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parameters.Various phases of liquid crystals, continua with voids, liquids with bub-
bles, continua with spin (two- or three-dimensional), and Cosserat continua are but
examples of structured media (see [10,1,9]). TheRn-valued order parameters are
in many cases physical quantities that do not have an invariant geometric meaning.
They are coordinates on a differentiable manifold (seeloc. cit.). Thus, in order to
apply the method of continuum mechanics to such structured continua, the basic
notions of continuum mechanics should be generalized to manifold geometry (see
[2,3] for such attempts).

In addition to the extension to structured continua, the methods of contin-
uum mechanics have been applied in recent years byGurtin (e.g., [4]) to two-
dimensional manifolds representing the interfaces in multiphase bodies. Again,
these interfaces are generalized geometrical objects – shapes.

This paper considers the generalization of Cauchy’s theorem for fluxes to dif-
ferentiable manifolds. Such a generalization seems to be a natural step towards a
better understanding of the foundations of continuum mechanics of simple bodies,
and an essential step needed for the application of the continuum mechanics method
to generalized media such as described above.

Cauchy’s theorem for fluxes considers a balance equation of a propertyP in
the form

P(R) =
∫
R

bR dv +
∫
∂R

tR da =
∫
R

pR dv,

whereR is a region inR3, bR is interpreted as the rate at which the density of the
property changes,tR is interpreted as the density with respect to the surface area at
which the property leaves the region at the boundary, andpR is interpreted as the
density of the sources producingP . Specifically, the theory is concerned with the
way the fieldsbR, tR andpR depend on the the subregionR. The basic assumption
made, Cauchy’s postulate, is that the fieldsbR, pR do not depend on the regionR
and that the fieldtR depends onR only through the normal to the boundary. This
is usually written astR = t (n). In addition, one assumes regularity of the density
fields and regularity of the dependence oftR onn. The resulting Cauchy’s theorem
states that with these assumptions, there is a unique vector fieldv such that

t = v · n.

Thus, the balance of the scalar property together with Cauchy’s postulate generate a
vector field. This is how, for example, a balance of heat will result in the existence of
the heat flux vector field. Note that we consider here only scalar valued quantities.

Over the years, numerous attempts have been made to make the Cauchy theory
rigorous and to generalize the framework in which it applies. Following Hamel,
Noll [11], (see [16] pp. 156–172) has replaced the assumption for the dependence
of tR on the normal by assumptions of boundedness of the interaction forces –
the Hamel-Noll theorem.Gurtin & Williams [6] gave an axiomatic framework
to the Cauchy theory andGurtin & Martins [5] relaxed some of the regularity
assumptions for the fields.Marsden & Hughes [9] proved the theorem for 3-
dimensional metric manifolds.Segev [14] gives a general formulation on manifolds
based on a global weak setting for the balance law andSegev & de Botton [15]
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give, in the geometrical setting ofR3, a detailed analysis of the weak framework
where the fluxes (stresses in that paper) may be as irregular as measures. In these
weak formulations, fluxes appear as measures representing linear functionals and
the geometric construction of Cauchy’s theorem, in which a balance of the property
is applied to a tetrahedron, is avoided. In another approach to the proof,Fosdick
& Virga [8] prove the theorem using a variational approach.

Here, Cauchy’s theory is formulated in the general setting of anm-dimensional
orientable manifoldS without any further geometrical structure. The analytic side
of the theory is traditional and the fields are assumed to be smooth. The formulation
and proof are analogous to the Cauchy construction and the classical tetrahedron
is replaced by a simplex. The basic idea is to replace the densities by differential
forms. Thus, the flux densitytR is replaced by an(m−1)-form τR on the boundary
of the region whose integral gives the total flux. It is noted that at any point on the
boundary, an(m − 1)-dimensional manifold, the value of such an(m − 1)-form
is an element of a 1-dimensional vector space. Similarly, the flux field replacing
the vector fieldv, is an(m − 1)-form σ on them-dimensional ambient manifold.
Roughly, the flux field form, whose value at a point hasm components, is generated
by using the components of the flux density forms onm hyperplanes –(m − 1)-
dimensional subspaces of the tangent space toS.

Assuming that an orientation is given inS, the equationt = v · n assumes the
form

τ = I∗(σ ),

whereI∗ is the restriction of(m− 1)-forms onT S to forms on the tangent bundle
of the boundary. The differential version of the balance law divv + b = p takes
the form

dσ + β = π,

whereβ andπ are them-forms corresponding to the densitiesb andp above and
dσ is the exterior derivative ofσ , anm-form.

2. Integral Balance Laws for Scalars

We consider an ambient orientable manifoldS where the balance laws are to be
formulated. The ambient manifold may be thought of as either the space manifold
of continuum mechanics where physical phenomena take place or as the material
manifold containing the material points. The following formulation is independent
of the dimension ofS (assuming it is finite) and we usem to denote it. Compactm-
dimensional submanifolds with corners ofS will be referred to asregions. Regions
may be thought of as either control volumes or bodies according to the interpretation
of S.

It is assumed that for every regionR one is given anm-form βR on R, an
(m − 1)-form τR on ∂R, anm-form πR onR, and balance law in the form∫

R
βR +

∫
∂R

τR =
∫
R

πR.
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The formβR is interpreted as the rate of change of the density of an extensive
property whose balance we are considering. Thus, at each pointx ∈ R, βR(x) is a
completely anti-symmetricm-linear mapping of tangent vectors atx, whose eval-
uation(βR)(x)(v1, v2, . . . , vm) onm independent tangent vectorsv1, v2, . . . , vm,
represents the rate of change of the property in the infinitesimal region defined by
them vectors. Hence, the first integral above is interpreted as the rate of change
of the total measure of the property enclosed within the regionR. The formτR
is interpreted as the density of the rate at which the property under consideration
is leavingR through its boundary. Thus, for eachx ∈ ∂R, τR(x) is an anti-
symmetric(m − 1)-linear form whose evaluationτR(v1, v2, . . . , vm−1) onm − 1
vectorsv1, v2, . . . , vm−1 that are tangent atx to the boundary∂R, may be thought
of as the rate at which the property is leaving the region through the infinitesimal
boundary element determined by the tangent vectors. Thus, the second integral is
the total rate at which the property leaves the region through its boundary. The form
πR is interpreted as the density at which the property is being produced insideR,
and hence the integral on the right-hand side is the total production rate of the
property. The balance law states that the production rate is balanced by the rate of
change of the total measure of the property and the rate at which the property leaves
at the boundary.

3. The Generalized Cauchy Postulates

The generalized Cauchy postulates restrict the dependence of the formsβR,
τR, andπR onR. The following assumption are made.

GC1 The values of the formsβR andπR at any pointx ∈ S do not depend onR.
Thus, we will omit theR index in what follows.

GC2 The value ofτR at any pointx ∈ ∂R depends on the regionR only through its
tangent space atx including its (inwards versus outwards) orientation. That
is, if TxR1 = TxR2 for the two regionsR1, R2 whose boundaries containx
that are situated on the same side of the common tangent space, then

τR1(x) = τR2(x).

In order to specify the dependence ofτR onR explicitly, the previous assumption
is reformulated. Below we will refer to an(m−1)-dimensional subspaceH of TxS
as ahyperplaneand useIH : H ↪→ TxS to denote its inclusion inTxS. The dual
mappingI∗

H is the restriction of forms onTxS to forms onH. Each hyperplane
H defines a one-dimensional subspaceH+of the dual spaceT ∗

x S containing the
annihilators ofH . An orientation onH , relative to an orientation onTxS as de-
termined by anm-form ω, is induced by a choice of a half spaceH⊥ of H+. The
orientation of an(m−1)-formωH onH is that ofφ∧ωH for any formφ ∈ H⊥. If
the condition holds, one says thatωH is positively orientedwith respect toω. The
form φ can be thought of as giving positive values to vectors pointing “outwards”.

Clearly, by normalizingφ (say by using a metric in a neighborhood ofx) the
collection of oriented hyperplanes at anyx ∈ S may be identified with the(m−1)-
sphere. (This is in contrast with the regular construction of the projective spaces
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where orientation is ignored.) Thus, we have thebundle of oriented hyperplanes

G⊥
m−1S → S,

whose fibers are diffeomorphic to the(m − 1)-sphere and any particular element
is an equivalence class of 1-forms (under multiplication by a positive number).
Moreover, on each fiber there is an operation of orientation inversion corresponding
to multiplication by a negative number.

We may associate the vector space
∧m−1

H ∗ of (m− 1)-forms onH with any
oriented hyperplaneH ∈ G⊥

m−1. Thus, we have a vector bundle

∧
G⊥

m−1S → G⊥
m−1S,

whose fiber overH is
∧m−1

H ∗.
Using this notation we may reformulate GC2 as follows.

GC2’ There is a section

τ : G⊥
m−1S →

∧
G⊥

m−1S,

such that for eachR

τR(x) = τ(Tx∂R) ∈
m−1∧

(T ∗
x ∂R).

GC3 The sectionτ is Cr for some integerr � 0.

4. The Generalized Cauchy Theorem

Let −H denote the subspace of inverse orientation to that ofH so that if
φ ∈ H⊥ representsH , thenaφ, a < 0, represents−H .

Proposition 4.1. τ(−H) = −τ(H).

Proof. Let H be an oriented hyperplane atx0 ∈ S defined by a formφ ∈ H⊥.
Let xi be a coordinate system in a neighborhood ofx such thatφ is represented
by dx1 andxi(x0) = 0 for all i = 1, . . . , m. For t > 0 we consider a singular
cubec : [0,1]m → S such thatc(0) = x0 and c(z1, . . . ,zm) is represented by
(t2z1, tz2, tz3, . . . , tzm). We note that the volume integrals over the image(c) are
of ordertm+1, the flux over the faces wherezi = 0 or zi = 1, i > 1, are of order
tm, and the flux over the faces wherez1 = 0 or z1 = 1 are of ordertm−1. Thus,
denoting the image of the cube byR, the balance law implies

lim
t→0

{
1

tm−1

( ∫
z1=0

τR +
∫

z1=1

τR
)}

= 0.
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We may useτ0, τ1 to denote the local representatives in the{xi} coordinates ofτR
on the facesx1 = 0 andx1 = t2 respectively, so that we have

lim
t→0

{
1

tm−1

( ∫
z1=0

τ0 +
∫

z1=1

τ1

)}
= 0.

By the mean value theorem for integrals, for each value oft there are points
qt,0, qt,1 on the facesx1 = 0 andx1 = t2 respectively, such that∫

z1=0

τ0 = tm−1τ0(qt,0),

∫
z1=1

τ1 = tm−1τ1(qt,1).

Thus,
lim
t→0

{
τ0(qt,0) + τ1(qt,1)

} = 0.

Now GC2’ allows us to write the last limit in the form

lim
t→0

{
τ (φt,0) + τ (φt,1)

} = 0,

whereτ is the local representative of the sectionτ andφt,0 ∈ (Tqt,0∂R)⊥, φt,1 ∈
(Tqt,1∂R)⊥ are the forms representing the oriented hypeplanes tangent to the bound-
ary ofR at the pointsqt,0, qt,1 respectively. However, ast → 0, φt,0 → −φ and
τt,1 → φ as both points approachx0. The assertion follows now from GC3.��

We will say that a collectionH1, . . . , Hj of oriented hyperplanes are inde-
pendent if any collection of forms{ei ∈ H⊥

i } are linearly independent inT ∗
x S.

Clearly, the particular choice of each formei among the annihilators ofHi will not
affect the independence or dependence of the hyperplanes. In particular, if we are
givenm hyperplanesH1, . . . , Hm the corresponding formse1, . . . , em generate a
basis forT ∗

x S and a corresponding (dual) basise1, . . . , em for TxS. Giveni, since

ej (ei) = δ
j
i , ej ∈ Hi for all j �= i, andei �∈ Hi . Thus,{e1, . . . ,̂ei , . . . ,em} form a

basis forHi , where the “hat” denotes an omitted element.
Since

∧m−1
H ∗

i is one dimensional, we may write

τi = τ(Hi) = τi(e1, . . . ,̂ei , . . . ,em)e
1∧ . . .∧ê i∧ . . .∧em,

where,τi(e1, . . . ,̂ei , . . . ,em) is the single component ofτi with respect to the given
basis. Below we will use the notationτ ı̂ = τi(e1, . . . ,̂ei , . . . ,em)

Proposition 4.2. LetH1, . . . , Hm bem independent oriented hyperplanes ofTxS,
and for eachi, let

τi = τ(Hi) ∈
m−1∧

H ∗
i

be the corresponding flux density. Then, there exists a unique(m − 1)-form

σ ∈
m−1∧

(T ∗
x S)

such that
τi = I∗

i (σ ), for all i = 1, . . . , m.
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Proof. Given the oriented hyperplanes we can form bases{e1, . . . ,em} of TxS, and
{e1, . . . ,em} of T ∗

x S. We recall that
∧m−1

(T ∗
x S) is m-dimensional and any form

in it may be written as

σ =
m∑
i=1

σi e
1∧ . . .∧ê i∧ . . .∧em,

and
σi = σ(e1, . . . ,̂ei , . . . ,em).

Noting that each termσi e1∧ . . .∧ê i∧ . . .∧em in the sum above is an(m−1)-form
onHi , we may set

σi = τi(e1, . . . ,̂ei , . . . ,em) = τ ı̂ for all i = 1, . . . , m

so

σ =
m∑
i=1

τ ı̂ e
1∧ . . .∧ê i∧ . . .∧em.

The relation
φ1∧ . . .∧φn(v1, . . . ,vn) = det

[
φi(vj )

]
,

for any two collections ofn 1-formsφi andn vectorsvi , implies that for any
collectionv1 . . . vm−1 ∈ TxS,

e1∧ . . .∧ê i∧ . . .∧em(v1, . . . ,vm−1) = ε1...̂i...m
i1...im−1

(v1)
i1 . . . (vm−1)

im−1

= det




(v1)
1 (v2)

1 . . . (vm−1)
1

...
...

...
...

(̂v1)
i (̂v2)

i . . . (̂vm−1)
i

...
...

...
...

(v1)
m (v2)

m . . . (vm−1)
m




,

where(vj )k denotes thek-th component ofvj with respect to the basis{ek}. In
particular,

e1∧ . . .∧ê i∧ . . .∧em(e1, . . . ,̂ej , . . . ,em) = δij .

Thus,

σ(v1, . . . ,vm−1) =
m∑
i=1

ε1...̂i...m
i1...im−1

τ ı̂ (v1)
i1 . . . (vm−1)

im−1.

To show thatσ restricts toτi onHi one has only to use the fact that
∧m−1

H ∗
i is

1-dimensional and show thatσ(e1, . . . ,̂ei , . . . ,em) = τ ı̂ . It is a simple calculation
to show that picking another basis comprising annihilators of the given hyperplanes
while retaining their orientations will result in the same formσ . ��



190 Reuven Segev

Remark 4.3. In the last proposition, the formσ will reverse its sign if we change
the orientation of any one elementej of the basis{ei} to e′

j = −ej . Thus, we
consider another basis{e′

i} such thate′
i = ei for all i �= j , ande′

j = −ej . In the
expression for

σ ′ =
m∑

i′=1

τ ′
i (e

′
1, . . . , ê

′
i , . . . , e

′
m)e

′1 ∧ · · · ∧ ê′i ∧ · · · ∧ e′m,

the term containingτ ′
j (e

′
1, . . . , ê

′
j , . . . , e

′
m) will reverse its sign becauseτ(−φ) =

−τ(φ) implies

τ ′
j (e

′
1, . . . , ê

′
j , . . . , e

′
m)e

′1 ∧ · · · ∧ ê′j ∧ · · · ∧ e′m

= −τj (e1, . . . , êj , . . . , em)e
1 ∧ · · · ∧ êj ∧ · · · ∧ em,

while for i �= j , theτ ′
i will not be affected. In addition, fori �= j , the terms

e′1 ∧ · · · ∧ ê′i ∧ · · · ∧ e′m = −e1 ∧ · · · ∧ ê i ∧ · · · ∧ em

since they containe′j = −ej .
If an orientation ofTxS is given by anm-form ω, then the basis{ei} may be

either positively or negatively oriented relative to that orientation according to the
sign ofω(e1, . . . ,em). Thus, if we fix them hyperplanes but vary their orientations,
those having positive orientations with respect toω will determine a preferred
“sign” for σ . In other words, an orientation ofTxS fixes a “sign” forσ . Henceforth,
we assume that an orientation is given onS. An oriented hyperplane will have the
orientation induced by the orientation ofTxS and the formφ ∈ H⊥. It is noted that
the assumption that the basis{ei} is positively oriented also implies that we can use
e1∧ . . .∧em instead of the formω.

Remark 4.4. In what follows, we will refer to the formσ as theflux field form.
Onceσ is given, it is possible to restrict it to any non-oriented hyperplaneH ⊂ TxS
to obtain

τH = I∗
H (σ) ∈

m−1∧
H ∗.

The expression forσ(v1, . . . ,vm−1) implies that

τH (v1, . . . ,vm−1) =
m∑
i=1

ε1...̂ı...m
i1...im−1

τ ı̂ (v1)
i1 . . . (vm−1)

im−1.

However, in the Cauchy theory one has to take into account the orientation of the
hyperplane.Thus, givenσ we set its oriented restriction to an oriented hyperplaneH

to be given by the above relation if the vectorsv1, . . . ,vm−1 are positively oriented
(with respect to the orientation induced onH ), and to be given by the inverse of
the relation if the vectors are negatively oriented. Hence,
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Definition 1. Let TxS be oriented by a formω. Given an oriented hyperplaneH
specified by a 1-formφ, theoriented restriction

I∗⊥
H :

m−1∧
(TxS)∗ →

m−1∧
H ∗

is given by

I∗⊥
H (σ)(v1, . . . ,vm−1) = sign{ω(IH (v0), IH (v1), . . . , IH (vm−1))}I∗

H (σ),

wherev0 is any outwards pointing vector, i.e.,φ(v0) > 0.

Remark 4.5. With the previous definition the flux field formσ induces flux density
τH on any oriented hyperplane by

τH = I∗⊥
H (σ)

and explicitly

τH (v1, . . . ,vm−1)

= sign{ω(v0, v1, . . . ,vm−1)}
m∑
i=1

ε1...̂ı...m
i1...im−1

τ ı̂ (v1)
i1 . . . (vm−1)

im−1.

Remark 4.6. Ignoring momentarily the complications due to orientation, the fore-
going construction may also be described in the language of multi-vectors. Recall
that the evaluation of a formσ to a collectionv1, . . . ,vm−1 of vectors can be re-
placed by the evaluation of the form on the exterior product of the vectors, the
multi-vector,v1∧ . . .∧vm−1. In addition, given the basis{ek}, the multi-vectors
e1∧ . . .∧êi∧ . . .∧em form a basis of vector space

∧m−1
TxS. Hence, in the dual

space(
∧m−1

TxS)∗ = ∧m−1
T ∗
x S we can express(m − 1)-forms as linear com-

binations of elements

e1∧ . . .∧ê i∧ . . .∧em ∈
m−1∧

H ∗
i =

(m−1∧
Hi

)∗

of the dual space.
Thus, the construction ofσ using the variousτi is simply the construction of

an element in(
∧m−1

TxS)∗ using its components.

Remark 4.7. Clearly, the above construction is not limited to the form constructed
in the proposition. Given an(m − 1) differential formσ , one can assign to any
regionR a flux density form

τR = I∗⊥
T (∂R)(σ ),

whereIT (∂R) : T (∂R) ↪→ T S is the inclusion.
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Next we consider the question of consistency, i.e., whether the valueτ(H) for
any hyperplaneH may be obtained usingσ as above.

Definition 2. The section

τ : G⊥
m−1S →

∧
G⊥

m−1S

is consistentif there is an(m − 1)-form σ ∈ ∧m−1
T ∗S such that

τ(H) = I∗⊥
H (σ)

for all H ∈ Gm−1S.

Remark 4.8. By Proposition 4.2, ifτ is consistent, then the formσ that satisfies
the condition of the definition is unique.

Proposition 4.9. The set functionτ is consistent ifGC1andGC3hold.

Proof. Consider an arbitrary hyperplaneH at a pointx ∈ S determined together
with its orientation by the formφ, and letτH = τ(H) be the corresponding flux
density. Choose any collection ofm independent oriented hyperplanes{Hi} and
let {φi} be corresponding annihilators. For simplicity, we assume thatφ is linearly
independent of anym−1 sub-collection of theφis. Choose a basis ofTxS using the
following procedure. Lete1 be any vector satisfyingφj (e1) = 0 for all j �= 1. For
j �= 1 determineej by them equationsφi(ej ) = 0 for all i �= j andφ(ej −e1) = 0.
Thus,ei is on the intersectionH1∩ . . .∩Ĥi∩ . . .∩Hm andvi−1 = ei − e1 ∈ H for
all i �= 1. Them-simplex constructed is analogous to the traditional tetrahedron
used in the proof of Cauchy’s theorem.

Without loss of generality we may assume that the basis{ei} and the vectors
{vj } are positively oriented (or otherwise we can calculateτ(−H) and use Propo-
sition 4.1).

By Remark 4.7 and the fact that
∧m−1

H ∗ is one-dimensional, we have to show
that GC1 and GC3 imply that

τH (v1, . . . ,vm−1) =
m∑
i=1

ε1...̂i...m
i1...im−1

τ ı̂ (v1)
i1 . . . (vm−1)

im−1

for one collection ofm − 1 linearly independent vectorsv1, . . . ,vm−1 ∈ H . In
particular, we can use the collection of vectors as defined above. The construction
of the vectors{vk} and basis{ej } implies that(vk)j = δ

j+1
k −δ

j
1 so the determinants
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in the sum above satisfy

ε1...̂i...m
i1...im−1

(v1)
i1 . . . (vm−1)

im−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 −1 −1 . . . −1

i︷︸︸︷
−1 . . . . . . −1

1 0 0 . . . 0 0 . . . . . . 0
0 1 0 . . . 0 0 . . . . . . 0
0 0 1 . . . 0 0 . . . . . . 0
...

... . . .
. . .

...
... . . . . . .

...

0 0 0 . . . 1 0 0 0 . . .

0 0 0 . . . 0 0 1 0 . . .

0 0 0 . . . 0 0 0 1 . . .

· · · · · · · · · · · · · · · · · · · · · · · · . . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)i−1

∣∣∣∣∣∣∣∣∣

−1 −1 −1 . . . −1
0 1 0 . . . . . .

0 0 1 . . . . . .
...

...
...

. . .
...

∣∣∣∣∣∣∣∣∣
= (−1)i .

Hence, we have to show that

τH (v1, . . . ,vm−1) =
m∑
i=1

(−1)i τ ı̂ .

We now construct a family of simplexes as follows. Consider a chart{zk} in
a neighborhood ofx such thatzk(x) = 0 andek = ∂

∂zk
so the base vectors are

tangent to the coordinate curves atx. For some positivet0, the collection of points
whose coordinates satisfy|zk| � t0 are contained in the coordinate neighborhood.
For 0< t < t0 let Rt be the region containing the points whose coordinates satisfy
t � zk � 0 and

∑m
k=1 z

k � t . Thus,Rt is the image of the “shrunk” standard
simplex(t

p = {0 � xi � t,
∑p

i=1 � t} under the embeddings : (t
p → S that is

represented locally byzi(x1, . . . ,xm) = xi .
Denote bySi, i = 1, . . . , m, the face containing points whosei-th coordinates

vanish and byS0 the face containing the points with
∑m

k=1 z
k = t .

By the definition of the integral of a form over a chain and the definition of a
boundary of a simplex,

∫
∂Rt

τRt
=

m∑
k=0

(−1)k
∫

s◦+k

τRt
,

where+i is the standard linear embedding of them − 1 standard simplex in the
i-th face of them-standard simplex.
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Let {ei} be the standard basis ofRm andT s the tangent mapping tos. By
Lemma 4.10, Corollary 4.11, Remark 4.12 and the construction of the various
vectors, for each value oft and eachk = 0, . . . , m, there are pointsqk

t ∈ Sk such
that

1

Am−1tm−1

∫
Sk

τRt
= τRt

(qk
t )

(
Ts−1(qk

t )
s(e1), . . . ,

. . . , ̂Ts−1(qk
t )
s(ek), . . . , Ts−1(qk

t )
s(em)

)
= τRt

(qk
t )(e1, . . . ,̂ek, . . . ,em) for k �= 0,

while

1

Am−1tm−1

∫
S0

τRt
= τRt

(q0
t )

(
Ts−1(q0

t )
s(e2 − e1), . . . , Ts−1(qk

t )
s(em − e1)

)

= τRt
(q0

t )(v1, . . . ,vm−1) for k = 0

whereAm ∈ R is constant for everym. Hence,

1

Am−1tm−1

∫
∂Rt

τRt

= τRt
(q0

t )(v1, . . . ,vm−1) +
m∑
i=1

(−1)iτRt
(qi

t )(e1, . . . ,̂ei , . . . ,em).

Next we note that the balance law implies that

lim
t→0

∫
∂Rt

τRt

tm−1 = 0

as the integrals ofβRt
andπRt

overRt are of ordertm. Thus,

lim
t→0

{
τRt

(q0
t )(v1, . . . ,vm−1) +

m∑
i=1

(−1)iτRt
(qi

t )(e1, . . . ,̂ei , . . . ,em)

}
= 0.

In addition, for allk = 0, . . . , m, limt→0 q
k
t = x. For i �= 0, limt→0 Tqi

t
(∂Rt ) is

annihilated byei and limt→0 Tq0
t
(∂Rt ) is determined by the formφ. Moreover, for

i �= 0, the pointsqi
t are on thei-th face of the simplex whose orientation outwards

from the simplex is opposite to the orientation determined byei . It follows that

lim
t→0

{τRt
(qi

t )} = τ(−ei)

= −τ(ei),
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so

lim
t→0

{
τRt

(qi
t )(e1, . . . ,̂ei , . . . ,em)

}
= −τ ı̂ .

The balance can be rewritten now as

τ(H)(v1, . . . ,vm−1) =
m∑
i=1

(−1)iτ ı̂ . ��

Lemma 4.10 (Mean Value Theorem for Integration of Forms). Letω be ap-form
on a Cr singular p-simplexs : (p → M in a manifoldM, where(p is the
standardp-simplex. Denote byAp the integral

∫
(p

dx1 . . . dxp. Then, there is a
pointq ∈ image(s) such that∫

s

ω = w(s−1(q))Ap = ω(q)
(
Ts−1(q)s(e1), . . . , Ts−1(q)s(ep)

)
Ap,

where,w(xi) dx1 ∧ · · · ∧ dxp is T s∗(ω) and{ei} is the standard basis ofRp.
If (t

p is the simplex{0 � xi � t,
∑p

i=1 � t} obtained by expanding(p by
t , andst is the restriction of the mappings, then there is a corresponding pointqt

satisfying∫
st

ω = w(s−1(qt ))Ap tp = ω(qt )
(
Ts−1(qt )s(e1), . . . , Ts−1(qt )s(ep)

)
Apt

p.

Proof. By the definition of the integral of a form on a simplex and the mean value
theorem for integrals (inRp), we have∫

s

ω =
∫
(p

w(xi) dx1 . . . dxp

= w(q)
∫
(p

dx1 . . . dxp

= w(q)Ap,

for some pointq ∈ (p. However,

w(q) = w(q)dx1∧ . . .∧dxp(e1, . . . ,ep)

= T s∗
s−1(q)

(ω)(e1, . . . ,ep)

= ω(q)(Ts−1(q)s(e1), . . . , Ts−1(q)s(ep)),

whereq = s(q).
The second statement follows by scaling.��
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Corollary 4.11. Let s : (p → Rp be a simplex and letSi, i = 0,1, . . . , p be the
image ofi-th face. That is,Si = image(s ◦ +i), where the standard embedding
+i : (p−1 → (p of thei-th face in(p, is given by

+0(x
1, . . . ,xp−1) = (

1 − ∑p−1
k=1x

k, x1, . . . ,xp−1
)
,

+i(x
1, . . . ,xp−1) = (

x1, . . . ,xi−1,0, xi, . . . , xp−1), for i �= 0.

Then, for a formτi defined onSi , there is a pointqi such that∫
Si

τi = τ(qi)
(
Ts−1(qi )

s
(
T+i(e1)

)
, . . . , Ts−1(qi )

s
(
T+i(ep−1)

))
Ap−1.

Hence, for a(p − 1)-form τ whose restriction toSi is denoted byτi , there exist
pointsqi ∈ Si , such that∫
∂s

τ = Ap−1

p∑
i=0

(−1)iτi(qi)
(
Ts−1(qi )

s
(
T+i(e1)

)
, . . . , Ts−1(qi )

s
(
T+i(ep−1)

))
.

Proof. The definition of the boundary of the simplex as

∂s =
p∑

i=0

(−1)is ◦ +i

implies∫
∂s

τ =
∫

∑
i (−1)i s◦+i

τ

=
p∑

i=0

(−1)i
∫

s◦+i

τ

= Ap−1

p∑
i=0

(−1)iτi(qi)
(
T(s◦+i)

−1(qi )
(s ◦ +i)(e1), . . . ,

. . . , T(s◦+i)
−1(qi )

(s ◦ +i)(ep−1)
)

= Ap−1

p∑
i=0

(−1)iτi(qi)
(
Ts−1(qi )

s
(
T+i(e1)

)
, . . . , Ts−1(qi )

s
(
T+i(ep−1)

))

for some pointsqi ∈ Si . ��
Remark 4.12. Note that the definition of the mappings{+i} implies that(

T+i(e1), . . . , T +i(ep−1)
) = (e1, . . . ,̂ei , . . . ,ep), for i �= 0

andT+0(ei ) = ei+1 − e1.
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5. Additional Remarks

Consider the situation where a flux field formσ is given on the orientedS.
For each orientable regionR, one can use the positive orientation on∂R so that
I∗⊥ = I∗. Thus, the flux density on∂R is induced byτR(x) = I∗

TxS(σ (x)), or in
concise notationτR = I∗σ .

It follows that the balance equation may be rewritten as∫
R

β +
∫
∂R

I∗σ =
∫
R

π.

The Stokes’ theorem implies that this is equivalent to∫
R

β +
∫
R

dσ =
∫
R

π,

wheredσ is the exterior derivative of the(m − 1)-form σ – anm-form. Since the
balance holds for an arbitrary oriented region, one can state

Proposition 5.1. If the flux density formsτR are consistent with the flux field(m−
1)-differential formσ , then

dσ + β = π

– the differential version of the balance equation.

Remark 5.2. It is noted that in the case where a volume elementθ is given on
S, any flux field formσ is associated with a unique vector fieldv satisfying the
equationv� θ = σ , wherev� θ is the contraction (interior product) of the formθ
with the vector fieldv to produce an(m− 1)-form. Thus, given a volume element,
it is possible to replace the flux field form by aflux vector field.
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