
HAL Id: hal-01061474
https://hal.science/hal-01061474

Submitted on 29 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Mechanisms of time-dependent deformation in porous
limestone

Nicolas Brantut, Michael Heap, Patrick Baud, Philip Meredith

To cite this version:
Nicolas Brantut, Michael Heap, Patrick Baud, Philip Meredith. Mechanisms of time-dependent de-
formation in porous limestone. Journal of Geophysical Research, 2014, pp.5444-5463. �hal-01061474�

https://hal.science/hal-01061474
https://hal.archives-ouvertes.fr


Journal of Geophysical Research: Solid Earth

RESEARCH ARTICLE
10.1002/2014JB011186

Key Points:
• Brittle creep occurs in porous

limestone
• Subcritical cracking is dominant

at high stress and low confining
pressure

• A switch in deformation mechanism
is observed at low creep strain rate

Correspondence to:
N. Brantut,
n.brantut@ucl.ac.uk

Citation:
Brantut, N., M. J. Heap, P. Baud, and
P. G. Meredith (2014), Mechanisms
of time-dependent deformation
in porous limestone, J. Geophys.
Res. Solid Earth, 119, 5444–5463,
doi:10.1002/2014JB011186.

Received 11 APR 2014

Accepted 28 JUN 2014

Accepted article online 1 JUL 2014

Published online 25 JUL 2014

This is an open access article under
the terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

Mechanisms of time-dependent deformation
in porous limestone
Nicolas Brantut1, Michael J. Heap2, Patrick Baud2, and Philip G. Meredith1

1Rock and Ice Physics Laboratory, Department of Earth Sciences, University College London, London, UK, 2Laboratoire de
Déformation des Roches, Géophysique Expérimentale, Institut de Physique de Globe de Strasbourg (UMR 7516 CNRS,
Université de Strasbourg/EOST), Strasbourg, France

Abstract We performed triaxial deformation experiments on a water-saturated porous limestone under
constant strain rate and constant stress (creep) conditions. The tests were conducted at room temperature
and at low effective pressures Peff=10 and Peff=20 MPa, in a regime where the rock is nominally brittle when
tested at a constant strain rate of 10−5 s−1. Under these conditions and at constant stress, the phenomenon
of brittle creep occurs. At Peff=10 MPa, brittle creep follows similar trends as those observed in other
rock types (e.g., sandstones and granites): only small strains are accumulated before failure, and damage
accumulation with increasing strain (as monitored by P wave speeds measurements during the tests)
is not strongly dependent on the applied stresses. At Peff=20 MPa, brittle creep is also macroscopically
observed, but when the creep strain rate is lower than ≈10−7 s−1, we observe that (1) much larger strains are
accumulated, (2) less damage is accumulated with increasing strain, and (3) the deformation tends to
be more compactant. These observations can be understood by considering that another deformation
mechanism, different from crack growth, is active at low strain rates. We explore this possibility by
constructing a deformation mechanism map that includes both subcritical crack growth and pressure
solution creep processes; the increasing contribution of pressure solution creep at low strain rates is
consistent with our observations.

1. Introduction
Limestones constitute a major element of the sedimentary cover worldwide [Ford and Williams, 2007] and
are thus subject to the deformation and fluid flow processes occurring in the upper crust. Field evidence
for brittle and ductile deformation are observed, often in close association, in limestone formations [e.g.,
Gratier and Gamond, 1990]: they host active faults (e.g., in the Italian Apenines [e.g., Tesei et al., 2013] and in
the gulf of Corinth [e.g., Bastesen et al., 2009]) and folds (e.g., in the Subalpine Chains of the Alps [e.g., Linzer
et al., 1995]) and are also a major reservoir rock hosting aquifers and hydrocarbon reserves. The mechani-
cal behavior of limestones has hence an important impact on the dynamics of the upper crust and on the
response of natural aquifers and reservoirs to changes in stress.

It is well established experimentally that porous limestones, similarly to other porous rocks, behave in a brit-
tle manner at low confining pressure but become ductile with increasing confining pressure [e.g., Baud et
al., 2000; Wong and Baud, 2012]. The brittle regime in such rocks is characterized by the occurrence of dila-
tancy and the formation of a macroscopic shear fault associated with a significant strength loss [Paterson
and Wong, 2005]. These features (common to all brittle rocks) can be explained by the growth of tensile
microcracks originating from local stress concentrations, such as preexisting pores [Wong and Baud, 2012].
By contrast, the ductile regime is characterized by the occurrence of inelastic compaction, distributed
deformation, and strain hardening [e.g., Baud et al., 2000; Vajdova et al., 2004]. Under dry conditions, inelas-
tic compaction in limestone originates not only from pore collapse promoted by microcracking but also
by intracrystalline plasticity of the calcite grains [Baud et al., 2000; Zhu et al., 2010]. Intracrystalline plas-
tic deformation mechanisms are indeed active in calcite at room temperature [e.g., Turner et al., 1954] and
likely occur in the macroscopically brittle (dilatant) regime as well as the ductile (compactant) regime [e.g.,
Fredrich et al., 1989], unlike most other rock-forming minerals found in porous sandstones, such as quartz or
feldspar, which remain purely brittle at room temperature. The transition pressure between the brittle and
ductile regimes is generally found to be a function of the initial porosity of the rock, as well as factors such as
pore size and the partitioning between micropores and macropores, with higher porosities and larger pores
promoting lower transition pressures [Wong and Baud, 2012].
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Figure 1. Micrograph of a thin section of intact Pond freestone
Purbeck limestone sample, under crossed polars. The white arrows
indicate quartz nodules (qz).

Most of our current understanding of
the deformation of porous limestones,
as briefly summarized above, is based
on experimental results obtained on dry
materials. However, under typical upper
crustal conditions, rocks are generally sat-
urated with some aqueous pore fluid. Such
pore water is expected to promote several
time-dependent mechanisms which could
affect the failure mode of the rock. First,
in a partially undrained system, the pres-
ence of pore fluid can promote dilatancy
hardening by temporarily reducing the
effective pressure applied to the material. In
that case, time dependency arises from the
hydraulic diffusion process within the rock
[Rutter, 1972; Duda and Renner, 2013]. Sec-
ond, water can locally dissolve calcite, hence

promoting pressure solution creep [e.g., Zhang and Spiers, 2005; Zhang et al., 2010; Croizé et al., 2013]. Third,
water can also promote subcritical crack growth in calcite grains, as demonstrated by recent experimental
results [Røyne et al., 2011]. These three processes are expected to produce time-dependent, or, equiva-
lently, strain rate-dependent, variations in the conditions of the brittle-ductile transition (as described by
Gratier et al. [1999]) and more generally can potentially promote time-dependent creep under typical upper
crustal conditions.

It is now well established that a wide range of water-saturated rocks, such as sandstones, granites, and
basalts, can undergo time-dependent deformation within the brittle regime due to subcritical crack growth
(see Brantut et al. [2013], for a review). This phenomenon is called brittle creep. Because of the potential
competition between subcritical crack growth and other time-dependent mechanisms such as plastic flow
or pressure solution [Croizé et al., 2013], it is currently unclear whether the features of brittle creep will be
the same in limestones as in other crustal rocks or even if brittle creep will occur at all in this material.

Aside from the early study of Rutter [1972] on low-porosity Solnhofen limestone and more recent data on
high-porosity limestone [Dautriat et al., 2011; Cilona et al., 2012], experimental rock deformation data on
natural porous limestones under water-saturated conditions are remarkably sparse. Most of the existing
experimental work on carbonates has been performed on unconsolidated aggregates (see Gratier et al.
[2013], for a review), either of pure calcite [e.g., Zhang and Spiers, 2005; Zhang et al., 2010] or powdered
limestones [e.g., Baker et al., 1980; Hellman et al., 2002; Croizé et al., 2010]. Hence, our understanding of the
coupling between microcracking, intracrystalline plasticity, and water-induced mechanisms such as pres-
sure solution and subcritical cracking is insufficient for adequate prediction of the mechanical behavior of
porous limestones under upper crustal conditions.

In the present study we investigated experimentally the mechanics of time-dependent creep in a porous,
permeable, water-saturated limestone. We show experimental results from a series of triaxial deforma-
tion tests performed under both controlled stress (creep) and controlled strain rate conditions, within the
brittle regime. We document the changes in porosity and wave velocities during deformation and use
them as tools for quantifying the microstructural evolution of the samples. We subsequently describe the
microstructures of deformed specimen and discuss the microscale deformation mechanisms that explain
our observations. We finally discuss the implications of our results for deformation in the crust.

2. Experimental Methods
2.1. Starting Material and Sample Preparation
For this study, we selected a porous limestone from the South Coast of England, known as Pond freestone
Purbeck limestone. Its mineralogical composition, obtained by X-ray diffraction analysis on bulk-powdered
samples, is 80% calcite and 20% quartz. Figure 1 shows a micrograph of a thin section of the rock. It
comprises peloids of size ranging from ≈100 μm up to ≈500 μm, composed of microcrystals of calcite,
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Table 1. Summary of the Samples Tested and Experimental Conditionsa

Peak Creep Minimum

Peff Strain Rate Differential Stress Differential Stress Strain Rate Final Strain

Sample Laboratory (MPa) (s−1) (MPa) (MPa) (s−1) (%) Notes

pl16d Strasb. 0 10−5 75 – – – dry, uniaxial

pl12w Strasb. 10 10−5 100 – – –

PL-02 UCL 10 10−5 76 – – 0.8 Vp

PL-06 UCL 10 – – 78 to 90 4 × 10−9 1.0 Vp, 6 stress steps

PL-07 UCL 10 – – 82 to 88 3 × 10−8 1.0 Vp, 6 stress steps

PL-08 UCL 10 10−6 83 – – 0.8 Vp

PL-10 UCL 10 – – 76 3 × 10−8 0.9 Vp

PL-11 UCL 10 – – 65 to 73 2 × 10−8 0.9 Vp, one stress step

PL-13 UCL 10 – – 80 to 85 1 × 10−9 1.1 Vp, one stress step

PL-15 UCL 10 – – 79 4 × 10−7 0.8 Vp

pl13w Strasb. 20 10−5 107 – – –

pl20w Strasb. 20 10−5 114 – – –

PL-05 UCL 20 – – 100 8 × 10−7 1.5 Vp

PL-14 UCL 20 10−5, 10−7 – – – – Vp, strain rate steps

PL-16 UCL 20 10−5, 10−7 – – – – Vp, strain rate steps

PL-17 UCL 20 – – 102 1 × 10−9 – Vp, stopped before failure

PL-19 UCL 20 – – 104 4 × 10−10 – Vp, stopped before failure

PL-20 UCL 20 – – 112 1 × 10−6 1.4 Vp

PL-21 UCL 20 – – 115 2 × 10−6 1.3 Vp

PL-23 UCL 20 10−5 122 – – 1.5 Vp

pl09w Strasb. 20 – – 104 2 × 10−6 1.4

pl10w Strasb. 20 – – 99 5 × 10−8 2.8

pl14w Strasb. 20 – – 101 3 × 10−8 4.1

pl18w Strasb. 30 10−5 126 – – –

pl03w Strasb. 50 10−5 duct. – – –

pl06w Strasb. 60 10−5 duct. – – –

pl11w Strasb. 80 10−5 duct. – – –

pl08w Strasb. – – – – – – hydrostat.

aFor experiments performed under constant strain rate conditions, we report both the imposed strain rate and the observed peak differential stress. For
experiments performed under creep conditions, we report the imposed differential stress and the minimum strain rate measured during the test. Vp denotes
experiments during which P wave speeds were measured throughout deformation.

surrounded by a cement formed of large (typically > 100 μm) sparry calcite crystals. Quartz occurs as poly-
crystalline nodules distributed throughout the rock. The porosity of each sample was measured using the
triple weight method and averaged 13.8%. The pore space is distributed into microporosity within the
peloids and macroporosity occurring between the cement and the peloids. The dry uniaxial compressive
strength of the rock was found to be 75 MPa. The permeability was measured at an effective pressure of
20 MPa using the constant flow rate method and is of the order of 10−16 m2. This value is relatively high com-
pared with that typical of low-porosity micritic limestones (such as Solnhofen limestone), the permeability
of which is generally of the order of 10−19 m2 or less [e.g., Fischer and Paterson, 1992]. This permeability of
10−16 m2 ensured that the rock remained in a fully drained state throughout all our deformation experi-
ments conducted at strain rates up to 10−5 s−1 and thus avoided any dilatancy hardening. The P wave speed
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Figure 2. (a) Differential stress as a function of axial strain and (b) effective mean stress as a function of volumetric strain
for samples of Purbeck limestone deformed at constant strain rate (10−5 s−1). Figures on the curves denote the imposed
effective pressure.

of the samples, measured under the test conditions (water saturated, at an effective pressure of 20 MPa), is
4.5 ± 0.1 km s−1.

Cylindrical samples were cored, and the ends of the cylinders were ground to ensure a good parallelism
(±10 μm). The samples were then saturated with distilled water for around 24 h prior to deformation. Note
that the saturation period is not long enough to fully equilibrate the chemical composition of the pore water
with that of the rock [e.g., Zhang and Spiers, 2005]; the pore fluid is thus initially undersaturated with respect
to calcite.

2.2. Triaxial Deformation Apparatus
Triaxial deformation tests were performed using apparatus at the Experimental Geophysics Laboratory of
the University of Strasbourg (see description in Baud et al. [2009]) and at the Rock and Ice Physics Laboratory
of University College London (see description in Heap et al. [2009]). Both apparatus can apply independent,
servo controlled, confining pressure, differential stress, and pore fluid pressure. The confining medium is
oil. The axial shortening of the samples is measured outside the pressure vessel with a set of linear voltage

Figure 3. Peak stress (crossed squares) and thresholds C’ (empty
squares), C* (filled circles), C*’ (triangles), and P* (star), shown in the
stress space.

differential transducers (LVDTs) recording
the motion of the axial piston relative to
the static frame of the pressure vessel. Axial
shortening measurements are systemati-
cally corrected for the elastic deformation of
the piston and sample assembly. Pore fluid
volume is measured by tracking (with LVDTs)
the position of the actuator of the servo
controlled pore fluid intensifiers. Porosity
change is calculated as the ratio of pore
volume change over the initial sample vol-
ume. Strain is calculated as the ratio of the
corrected axial shortening over the initial
sample length, and strain rate is calculated
as the time derivative of that strain.

Samples were inserted into rubber jackets,
positioned in the pressure vessel, and held
at constant confining and pore pressure for
24 h prior to deformation. The experimental
conditions for all tests are shown in Table 1.
All tests were performed under drained
conditions, at a constant pore fluid pressure
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Figure 4. (top) Stress, strain, and pore volume change and (bottom)
relative P wave speed variations during a conventional brittle creep
test run at Peff = 10 MPa. The imposed creep differential stress is
Q = 79 MPa. The angles reported in degrees correspond to prop-
agation path orientations with respect to the axis of compression.
The first vertical dashed line represents the start of creep, and the
second marks the time of sample failure.

of 10 MPa. The samples were deformed
using either (1) an imposed, constant defor-
mation rate (hereinafter termed “constant
strain rate” experiments) or (2) an imposed,
constant differential stress (termed “creep”
experiments). In the latter case, the samples
were initially loaded at an imposed con-
stant loading rate (axial strain rate around
10−5 s−1) until the target differential stress
was reached. The differential stress was
then maintained constant and the sample
allowed to deform over extended periods
of time; we term such tests “conventional”
creep tests. In some cases, we sequen-
tially stepped the imposed stress (we term
these tests “stress-stepping” creep tests;
see methodology in Heap et al. [2009]) or
the imposed strain rate during deformation
(see Table 1).

2.3. Elastic Wave Velocity Measurements
The samples deformed in the triaxial defor-
mation apparatus installed at University
College London were equipped with an
array of 10 piezoelectric transducers, con-
nected to a 10 MHz digital oscilloscope and
a high-voltage source. All the transducers
can be used either as receivers (in passive
mode) or sources (converting a high-voltage
impulse into a mechanical vibration). At reg-
ular time intervals during deformation, each
sensor was sequentially used as a source
while output waveforms were recorded on
the remaining sensors. Precise P wave arrival
times were extracted from those waveforms
by using the cross-correlation technique
described in Brantut et al. [2011, 2014]. The

sampling rate of the original waveforms is 10 MHz, which results in raw absolute errors of the order of 1%
on the measured P wave velocity. The relative precision between successive measurements is dramatically
improved by the cross-correlation technique; in addition, the waveforms were resampled at 50 MHz with
cubic splines prior to processing, which results in a relative precision of the order of 0.2%.

Assuming straight raypaths, the sensor arrangement gives access to the P wave speed along four different
angles with respect to the axis of compression: 90◦ (radial), 39◦, 58◦, and 28◦ [see Brantut et al., 2014].

3. Mechanical Behavior Under Constant Strain Rate Conditions

We first present the results from a series of tests performed at constant strain rate (10−5 s−1), over effective
pressures ranging from Peff = 10 to 80 MPa (as mentioned above, the pore pressure was maintained at
10 MPa). Figure 2a shows the differential stress (denoted Q) as a function of axial strain, and Figure 2b shows
the effective mean stress (calculated as Q∕3 + Peff) as a function of volumetric strain for the tests performed
at Peff = 10, 20, 30, 50, 60, and 80 MPa.

In experiments performed at Peff ≤ 30 MPa, the differential stress reaches a peak, followed by significant
strain softening. Concomitantly, dilatancy was observed. These features are typical of the brittle regime.
The samples were examined after deformation, and all exhibited a macroscopic shear fault. By contrast, the
samples deformed at Peff ≥ 50 MPa all underwent strain hardening, as well as shear enhanced compaction.

BRANTUT ET AL. ©2014. The Authors. 5448
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Figure 5. Axial strain rate as a function of axial strain for two different
creep tests performed at Peff = 10 MPa.

These samples showed no evidence of
localized shear bands after deformation;
instead, the deformation was distributed
rather homogeneously throughout the
material. These features are typical of
the ductile regime. At Peff = 50 and
60 MPa, the inelastic volumetric strain
is initially compactant but becomes
dilatant beyond 0.82 and 1.45% volu-
metric strain, respectively. The features
observed in both the brittle and ductile
regimes are consistent with previously
reported results for dry porous lime-
stones [Baud et al., 2000; Vajdova et
al., 2004, 2012]. These constant strain
rate tests were complemented by an
experiment performed under purely
hydrostatic conditions (dotted line in

Figure 2); at Peff ≈ 145 MPa, the compactant volumetric strain increases significantly with further increases
in pressure, i.e., the material yields.

The thresholds for inelastic dilatancy (C’), inelastic compaction (C*), post yield dilatancy (C*’, marking the
onset of net dilatancy after an episode of shear enhanced compaction), and hydrostatic yield pressure
(P*) are represented in the stress space (differential stress versus effective mean stress) in Figure 3. At
Peff ≤ 20 MPa, the range of differential stress between the onset of dilatancy and the peak stress is of the
order of a few tens of megapascals. At Peff = 30 MPa, the rock is still macroscopically brittle but there is some
inelastic compaction (C*) before the sample undergoes net dilatancy (C*’) at stresses very close (a few mega-
pascals) to the peak stress. At this pressure, the behavior is in fact typical of the transition regime between
brittle and ductile deformations. It has been shown by Vajdova et al. [2004] that this transition is more abrupt
in limestone than in porous sandstone. Repeat experiments at the same pressure showed in particular sig-
nificant differences in the post peak behavior and the occurrence in some cases of conjugate shear bands.
In the remainder of the present study our focus is to examine the time-dependent behavior of Purbeck
limestone in the brittle regime. Hence, we conducted these experiments at effective pressures in the range
10 to 20 MPa.

4. Mechanical Behavior Under Constant Stress Conditions

The time-dependent brittle behavior of Purbeck limestone was studied by performing a series of creep
experiments at Peff = 10 and 20 MPa. Figure 4 shows the results of a conventional brittle creep test

Figure 6. Axial strain rate as a function of axial strain for a
stress-stepping creep tests performed at Peff = 10 MPa.

performed at Peff = 10 MPa with an
imposed differential stress of Q = 79 MPa
(sample PL-15 in Table 1). After the creep
stress is reached and maintained constant,
the axial strain first decelerates (over a
period of around 2200 s) and then slowly
accelerates until a sudden failure occurs
(at this point the strain rate becomes so
high that the servo controlled actuator is
unable to maintain a constant stress). Con-
comitantly, the porosity change follows
the same trend: dilatancy first decelerates
and then accelerates until sample failure
occurs. This behavior is typical of brit-
tle creep, as reported in many other rock
types such as sandstones and granites
(reviewed in Brantut et al. [2013]).
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Figure 7. (top) Stress, axial strain, and porosity change and (bot-
tom) relative P wave speed variations during a conventional brittle
creep test run at Peff = 20 MPa. The imposed creep differential
stress is Q= 112 MPa. The angles reported in degrees corre-
spond to propagation path orientations with respect to the axis
of compression.

During deformation, the relative evolution
of P wave speed depends on the propaga-
tion angle with respect to the compression
axis. During the initial loading stage at con-
stant loading rate, the sample first behaves
elastically (before C’ is reached); the radial
P wave speed (perpendicular to the com-
pression axis) decreases slightly, while it
increases slightly along subaxial propaga-
tion paths (at angles of 58◦, 39◦ and 28◦

with respect to the compression axis), indi-
cating the development of a stress-induced
anisotropy. Then, beyond the onset of dila-
tancy, the P wave speed decreases along
all orientations, with steeper decreases for
radial than for subaxial orientations, indi-
cating increased anisotropy. During creep,
the change in P wave speed follows the
same trend as that of the measured axial
strain and porosity change: the decrease
initially decelerates and is followed by
rapid changes when the sample fails (the
jumps at the last points in Figure 4 are arti-
facts due to the final measurement interval
spanning the failure time). A significant
divergence is observed between P wave
speeds measured along the same orien-
tation with respect to the compression
axis but at different locations (see the two
horizontal paths shown as filled and open
circles and the two diagonal paths shown
as filled and open triangles in Figure 4). This
divergence indicates that heterogeneities
in elastic properties are generated dur-
ing deformation, in addition to the overall
stress-induced anisotropy.

Figure 8. (a) Stress-strain curves for a constant strain rate test (at 10−5 s−1, denoted “c. s. r.”) and three conventional
creep tests performed at Peff = 20 MPa and (b) axial strain rate as a function of axial strain during the creep stages. The
differential stress axis in Figure 8a is truncated to clarify the differences between the creep curves.

BRANTUT ET AL. ©2014. The Authors. 5450
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achieved during the deformation experiments. The data points
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The evolution of strain rate as a function of
strain is shown in Figure 5 for two conventional
creep tests performed at Peff = 10 MPa. We
note that the creep strain rate is never constant:
rather, it decreases gradually to a minimum and
then increases up to failure.

In addition to these conventional creep tests,
we also performed stress-stepping tests at
Peff = 10 MPa, in which the imposed creep
stress is increased stepwise during deforma-
tion (see methodology in Heap et al. [2009]).
Figure 6 shows the strain rate evolution as a
function of axial strain during such a test. Dur-
ing the first creep stage (following the initial
loading stage), the creep strain rate decreases
substantially with increasing strain, down
to 10−8 s−1 at 0.7% strain. In the following
three steps, each time the differential stress is
stepped up by a few MPa, an initial small jump

in the strain rate ensues, followed by a gradual decrease. By contrast, following each of the last two stress
steps (beyond 0.86% axial strain), the strain rate increases dramatically. We note that in all the tests per-
formed at Peff = 10 MPa (constant strain rate tests, as well as conventional and stress-stepping creep tests),
the axial strain at failure was always in the narrow range from 0.8 to 1.1% (see Table 1).

The overall mechanical behavior during creep at Peff = 20 MPa is quite similar to that at Peff = 10 MPa.
For example, Figure 7 shows the stress, axial strain, porosity change, and P wave speed evolution for a
conventional creep test performed at Peff = 20 MPa and Q= 112 MPa (sample PL-20 in Table 1). During
creep, the axial strain again first decelerates and then accelerates up to failure. The trend is somewhat sim-
ilar for the dilatant porosity change, although the decelerating phase is not as clearly visible as for the
experiment at Peff = 10 MPa (Figure 4). The relative evolution of P wave speeds is also qualitatively sim-
ilar: a stress-induced anisotropy develops early on during initial loading and is amplified during creep.
Again, we observe heterogeneity-induced divergence between the radial P wave speeds measured along
different paths.

Several conventional creep tests were performed over a range of differential stresses at Peff = 20 MPa.
Figure 8a shows the stress-strain curves for three of those creep tests performed at Q= 99, 101, and
104 MPa, as well as for a constant strain rate test. The sample deformed at the highest creep stress under-
goes accelerated deformation and failure when the axial strain reaches 1.6%, around the point where the
creep stress crosses the decreasing stress sustained during the strain-softening phase of the constant strain
rate test. By contrast, the behavior is qualitatively different for the two other experiments performed at
lower differential stresses. Both samples were able to sustain much larger axial deformation without failure
occurring. Figure 8b shows the evolution of strain rate as a function of axial strain during creep. For all three
experiments, the creep strain rate first decreases, reaches a minimum, and then gradually increases with
increasing deformation. During the test performed at the highest stress (Q = 104 MPa), the minimum creep
strain rate is around 2 × 10−6 s−1 and is achieved at around 0.9% strain, which is very close to the amount
of strain at the peak stress recorded during the test at constant strain rate. In the tests performed at lower
stresses, the minimum creep strain rates are several orders of magnitude lower (of the order of 10−8 s−1) and
are only achieved at significantly higher strains (between 1.7 and 1.9%). Beyond the minimum, the creep
strain rates again gradually increase with further deformation, well past the points where the creep stresses
cross the stress sustained under constant strain rate conditions. The experiments were stopped without any
macroscopic failure when the creep strain rate increased to around 10−6 s−1, and the axial strain was around
3% (about twice the failure strain in the sample deformed at Q = 104 MPa).

The major difference in mechanical behavior between samples deformed at Peff = 10 MPa and Peff = 20 MPa
is that, in the latter case, significantly more total strain can be achieved when the strain rate is lower (i.e., for
lower creep stresses). This observation is clarified in Figure 9, which shows the final strain as a function
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Figure 10. Average rate of relative decrease in P wave speed per
unit axial strain as a function of the minimum strain rate achieved
during the deformation tests (conventional creep and constant
strain rate) performed at (top) Peff = 10 MPa and (bottom)
Peff = 20 MPa. Circles correspond to radial paths (perpendicular to
the compression axis), and squares, triangles, and diamonds
correspond to path angles of 58◦ , 39◦ , and 28◦ with respect to the
compression axis, respectively.

of the minimum strain rate achieved dur-
ing the tests (conventional creep as well as
constant strain rate) at Peff = 10 MPa (black
circles) and Peff = 20 MPa (red squares).

The P wave speed evolution as a func-
tion of strain is qualitatively similar in all
the tests, showing a continuous decrease
with increasing axial deformation. The
average rate of relative decrease in P
wave speed per unit of axial strain, calcu-
lated as (−1∕VP0)dVP∕d𝜖, is reported in
Figure 10 as a function of the minimum
strain rate achieved during deforma-
tion. For each propagation angle, the P
wave speed decreases more steeply with
increasing strain (overall lower values of
(−1∕VP0)dVP∕d𝜖) at Peff = 10 MPa than at
Peff = 20 MPa. At 10 MPa effective pres-
sure, the P wave speed decrease rate does
not change significantly with decreasing
minimum strain rate, except for the sample
for which creep was slowest (of the order
of 10−9 s−1), which displays lower P wave
speed decrease rates by about a factor of 2
compared to samples deformed at 10−5 s−1.
At Peff = 20 MPa, the P wave speed decrease
rate clearly diminishes with decreasing min-
imum strain rate. An end-member example
of this trend is observed for the experi-
ment in which the strain rate was lowest
(4 × 10−10 s−1): the P wave speed measured
along the subaxial path at 28◦ from the
compression axis remained approximately
constant during creep, and hence, the P
wave speed decrease rate was zero.

The effect of strain rate on the mechanical
behavior and the evolution of P wave speed
was also investigated by conducting strain
rate-stepping deformation experiments.

During these tests, samples were deformed under sequential constant strain rate conditions, during which
the strain rate was stepped up and down at regular strain intervals. Figure 11 shows the results of such a test
performed at Peff = 20 MPa at stepped strain rates of 10−5 s−1 and 10−7 s−1. The sample was first loaded
at 10−5 s−1 until the porosity change showed net dilatancy (denoted D’, marked by a minimum in porosity;
see Heap et al. [2009]). Immediately following this, the strain rate was stepped down by 2 orders of magni-
tude (marked by the first dashed line in Figure 11). During subsequent deformation at 10−7 s−1, the stress
relaxed by around 12 MPa, while the porosity evolution changed direction to reexhibit continued net com-
paction. When the strain rate was subsequently stepped back up to 10−5 s−1, the signals reversed, with the
stress increasing and the sample once again undergoing net dilatancy. In the subsequent steps down, stress
relaxation was systematically observed immediately after the changes in strain rate and was followed by
deformation at essentially constant stress, while the porosity kept increasing.

The overall evolution of P wave speed during the strain rate-stepping deformation experiments is quali-
tatively similar to that during the constant strain rate experiments: there is an overall decrease in P wave
speed in all orientations during inelastic deformation, with larger decreases along radial orientations than
along subaxial orientations (Figure 11). Heterogeneities in P wave speed also develop, as in the other tests
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Figure 11. Mechanical behavior and P wave speed evolution with
increasing strain during a strain rate-stepping test performed at
Peff = 20 MPa. The strain rate is 10−5 s−1 and was stepped down to
10−7 s−1 during the strain intervals marked by the dashed lines.

(e.g., Figures 4 and 7). The decrease in P
wave speed during the deformation steps
at 10−7 s−1 is less marked than during the
deformation steps at 10−5 s−1. Part of this
effect can be attributed to the stress relax-
ation that accompanies the step changes
in strain rate. However, during the last low
strain rate step shown in Figure 11, the
stress remains constant during most of the
deformation (from 1.06% to 1.14%), while
the P wave speeds in all subaxial orienta-
tions remain essentially constant. When
the strain rate is stepped up again in the
final stage, the decrease in P wave speed
in all orientations resumes.

5. Microstructure

Polished thin sections were made from
specimen pl13w, pl09w, and pl14w,
deformed at Peff = 20 MPa under both
creep and constant strain rate condi-
tions, and analyzed using both optical and
scanning electron microscopy (SEM).

Figure 12 shows a representative set of the
microstructures observed in the deformed
samples. Optical observations under
crossed polars (Figure 12a) show exten-
sive twinning of the large calcite crystals
that form the cement. These large calcite
grains also contain thin through-going
fractures. By contrast, the quartz grains
remain mostly intact throughout the sam-

ple. SEM observations (Figures 12b–12d) confirm that the large calcite crystals within the cement are highly
fractured by long and thin subaxial cracks, sometimes forming en échelon structures (Figure 12c). Several
occurrences of wing cracks were also observed (Figure 12d). Within a given calcite crystal, most cracks follow
a similar orientation, likely to be dictated by the combination of the imposed stress and the crystallographic
weakness planes (cleavage) of the crystal.

Peloids are also fractured by subaxial cracks, the morphology of which is strongly different from the intra-
granular cracks within the cement (see Figures 12e and 12f). Intrapeloidal cracks are very tortuous and
generally follow the boundaries of the micrometric crystals forming the peloids. Peloid rims generally com-
prise a higher-porosity aggregate compared with the centermost parts; in the rims, the large intrapeloid
cracks become diffuse and tend to lose their continuity.

The long, thin intragranular cracks within the cement also generally terminate at the interface between
the cement and the microporous rims of the peloids (see Figures 12b and 12c). Figure 13a provides an SEM
image showing a detailed view of the termination of such an intragranular crack at the fine grained, porous
rim of a peloid. The arrest is very sudden, and there is no visible indication of deformation within the porous
aggregate. By contrast, as shown in Figure 13b, in some areas the intrapeloid cracks and the intragranular
cracks in the cement are wide enough to cut across the porous rim of the peloids. Even in these relatively
rare cases, the crack network within the porous rim is barely observable, and most of the local deformation
seems to be distributed throughout the aggregate.

As a comparison, Figure 14 shows SEM images of sample pl14w, deformed under creep conditions up to a
similar amount of strain (around 3%; see Table 1). Despite the differences in mechanical behavior observed

BRANTUT ET AL. ©2014. The Authors. 5453



Journal of Geophysical Research: Solid Earth 10.1002/2014JB011186

Figure 12. Microstructures in sample pl13w deformed at constant strain rate (10−5 s−1) and Peff = 20 MPa. The axis of
compression is vertical in all images. (a) Micrograph under crossed polars, showing highly twinned and cracked calcite
cement, and intact quartz grains (shades of grey). (b–d) Scanning electron microscope backscattered electron (SEM-BSE)
images showing long thin cracks and en échelon wing cracks in the calcite cement. Most cracks in the cement do not
cross cut the neighboring peloids but terminate at the interface. (e–f ) SEM-BSE images showing tortuous cracks in the
peloids. The cracks become diffuse at the outer edge of the peloids, where porosity is locally higher.

in Figure 8 between samples pl13w (constant strain rate) and pl14w (creep at 3 × 10−8 s−1 up to 4.1%
strain), no obvious qualitative differences can be detected between the microstructures of these samples.
The features observed after creep deformation in Figure 14 are essentially the same as those observed after
constant strain rate deformation in Figures 12 and 13: long thin cracks are present in the calcite cement,
whereas the peloids contain a network of tortuous microcracks.

6. Discussion

The overall mechanical behavior of our Purbeck limestone under water-saturated conditions is very similar
to that reported for other porous limestones under dry conditions [e.g., Vajdova et al., 2004]: the rock is brit-
tle and dilatant at low effective pressures (here for Peff ≤ 20 MPa) and becomes ductile and compactant at
high effective pressures. Throughout deformation of the brittle regime, P wave speed measurements indi-
cate the development of crack-induced anisotropy, together with heterogeneities most likely associated
with progressive strain localization in the samples.
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Figure 13. SEM-BSE images of sample pl13w deformed at constant strain rate (10−5 s−1 and Peff = 20 MPa). The axis
of compression is vertical. Close-up view of (a) cracks originating in the calcite cement and terminating at the interface
with a peloid (appearing as the microporous aggregate at the top of the picture) and (b) cracks cross-cutting both the
calcite cement and the peloids.

Microstructural observations of the samples deformed at Peff = 20 MPa confirm that the major deforma-
tion process under this pressure condition is microcrack growth, which is consistent with the macroscopic
mechanical behavior observed in experiments performed at constant strain rate. Because of the het-
erogeneous microstructure of the rock, two types of cracks coexist: in the calcite cement, thin, straight
intragranular cracks are present, whereas in the peloids the cracks are mostly intergranular and tortuous
(following grain boundaries).

6.1. Phenomenology of Brittle Creep
The results from our creep experiments show that the macroscopic phenomenon of brittle creep, as doc-
umented in other rock types such as sandstones, granites, or basalts [Brantut et al., 2013], also occurs in
this porous limestone. When the rock samples are deformed under constant stress conditions, the defor-
mation follows a decelerating phase (commonly called primary creep), then an inflection point, and finally
an accelerating phase (tertiary creep), typical of brittle creep with progressive microcrack damage [Brantut
et al., 2013].

At Peff = 10 MPa, the features of brittle creep in Purbeck limestone are very similar to those in other porous
rocks, such as in Darley Dale sandstone [Baud and Meredith, 1997; Heap et al., 2009]. The total axial strain at
failure and the rate of decrease in P wave speed are only weakly influenced by the loading and strain rate
history (see Figure 9), which is consistent with similar observations from experiments performed on sand-
stones [Baud and Meredith, 1997; Heap et al., 2009; Brantut et al., 2014], granites [Kranz and Scholz, 1977], and
basalts [Heap et al., 2011]. In sandstones and igneous rocks, as well as in ceramics, it is generally accepted
that brittle creep is driven by microscopic subcritical crack growth within grains and along grain boundaries

Figure 14. SEM-BSE images of sample pl14w deformed under creep conditions (minimum strain rate 3 × 10−8 s−1

and Peff = 20 MPa). The axis of compression is vertical. (a) Long and thin cracks are observed in the calcite cement,
(b) whereas a network of tortuous cracks is present in the micritic peloids. Figure 14a shows an example of microscale
conjugate shear bands within a peloid.
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Figure 15. Minimum creep strain rate as a function of the applied
differential stress (Q) offset by the differential stress at D’ (QD′ ), for con-
ventional creep experiments performed at Peff = 10 MPa. Data points
for Darley Dale sandstone, from Brantut et al. [2013], are shown for
comparison.

[see Lawn, 1993; Brantut et al., 2013, and
references therein]. The phenomenon of
subcritical crack growth has also been
observed experimentally in calcite in wet
environments [e.g., Røyne et al., 2011].
Hence, subcritical crack growth in calcite
can explain the origin of time-dependent
fracture in Purbeck limestone and the
similarity between the features observed
in this limestone at Peff = 10 MPa and in
other rock types.

Brittle creep is, in general, extremely sen-
sitive to the applied stress, with changes
in differential stress of the order of a few
MPa inducing changes in strain rate of
up to several orders of magnitude [e.g.,
Brantut et al., 2013]. The stress sensitivity
of brittle creep strain rate is commonly
obtained by quantifying the minimum
strain rate achieved during creep (usually

termed “secondary creep strain rate”) as a function of the imposed stress, for a series of conventional creep
experiments. However, the theoretical basis for this approach is questionable, as the inflection point giving
minimum strain rate generally represents a dynamically determined transition state rather than a steady
state. Moreover, the comparison of brittle creep strain rates between experiments performed on different
samples is often difficult, because the natural variability between samples tend to induce large variations
in the creep strain rates [e.g., Heap et al., 2009]. As shown by Brantut et al. [2013], this difficulty can be over-
come by offsetting the stress scale by the differential stress reached when deformation becomes dominated
by dilatancy (denoted D’ and defined as the minimum in the porosity change curve; see Heap et al. [2009]).
The stress sensitivity of brittle creep in Purbeck limestone at Peff = 10 MPa is illustrated in Figure 15, which
is a plot of the minimum creep strain rate as a function of the imposed differential stress Q (offset by the
stress at D’, denoted QD′ ). Data for Darley Dale sandstone under the same conditions are also shown for
comparison. The minimum strain rate is broadly proportional to an exponential of the stress,

min{�̇�} ∝ exp
(
(Q − QD′ )∕𝜎∗)

, (1)

where 𝜎∗ is an activation stress, equal to 1.9 MPa in the fit of the limestone data shown in Figure 15. This
stress dependency is within the same range as that determined for Darley Dale sandstone at the same effec-
tive pressure, for which 𝜎∗ ranges from 1.0 to 2.2 MPa [Brantut et al., 2014]. Despite the strong differences in
mineralogy and microstructure between these two rocks, this quantitative agreement is perhaps not surpris-
ing since (1) the initial porosity of Purbeck limestone is very similar to the porosity of Darley Dale sandstone
and (2) the stress sensitivity of subcritical crack growth (or, more precisely, the sensitivity of crack growth
rate on the energy release rate at the crack tip) in calcite is close to that of quartz [Røyne et al., 2011; Darot
and Guéguen, 1986].

The stress-stepping experiments performed at Peff = 10 MPa (see Figure 6) indicate that the evolution of
strain rate during creep is influenced not only by the imposed stress but also by the amount of accumu-
lated strain. At low strains, the strain rate decreases with increasing strain, whereas past some critical strain,
the strain rate increases with further deformation (Figure 6). A similar pattern is also observed in conven-
tional (constant stress) creep tests (e.g., Figure 5), where we see that the accumulated strain exerts a strong
control on the evolution of strain rate at a given constant stress level. This strain-driven evolution is quali-
tatively similar to that observed in porous sandstones by Brantut et al. [2014], who interpreted strain as an
internal state variable in a rate- and state-dependent deformation law based on microscale stress corro-
sion cracking. Our observations on Purbeck limestone are too limited to develop such a detailed description
of rate-dependent brittle deformation. However, the qualitative macroscopic similarities between the
rate-dependent behavior of Purbeck limestone and the sandstones analyzed by Brantut et al. [2014], and the
similar origin of the rate dependency in both these rock types (subcritical crack growth) strongly suggest
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that the rate- and state-dependent brittle deformation law should also be applicable to porous limestones
in the low effective pressure regime.

In the deformation experiments (both creep and constant strain rates) performed at Peff = 20 MPa, the sam-
ples remain macroscopically brittle. The continuous decrease in P wave speed with increasing deformation,
the occurrence of dilatancy, and the microstructural observations all indicate that the dominant microscale
deformation process is crack growth. However, the behavior during creep deformation, or more generally,
with decreasing strain rates, shows some unexpected characteristics.

First, the total strain accumulated prior to failure increases dramatically with decreasing strain rate (Figure 9).
As also observed in Figure 8, this strain accumulation occurs mostly at strain rates well below the strain rate
of 10−5 s−1, which is taken as a reference for the short-term mechanical behavior. A surprising but robust
observation is that the constant stress during creep can be maintained well above the stress sustained at
constant strain rate (10−5 s−1), without any sudden acceleration in deformation, depending on the stress
level (see Figure 8a). This is in sharp contrast with the result at Q = 104 MPa and also with observations of
brittle creep in other rock types, such as sandstones, where the strain rate accelerates dramatically as soon
as the creep stress becomes equal to the stress sustained at constant strain rate [Brantut et al., 2014]. Specif-
ically, Brantut et al. [2014] have shown that the creep strain rate is proportional to an exponential of the
difference between the imposed creep stress and the stress sustained at constant strain rate. However, this
empirical law (observed in sandstones) is clearly not valid for the porous limestone studied here at
Peff = 20 MPa and Q≤ 101 MPa. The large additional deformation that can be accumulated at low strain
rate suggests that an additional deformation mechanism (other than crack growth) is activated when
deformation is slow enough.

Second, the decrease in P wave speed per unit strain decreases with decreasing strain rate (Figure 10). P
wave speed is very sensitive to microcrack density [e.g., Guéguen and Kachanov, 2011]: the decrease in P
wave speed per unit strain is thus a good proxy for the microcrack density evolution per unit strain [e.g.,
Ayling et al., 1995]. The data shown in Figure 10 indicate that, for a given increment of axial strain, the corre-
sponding increment in microcrack density tends to be smaller at lower strain rate. This observation is again
in contrast with those for sandstones [Brantut et al., 2014], which show that the rate of decrease in P wave
speed (per unit strain) is not significantly dependent on the strain rate history. This difference in behavior
between our porous limestone and the porous sandstones is consistent with the suggestion that the contri-
bution of another deformation mechanism, specific to porous limestone and different from subcritical crack
growth, becomes significant at low strain rates.

Third, the strain rate-stepping experiment indicates that the compactant versus dilatant behavior of
the limestone depends on the imposed strain rate: when the strain rate is stepped down from 10−5 s−1

to 10−7 s−1, comparatively more compaction is observed. This is clearly manifested by the switch from
dilatancy-dominated to compaction-dominated deformation just after the first downstep, in Figure 11.

6.2. Deformation Mechanisms at Low Strain Rate
In order to explain our experimental observations at Peff = 20 MPa, we therefore need to identify an inelastic
deformation mechanism that (1) is active in limestone under the deformation conditions of our experiments
(room temperature, Peff of the order of 20 MPa), (2) is compactant, and (3) allows the accommodation large
strains when strain rate decreases below ≈ 10−7 s−1.

Calcite has several crystal plasticity mechanisms active at room temperature over a range of critically
resolved shear stresses kc [Turner et al., 1954; de Bresser and Spiers, 1993]: e-twinning (kc ≈ 6 MPa), r-glide
(kc ≈ 144 MPa), and f -glide (kc ≈ 218 MPa). Twins are ubiquitously observed in the calcite cement of the
deformed samples (Figure 12), whereas they are scarce in the intact material. However, twinning in calcite is
essentially stress and grain size dependent rather than strain rate dependent [e.g., Rowe and Rutter, 1990],
and it is not clear how it could contribute to significant compaction. The critically resolved shear stresses
needed to activate r- and f -glide are higher than the applied stresses in all our experiments conducted at
Peff = 20 MPa; thus, it is unlikely that these intracrystalline slip systems are the sole origin of the observed
time-dependent effects. However, intracrystalline plastic deformation may be expected to occur at the
microcrack tips (if not in the bulk) and hence may affect how microcracks propagate and interact. If more
efficient plastic flow is allowed at crack tips due to lower crack growth rates, we would expect crack blunting,
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Table 2. Parameter Values Used to Construct the
Deformation Mechanism Map

Parameter Value

Diffusivitya, D 1 × 10−10 m2 s−1

Solubility of calciteb, C 2.19 × 10−6 m3 m−3

Aqueous film thicknessc, S 1 nm
Precipitation rated, kp 1.61 × 10−13 m s−1

Molar volume of calcite, Ω, 3.69 × 10−5 m3 mol−1

Activation stress, 𝜎∗, 1.85 MPa
Short-term peak stresse, Qpeak 90 and 120 MPa

aFrom Nakashima [1995].
bFrom Plummer and Busenberg [1982].
cFrom Renard et al. [1997].
dFrom Inskeep and Bloom [1985]; value divided by 100

to simulate the presence of impurities.
eRepresentative values obtained from tests at

constant strain rate at Peff = 10 and 20 MPa, respectively.

overall less efficient crack propagation (shorter
cracks), and less crack interaction due to plastic
shielding [Lawn, 1993]. From a qualitative point
of view, these effects can clearly contribute to the
change in behavior observed at low strain rates at
Peff = 20 MPa. Indeed, shorter cracks and fewer
crack interactions are expected to produce higher
overall strain at failure (since more cracks can be
accommodated before they interact and coalesce)
and a less dramatic decrease in P wave speed (since
crack density is proportional to the cube of crack
length). However, the microstructural complexities
of Purbeck limestone, together with the intrin-
sic complexity of the couplings between crack
growth and microplasticity, make macroscopic
quantitative predictions extremely difficult.

Another possible candidate for our extra defor-
mation mechanism is pressure solution in calcite

(see Gratier et al. [2013], for a review). At room temperature, the solubility of calcite is high (compared with
quartz or feldspar, which are the major constituents of sandstones), and Purbeck limestone contains fine
grained, high-porosity calcite aggregates in the form of peloids. In addition, pressure solution is fundamen-
tally a compactant mechanism, when pores are present, and therefore consistent with our observations.
Our microstructural observations do not show any direct evidence of pressure solution seams at grain con-
tacts, even within the microporous rims of the peloids. However, any direct evidence would likely be barely
observable considering the small strains involved and masked by the overwhelming presence of cracks.
The detection of newly created pressure solution features is also rendered difficult, if not impossible, by the
very small grain size (of the order of a few microns or less) within the peloids and the potential preexist-
ing pressure solution seams which were formed during the diagenesis of the rock. Hence, the absence of
direct microstructural evidence of pressure solution does not by itself invalidate the possibility that pressure
solution could contribute significantly to deformation at low strain rates.

Zhang and Spiers [2005] and Zhang et al. [2010] have shown that, at room temperature, wet granular cal-
cite undergoes diffusion-limited pressure solution creep at strain rates in the range 10−9 s−1 to 10−4 s−1 and
can be responsible for several percent of shortening strain, depending on the imposed stress, porosity, and
fluid pressure. Accurate predictions of creep strain rates associated with pressure solution at grain contacts
are, in general, not available, since pressure solution is strongly influenced by the local grain contact geom-
etry, impurities in the fluid and solid phases, and local stresses [e.g., Lehner, 1990]. However, we can use the
thermodynamics-based creep laws provided by Zhang et al. [2010] in order to obtain an order of magni-
tude estimate of the strain rate associated with pressure solution. The phenomenon of pressure solution
creep requires dissolution of the solid at grain contacts, diffusion of the solute along the grain boundaries,
and precipitation in the pore space, the creep strain rate being dictated by the slowest of these processes.
Under ambient temperature and water-saturated conditions, dissolution of calcite is, in general, fast enough
so that dissolution-limited pressure solution creep is rarely observed. Hence, we restrict our analysis to
diffusion- and precipitation-limited pressure solution creep. The rate equation for diffusion-limited creep
given by Zhang et al. [2010] is of the form

�̇�d = DCS(1∕d3)
[

exp

(
B𝜎eΩ

RT

)
− 1

]
fd, (2)

where D is the diffusivity of ions within the grain boundary fluid, C is the solubility of calcite in water, S is
the mean width of the fluid layer at grain boundaries, d is the mean grain diameter, 𝜎e is the effective axial
stress (equal to Q + Peff), B is a stress amplification factor at grain contacts, Ω is the molar volume of calcite, R
is the gas constant, T is the absolute temperature, and fd is a nondimensional function of the grain-packing
geometry. For precipitation-limited creep, the rate equation reads [Zhang et al., 2010]

�̇�p = (kp∕d)
[

exp
(

B𝜎eΩ
RT

)
− 1

]
fp, (3)
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where kp is the precipitation rate and fp is a nondimensional factor depending on the grain-packing geom-
etry. The precipitation rate constant kp for calcite can significantly vary depending on the presence of
impurities. In the precipitation-limited pressure solution creep regime, Zhang et al. [2010] showed that
impurities in the form of magnesium ions can decrease precipitation rates by as much as 2 orders of mag-
nitudes. In order to account for such impurities in our natural limestone, we choose a value of kp = 1.61 ×
10−11 m s−1, which is 2 orders of magnitude lower than that measured in pure calcite at 25◦C [Inskeep and
Bloom, 1985]. When the grain packing is regular, the factors B, fd, and fp can be calculated explicitly. How-
ever, the irregular nature of the microstructure of our natural limestone makes such detailed calculations
futile. Here, in the spirit of making order of magnitude estimates, we will assume that B is of the order of 1
(we neglect stress amplification at grain contacts) and estimate fd ≈ 240 and fp ≈ 20 from a simplified pack-
ing model with ≈20% porosity [Zhang et al., 2010]. Other parameter values, taken from the literature, are
reported in Table 2.

In order to compare the pressure solution creep strain rate to the brittle creep strain rate (originating from
subcritical crack growth in calcite), we need to estimate the latter by a macroscopic rheological law. Again, it
is theoretically possible to obtain such a law from first principles, by making precise assumptions about the
microcrack network geometry, subcritical crack growth rates, and upscaling techniques [e.g., Brantut et al.,
2012]. However, such procedures rely on a number of independent micromechanical parameters which are
not accessible for our limited data set. Alternatively, we can base our macroscopic brittle creep rheological
law on the semiempirical approach outlined by Brantut et al. [2014], in which the brittle creep strain rate is
expressed as

�̇� = �̇�0 exp
(
(Q − Q0)∕𝜎∗)

, (4)

where �̇�0 is a reference (constant) strain rate, Q0 is the differential stress sustained by the rock at the refer-
ence strain rate, Q is the applied differential stress, and 𝜎∗ is an activation stress. This macroscopic law is valid
throughout all phases of creep deformation[Brantut et al., 2014]: it captures the evolution of creep strain rate
with increasing deformation, since the sustainable stress Q0 evolves with deformation. The physical validity
of (4) hinges upon the requirement that the stress difference Q − Q0 must be taken at a fixed microstruc-
tural state of the samples [Brantut et al., 2014]. A consequence of equation (4) is that the minimum strain
rate achieved during creep is

min{�̇�} = �̇�0 exp
(
(Q − Qpeak)∕𝜎∗)

, (5)

where Qpeak is the peak stress measured at constant strain rate �̇�0. Equation (5) is of the same form as
equation (1), and the activation stress 𝜎∗ is therefore expected to be the same as the one estimated from
Figure 15. This is justified because (1) the stress at D’ (which we recall is a reference turning point where the
deformation becomes dominated by dilatancy) is a measure of the strength of the material at a point dur-
ing deformation where the microstructural state of all the tested samples is comparable (which validates
the use of equation (4)), (2) 𝜎∗ does not depend upon the effective confining pressure [Brantut et al., 2014],
and (3) for a given effective confining pressure, the difference between QD′ and Qpeak is generally constant
[Brantut et al., 2013]. This last point was validated for Purbeck limestone using our data at Peff = 10 MPa. The
minimum strain rate during brittle creep can then be computed by using �̇�0 = 10−5 s−1 and representative
values of Qpeak measured at this constant strain rate (reported in Table 2).

Using equations (2), (3), and (5) together with the parameter values reported in Table 2, we can construct a
deformation mechanism map. Here, for simplicity, we assume that the strain rates for the two mechanisms
can be superimposed, i.e., we neglect any potential coupling between crack growth and pressure solution
rates. Such coupling will be discussed later. Figure 16 shows contour maps of minimum strain rate as a func-
tion of differential stress and average grain size for Peff = 10 MPa (left) and Peff = 20 MPa (right). These two
diagrams are qualitatively similar; the strong quantitative difference is that the stress scale is shifted toward
high values at higher Peff. A feature well illustrated by the maps is that the stress sensitivity of the defor-
mation rate is much smaller in the pressure solution-dominated regime (for which it is given by the factor
RT∕(BΩ)) than in the subcritical crack growth-dominated regime (in which it is given by 𝜎∗). The grain size
observed within the porous rims of the peloids is of the order of 1 μm. The deformation mechanism map
shows that, in these rim zones, the pressure solution creep rate is expected to be much faster than the stress
corrosion creep rate. By contrast, the grain size of the calcite cement is much larger; of the order of 50 to
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Figure 16. Deformation mechanism maps for Purbeck limestone at (left) Peff = 10 MPa and (right) Peff = 20 MPa.
Only two mechanisms are considered: stress corrosion creep (SCC), modeled using equation (5), and pressure solution
creep (PSC), modeled with equation (2) (diffusion limited, “diff.”) and (3) (precipitation limited, “prec.”). Strain rate from
the two mechanisms are assumed to be additive. The dashed red line marks the boundaries of domains in which each
mechanism is dominant.

100 μm. Hence, stress corrosion crack growth is likely to be the dominant deformation mechanism in the
cement in the high-stress regime. According to the deformation mechanism maps, for a grain size of 100 μm
(which would be appropriate for the cement), the switch in mechanism from stress corrosion creep to pres-
sure solution creep (limited by diffusion for this grain size) would occur at a strain rate of slightly less than
10−9 s−1 and a differential stress of around 70 MPa at Peff = 10 MPa and between 10−8 and 10−9 s−1 and a
differential stress of around 100 MPa at Peff = 20 MPa. These threshold strain rates for the switch in dom-
inant deformation mechanism are consistent with our experimental observations (Figures 9 and 10). Note
that the stress sensitivity of pressure solution creep would increase with increasing B, which typically ranges
from 1 to 3; the corresponding characteristic stress (given by RT∕(BΩ)) ranges from 67.6 to 22.5 MPa, respec-
tively. Choosing, say, B = 3 would push the transition in mechanism to higher strain rates by around 1 order
of magnitude.

Coupling between crack growth and pressure solution also introduces more complexity in the determina-
tion of the dominant deformation mechanism. As shown by Gratier [2011], fracturing generally increases
pressure solution rates by locally reducing grain size and facilitating fluid diffusion. Brittle deformation
tends to become more cataclastic and distributed as the brittle-ductile transition is approached [e.g., Wong
and Baud, 2012], and hence, the coupling between microcracking and pressure solution is expected to
become stronger near this transition. Consequently, deformation at Peff = 20 MPa is more prone to induc-
ing enhanced pressure solution creep compared with deformation at lower effective pressures; which is
again consistent with our observations. Quantitative predictions of the coupled effects of crack growth and
pressure solution on macroscopic deformation rates are currently unavailable. In absence of better coupled
models, the simple deformation mechanism map shown in Figure 16 should therefore be considered as a
first-order guide: It is likely that the difference in strain rate at the transition in mechanism (from subcritical
crack growth to pressure solution-dominated creep) at Peff = 10 MPa and at Peff = 20 MPa would be more
marked than currently predicted by our simple approach if coupled effects were accounted for.

The very heterogenous microstructure of Purbeck limestone (and of grainstones in general) is very likely
to manifest itself through spatially heterogeneous deformation mechanisms, with subcritical crack growth
occurring in the cement, at the same time as pressure solution or ductile granular flow occurs within the
microporous peloids. In that context, even a modest change in stress conditions can change the relative
amount of deformation and deformation rate accommodated in the cement as against the peloids. Hence,
the change in behavior observed at low strain rates at Peff = 20 MPa might correspond to a temporary
switch in the partitioning of strain between the brittle cement and the ductile peloids. In that regard,
the interconnection of the peloids around the cement is crucial for the development of large strains. Of
course, the strain compatibility conditions at the interface between cement and peloids, and the lack of
active intracrystalline plastic deformation mechanisms in the coarse grained cement, make crack growth
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in the cement inevitable. Thus, the ductile, compactant deformation behavior at low strain rate is expected
to be only temporary. This is consistent with the results of the creep experiments performed at the low-
est stresses (Figure 8), during which deformation accelerates after a sustained period of stable creep: the
high strain rate reached during tertiary creep would eventually bring the deformation back into the crack
growth-dominated regime.

6.3. Implications for the Deformation of the Crust
Our experimental results indicate that, under shallow crustal conditions, limestone deformation is controlled
by two possible rate-dependent mechanisms: subcritical crack growth and pressure solution. While the for-
mer mechanism is fundamentally dilatant and leads to macroscopic failure, the latter is compactant and
leads to stable creep. The switch in mechanism is controlled by the applied stress and/or strain rate.

This has some important implications for the architecture of faults cutting carbonate sequences [e.g., Tesei
et al., 2013] and more generally for the deformation of the crust around fault zones throughout the seis-
mic cycle. During the post seismic phase, faults generally undergo decelerating afterslip [e.g., Scholz, 2002],
and the whole fault zone relaxes. In a fault hosted in porous limestone, we would expect that the defor-
mation immediately following an earthquake would be dominated by subcritical crack growth, whereas
pressure solution creep would likely dominate the later stages. This in turn has implications for fluid flow in
and around the fault zone [Gratier, 2011]: the dilatant cracking induced by the earthquake and during the
subsequent crack growth-driven creep stage will tend to increase the permeability of the fault rocks, accel-
erate fluid flow, and reequilibrate pore pressure. By contrast, the ensuing stage of pressure solution-driven
creep will tend to seal the fault during deformation and isolate the pore space of the fault rocks from the
surrounding country rocks [Gratier, 2011].

The occurrence of two competing deformation mechanisms in porous limestone also impacts our ability
to make predictions of reservoir deformation during oil production of fluid (e.g., CO2) injection. A practi-
cal implication of our results is that a porous limestone undergoing creep (for instance due to a pore fluid
withdrawal in an oil field or near a borehole) can either deform in a stable manner (if pressure solution is
the dominant mechanism) or accelerate until failure (if subcritical cracking is the dominant mechanism); the
long-term stability of the rock depends crucially on the local stress level. One critical difference between the
two deformation mechanisms is that subcritical crack growth alone is not expected to allow large strains
(only of the order of a few percent in the brittle regime explored in our experiments), whereas pressure
solution can accommodate much larger strains (up to several tens of percent) [Gratier et al., 2013]. The iden-
tification and monitoring of accelerating or decelerating trends in the deformation rates, as well as the
estimation of total accumulated strain, may help to determine the dominant deformation mechanism and
hence improve the predictability of time-dependent rock failure in reservoirs.

7. Conclusions

We performed triaxial deformation experiments on a porous limestone under water-saturated conditions.
At Peff = 10 MPa, the samples are brittle and the time-dependent brittle behavior is very similar to that
of porous sandstones. The phenomenon of brittle creep occurs and is characterized by the same features
as in other rock types: a primary, decelerating creep stage, followed by an inflection and a tertiary (accel-
erating) creep stage; concomitantly, P wave speeds measured in all orientations throughout the sample
decrease continuously, indicating an increase in crack density. At Peff = 20 MPa, the rock is still brittle, and
brittle creep also occurs. However, the details of the time-dependent, brittle creep behavior are different
from those observed at Peff = 10 MPa. First, the total deformation accumulated before failure during brittle
creep dramatically increases with decreasing creep strain rate. Second, the decrease in P wave speed with
increasing deformation becomes less marked when strain rate is lower. Third, additional strain rate-stepping
experiments indicate that the deformation is more compactant at low strain rates. Taken together, these
observations suggest that an additional deformation mechanism becomes active at low strain rates.

The observed time-dependent behavior at Peff = 20 MPa can be explained by a combination of mechanisms:
enhanced plastic flow at microcrack tips and pressure solution within the peloids.

The intricate microstructure, together with the complexity of the deformation mechanisms of calcite,
makes microphysical modeling of the rate-dependent deformation processes in porous limestone very
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challenging. However, the work presented here, for example, in the form of the deformation mechanism
maps, does provide an initial framework for determining where future efforts should be concentrated.
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