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Noisy quantization

theory and practice

Camille Brunet and Sébastien Loustau∗

Université d’Angers, LAREMA

Abstract

The effect of errors in variables in quantization is investigated. Given a noisy sample Zi = Xi +
ǫi, i = 1, . . . , n, where (Xi)i=1,...,n are i.i.d. with law P , we want to find the best approximation of the
probability distribution P with k ≥ 1 points called codepoints. We prove general excess risk bounds
with fast rates for an empirical minimization based on a deconvolution kernel estimator. These rates
depend on the behaviour of the density of P and the asymptotic behaviour of the characteristic
function of the noise ǫ. This general study can be applied to the problem of k-means clustering with
noisy data. For this purpose, we introduce a deconvolution k-means stochastic minimization which
reaches fast rates of convergence under standard Pollard’s regularity assumptions.

We also introduce a new algorithm to deal with k-means clustering with errors in variables.
Following the theoretical study, the algorithm mixes different tools from the inverse problem liter-
ature and the machine learning community. Coarsely, it is based on a two-step procedure: (1) a
deconvolution step to deal with noisy inputs and (2) Newton’s iterations as the popular k-means.

1 Introduction

The goal of empirical vector quantization (Graf and Luschgy [2000]) or clustering (Hartigan
[1975]) is to replace multivariate data by an efficient and compact representation, which allows one
to reconstruct the original observations with a certain accuracy. The problem was originated in
signal processing and has many applications in cluster analysis or information theory. The basic
statistical model could be described as follows. Given independent and identically distributed (i.i.d.)
R

d-random variables X1, . . . , Xn, with unknown law P with density f on R
d with respect to the

Lebesgue measure, we want to propose a quantizer g : x ∈ R
d 7→ {1, . . . , k}, where k ≥ 1 is a given

integer. The most investigated example of such a framework is probably cluster analysis, where the
aim is to build k clusters of the set of observations X1, . . . , Xn. In this framework, a quantizer g
assigns cluster g(x) ∈ {1, . . . , k} to an observation x ∈ R

d.
However, in many real-life situations, direct data X1, . . . , Xn are not available and measurement

errors may occur. Then, we observe only a corrupted sample Zi = Xi + ǫi, i = 1, . . . n with noisy
distribution P̃ , where ǫ1, . . . , ǫn are i.i.d. independent of X1, . . . , Xn with density η. The problem of
noisy empirical vector quantization is to represent compactly and efficiently the measure P when a
contaminated empirical version Z1, . . . , Zn is observed. This problem is a particular case of inverse
statistical learning (see Loustau [2013]), and is known to be an inverse problem. To our best knowl-
edge, it has not been yet considered in the literature. This paper tries to fill this gap by giving (1) a
theoretical study of this problem and (2) an algorithm to deal with clustering from a noisy dataset.

A quiet natural habit in statistical learning is to endow clustering or empirical vector quantization
into the general and extensively studied problem of empirical risk minimization (see Vapnik [2000],
Bartlett and Mendelson [2006], Koltchinskii [2006]). This is exactly the guiding thread of this
contribution. For this purpose, we consider a metric space (G, d), where G is a class of classifiers or
quantizers (possibly infinite-dimensional space). We also introduce a loss function ℓ : G × R

d where
ℓ(g, x) measures the loss of g at point x. In such a framework, the measure of the accuracy of g will
be evaluated thanks to a distortion or risk given by:

R(g) = EP ℓ(g,X) =

∫

Rd

ℓ(g, x)f(x)dx. (1.1)
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To minimize the risk (1.1) given data X1, . . . , Xn, it is extremely standard to consider an empirical
risk minimizer (ERM) defined as:

ĝn ∈ argmin
g∈G

1

n

n∑

i=1

ℓ(g,Xi). (1.2)

Since the pioneer’s work of Vapnik, many authors have investigated the statistical performances of
(1.2) in such a generality. In clustering, we want to construct a vector of codepoints c = (c1, . . . , ck) ∈
R

dk to represent efficiently with k ≥ 1 centers a set of observations X1, . . . , Xn ∈ R
d. In this

framework, it is standard to consider the loss function ℓ : Rdk × R
d defined as:

ℓ(c, x) := min
j=1,...,k

‖x− cj‖2,

where ‖ · ‖ stands for the Euclidean norm in R
d. In this case, the empirical risk minimizer is given

by:

ĉn = arg min
c∈Rdk

n∑

i=1

min
j=1,...k

‖Xi − cj‖2, (1.3)

and is known as the popular k-means (Pollard [1981],Pollard [1982]).

In this paper, we propose to adopt a comparable strategy in the presence of noisy measurements.
Since we observe a corrupted sample Zi = Xi + ǫi, i = 1, . . . , n, the empirical risk minimization
(1.2) is not available. However, we can introduce a deconvolution step in the estimation procedure
by constructing a kernel deconvolution estimator of the density f of the form:

f̂λ(x) =
1

n

n∑

i=1

1

λ
Kη

(
Zi − x

λ

)
, (1.4)

where Kη is a deconvolution kernel 1 and λ = (λ1, . . . , λd) ∈ R
+
d is a multivariate bandwidth (see

Section 2 for details). Given this estimator, we construct an empirical risk Rλ
n(·) by plugging (1.4)

into the true risk (1.1) (see Section 2 for a precise definition). The idea was originated in Loustau and
Marteau [2012] for discriminant analysis. In the sequel, a solution of this stochastic minimization is
written:

ĝλn ∈ argmin
g∈G

Rλ
n(g). (1.5)

In the first theoretical part of this work, we study the statistical performances of ĝλn in (1.5) in
terms of excess risk bounds. In Section 3 we state that with high probability:

R(ĝλn)− inf
g∈G

R(g) ≤ ψ(n), (1.6)

where ψ(n) → 0 as n → ∞ is called the rate of convergence. It is a function of the complexity of
G, the behaviour of the density f , and the density of the noise η. In this paper, the behaviour of
f depends on two different assumptions : a margin assumption and a regularity assumption. The
margin assumption is related to the difficulty of the problem whereas the regularity assumption will
be expressed in terms of anisotropic Hölder spaces. The stochastic minimization (1.5), as well as
statement (1.6), are applied to the framework of clustering. Eventually, we propose to design a new
algorithm to deal with finite dimensional clustering with errors in variables.

The paper is organized as follows. In Section 2, we present the general method and the main
assumptions on the density η (noise assumption), the kernel in (1.4) and the density f (regularity
and margin assumptions). We state the main theoretical results in Section 3, which consists in
excess risk bounds as in (1.6) with fast rates of convergence (i.e. with ψ(n) = o(1/

√
n)). These

results are applied in Section 4 for the problem of finite dimensional clustering with k-means. The
proposed algorithm, called noisy k-means, is based on a two-step procedure : the construction of a
kernel deconvolution estimator of the density f and Newton’s type iterations as the popular k-means.
A complete simulation study is proposed in Section 5 to illustrate the efficiency of the method in
comparison with standard k-means in the presence of errors-in-variables. Section 6 concludes the
paper with a discussion whereas Section 7-8 give detailled proofs of the main results.

1. With a slight abuse of notations, we write in (1.4), for any x = (x1, . . . , xd), Zi = (Z1,i, . . . , Zd,i) ∈ R
d:

1

λ
Kη

(

Zi − x

λ

)

=
1

Πd
i=1λi

Kη

(

Z1,i − x1

λ1
, . . . ,

Zd,i − xd

λd

)

.
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2 Deconvolution ERM

2.1 Construction of the estimator

The deconvolution ERM introduced in this paper is originally due to Loustau and Marteau [2012]
in discriminant analysis (see also Loustau [2013] for such a generality in supervised classification).
The main idea of the construction is to estimate the true risk (1.1) thanks to a deconvolution kernel
as follows.

Let us introduce K =
∏d

i=1 Kj : Rd → R a d-dimensional function defined as the product of
d unidimensional function Kj . Besides, K (and also η) belongs to L2(R

d) and admits a Fourier
transform. Then, if we denote by λ = (λ1, . . . , λd) a set of (positive) bandwidths and by F [·] the
Fourier transform, we define Kη as:

Kη : R
d → R

t 7→ Kη(t) = F−1

[ F [K](·)
F [η](·/λ)

]
(t). (2.1)

Given this deconvolution kernel, we construct an empirical risk by plugging (1.4) into the true risk
R(g) to get a so-called deconvolution empirical risk given by:

Rλ
n(g) =

1

n

n∑

i=1

ℓλ(g, Zi) where ℓλ(g, Zi) =

∫

K

ℓ(g, x)
1

λ
Kη

(
Zi − x

λ

)
dx. (2.2)

Note that for technicalities, we restrict ourselves to a compact set K ⊂ R
d and study the risk

minimization (1.1) only in K. Consequently, in this paper, we only provide a control of the true risk
(1.1) restricted to K, namely the truncated risk:

RK(g) =

∫

K

ℓ(g, x)f(x)dx.

This restriction has been considered in Mammen and Tsybakov [1999] (or more recently in Loustau
and Marteau [2012]). It is important to note that when f has compact support, we can see coarsely
that RK(g) = R(g) for a great enoughK. In the sequel, for simplicity, we write R(·) for the truncated
risk defined above.

2.2 Assumptions

For the sake of simplicity, we restrict ourselves to moderately or mildly ill-posed inverse problem
as follows. We introduce the following noise assumption (NA):

(NA): There exist (β1, . . . , βd)
′ ∈ R

d
+ such that:

|F [η](t)| ∼ Πd
i=1|ti|−βi , as |ti| → +∞, ∀i ∈ {1, . . . , d}.

Moreover, we assume that F [η](t) 6= 0 for all t = (t1, . . . , td) ∈ R
d.

Assumption (NA) deals with the asymptotic behaviour of the characteristic function of the
noise distribution. These kind of restrictions are standard in deconvolution problems for d = 1 (see
Fan, Meister, Butucea [1991, 2009, 2007]). In this contribution, we only deal with d-dimensional
mildly ill-posed deconvolution problems, which corresponds to a polynomial decreasing of F [η] in
each direction. For the sake of brevity, we do not consider severely ill-posed inverse problems (ex-
ponential decreasing)or possible intermediates (e.g. a combination of polynomial and exponential
decreasing functions). Recently, Comte and Lacour [2012] propose such a study in the context of
multivariate deconvolution. In our framework, the rates in these cases could be obtained through
the same steps.

We also require the following assumptions on the kernel K.

(K1) There exists S = (S1, . . . , Sd) ∈ R
+
d , K1 > 0 such that kernel K satisfies

suppF [K] ⊂ [−S, S] and sup
t∈Rd

|F [K](t)| ≤ K1,
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where supp g = {x : g(x) 6= 0} and [−S, S] =⊗d
i=1[−Si, Si].

This assumption is trivially satisfied for different standard kernels, such as the sinc kernel. It
arises for technicalities in the proofs and can be relaxed using a finer algebra. Moreover, in the
sequel, we consider a kernel of order m, for a particular m ∈ N

d.

K(m) The kernel K is of order m = (m1, . . . ,md) ∈ N
d, i.e.

—
∫
Rd K(x)dx = 1

—
∫
Rd K(x)xkj dx = 0, ∀k ≤ mj , ∀j ∈ {1, . . . , d}.

—
∫
Rd |K(x)||xj |mjdx < K2, ∀j ∈ {1, . . . , d}.

The construction of kernel of order m satisfying (K1) could be done by using for instance com-
pactly supported wavelets, such as Meyer’s wavelets (see Mallat [2009]). The condition K(m) is
standard in nonparametric kernel estimation and allows to get satisfying approximations using the
following assumption over the regularity of the density f .

Definition 2.1. For some s = (s1, . . . , sd) ∈ R
+
d , L > 0, we say that f belongs to the anisotropic

Hölder space H(s, L) if the following holds:
— the function f admits derivatives with respect to xj up to order ⌊sj⌋, where ⌊sj⌋ denotes the

largest integer less than sj .
— ∀j = 1, . . . , d, ∀x ∈ R

d, ∀x′j ∈ R, the following Lipschitz condition holds:

∣∣∣∣
∂⌊sj⌋

(∂xj)⌊sj⌋
f(x1, . . . , xj−1, x

′
j , xj+1, . . . , xd)− ∂⌊sj⌋

(∂xj)⌊sj⌋
f(x)

∣∣∣∣ ≤ L|x′j − xj |sj−⌊sj⌋.

If a function f belongs to the anisotropic Hölder space H(s, L), f has an Hölder regularity sj in
each direction j = 1, . . . , d. As a result, it can be well-approximated pointwise using a d-dimensional
Taylor formula.

3 Main results

It is well-known that the behaviour of the rates of convergence ψ(n) in (1.6) is governed by the
size of G. In this paper, the size of the hypothesis space will be quantified in terms of ǫ-entropy with
bracketing of the metric space ({ℓ(g), g ∈ G}, L2) as follows.

Definition 3.1. Given a metric space (F , d) and a real number ǫ > 0, the ǫ-entropy with bracketing
of (F , d) is the quantity HB(F , ǫ, d) defined as the logarithm of the minimal integer NB(ǫ) such that
there exist pairs (fj , gj) ∈ F × F , j = 1, . . . , NB(ǫ) such that fj ≤ gj , d(fj , gj) ≤ ǫ, and where for
any f ∈ F , there exists a pair (fj , gj) with fj < f < gj .

This notion of complexity allows to obtain uniform concentration inequalities (see Van De Geer
[2000] or van der Vaart and Weelner [1996]). Indeed, to reach fast rates of convergence (i.e. faster
than n−1/2), what really matters is not the total size of the hypothesis space but rather the size of
a subclass of G, made of functions with small errors. In this paper, we use an iterative localization
principle originally introduced in Koltchinskii and Panchenko [2000] (see also Koltchinskii [2006] for
such a generality). More precisely, we consider functions in G with small excess risk as follows:

G(δ) = {g ∈ G : R(g)− inf
g∈G

R(g) ≤ δ}.

Originally, Mammen and Tsybakov [1999] (see also Tsybakov [2004]) formulated an useful con-
dition to get fast rates of convergence in classification. This assumption is known as the margin
assumption and has been generalized by Bartlett and Mendelson [2006]. coarsely speaking, a margin
assumption guarantees a nice relationship between the variance and the expectation of any function
of the excess loss class. In this section, we assume the following margin assumption:

Margin Assumption MA(κ) There exists some κ ≥ 1 such that:

∀g ∈ G, ‖ℓ(g, ·)− ℓ(g∗(g), ·)‖2L2(K) ≤ κ0

[
R(g)− inf

g∈G
R(g)

]1/κ
,

for some κ0 > 0, where g∗(g) ∈ argming∗∈M d(g, g∗) and M is the set of oracles.

4



Gathering with a suitable concentration inequality applied to the class G(δ), this margin assump-
tion is used to get fast rates. Note that provided that ℓ(g, ·) is bounded, MA(κ) implies MA(κ′)
for any κ′ ≥ κ. Interestingly, in the framework of finite dimensional clustering with k-means, Lev-
rard [2012] proposes to give a sufficient condition to have MA(κ) with κ = 1. This condition is
related to the geometry of f with respect to the optimal clusters and gives well-separated classes.
It allows to interpret MA(κ) exactly as the popular margin assumption in supervised classification
(see Tsybakov [2004]). In the sequel, we call the parameter κ in MA(κ) the margin parameter.

Recently, Lecué and Mendelson [2012] points out that one could wish non-exact oracle inequalities
with fast rates under a weaker assumption. The idea is to relax significantly the margin assumption
and use the loss class {ℓ(g), g ∈ G} in MA(κ) instead of the excess loss class {ℓ(g) − ℓ(g∗), g ∈ G}.
This framework is not considered in this paper for concision but we refer the interested reader to
Loustau [2013] for completeness.

3.1 A general excess risk bound

We are now on time to state the main risk bound.

Theorem 3.1. Suppose (NA), (K1), and MA(κ) holds for some margin parameter κ ≥ 1. Suppose
f ∈ H(s, L) for some s ∈ R

+
d and K(m) holds with m = ⌊s⌋. Suppose there exists 0 < ρ < 1, c > 0

such that for every ǫ > 0:

HB({ℓ(g), g ∈ G}, ǫ, L2) ≤ cǫ−2ρ. (3.1)

Then, for any t > 0, there exists some n0(t) ∈ N
∗ such that for any n ≥ n0(t), with probability

greater than 1− e−t, the deconvolution ERM ĝλn is such that:

R(ĝλn)− inf
g∈G

R(g) ≤ Cn−τd(κ,ρ,β,s),

where C > 0 is independent of n and τd(κ, ρ, β, s) is given by:

τd(κ, ρ, β, s) =
κ

2κ+ ρ− 1 + (2κ− 1)

d∑

j=1

βj/sj

,

and λ = (λ1, . . . , λd) is chosen as:

λj ≈ n
− 2κ−1

2κsj
τd(κ,ρ,β,s)

, ∀j = 1, . . . d.

The proof of this result is postponed to Section 7. We list some remarks below.

Remark 3.1 (Comparison with Koltchinskii [2006] or Mammen and Tsybakov [1999]). This result
gives the order of the rate of convergence in the presence of errors in variables. The risk of the
estimator ĝλn mimics the risk of the best candidate in G, up to this rate. The price to pay for the
error-in-variables model depends on the asymptotic behaviour of the characteristic function of the
noise distribution. If β = 0 ∈ R

d in the noise assumption (NA), the residual term in Theorem 3.1
satisfies:

ψ(n) = n
− κ

2κ+ρ−1 .

It corresponds to the standard fast rates in the noise-free case stated (see Koltchinskii [2006] for such
a generality or Mammen and Tsybakov [1999] in discriminant analysis).

Remark 3.2 (Comparison with Loustau [2013]). In comparison with Loustau [2013], these rates
deal with an anisotropic behaviour of the density f . If sj = s for any direction, we obtain the same
asymptotics as in Loustau [2013] for supervised classification, namely:

ψ(n) = n
− κs

s(2κ+ρ−1)+(2κ−1)
∑d

j=1
βj .

The result of Theorem 3.1 gives a generalization of Loustau [2013] to the anisotropic case, in an
unsupervised framework. Moreover, it allows to deal with a non unique oracle g∗ by introducing a
more complicated geometry in the proofs.

Remark 3.3 (The anisotropic case is of practical interest). The result of Theorem 3.1 gives some
insights into the noisy quantization problem with an anisotropic density f . In this problem, due
to the anisotropic behaviour of the density, the choice of the multidimensional bandwidths λj , j =
1, . . . , d are more complicated. This result is of practical interest since it allows to consider different
bandwidth coordinates for the deconvolution ERM. In finite dimensional noisy clustering with k ≥ 2,
this situation arises when the optimal centers are not uniformly distributed. This problem has not
been treated in Loustau [2013] or Loustau and Marteau [2012].
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Remark 3.4 (Fast rates). The most favorable case arises when ρ → 0 and β is small, whereas at
the same time density f has sufficiently high Hölder exponents sj . Indeed, fast rates occur when
τd(κ, ρ, β, s) ≥ 1/2, or equivalently, (2κ− 1)

∑
βj/sj < 1− ρ. If ρ = 0 and κ = 1 (see the particular

case of Section 3.2), we have the following condition to get fast rates:

d∑

j=1

βj
sj

< 1.

Remark 3.5 (Choice of λ). The optimal choice of λ in Theorem 3.1 optimizes a bias variance
decomposition as in Loustau [2013]. This choice depends on unknown parameters such as the margin
parameter κ, the Hölder exponents (s1, . . . , sd) of the density f and the degree of illposedness β. A
challenging open problem is to derive adaptive choice of λ to lead to adaptive fast rates of convergence.
This is the purpose of future works.

Remark 3.6 (Comparison with Comte and Lacour [2012]). It is also important to note that the
optimal choice of the multivariate bandwidth λ does not coincide with the optimal choice of the
bandwidth in standard nonparametric anisotropic density deconvolution. Indeed, it is stated in Comte
and Lacour [2012] that under the same regularity and ill-posedness assumptions, the optimal choice
of the bandwidth λ = (λ1, . . . , λd) has the following form:

λu ≈ n

− 1

su

(

2+
∑d

j=1

2βj+1

sj

)

.

The proposed asymptotic optimal calibration of Theorem 3.1 is rather different. It depends explicitly
on parameter ρ, which measures the complexity of the decision set G, and the margin parameter κ ≥ 1.
It shows rather well that our bandwidth selection problem is not equivalent to standard nonparametric
estimation problems. It illustrates one more time that our procedure is not a plug-in procedure.

3.2 Application to noisy clustering

One of the most popular issue in data mining or machine learning is to learn clusters from a
big cloud of data. This problem is known as clustering. It has received many attention in the last
decades. In this paragraph, we apply the general upper bound of Theorem 3.1 to the framework of
noisy clustering. To frame the problem of noisy clustering into the general study of this paper, we first
introduce the following notation. Given some known integer k ≥ 2, let us consider c = (c1, . . . , ck) ∈ C
the set of possible codebooks, where C ⊆ R

dk is compact. The loss function ℓ : Rdk × R
d is defined

as:
ℓ(c, x) = min

j=1,...k
‖x− cj‖2,

where ‖·‖ stands for the standard euclidean norm on R
d. The corresponding true risk or clustering risk

is given by R(c) = EP ℓ(c, X). In the sequel, we introduce a constant M ≥ 0 such that ‖X‖∞ ≤M .
This boundedness assumption ensures ℓ(c, X) to be bounded. The performances of the empirical
minimizer defined in (1.3) have been widely studied in the literature. Consistency was shown by
Pollard [1981] when E‖X‖2 < ∞ whereas Linder, Lugosi, and Zeger [1994] or Biau, Devroye, and
Lugosi [2008] gives rates of convergence of the form O(1/

√
n) for the excess clustering risk defined

as R(ĉn) − R(c∗), where c∗ ∈ M the set of all possible optimal clusters. More recently, Levrard
[2012] proposes fast rates of the form O(1/n) under Pollard’s regularity assumptions. It improves a
previous result of Antos, Györfi, and György [2005]. The main ingredient of the proof is a localization
argument in the spirit of Blanchard, Bousquet, and Massart [2008].

In this section, we study the problem of clustering where we have at our disposal a corrupted
sample Zi = Xi + ǫi, i = 1, . . . , n where the ǫi’s are i.i.d. with density η satisfying (NA) of Section
2. For this purpose, we introduce the following deconvolution empirical risk minimization:

argmin
c∈C

1

n

n∑

i=1

ℓλ(c, Zi), (3.2)

where ℓλ(c, z) is a deconvolution k-means loss defined as:

ℓλ(c, z) =

∫

K

1

λ
Kη

(z − x

λ

)
min

j=1,...k
‖x− cj‖2dx.

The kernel Kη is the deconvolution kernel introduced in Section 2 with λ = (λ1, . . . , λd) ∈ R
d
+ a set

of positive bandwidths chosen later on. We investigate the generalization ability of the solution of
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(3.2) in the context of Pollard’s regularity assumptions. For this purpose, we will use the following
regularity assumptions on the source distribution P .

Pollard’s Regularity Condition (PRC): The distribution P satisfies the following two conditions:

1. P has a continuous density f with respect to Lebesgue measure on R
d,

2. The Hessian matrix of c 7−→ Pℓ(c, .) is positive definite for all optimal vector of clusters c∗.

It is easy to see that using the compactness of B(0,M), ‖X‖∞ ≤M and (PRC) ensures that there
exists only a finite number of optimal clusters c∗ ∈ M. This number is denoted as |M| in the rest
of this section. Moreover, Pollard’s conditions can be related to the margin assumption MA(κ) of
Section 3 thanks to the following lemma due to Antos, Györfi, and György [2005].

Lemma 3.1 (Antos, Györfi, and György [2005]). Suppose ‖X‖∞ ≤ M and (PRC) holds. Then,
for any c ∈ B(0,M):

‖ℓ(c, ·)− ℓ(c∗(c), ·)‖L2 ≤ C1d(c, c
∗(c))2 ≤ C1C2 (R(c)−R(c∗(c))) ,

where c∗(c) ∈ argminc
∗ d(c, c∗) and d(·, ·) stands for the Euclidean distance in the space of codebooks

R
dk.

Lemma 3.1 ensures a margin assumption MA(κ) with κ = 1 (see Section 3). It is useful to
derive fast rates of convergence. Recently, Levrard [2012] has pointed out sufficient conditions to
have (PRC) as follows. Denote ∂Vi the boundary of the Voronoi cell Vi associated with ci, for
i = 1, . . . , k. Then, a sufficient condition to have (PRC) is to control the sup-norm of f on the
union of all possible |M| boundaries ∂V ∗,m = ∪k

i=1∂V
∗,m
i , associated with c∗m ∈ M as follows:

‖f|∪M
m=1∂V

∗,m‖∞ ≤ c(d)Md+1 inf
m=1,...,|M|,i=1,...k

P (V ∗,m
i ),

where c(d) is a constant depending on the dimension d. As a result, the margin assumption is
guaranteed when the source distribution P is well concentrated around its optimal clusters, which
is related to well-separated classes. From this point of view, the margin assumption MA(κ) can be
related to the margin assumption in binary classification.
We are now ready to state the main result of this paragraph.

Theorem 3.2. Assume (NA) holds, P satisfies (PRC) with density f ∈ H(s, L) and E‖ǫ‖2 < ∞.
Then, for any t > 0, for any n ≥ n0(t), denoting by ĉλn a solution of (3.2), we have with probability
higher than 1− e−t:

R(ĉλn)− inf
c∈C

R(c) ≤ C
√

log log(n)n
− 1

1+
∑d

j=1
βj/sj ,

where C > 0 is independent of n and λ = (λ1, . . . , λd) is chosen as:

λj ≈ n
− 1

2sj(1+
∑d

j=1
βj/sj) , ∀j = 1, . . . d.

.

The proof is postponed to Section 7.

Remark 3.7 (Fast rates of convergence). Theorem 3.2 is a direct application of Theorem 3.1 in
Section 3. The order of the residual term in Theorem 3.2 is comparable to Theorem 3.1. Due to
the finite dimensional hypothesis space C ⊂ R

dk, we apply the previous study to the case ρ = 0. It

leads to the fast rates O

(
n
− 1

1+
∑d

i=1
βj/sj

)
, up to an extra

√
log log n term. This term is due to the

localization principle of the proof, which consists in applying iteratively a concentration inequality
due to Bousquet [2002]. In the finite dimensional case, when ρ = 0, we pay an extra

√
log log n term

in the rate by solving the fixed point equation. Note that using for instance Levrard [2012], this term
can be avoided. It is out of the scope of the present paper.

Remark 3.8 (Optimality). Lower bounds of the form O(1/
√
n) have been stated in the direct case

by Bartlett, Linder, and Lugosi [1998] for general distribution. An open problem is to derive lower
bounds in the context of Theorem 3.2. For this purpose, we need to construct configurations where
both Pollard’s regularity assumption and noise assumption (NA) could be used in a careful way. In
this direction, Loustau and Marteau [2012] suggests lower bounds in a supervised framework under
both margin assumption and (NA).

7



4 Noisy k-means algorithm

When we consider direct data X1, . . . , Xn, we want to minimize the empirical risk defined in
(1.2), over c = (c1, . . . , ck) ∈ R

dk the set of k possible centers. In this direction, the basic iterative
procedure of k-means was proposed by Lloyd in a seminal work (Lloyd [1982], first published in
1957 in a Technical Note of Bell Laboratories). The procedure calculates, from an initialization
of k centers, the associated Voronöı cells and updates the centers with the means of the data on
each Voronöı cell. The k-means with Lloyd algorithm is considered as a staple in the study of
clustering methods. The time complexity is approximately linear, and appears as a good algorithm
for clustering spherical well-separated classes, such as a mixture of gaussian vectors. However, in
many real-life situations, direct data are not available and measurement errors may occur. In social
science, many data are collected by human pollster, with a possible contamination in the survey
process. In medical trials, where chemical or physical measurements are treated, the diagnostic is
affected by many nuisance parameters, such as the measuring accuracy of the considered machine,
gathering with a possible operator bias due to the human practitionner. Same kinds of phenomenon
occur in astronomy or econometrics (see Meister [2009]). However, to the best of our knowledge,
these considerations are not taken into account in the clustering task. The main implicit argument is
that these errors are zero mean and could be neglected at the first glance. The aim of this section is
to design a new algorithm to perform clustering over contaminated datasets and to show that it can
significantly improve the expected performances of a standard clustering algorithm which neglect
this additional source of randomness.

When considering indirect data Z1, . . . , Zn, a deconvolution empirical risk is defined as:

1

n

n∑

i=1

ℓλ(c, Zi) =

∫
min

j=1,...,k
‖x− cj‖2 f̂λ(x)dx. (4.1)

Reasonably, a noisy clustering algorithm could be adapted, following the direct case and the con-
struction of the standard k-means. In this section, the purpose is two-fold: on the one hand, a
clustering algorithm for indirect data derived from first order conditions is proposed. On the second
hand, practical and computational considerations of such an algorithm are discussed.

4.1 First order conditions

Let us consider a corrupted data sample Zi = Xi + ǫi, i = 1, . . . , n. The following theorem gives
the first order conditions to minimize the deconvolution empirical risk (4.1). In the sequel, ∇F (x)
denotes the gradient of a function F : Rdk → R at point x ∈ R

dk.

Theorem 4.1. Suppose assumptions of Theorem 3.2 are satisfied. Then, for any λ > 0:

cℓ,j =

∑n
i=1

∫
Vj
xℓKη

(
Zi−x

λ

)
dx

∑n
i=1

∫
Vj

Kη

(
Zi−x

λ

)
dx

, ∀ℓ ∈ {1, . . . , d} , ∀j ∈ {1, . . . , k} ⇒ ∇
n∑

i=1

ℓλ(c, Zi) = 0
Rdk , (4.2)

where cℓ,j stands for the ℓ-th coordinates of the j-th centers, whereas Vj is the Voronöı cell associated
with center j of c:

Vj = {x ∈ R
d : min

u=1,...,k
‖x− cu‖ = ‖x− cj‖}.

The proof is based on the calculation of the directional derivatives of the deconvolution empirical
risk (4.1). It is postponed to Section 7.

Remark 4.1 (Comparison with k-means). It is easy to see that a similar result can be shown with the
k-means. Indeed, a necessary condition to minimize the standard empirical risk (1.3) is as follows:

cℓ,j =

∑n
i=1

∫
Vj
xℓδXidx

∑n
i=1

∫
Vj
δXidx

, ∀ℓ ∈ {1, . . . , d} , ∀j ∈ {1, . . . , k},

where δXi is the Dirac function at point Xi. Theorem 4.1 proposes a same kind of condition in the
errors-in-variable case replacing the Dirac function by a deconvolution kernel.

Remark 4.2 (A kernelized k-means). The previous representation of k-means can lead to a kernelized
version of the algorithm in the noiseless case. Indeed, we can replace the Dirac function by a standard
kernel function (such as the indicator function) with a sufficiently small bandwidth. This idea has
been already presented in discriminant analysis (see Loustau and Marteau [2012]) where optimality
in the minimax sense is proved.
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———————————————————————————————————————

1. Initialize the centers c(0) = (c
(0)
1 , . . . , c

(0)
k ) ∈ R

dk

2. Estimation step:

(a) Compute the deconvoluting Kernel Kη and its FFT F(Kη).

(b) Build a histogram of 2-d grid using linear binning rule and compute its FFT: F(f̂Z).

(c) Compute: F(f̂) = F(Kη)F(f̂Z).

(d) Compute the Inverse FFT of F(f̂) to obtain the density estimated of X: f̂ = F−1(F(f̂)).

3. Repeat until convergence:

(a) Assign data points to closest clusters in order to compute the Voronoi diagram.

(b) Re-adjust the center of clusters with equation (4.3).

4. Compute the final partition by assigning data points to the final closest clusters ĉ = (ĉ1, . . . , ĉk).

———————————————————————————————————————

Figure 1: The algorithm of Noisy k-means.

Remark 4.3 (A simpler representation). We can note that by switching the integral with the sum
in equation (4.2), the first order conditions on c can be rewritten as follows :

cℓ,j =

∫
Vj
xℓf̂λ(x)dx

∫
Vj
f̂λ(x)dx

, ∀ℓ ∈ {1, . . . , d}, ∀j ∈ {1, . . . , k}, (4.3)

where f̂λ(x) = 1/n
∑n

i=1
1
λ
Kη

(
Zi−x

λ

)
is the kernel deconvolution estimator of the density f . This

property is at the core of the algorithm presented in Section 4.2.

4.2 The noisy k-means algorithm

In the same spirit of the k-means algorithm of Lloyd (Lloyd [1982]), we derive therefore an
iterative algorithm, named noisy k-means, which enables to find a reasonable partition of the direct
data from a corrupted sample. The noisy k-means algorithm consists in two steps (see Figure 1) :
(1) a deconvolution estimation step in order to estimate the density f from the corrupted data and
(2) an iterative Newton’s procedure according to (4.3). This second step can be repeated several
times until a stable solution is available.

4.2.1 Estimation step

In this step, the purpose is to estimate the density f from indirect observations Z1, . . . , Zn. Let
us denote by fZ the density of corrupted data Z. Then fZ is the convolution product of the densities
f and η denoted by fZ = f ∗ η. Consequently, the following relation holds : F [f ] = F [fZ ]/F [η]. A
natural property for the Fourier transform of an estimator f̂ can be deduced:

F [f̂ ] = F̂ [fZ ]/F [η], (4.4)

where F̂ [fZ ](t) = 1/n
∑n

i=1 e
i〈t,Zi〉 is the Fourier transform of the data. These considerations explain

the introduction of the deconvolution kernel estimator (1.4) presented in Section 2. In practice,
deconvolution estimation involves n numerical integrations for each grid where the density needs
to be estimated. Consequently, a direct programming of such a problem is time consuming when
the dimension d of the problem increases. In order to speed the procedure, we have used the Fast
Fourier Transform (FFT). In particular, we have adapted the FFT algorithm for the computation of
multivariate kernel estimators proposed by [30] to the deconvolution problem. Therefore, the FFT of

the deconvoluting kernel is first computed. Then, the Fourier transform of data F̂ [fZ ] is computed
via a discrete approximation: an histogram on a grid of 2 dimensional cells is built before applying
the FFT as it was proposed in [30]. Then, the discrete Fourier transform of f is obtained from
equation (4.4) and an estimation of f is found by an inverse Fourier transform.
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4.2.2 Newton’s iterations step

The center of the jth group on the ℓth component can therefore be computed from (4.3) as
follows :

cℓ,j =

∫
Vj
xℓf̂λ(x)dx

∫
Vj
f̂λ(x)dx

,

where Vj stands for the Voronoi cell of the group j.

5 Experimental validation

Evaluation of clustering algorithms is not an easy task (see von Luxburg, Williamson, and Guyon
[2009]). In supervised classification, cross-validation techniques are standard to evaluate learning
algorithms such as classifiers. The principle is to divide the sample into V subsets, the first V −1 are
used for training the considered classifiers whereas the last one is used for testing these classifiers.
Unfortunately, in an unsupervised framework - such as clustering - the performances of new algo-
rithms depend on what one is trying to do. Many often, a natural grouping of a set of points is not
necessarily unique. In this section, we propose two experimental settings to illustrate the efficiency
of noisy k-means with different criteria.

These experimental settings are based on simulations of gaussian mixtures with additive random
noise. We want to emphasize that this additional source of randomness does not have to be neglected
for both clustering, or quantization. For this purpose, we compare noisy k-means algorithm (based
on a deconvolution step) with standard k-means (a direct algorithm) using Lloyd algorithm, where
the random initialization is common for both method. This allows us to reduce the dependence to
the initialization of the measure of performances, due to the non-convexity of the considered problem
(see Bubeck [2002]).

Dealing with these noisy Gaussian mixtures, we investigate two different problems, called the
noisy clustering problem and the noisy quantization problem. The problem of noisy clustering could
be summarized as follows:
— Can we separate several Gaussian mixtures from a set of noisy Gaussian mixtures ?
The problem of noisy quantization could be stated as follows :
— Are we abble to summarize the unobserved sample Xi, i = 1, . . . , n from a sequence of i.i.d.

Zi = Xi + ǫi, i = 1, . . . , n ?
Equivalently, one also could adress the problem of estimation of the mean of each Gaussian mixture
when a contaminated sample is available. The answer to these questions is proposed in the sequel
and depends on several parameters in our models, such as the level of noise ǫ, the type of noise
(Laplace or Gaussian) and the number k = 2 or k = 4 of Gaussian mixtures.

5.1 Experimental setting

We consider two different spherical gaussian mixtures for the unobserved sample Xi, i = 1, . . . , n
and an additive Gaussian or Laplace noise for the ǫi, i = 1, . . . , n with increasing vertical variance
u ∈ {1, . . . , 10}.

5.1.1 The first experiment

The first model is a mixture of 2 Gaussian vectors in R
2. For L ∈ {L,N} and u ∈ {1, . . . , 10},

the model Mod1(L, u) is generated as:

Zi = Xi + ǫi(u), i = 1, . . . , n, Mod1(L, u)

where (Xi)
n
i=1 are i.i.d. with density:

f = 1/2fN (02,I2) + 1/2fN((5,0)T ,I2),

(ǫi(u))
n
i=1 are i.i.d. with law L with zero mean (0, 0)T and covariance matrix Σ(u) =

(
1 0
0 u

)
for

u ∈ {1, . . . , 10}. We also consider two cases for L, namely a two-dimensional Laplace (L) or Gaussian
(N ) noise.
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5.1.2 The second experiment

The second model is a mixture of 4 Gaussian vectors in R
2. For L ∈ {L,N} and u ∈ {1, . . . , 10},

the model Mod2(L, u) is generated as:

Zi = Xi + ǫi(u), i = 1, . . . , n, Mod2(L, u)

where: (Xi)
n
i=1 are i.i.d. with density

f = 1/4fN (02,I2) + 1/4fN((5,0)T ,I2) + 1/4fN((0,5)T ,I2) + 1/4fN((5,5)T ,I2).

The noise variables (ǫi(u))
n
i=1 are i.i.d. with law L ∈ {L,N} with zero mean (0, 0)T and covariance

matrix Σ(u) =

(
1 0
0 u

)
for u ∈ {1, . . . , 10}, where L is a two-dimensional Laplace and N is a

Gaussian noise.

5.1.3 Performance measurements

For each experiment, we propose to compare the performances of Noisy k-means with respect to
k-means by computing three different criteria, which corresponds to different problems evocated in
the beginning of Section 5 :
— Given noisy sample Zi = Xi + ǫi, i = 1, . . . , n, we can argue that we want to cluster the direct

data by computing :

In(ĉ) :=
1

n

n∑

i=1

1I(Yi 6= fĉ(Xi)), ∀ĉ = (ĉ1, . . . , ĉk) ∈ R
dk, (5.1)

where fĉ(x) = argminj=1,...,k ‖x − ĉj‖22 and Yi ∈ {1, 2} for Mod1(L, u) (resp. Yi ∈ {1, 2, 3, 4}
for Mod2(L, u)) corresponds to the mixture of the point Xi.

— Given noisy sample Zi = Xi + ǫi, i = 1, . . . , n, we can argue that we want to summarize the
information of the unobserved sample Xi, i = 1, . . . , n. In this case, we compute the following
quantization error Qn(ĉ) defined as :

Qn(ĉ) :=
1

n

n∑

i=1

min
j=1,...,k

‖Xi − ĉj‖22, ∀ĉ = (ĉ1, . . . , ĉk) ∈ R
dk. (5.2)

— From an estimation point of view, we can also compute the ℓ2−estimation error of ĉ given by:

‖ĉ− c∗‖ :=

√√√√
k∑

j=1

‖ĉj − c∗j‖22, ∀ĉ = (ĉ1, . . . , ĉk) ∈ R
dk, (5.3)

where (c∗1, c
∗
2) = (0, 0, 5, 0) for Mod1(L, u) (resp. (c∗1, c

∗
2, c

∗
3, c

∗
4) = (0, 0, 5, 0, 0, 5, 5, 5) for

Mod2(L, u)).
For each criterion, we study the behaviour of the Lloyd algorithm (standard k-means) with two

different noisy k-means, corresponding to two different choice of bandwidths λ in the estimation
step (see Figure 1). For a grid Λ ⊆ [0.1, 5]2 of 10 × 10 parameters, we compute λI defined as
the minimizer of (5.1) over the grid Λ whereas λQ is the minimizer of (5.2). Then, we have three
clustering algorithms denoted as ĉ for standard k-means using Lloyd algorithm, and {ĉ1, ĉ2} for
noisy k-means algorithms with the same initialization and with associated bandwidth λI and λQ
defined above. It is important to stress that choice of bandwidth λI and λQ are not possible in
practice. Hence, an adaptive procedure to choose the bandwidth has to be performed, as in standard
nonparameteric problem. This is out of the scope of the present paper where we propose to compare
k-means with Noisy k-means with fixed bandwidths λQ and λI . In the sequel, we illustrate the
behaviour of these methods for each criterion and each experiment.

5.2 Results of the first experiment

In the first experiment, we run 100 realizations of training set {Z1, . . . , Zn} from Mod1(L, u)
with n = 200. At each realization, we run Lloyd algorithm and noisy k-means with the same random
initialization.
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In Qn ℓ2
Lap. Gaus. Lap. Gaus. Lap. Gaus.

ĉ 1.1 0.7 1.96 1.98 0.29 0.30
σ = 1 ĉ1 0.3 0.5 2.28 3.39 0.62 1.02

ĉ2 0.6 0.7 1.97 1.99 0.30 0.33
ĉ 0.7 0.7 2.01 1.99 0.35 0.36

σ = 2 ĉ1 0.4 0.4 2.42 2.86 0.77 0.94
ĉ2 0.7 0.7 2.01 2 0.36 0.38
ĉ 0.9 1.2 2.06 2.01 0.40 0.35

σ = 3 ĉ1 0.5 0.5 2.35 2.83 0.71 0.90
ĉ2 0.8 0.7 2.02 2.05 0.38 0.43
ĉ 0.7 1.6 2.04 2.13 0.44 0.50

σ = 4 ĉ1 0.5 0.5 2.35 3.65 0.79 1.28
ĉ2 0.7 0.7 2.04 2.09 0.43 0.56
ĉ 1.7 3.6 2.26 2.64 0.76 0.81

σ = 5 ĉ1 0.5 0.5 2.72 3.90 1.05 1.45
ĉ2 0.8 0.8 2.15 2.30 0.55 0.74
ĉ 3.1 3.1 2.57 2.82 0.82 0.94

σ = 6 ĉ1 0.5 0.5 2.70 3.87 1.08 1.62
ĉ2 0.7 0.8 2.12 2.33 0.55 0.78
ĉ 4.5 7.7 3.35 4.20 1.49 1.72

σ = 7 ĉ1 0.6 0.5 2.96 3.93 1.30 1.61
ĉ2 0.9 0.9 2.21 2.50 0.68 0.94
ĉ 10.0 11.4 4.33 5.34 2.16 2.46

σ = 8 ĉ1 0.6 0.5 3.29 4.51 1.46 1.82
ĉ2 0.9 1 2.32 2.65 0.73 1.07
ĉ 15.2 21.8 5.9 7.62 3.02 3.41

σ = 9 ĉ1 1.0 0.6 3.69 5.29 1.67 2.14
ĉ2 1.6 1.1 2.48 2.89 0.97 1.27
ĉ 16.9 23.9 6.22 8.11 3.47 3.66

σ = 10 ĉ1 1.1 0.6 3.85 5.27 1.84 2.21
ĉ2 1.8 1.1 2.68 3.09 1.27 1.37

Figure 2: Results of the first experiments averaged over 100 replications. Quantities In, Qn, ℓ2 are
defined in equations (5.1)-(5.3) whereas estimators ĉ (k-means with Lloyd), ĉ1 and ĉ2 (noisy k-means
with two particular bandwidths) are defined in Section 5.1. The values of σ corresponds to the variance of
the vertical direction of the additive noise ǫ, which is distributed as a Laplace or a Gaussian distribution).
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Clustering risk Figure 3 (a)-(b) illustrates the evolution of the clustering risk (5.1) of {ĉ, ĉ1, ĉ2}
when u ∈ {1, . . . , 10} (horizontal axe) in Mod(1,L).

(a) Laplace error (b) Gaussian error
Figure 3: Clustering risk averaged over 100 replications from Mod1(L, u) with n = 200.

When u ≤ 4, the results are comparable and Noisy k-means seems to slightly outperform standard
k-means. However, when the level of noise in the vertical axe becomes higher (i.e. u ≥ 5), k-means
with Lloyd algorithm shows a very bad behaviour. On the contrary, noisy k-means seems robust in
these situations, for both Laplace and Gaussian noise.

Quantization risk Figure 4 (a)-(b) shows the behaviour of the quantization risk (5.2) of ĉ and
ĉQ when u increases.

(a) Laplace error (b) Gaussian error
Figure 4: Quantization risk averaged over 100 replications from Mod1(L, u) with n = 200.

We omit ĉ1 because it shows bad performances when the variance u in Mod(1,L) increases (see
Figure 2). This phenomenon can be explained as follows : ĉ1 is chosen to minimize the clustering
risk (5.1). As a result, the proposed codebook ĉ1 is not necessarily a good quantizer, even if it gives
good Voronöı cells for clustering the set of data. On the contrary, ĉ2 outperform standard k-means
when the vertical variance increases. The quantization error behaves like the clustering risk above.
Laplace and Gaussian noise highlights comparable results.

L2 risk In Figure 5 (a)-(b), the ℓ2 risk (5.3) of ĉ and ĉ2 is proposed. In this case, we can see
a more efficient robustness to the noise for Noisy k-means in comparison with standard k-means.
However, in comparison with the two other criteria, the ℓ2 risk of noisy k-means increases when the
variance increases. This phenomenon is comparable for Laplace and Gaussian noise, with a slightly
better robustness of noisy k-means in the Laplace case.
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(a) Laplace error (b) Gaussian error
Figure 5: ℓ2-risk averaged over 100 replications from Mod1(L, u) with n = 200.

Conclusion to the first experiment The first experiment shows very well the lack of efficiency
of the standard k-means when we deal with errors in variables. When the variance of the noise ǫ
increases, the performances of the k-means are deteriorated. On the contrary, the noisy k-means
shows a good robustness to this additional source of noise for the considered criteria.

5.3 Result of the second experiment

In the second experiment, we run 100 realizations of training set {Z1, . . . , Zn} from Mod2(L, u)
with n = 200. At each realization, we run Lloyd algorithm and Noisy k-means with the same random
initialization.

Clustering risk Figure 6 (a)-(b) shows the evolution of the clustering risk (5.1) of {ĉ, ĉ1, ĉ2}
when u ∈ {1, . . . , 10} in Mod(2,L) is proposed.

(a) Laplace error (b) Gaussian error
Figure 6: Clustering risk averaged over 100 replications from Mod2(L, u) with n = 200.

Figure 5 shows a good resistance of noisy k-means ĉ1 in the presence of a mixture of four Gaussian
with errors. When the level of noise is small, ĉ1 slightly outperforms k-means ĉ and when the level
of noise becomes higher (i.e. u ≥ 5), k-means with Lloyd algorithm shows a very bad behaviour.
On the contrary, noisy k-means seems more robust in these situations. However, in the presence of
a Gaussian noise, ĉ2 is comparable with ĉ.
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In Qn ℓ2
Lap. Gaus. Lap. Gaus. Lap. Gaus.

ĉ 4.3 3.3 2.16 2.13 0.83 0.86
σ = 1 ĉ1 3.4 2.9 2.57 4.24 1.55 2.14

ĉ2 4.0 4.2 2.37 2.39 1.28 1.29

ĉ 5.2 3.9 2.32 2.31 1.21 1.21
σ = 2 ĉ1 3.7 4.0 2.88 7.00 1.87 3.40

ĉ2 4.7 5.1 2.56 2.66 1.67 1.70

ĉ 5.6 6.8 2.48 2.64 1.48 1.65
σ = 3 ĉ1 4.2 5.1 3.03 10.15 2.12 4.58

ĉ2 5.6 7.9 2.66 3.10 1.79 2.21

ĉ 7.3 6.7 2.67 2.66 1.85 1.72
σ = 4 ĉ1 4.7 4.9 3.59 8.79 2.56 4.29

ĉ2 6.5 6.9 2.87 3.11 2.21 2.23

ĉ 10.5 8.8 3.22 3.14 2.85 2.30
σ = 5 ĉ1 6.2 6.3 4.03 11.17 3.11 5.28

ĉ2 8.3 10.6 3.16 3.61 2.82 2.80

ĉ 12.8 13.5 3.54 3.80 3.07 3.07
σ = 6 ĉ1 7.4 7.2 4.34 12.88 3.43 5.97

ĉ2 9.7 11.9 3.48 3.91 3.37 3.17

ĉ 14.3 13.6 3.95 4.03 3.62 3.28
σ = 3 ĉ1 7.7 6.8 4.72 12.84 3.83 6.02

ĉ2 10.5 11.5 3.62 4.14 3.69 3.30

ĉ 17.6 16.2 4.26 4.55 4.45 3.77
σ = 4 ĉ1 8.6 7.5 4.75 14.57 4.28 6.76

ĉ2 11.2 14.5 3.75 4.55 4.12 3.76

ĉ 19.1 18.8 4.82 4.80 4.95 4.10
σ = 5 ĉ1 7.4 6.6 5.12 14.13 3.98 6.61

ĉ2 10.2 13.5 3.81 4.69 4.11 3.91

ĉ 19.5 21.7 4.98 5.30 5.39 4.60
σ = 6 ĉ1 7.5 7.3 5.19 14.56 4.23 6.88

ĉ2 9.8 16.8 3.76 5.19 4.33 4.40

Figure 7: Results of the second experiment averaged over 100 replications. Quantities In, Qn,
ℓ2 are defined in equations (5.1)-(5.3) whereas estimators ĉ (k-means with Lloyd), ĉ1 and ĉ2 (noisy
k-means with different bandwidths) are defined in Section 5.1. The values of σ corresponds to the
variance of the vertical direction of the additive noise ǫ, which is distributed as a Laplace or a
Gaussian distribution).
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Quantization risk Figure 8 (a)-(b) shows the evolution of the quantization risk (5.1) of ĉ and
ĉ2 when u ∈ {1, . . . , 10} in Mod(2,L). We omit ĉ1 for the same reason as in Mod(1,L).

(a) Laplace error (b) Gaussian error
Figure 8: Quantization risk averaged over 100 replications from Mod2(L, u) with n = 200.

Here the evolution of the quantization risk depends strongly on the type of noise in Mod(2,L). When
the noise is Laplace, ĉ2 outperforms standard k-means when the vertical variance u ≥ 5, whereas for
small variance, the results are comparable. On the contrary, when the additive noise is Gaussian,
the problem seems intractable and Noisy k-means with n = 200 does not provide interesting results.

L2 risk Figure 9 (a)-(b) proposes the ℓ2 risk (5.3) of ĉ and ĉ2 in Mod2(L, u).

(a) Laplace error (b) Gaussian error
Figure 9: ℓ2-risk averaged over 100 replications from Mod1(L, u) with n = 200.

The results are comparable with the Quantization risk and even worst : the Noisy k-means outper-
forms standard k-means for higher variance (u ≥ 8).

Conclusion of the second experiment The performances of the k-means are deteriorated
when the variance of ǫ increases in the second experiment. However, in this experiment, the problem
of noisy clustering -or noisy quantization - seems more difficult. Indeed, Noisy k-means algorithms
are not always significantly better than a standard k-means. In this experiment, the difficulty of the
problem strongly depends on the type of noise (Gaussian or Laplace), which coincides with standard
results in errors-in-variables models.

5.4 Conclusion of the experimental study

The results of this section show rather well the importance of the deconvolution step in the
problem of clustering with errors-in-variables. In the presence of well-separated Gaussian mixtures
with additive noise, standard k-means gives very bad performances when the variance of the noise
increases. On the contrary, Noisy k-means is more robust to this additional source of randomness.
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In the particular case of the first experiment, noisy k-means significantly outperforms standard k-
means. Unfortunately, when the mixture is more complicated (4 modes in the second experiment),
the problem of noisy clustering seems more difficult. The performances of Noisy k-means are not as
good as in the first experiment.

6 Conclusion

This paper can be seen as a first attempt into the study of theoretical and practical quantization
with errors-in-variables. Many problems could be considered in future works, from theoretical or
practical point of view.

In the problem of risk minimization with noisy data, we provide excess risk bounds with fast rates
for an empirical risk minimization based on a deconvolution kernel. The risk of the deconvolution
ERM mimics the risk of the oracle, up to some residual term, called the rate of convergence. The
order of these rates depends on the complexity of the hypothesis space in terms of entropy, the
behaviour of the density f and the degree of ill-posedness. From the theoretical point of view,
these results extend the previous study of Loustau [2013] to the unsupervised framework and to an
anisotropic behaviour of the density f . These extensions could be the core of many applications in
unsupervised learning with a corrupted sample, such as anomaly detection, learning principal curves,
level-set estimation or quantile estimation.

A seminal example of unsupervised learning is the problem of clustering with k-means. We
introduce a deconvolution kernel estimator in the standard k-means distortion, which gives rise to
a new stochastic minimization. It allows us to design a new algorithm to deal with clustering with
noisy observations. The construction of a noisy version of the well-known k-means is proposed in
Section 4.2. The algorithm called Noisy k-means mimics the Newton’s iterations of the standard
k-means, after a deconvolution estimation step.

Eventually, we illustrate with a rigorous simulation study the behaviour of noisy k-means in
two different Gaussian mixture framework. We investigate the ability of the algorithm to separate,
quantize or estimate Gaussian mixtures when we observe a corrupted sample with additive Laplace
- or Gaussian - noise. The message of this simulation study is the following : when the variance of
the noise increases, a deconvolution step is necessary to deal with the inverse problem.

Based on these considerations, a natural direction of research is to look at adaptive noisy k-means.
The choice of the bandwidth parameter in the algorithm is a cornerstone to have good results in
practice. Then, the design of an automatic bandwidth selection is the next step to investigate. This
is the purpose of a future work. Another related issue is to propose an algorithm which doesn’t need
the a priori knowledge of the distribution error. This problem could be adressed in the presence of
repeated measurements, which is also the purpose of a future work.

7 Proofs

The main probabilistic tool for our needs is the localization principle presented in Koltchinskii
[2006], which consists in using A Talagrand concentration inequality to functions in G with small
error.

Let us first introduce the following notations. For any fixed g ∈ G, we write:

Rλ(g) =

∫

K

ℓ(g, x)EP
1

λ
K
(
X − x

λ

)
dx and Rλ

n(g) =
1

n

n∑

i=1

ℓλ(g, Zi).

As a result, for any fixed g ∈ G, we have the following equality:

Rλ
n(g)−Rλ(g) =

1

n

n∑

i=1

ℓλ(g, Zi)− EP̃ ℓλ(g, Z).

With a slight abuse of notations, we also denote:

(Rλ
n −Rλ)(g − g′) = Rλ

n(g)−Rλ(g)−Rλ
n(g

′) +Rλ(g′).

The same notation is used for Rλ(·) and R(·) with the quantity (R−Rλ)(g − g′).
For a function ψ : R+ → R+, the following transformations are needed:

ψ̆q(δ) = sup
δj≥δ

ψ(δj)

δj
and ψ†

q(ǫ) = inf{δ > 0 : ψ̆q(δ) ≤ ǫ},
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where for some q > 1, δj = q−j for j ∈ N
∗. Moreover, in the sequel, constant C,C′ > 0 denote

generic constants that may vary from line to line.
We are now ready to state the main ingredient of the proof of Theorem 3.1. The following lemma

extends Lemma 2 in Loustau [2013].

Lemma 7.1. Suppose there exists some function a : λ 7→ a(λ) and a constant 0 < r < 1 such that:

∀g ∈ G,
∣∣∣(R−Rλ)(g − g∗(g))

∣∣∣ ≤ a(λ) + r(R(g)−R(g∗(g))), (7.1)

where g∗(g) ∈ argminhR(h) can depend on g.
Then, for any q > 1, ∀δ ≥ δ̄λ(t), if a(λ) ≤ δ(1− r)/4q, we have:

P(R(ĝλn) ≥ inf
g∈G

R(g) + δ) ≤ logq

(
1

δ

)
e−t,

where:

δ̄λ(t) = max

(
δλ(t),

8q

1− r
a(λ)

)
,

for δλ(t) = (Uλ(·, t))† ((1− r)/4q) and where we define, for some constant K > 0:

Uλ(δ, t) := K

[

EZλ(δ) +

√
t

n
σλ(δ) +

√
t

n
(1 + 2bλ(δ))EZλ(δ) +

t

3n

]

,

where

Zλ(δ) := sup
g,g′∈G(δ)

∣∣∣(Rλ
n −Rλ)(g − g′)

∣∣∣ ,

σλ(δ) := sup
g,g′∈G(δ)

√
EP̃ (ℓλ(g, Z)− ℓλ(g′, Z))2,

bλ(δ) := sup
g∈G(δ)

‖ℓλ(g, ·)‖∞.

7.1 Proof of Theorem 3.1 and 3.2

7.1.1 Proof of Theorem 3.1

The proof of Theorem 3.1 is divided into two steps. Using Lemma 7.1, we obtain the main risk
bound when |M| = 1. For the general case, we will introduce a more sophisticated localization
explain in Section 4 of Koltchinskii [2006]. Moreover, we begin the proof in dimension d = 1 for
simplicity. A slightly different algebra is precised at the end of the proof to lead to the general case.
Case 1: |M| = 1.
When |M| = 1, it is important to note that MA(κ) holds with a minimizer g∗ ∈ G which does not
depend on g. Then, we can write, for any g, g′ ∈ G(δ):

‖ℓ(g)− l(g′)‖L2(K) ≤ ‖ℓ(g)− ℓ(g∗)‖L2(K) + ‖ℓ(g′)− ℓ(g∗)‖L2(K) ≤ 2
√
κ0δ

1/2κ.

Gathering with the entropy condition (3.1), we obtain:

E sup
g,g′∈G(δ)

∣∣∣(Rλ
n −Rλ)(g − g′)

∣∣∣ ≤ E sup
‖ℓ(g)−ℓ(g′)‖L2(K)≤2

√
κ0δ

1/2κ

∣∣∣(Rλ
n −Rλ)(g − g′)

∣∣∣

≤ C
λ−β

√
n
δ

1−ρ
2κ ,

where we use in last line Lemma 1 in Loustau [2013]. Then, using the notations of Lemma 7.1:

Uλ(δ, t) = K

[

EZλ(δ) +

√
t

n
σλ(δ) +

√
t

n
(1 + 2bλ(δ))EZλ(δ) +

t

3n

]

≤ K

[
λ−β

√
n
δ

1−ρ
2κ +

√
t

n
σλ(δ) +

√
t

n
(1 + 2bλ(δ))

λ−β

√
n
δ

1−ρ
2κ +

t

3n

]

.
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It remains to control the L2(P̃ )-diameter σλ(δ) and the term bλ(δ) thanks to Lemma 8.1. Using
again assumption MA(κ), and the unicity of the minimizer g∗, gathering with the first assertion of
Lemma 8.1, we can write:

σλ(δ) = sup
g,g′∈G(δ)

√
EP̃ (lλ(g, Z)− lλ(g′, Z))2 ≤ Cλ−β√κ0δ

1
2κ .

Now, by the second assertion of Lemma 8.1:

bλ(δ) = sup
g∈G(δ)

‖lλ(g, ·)‖∞ ≤ Cλ−β−1/2.

It follows that:

Uλ(δ, t) ≤ K

[
λ−β

√
n
δ

1−ρ
2κ +

√
t
λ−β

√
n
δ

1
2κ +

√
t

n
(1 + λ−β−1/2)

λ−β

√
n
δ

1−ρ
2κ +

t

3n

]

. (7.2)

We hence have the following assertion:

t ≤ δ−
ρ
κ ∧√

nλ−βδ
1−ρ
2κ ⇒ U ′

λ(δ, t) ≤ K
λ−β

√
n
δ

1−ρ
2κ .

From an easy calculation, we hence get in this case:

δλ(t) ≤ K

(
λ−β

√
n

) 2κ
2κ+ρ−1

,

where K > 0 is a generic constant. We are now on time to apply Lemma 7.1 with:

δ = K

(
λ−β

√
n

) 2κ
2κ+ρ−1

and t′ = t+ log logq n.

In this case, note that for any t > 0 independent on n, the choice of λ in Theorem 3.1 warrants that,
for any n ≥ n0(t):

t+ log logq n ≤ δ−
ρ
κ ∧√

nλ−βδ
1−ρ
2κ .

Moreover, using Lemma 8.2, we have in dimension d = 1:

∀g ∈ G,
∣∣∣(R−Rλ)(g − g∗)

∣∣∣ ≤ Cλ2κs/(2κ−1) +
1

2
(R(g)−R(g∗)).

As a result condition (7.1) of Lemma 7.1 is satisfied with r = 1/2 and a(λ) = λ2κs/(2κ−1). We can
also check that for n great enough, the choice of λ in Theorem 3.1 guarantees:

λ2s ≤ K

(
λ−β

√
n

) 2κ
2κ+ρ−1

.

Finally, we get the result since:

logq
1

δ
e−t′ ≤

(
2κ

2κ+ ρ− 1

)
log

( √
n

λ−β

)
e−t

logq(n)
≤ e−t.

For the d-dimensional case, we have the same algebra by replacing λ−β by Πd
j=1λ

−βj

j in the previous

calculus and λ2κs/(2κ−1) by
∑d

j=1 λ
2κsj/(2κ−1)

j thanks to Lemma 8.2. The choice of λj , for j = 1, . . . , d
in Theorem 3.1 allows to conclude.
Case 2: |M| ≥ 2.
When the infimum is not unique, the diameter σ2

λ(δ) does not necessary tend to zero when δ → 0.
We hence introduce the more sophisticated geometric parameter:

r(σ, δ) = sup
g∈G(δ)

inf
g′∈G(σ)

√
EP̃ (ℓλ(g, Z)− ℓλ(g′, Z))2, for 0 < σ ≤ δ.

It is clear that r(σ, δ) ≤
√
σ2
λ(δ) and for δ → 0, we have r(σ, δ) → 0. The idea of the proof is to use

a slightly modified version of Lemma 7.1 following Koltchinskii [2006]. More precisely, we have to
apply a Talagrand concentration inequality to the random variable:

Wλ(δ) = sup
g∈G(σ)

sup
g′∈G(δ):

√
E
P̃
(ℓλ(g,Z)−ℓλ(g′,Z))2≤r(σ,δ)+ǫ

∣∣∣(Rλ
n −Rλ)(g − g′)

∣∣∣ .

19



This localization guarantees the upper bounds of Theorem 3.1 when |M| ≥ 2. However, to this end,
we have to check (for d = 1 for simplicity):

lim
ǫ→0

E sup
g∈G(σ)

sup
g′∈G(δ):

√
E
P̃
(ℓλ(g,Z)−ℓλ(g′,Z))2≤r(σ,δ)+ǫ

∣∣∣(Rλ
n −Rλ)(g − g′)

∣∣∣ ≤ C
λ−β

√
n
δ1/2κ, (7.3)

and for 0 < σ ≤ δ:

r(σ, δ) ≤ Cλ−βδ1/2κ. (7.4)

Using MA(κ) and Lemma 1 in Loustau [2013], it is clear that (7.3) holds since:

E sup
g∈G(σ)

sup
g′∈G(δ):

√
E
P̃
(ℓλ(g,Z)−ℓλ(g′,Z))2≤r(σ,δ)+ǫ

∣∣∣(Rλ
n −Rλ)(g − g′)

∣∣∣

≤ E sup
g∈G(σ),g∗∈M

∣∣∣(Rλ
n −Rλ)(g − g∗)

∣∣∣+ E sup
g′∈G(δ)

∣∣∣(Rλ
n −Rλ)(g′ − g∗(g′))

∣∣∣

≤ 2E sup
(g,g∗)∈G(δ)×M

∣∣∣(Rλ
n −Rλ)(g∗ − g)

∣∣∣

≤ C
λ−β

√
n
δ1/2κ.

To check (7.4), note that with MA(κ) and the first assertion of Lemma 8.1, we have ∀g ∈ G(δ), g′ ∈
G(σ):

√
EP̃ (ℓλ(g, Z)− ℓλ(g′, Z))2 ≤ Cλ−β‖ℓ(g)− ℓ(g′)‖L2(K)

≤ Cλ−βδ1/2κ + Cλ−β‖ℓ(g∗(g))− ℓ(g∗(g′))‖L2(K),

for 0 < σ ≤ δ. Taking the infimum with respect to g′ ∈ G(σ), we get:

‖ℓ(g∗(g))− ℓ(g∗(g′))‖L2(K) = 0.

7.1.2 Proof of Theorem 3.2

The proof of Theorem 3.2 uses a slightly different version of Theorem 3.1. First of all, an
inspection of the proof of Theorem 3.1 shows that condition (3.1) in Theorem 3.1 can be replaced
by the following control of the local complexity of the noisy empirical process:

E sup
g,g′∈G(δ)

∣∣∣(Rλ
n −Rλ)(g − g′)

∣∣∣ ≤ C
λ−β

√
n
δ

1−ρ
2κ . (7.5)

Hence, using Lemma 8.3 in the Appendix, gathering with condition (PRC), we can have (7.5) with
ρ = 0 and κ = 1.
However, the case ρ = 0 is not treated in Theorem 3.1 where ρ ∈ (0, 1). From (7.5), and using the
notations of Lemma 7.1, (7.2) in the proof of Theorem 3.1 becomes:

Uλ(δ, t) ≤ K

[
λ−β

√
n
δ

1
2 +

√
t
λ−β

√
n
δ

1
2 +

√
t

n
(1 + λ−β−1/2)

λ−β

√
n
δ

1
2 +

t

3n

]

.

We hence have the following assertion:

t ≤ √
nλ−βδ

1
2 ⇒ Uλ(δ, t) ≤ K

(
1 +

√
t
) λ−β

√
n
δ

1
2 .

Using the same algebra as above, we can use Lemma 7.1 with:

δ = K
(
1 +

√
t′
)(λ−β

√
n

) 2
1+ρ

and t′ = t+ log logq n.

In this case, note that the choice of t′ = t+ log logq n gives rise to the following asymptotic:

δ ≈
√

log log n
λ−β

√
n
δ

1
2 ,

and leads to an extra
√
log log n term in the rates of convergence.
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7.2 Proof of Theorem 4.1

To give the first order conditions for the deconvolution empirical risk defined in (4.1) as:

W̃n(c) =
1

n

n∑

i=1

∫

K

min
j=1,...,k

‖x− cj‖2 1

λ
Kη

(
Zi − x

λ

)
dx,

let us introduce the quantity J(c, z) defined as:

J(c, z) =

∫

K

min
j=1,...,k

‖x− cj‖2 1

λ
Kη

(z − x

λ

)
dx.

For a fixed z ∈ R, and for any c, c′ ∈ R
dk, let us consider the directional derivative of the function

J(·, z) : Rdk → R, at c along the direction c′ defined as:

∇
c
′J(c, z) = lim

h→0

J(c+ c′h, z)− J(c, z)

h
.

Using simple algebra, we have, denoting Vj the Voronöı cell associated to cj and Vj(h) the Voronöı cell
associated with (c+ hc′)j :

J(c+ c′h, z)− J(c, z) =

∫

K

[
min

j=1,...,k

∥∥x− (c+ c′h)j
∥∥2 − min

j=1,...,k
‖x− cj‖2

]
1

λ
Kη

(z − x

λ

)
dx

=
k∑

j=1

[∫

Vj∩Vj(h)

(
h2‖c′j‖2 − 2h〈x− cj , c

′
j〉
) 1
λ
Kη

(z − x

λ

)
dx

]

+

∫

V (h)C
r(c, c′, x, h, λ)dx,

where:

V (h) =
k⋃

j=1

(Vj ∩ Vj(h)) ,

and x 7→ r(c, c′, x, h, λ) is a bounded function whose precise expression is not useful. Indeed, using
dominated convergence and the fact that for any x ∈ K, there exists some h(x) > 0 such that for
any h ≤ h(x), 1IV (h)C (x) = 0, we arrive at:

∇
c
′J(c, z) =

k∑

j=1

∫

Vj

−2〈x− cj , c
′
j〉

1

λ
Kη

(z − x

λ

)
dx.

For c′ ∈ {eij = (0, . . . , 0, 1, . . . , 0)|i = 1 . . . d, j = 1 . . . k} the canonical basis of Rdk, one has:

∇eijJ(c, z) = −2

∫

Vj

(xi − cij)
1

λ
Kη

(z − x

λ

)
dx.

Then a sufficient condition on c to have ∇eℓ,j

∑n
i=1 J(c, Zi) = 0 is:

cℓ,j =
1/n

∑n
i=1

∫
Vj
xℓ

1
λ
Kη

(
Zi−x

λ

)
dx

1/n
∑n

i=1

∫
Vj

1
λ
Kη

(
Zi−x

λ

)
dx

. (7.6)

8 Appendix

8.1 Technical lemmas

Lemma 8.1. Suppose (NA) holds, and K satisfies assumption (K1). Suppose ‖f ∗ η‖∞ ≤ c̃∞ and
supg∈G ‖ℓ(g, ·)‖L2(K) <∞. Then, the two following assertions hold:

(i) ℓ(g) 7→ ℓλ(g) is Lipschitz with respect to λ:

∀g, g′ ∈ G, ‖ℓλ(g, ·)− ℓλ(g
′, ·)‖L2(P̃ ) ≤ C1Π

d
i=1λ

−βi
i ‖ℓ(g, ·)− ℓ(g′, ·)‖L2(K),

where C > 0 is a generic constant which depends on c̃∞ and constants in (K1).

(ii) {ℓλ(g), g ∈ G} is uniformly bounded:

sup
g∈G

‖ℓλ(g, ·)‖∞ ≤ C2Π
d
i=1λ

−(βi+1/2)
i ,

where C2 > 0 is a generic constant which depends on constants in (K1).
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Proof. Using Plancherel and the boundedness assumption over f ∗ η, we have:

EP̃ (ℓλ(g, Z)− ℓλ(g
′, Z))2 =

∫ [
1

λ
Kη(

·
λ
) ∗ ( 1IK × (ℓ(g, ·)− ℓ(g′, ·))(z)

]2
f ∗ η(z)dz

≤ C

∫
1

λ2
|F [Kη(

·
λ
)](t)|2|F [ 1IK × (ℓ(g, ·)− ℓ(g′, ·))](t)|2dt

≤ Cλ−2β‖ℓ(g)− ℓ(g′)‖2L2(K),

where we use in last line the following inequalities:

1

λ2
|F [Kη(./λ)](s)|2 = |F [Kη](sλ)|2 ≤ C sup

t∈R

∣∣∣∣
F [K](tλ)

F [η](t)

∣∣∣∣
2

≤ C sup
t∈[−L

λ
,L
λ
]

∣∣∣∣
1

F [η](t)

∣∣∣∣
2

≤ Cλ−2β ,

provided that (K1) holds.
By the same way, the second assertion holds since if ℓ(g, ·) ∈ L2(K):

|ℓλ(g, z)| ≤
∫

K

∣∣∣∣
1

λ
Kη

(z − x

λ

)
ℓ(g, x)

∣∣∣∣ dx

≤ C

√∫

K

∣∣∣∣
1

λ
Kη

(z − x

λ

)∣∣∣∣
2

dx

≤ Cλ−β−1/2.

A straightforward generalization leads to the d-dimensional case.

Lemma 8.2. Suppose f belongs to the anisotropic Hölder spaces H(s, L) with s = (s1, . . . , sd). Let
K a kernel satisfying assumption K(m) with m = ⌊s⌋ ∈ N

d. Suppose MA(κ) holds with parameter
κ ≥ 1. Then, we have:

∀g ∈ G,
∣∣∣(R−Rλ)(g − g∗(g))

∣∣∣ ≤ C
d∑

j=1

λ
2κsj/(2κ−1)

j +
1

2κ
(R(g)− inf

g∈G
R(g)),

where C > O is a generic constant.

Proof : Note that we can write:

(Rλ −R)(g − g∗) =

∫

K

(ℓ(g, x)− ℓ(g∗, x))
(
Ef̂λ(x)− f(x)

)
dx,

where we omit the notation g∗ = g∗(g) for simplicity. The first part of the proof uses Proposition 1
stated in Comte and Lacour [2012].

Proposition 8.1 (Comte and Lacour [2012]). Let B0(λ) = supx0∈Rd |f(x0)− Ef̂λ(x0)|. Then, if f
belongs to the anisotropic Hölder space H(s, L), and K is a kernel of order ⌊s⌋, we have:

B0(λ) ≤ C

d∑

j=1

λ
sj
j ,

where C > 0 denotes some generic constant.

The rest of the proof uses the margin assumption MA(κ) as follows:

∣∣∣(Rλ −R)(g − g∗)
∣∣∣ ≤ C

d∑

j=1

λ
sj
j

∫

K

|ℓ(g, x)− ℓ(g∗, x)|dx.

≤ C
d∑

j=1

λ
sj
j

√∫

K

|ℓ(g, x)− ℓ(g∗, x)|2dx

≤ C
d∑

j=1

λ
sj
j (R(g)−R(g∗))

1
2κ

≤ C

d∑

j=1

λ
2κsj/(2κ−1)

j +
1

2κ
(R(g)− inf

g∈G
R(g)),

where we use in last line Young’s inequality:

xyr ≤ ry + x1/1−r, ∀r < 1,

with r = 1
2κ

.
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Lemma 8.3. Suppose (PRC), (NA) and the kernel assumption (K1) are satisfied and ‖X‖∞ ≤M .
Suppose E‖ǫ‖2 <∞. Then:

E sup
(c,c∗)∈C×M,‖c−c

∗‖2≤δ

∣∣∣(Rλ
n −Rλ)(c∗ − c)

∣∣∣ ≤ CΠd
i=1λ

−βi
i

√
δ√
n
,

where C > 0 is a positive constant.

Proof. The proof follows Levrard [2012] applied to the noisy setting. First note that in the sequel,
we need to introduce the following notation:

(P̃n − P̃ )(ℓλ(c, Z)− ℓλ(c
′, Z) :=

1

n

n∑

i=1

[
ℓλ(c, Zi)− ℓλ(c

′, Zi)
]
− EP̃

[
ℓλ(c, Z)− ℓλ(c

′, Z)
]
.

By smoothness assumptions over c 7→ min ‖x− cj‖, for any c ∈ R
dk and c∗ ∈ M, we have:

ℓλ(c, z)− ℓλ(c
∗, z) = 〈c− c∗,∇cℓλ(c

∗, z)〉+ ‖c− c∗‖Rλ(c
∗, c− c∗, z),

where, with Pollard [1982] we have:

∇cℓλ(c
∗, z) = −2

(∫
1

λ
Kη

(z − x

λ

)
(x− c∗1)1V ∗

1
(x)dx, ...,

∫
1

λ
Kη

(z − x

λ

)
(x− c∗k)1V ∗

k
(x)dx

)

and Rλ(c
∗, c− c∗, z) satisfies:

|Rλ(c
∗, c− c∗, z)| ≤ ‖c− c∗‖−1

(
|〈c− c∗,∇cℓλ(c

∗, z)〉|+ max
j=1,...k

(|‖z − cj‖ − ‖x− c∗j‖
)
.

Splitting the expectation in two parts, we obtain:

E sup
c
∗∈M,‖c−c

∗‖2≤δ

|P̃n − P̃ |(ℓλ(c∗, .)− ℓλ(c, .)) ≤ E sup
c
∗∈M,‖c−c

∗‖2≤δ

|P̃n − P̃ | 〈c∗ − c,∇cℓλ(c
∗, .)〉

+
√
δE sup

c
∗∈M,‖c−c

∗‖2≤δ

|P̃n − P̃ |(−Rλ(c
∗, c− c∗, .)) (8.1)

To bound the first term in this decomposition, consider the random variable

Zn = (P̃n − P̃ ) 〈c∗ − c,∇cℓλ(c
∗, .)〉 = 2

n

k∑

u=1

d∑

j=1

(cu,j − c∗u,j)
n∑

i=1

∫

Vu

1

λ
Kη

(
Zi − x

λ

)
(xj − cu,j)dx.

By a simple Hoeffding’s inequality, Zn is a subgaussian random variable. Its variance can be bounded
as follows:

varZn =
4

n

k∑

u=1

d∑

j=1

(cu,j − c∗u,j)
2var

∫

Vu

1

λ
Kη

(
Z − x

λ

)
(xj − cu,j)dx

≤ 4

n
δE

(∫

V
u+

1

λ
Kη

(
Z − x

λ

)
(xj − cu+,j)dx

)2

≤ C
4

n
δ

∫ ∣∣∣∣F
[
1

λ
Kη

( ·
λ

)]
(t)

∣∣∣∣
2 ∣∣F [(πj − cu+,j)1Vu+ ](t)

∣∣2 dt

≤ C
4

n
δΠd

i=1λ
−2βi
i

∫

V
u+

(xj − cu+,j)
2dx

≤ CΠd
i=1λ

−2βi
i

4

n
δ,

where u+ = argmaxu

∫
Vu

1
λ
Kη

(
Z−x
λ

)
(xj − cu,j)dx and πj : x 7→ xj , and where we use the same

argument as in Lemma 8.1 under assumption (K1). We hence have using for instance a maximal
inequality due to Massart Massart [34, Part 6.1]:

E

(

sup
c
∗∈M,‖c−c

∗‖2≤δ

(P̃n − P̃ ) 〈c∗ − c,∇cℓλ(c
∗, .)〉

)

≤ C
Πd

i=1λ
−βi
i√
n

√
δ.
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We obtain for the first term in (8.1) the right order. To prove that the second term in (8.1) is smaller,
note that from Pollard [1982], we have:

|Rλ(c
∗, c− c∗, z)| ≤ ‖c− c∗‖−1

(
〈c− c∗,∇cℓλ(c

∗, z)〉+ max
j=1,...k

(|‖z − cj‖2 − ‖z − c∗j‖2|
)

≤ ‖∇cℓλ(c
∗, z)‖+ ‖c− c∗‖−1

∑

j=1,...k

|‖z − cj‖2 − ‖z − c∗j‖2|

≤ C(Πd
i=1λ

−βi
i + ‖z‖)

we we use in last line:

‖∇cℓλ(c
∗, z)‖2 = 4

∑

j,k

(∫
1

λ
Kη

(z − x

λ

)
(xj − c∗u,j)1V ∗

u
(x)dx

)2

≤ CΠd
i=1λ

−2βi
i .

Hence it is possible to apply a chaining argument as in Levrard [2012] to the class

F = {Rλ(c
∗, c− c∗, ·), c∗ ∈ M, c ∈ R

kd : ‖c− c∗‖ ≤
√
δ},

which has an enveloppe function F (·) ≤ C(Πd
i=1λ

−βi
i + ‖ · ‖) ∈ L2(P̃ ) provided that E‖ǫ‖2 <∞. We

arrive at the conclusion.
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