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The Geometry of Cauchy'’s Fluxes
REUVEN SEGEV

Dedicated to the memory of my grandfuther
Akiva Selinger
Chrzanow, 1903 — Beer-Sheva, 1993

Communicated by D. R. OWEN

Abstract

A formulation of the Cauchy theory for balance laws of scalar valued quantities
is considered from a general geometric point of view. It is assumed only that the
ambient space is an orientable m-dimensional manifold. The analog of the usual
flux vector field is an (e — 1)-differential form. Both the Cauchy theorem and
differential version of the balance laws are formulated in this context.

1. Introduction

The category of differentiable manifolds and differentiable mappings 1s a frame-
work wherein one should be able to formulate continuum mechanics. As early as
1957, a relatively short time after differentiable manifolds had been introduced by
Hassler Whitney, NotL [11], used them in his definition of bodies. While Noll noted
that a 3-dimensional manifold representing a body has a very simple topology — it
may be covered by a single chart, neither a metric nor a connection can be natu-
rally assigned to it. The definition of bodies as general manifolds whose charts are
provided by the configurations, or placements, in a 3-dimensional Euclidean space
representing the physical space, is repeated in [12] and [13].

Nevertheless, Cauchy’s theory of fluxes and forces, has been formulated tradi-
tionally using a particular configuration of the body — a chart in the geometrical
language (e.g., [16] and [7]). As such, the fluxes and stresses resulting from the
theory are not invariant entities and do not correspond to the body itself. This is
analogous to the situation where one knows the transformation rules for the compo-
nents of stresses without knowing they represent a linear mapping. A generalization
of Cauchy’s theory to differentiable manifolds will render such arbitrary choice un-
necessary. For example, the Cauchy flux and the Piola-Kirchhoff flux will be two
representations of the same geometrical object.

In recent decades, the method of continuum mechanics was extended to me-
dia with microstructure, or media having an internal state specified by some order



parameters. Various phases of liquid crystals, continua with voids, liquids with bub-
bles, continua with spin (two- or three-dimensional), and Cosserat continua are but
examples of structured media (see [10, 1,9]). Rfevalued order parameters are

in many cases physical quantities that do not have an invariant geometric meaning.
They are coordinates on a differentiable manifold (eeecit)). Thus, in order to
apply the method of continuum mechanics to such structured continua, the basic
notions of continuum mechanics should be generalized to manifold geometry (see
[2,3] for such attempts).

In addition to the extension to structured continua, the methods of contin-
uum mechanics have been applied in recent yeargiwri~ (e.g., [4]) to two-
dimensional manifolds representing the interfaces in multiphase bodies. Again,
these interfaces are generalized geometrical objects — shapes.

This paper considers the generalization of Cauchy’s theorem for fluxes to dif-
ferentiable manifolds. Such a generalization seems to be a natural step towards a
better understanding of the foundations of continuum mechanics of simple bodies,
and an essential step needed for the application of the continuum mechanics method
to generalized media such as described above.

Cauchy’s theorem for fluxes considers a balance equation of a praperty
the form

P(R):/dev—i—/tha:/dev,
R IR R

whereR is a region inR?, by, is interpreted as the rate at which the density of the
property changesy, is interpreted as the density with respect to the surface area at
which the property leaves the region at the boundary,ggds interpreted as the
density of the sources produciiy Specifically, the theory is concerned with the
way the field® , tgr andpr depend on the the subregi® The basic assumption
made, Cauchy’s postulate, is that the figlgs pr do not depend on the regidd

and that the fieldr depends orR only through the normal to the boundary. This

is usually written agr = ¢(n). In addition, one assumes regularity of the density
fields and regularity of the dependencegfonn. The resulting Cauchy’s theorem
states that with these assumptions, there is a unique vectop fseich that

t=v-n.

Thus, the balance of the scalar property together with Cauchy’s postulate generate a
vector field. This is how, for example, a balance of heat will result in the existence of
the heat flux vector field. Note that we consider here only scalar valued quantities.
Over the years, numerous attempts have been made to make the Cauchy theory
rigorous and to generalize the framework in which it applies. Following Hamel,
NotL [11], (see [16] pp. 156—172) has replaced the assumption for the dependence
of tg on the normal by assumptions of boundedness of the interaction forces —
the Hamel-Noll theoremGurTIN & WILLIAMS [6] gave an axiomatic framework
to the Cauchy theory andurTiN & MARTINS [5] relaxed some of the regularity
assumptions for the fielddarspEN & HUGHEs [9] proved the theorem for 3-
dimensional metric manifoldSEGEvV [14] gives a general formulation on manifolds
based on a global weak setting for the balance lawSawatv & DE BoTTON [15]



give, in the geometrical setting &, a detailed analysis of the weak framework
where the fluxes (stresses in that paper) may be as irregular as measures. In these
weak formulations, fluxes appear as measures representing linear functionals and
the geometric construction of Cauchy’s theorem, in which a balance of the property
is applied to a tetrahedron, is avoided. In another approach to the praofick
& VIrGa [8] prove the theorem using a variational approach.

Here, Cauchy'’s theory is formulated in the general setting ef-alimensional
orientable manifoldS without any further geometrical structure. The analytic side
of the theory is traditional and the fields are assumed to be smooth. The formulation
and proof are analogous to the Cauchy construction and the classical tetrahedron
is replaced by a simplex. The basic idea is to replace the densities by differential
forms. Thus, the flux density; is replaced by am — 1)-form z on the boundary
of the region whose integral gives the total flux. It is noted that at any point on the
boundary, anm — 1)-dimensional manifold, the value of such @n — 1)-form
is an element of a 1-dimensional vector space. Similarly, the flux field replacing
the vector fieldv, is an(m — 1)-form o on them-dimensional ambient manifold.
Roughly, the flux field form, whose value at a point hasomponents, is generated
by using the components of the flux density formsmomyperplanes m — 1)-
dimensional subspaces of the tangent spacg to

Assuming that an orientation is givendi the equation = v - n assumes the
form

T =7T%0),

whereZ* is the restriction ofm — 1)-forms onT'S to forms on the tangent bundle
of the boundary. The differential version of the balance lawdivb = p takes
the form

do + 8 =m,

wherep andr are them-forms corresponding to the densitiesind p above and
do is the exterior derivative of, anm-form.

2. Integral Balance Lawsfor Scalars

We consider an ambient orientable manifSlavhere the balance laws are to be
formulated. The ambient manifold may be thought of as either the space manifold
of continuum mechanics where physical phenomena take place or as the material
manifold containing the material points. The following formulation is independent
of the dimension of (assuming itis finite) and we ugeto denote it. Compact-
dimensional submanifolds with corners®vill be referred to asegions Regions
may be thought of as either control volumes or bodies according to the interpretation
of S.

It is assumed that for every regidd one is given ann-form gz on'R, an
(m — 1)-form rz ondR, anm-form 7z onR, and balance law in the form

/ﬂn+/m=/ﬂ7z-
R IR R



The formgy, is interpreted as the rate of change of the density of an extensive
property whose balance we are considering. Thus, at eachypaiR, S (x) is a
completely anti-symmetrig:-linear mapping of tangent vectorsxgtwhose eval-
uation(Br)(x)(v1, vz, ..., vy) ONm independent tangent vectarg vo, ..., vy,
represents the rate of change of the property in the infinitesimal region defined by
them vectors. Hence, the first integral above is interpreted as the rate of change
of the total measure of the property enclosed within the re@offhe formtp
is interpreted as the density of the rate at which the property under consideration
is leaving R through its boundary. Thus, for eache R, TR (x) is an anti-
symmetric(m — 1)-linear form whose evaluatioty; (vy, v, ..., vy—1) ONnm — 1
vectorsvi, vy, .. ., v, —1 that are tangent atto the boundarg R, may be thought
of as the rate at which the property is leaving the region through the infinitesimal
boundary element determined by the tangent vectors. Thus, the second integral is
the total rate at which the property leaves the region through its boundary. The form
n is interpreted as the density at which the property is being produced iRside
and hence the integral on the right-hand side is the total production rate of the
property. The balance law states that the production rate is balanced by the rate of
change of the total measure of the property and the rate at which the property leaves
at the boundary.

3. The Generalized Cauchy Postulates

The generalized Cauchy postulates restrict the dependence of theggrms
R, andrr onR. The following assumption are made.

GC1 The values of the form®r andz at any pointx € S do not depend ofR.
Thus, we will omit theR index in what follows.

GC2 Thevalue ofy atany pointt € R depends on the regidd only through its
tangent space atincluding its (inwards versus outwards) orientation. That
is, if T, R1 = TR for the two regionsk 1, R2 whose boundaries contain
that are situated on the same side of the common tangent space, then

TR, (x) = TR, (x).

In order to specify the dependenceraf onR explicitly, the previous assumption

is reformulated. Below we will refer to aim — 1)-dimensional subspadé of 7, S

as ahyperplaneand useZy : H < T,S to denote its inclusion if,S. The dual

mappingZ;, is the restriction of forms oS to forms onH. Each hyperplane

H defines a one-dimensional subspatéof the dual spacd*S containing the

annihilators of H. An orientation onH, relative to an orientation ofi,S as de-

termined by ann-form w, is induced by a choice of a half spage- of H*. The

orientation of ar(m — 1)-form wy on H is that ofg A wy for any form¢ € HL. If

the condition holds, one says thay is positively orientedvith respect tav. The

form ¢ can be thought of as giving positive values to vectors pointing “outwards”.
Clearly, by normalizingp (say by using a metric in a neighborhoodxgfthe

collection of oriented hyperplanes at ang S may be identified with thén — 1)-

sphere. (This is in contrast with the regular construction of the projective spaces



where orientation is ignored.) Thus, we have a@dle of oriented hyperplanes
G 1S — S,

whose fibers are diffeomorphic to tlie — 1)-sphere and any particular element
is an equivalence class of 1-forms (under multiplication by a positive number).
Moreover, on each fiber there is an operation of orientation inversion corresponding
to multiplication by a negative number.

We may associate the vector spz;ﬂy@’l H* of im — 1)-forms onH with any
oriented hyperplan& e G:-_,. Thus, we have a vector bundle

N\ G188 = Gy 1S,
whose fiber ove is A"~ H*.

Using this notation we may reformulate GC2 as follows.

GC2’ There is a section
T. Gﬁn‘ilS e /\G’J;,lils,

such that for eac®

m—1

R(x) = T(T0R) € )\ (T}9R).

GC3 The section is C" for some integer = 0.

4. The Generalized Cauchy Theorem

Let —H denote the subspace of inverse orientation to that/ oo that if
¢ € H' represents, thenag, a < 0, represents-H.

Proposition 4.1. t1(—H) = —t(H).

Proof. Let H be an oriented hyperplane & € S defined by a formp € H'.
Let x' be a coordinate system in a neighborhood @fuch thatp is represented

by dx! andx’(xg) = O foralli = 1,...,m. Fort > 0 we consider a singular
cubec: [0,1]" — S such thatc(0) = xp ande(z?, ... ,z™) is represented by
(%%, 172,128, ..., tz™). We note that the volume integrals over the imageare

of orders”*1, the flux over the faces wheté = 0 orz' = 1,i > 1, are of order
™, and the flux over the faces wherk = 0 or z1 = 1 are of order™ 1. Thus,
denoting the image of the cube B, the balance law implies

mfa([f o [ )]0

71=0 =1



We may userg, 71 to denote the local representatives in th coordinates otz
on the faces! = 0 andx! = 72 respectively, so that we have

. 1
NETE
71=0 Zi=1

By the mean value theorem for integrals, for each valuetbkre are points
1.0, g:.1 On the faces! = 0 andx? = 12 respectively, such that

/ T0 = tm_lro(qr,o), / T1 = fm_lTl(‘]t,l)~
1=0 71=1
Thus,
t"_@(){fo(q:,o) +71(g1,0} = 0.

Now GC2’ allows us to write the last limit in the form
JiLnO{T((f)t,O) + (1)} =0,

wherez is the local representative of the sectioand¢; o € (Tq,_oaR)L, 1 €
(Tq,_laR)l are the forms representing the oriented hypeplanes tangent to the bound-
ary of R at the pointsy, o, ¢,.1 respectively. However, as— 0, ¢, 0 — —¢ and

7,1 — ¢ as both points approaaly. The assertion follows now from GC3 O

We will say that a collectiorf/y, ..., H; of oriented hyperplanes are inde-
pendent if any collection of form&' e Hil} are linearly independent ifi;"S.
Clearly, the particular choice of each foehamong the annihilators @f; will not
affect the independence or dependence of the hyperplanes. In particular, if we are

givenm hyperplanests, ..., H,, the corresponding formg, ..., ¢™ generate a
basis for7'S and a corresponding (dual) basis ..., e, for 7, S. Giveni, since
e/(e;) =8/, e; € H; forall j # i, ande; ¢ H;. Thus,{e1, ... e, ....en} forma

basis forH;, where the “hat” denotes an omitted element.
Since/\’”_l H is one dimensional, we may write

T =T(H) =Ti(€1,....00,....em)e"A...Ne'A ... N,

where,;(e1, ... ,é;, ... ,ey) is the single component ef with respect to the given
basis. Below we will use the notatian = t;(e1, ....¢;, .. ..en)

Proposition 4.2. LetHs, ..., H, bem independent oriented hyperplanegpf,

and for each, let
m—1

n=1(H)e )\ Hf
be the corresponding flux density. Then, there exists a uriigue 1)-form
m—1

oe N\(T}S)

such that
1, =17(0), foralli=1,...,m.



Proof. Given the oriented hyperplanes we can form bgegs . . e, } of T, S, and
{el, ..., "} of T)S. We recall that/\”"l(Tx*S) is m-dimensional and any form
in it may be written as

m
o =ZaielA...A?iA...Aem,
i=1
and

o =o(e1,....e,...,en).

Noting that each termy; elA ... A¢?A ... Ae™ inthe sum above is am — 1)-form
on H;, we may set

o; =rtile1,....¢,....ep) =17 foralli=1,...,m
so
m
o= Zr?el/\.../\’e‘lA...Ae’”.
i—1
The relation
DA AG (L, . 0p) = det[¢’ (uj)] ,

for any two collections of: 1-forms ¢’ andn vectorsv;, implies that for any
collectionvy ... v,_1 € T} S,

AN ACIAL N (01, Up1) = gili::fl:r-r;ﬁll(vl)il e (Upp)im1
D! @t o ()t
=det| @) @) ... @w-1' |.
(vl)m (UZ)m cee (Um—l)m

Where(vj)k denotes the-th component of; with respect to the basig}. In
particular,

N ACIA LA™ (e, . N N 8]’
Thus,
m -~
1.7 ; -
O(Ul7 e ’Umfl) = gil.'.ll'mfllr?(vl)ll e (Umfl)lm l,
i=1

To show that restricts tor; on H; one has only to use the fact th’éf’l H}is
1-dimensional and show thaiey, ... ,e;, ...,e,) = 4 It is a simple calculation
to show that picking another basis comprising annihilators of the given hyperplanes
while retaining their orientations will result in the same fasm 0O



Remark 4.3. In the last proposition, the form will reverse its sign if we change

the orientation of any one elemest of the basis{e;} to e} = —e¢j. Thus, we
consider another bas{s;} such thak; = ¢; forall i # j, ande} = —e;. Inthe
expression for
m .
o' = Zfi’(e’l,...,?;,...,e;n)e’l/\~~/\e’l Aone™,
i'=1
the term cqntaining/.’(e’l, . ?; ..., e, will reverse its sign becausg—¢) =
—1(¢p) implies
1y = 7y 1 =J ym
rj(el,...,ej,...,em)e AN--ANe AN Ne

:—tj(el,...,’e},...,em)el/\u-/\’e\jA-~-Aem,

while fori # j, thet/ will not be affected. In addition, far # j, the terms

A~ AN =t A AT A A

m
since they contaia’/ = —e/.

If an orientation ofT,.S is given by anm-form w, then the basige;} may be
either positively or negatively oriented relative to that orientation according to the
sign ofw(e1, ... ,ey). Thus, if we fix then hyperplanes but vary their orientations,
those having positive orientations with respeciutawill determine a preferred
“sign” for o. In other words, an orientation &% S fixes a “sign” fora . Henceforth,
we assume that an orientation is given&rAn oriented hyperplane will have the
orientation induced by the orientation BfS and the formp ¢ H. Itis noted that
the assumption that the bagés} is positively oriented also implies that we can use
elA ... Ae™ instead of the fornm.

Remark 4.4. In what follows, we will refer to the formy» as theflux field form
Oncevo is given, itis possible to restrict it to any non-oriented hyperpldne 7, S
to obtain

m—1

th =TIj0) € [\ H*
The expression fot (v1, . .. ,v,—1) implies that

m

(v, ..., 0p-1) = 8,'1__,[,"71‘5’1\(‘)1)11 oo (Up_p)'mt
i=1

However, in the Cauchy theory one has to take into account the orientation of the
hyperplane. Thus, givenwe setits oriented restriction to an oriented hyperpldne
to be given by the above relation if the vectois. . . ,v,,—1 are positively oriented
(with respect to the orientation induced &F), and to be given by the inverse of
the relation if the vectors are negatively oriented. Hence,



Definition 1. Let 7, S be oriented by a fornw. Given an oriented hyperplané
specified by a 1-forng, theoriented restriction

m—1 m—1

it N (@S > N\ H

is given by

I};J'(U)(Ul, oo Um—1) = SignN{w(Zy (vo), T (v1), ..., Ly (vm—1))} L5 (0),
whereuyg is any outwards pointing vector, i.e(vg) > 0.

Remark 4.5. With the previous definition the flux field forminduces flux density
Ty 0N any oriented hyperplane by

ty =I5 (o)

and explicitly

TH (vla e 7U}’n*l)

m
f 1.7... j i —
= sign{w(vo, v1, ..., vm-1} Y &7 " T ()™ L ()L
i=1

Remark 4.6. Ignoring momentarily the complications due to orientation, the fore-
going construction may also be described in the language of multi-vectors. Recall
that the evaluation of a form to a collectionwy, ... ,v,,—1 of vectors can be re-
placed by the evaluation of the form on the exterior product of the vectors, the
multi-vector, v1A ... Av,—1. In addition, given the basigy}, the multi-vectors

e1N ... NE A ... Ney form a basis of vector spaqé{”’l T, S. Hence, in the dual
space(/\’"_1 7.8)* = /\’"‘1 T}S we can expresén — 1)-forms as linear com-
binations of elements

m—1 m—1 *
N NGIAL A € /\Hﬁ:(/\ Hl-)

of the dual space.
Thus, the construction af using the various; is simply the construction of
an element ir(/\’"_1 T,S)* using its components.

Remark 4.7. Clearly, the above construction is not limited to the form constructed
in the proposition. Given atm — 1) differential formo, one can assign to any
regionR a flux density form

TR = I;J(})R) (0),

whereZrr): T(OR) — TS is the inclusion.



Next we consider the question of consistency, i.e., whether the valig for
any hyperplanéd may be obtained using as above.

Definition 2. The section
T:GE S — /\G,t_ls
is consistentf there is an(m — 1)-formo € /\’"’1 T*S such that
t(H) = I} (o)
forall H € G,,,_1S.

Remark 4.8. By Proposition 4.2, ifr is consistent, then the form that satisfies
the condition of the definition is unique.

Proposition 4.9. The set function is consistent ifGC1landGC3hold.

Proof. Consider an arbitrary hyperplare at a pointx € S determined together
with its orientation by the forng, and letty = t(H) be the corresponding flux
density. Choose any collection af independent oriented hyperplang$;} and

let {¢'} be corresponding annihilators. For simplicity, we assumedghstinearly
independent of any: — 1 sub-collection of the’s. Choose a basis @f S using the
following procedure. Let; be any vector satisfying’ (e1) = 0 for all j # 1. For

j # ldetermine; by them equations)’ (e;) = Oforalli # j andg(e; —e1) = 0.
Thus,e; is on the intersectio®1N. .. ﬂfl,ﬂ ...NH, andv,_1 =¢; —e1 € H for

all i # 1. Them-simplex constructed is analogous to the traditional tetrahedron
used in the proof of Cauchy’s theorem.

Without loss of generality we may assume that the bisisand the vectors
{v;} are positively oriented (or otherwise we can calculate H) and use Propo-
sition 4.1).

By Remark 4.7 and the fact th,ﬂ{m_l H* is one-dimensional, we have to show
that GC1 and GC3 imply that

m
1.7 i i
(VL .. V1) = Ze,-lm’imi"lr?(vl)’l oo (Ut
i=1
for one collection ofm — 1 linearly independent vectots, ...,v,—1 € H. In

particular, we can use the collection of vectors as defined above. The construction
of the vectorguv, } and basige; } implies that(vy)/ = 8,{“—8{ so the determinants



in the sum above satisfy

—
-1 -1-1... -1 -1 . -1
1 0 O0.. 0 O 0
0O 1 o0.. 0O O 0
| 0 0 1.. 0 0 0
Elll.“lt.r.r;ml(vl)ll (Vp—)mt = :

0 0 O.. 1 0 0 O

0 0 O.. 0 0 1 O

0 0 O.. 0 0 0 1

-1 -1 -1. -1
1 0..

= (-1
Hence, we have to show that
m .
(1, o) = Y (=D o

We now construct a family of simplexes as follows Consider a chaftin
a neighborhood of such thatz;(x) = 0 ande; = a so the base vectors are
tangent to the coordinate curvescator some posmva), the collection of points
whose coordinates satisfy*| < 1 are contained in the coordinate neighborhood.
For0 < t < g letR, be the region containing the points whose coordinates satisfy
t 2782 0andY ), z* < t. Thus, R, is the image of the “shrunk” standard
S|mplexA’ 0<xi <y, Z” < 1} under the embedding A!, — S that s
represented locally by (x1, ... x™) = x'.

Denote bysS;, i =1, ..., m, the face containing points whose¢h coordinates
vanish and by, the face containing the points wii}_; z* = 1.

By the definition of the integral of a form over a chain and the definition of a
boundary of a simplex,

[ =30 [

372; k=0 Sod)k

where®; is the standard linear embedding of the— 1 standard simplex in the
i-th face of then-standard simplex.



Let {e;} be the standard basis &" and T's the tangent mapping to. By
Lemma 4.10, Corollary 4.11, Remark 4.12 and the construction of the various

vectors, for each value ofand eachk = 0, ..., m, there are pointg* € S, such
that
1 k
m TR, = TR, (qt )(Tsfl(q[k)s(el)y ey
Sk

e, Ts,l(qtk)s(ek), e, Ts,l(qtk)s(em)>

= 1R, (g 1, .. ek, .. em) TOrk #0,

while

1

A g1 / ™R, = TR, (47) (7}—1((1;))3”(92 =€),y Tioaghys (8 — el))
m—

So
=1R,(qD)(V1, ..., vp_1) fOrk=0

whereA,, € R is constant for every:. Hence,

|
S —— T
Am_ltm—l Ri

IR

m
=R, (@)W1 ... vm-1) + D _(—D'tr, (@)1, ... @i ... em).
i=1

Next we note that the balance law implies that

_ Jir, TR
||mM=0

-0 m-1

as the integrals ofz, andzg, overR, are of order™. Thus,

m
;gno{m, @O (1, ... vm—1) + 2(—31% (g, ... &, ... ,em>} =0.
1=

In addition, for allk = 0,...,m, lim;_oq* = x. Fori # 0, lim,_o T, (3R, is
annihilated by’ and lim,_, ¢ Tq[o(a'R,) is determined by the form. Moreover, for

i # 0, the points;/ are on the-th face of the simplex whose orientation outwards
from the simplex is opposite to the orientation determined’bit follows that

lim {7z, (q;)} = (=)

= —1(c),



o)
lim {tygt(q;)(el, I ,em)} =—1n
t—0

The balance can be rewritten now as
m .
T(H)(U]_, ~--,Um—1) = Z(_l)lTT O
i=1

Lemma 4.10 (Mean Value Theorem for Integration of Formket w be ap-form
on aC” singular p-simplexs: A, — M in a manifold M, where A, is the
standardp-simplex. Denote by, the integraIpr dx'...dxP. Then, there is a
pointg € imaggs) such that

/a) =w(s @) Ap = 0(@)(Ty-1y)s @), ... To-10)5(€p)) Ap,

N

where,w(x) dx A --- A dx? is Ts*(w) and{e;} is the standard basis @?.

If Al is the simpleX0 < x’ <z, Y/, < ¢} obtained by expanding, by
t, ands’ is the restriction of the mapping then there is a corresponding poipt
satisfying

/a) = w(s—l(q’))Ap tP = w(q’)(Ts_l(q,)s(el), e Ts_l(q,)s(e,,)) AptP.

st

Proof. By the definition of the integral of a form on a simplex and the mean value
theorem for integrals (ilR?), we have

/w:/w(xi)dxl...dx‘”

s Ap
= w(q)/dxl...dxp
Ap

=w(QAp,
for some poing € A,. However,
w(q) = w@)dx A... AdxP (€, ... e")
= Ts;il(q)(w)(el, -4
= (@) (T-1ip)s(€1), . .., Ti-14)s(&p)),

whereg = 5(Q).
The second statement follows by scalingn



Corollary 4.11. Lets: A, — R” be asimplexandle§;, i =0,1,..., p be the
image ofi-th face. That isS; = imagds o ®;), where the standard embedding
®;: Ap_1 — A, of thei-th face inA,, is given by
do(xt, ... xP7Y = (1= 11xk xboxrTh),
d>l-(x1, cooxP Ty = (xl, N O, X, ...,xp_l), fori # 0.
Then, for a formr; defined onS;, there is a poiny; such that
f 7 = 1) (TS (TP (D), - Tyagg s (TPi(6p-0)) ) Ap-1
Si

Hence, for a(p — 1)-form = whose restriction tc; is denoted byt;, there exist
pointsg; € S;, such that

p
/z = A1) (D 0D (T (Ti€D), . Tya(q s (T Di(€p-1))-

s i=0

Proof. The definition of the boundary of the simplex as

P
ds = Z(—l)fs o ®;

i=0
implies

[« [

ds Zi(—l)iso<I>-

sod;

W S @) (Tow2qp (5 © D@D, ..
i=0

++ Tisoty 14g (5 © ) (€-1))
P
= A[?—l Z(_l)l Ti (ql) (Ts_l(qi)S(TcDi (el))a ] Tv_l(qi)S(Tq)i (e[)—l)))
i=0
for some pointg;; € S;. O
Remark 4.12. Note that the definition of the mapping®;} implies that

(T®i(er),..., TPi(e,_1) = (e1,....&,....6), fori#0

andT ®o(e;) = €11 — €1.



5. Additional Remarks

Consider the situation where a flux field forwnis given on the oriented.
For each orientable regidR, one can use the positive orientation @R so that
T*+ = T*. Thus, the flux density 08R is induced byrg (x) = I;xs(a (x)), orin
concise notationp = Z*o.

It follows that the balance equation may be rewritten as

/,3—}— /I*o = /n.
R IR R
The Stokes’ theorem implies that this is equivalent to
[+ far=[x
R R R

wheredo is the exterior derivative of thén — 1)-form o — anm-form. Since the
balance holds for an arbitrary oriented region, one can state

Proposition 5.1. If the flux density formsyp, are consistent with the flux fieldh —
1)-differential formo, then
do+pB=m

— the differential version of the balance equation.

Remark 5.2. It is noted that in the case where a volume elenterg given on
S, any flux field formo is associated with a unique vector fieldsatisfying the
equationv.6 = o, wherev_ 6 is the contraction (interior product) of the forn
with the vector fieldv to produce arim — 1)-form. Thus, given a volume element,
it is possible to replace the flux field form byflax vector field
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