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The present work deals with the numerical calculation of the Stokes-type drag undergone by a cylindrical

particle perpendicularly to its axis in a power-law fluid. In unbounded medium, as all data are not avail-

able yet, we provide a numerical solution for the pseudoplastic fluid. Indeed, the Stokes-type solution

exists because the Stokes’ paradox does not take place anymore. We show a high sensitivity of the solu-

tion to the confinement, and the appearance of the inertia in the proximity of the Newtonian case, where

the Stokes’ paradox takes place. For unbounded medium, avoiding these traps, we show that the drag is

zero for Newtonian and dilatant fluids. But in the bounded one, the Stokes-type regime is recovered for

Newtonian and dilatant fluids. We give also a physical explanation of this effect which is due to the

reduction of the hydrodynamic screen length, for pseudoplastic fluids. Once the solution of the

unbounded medium has been obtained, we give a solution for the confined medium numerically and

asymptotically. We also highlight the consequence of the confinement and the backflow on the settling

velocity of a fiber perpendicularly to its axis in a slit. Using the dynamic mesh technique, we give the

actual transportation velocity in a power-law ‘‘Poiseuille flow’’, versus the confinement parameter and

the fluidity index, induced by the hydrodynamic interactions.

1. Introduction

Mechanical properties of plastics are enhanced by the addition

of fibers which can take different aspects. In particular, short fibers

filled thermoplastics are often employed in the injection of com-

posite materials processes. The mechanical properties of the com-

posite parts obtained depend on the kinematics of the process flow.

In turn, this kinematics depends on the rheological properties of

the suspension, which itself relies on the dynamics of each particle.

This dynamics has to take into account of their hydrodynamic

interactions with the wall of the container and with other particles.

Indeed, these effects are often neglected in modeling despite the

high concentrations used in industrial processes. This commonly

used hypothesis (which is true only in dilute regime) leads to the

wrong estimation of the real velocity of transportation and rotation

of the particle, particularly in concentrated regime. Let us also re-

call that these interactions control the orientation distribution

function of fibers, which is not discussed here. In fact, the effect

of these interactions has been tackled by many researchers, as

Sepehr et al. [1]. But in this study, due to the complexity of the

problem, we tried to give a physical understanding of the effect

of these interactions in a power-law fluid, which can induce a more

or less high range of the screen length velocity field, controlled

through the fluidity index. Then, the first step to understand these

interactions leads us to study the basic hydrodynamics related to

the transportation of an individual circular cylindrical particle in

a confined situation. The justification of the use of this model in

Newtonian fluids at high concentration has been made by Champ-

martin and Ambari [2]. To do so, we have chosen a simple model

constituted by an infinitely long circular cylinder of radius a, trans-

lating uniformly midway perpendicularly to its axis, between two

parallel plane walls distant of 2b (Fig. 1). It is important to recall

that some viscoelastic fluids are able to act on the structure forma-

tion in suspensions [3,4]. In the present study, as the elongational

strain rates upstream and downstream of the particle are low en-

ough (low Deborah number), we are concerned in a first step only

by the effect of the shear thinning or shear thickening behavior on

these hydrodynamic interactions, in a non-Newtonian suspending

fluid. In this case, the rheology of the suspending fluid is approxi-

mated by the most commonly used Ostwald–de Waele law.

First of all, in an unlimited medium, there is no solution for the

Stokes equation for a cylinder in Newtonian fluid [5–7]. The conse-

quence of this paradox is that the drag per unit length of the

cylinder tends towards zero when Re ! 0 as confirmed by Lamb’s

solution [7]. FLamb
x ¼ 4plUx=½1=2� cþ lnð8=ReÞ�with c ¼ 0:5772. . .

the Euler constant. Nevertheless, we showed in Newtonian fluid

that the Stokes-type solution is obtained in the confined medium

at low Reynolds numbers. Otherwise, the Stokes-type solution is

also obtained for a finite length rod in the approximation of the

slender body theory given by Batchelor [8]. Besides, when the sus-

pending fluid exhibits a shear thinning or shear thickening non-

Newtonian rheology, the hydrodynamic screen length is strongly

 doi:10.1016/j.jnnfm.2011.07.004

⇑ Corresponding author. Tel.: +33 241207362; fax: +33 241207362.

E-mail addresses: ambari@ensam.eu, abdelhak.ambari@angers.ensam.fr

(A. Ambari).

http://dx.doi.org/10.1016/j.jnnfm.2011.07.004
mailto:ambari@ensam.eu
mailto:abdelhak.ambari@angers.ensam.fr             
http://dx.doi.org/10.1016/j.jnnfm.2011.07.004
http://www.sciencedirect.com/science/journal/03770257
http://http://www.elsevier.com/locate/jnnfm


affected. Then, as we will see, in the shear thinning case, the local-

ization of the flow near the cylinder leads to expect the disappear-

ance of the Stokes’ paradox for n < 1 as the confinement does.

However, in the Newtonian and shear thickening fluids, the in-

crease of the long range hydrodynamic perturbation around a cyl-

inder should imply the existence of Stokes’ paradox. The first

person expecting this behavior was Tanner [9] followed by Maru-

s̆ić-Paloka [10].

Finally, in this study, we are dealing with the evaluation of the

drag undergone by a cylindrical particle, transported through a

power-law fluid in confined media at low Reynolds numbers. Then,

we provide an accurate calculation of the effect of the hydrody-

namic interactions numerically and asymptotically.

Taking into account of all these results, and particularly the sen-

sitivity to the inertia, we will give a study on the drag submitted by

a cylinder in a confined situation and we will calculate the relative

velocity of the transportation of a free cylindrical particle in a

power-law ‘‘Poiseuille flow’’.

2. Mathematical formulation and numerical approach

2.1. Mathematical formulation

The problem we are dealing with is the flow of a fluid around a

cylinder, of radius a, falling midway and parallel to two planes dis-

tant of 2b, shown schematically in Fig. 1. For easiness of the calcu-

lations, it is assumed that the cylinder is set and both walls are

moving with the fluid velocity �U0ex. In fact, as the apparent vis-

cosity of the power-law fluid does not depend on the sign of the

velocity gradient, both procedures are equivalent. The flow is gov-

erned by the usual conservation equations for mass and momen-

tum under isothermal conditions, i.e.

r � V ¼ 0

qð@tV þ ðV �rÞVÞ ¼ �$pþ $ � s

(

where q is the fluid density, p the pressure and s the extra-stress

tensor for the power-law fluid. At very low generalized Reynolds

numbers Ren ¼ qU2�n
0 ð2aÞn=m, the governing equations are written

in a dimensionless form using the following dimensionless vari-

ables: x ¼ x�=a; y ¼ y�=a;V ¼ V
�=U0; t ¼ t�=sv ; p ¼ ap�=lap0U0;lap

¼ l�
ap=lap0;w ¼ w�=a2U0 and x ¼ x�U0=a where lap0 ¼ m U0=að Þn�1

and sv ¼ qa2=lap0 is the characteristic time of vorticity diffusion

and the superscript (⁄) represents the dimensional quantities. Un-

der these conditions the problem is controlled by the three follow-

ing parameters: the aspect ratio k ¼ a=b which is the geometrical

confinement parameter, the power-law fluidity index n and the

generalized Reynolds number Ren. At low Reynolds numbers, these

equations can be expressed in the stream function w and vorticityx
formulation as:
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The velocity boundary conditions become:

(i) on the plane walls: Vðx; y ¼ �1=k; tÞ ¼ �ex. Thus wðx; y
¼ b=aÞ ¼ b=a;

(ii) on the cylinder, the no-slip boundary condition V ¼ 0 on the

fixed cylinder conducts to wðx; yÞ ¼ Cst for all points ðx; yÞ of
the circular profile;

(iii) upstream and downstream, the flow is uniform of velocity

Vðx; y ! �1; tÞ ¼ �ex. Thus wðx ! �1; yÞ ¼ y and

xðx ! �1; yÞ ¼ 0.

2.2. Numerical method

To compute solutions for w and x corresponding to the flow

around a cylindrical particle, the governing Eqs. (1) and (2) are

rewritten in a curvilinear and orthogonal frame ðX; YÞ matching

perfectly the boundaries of the cylinder and the walls [11]. Using

the singularities method we generate a conformal mapping from

curved borders to a rectangular one. This grid is built with the

equipotential lines Xðx; yÞ ¼ Cst and streamlines Yðx; yÞ ¼ Cst, cor-

responding to the flow of an inviscid fluid (see Fig. 2, given here

for the confinements k ¼ 0:99 and k ¼ 0:44) [11]. The meshing is

performed using a combination of the singularities method and

the finite differences technique.

The computation of the stream and vorticity functions equa-

tions is carried out by the finite differences method using the suc-

cessive over-relaxation (SOR) and the alternating direction implicit

(ADI) techniques [12–16] respectively to calculate the functions w

and x of the fluid. For a given confinement parameter k, once the

stream function and the vorticity have been obtained, the dimen-

sionless wall correction factor of the drag kðn; kÞ exerted by the

fluid on the particle, is obtained by the normalization of the actual

force by the characteristic one F0 ¼ 4pm U0=2að Þn�1U0 (Eq. (3)). The

total actual drag is computed by integrating the viscous and pres-

sure stresses over the surface of the cylinder:

kðn; kÞ ¼ Fðn; kÞ=F0

For the computation, we used a sixteen parallelized core cluster and

we successfully checked the influence of the spatial resolution for

Fig. 1. Sketch of the motion of a cylinder perpendicularly to its axis in the midplane

position between two parallel walls.



each confinement. The convergence of the computation is supposed

to be reached when the following criterion is checked:

1� klðn; kÞ=klþ1ðn; kÞ
�

�

�

�

�

� < 10�6

2.3. Alternative numerical method

To validate this numerical method, we verified the numerical

results by the use of the finite volume CFD code FLUENT, where

the SIMPLE algorithm was employed with a second order scheme

on a structured mesh. The convergence criteria used is the same

as the one used previously. All the data obtained by this CFD code

corroborate our numerical technique. Thus, the accuracy of the two

numerical methods is mutually confirmed.

3. Stokes-type force in unbounded medium

In this problem, we give first the results concerning the un-

bounded medium and why the problem is sensitive to the inertia

when Stokes’ paradox would take place. So, when the ‘‘Stokes-type

solution’’ exists, it is not difficult to establish, using dimensional

analysis, that the correction factor kðn; kÞ of the force undergone

by the cylinder translating at a constant velocity in the midplane

(Fig. 1) is given by:

Fðn; kÞ=l ¼ �4pm
U0

2a

� �n�1

U0kðn; kÞex ð3Þ

where k ¼ a=b is the confinement factor, m and n are respectively

the consistency coefficient (Pa sn) and the power-law index of the

fluid corresponding to the following constitutive equation:

rij ¼ �pdij þ 2mj2dkldkljðn�1Þ=2dij ð4Þ

where rij are the Cauchy stress tensor components, dij ¼ 1
2
ðV i;j þ V j;iÞ

are the rate of deformation tensor components and p the pressure.

To normalize the results, we calculated numerically, in unbounded

medium, the correction factor kðn; k ¼ 0Þ using the numerical meth-

od presented in Sections 2.1 and 2.2. In fact, the correction factor for

the drag in unbounded medium for a cylindrical particle kðn; k ¼ 0Þ
has not received as much attention as in the case of a spherical par-

ticle. In the Fig. 3, we compared the numerical results to those ob-

tained first by Tanner [9] (who used a perturbation method). His

first results, for k ¼ 0, are in agreement with the present numerical

results only for 0:7 6 n < 1. But his second results, obtained by the

boundary element method for k � 10�2, are not in accordance with

the present results. Ferreira and Chhabra (k ¼ 2:5 10�3) [17], who

give values for 0:6 6 n < 1, overestimate the calculation of

kðn; k ¼ 0Þ, probably due to the effect of the confinement, as we will

show in this section. Whitney and Rodin [18], using finite element

method, also overestimate the calculation of this correction factor

for 0:6 6 n 6 0:9, but give numerical results in good accordance

with the present ones, for 0:1 6 n < 0:6, as shown in this same fig-

ure. Similar results have been obtained by Sivakumar et al. [19] and

are added on the Fig. 3. Faced to this situation, we try to give an

accurate numerical result, taking into account of the difficulty re-

lated to the influence of the confinement and the inertia which ap-

pears earlier at low generalized Reynolds numbers for n � 1. In fact,

for low values of n ðn ¼ 0:6Þ, we show in the Fig. 4a that the inertia

appears at relatively high Reynolds numbers (at Ren ¼ 10�1, we

deviate from the plateau regime), and the low confinement needed

to achieve the unbounded medium is at least about 10�3. Indeed,

due to the inhomogeneity of the viscosity, the non-inertial regime

takes place while we do not leave the plateau regime. Contrary to

the previous case, for n ¼ 0:9, which is in the vicinity of the Newto-

nian case, the Fig. 4b shows that the inertia takes place above

Ren ¼ 10�6. This fact is due to the increase of the sensitivity to the

inertia in the proximity of the critical point where the Stokes’ par-

adox takes place. Faced to both results, it is easy to understand why

low values of the confinement and the Reynolds number are needed

to obtain an unbounded medium, as shown in the Fig. 5. Thus, the

overestimation of the correction factor may be due either to the

higher confinement or the higher generalized Reynolds number.

This same figure shows also that the drag force is not zero for

n P 1 for relatively high confinements, in contrary to the expected

results in this range of n where the Stokes’ paradox takes place and

the drag force must be zero. This result shows that the Stokes type

force exists in this last range in a bounded medium, as in the New-

tonian case. The proof of this result is given in the Fig. 4c, showing

that the plateau regime can be achieved. Moreover, for information

only, in the Fig. 5, we also give the values of kðn; k ¼ 0Þ obtained by

the classical minimum of dissipation method which was applied by

Tomita [20] and Wasserman and Slattery [21], where the approxi-

mate stream function w used by Tanner [9] for its perturbation cal-

culation, depending on two parameters ðp; qÞ, is employed:

w ¼ U0r sin h 1þ q

p� q

r

a

� �p

þ p

p� q

r

a

� �q
� �

ð5Þ

The approximate solution for the force in an unbounded medium

was obtained by the minimization of the energy dissipation. The

Fig. 2. The orthogonal grid structure for different aspect ratios: (a) k ¼ 0:99, (b)

k ¼ 0:44 corresponding to the equipotential and the streamlines.

Fig. 3. Comparison between the present numerical results and those obtained

previously by different authors.



correction factor for the drag Fðn; k ¼ 0Þ is then given by the follow-

ing expression:

kðn; k ¼ 0Þ ¼ ð2aÞn�1

2pmUnþ1
0

Z 1

a

Z p

0

/rdhdr ð6Þ

where:

/ ¼ m½4ðd2
rr þ d

2
rhÞ�

ðnþ1Þ=2

a

b

c

Fig. 4. Influence of the confinement on the critical Reynolds number marking the

rise of the inertia: (a) for n ¼ 0:6, (b) for n ¼ 0:9, (c) for n ¼ 1:4.

Fig. 7. Evolution of the drag correction factor kðn; kÞ undergone by a cylinder in a

confined medium filled with a power-law fluid (numerical and asymptotical

results).

Fig. 6. Evolution of the velocity field and the screen length vs. the radial distance

for different indexes n in unbounded medium.

Fig. 5. Correction factor of the drag force undergone by a cylinder versus the index

of fluidity n, showing the appearance of a Stokes-type solution due to the removal of

the Stokes’ paradox in shear thinning fluids and that due to the sensitivity to

confinement for n P 1.



is the Rayleigh dissipation function for a power-law fluid. The min-

imization of kðn; k ¼ 0Þ was made by the use of ‘‘Mathematica’’. For

0:4 6 n < 1, this method gives results which are in good agreement

with the numerical ones and seems to give more accurate results for

0:9 6 n 6 1, because they converge to the zero-value expected by

Lamb’s solution. Unfortunately, the results obtained by this method

overestimate slightly the numerical results for 0 6 n < 0:4. For this

reason, we adopted the numerical procedure.

In conclusion, faced to all the results obtained, we propose a

polynomial interpolation formula giving the values of kðn; k ¼ 0Þ
for 0 6 n 6 1:

kðn; k ¼ 0Þ ¼ 0:978þ 1:202n� 4:047n2 þ 1:382n3 þ 1:925n4

� 2:758n5 þ 1:328n6 ð7Þ

Finally, in unbounded medium, the Fig. 5 shows that the drag

force is zero for n P 1, where the Stokes’ paradox takes place,

due to the increase of the hydrodynamic screen length as shown

in Fig. 6. This last figure also explains why, for n < 1, the Stokes’

paradox disappears as in a bounded medium, due to the decrease

of the hydrodynamic screen length. Taking into account of all these

results, and particularly the sensitivity to the inertia, we will give a

study on the drag submitted by a cylinder in a confined situation,

and we will calculate the relative velocity of the transportation of a

free cylindrical particle in a power-law ‘‘Poiseuille flow’’. But be-

fore, let us give some results on the influence of the fluidity index

on the sedimentation velocity of a fiber perpendicularly to its axis

in two configurations.

4. Sedimentation in power-law fluids

4.1. Cylindrical particles in a uniform bounded flow

We are often concerned by the study of the hydrodynamic

interactions between particles and walls as they arise during their

sedimentation in Newtonian or non-Newtonian fluids, for example

during the injection process of fiber-reinforced thermoplastics. To

provide an estimation of the correction factor of this settling veloc-

ity, we give in Fig. 7 the correction factor for the drag undergone by

a cylindrical particle in confined situation versus the normalized

wall distance e ¼ ð1� kÞ=k ¼ ðb� aÞ=a for different fluidity in-

dexes. Taking into account of the previous discussion concerning

the sensitivity to the inertia, before any calculation, we verified

that we are in the Stokes-type regime. To check the accuracy of

the numerical results obtained in this problem, we proceed to an

asymptotic approach in the lubrication regime to determine

kðn; kÞ when the diameter of the cylinder becomes very close to

the distance between both plane walls ðk ! 1Þ. In this situation,

all the dissipation is localized in the smallest gap, between the cyl-

inder and the plane walls, of unknown limit (this effect has been

confirmed by the numerical calculation of the vorticity in the

transversal section of the cylinder). In this case, the drag forces

can be estimated from the pressure and viscous forces induced

by the backflow. In this Fig. 7, we can show the good agreement be-

tween the numerical calculations and the asymptotical ones, for-

mula (8), even in dilatant fluids where the Stokes’ paradox does

not take place anymore due to the confinement (n ¼ 1:4). We also

remark that when n decreases, the drag force is less and less sen-

sitive to the wall hydrodynamic interactions, confirmed by the fact

that the more the fluid is shear thinning, the more the screen

length decreases (Fig. 6). Given these results, the study of the

dynamics of fiber suspensions in non-Newtonian fluids has to take

account of these interactions, especially when the fluid is dilatant.

But, in pseudoplastic fluids, these interactions are all the more re-

duced so that n is far smaller than one. In order to evaluate sepa-

rately the contributions of the pressure and viscosity forces on

the total drag, we compared in Fig. 8a and b the numerical and

asymptotic calculations of kpðn; kÞ and kv ðn; kÞ (formulas (8) and

(9)) which are limited to the first term where �0=a is the smallest

gap between the cylinder and the walls:

kðn; k ! 1Þ ¼ kpðn; k ! 1Þ ¼ 2ð4n�1Þ=2
ffiffiffiffi

p
p 1þ 2n

n

� �n

� C 2nþ 1
2


 �

C 2nþ 1ð Þ
e0
a

� ��ð4nþ1Þ=2
; for n P 0 ð8Þ

kvðn; k ! 1Þ ¼ 2ð6n�5Þ=2
ffiffiffiffi

p
p 1þ 2n

n

� �n

� C 2n� 1
2


 �

C 2nð Þ
e0
a

� ��ð4n�1Þ=2
; for n >

1

4
ð9Þ

Both Figs. 8a and b show that for high confinements (k � 1), the

pressure component dominates. In fact, Fp dominates Fv at any con-

finement in pseudoplastic fluids as in an unbounded medium. In the

lubrication limit, we obtain a large pressure drop over the long

length of the gap, much higher than the local viscous shear stresses.

This pressure is exerted over the entire front and back surfaces of

the cylinder, which is an area much greater than the one located

in the small gap where the viscous shear stresses act. Thus the

(a)

(b)

Fig. 8. Evolution of the contributions to the drag correction factor undergone by a

cylinder in a confined medium filled with a power-law fluid (numerical and

asymptotical results): (a) pressure contribution kpðn; kÞ, (b) viscous contribution

kv ðn; kÞ.



pressure contribution to the drag force dominates the viscous con-

tribution by orders of magnitude. In Fig. 8b, the limit of the asymp-

totic method to evaluate the viscous force for very low values of n

comes from the singular behavior of CðxÞ function, which diverges

at x ¼ 0 corresponding to n ¼ 1=4. Besides, the relative contribution

of the pressure force over the viscosity one in the lubrication regime

can be obtained by the ratio R n; kð Þ ¼ Fpðn; k ! 1Þ=Fvðn; k ! 1Þ
through the following asymptotic formula:

R n; kð Þ ¼ Fpðn; k ! 1Þ
Fvðn; k ! 1Þ ¼

kpðn; kÞ
kvðn; kÞ

¼ 1

2n

4n� 1

n

� �

e0
a

� ��1

; for n >
1

4
ð10Þ

Finally, in Fig. 9a, we give a comparison of the exponent f ðnÞ of the
power-law behavior of kpðn; kÞ ¼ kðn; kÞ / e0=að Þf ðnÞ corresponding

to the numerical results and the exponent expected theoretically

by the asymptotical approach: f ðnÞ ¼ � 4nþ 1ð Þ=2. The good agree-

ment confirms again the accuracy of both approaches. At the same

time, we also compare in Fig. 9b the exponent gðnÞ of the power-law

variation kvðn; kÞ / e0=að ÞgðnÞ to those predicted by the asymptotic

calculation gðnÞ ¼ � 4n� 1ð Þ=2. In this curve, the slight deviation

at low values of indexes of fluidity is due to the weakness of the

estimation of the viscosity component by the asymptotic approach

which probably needs the calculation of the higher order terms in

this range of n. In fact, for very shear-thinning fluids, those with

n < 0:25, the very high shear rates in the thin gap make the thinned

viscosity negligibly small. In this condition, the leading contribution

to the viscous stresses no longer comes from the small gap, but

comes from the region away from the gap. Nevertheless, the numer-

ical values remain accurate. In fact, for n ¼ 0, gðnÞ must be equal to

zero because kvðn ¼ 0; kÞ is constant and equal to the value we ob-

tained for the flow of a Bingham fluid at very high Bingham num-

bers as in an unbounded medium. At this step, we will give some

applications of these results. The first one concerns the effect of

the backflow on the settling velocity of a cylindrical particle in

power-law fluids for a fixed distance between two walls. The sec-

ond one concerns the sedimentation of a given cylindrical particle

in a bounded medium for different confinements.

(a)

(b)

Fig. 9. Comparison of the numerical slopes f ðnÞ and gðnÞ of the power-law behavior

with the asymptotic one: (a) total and pressure drag force, (b) viscosity drag force.

(a)

(b)

Fig. 10. Evolution of the normalized sedimentation velocity of a cylinder in a given

container filled with a power-law fluid vs. its confinement factor k: (a) when the

Stokes’ paradox does not take place, (b) when the Stokes’ paradox appears in

unbounded medium.



4.2. Effect of the backflow on the particle settling velocity for different

diameters in a given container

We consider a slit of rectangular cross section constituted by

two parallel planes positioned at fixed distance 2b and cylindrical

particles of different diameters 2awhich are settling down perpen-

dicularly to the gravity vector (Fig. 1). If this cylindrical particle is

very long and highly confined, it has been established that the end

effects are negligible [2,22]. For pseudoplastic fluids, for which the

Stokes’ type solution exists, we study the influence of the fluidity

ðnÞ and the backflow on the settling velocity. We plot in Fig. 10a

the normalized sedimentation velocity by that achieved in an infi-

nite medium Uðn; b; k ¼ 0Þ by a cylindrical particle of radius b,

where the density difference is held constant:

Uðn; a; kÞ
Uðn; b; k ¼ 0Þ ¼

kðn; k ¼ 0Þ
kðn; kÞ

� �1=n

k
ðnþ1Þ=n ð11Þ

with Uðn; b; k ¼ 0Þ ¼ 2n�3

kðn; k ¼ 0Þ
Dqgbnþ1

m

!1=n

ð12Þ

In this curve, we show that, for a given distance between the paral-

lel walls 2b, the sedimentation velocity of a cylindrical particle

passes through a maximum for a critical diameter value 2acr . This

striking effect is physically due to the competition between the in-

crease of the particle weight as a2 and the hydrodynamic friction

generated by the backflow which is proportional to akðn; a=bÞ. At
very low confinements (k � 0), as the weight dominates, the

asymptotic curve in the vicinity of k ¼ 0 is a power-law of the con-

finement: aðn; kÞ / k
ðnþ1Þ=n

. However, for high confinements (k � 1),

the asymptotic Eq. (8) gives us the asymptotic behavior:

Uðn; a; kÞ
Uðn; b; k ¼ 0Þ 	 AðnÞð1� kÞð4nþ1Þ=2n ð13Þ

where

AðnÞ ¼ n

2nþ 1

� �

kðn; k ¼ 0Þ
ffiffiffiffi

p
p

2ð4n�1Þ=2
Cð2nþ 1Þ
Cð2nþ 1=2Þ

� �1=n

In the pseudoplastic fluid, as the backflow depends on the fluidity

index n, we observe that the more n decreases from one to zero,

the more the critical position of the maximum increases

(Fig. 11a). Indeed, for lower values of n, the backflow needs only a

very low gap between the particle and the wall because of the

decrease of its hydrodynamic screen length (Fig. 6). The other

noticeable effect is that the maximum of the settling velocity corre-

sponding to this critical situation varies non-monotonically, passing

through an optimum value for n ¼ 0:55. Besides, in the conditions

where the Newtonian or dilatant fluid is confined, a solution of

the Stokes-type exists but in an unbounded medium, the drag force

is zero due to the fact that the Stokes’ paradox takes place. In these

conditions, the Fig. 10b shows the same behavior for the settling

velocity as discussed above except the fact that the normalization

is made by the use of a characteristic velocity U�ðn; bÞ correspond-
ing to a cylindrical particle of radius b:

Uðn; a; kÞ
U�ðn; bÞ ¼ kðn; kÞ�1=nk

ðnþ1Þ=n ð14Þ

where

U�ðn; bÞ ¼ 2n�3
Dqgbnþ1

m

!1=n

ð15Þ

The consequence of these results is that during the sedimentation of

polydisperse suspension, we expect fluctuations of settling velocity

of each particle, all the more larger so that the confinement is

important.

Otherwise, to study the influence of the concentration on the

settling velocity for a pseudoplastic fluid, we give in Fig. 12, for

0:4 6 n < 1, the evolution of the effect of the confinement on the

sedimentation velocity of a given cylindrical particle in a slit of

rectangular cross section constituted by two parallel walls at dif-

ferent distances 2b. These results show that when the fluid be-

comes slightly shear thinning, the sedimentation velocity of

fibers decreases strongly with the confinement. But this decrease

is reduced when the fluid becomes more shear thinning (n 
 1).

5. Effect of the confinement on the transportation velocity-shift

In order to verify the validity of the assumption commonly used

in some studies concerning the transportation of fibers (in injec-

tion processes for example), which consists in the free particle

and the unperturbed fluid having the same velocity [23], we study

the transportation velocity of a free non-buoyant cylindrical parti-

cle in the power-law fluid flow induced by a pressure gradient DP

in a slit of aperture 2b. This hypothesis must be acceptable in dilute

regime but as the concentrations used in industry are high, we ex-

pect that the hydrodynamic interactions coupled to the nonlinear

rheological behavior induce a shift of this velocity which has not

been studied yet to our knowledge. As the problem is fundamen-

tally nonlinear, the determination of the real transportation veloc-

ity of the particle constitutes a nonlinear inverse problem which is

difficult to solve. For these reasons, we first used a dynamic mesh

(a)

(b)

Fig. 11. (a) Evolution of the normalized critical radius of a cylinder sedimenting at

its maximum velocity vs. the index n, (b) Evolution of the maximum normalized

sedimentation velocity vs. the fluid index n.



method described below. Even if the problem seems to be nonlin-

ear, we tried to verify the validity of the use of the superposition of

states.

5.1. Dynamic mesh method

To solve numerically this inverse problem, we used the dynamic

mesh method available in the CFD FLUENT code. The numerical

resolution used here is the same as described in Section 2.3. This

dynamic mesh technique implies, for each time step, the rigid mo-

tion (which can be a translation or a rotation) of some boundaries

relative to others. The mesh is then adjusted according to the new

position of the moving boundaries. In this case, due to the symme-

try and the invariance of the kinematics of the flow under transla-

tion, the dynamic mesh technique consists only in moving the

mesh cells with the particle in order to avoid any deformation of

the grid. The procedure used to solve this inverse problem consists

in the determination of the translation velocity needed to be super-

posed to the unperturbed power-law fluid flow at which the drag

force applied to the cylinder is reduced to zero corresponding to

the free motion of the cylindrical particle. This critical velocity con-

stitutes the actual transportation velocity shift.

5.2. Cylindrical particle in a ‘‘Poiseuille’’ flow

In the assumption of a very weak nonlinearity, the second

method consists in the use of the superposition technique (as for

Newtonian fluids [24]). The use of this method needs to determine

the drag force undergone by a cylindrical particle placed in the

symmetry plane in a power-law ‘‘Poiseuille cross flow’’. The fluid

is driven by a pressure gradient DP=L corresponding to an imposed

velocity profile, solution of the laminar flow of a power-law fluid in

a slit, at the upstream and the downstream of the cylinder (avoid-

ing the entrance effects):

uxðyÞ ¼ Umax 1� y

b

� �ð1=nÞþ1
� �

ex ð16Þ

where Umax is the maximum value taken by the velocity in the

power-law ‘‘Poiseuille flow’’. In these conditions, the forces exerted

on a cylinder can be also written as:

F
Poisðn; kÞ=l ¼ 4pm

Umax

2a

� �n�1

Umaxk
Poisðn; kÞex ð17Þ

In this section, to calculate the drag force, we used the same formu-

lation and numerical method as described in Section 2, with an

Fig. 13. Evolution of the drag correction factor kPoisðn; kÞ undergone by a confined

cylinder in the ‘‘Poiseuille type flow’’ of a power-law fluid (numerical and

asymptotical results).

Fig. 12. Evolution of the settling velocity of a confined cylindrical particle, relative

to the velocity achieved in unbounded medium.

(a)

(b)

Fig. 14. Evolution of the contributions to the drag correction factor undergone by a

confined cylinder in the ‘‘Poiseuille type flow’’ of a power-law fluid (numerical and

asymptotical results): (a) pressure contribution k
Pois
p ðn; kÞ, (b) viscous contribution

kPois
v

ðn; kÞ.



imposed velocity profile given in the formula (16) upstream and

downstream far from the cylinder. In Fig. 13, we plotted the correc-

tion factor of the drag kPoisðn; kÞ. In the same way, the components of

the pressure kPoisp ðn; kÞ and the viscosity kPois
v

ðn; kÞ are given respec-

tively in Fig. 14a and b. The successful comparison with the asymp-

totic formulas (18), (19) in this power-law ‘‘Poiseuille flow’’

confirms again the accuracy of the numerical results.

kPois n; k ! 1ð Þ ¼ kPoisp n; k ! 1ð Þ ¼ 2ð4n�1Þ=2
ffiffiffiffi

p
p nþ 1

n

� �n

� C 2nþ 1
2


 �

C 2nþ 1ð Þ
e0
a

� ��ð4nþ1Þ=2
; for n P 0 ð18Þ

kPois
v

ðn; k ! 1Þ ¼ 2ð6n�5Þ=2
ffiffiffiffi

p
p nþ 1

n

� �n

� C 2n� 1
2


 �

Cð2nÞ
e0
a

� ��ð4n�1Þ=2
; for n >

1

4
ð19Þ

Nevertheless, the same remarks as in the uniform flow concerning

the range of n of validity of the viscosity component of the drag

can be applied here. Otherwise, the same plot analysis concerning

the slopes f ðnÞ and gðnÞ given in the Fig. 9a and b is obtained for

the power-law ‘‘Poiseuille flow’’.

Finally, if the superposition of states was permitted, then the

flows corresponding respectively to the uniform and the power-

law ‘‘Poiseuille flow’’ can be superposed to determine the transla-

tion velocity of a free particle at which the drag force is zero.

Fx=l ¼ �4pm
Uparticle

2a

� �n�1

Uparticlekðn; kÞ

þ 4pm
Umax

2a

� �n�1

Umaxk
Poisðn; kÞ ¼ 0 ð20Þ

Then, the transportation velocity of the free particle normalized by

the velocity of the unperturbed fluid at the symmetry plane of the

slit Ufluid ¼ Umax in the power-law ‘‘Poiseuille flow’’ is plotted against

the confinement factor in Fig. 15. For all fluidity indexes n, the

velocity shift of the particle increases with the confinement (i.e.

the concentration) due to the hydrodynamic interactions with the

plane walls. Otherwise, it is surprising that the results obtained

by the superposition method are in good agreement with those ob-

tained by the direct dynamic mesh technique for 0:7 6 n 6 1:4. This

fact confirms the validity of the hypothesis of the weak nonlinearity

of the power-law fluid problem. However, for n ¼ 0:5 and n ¼ 0:4

(i.e. the low values of n), the dynamic mesh seems to give good re-

sults but the superposition method seems not to be usable anymore

with the exception of k � 1. In fact, in the Fig. 16, where we give this

shift velocity versus the index of fluidity for different confinements,

we can show that the accuracy of the calculation can be proved by

the good value obtained in the limit of k � 0 (very dilute regime).

We show also that in the limit of k � 1, the particle moves at the

same mean fluid velocity in the slit in which:

Uparticle

Ufluid

¼ nþ 1

2nþ 1
ð21Þ

The results in Fig. 15 prove finally that the shift of the particle

velocity relative to that of the fluid is more important than the

Newtonian fluid in dilatant fluids but it is reduced for high concen-

trations in pseudoplastic fluids when the fluid becomes more and

more shear thinning. The consequence of these last results is that

during the injection of the fibers in polymers, the error committed

using Tucker’s hypothesis is reduced for very low values of n. How-

ever, for dilatant fluids, this error is amplified. These remarks con-

cerning the shift of velocity can be applied to the transportation

of any particle in non-Newtonian fluids having a shear thinning or

shear thickening behavior.

6. Conclusion

In this study, we provided a numerical solution to the Stokes-

type problem concerning the drag submitted by a cylinder in a

power-law fluid. Indeed, once the sensitivity to the inertia and

the confinement has been clarified, we showed that in a pseudo-

plastic unbounded medium, the Stokes-type solution exists due

to the fact that the Stokes’ paradox does not take place anymore.

Then, we give numerical results for this problem, for which all

the data are not available yet. At this occasion, we give a physical

explanation of this surprising effect which is due to the ‘‘virtual

hydrodynamic confinement’’ of the flow induced by the reduction

of the hydrodynamic screen length when n < 1. Besides, in dilatant

fluids, we show that the drag force in unbounded medium is zero

due to the Stokes’ paradox which still takes place for n P 1. This is

due to the increase of the screen length for Newtonian and dilatant

fluids. When the problem is confined geometrically, we showed

that the drag force is not anymore zero due to the existence of

the Stokes-type solution as established in the Newtonian case

[2]. Otherwise, once the solution for the unbounded medium is

established, we give a solution for the confined medium

Fig. 15. Evolution of the velocity taken by a cylindrical particle transported in a

‘‘Poiseuille type flow’’ of a power-law fluid normalized by the unperturbed fluid

velocity vs. its confinement.

Fig. 16. Evolution of the velocity taken by a cylindrical particle transported in a

‘‘Poiseuille type flow’’ of a power-law fluid normalized by the unperturbed fluid

velocity vs. its fluidity index n.



numerically and asymptotically. The successful comparison, which

confirms the validity of the calculation, leads us to give a solution

of the settling of a fiber perpendicularly to the gravity vector, and

particularly in a given slit. Using the dynamic mesh technique, we

solved the inverse nonlinear problem consisting on the determina-

tion of the shift velocity of a non-buoyant cylindrical particle con-

veyed by a power-law ‘‘Poiseuille flow’’, induced by the

hydrodynamic interactions. These results show that, the more n

decreases, the more the shift velocity is reduced in comparison

to the Newtonian case. To verify the strength of the nonlinearity

of this problem, we compare the numerical results with those ob-

tained by the technique of superposition which is valid only for

very weak nonlinearities. This assumption seems to be acceptable

only for large values of n. The consequence of this last result on the

transportation of particles is that during the injection process of fi-

bers, the attenuation of the relative velocity with that of the non-

perturbed fluid particle for pseudoplastic fluids reduces the effect

of hydrodynamic interactions.
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