ = 2α

〈α,α〉 . We define the notion of elementary

continuous piecewise linear paths in PR as we did in § 2.2. Let L be the set of elementary paths
η having only rational turning points (i.e. whose inflexion points have rational coordinates) and
ending in P i.e. such that η(1) ∈ P . We then define the weight of the path η by wt(η) = η(1).
Given any path η ∈ L, we define its reverse path r(η) ∈ L by

r(η)(t) = η(1− t)− η(1).

Observe the map r is an involution on L. Littelmann associated to each simple root αi, i =
1, . . . , n, some root operators ẽi and f̃i acting on L ∪ {0}. We do not need their complete
definition in the sequel and refer to the above mentioned papers for a complete review. Recall
nevertheless that roots operators ẽi and f̃i essentially act on a path η by applying the symmetry
sα on parts of η and we have

(5) f̃i(η) = rẽir(η).

These operators therefore preserve the length of the paths since the elements of W are isometries.
Also if f̃i(η) = η′ 6= 0, we have

(6) ẽi(η
′) = η and wt(f̃i(η)) = wt(η)− αi.

By drawing an arrow η
i→ η′ between the two paths η, η′ of L as soon as f̃i(η) = η′ (or equivalently

η = ẽi(η
′)), we obtain a Kashiwara crystal graph with set of vertices L. By abuse of notation, we

yet denote it by L which so becomes a colored oriented graph. For any η ∈ L, we denote by B(η)
the connected component of η i.e. the subgraph of L generated by η by applying operators ẽi
and f̃i, i = 1, . . . , n. For any path η ∈ L and i = 1, . . . , n, set εi(η) = max{k ∈ Z≥0 | ẽki (η) = 0}
and ϕi(η) = max{k ∈ Z≥0 | f̃k

i (η) = 0}.

The set LminZ of integral paths is the set of paths η such that mη(i) = mint∈[0,1]{〈η(t), α∨
i 〉}

belongs to Z for any i = 1, . . . , n. We also recall that we have

C = {x ∈ h∗R | 〈x, α∨
i 〉 ≥ 0} and C̊ = {x ∈ h∗R | 〈x, α∨

i 〉 > 0}.
Any path η such that Im η ⊂ C verifies mη(i) = 0 so belongs to LminZ. One gets the

Proposition 3.2. Let η and π two paths in LminZ. Then

(i) the concatenation π ∗ η belongs to LminZ,
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(ii) for any i = 1, . . . , n we have

(7) ẽi(η ∗ π) =
{

η ∗ ẽi(π) if εi(π) > ϕi(η)
ẽi(η) ∗ π otherwise,

and f̃i(η ∗ π) =
{

f̃i(η) ∗ π if ϕi(η) > εi(π)

η ∗ f̃i(π) otherwise.

In particular, ẽi(η∗π) = 0 if and only if ẽi(η) = 0 and εi(π) ≤ ϕi(η) for any i = 1, . . . , n.
(iii) ẽi(η) = 0 for any i = 1, . . . , n if and only if Im η is contained in C.
The following theorem summarizes crucial results by Littelmann (see [11], [12] and [13]).

Theorem 3.3. Consider λ, µ and κ dominant weights and choose arbitrarily elementary paths
ηλ, ηµ and ηκ in L such that Im ηλ ⊂ C, Im ηµ ⊂ C and Im ηκ ⊂ C and joining respectively 0 to
λ, 0 to µ and 0 to κ.

(i) We have B(ηλ) := {f̃i1 · · · f̃ikηλ | k ∈Z≥0 and 1 ≤ i1, · · · , ik ≤ n} \ {0}.
In particular wt(η)− wt(ηλ) ∈ Q+ for any η ∈ B(ηλ).

(ii) All the paths in B(ηλ) have the same length than ηλ.
(iii) The paths on B(ηλ) belong to LminZ.

(iv) If η′λ is another elementary path from 0 to λ such that Im η′λ is contained in C, then B(ηλ)
and B(η′λ) are isomorphic as oriented graphs i.e. there exists a bijection θ : B(ηλ) →
B(η′λ) which commutes with the action of the operators ẽi and f̃i, i = 1, . . . , n.

(v) We have

(8) sλ =
∑

η∈B(ηλ)

eη(1).

(vi) For any b ∈ B(ηλ) we have wt(b) =
∑n

i=1(ϕi(b)− εi(b))ωi.

(vii) For any i = 1, . . . , n and any b ∈ B(ηλ), let si(b) be the unique path in B(ηλ) such that

ϕi(si(b)) = εi(b) and εi(si(b)) = ϕi(b)

(in other words, si acts on each i-chain Ci as the symmetry with respect to the center of
Ci). The actions of the si’s extend to an action2 of W on L which stabilizes B(ηλ). In
particular, for any w ∈ W and any b ∈ B(ηλ), we have w(b) ∈ B(ηλ) and wt(w(b)) =
w(wt(b)).

(viii) Given any integer ℓ ≥ 0, set

(9) B(ηµ)∗B(ηκ)
∗ℓ = {π = η∗η1∗· · ·∗ηℓ ∈ L | η ∈ B(ηµ) and ηk ∈ B(ηκ) for any k = 1, . . . , ℓ}.

The graph B(ηµ) ∗B(ηκ)
∗ℓ is contained in LminZ.

(ix) The multiplicity mλ
µ,κ defined in (4) is equal to the number of paths of the form µ ∗ η

with η ∈ B(ηκ) contained in C.
(x) The multiplicity f ℓ

λ/µ defined in (3) is equal to cardinality of the set

Hℓ
λ/µ := {π ∈ B(ηµ) ∗B(ηκ)

∗ℓ | ẽi(π) = 0 for any i = 1, . . . , n and π(1) = λ}.
Each path π = η ∗ η1 ∗ · · · ∗ ηℓ ∈ Hℓ

λ/µ verifies Imπ ⊂ C and η = ηµ.

Remarks 3.4. (i) Combining (6) with assertions (i) and (v) of Theorem 3.3, one may
check that the function e−λsλ is in fact a polynomial in the variables Ti = e−αi , namely

(10) sλ = eλSλ(T1, . . . , Tn)

where Sλ ∈ C[X1, . . . ,Xn].

2This action, defined from the crystal structure on paths, should not be confused with the pointwise action of
the Weyl group on the paths.



8 CÉDRIC LECOUVEY, EMMANUEL LESIGNE AND MARC PEIGNÉ

(ii) Using assertion (i) of Theorem 3.3, we obtain mλ
µ,κ 6= 0 only if µ + κ − λ ∈ Q+.

Similarly, when f
κ,ℓ
λ/µ 6= 0 one necessarily has µ+ ℓκ− λ ∈ Q+.

4. Random paths from Littelmann paths

In this Section we recall some results of [9]. We also introduce the notion of central probability
distribution on elementary Littelmann paths and show these distributions coincide with those
used in the seminal works [1], [14] and also in our previous papers [7], [8],[9].

4.1. Central probability measure on trajectories. Consider κ ∈ P+ and a path πκ ∈ L
from 0 to κ such that Imπκ is contained in C. Let B(πκ) be the connected component of L
containing πκ. Assume that {π1, . . . , πℓ} is a family of elementary paths in B(πκ); the path
π1 ⊗ · · · ⊗ πℓ of length ℓ is defined by: for all k ∈ {1, . . . , ℓ− 1} and t ∈ [k, k + 1]

(11) π1 ⊗ · · · ⊗ πℓ(t) = π1(1) + · · ·+ πk(1) + πk+1(t− k).

Let B(πκ)
⊗ℓ be the set of paths of the form b = π1 ⊗ · · · ⊗ πℓ where π1, . . . , πℓ are elementary

paths in B(πκ); there exists a bijection ∆ between B(πκ)
⊗ℓ and the set B∗ℓ(πκ) of paths in L

obtained by concatenations of ℓ paths of B(πκ):

(12) ∆ :

{

B(πκ)
⊗ℓ −→ B(πκ)

∗ℓ

π1 ⊗ · · · ⊗ πℓ 7−→ π1 ∗ · · · ∗ πℓ .

In fact π1⊗· · ·⊗πℓ and π1 ∗ · · · ∗πℓ coincide up to a reparametrization and we define the weight
of b = π1 ⊗ · · · ⊗ πℓ setting

wt(b) := wt(π1) + · · ·+wt(πℓ) = π1(1) + · · ·+ πℓ(1).

The involution r on η ∈ B(πκ)
⊗ℓ is such that

r(η)(t) = η(ℓ− t)− η(0)

for any t ∈ [0, ℓ].
Consider p a probability distribution on B(πκ) such that pπ > 0 for any π ∈ B(πκ). For any

integer ℓ ≥ 1, we endow B(πκ)
⊗ℓ with the product density p⊗ℓ. That is we set p⊗ℓ

π = pπ1×· · ·×pπℓ

for any π = π1 ⊗ · · · ⊗ πℓ ∈ B(πκ)
⊗ℓ. Here, we follow the classical construction of a Bernoulli

process. Write Πℓ : B(πκ)
⊗ℓ → B(πκ)

⊗ℓ−1 the projection defined by Πℓ(π1 ⊗ · · · ⊗ πℓ−1 ⊗ πℓ) =
π1 ⊗ · · · ⊗ πℓ−1; the sequence (B(πκ)

⊗ℓ,Πℓ, p
⊗ℓ)ℓ≥1 is a projective system of probability spaces.

We denote by Ω = (B(πκ)
⊗Z≥0 , p⊗Z≥0) its projective limit. The elements of B(πκ)

⊗Z≥0 are
infinite sequences ω = (πℓ)ℓ≥1 we call trajectories. By a slight abuse of notation, we will write
Πℓ(ω) = π1 ⊗ · · · ⊗ πℓ. We also write P = p⊗Z≥0 for short. For any b ∈ B(πκ)

⊗ℓ, we denote by
Ub = {ω ∈ Ω | Πℓ(ω) = b} the cylinder defined by π in Ω.

Definition 4.1. The probability distribution P = p⊗Z≥0 is central on Ω when for any ℓ ≥ 1 and
any vertices b and b′ in B(πκ)

⊗ℓ such that wt(b) = wt(b′) we have P(Ub) = P(Ub′).

Remark 4.2. The probability distribution P is central when for any integer ℓ ≥ 1 and any
vertices b, b′ in B(πκ)

⊗ℓ such that wt(b) = wt(b′), we have p⊗ℓ
b = p⊗ℓ

b′ . We indeed have Ub = b⊗Ω

and Ub′ = b⊗ Ω. Hence P(Ub) = p⊗ℓ
b and P(Ub′) = p⊗ℓ

b′ .

The following proposition shows that P can only be central when the probability distribution
p on B(πκ) is compatible with the graduation of B(πκ) by the set of simple roots. This justifies
the restriction we did in [7] and [9] on the probability distributions we have considered on B(πκ).
This restriction will also be relevant in the remaining of this paper.
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Proposition 4.3. The following assertions are equivalent

(i) The probability distribution P is central.

(ii) There exists an n-tuple τ = (τ1, . . . , τn) ∈]0,+∞[n such that for each arrow π
i→ π′ in

B(πκ), we have the relation pπ′ = pπ × τi.

Proof. Assume probability distribution P is central. For any path π ∈ B(πκ), we define the depth
d(π) as the number of simple roots appearing in the decomposition of κ−wt(π) on the basis of
simple roots (see assertion (i) of Theorem 3.3). This is also the length of any path joining πκ to π

in the crystal graph B(πκ). We have to prove that
pπ′

pπ
is a constant depending only on i as soon

as we have an arrow π
i→ π′ in B(πκ). For any k ≥ 1, we set B(πκ)k = {π ∈ B(πκ) | d(π) ≤ k}.

We will proceed by induction and prove that
pπ′

pπ
is a constant depending only on i as soon as

there is an arrow π
i→ π′ in B(πκ)k. This is clearly true in B(πκ)1 since there is at most one arrow

i starting from πκ. Assume, the property is true in B(πκ)k with k ≥ 1. Consider π′ in B(πκ)k+1

and an arrow π
i→ π′ in B(πκ)k+1. We must have π ∈ B(πκ)k. If B(πκ)k does not contains any

arrow
i→, there is nothing to verify. So assume there is at least an arrow π1

i→ π2 in B(πκ)k. In
B(πκ)

⊗2, we have wt(π1⊗π′) = wt(π1)+wt(π)−αi since wt(π
′) = wt(π)−αi. Similarly, we have

wt(π2 ⊗ π) = wt(π1)− αi +wt(π) since wt(π2) = wt(π1)− αi. Thus wt(π1 ⊗ π′) = wt(π2 ⊗ π).
Since P is central, we deduce from the above remark the equality p⊗2(π1 ⊗ π′) = p⊗2(π2 ⊗ π).
This yields pπ1pπ′ = pπ2pπ. Hence

pπ′

pπ
=

pπ2
pπ1

. So by our induction hypothesis,
pπ′

pπ
is equal to a

constant which only depends on i.
Conversely, assume there exists an n-tuple τ = (τ1, . . . , τn) ∈]0,+∞[n such that for each arrow

π
i→ π′ in B(πκ), we have the relation pπ′ = pπ × τi. Consider vertices b, b

′ in B(πκ)
⊗ℓ such that

wt(b) = wt(b′). Since b and b′ have the same weight, we derive from (6) that the paths from

πκ to b and the paths from πκ to b′ contain the same number (says ai) of arrows
i→ for any

i = 1, . . . , n. We therefore have pb = pb′ = pπκτ
a1
1 · · · τann and the probability distribution P is

central. �

4.2. Central probability distributions on elementary paths. In the remaining of the
paper, we fix the n-tuple τ = (τ1, . . . , τn) ∈]0,+∞[n and assume that P is a central distribution
on Ω defined from τ (in the sense of Definition 4.1. For any u = u1α1 + · · ·+ unαn ∈ Q, we set
τu = τu1

1 · · · τun
n . Since the root and weight lattices have both rank n, any weight β ∈ P also

decomposes on the form β = β1α1 + · · · + βnαn with possibly non integral coordinates βi. The
transition matrix between the bases {ωi, i = 1, . . . , n} and {αi, i = 1, . . . , n} (regarded as bases
of PR) being the Cartan matrix of g whose entries are integers, the coordinates βi are rational.

We will also set τβ = τ
β1
1 · · · τβn

n .
Let π ∈ B(πκ): by assertion (i) of Theorem 3.3, one gets

π(1) = wt(π) = κ−
n
∑

i=1

ui(π)αi

where ui(π) ∈Z≥0 for any i = 1, . . . , n. We define Sκ(τ) := Sκ(τ1, . . . , τn) =
∑

π∈B(πκ)
τκ−wt(π).

Definition 4.4. We define the probability distribution p = (pπ)π∈B(πκ) on B(πκ) associated to

τ by setting pπ =
τκ−wt(π)

Sκ(τ)
.

Remark 4.5. By assertion (iii) of Theorem 3.3, for π′
κ another elementary path from 0 to κ

such that Imπ′
κ is contained in C, there exists an isomorphism Θ between the crystals B(πκ) and
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B(π′
κ). For p

′ the central probability distribution defined from τ on B(π′
κ), one gets pπ = p′Θ(π) for

any π ∈ B(πκ). Therefore, the probability distributions we use on the graph B(πκ) are invariant
by crystal isomorphisms and also the probabilistic results we will establish in the paper.

The following proposition gathers results of [7] (Lemma 7.2.1) and [9] (Proposition 5.4) .
Recall that m =

∑

π∈B(πκ)
pππ. We set m = m(1).

Proposition 4.6.

(i) We have m ∈ C̊ if and only if τi ∈]0, 1[ for any i = 1, . . . , n.
(ii) Denote by L the common length of the paths in B(πκ). Then, the length of m is less or

equal to L.

Set Mκ = {m | τ = (τ1, . . . , τn) ∈]0,+∞[} be the set of all vectors m obtained from the
central distributions defined on B(πκ). Observe that Mκ only depends on κ and not of the
choice of the highest path πκ. This is the set of possible mean obtained from central probability
distributions defined on B(πκ). We will also need the set

(13) Dκ = Mκ ∩ C̊ = {m ∈ Mκ | τi ∈]0, 1[, i = 1, . . . , n}

of drifts in C̊.

Example 4.7. We resume Example 3.1 and consider the Lie algebra g = sp4 of type C2 for
which P = Z2 and C = {(x1, x2) ∈ R2 | x1 ≥ x2 ≥ 0}.

For κ = ω1 and πκ the line between 0 and ε1, we get B(πκ) = {π1, π2, π2, π1} where each πa is
the line between 0 and εa (with the convention ε2 = −ε2 and ε1 = −ε1). The underlying crystal
graph is

π1
1→ π2

2→ π2
1→ π1.

For (τ1, τ2) ∈]0,+∞[2, we obtain the probability distribution on B(πκ)

pπ1 =
1

1 + τ1 + τ1τ2 + τ21 τ2
, pπ2 =

τ1

1 + τ1 + τ1τ2 + τ21 τ2
,

pπ2
=

τ1τ2

1 + τ1 + τ1τ2 + τ21 τ2
and pπ2

=
τ21 τ2

1 + τ1 + τ1τ2 + τ21 τ2
.

So we have

m =
1

1 + τ1 + τ1τ2 + τ21 τ2
((1− τ21 τ2)ε1 + (τ1 − τ1τ2)ε2).

When the pair (τ1, τ2) runs over ]0, 1[2, one verifies by a direct computation that Dκ coincide
with the interior of the triangle with vertices 0, ε1, ε2.

Remark 4.8. In the previous example, it is easy to show by a direct calculation that the ad-
herence Mκ of Mκ is the convex hull of the weight {±ε1,±ε2} of the representation V (ω1)
considered (i.e. the interior of the square with vertices {±ε1,±ε2}). In general, one can show
that Mκ is contained in the convex hull of the weights of V (κ). The problem of determining,
for any dominant weight κ, wether or not both sets coincide seems to us interesting and not
immediate.
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4.3. Random paths of arbitrary length. With the previous convention, the product prob-
ability measure p⊗ℓ on B(πκ)

⊗ℓ satisfies

(14) p⊗ℓ(π1 ⊗ · · · ⊗ πℓ) = p(π1) · · · p(πℓ) =
τ ℓκ−(π1(1)+···+πℓ(1))

Sκ(τ)ℓ
=

τ ℓκ−wt(b)

Sκ(τ)ℓ
.

Let (Xℓ)ℓ≥1 be a sequence of i.i.d. random variables with values in B(πκ) and law p =
(pπ)π∈B(πκ); for any ℓ ≥ 1 we thus gets

(15) P(Xℓ = π) = pπ for any π ∈ B(πκ).

Consider µ ∈ P . The random path W starting at µ is defined from the probability space Ω with
values in PR by

W(t) := Πℓ(W)(t) = µ+ (X1 ⊗ · · · ⊗Xℓ−1 ⊗Xℓ)(t) for t ∈ [ℓ− 1, ℓ].

For any integer ℓ ≥ 1, we set Wℓ = W(ℓ). The sequence W = (Wℓ)ℓ≥1 defines a random walk
starting at W0 = µ whose increments are the weights of the representation V (κ). The following
proposition was established in [9] (see Proposition 4.6).

Proposition 4.9.

(i) For any β, η ∈ P , one gets

P(Wℓ+1 = β | Wℓ = η) = Kκ,β−η
τκ+η−β

Sκ(τ)
.

(ii) Consider λ, µ ∈ P+ we have

P(Wℓ = λ,W0 = µ,W(t) ∈ C for any t ∈ [0, ℓ]) = f ℓ
λ/µ

τ ℓκ+µ−λ

Sκ(τ)ℓ
.

In particular

P(Wℓ+1 = λ,Wℓ = µ,W(t) ∈ C for any t ∈ [ℓ, ℓ+ 1]) = mλ
µ,κ

τκ+µ−λ

Sκ(τ)
.

4.4. The generalized Pitman transform. By assertion (viii) of Theorem 3.3, we know that
B(πκ)

⊗ℓ is contained in LminZ. Therefore, if we consider a path η ∈ B(πκ)
⊗ℓ, its connected

component B(η) is contained in LminZ. Now, if ηh ∈ B(b) is such that ẽi(η
h) = 0 for any

i = 1, . . . , n, we should have Im ηh ⊂ C by assertion (iii) of Proposition 3.2. Assertion (iii) of
Theorem 3.3 thus implies that ηh is the unique highest weight path in B(η) = B(ηh). Similarly,

there is a unique lowest path ηl in B(η) such that f̃i(ηl) = 0 for any i = 1, . . . , n. This permits
to define the generalized Pitman transform on B(πκ)

⊗ℓ as the map P which associates to any
η ∈ B(πκ)

⊗ℓ the unique path P(η) ∈ B(η) such that ẽi(P(η)) = 0 for any i = 1, . . . , n. By
definition, we have ImP(η) ⊂ C and P(η)(ℓ) ∈ P+. One can also define a dual Pitman transform

E which associates to any η ∈ B(πκ)
⊗ℓ the unique path E(η) ∈ B(η) such that f̃i(E(η)) = 0 for

any i = 1, . . . , n. By (5), we have in fact

E = rPr

As observed in [1] the path transformation P can be made more explicit (recall we have assumed
that g is finite-dimensional). Consider a simple reflection α. The Pitman transformation Pα :
B(πκ)

⊗ℓ → B(πκ)
⊗ℓ associated to α is defined by

(16) Pα(η)(t) = η(t) − 2 inf
s∈[0,t]

〈η(s), α

‖α‖2
〉α = η(t)− inf

s∈[0,t]
〈η(s), α∨〉α
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for any η ∈ B(πκ)
⊗ℓ and any t ∈ [0, ℓ]. Also define the dual transform Eα := rPαr on B(πκ)

⊗ℓ.
One verifies easily that we have in fact

(17) Eα(η)(t) = η(t)− inf
s∈[t,ℓ]

〈η(s), α∨〉α+ inf
s∈[0,ℓ]

〈η(s), α∨〉α.

Let w0 be the maximal length element of W and fix a decomposition w0 = si1 · · · sir of w0 as a
product a reflections associated to simple roots.

Proposition 4.10 ([1]). For any path η ∈ B(πκ)
⊗ℓ, we have

(18) P(η) = Pαi1
· · · Pαir

(η) and E(η) = Eαi1
· · · Eαir

(η).

Moreover, P and E do not depend on the decomposition of w0 chosen.

Remarks 4.11.

(1) Since P(η) corresponds to the highest weight vertex of the crystal B(η), we have P2(η) =P(η).
(2) One easily verifies that each transformation Pα is continuous for the topology of uniform

convergence on the space of continuous maps from [0, ℓ] to R. Hence P is also continuous
for this topology.

(3) Assume η ∈ B(ηλ) ⊂ B(πκ)
⊗ℓ where ηλ is the highest weight path of B(ηλ). Then

ηλ = w0(ηλ) (the action of W is that of Theorem 3.3) is the lowest weight path in B(ηλ).
In this particular case, one can show that we have in fact

(19) Pia+1 · · · Pir(η
λ) = sia+1 · · · sir(ηλ) and Eia+1 · · · Eir(ηλ) = sia+1 · · · sir(ηλ)

for any a = 1, . . . , r − 1.

Let W be the random path of § 4.3. We define the random process H setting

(20) H = P(W).

For any ℓ ≥ 1, we set Hℓ := H(ℓ). The following Theorem was established in [9].

Theorem 4.12. (i) The random sequence H := (Hℓ)ℓ≥1 is a Markov chain with transition
matrix

(21) Π(µ, λ) =
Sλ(τ)

Sκ(τ)Sµ(τ)
τκ+µ−λmλ

µ,κ

where λ, µ ∈ P+.
(ii) Assume η ∈ B(πκ)

⊗ℓ is a highest weight path of weight λ. Then

P(Wℓ = η) =
τ ℓκ−λSλ(τ)

Sκ(τ)ℓ

We shall also need the asymptotic behavior of the tensor product multiplicities established in
[9].

Theorem 4.13. Assume m ∈ Dκ (see (13)). For any µ ∈ P and any sequence of dominant

weights of the form λ(ℓ) = ℓm+ o(ℓ), we have

(i) lim
ℓ→+∞

fℓ

λ(ℓ)−γ

fℓ

λ(ℓ)

= τ−γ for any γ ∈ P .

(ii) lim
ℓ→+∞

fℓ

λ(ℓ)/µ

fℓ

λ(ℓ)

= τ−µSµ(τ).



CENTRAL MEASURES AND LITTELMANN PATHS 13

Corollary 4.14. Under the assumptions of the previous theorem, we also have

lim
ℓ→+∞

f ℓ−ℓ0
λ(ℓ)

f ℓ
λ(ℓ)

=
1

τ−ℓ0κSℓ0
κ (τ)

for any nonnegative integer ℓ0.

Proof. We first consider the case where ℓ0 = 1. By definition of the tensor product multiplicities
in (3) we have sℓκ =

∑

λ∈P+
f ℓ
λsλ but also sℓκ = sκ × sℓ−1

κ =
∑

λ∈P+
f ℓ−1
λ/κ sλ. Therefore f ℓ

λ = f ℓ−1
λ/κ

for any ℓ ≥ 1 and any λ ∈ P+. We get

(22) lim
ℓ→+∞

f ℓ−1
λ(ℓ)

f ℓ
λ(ℓ)

= lim
ℓ→+∞

f ℓ−1
λ(ℓ)

f ℓ−1
λ(ℓ)/κ

=
1

τ−κSκ(τ)

by assertion (ii) of Theorem. Now observe that for any ℓ0 ≥ 1 we have

f ℓ−ℓ0
λ(ℓ)

f ℓ
λ(ℓ)

=
f ℓ−ℓ0
λ(ℓ)

f ℓ−ℓ0+1
λ(ℓ)

× · · · ×
f ℓ−1
λ(ℓ)

f ℓ
λ(ℓ)

.

By using (22) each component of the previous product tends to 1
τ−κSκ(τ)

when ℓ tends to infinity

which gives the desired limit. �

The previous theorem also implies that the drift m determines the probability distribution
on B(πκ). More precisely, consider p and p′ two probability distributions defined on B(πκ) from
τ ∈]0, 1[n and τ ′ ∈]0, 1[n, respectively. Set m =

∑

π∈B(πκ)
pππ and m′ =

∑

π∈B(πκ)
p′ππ.

Proposition 4.15. We have m = m′ if and only if τ = τ ′. Therefore, the map which associates
to any τ ∈]0, 1[n the drift m ∈ Dκ is a one-to-one correspondence.

Proof. Assume m = m′. By applying assertion (i) of Theorem 4.13, we get τγ = (τ ′)γ for any
γ ∈ P . Consider i ∈ {1, . . . , n}. For γ = αi, we obtain τi = τ ′i . Therefore τ = τ ′. �

5. Some Limit theorems for the Pitman process

5.1. The law of large numbers and the central limit theorem for W. We start by
establishing two classical limit theorems for W, deduced from the law of large numbers and the
central limit theorem for the random walk W = (Wℓ)ℓ≥1 = (X1 + · · · + Xℓ)ℓ≥1. Recall that
m =

∑

π∈B(πκ)
pππ and m = m(1). Write m⊗∞ for the random path such that

m⊗∞(t) = ℓm+m(t− ℓ) for any t > 0

where ℓ = ⌊t⌋ .
Let Γ = (Γi,j)1≤i,j≤n = tXℓ ·Xℓ be the common covariance matrix of each random variable

Xℓ.

Theorem 5.1. Let W be a random path defined on (B(πκ)
⊗Z≥0 , p⊗Z≥0) with drift path m. Then,

we have

lim
ℓ→+∞

1

ℓ
sup
t∈[0,ℓ]

∥

∥W(t)−m⊗∞(t)
∥

∥ = 0 almost surely.

Furthermore, the family of random variables

(W(t)−m⊗∞(t)√
t

)

t>0

converges in law as t → +∞

towards a centered Gaussian law N (0,Γ).
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More precisely, setting W(ℓ)(t) :=
W(ℓt)−m⊗∞(ℓt)√

ℓ
for any 0 ≤ t ≤ 1 and ℓ ≥ 1, the sequence

of random processes (W(ℓ)(t))ℓ≥1 converges to a n-dimensional Brownian motion (BΓ(t))0≤t≤1

with covariance matrix Γ.

Proof. Fix ℓ ≥ 1 and observe that

sup
t∈[0,ℓ]

∥

∥W(t)−m⊗∞(t)
∥

∥ = sup
0≤k≤ℓ−1

sup
t∈[k,k+1]

‖W(t)− km−m(t− k)‖ .

For any 0 ≤ k ≤ ℓ and t ∈ [k, k + 1], we have W(t) = Wk +Xk+1(t− k) so that

(23) W(t)−m⊗∞(t) = Wk − km +
(

Xk+1(t− k)−m(t− k)
)

with sup
t∈[k,k+1]

‖Xk+1(t− k)−m(t− k)‖ = sup
t∈[0,1]

‖Xk+1(t)−m(t)‖ ≤ +2L, since both paths in

B(κ) and m have length L, by Proposition 4.6. It readily follows that

(24) sup
t∈[0,ℓ]

∥

∥W(t)−m⊗∞(t)
∥

∥ ≤ sup
0≤k≤ℓ

‖Wk − km‖+ 2L.

By the law of large number for the random walk W = (Wk)k≥1, one gets lim
k→+∞

1
k ‖Wk − km‖ = 0

almost surely; this readily implies

lim
ℓ→+∞

1

ℓ
sup
t∈[0,ℓ]

∥

∥W(t)−m⊗∞(t)
∥

∥ = 0 almost surely.

Let us now prove the central limit theorem; for any t > 0, set kt := ⌊t⌋ and notice that
decomposition (23) yields to

(25)
W(t)−m⊗∞(t)√

t
=

√

kt

t
× Wkt − ktm√

kt
+

Xkt+1(t− kt)−m(t− kt)√
t

By the central limit theorem in Rn, one knows that the sequence of random variables

(

Wk − km√
k

)

k≥1

converges in law as k → +∞ towards a centered Gaussian law N (0,Γ); on the other hand, one

gets lim
t→+∞

√

kt

t
= 1 and lim sup

t→+∞

∥

∥

∥

Xkt+1(t− kt)−m(t− kt)√
t

∥

∥

∥
≤ lim sup

t→+∞

2L√
t
= 0, so one may

conclude using Slutsky theorem.
The convergence of the sequence (Wℓ(t))ℓ≥1 towards a Brownian motion goes along the same

line One sets

W (ℓ)(t) :=
W⌊ℓt⌋ + (ℓt− ⌊ℓt⌋)X⌊ℓt⌋+1(1) − ℓtm√

ℓ
for all ℓ ≥ 1 and 0 ≤ t ≤ 1

and observes that
∥

∥

∥W(ℓ)(t)−W (ℓ)(t)
∥

∥

∥ ≤ 2√
ℓ
(‖m‖∞ + ‖X⌊nt⌋+1‖∞). �

5.2. The law of large numbers and the central limit theorem for H. To prove the law
of large numbers and the central limit theorem for H, we need the two following preparatory
lemmas. Consider a simple root α and a trajectory η ∈ Ω such that 1

ℓ 〈η(ℓ), α∨〉 converges to a
positive limit when ℓ tends to infinity.

Lemma 5.2. There exists a nonnegative integer ℓ0 such that for any ℓ ≥ ℓ0

inf
t∈[0,ℓ]

〈η(t), α∨〉 = inf
t∈[0,ℓ0]

〈η(t), α∨〉.
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Proof. Since 1
ℓ 〈η(ℓ), α∨〉 converges to a positive limit, we have in particular that lim

ℓ→+∞
〈η(ℓ), α∨〉 =

+∞. Consider t > 0 and set ℓ = ⌊t⌋. We can write by definition of η ∈ Ω, η(t) = η(ℓ) + π(t− ℓ)
where π is a path of B(πκ). So 〈η(t), α∨〉 = 〈η(ℓ), α∨〉+ 〈π(t− ℓ), α∨〉. Since π ∈ B(πκ), we have

‖π(t− ℓ)‖ ≤ L

where L is the common length of the paths in B(πκ). So the possible values of 〈π(t − ℓ), α∨〉
are bounded. Since lim

ℓ→+∞
〈η(ℓ), α∨〉 = +∞, we also get limt→+∞〈η(t), α∨〉 = +∞. Recall that

η(0) = 0. Therefore inft∈[0,ℓ]〈η(t), α∨〉 ≤ 0. Since limt→+∞〈η(t), α∨〉 = +∞ and the path η is
continuous, there should exist an integer ℓ0 such that inft∈[0,ℓ0]〈η(t), α∨〉 = inft∈[0,ℓ0]〈η(t), α∨〉
for any ℓ ≥ ℓ0. �

Lemma 5.3.

(i) Consider a simple root α and a trajectory η ∈ Ω such that 1
ℓ 〈η(ℓ), α∨〉 converges to a

positive limit when ℓ tends to infinity. We have for any simple root α

sup
t∈[0,+∞[

‖Pα(η)(t)− η(t)‖ < +∞

in particular, 1
ℓ 〈Pα(η)(ℓ), α

∨〉 also converges to a positive limit.
(ii) More generally, let αi1 , · · · , αir , r ≥ 1, be simple roots of g and η a path in Ω satisfying

lim
t→+∞

〈η(t), α∨
ij 〉 = +∞ for 1 ≤ j ≤ r. One gets

sup
t∈[0,+∞[

‖Pαi1
· · · Pαir

(η)(t)− η(t)‖ < +∞.

Proof. (i) By definition of the transform Pα, we have ‖Pα(η)(t) − η(t)‖ =
∣

∣inft∈[0,t]〈η(s), α∨〉
∣

∣ ‖α∨‖
for any t ≥ 0. By the previous lemma, there exists an integer ℓ0 such that for any t ≥ ℓ0,

‖Pα(η)(t) − η(t)‖ =
∣

∣infs∈[0,t]〈η(s), α∨〉
∣

∣ ‖α∨‖ =
∣

∣infs∈[0,ℓ0]〈η(s), α∨〉
∣

∣ ‖α∨‖. Since the infimum

infs∈[0,ℓ0]〈η(s), α∨〉 does not depend on ℓ, we are done. Now 1
ℓ 〈Pα(η(ℓ)), α

∨〉 and 1
ℓ 〈η(ℓ), α∨〉

admit the same limit.
(ii) Consider a ∈ {2, . . . , r − 1} and assume by induction that we have

(26) sup
t∈[0,+∞[

∥

∥Pαia
· · · Pαir

(η)(t)−m⊗∞(t)
∥

∥ < +∞.

We then deduce

(27) lim
ℓ→+∞

1

ℓ
〈Pαia

· · · Pαir
(η)(ℓ), α∨

ia−1
〉 = 〈m,α∨

ia−1
〉 > 0.

This permits to apply Lemma 5.3 with η′ =Pαia
· · · Pαir

(η) and α = αia−1 . We get

sup
t∈[0,+∞[

∥

∥

∥
Pαia−1

· · · Pαir
(η)(t)− Pαia

· · · Pαir
(η)(t)

∥

∥

∥
< +∞.

By using (26), this gives

(28) sup
t∈[0,+∞[

∥

∥

∥Pαia−1
· · · Pαir

(η)(t) −m⊗∞(t)
∥

∥

∥ < +∞.

We thus have proved by induction that (28) holds for any a = 2, . . . , r − 1. �

Theorem 5.4. Let W be a random path defined on Ω = (B(πκ)
⊗Z≥0 , p⊗Z≥0) with drift path m

and let H = P(W) be its Pitman transform. Assume m ∈ Dκ. Then, we have

lim
ℓ→+∞

1

ℓ
sup
t∈[0,ℓ]

∥

∥H(t)−m⊗∞(t)
∥

∥ = 0 almost surely.
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Furthermore, the family of random variables

(H(t)−m⊗∞(t)√
t

)

t>0

converges in law as t → +∞
towards a centered Gaussian law N (0,Γ).

Proof. Recall we have P=Pαi1
· · · Pαir

by Proposition ([1]). Consequently, by Theorem 5.1 and

Lemma 5.3, the random variable H−W = P(W) −W is finite almost surely. It follows that

lim sup
ℓ→+∞

1

ℓ
sup
t∈[0,ℓ]

∥

∥

∥
H(t)−m⊗l(t)

∥

∥

∥
≤ lim sup

ℓ→+∞

1

ℓ
sup
t∈[0,ℓ]

∥

∥

∥
W(t)−m⊗l(t)

∥

∥

∥
+lim sup

ℓ→+∞

1

ℓ
sup
t≥0

‖H(t)−W(t)‖ = 0

almost surely. To get the central limit theorem for the process H(t), we write similarly

H(t)−m⊗l(t)√
t

=
W(t)−m⊗l(t)√

t
+

H(t)−W(t)√
t

.

By Theorem 5.1, the first term in this decomposition satisfies the central limit theorem; on the
other hand the second one tends to 0 almost surely and one concludes using Slutsky theorem �

6. Harmonic functions on multiplicative graphs associated to a central

measure

Harmonic functions on the Young lattice are the key ingredients in the study of the asymptotic
representation theory of the symmetric group. In fact, it was shown by Kerov and Vershik that
these harmonic functions completely determine the asymptotic characters of the symmetric
groups. We refer the reader to [6] for a detailed review. The Young lattice is an oriented graph
with set of vertices the set of all partitions (each partition is conveniently identified its Young
diagram). We have an arrow λ → Λ between the partitions λ and Λ when Λ can be obtained
by adding a box to λ. The Young lattice is an example of branching graph in the sense that its
structure reflects the branching rules between the representations theory of the groups Sℓ and
Sℓ+1 with ℓ > 0. One can also consider harmonic functions on other interesting graphs.

Here we focus on graphs defined from the weight lattice of g. These graphs depend on a fixed
κ ∈ P+ and are multiplicative in the sense that a positive integer, equal to a tensor product
multiplicity, is associated to each arrow. We call them the multiplicative tensor graphs. We are
going to associate a Markov chain to each multiplicative tensor graph G. The aim of this section
is to determine the harmonic functions on G when this associated Markov chain is assumed to
have a drift. We will show this is equivalent to determine the central probability measure on
the subset ΩC containing all the trajectories which remains in C. When g = sln+1 and κ = ω1

(that is V (κ) = Cn+1 is the defining representation of sln+1), G is the subgraph of the Young
lattice obtained by considering only the partitions with at most n+ 1 parts and we recover the
harmonic functions as specializations of Schur polynomials.

6.1. Multiplicative tensor graphs, harmonic functions and central measures. So as-
sume κ ∈ P+ is fixed. We denote by G the oriented graph with set of vertices the pairs
(λ, ℓ) ∈ P+ × Z≥0 and arrow

(λ, ℓ)
mΛ

λ,κ→ (Λ, ℓ+ 1)

with multiplicity mΛ
λ,κ when mΛ

λ,κ > 0. In particular there is no arrows between (λ, ℓ) and

(Λ, ℓ+ 1) when mΛ
κ,κ = 0.

Example 6.1. Consider g = sp2n. Then P = Zn and P+ can be identified with the set of
partitions with at most n parts. For κ = ω1 the graph G is such that (λ, ℓ) → (Λ, ℓ + 1) with
mΛ

λ,κ = 1 if and only of the Young diagram of Λ is obtained from that of λ by adding or deleting

one box. We have drawn below the connected component of ( ∅, 0 ) up to ℓ ≤ 3.
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( ∅, 0 )
↓

(

, 1
)

ւ ↓ ց
( ∅, 2 )

(

, 2
)

(

, 2

)

ւց ↓ ւց ↓ ց
(

, 3
) (

, 3
)

(

, 3

)



 , 3





...
...

...
...

Observe that in the case g = sln+1 and κ = ω1, we have mΛ
λ,κ = 1 if and only if of the Young

diagram of Λ is obtained by adding one box to that of λ and mΛ
λ,κ = 0 otherwise. So in this very

particular case, it is not useful to keep the second component ℓ since it is equal to the rank of
the partition λ. The vertices of G are simply the partitions with at most n parts (i.e. whose
Young diagram has at most n rows).

Now return to the general case. Our aim is now to relate the harmonic functions on G and
the central probability distributions on the set ΩC of infinite trajectories with steps in B(πκ)
which remain in C. We will identify the elements of P+ ×Z≥0 as elements of the R-vector space
PR × R (recall PR = Rn). For any ℓ ≥ 0, set Hℓ = {π ∈ B(πκ)

⊗ℓ | Imπ ⊂ C}. Also if λ ∈ P+,
set Hℓ

λ = {π ∈ Hℓ | wt(π) = λ}. Given π ∈ Hℓ, we denote by

Cπ = {ω ∈ ΩC | Πℓ(ω) = π}
the cylinder defined by π. We have C∅ = ΩC . Each probability distributionQ on ΩC is determined
by its values on the cylinders and we must have

∑

π∈Hℓ

Q(Cπ) = 1

for any ℓ ≥ 0.

Definition 6.2. A central probability distribution on ΩC is a probability distribution Q on ΩC

such that Q(Cπ) = Q(Cπ′) provided that wt(π) = wt(π′) and π, π′ have the same length.

Consider a central probability distributionQ on ΩC . For any ℓ ≥ 1, we have
∑

π∈Hℓ Q(Cπ) = 1,

so it is possible to define a probability distribution q onHℓ by setting qπ = Q(Cπ) for any π ∈ Hℓ.
Since Q is central, we can also define the function

(29) ϕ :

{

G → [0, 1]
(λ, ℓ) 7−→ Q(Cπ)

where π is any path of Hℓ. Now observe that

Cπ =
⊔

η∈B(πκ)|Im(π⊗η)⊂C

Cπ⊗η.
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This gives

(30) Q(Cπ) =
∑

η∈B(πκ)|Im(π⊗η)⊂C

Q(Cπ⊗η).

Assume π ∈ Hℓ
λ. By Theorem 3.3, the cardinality of the set {η ∈ B(πκ) | Im(π ⊗ η) ⊂ C and

wt(π ⊗ η) = Λ} is equal to mΛ
λ,κ . Therefore, we get

(31) ϕ(λ, ℓ) =
∑

Λ

mΛ
λ,κϕ(Λ, ℓ+ 1).

This means that the function ϕ is harmonic on the multiplicative graph G.
Conversely, if ϕ′ is harmonic on the multiplicative graph G, for any cylinder Cπ in ΩC with

π ∈ Hℓ
λ, we set Q′(Cπ) = ϕ′(λ, ℓ). Then Q′ is a probability distribution on ΩC since it verifies

(30) and is clearly central. Therefore, a central probability distribution on ΩC is characterized
by its associated harmonic function defined by (29).

6.2. Harmonic function on a multiplicative tensor graph. Let Q a central probability
distribution on ΩC . Consider π = π1 ⊗ · · · ⊗ πℓ ∈ Hℓ

λ and π# = π1 ⊗ · · · ⊗ πℓ ⊗ πℓ+1 ∈ Hℓ+1
Λ .

Since we have the inclusion of events Cπ# ⊂ Cπ, we get

Q(Cπ# | Cπ) =
Q(Cπ#)

Q(Cπ)
=

ϕ(Λ, ℓ + 1)

ϕ(λ, ℓ)

where the last equality is by definition of the harmonic function ϕ (which exists since Q is
central). Let us emphasize that Q(Cπ#) and Q(Cπ) do not depend on the paths π and π# but
only on their lengths and their ends λ and Λ. We then define a Markov chain Z = (Zℓ)ℓ≥0 from
(ΩC ,Q) with values in G and starting at Z0 = (µ, ℓ0) ∈ G by

Zℓ(ω) = (µ+ ω(ℓ), ℓ+ ℓ0).

Its transition probabilities are given by

ΠZ((λ, ℓ), (Λ, ℓ + 1)) =
∑

π#

Q(Cπ# | Cπ)

where π is any path in Hℓ
λ and the sum runs over all the paths π# ∈ Hℓ+1

Λ such that π# =

π⊗πℓ+1. Observe, the above sum does not depend on the choice of π in Hℓ
λ because Q is central.

Since there are mΛ
λ,κ such pairs, we get

(32) ΠZ((λ, ℓ), (Λ, ℓ + 1)) =
mΛ

λ,κϕ(Λ, ℓ + 1)

ϕ(λ, ℓ)

and by (31) Z = (Zℓ)ℓ≥0 is indeed a Markov chain. We then write Q(µ,ℓ0)(Zℓ = (λ, ℓ)) for the
probability that Zℓ = (λ, ℓ) when the initial value is Z0 = (µ, ℓ0). When Z0 = (0, 0), we simply
write Q(Zℓ = (λ, ℓ)) = Q(0,0)(Zℓ = (λ, ℓ)).

Lemma 6.3. For any µ, λ ∈ P+ and any integer ℓ0 ≥ 1, we have

Q(µ,ℓ0)(Zℓ−ℓ0 = (λ, ℓ)) = f
(ℓ−ℓ0)
λ/µ

ϕ(λ, ℓ)

ϕ(µ, ℓ0)
for any ℓ ≥ ℓ0.

Proof. By (32), the probability Q(µ,ℓ0)(Zℓ−ℓ0 = (λ, ℓ)) is equal to the quotient ϕ(λ,ℓ)
ϕ(µ,ℓ0)

times the

number of paths in C of length ℓ − ℓ0 starting at µ and ending at λ. The lemma thus follows

from the fact that this number is equal to f
(ℓ−ℓ0)
λ/µ by Theorem 3.3. �
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We will say that the family of Markov chains Z with transition probabilities given by (32)
and initial distributions of the form Z0 = (µ, ℓ0) ∈ G admits a drift m ∈ PR when

lim
ℓ→+∞

Zℓ

ℓ
= (m, 1) Q-almost surely

for any initial distributions Z0 = (µ, ℓ0) ∈ G.
Theorem 6.4. Let Q be a central probability distribution on ΩC such that Z admits the drift
m ∈ Dκ (see (13)).

(i) The associated harmonic function ϕ on G verifies ϕ(µ, ℓ0) =
τ−µSµ(τ)

τ−ℓ0κS
ℓ0
κ (τ)

for any µ ∈ P+

and any ℓ0 ≥ 0 where τ is determined by m as prescribed by Proposition 4.15.
(ii) The probability transitions (32) do not depend on ℓ.

(iii) For any π ∈ Hℓ0
µ , we have Q(Cπ) =

τ−µSµ(τ)

τ−ℓ0κS
ℓ0
κ (τ)

. In particular, Q is the unique central

probability distribution on ΩC such that Z admits the drift m. We will denote it by Qm.

Proof. (i). Consider a sequence of random dominant weights of the form λ(ℓ) = ℓm+ o(ℓ). We
get by using Lemma 6.3

f
(ℓ−ℓ0)

λ(ℓ)/µ

f
(ℓ)

λ(ℓ)

× 1

ϕ(µ, ℓ0)
= f

(ℓ−ℓ0)

λ(ℓ)/µ
× ϕ(λ(ℓ), ℓ)

ϕ(µ, ℓ0)
× [f

(ℓ)

λ(ℓ) × ϕ(λ(ℓ), ℓ)]−1

=
Q(µ,ℓ0)(Zℓ−ℓ0 = (λ(ℓ), ℓ))

Q(Zℓ = (λ(ℓ), ℓ))
=

Q(µ,ℓ0)(
Zℓ−ℓ0
ℓ−ℓ0

= ( λ(ℓ)

ℓ−ℓ0
, ℓ
ℓ−ℓ0

))

Q(Zℓ
ℓ = (λ

(ℓ)

ℓ , 1))
.

Since Z admits the drift m, we obtain

lim
ℓ→+∞

Q(µ,ℓ0)(
Zℓ−ℓ0
ℓ−ℓ0

= ( λ(ℓ)

ℓ−ℓ0
, ℓ
ℓ−ℓ0

))

Q(Zℓ
ℓ = (λ

(ℓ)

ℓ , 1))
=

1

1
= 1 and lim

ℓ→+∞

f
(ℓ−ℓ0)

λ(ℓ)/µ

f
(ℓ)

λ(ℓ)

× 1

ϕ(µ, ℓ0)
= 1.

This means that

ϕ(µ, ℓ0) = lim
ℓ→+∞

f
(ℓ−ℓ0)

λ(ℓ)/µ

f
(ℓ)

λ(ℓ)

.

Now by Theorem 4.13 and since m ∈ Dκ we can write

lim
ℓ→+∞

f
(ℓ−ℓ0)

λ(ℓ)/µ

f
(ℓ)

λ(ℓ)

= lim
ℓ→+∞

f
(ℓ−ℓ0)

λ(ℓ)/µ

f
(ℓ−ℓ0)

λ(ℓ)

× lim
ℓ→+∞

f
(ℓ−ℓ0)

λ(ℓ)

f
(ℓ)

λ(ℓ)

=
τ−µSµ(τ)

τ−ℓ0κSℓ0
κ (τ)

where τ ∈]0, 1[n is determined by the drift m as prescribed by Proposition 4.15. We thus obtain

ϕ(µ, ℓ0) =
τ−µSµ(τ)

τ−ℓ0κS
ℓ0
κ (τ)

.

(ii). We have ΠZ((λ, ℓ), (Λ, ℓ + 1)) =
mΛ

λ,κϕ(Λ,ℓ+1)

ϕ(λ,ℓ) = SΛ(τ)
Sκ(τ)Sλ(τ)

τκ+λ−ΛmΛ
λ,κ which does not

depend on ℓ.
(iii). This follows from the fact that Q(Cπ) = ϕ(λ, ℓ) for any π ∈ Hℓ

λ. �

Consider m ∈ Dκ and write τ for the corresponding n-tuple in ]0, 1[n. Let W be the random
walk starting at 0 defined on P from κ and τ as in § 4.3.

Corollary 6.5. Let Q be a central probability distribution on ΩC such that Z admits the drift
m ∈ Dκ. Then, the processes (Zℓ)ℓ and ((P(Wℓ), ℓ))ℓ have the same law.
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Proof. By the previous theorem, the transitions of the Markov chain Z on G are given by

ΠZ((λ, ℓ), (Λ, ℓ + 1)) =
mΛ

λ,κϕ(Λ,ℓ+1)

ϕ(λ,ℓ) . By Theorem 4.12, the transition matrix ΠZ thus coincides

with the transition matrix of P(W ) as desired. �

Let Pm and Qm be the probability distributions associated to m (recall m determines τ ∈
]0, 1[n) defined on the spaces Ω and ΩC , respectively.

Corollary 6.6. The Pitman transform P is a homomorphism of probability spaces between
(Ω,Pm) and (ΩC ,Qm), that is we have

Qm(Cπ) = Pm(P−1(Cπ))

for any ℓ ≥ 1 and any π ∈ Hℓ.

Proof. Assume π ∈ Hℓ
λ. We have Qm(Cπ) = ϕ(λ, ℓ) = τ−λSλ(τ)

τ−ℓκSℓ
κ(τ)

. By definition of the generalized

Pitman transform P, P−1(Cπ) = {ω ∈ Ω | P(Πℓ(ω)) = π}, that is P−1(Cπ) is the set of
all trajectories in Ω which remains in the connected component B(π) ⊂ B(πκ)

⊗ℓ for any t ∈
[0, ℓ]. We thus have Pm(P−1(Cπ)) = p⊗ℓ(B(π)) = τ−λSλ(τ)

τ−ℓκSℓ
κ(τ)

by assertion (ii) of Theorem 4.12.

Therefore we get Pm(P−1(Cπ)) = Qm(Cπ) as desired. �

7. Isomorphism of dynamical systems

In this section, we first explain how the trajectories in Ω and ΩC can be equipped with natural
shifts S and J , respectively. We then prove that the generalized Pitman transform P intertwines
S and J . When g = sln+1 and κ = ω1, we recover in particular some analogue results of [17].

7.1. The shift operator. Let S : Ω → Ω be the shift operator on Ω defined by

S(π) = S(π1 ⊗ π2 ⊗ π3 ⊗ · · · ) := (π2 ⊗ π3 ⊗ . . .)

for any trajectory π = π1 ⊗ π2 ⊗ π3 ⊗ · · · ∈ Ω. Observe that S is measure preserving for the
probability distribution Pm. We now introduce the map J : ΩC → ΩC defined by

J(π) = P ◦ S(π)
for any trajectory π ∈ ΩC . Observe that S(π) does not belong to ΩC in general so we need to
apply the Pitman transform P to ensure that J takes values in ΩC.

7.2. Isomorphism of dynamical systems.

Theorem 7.1.

(i) The Pitman transform is a factor map of dynamical systems, i.e. the following diagram
commutes :

Ω
S→ Ω

P ↓ ↓ P
ΩC →

J
ΩC

(ii) For any m ∈ Dκ, the transformation J : ΩC → ΩC is measure preserving with respect to
the (unique) central probability distribution Qm with drift m.
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Proof. (i). To prove assertion (i), it suffices to establish that the above diagram commutes on
trajectories of any finite length ℓ > 0. So consider π = π1 ⊗ π2 ⊗ · · · ⊗ πℓ ∈ B(πκ)

⊗ℓ and set
P(π) = π+

1 ⊗ π+
2 ⊗ · · · ⊗ π+

ℓ . We have to prove that

P(π2 ⊗ · · · ⊗ πℓ) = P(π+
2 ⊗ · · · ⊗ π+

ℓ )

which means that both vertices π2 ⊗ · · · ⊗ πℓ and π+
2 ⊗ · · · ⊗ π+

ℓ belong to the same connected

component of B(πκ)
⊗ℓ−1. We know that P(π) is the highest weight vertex of B(π). This implies

that there exists a sequence of root operators ẽi1 , . . . , ẽir such that

(33) π+
1 ⊗ π+

2 ⊗ · · · ⊗ π+
ℓ = ẽi1 · · · ẽir(π1 ⊗ π2 ⊗ · · · ⊗ πℓ).

By (7), we can define a subset X := {k ∈ {1, . . . , r} such that ẽik acts on the first component of
the tensor product ẽik+1

· · · ẽir (π1 ⊗ π2 ⊗ · · · ⊗ πℓ)}. We thus obtain

π+
2 ⊗ · · · ⊗ π+

ℓ =
∏

k∈{1,...,r}\X

ẽik(π2 ⊗ · · · ⊗ πℓ)

which shows that π2 ⊗ · · · ⊗ πℓ and π+
2 ⊗ · · · ⊗ π+

ℓ belong to the same connected component of

B(πκ)
⊗ℓ−1. They thus have the same highest weight path as desired.

(ii). Let A ⊂ ΩC be a Q-measurable set. We have Q(J−1(A)) = P(P−1(J−1(A)) since
P is an homomorphism. Using the fact that previous diagram commutes and S preserves P,
we get Q(J−1(A)) = P(S−1(P−1(A))) = P(P), so that so Q(J−1(A)) = Q(A) since P is an
homomorphism. �

8. Dual random path and the inverse Pitman transform

It is well known (see [16]) that the Pitman transform on the line is reversible. The aim of
this paragraph is to establish that E , restricted to a relevant set of infinite trajectories with
measure 1, can be regarded as a similar inverse for the generalized Pitman transform P. We
assume in the remaining of the paper that m ∈ Dκ. This permits to define a random walk W
and a Markov chain H = P(W) as in Section 4. Since m is fixed, we will denote for short by P

and Q the probability distributions Pm and Qm, respectively.

8.1. Typical trajectories. Consider m ∈ Dκ and the associated distributions Pm and Qm

defined on Ω and ΩC , respectively. We introduce the subsets of typical trajectories in Ωtyp,Ωιtyp

and Ωtyp
C as

Ωtyp = {π ∈ Ω | lim
ℓ→+∞

1

ℓ
〈π(ℓ), α∨

i 〉 = 〈m,α∨
i 〉 ∈ R>0 ∀i = 1, . . . , n},

Ωιtyp = {π ∈ Ω | lim
ℓ→+∞

1

ℓ
〈π(ℓ), α∨

i 〉 = 〈w0(m), α∨
i 〉 ∈ R<0 ∀i = 1, . . . , n}

Ωtyp
C = {π ∈ ΩC | lim

ℓ→+∞

1

ℓ
〈π(ℓ), α∨

i 〉 = 〈m,α∨
i 〉 ∈ R>0 ∀i = 1, . . . , n}.

By Theorems 5.1 and 5.4, we have

Pm(Ωtyp) = 1 and Qm(Ωtyp
C ) = 1.

We are going to see that the relevant Pitman inverse coincides with E acting on the trajectories
of Ωtyp

C and we will show that E(H) is then a random trajectory with drift w0(m) where w0 is
the longest element of the Weyl group W.
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8.2. An involution on the trajectories. We have seen that the reverse map r on paths
defined in (5) flips the actions of the operators ẽi and f̃i on any connected crystal B(πκ) of
highest path πκ. Nevertheless, we have

r(B(πκ) 6= B(πκ)

in general. So r(Ω) 6= Ω. To overcome this difficulty we can replace our space of trajectories
Ω by the set L∞ of all infinite paths defined from the set L of § 3.2. But L∞ has not a
probability space structure neither a simple algebraic interpretation. Rather, it is interesting to
give another definition of E where the involution r is replaced by the Lusztig involution ι which
stabilizes B(πκ) (see for example [10]). The longest element w0 of the Weyl group W (which is
an involution) induces an involution ∗ on the set of simple roots defined by αi∗ = −w0(αi) for
any i = 1, . . . , n. Write πlow

κ for the lowest weight vertex of B(πκ), that is πlow
κ is the unique

vertex of B(πκ) such that f̃i(π
low
κ ) = 0 for any i = 1, . . . , n. The involution ι is first defined on

the crystal B(πκ) by

ι(πκ) = πlow
κ and ι(f̃i1 · · · f̃irπκ) = ẽi∗1 · · · ẽi∗r (π

low
κ )

for any sequence of crystal operators f̃i1 , . . . , f̃ir with r > 0. This means that ι flips the ori-
entation of the arrows of B(πκ) and each label i is changed in i∗. In particular, we have
wt(ι(π)) = w0(wt(π)) for any π ∈ B(πκ). We extend ι by linearity on the linear combinations
of paths in B(πκ).

We next define the involution ι on B(πκ)
⊗ℓ by setting

ι(π1 ⊗ · · · ⊗ πℓ) = ι(πℓ)⊗ · · · ⊗ ι(π1)

for any π1 ⊗ · · · ⊗ πℓ ∈ B(πκ)
⊗ℓ. It then follows from (7) that for any any i = 1, . . . , n we have

(34) ιf̃iι(π1 ⊗ · · · ⊗ πℓ) = ẽi∗(π1 ⊗ · · · ⊗ πℓ).

Thus the involution ι flips the lowest and highest weight paths, reverses the arrows and changes
each label i in i∗. In particular, for any connected component B(η) of B(πκ)

⊗ℓ, the set ι(B(η))
is also a connected component of B(πκ)

⊗ℓ. In addition, we have

(35) wt(ι(π1 ⊗ · · · ⊗ πℓ)) = w0(wt(π1 ⊗ · · · ⊗ πℓ)).

Remark 8.1. Observe that ι is very closed from r. The crucial difference is that the crystals
ι(B(πκ)) and B(πκ) coincide whereas r(B(πκ)) is not a crystal in general.

Example 8.2. We resume Example 4.7 and consider g = sp4 and κ = ω1. In this particular
case we get w0 = −id and ι = r on B(πω1). We then have ι(π1) = π1 and ι(π2) = π2. In the
picture below we have drawn the path η and ι(η) where

η = 1121112̄1̄2̄1112221̄2̄1112221112̄1̄22211,

ι(η) = 1̄1̄2̄2̄2̄121̄1̄1̄2̄2̄2̄1̄1̄1̄212̄2̄2̄1̄1̄1̄2121̄1̄1̄2̄1̄1̄.

Here we simply write a ∈ {2̄, 1̄, 1, 2} instead of πa and omitted for short the symbols ⊗.
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The paths η (in red) and β(η) (in dashed read)

The following proposition shows we can replace the involution r by ι in the definition of the
dual Pitman transform.

Proposition 8.3. We have

E = rPr = ιPι.

Proof. Observe first that for any simple root αi, and any path η ∈ B(πκ)
⊗ℓ, we have by (34)

Eαi(η) = ιPαi∗
ι(η) because the action of Eαi on any path reduces to a product of operators

f̃i. Since E = Eα1 · · · Eαr , we get E = ιPα1∗
· · · Pαr∗

ι. But Pα1∗
· · · Pαr∗

= Pα1 · · · Pαr = P by
Proposition 4.10 because w0 = sα1∗

· · · sαr∗
is also a minimal length decomposition of w0. We

therefore get E = ιPι as desired. �

8.3. Dual random path. Let us define the probability distribution pι on B(πκ) by setting

(36) pιπ = pι(π) =
τκ−w0wt(π)

Sκ(τ)
for any π ∈ B(πκ)

and consider a random variable Y with values in B(πκ) and probability distribution pι. Set
mι = E(Y ), mι = mι(1) and Dι

κ = w0(Dκ).

Lemma 8.4. We have

(i) mι = ι(m)
(ii) mι = w0(m). In particular, m ∈ Dκ if and only if mι ∈ Dι

κ.

Proof. By using that ι is an involution on B(πκ), we get

mι =
∑

π∈B(πκ)

pιππ =
∑

π∈B(πκ)

pι(π)π = ι





∑

π∈B(πκ)

pι(π)ι(π)



 = ι(m)

which proves assertion (i). In particular, if we set mι = mι(1), we have mι = w0(m) and
assertion 2 follows. �
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Similarly, we may consider the probability measure (pι)⊗ℓ on B(πκ)
⊗ℓ defined by

(pι)⊗ℓ(π1 ⊗ · · · ⊗ πℓ) = pι(π1) · · · pι(πℓ) =
τ ℓκ−w0(π1(1)+···πℓ(1))

Sκ(τ)ℓ
=

τ ℓκ−w0(wt(b))

Sκ(τ)ℓ
. (3)

By the Kolmogorov extension theorem, the family of probability measure ((pι)⊗ℓ)ℓ admits a
unique extension Pι := (pι)⊗Z≥0 to the space B(πκ)

⊗Z≥0 . For any ℓ ≥ 1, let Yℓ : B(πκ)
⊗Z≥0 −→

B(πκ) be the canonical projection on the ℓth coordinate; by construction, the variables Y1, Y2, · · ·
are independent and identically distributed with the same law as Y . We denote by Wι the
random path defined by

Wι(t) := Y1(1) + Y2(1) + · · ·+ Yℓ−1(1) + Yℓ(t− ℓ+ 1) for t ∈ [ℓ− 1, ℓ].

Then Wι is defined on the probability space Ωι = (B(πκ)
⊗Z≥0 ,Pι); notice that the set of trajec-

tories of Ωι is the same as the one of Ω but that the probability Pι is defined from pι. We have
in particular

Pι(Ωιtyp) = 1.

We also define the random walk W ι = (W ι
ℓ )ℓ≥1 such that W ι

ℓ = Wι(ℓ) for any ℓ ≥ 1. Let Hι be
the random process Hι =P(Wι) and define Hι = (Hι

ℓ)ℓ≥1 such that Hι
ℓ = Hι(ℓ) for any ℓ ≥ 1.

We then have (see Proposition 4.6 in [9])

Theorem 8.5.

(i) For any β, η ∈ P , one gets

Pι(W ι
ℓ+1 = β | W ι

ℓ = η) = Kκ,β−η,
τκ−w0(β−η)

Sκ(τ)
.

(ii) The random sequence Hι is a Markov chain with the same law as H, that is with tran-
sition matrix

Π(µ, λ) =
Sλ(τ)

Sκ(τ)Sµ(τ)
τκ+µ−λmλ

µ,κ

where λ, µ ∈ P+.
(iii) For any path π ∈ Hℓ

λ,we have

Pι(Hι = π) = P(H = π) =
τ ℓκ−λSλ(τ)

Sκ(τ)ℓ
.

8.4. Asymptotic behavior in a fixed component. Consider π ∈ B(πκ)
⊗ℓ and η ∈ Ω such

that 1
L〈η(L), α∨

i 〉 converges to a positive limit for any positive root αi, i = 1, . . . n. For any L,

set ΠL(η) = ηL so that we have ηL ∈ B(πκ)
⊗L. Since π ∈ B(πκ)

⊗ℓ, the path ηL⊗π is defined on
[0, ℓ+L]. More precisely, we have ηL⊗π(t) = ηL(t) for t ∈ [0, L[ and ηL⊗π(t) = ηL(L)+π(t−L)
for t ∈ [L, ℓ+ L].

Lemma 8.6. With the previous notation, we get

P(ηL ⊗ π) = P(ηL)⊗ π

for L sufficiently large.

Proof. Recall that P=Pαi1
· · · Pαir

. One proves by induction that for any s = 1, . . . , r, there
exists a nonnegative integer Ls such that

Pαis
· · · Pαir

(ηL ⊗ π) = Pαis
· · · Pαir

(ηL)⊗ π

for any L > Ls and lim
L→+∞

〈Pαis
· · · Pαir

(η)(L), α∨〉 = +∞ for any simple root α. The lemma

then follows by putting s = 1. �
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Let H = (Hℓ)ℓ≥1 be a random process in ΩC ⊂ Ω with distribution Qm. Since H takes value
in Ω, we can write Hℓ = T1 ⊗ · · · ⊗ Tℓ for any ℓ ≥ 1, where the random variable Ti takes values
in B(πκ) for any i ≥ 1. By Corollary 6.6, there exists a random process W with values in Ω and
distribution Pm such that H and P(W) coincide Pm-almost surely. Notice that we also have
Wℓ = X1 ⊗ · · · ⊗Xℓ for any ℓ ≥ 1, where Xℓ is a random variable with values in B(πκ) with the
law defined in (15).

Proposition 8.7. Pm-almost surely, the random variables Tℓ and Xℓ coincide for any large
enough ℓ.

Proof. Consider a trajectory ω ∈ Ωtyp. For any ℓ ≥ 1 and set Πℓ(ω) = π1 ⊗ · · · ⊗ πℓ. We can
apply Lemma 8.6 to π1 ⊗ · · · ⊗ πℓ−1 ⊗ πℓ since we have ω ∈ Ωtyp. Hence, for ℓ sufficiently large,
we have

P(π1 ⊗ · · · ⊗ πℓ−1 ⊗ πℓ) = P(π1 ⊗ · · · ⊗ πℓ−1)⊗ πℓ.

We thus have limℓ→+∞(Tℓ −Xℓ) = 0 on Ωtyp. We are done since Pm(Ωtyp) = 1. �

8.5. The transformations P and E on infinite paths. The transformations P and E defined
on B(πκ)

⊗ℓ can be extended to Ω and Ωtyp
C , respectively. For any η ∈ Ω and any simple root α,

set
Pα(η)(t) = η(t)− inf

s∈[0,t]
〈η(s), α∨〉α and P(η) = Pαi1

· · · Pαir
(η).

Similarly, for any η ∈ Ω and any simple root α such that limt→∞〈η(t), α∨〉 = +∞, the path
Eα(η) such that

Eα(η)(t) = η(t)− inf
s∈[t,+∞[

〈η(s), α∨〉α+ inf
s∈[0,+∞[

〈η(s), α∨〉α

for any t ≥ 0 is well defined.

Proposition 8.8. Consider η in Ωtyp
C . Then E(η) = Eαi1

· · · Eαir
(η) is well defined and belongs

to Ωιtyp.

Proof. We proceed by induction and show that E(η) = Eαia
· · · Eαir

(η) is well-defined for any
a = 1, . . . , r. It suffices to prove that

lim
t→∞

〈η(t), αr〉 = +∞ and lim
t→∞

〈Eαia+1
· · · Eαir

η(t), αa〉 = +∞

for any a = 1, . . . r−1. We get limt→∞〈η(t), αr〉 = +∞ directly from the definition of Ωtyp
C . Now

for any a = 1, . . . , r − 1, and any integer ℓ ≥ 0, we have that Eαia+1
· · · Eαir

η(ℓ) is the weight of

the path Πℓ(η). So we obtain by (19)

〈Eαia+1
· · · Eαir

η(ℓ), αa〉 = 〈sia+1 · · · sirη(ℓ), αa〉 = 〈η(ℓ), sir · · · sia+1(αa)〉.
Since w0 is an involution, w0 = sir · · · si1 is also a minimal length decomposition. By (2), we
know that sir · · · sia+1(αa) = α is a positive root. It follows that

lim
ℓ→∞

〈η(ℓ), sir · · · sia+1(αa)〉 = lim
ℓ→∞

〈Eαia+1
· · · Eαir

η(ℓ), αa〉 = +∞.

We finally get limt→∞〈Eαia+1
· · · Eαir

η(t), αa〉 = +∞ because
∥

∥

∥
Eαia+1

· · · Eαir
(η(t))− Eαia+1

· · · Eαir
(η(ℓ))

∥

∥

∥
with ℓ = ⌊t⌋

is bounded by the common length of the elementary paths of B(πκ), uniformly in ℓ. This proves

that E(η) is well-defined. Since η ∈ Ωtyp
C , the path ηℓ = Πℓ(η) is of highest weight. Thus, the

path E(ηℓ) is of lowest weight. Comparing their weights, we get E(η)(ℓ) = w0(η(ℓ)) which implies
that E(η) ∈ Ωιtyp. �
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Observe we have P(η) = limℓ→+∞P(ηℓ) and E(η) = limℓ→+∞ E(ηℓ) where ηℓ = Πℓ(η).

8.6. Composition of the transformations P and E. Consider π ∈ B(πκ)
⊗ℓ, η ∈ Ωtyp

C and
ξ ∈ Ωιtyp. For any positive integer L, set ΠL(η) = ηL and ΠL(ξ) = ξL.

Lemma 8.9. With the above notation we have for L sufficiently large

(1) PE(π ⊗ ηL) = π ⊗ ηL when π ⊗ ηL is a highest weight path,
(2) EP(π ⊗ ξL) = π ⊗ E(ξL).

Proof. 1: Since π⊗ηL is a highest weight path, E(π⊗ηL) is the lowest weight path of B(π⊗ηL),
the crystal associated to π ⊗ ηL. Therefore PE(π ⊗ ηL) = π ⊗ ηL is the highest weight path of
B(π ⊗ ηL).

2: Since ξ ∈ Ωιtyp, we have for any i = 1, . . . , n, lim
L→+∞

〈ξL(L), α∨
i 〉 = −∞. We get by (35)

〈ι(ξL)(L), α∨
i 〉 = 〈w0(ξL(L)), α

∨
i 〉 = 〈ξL(L), w0(α

∨
i )〉 = −〈ξL(L), α∨

i∗〉
for any i = 1, . . . , n. So lim

L→+∞
〈ι(ξL)(L), α∨

i 〉 = +∞ for any i = 1, . . . , n. Recall the ιP = Eι and
ιE = Pι by Lemma 8.3. We have the equivalencies

E(π ⊗ ξL) = π ⊗ E(ξL) ⇐⇒ ιE(π ⊗ ξL) = ι(π ⊗ E(ξL)) ⇐⇒ P(ι(ξL)⊗ ι(π)) = P(ι(ξL))⊗ ι(π).

But the last equality hold by Lemma 8.6 for L sufficiently large. This proves that E(π ⊗ ξL) =
π⊗E(ξL) for L sufficiently large. Now, observe that π⊗ξL and E(π⊗ξL) = π⊗E(ξL) both belong
to the crystal B(π ⊗ ξL). In this crystal the transforms P and E return the highest and lowest
paths, respectively. Therefore, we have EP(π⊗ ξL) = EP(π⊗E(ξL)). But π⊗E(ξL) = E(π⊗ ξL)
is the lowest path of B(π ⊗ ξL). This implies that EP(π ⊗ ξL) = π ⊗ E(ξL) for L sufficiently
large as desired. �

Theorem 8.10.

(1) For any η ∈ Ωtyp
C , we have PE(η) = η.

(2) For any ξ ∈ Ωιtyp, we have EP(ξ) = ξ.

Proof. Consider ℓ a positive integer. For any integer L ≥ ℓ we can write ΠL(η) = Πℓ(η) ⊗ ηL
and ΠL(ξ) = Πℓ(ξ) ⊗ ξL with ηL and ξL in B(πκ)

⊗L−ℓ. Since η ∈ Ωtyp
C and ξ ∈ Ωιtyp, we have

for any simple root αi,

lim
L→+∞

〈ηL(L), α∨
i 〉 = +∞ and lim

L→+∞
〈ξL(L), α∨

i 〉 = −∞.

So by applying Lemma 8.9, we get for L sufficiently large (depending on ℓ)

PE(ΠL(η)) = Πℓ(η)⊗ ηL and EP(ΠL(ξ)) = Πℓ(ξ)⊗ E(ξL)
for any ℓ ≤ L. This shows that PE(η) = η and EP(ξ) = ξ by taking the limit when ℓ tends to
infinity. �

Remark 8.11. It is possible to state a slightly stronger statement of the previous theorem where
Ω is replaced by L∞ (see § 8.2) in the definition of Ωtyp

C and Ωιtyp.

Write Wι = Y1 ⊗ Y2 · · · the dual random path with drift ι(m). The following Theorem shows

that the transformation E defined on Ωtyp
C can be regarded as the inverse of the generalized

Pitman transform P. Recall that for both random trajectories Wι and W, we have H =
P(W) = P(Wι).
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Theorem 8.12. Assume m ∈ Dκ. Then we have

(i) EP(W ι) = Wι Pι-almost surely,
(ii) We have E(H) = Y1 ⊗ Y2 ⊗ · · · where the sequence of random variable (Yℓ)ℓ≥1 is i.i.d.

and each variable Yℓ, ℓ ≥ 1 has law Y as defined in (36).
(iii) PE(H) = H Q-almost surely.

Proof. (i) Write Wι = Y1 ⊗ Y2 · · · . Since Pι(Ωιtyp) = 1, we get EP(W ι) = Wι Pι-almost surely
by Assertion 2 of Theorem 8.10. Since P(Wι) = H, we have E(H) = EP(W ι). By assertion (i),
this means that E(H) = Wι which proves assertion (ii).

To obtain assertion (iii), it suffices to observe that PE(H) = H Q-almost surely by Assertion

1 of Theorem 8.10 since we have Q(Ωtyp
C ) = 1. �
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[9] C. Lecouvey, E. Lesigne and M. Peigné, Conditioned random walks from Kac-Moody root systems,

preprint arXiv:1306.3082 (2013), to appear in Transactions of the AMS.
[10] C. Lenart, On the Combinatorics of Crystal Graphs, I. Lusztig’s Involution, Adv. Math. 211 (2007), 204–

243.
[11] P. Littelmann, A Littlewood-Richardson type rule for symmetrizable Kac-Moody algebras, Inventiones

mathematicae 116, 329-346 (1994).
[12] P. Littelmann, Paths and root operators in representation theory, Annals of Mathematics 142, 499–525

(1995).
[13] P. Littelmann, The path model, the quantum Frobenius map and standard monomial theory, Algebraic

Groups and Their Representations NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 517, Kluwer, Dordrecht,
Germany,175–212 (1998).

[14] N. O’ Connell, A path-transformation for random walks and the Robinson-Schensted correspondence,
Trans. Amer. Math. Soc., 355, 3669-3697 (2003).

[15] N. O’ Connell, Conditioned random walks and the RSK correspondence, J. Phys. A, 36, 3049-3066 (2003).
[16] J.W. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process. Adv. Appl.

Probab. 7, 511-526 (1975).
[17] P. Sniady, Robinson-Schensted-Knuth algorithm, jeu de taquin on infinite tableaux and the characters of

the infinite symmetric group, SIAM J. Discrete Math., 28(2), 598–630 (2014).
[18] W. Woess, Denumerable Markov Chains, EMS Texbooks in Mathematics, (2009).


