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Abstract—In this paper, we introduce the general concept of
coded power control (CPC) in a particular setting of the inter-
ference channel. Roughly, the idea of CPC consists in embedding
information (about the channel state) into the transmit power lev-
els themselves: in this new framework, provided the power levels
of a given transmitter can be observed by other transmitters, a
sequence of power levels of the former can therefore be used to
coordinate the latter. To assess the limiting performance of CPC
(and therefore the potential performance brought by this new
approach), we derive, as a first step towards many extensions of
the present work, a general result which not only concerns power
control (PC) but also any scenario involving two decision-makers
(DMs) which communicate through their actions and have the
following information and decision structures. We assume that
the DMs want to maximize the average of an arbitrarily chosen
instantaneous payoff function which depends on the DMs’ actions
and the state realization. DM 1 is assumed to know the state non-
causally (e.g., the channel state) which affects the common payoff
while DM 2 has only a strictly causal knowledge of it. DM 1 can
only use its own actions (e.g., power levels) to inform DM 2
about its best action in terms of payoff. Importantly, DM 2 can
only monitor the actions of DM 1 imperfectly and DM 2 does
not need to be observed by DM 1. The latter assumption leads
us to exploiting Shannon-theoretic tools in order to generalize
an existing theorem which provides the information constraint
under which the average payoff is maximized. The derived result
is then exploited to fully characterize the performance of good
CPC policies for a given instance of the interference channel.

I. INTRODUCTION

Consider two decision-makers (DMs) and that each of

them has to select actions or take decisions repeatedly to

reach a common objective namely, to maximize an average

payoff function. Furthermore, assume that there might be

an interest for them in exchanging information e.g., about

the future events which can affect their payoff but that no

dedicated communication channel is available for this purpose.

Therefore, the only way to communicate for a DM is to use

his own actions. Although the idea of communicating through

actions seems to be quite natural and is in fact used more or

less implicitly in real life scenarios e.g., in economics (see

[1]), it appears that, apart from a few exceptions focused on

specific problems of control (see e.g., [2]), it has obviously

not penetrated yet engineering problems and definitely not

wireless communications. It turns out that important wireless

problems such as power control (PC) or radio resource allo-

cation can draw much benefits from being revisited from the

new perspective of communication through actions. Because

of its importance and ability to easily illustrate the proposed

approach, the problem of PC in interference networks has

been selected for the application of the main and general

result derived in this paper. Note that the latter concerns

any decision-making problem which has the same structure

(see Sec. II) and generalizes [3] (and [4] which exploits the

same theorem); in the (game-theoretical) setting of [3], DM 1

perfectly monitors the actions of DM 2 and conversely.

In the context of PC, the DMs are transmitters (Txs)

and the system state is typically given by the state of the

communication channel between the Txs and receivers (Rxs);

we will use the term DM (resp. Tx) when the general case

(resp. the specific case of PC) is concerned. Quite often, each

Tx possesses a partial knowledge of the channel state and,

in general, there is an incentive for the Txs to exchange

the corresponding knowledge between them. Coded power

control1 (CPC) assumes that this knowledge is transferred

from one Tx to another (or others) by encoding the information

of the former into a sequence of power levels which are

observed by the latter. CPC is, in particular, relevant in

cognitive radio (CR) settings. In typical CR scenarios, the

primary Tx is assumed to be passive and the secondary Tx

adapts to what it observes. But, it might be of interest to

design primary Txs which coordinate in an active manner the

usage of radio resources, which is exactly what CPC allows;

one of the salient features of CPC is that interference can

be managed directly in the radio-frequency domain and does

not require baseband detection or decoding, which is very

useful in heterogeneous networks. Another body of works

which can be mentioned is given by works on distributed

PC and especially those on best response dynamics (BRD)

algorithms which include the original iterative water-filling

algorithm [6]. Existing BRD algorithms implementations for

PC (see e.g., [7][8][9]) typically assume SINR (signal-to-

noise plus interference ratio) feedback and individual channel

state information (CSI) and do not exploit the key idea of

communicating through the power levels. Encoding power

levels allows one to construct PC policies possessing at least

three salient features which are generally not available for

BRD-based PC: there is no convergence problem and this

whatever the payoff functions; efficient solutions (e.g., in terms

of sum-payoff) can be obtained; both the cases of discrete

and continuous power levels can be easily treated. Since we

focus on optimal PC policies and make the choice of an

asymmetric information structure whereas BRD algorithms

rely on a symmetric one, no explicit comparison with BRD

algorithms is conducted but CPC can be applied to symmetric

scenarios as well.

1The first document to disclose this idea is [5].
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II. PROBLEM STATEMENT

Consider two DMs which have to select actions repeatedly

(over T stages) and want to coordinate through their actions.

Let Xj , |Xj | < ∞, the action alphabet of DM j ∈ {1, 2},

and X0, |X0| < ∞, the random state alphabet. The states are

assumed to be i.i.d. and generated from a random variable X0

whose realizations are in X0 and distribution is denoted by ρ.

Note that the finiteness assumption is not only realistic (e.g.,

power levels are discrete in modern cellular systems) but also

allows the continuous case to be treated by using classical

arguments [10]. The strategies of DM 1 and 2 are sequences

of mappings, (σi, τi)i≥1, which are respectively defined by:

{
σi : X T

0 ×X i−1
1 → X1

τi : X i−1
0 × Yi−1 ×X i−1

2 → X2
(1)

where T is the total number of stages, i ∈ {1, ..., T} is the

stage index, and Y , |Y| < ∞, is the observation alphabet

of DM 2. The definition of the strategy for DM 1 indicates

that we assume a non-causal knowledge of the state. The

most typical situation in PC is to assume that two phases

are available (training phase, action phase) and one state is

known in advance to adjust the power level. This special case

can be obtained by setting T = 2 that is, i ∈ {1, 2}. There are

many reasons why we consider here that T might be greater

than two. We will only provide three of them, which better

explains how the non-causality assumption may be understood.

First, the result derived in Sec. III can be used for a large

variety of settings and not only PC. Second, the proposed

approach can be applied to the case where the state is not

i.i.d. (e.g., to the B−stage block i.i.d. case, B ≥ 1). Indeed,

there exist wireless communication standards which assume

the channel to be constant over several time-slots and the

proposed approach suggests that gains can be obtained by

varying the power level from time-slot to time-slot even if the

channel is constant. Third, it becomes more and more common

to exploit the forecasted trajectory of a mobile user to optimize

the system [11], which makes our approach relevant when the

channel state is interpreted as the path loss. Concerning the

chosen definition for the strategy of DM 2, several comments

are in order. First, note that DM 2 is not assumed to monitor

actions of DM 1 perfectly. Rather, they are monitored through

an observation channel which is assumed to be discrete,

memoryless, and to verify P (y|x0, x1, x2) = Γ(y|x1), where

y ∈ Y is a realization of the channel output associated with the

input (x0, x1, x2). Second, note that, the strategy of DM 2 is

defined such that it can choose an action at every stage and not

only at the end of a block or sequence of stages as it would be

the case for a classical block decoder. Therefore, contrarily to

[3], DM 1 does not need to observe the actions of DM 2 and

DM 2 has only access to imperfect observations of the actions

chosen by DM 1. Interestingly, we will see that the fact that

DM 1 does not observe DM 2 induces no performance loss in

terms of payoff.

The instantaneous or stage payoff function for the DMs

is denoted by w(x0, x1, x2). Since the state is random, we

will consider as general case the problem of reaching a

certain performance level in terms of expected payoff E[w] =∑
(x0,x1,x2)

P (x0, x1, x2)w(x0, x1, x2). Roughly, the task of

DM 1 is to maximize the expected payoff by finding the best

tradeoff between reaching a good payoff for the current stage

and revealing enough information about the future realizations

of the state to coordinate for the next stages. The ability for

two DMs to coordinate their actions i.e., to reach a certain

value for the expected payoff can be translated in terms of

joint distribution over X0 × X1 × X2, which leads us to the

notion of implementable distribution [3].

Definition 1 (Implementability). The distribution

Q(x0, x1, x2) is implementable if there exists a pair of

strategies (σi, τi)i≥1 such that as t → ∞ we have for all

(x0, x1, x2),

1

t

t∑

i=1

∑

y∈Y

PX0,i,X1,i,X2,i,Yi
(x0, x1, x2, y) → Q(x0, x1, x2)

(2)

where PX0,i,X1,i,X2,i,Yi
is the joint distribution induced by

(σi, τi)i≥1 at stage i.

Importantly, note that the set of feasible

payoffs which are reachable asymptotically

limT→∞
1
T

∑
i w(x0(i), x1(i), x2(i)) is a linear image

of the set of implementable distributions under the

expectation operator. Therefore, a certain value, say

w, is reachable asymptotically if and only if there

exists an implementable distribution Q such that

w = EQ[w]. The goal of the next section is precisely

to characterize the set of reachable expected payoffs

EQ[w] =
∑

(x0,x2,x2,y)
Q(x0, x1, x2)Γ(y|x1)w(x0, x1, x2),

which thus amounts to characterizing the set of implementable

distributions over X0 ×X1 ×X2.

III. MAIN ANALYTICAL RESULT

Notation: ∆(A) will stand for the set of distributions over

the generic discrete set A. Using this notation, the main

analytical result of this paper states as follows.

Theorem 1. Let Q ∈ ∆(X0 × X1 × X2) with∑
(x1,x2)

Q(x0, x1, x2) = ρ(x0). The distribution Q is imple-

mentable if and only if there exists Q ∈ ∆(X0×X1×X2×Y)
which verifies the following information constraint:

IQ(X0;X2) ≤ IQ(X1;Y |X0, X2) (3)

where the arguments of the mutual information IQ(.) are

defined from Q and Q(x0, x1, x2, y) = Q(x0, x1, x2)Γ(y|x1).

A. Proof of Theorem 1

Converse proof: We first start with providing a lemma

which is used at the end of the converse and concludes the

section.

Lemma 1. The function Φ : Q 7→ IQ(X0;X2) −
IQ(X1;Y |X0, X2) is convex over the set of distributions Q ∈
∆(X0×X1×X2×Y) that verify

∑
(x1,x2,y)

Q(x0, x1, x2, y) =
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ρ(x0) and Q(x0, x1, x2, y) = Γ(y|x1)P (x0, x1, x2), with ρ

and Γ fixed.

Proof of Lemma 1: The function Φ can be rewritten

as Φ(Q) = HQ(X0)−HQ(Y,X0|X2) +HQ(Y |X0, X2, X1).
The first term HQ(X0) = −

∑
x0
ρ(x0) log ρ(x0) is a constant

w.r.t. Q. The third term is linear w.r.t. Q since, with Γ fixed,

HQ(Y |X0, X2, X1) =

−
∑

x0,x1,x2,y

Q(x0, x1, x2, y) logP (y|x0, x1, x2)

= −
∑

x0,x1,x2,y

Q(x0, x1, x2, y) log Γ(y|x1) (4)

It is therefore sufficient to prove that HQ(Y,X0|X2) is con-

cave. Let λ1 ∈ [0, 1], λ2 = 1 − λ1, (Q1, Q2) ∈ ∆2(X0 ×
X1 ×X2 ×Y) and Q = λ1Q1 + λ2Q2. By using the standard

notation A0 = ∅, An = (A1, ..., An), we have that:

HQ(Y,X0|X2) = −
∑

x0,x2,y

(∑

x1,i

λiQi(x0, x1, x2, y)

)

log

[∑
x1,i

λiQi(x0, x1, x2, y)
∑

i λiP
Qi

X2
(x2)

]
(5)

= −
∑

x0,x2,y

(∑

i

λi
∑

x1

Qi(x0, x1, x2, y)

)

log

[∑
i λi

∑
x1
Qi(x0, x1, x2, y)∑

i λiP
Qi

X2
(x2)

]
(6)

≥ −
∑

i

λi
∑

x0,x2,y

(∑

x1

Qi(x0, x1, x2, y)

)

log

[
λi

∑
x1
Qi(x0, x1, x2, y)

λiP
Qi

X2
(x2)

]
(7)

= −
∑

i

λi
∑

x0,x2,y

(∑

x1

Qi(x0, x1, x2, y)

)

log

[∑
x1
Qi(x0, x1, x2, y)

P
Qi

X2
(x2)

]
(8)

= λ1HQ1(Y,X0|X2) + λ2HQ2(Y,X0|X2) (9)

where the inequality comes from the log sum inequality [10].

Now we want to prove that if Q is implementable,

then Q has to verify the information constraint. Assum-

ing Q is implementable means that there exists (σi, τi)i≥1

such that the empirical distribution P
(t)
X0,X1,X2,Y

(.) =
1
t

∑t
i=1 PX0,i,X1,i,X2,i,Yi

(.) can be made arbitrarily close to

Q; this argument is used at the end of the proof. We have:

t∑

i=1

IPX0,i,X1,i,X2,i,Yi
(X0;X2) =

t∑

i=1

I(X0,i;X2,i) (10)

(a)
=H(Xt

0)−
t∑

i=1

H(X0,i|X2,i) (11)

=H(Xt
0, Y

t, Xt
2)−H(Y t, Xt

2|X
t
0)−

t∑

i=1

H(X0,i|X2,i)

(12)

≤H(Xt
0, Y

t, Xt
2)−H(Y t|Xt

0)−
t∑

i=1

H(X0,i|X2,i) (13)

≤H(Xt
0, Y

t, Xt
2)−H(Y t|Xt

0, X
t
1, X

t
2)−

t∑

i=1

H(X0,i|X2,i)

(14)

(b)
=H(Xt

0, Y
t, Xt

2)−
t∑

i=1

H(X0,i|X2,i)

−
t∑

i=1

H(Yi|X0,i, X1,i, X2,i) (15)

(c)

≤
t∑

i=1

H(X0,i, Yi, X2,i|X2,i)−H(X0,i|X2,i)

−H(Yi|X1,i, X0,i, X2,i) (16)

=
t∑

i=1

H(X0,i, Yi|X2,i)−H(X0,i|X2,i)

−H(Yi|X1,i, X0,i, X2,i) (17)

=
t∑

i=1

I(X1,i;Yi|X0,i, X2,i) (18)

=
t∑

i=1

IPX0,i,X1,i,X2,i,Yi
(X1;Y |X0, X2) (19)

where: (a) comes from the fact that (X0,i)i is i.i.d.

and the chain rule for entropy; (b) holds because the ob-

servation channel from DM 1 to DM 2 is assumed to

be discrete and memoryless namely, P (yt|xt0, x
t
1, x

t
2) =∏t

i=1 p(yi|x0,i, x1,i, x2,i); (c) holds by the chain rule and

because X2,i is a deterministic function of the past: X2,i =
τi (X0,1, Y1, X2,1, . . . , X0,i−1, Yi−1, X2,i−1). Now, since Φ is

convex (by Lemma 1), we know that

I
P

(t)
X0,X1,X2,Y

(X1;Y |X0, X2)− I
P

(t)
X0,X1,X2,Y

(X0;X2) ≥

1

t

t∑

i=1

IPX0,i,X1,i,X2,i,Yi
(X1;Y |X0, X2)

− IPX0,i,X1,i,X2,i,Yi
(X0;X2) (20)

The converse follows by observing that the first term

of the above inequality can be made arbitrarily close to

IQ(X1;Y |X0, X2) − IQ(X0;X2) and the second term has

been proven to be non-negative.

Implementability (sketch): The goal here is to prove that

if the information constraint is verified, then an implementable

pair of strategies (σi, τi)i≥1 can be found. Therefore, in
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contrast with the converse, finding a particular code such as

a block code with long codewords is sufficient, which allows

one to reuse the standard machinery for the transmission of

distorted sources. The methodology is therefore to assume

T = nB is large where n is the codeword length and B

the number of blocks, and exploit the block Markov coding

idea as a particular case of general strategy. By denoting b

as the block index, the strategy of DM 2 is taken to be

the mapping ψ : (xn0 (b), y
n(b), xn2 (b)) 7→ xn2 (b + 1). Since

DM 1 knows the state for the next block whose index is

b + 1 (and also xn0 (b)), the strategy of DM 1 is taken to be

the mapping φ : (xn0 (b + 1), xn0 (b), x̂
n
2 (b)) 7→ xn1 (b) where

x̂n2 (b) = ψ(xn0 (b−1), xn1 (b−1), x̂n2 (b−1)). At last, for block

b = 0, DM 2 chooses an arbitrary codeword which is known

to DM 1s. Under this setting, it can be shown that if Q meets

the information constraint then the empirical distribution Q(T )

which is induced by a separate source channel coding i.e.,

Q(T )(v) =
1

nB

[
N
(
v | xn0 (0), x

n
1 (0), x

n
2 (0), y

n(0)
)

+
B−1∑

b=1

N
(
v | xn0 (b), x

n
1 (b), x

n
2 (b), y

n(b)
)]

converges to Q, where N (v|vn) is a notation for counting the

occurrences of v in vn, v = (x0, x1, x2, y) here.

B. Comments on Theorem 1

Theorem 1 can be interpreted as follows. DM 2’s actions

(represented by X2) correspond to a joint source-channel

decoding operation with distortion on the information source

(which is represented by X0). To be reachable, the distortion

rate has to be less than the transmission rate allowed by the

channel whose input and output are respectively represented

by X1 and Y . Therefore, the pair S = (X0, X2) seems to

play the same role as the side information in channels with

state. Indeed, the implementability proof shows that DM 1 uses

in particular (xn0 (b), x̂
n
2 (b)) while DM 2 uses (xn0 (b), x

n
2 (b)).

Asymptotically, the encoder (DM 1) and decoder (DM 2) have

the same side information; this observation is one of the key

elements of the implementability proof. It explains why the

fact that DM 1 does not need to observe DM 2 does not induce

any performance loss. Furthermore, note that xn0 (b+1), which

plays the role of the message to be encoded, is independent

of the side information. Classical coding schemes (such as

block Markov coding) can thus be re-exploited. However, the

above arguments fails for the converse proof which has to

deal with arbitrary coding schemes or strategies. It can no

longer be assumed that the side information be independent

of the information source vector. This is one of the reasons

why the converse proof has to be rethought. Another reason

is that classical results (such as Fano’s inequality) which rely

on block decoding are not exploitable anymore since DM 2

has to be able to act (to decode) at any stage or time instance.

As another type of comments on Theorem 1, it can be

noted that the information constraint has a very attractive

property: the problem of maximizing the expected payoff takes

a particularly simple form. Indeed, by defining a one-to-one

mapping between the quadruplets (x0, x1, x2, y) and the finite

set {1, 2, ..., L}, L = |X0 × X1 × X2 × Y|, the optimization

problem of interest can be described as follows:

minimize −Eq[w] = −
L∑

`=1

q`w`

subject to Iq(X0;X2)− Iq(X1;Y |X0, X2) ≤ 0

−q` ≤ 0

−1 +
L∑

`=1

q` = 0

∀x0,
∑

`∈LX0 (x0)
q` − ρ(x0) = 0

∀(x1, y),

∑
`∈LX1,Y (x1,y) q`
∑

`∈LX1
(x1) q`

− Γ(y|x1) = 0

(21)

where q` is the probability of a given quadruplet

(x0, x1, x2, y), w` is the value of the corresponding payoff,

the vector q = (q1, ..., qL) represents the distribution Q, and

the sets of indices LX0
(x0), LX1,Y (x1, y), LX1

(x1) merely

translate the marginalization conditions. By Lemma 1, it

follows that the above optimization problem is convex, which

makes easy the determination of the information-constrained

maximum of the expected payoff. A simple and useful upper

bound for this maximum is Eρ max(x1,x2) w(x0, x1, x2). This

bound will be referred to as the costless communication case

in Sec. IV. Indeed, this bound can be attained in the ideal

scenario where: given the knowledge of the coming state x0,

DM 1 computes an optimal solution for the action pair for the

coming stage (x∗1, x
∗
2) ∈ argmax(x1,x2) w(x0, x1, x2) and can

inform DM 2 of x∗2 without any cost. If the state is stationary

for say S stages and X1 = X2, a simple strategy for DM 1 can

be as follows: x1(1) = x∗2, x1(2) = x∗1, ..., x1(S) = x∗1. This

allows DM 2 to choose an optimal action for i ∈ {2, ..., S}.

It can be shown that considering the S−stage block i.i.d. case

amounts to multiplying the left term of (3) by 1
S

, which makes

the information constraint arbitrarily mild as S grows large.

IV. APPLICATION TO POWER CONTROL OVER

INTERFERENCE CHANNELS

The main goal is to assess the performance of simple

CPC policies and those of good policies; the performance

of the latter is obtained by exploiting Theorem 1. A flat-

fading interference channel (IC) with two Tx-Rx pairs is

considered. Transmissions are assumed to be time-slotted and

synchronized. For j ∈ {1, 2} and “k = −j” (−j stands for

the Tx other than j), the SINR at receiver j at a given stage

writes as SINRj =
gjjxj

N+gkjxk
where xj ∈ X IC

j = {0, Pmax}
is the power level chosen by Tx j, gjk represents the channel

gain of link jk, and N the noise variance. We assume that:

gjk ∈ {gmin, gmax} is i.i.d. and Bernouilli distributed gjk ∼
B(pjk) with P (gjk = gmin) = pjk. We define SNR[dB] =
10 log10

Pmax

N
and set gmin = 0.1, gmax = 1.9, N = 1.

The low and high interference regimes (LIR, HIR) are respec-

tively defined by (p11, p12, p21, p22) = (0.5, 0.9, 0.9, 0.5) and
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(p11, p12, p21, p22) = (0.5, 0.1, 0.1, 0.5). The assumed pay-

off is wIC(x0, x1, x2) =
∑2

j=1 f(SINRj(x0, x1, x2)) where

f(a) = log(1+a) unless stated otherwise. At last, we assume

that Y ≡ X1. We consider four CPC policies :

I the full power control (FPC) policy xj = Pmax for every

stage. FPC requires no CSI at all;

I the semi-coordinated PC (SPC) policy x2 = Pmax, x
†
1 ∈

argmaxx1 w
IC(x0, x1, Pmax). SPC requires the knowledge of

the current state realization at Tx1;

I the optimal CPC policy (OCPC) whose performance is

obtained, in particular, when the problem has the information

structure of Theorem 1;

I the costless communication case (see Sec. III-B) for which

the maximum of wIC can be reached at any stage. Fig. 1 and 2

depict the relative gain in % in terms of average payoff versus

SNR[dB] which is obtained by FPC, SPC, OCPC, and costless

case. Compared to FPC, gains are very significant whatever the

interference regime and provided the SNR has realistic values.

Compared to SPC, the gain is of course less impressive since

SPC is precisely a coordinated PC scheme but, in the HIR and

when the communication cost is negligible, gains as high as

25% can be obtained with f(a) = log(1 + a) and 45% with

f(a) = a.
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Fig. 1. Relative gain in terms of average payoff (“OCPC/FPC− 1” in [%])
vs SNR[dB] obtained with CPC (with and without communication cost) when
the reference power control policy is to transmit at full power (FPC).

V. CONCLUDING REMARKS

Although some assumptions made in this paper might be

too restrictive in some application scenarios, it is essential to

understand that the used methodology to derive the optimal

performance is general. It can be applied to analyze the per-

formance of coded power allocation, coded interference align-

ment, etc, with other information structures and by considering

N ≥ 2 individual payoffs instead of a common one (e.g.,

in a game-theoretic setting [3]). The methodology to assess

the performance of good coded policies consists in deriving

the right information constraint(s) by building the proof on

Shannon theory for the problem of multi-source coding with

distortion over multi-user channels wide side information and

then to use this constraint to find an information-constrained

) * + ) , + , * + * , - + - , . + . , / ++,* +* ,- +- ,. +. ,/ +/ ,, +
0 1 2 3 4 5 6
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Fig. 2. The difference with Fig. 1 is that the reference power control policy
is the SPC policy. Additionally, the top curve is obtained with f(a) = a.

maximum of the payoff (common payoff case) or the set

of Nash equilibrium points which are compatible with the

constraint (non-cooperative game case). Note that assuming

the state(s) to be i.i.d. from stage to stage leads in fact to

the worst-case scenario for the information constraint. On the

other hand, the costless communication case provides an upper

bound for the expected payoff. As a key observation of this

paper, the communication structure of a multi-person decision-

making problem corresponds in fact to a multiuser channel.

Therefore, multi-terminal Shannon theory is not only relevant

for pure communication problems but also for any multi-

person decision-making problem. The above observation also

opens new challenges for Shannon-theorists since decision-

making problems define new communication channels.
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